Comprehensive Physiology Wiley Online Library

Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake

Full Article on Wiley Online Library



Abstract

The skeletal muscle is the largest organ in the body, by mass. It is also the regulator of glucose homeostasis, responsible for 80% of postprandial glucose uptake from the circulation. Skeletal muscle is essential for metabolism, both for its role in glucose uptake and its importance in exercise and metabolic disease. In this article, we give an overview of the importance of skeletal muscle in metabolism, describing its role in glucose uptake and the diseases that are associated with skeletal muscle metabolic dysregulation. We focus on the role of skeletal muscle in peripheral insulin resistance and the potential for skeletal muscle‐targeted therapeutics to combat insulin resistance and diabetes, as well as other metabolic diseases like aging and obesity. In particular, we outline the possibilities and pitfalls of the quest for exercise mimetics, which are intended to target the molecular mechanisms underlying the beneficial effects of exercise on metabolic disease. We also provide a description of the molecular mechanisms that regulate skeletal muscle glucose uptake, including a focus on the SNARE proteins, which are essential regulators of glucose transport into the skeletal muscle. © 2020 American Physiological Society. Compr Physiol 10:785‐809, 2020.

Figure 1. Figure 1. A simplified model of insulin‐stimulated translocation of the GLUT4 glucose transporter in skeletal muscle. Shown is the canonical insulin signaling pathway, and a noncanonical pathway (inset in purple). Both signaling pathways culminate with SNARE protein (Syntaxin 4, SNAP23, and VAMP2)‐mediated vesicle trafficking and fusion with the plasma membrane. Vesicle fusion allows GLUT4 to integrate into the plasma membrane and transport glucose from the blood into the skeletal muscle.
Figure 2. Figure 2. Contraction‐mediated GLUT4 translocation. When contraction occurs via exercise (depicted by yellow lightning bolts) multiple pathways are activated, which can all lead to GLUT4 translocation and glucose uptake. Left: contraction causes Rac1‐GTP loading/activation, which induces PAK1 phosphorylation/activation, and F‐actin remodeling to activate the exercise stimulated GLUT4 vesicle pool; it can also activate NOX2 which causes reactive oxygen species (ROS) formation. ROS can also be stimulated directly by contraction, leading to peroxynitrite and subsequent GLUT4 translocation, or can cause AMPK activation. Nitric oxide (NO) production can lead to S‐nitrosylation of proteins that cause GLUT4 translocation. Muscle excitation can also cause calcium influx into the muscle cell (far right), which can activate CAMKII and lead to glucose uptake. Calcium influx can also stimulate cross‐bridge cycling, the process of muscle fiber contraction, which leads to GLUT4 translocation and glucose uptake into the cell.
Figure 3. Figure 3. SNARE complex formation under basal versus insulin‐stimulated conditions. (A) Under basal conditions, Syntaxin 4 (STX4, pink) is in a closed conformation, which is maintained by the accessory protein Munc18c (yellow). (B) Upon insulin stimulation, the insulin receptor (IR) is phosphorylated, after which phospho‐IR binds to and phosphorylates Munc18c. Phospho‐Munc18c then lets go of STX4 and binds to DOC2B (brown), allowing STX4 to adopt its open conformation. In its open conformation. In its open conformation, the STX4 H3 domain is exposed, enabling STX4 to associate with SNAP23 and VAMP2 (purple) on the GLUT4 vesicle, leading to the formation of the SNARE complex, mediating vesicle docking and fusion to the plasma membrane.
Figure 4. Figure 4. The role of mitochondrial dynamics in maintaining skeletal muscle function and preventing disease. Center: mitochondrial fission and fusion are balanced and under these conditions, there is normal mitochondrial function, ATP production, and cell death. Left: fission outweighs fusion, so mitochondria become fragmented, there is an increase in mitophagy and cell death, a reduction in mitochondrial function, and increased ROS production. This contributes to diseases including aging, obesity, and insulin resistance. Right: mitochondrial fusion outweighs fission, leading to increased mitochondrial function, reduced cell death, elongated mitochondria, and increased fatty acid oxidation. However, this can also cause cell stress and starvation due to the high demands of the large mitochondria.


Figure 1. A simplified model of insulin‐stimulated translocation of the GLUT4 glucose transporter in skeletal muscle. Shown is the canonical insulin signaling pathway, and a noncanonical pathway (inset in purple). Both signaling pathways culminate with SNARE protein (Syntaxin 4, SNAP23, and VAMP2)‐mediated vesicle trafficking and fusion with the plasma membrane. Vesicle fusion allows GLUT4 to integrate into the plasma membrane and transport glucose from the blood into the skeletal muscle.


Figure 2. Contraction‐mediated GLUT4 translocation. When contraction occurs via exercise (depicted by yellow lightning bolts) multiple pathways are activated, which can all lead to GLUT4 translocation and glucose uptake. Left: contraction causes Rac1‐GTP loading/activation, which induces PAK1 phosphorylation/activation, and F‐actin remodeling to activate the exercise stimulated GLUT4 vesicle pool; it can also activate NOX2 which causes reactive oxygen species (ROS) formation. ROS can also be stimulated directly by contraction, leading to peroxynitrite and subsequent GLUT4 translocation, or can cause AMPK activation. Nitric oxide (NO) production can lead to S‐nitrosylation of proteins that cause GLUT4 translocation. Muscle excitation can also cause calcium influx into the muscle cell (far right), which can activate CAMKII and lead to glucose uptake. Calcium influx can also stimulate cross‐bridge cycling, the process of muscle fiber contraction, which leads to GLUT4 translocation and glucose uptake into the cell.


Figure 3. SNARE complex formation under basal versus insulin‐stimulated conditions. (A) Under basal conditions, Syntaxin 4 (STX4, pink) is in a closed conformation, which is maintained by the accessory protein Munc18c (yellow). (B) Upon insulin stimulation, the insulin receptor (IR) is phosphorylated, after which phospho‐IR binds to and phosphorylates Munc18c. Phospho‐Munc18c then lets go of STX4 and binds to DOC2B (brown), allowing STX4 to adopt its open conformation. In its open conformation. In its open conformation, the STX4 H3 domain is exposed, enabling STX4 to associate with SNAP23 and VAMP2 (purple) on the GLUT4 vesicle, leading to the formation of the SNARE complex, mediating vesicle docking and fusion to the plasma membrane.


Figure 4. The role of mitochondrial dynamics in maintaining skeletal muscle function and preventing disease. Center: mitochondrial fission and fusion are balanced and under these conditions, there is normal mitochondrial function, ATP production, and cell death. Left: fission outweighs fusion, so mitochondria become fragmented, there is an increase in mitophagy and cell death, a reduction in mitochondrial function, and increased ROS production. This contributes to diseases including aging, obesity, and insulin resistance. Right: mitochondrial fusion outweighs fission, leading to increased mitochondrial function, reduced cell death, elongated mitochondria, and increased fatty acid oxidation. However, this can also cause cell stress and starvation due to the high demands of the large mitochondria.
References
 1.Ahirwar AK, Jain A, Goswami B, Bhatnagar MK, Bhatacharjee J. Imbalance between protective (adiponectin) and prothrombotic (Plasminogen Activator Inhibitor‐1) adipokines in metabolic syndrome. Diabetes Metab Syndr 8: 152‐155, 2014.
 2.Akbar H, Duan X, Piatt R, Saleem S, Davis AK, Tandon NN, Bergmeier W, Zheng Y. Small molecule targeting the Rac1‐NOX2 interaction prevents collagen‐related peptide and thrombin‐induced reactive oxygen species generation and platelet activation. J Thromb Haemost 16: 2083‐2096, 2018.
 3.Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P, Hemmings BA. Mechanism of activation of protein kinase B by insulin and IGF‐1. EMBO J 15: 6541‐6551, 1996.
 4.Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3‐phosphoinositide‐dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7: 261‐269, 1997.
 5.Almendro V, Busquets S, Ametller E, Carbo N, Figueras M, Fuster G, Argiles JM, Lopez‐Soriano FJ. Effects of interleukin‐15 on lipid oxidation: Disposal of an oral [(14)C]‐triolein load. Biochim Biophys Acta 1761: 37‐42, 2006.
 6.American Diabetes Association. Standards of Medical Care in Diabetes—2011. Diabetes Care 34: S11‐S61, 2011.
 7.American Diabetes Association. Classification and diagnosis of diabetes. Diabetes Care 40: S11‐S24, 2017.
 8.Andersen P, Saltin B. Maximal perfusion of skeletal muscle in man. J Physiol 366: 233‐249, 1985.
 9.Angin Y, Schwenk RW, Nergiz‐Unal R, Hoebers N, Heemskerk JWM, Kuijpers MJ, Coumans WA, van Zandvoort MA, Bonen A, Neumann D, Glatz JFC, Luiken JJFP. Calcium signaling recruits substrate transporters GLUT4 and CD36 to the sarcolemma without increasing cardiac substrate uptake. Am J Physiol Endocrinol Metab 307: E225‐E236, 2014.
 10.Araya R, Liberona JL, Cardenas JC, Riveros N, Estrada M, Powell JA, Carrasco MA, Jaimovich E. Dihydropyridine receptors as voltage sensors for a depolarization‐evoked, IP3R‐mediated, slow calcium signal in skeletal muscle cells. J Gen Physiol 121: 3‐16, 2003.
 11.Asby DJ, Cuda F, Beyaert M, Houghton FD, Cagampang FR, Tavassoli A. AMPK activation via modulation of de novo purine biosynthesis with an inhibitor of ATIC homodimerization. Chem Biol 22: 838‐848, 2015.
 12.Aslamy A, Oh E, Olson EM, Zhang J, Ahn M, Moin ASM, Tunduguru R, Salunkhe VA, Veluthakal R, Thurmond DC. Doc2b protects beta‐cells against inflammatory damage and enhances function. Diabetes 67: 1332‐1344, 2018.
 13.Aversa Z, Bonetto A, Penna F, Costelli P, Di Rienzo G, Lacitignola A, Baccino FM, Ziparo V, Mercantini P, Fanelli FR. Changes in myostatin signaling in non‐weight‐losing cancer patients. Ann Surg Oncol 19: 1350‐1356, 2012.
 14.Axelrod CL, Fealy CE, Mulya A, Kirwan JP. Exercise training remodels human skeletal muscle mitochondrial fission and fusion machinery towards a pro‐elongation phenotype. Acta Physiol (Oxf) 225: e13216, 2018.
 15.Bach D, Pich S, Soriano FX, Vega N, Baumgartner B, Oriola J, Daugaard JR, Lloberas J, Camps M, Zierath JR, Rabasa‐Lhoret R, Wallberg‐Henriksson H, Laville M, Palacin M, Vidal H, Rivera F, Brand M, Zorzano A. Mitofusin‐2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278: 17190‐17197, 2003.
 16.Bai L, Wang Y, Fan J, Chen Y, Ji W, Qu A, Xu P, James DE, Xu T. Dissecting multiple steps of GLUT4 trafficking and identifying the sites of insulin action. Cell Metab 5: 47‐57, 2007.
 17.Bailetti D, Bertoccini L, Mancina RM, Barchetta I, Capoccia D, Cossu E, Pujia A, Lenzi A, Leonetti F, Cavallo MG, Romeo S, Baroni MG. ANGPTL4 gene E40K variation protects against obesity‐associated dyslipidemia in participants with obesity. Obes Sci Pract 5: 83‐90, 2019.
 18.Balon TW, Nadler JL. Evidence that nitric oxide increases glucose transport in skeletal muscle. J Appl Physiol 82: 359‐363, 1997.
 19.Barnes BR, Marklund S, Steiler TL, Walter M, Hjalm G, Amarger V, Mahlapuu M, Leng Y, Johansson C, Galuska D, Lindgren K, Abrink M, Stapleton D, Zierath JR, Andersson L. The 5′‐AMP‐activated protein kinase gamma3 isoform has a key role in carbohydrate and lipid metabolism in glycolytic skeletal muscle. J Biol Chem 279: 38441‐38447, 2004.
 20.Bastard JP, Maachi M, Van Nhieu JT, Jardel C, Bruckert E, Grimaldi A, Robert JJ, Capeau J, Hainque B. Adipose tissue IL‐6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab 87: 2084‐2089, 2002.
 21.Benny Klimek ME, Aydogdu T, Link MJ, Pons M, Koniaris LG, Zimmers TA. Acute inhibition of myostatin‐family proteins preserves skeletal muscle in mouse models of cancer cachexia. Biochem Biophys Res Commun 391: 1548‐1554, 2010.
 22.Bergen HR 3rd, Farr JN, Vanderboom PM, Atkinson EJ, White TA, Singh RJ, Khosla S, LeBrasseur NK. Myostatin as a mediator of sarcopenia versus homeostatic regulator of muscle mass: Insights using a new mass spectrometry‐based assay. Skelet Muscle 5: 21, 2015.
 23.Bonnard C, Durand A, Peyrol S, Chanseaume E, Chauvin M‐A, Morio B, Vidal H, Rieusset J. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet‐induced insulin‐resistant mice. J Clin Invest 118: 789‐800, 2008.
 24.Booth FW, Laye MJ, Roberts MD. Lifetime sedentary living accelerates some aspects of secondary aging. J Appl Physiol (1985) 111: 1497‐1504, 2011.
 25.Booth FW, Roberts CK, Laye MJ. Lack of exercise is a major cause of chronic diseases. Compr Physiol 2: 1143‐1211, 2012.
 26.Bostrom P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, Rasbach KA, Bostrom EA, Choi JH, Long JZ, Kajimura S, Zingaretti MC, Vind BF, Tu H, Cinti S, Hojlund K, Gygi SP, Spiegelman BM. A PGC1‐alpha‐dependent myokine that drives brown‐fat‐like development of white fat and thermogenesis. Nature 481: 463‐468, 2012.
 27.Bradley SJ, Kingwell BA, McConell GK. Nitric oxide synthase inhibition reduces leg glucose uptake but not blood flow during dynamic exercise in humans. Diabetes 48: 1815‐1821, 1999.
 28.Brunmair B, Staniek K, Gras F, Scharf N, Althaym A, Clara R, Roden M, Gnaiger E, Nohl H, Waldhausl W, Furnsinn C. Thiazolidinediones, like metformin, inhibit respiratory complex I: A common mechanism contributing to their antidiabetic actions? Diabetes 53: 1052‐1059, 2004.
 29.Bruss MD, Arias EB, Lienhard GE, Cartee GD. Increased phosphorylation of Akt substrate of 160 kDa (AS160) in rat skeletal muscle in response to insulin or contractile activity. Diabetes 54: 41‐50, 2005.
 30.Bullen JW, Balsbaugh JL, Chanda D, Shabanowitz J, Hunt DF, Neumann D, Hart GW. Cross‐talk between two essential nutrient‐sensitive enzymes: O‐GlcNAc TRANSFERASE (OGT) and AMP‐ACTIVATED PROTEIN KINASE (AMPK). J Biol Chem 289: 10592‐10606, 2014.
 31.Busquets S, Figueras M, Almendro V, Lopez‐Soriano FJ, Argiles JM. Interleukin‐15 increases glucose uptake in skeletal muscle. An antidiabetogenic effect of the cytokine. Biochim Biophys Acta 1760: 1613‐1617, 2006.
 32.Calderón JC, Bolaños P, Caputo C. The excitation‐contraction coupling mechanism in skeletal muscle. Biophys Rev 6: 133‐160, 2014.
 33.Campbell C, McMillan HJ, Mah JK, Tarnopolsky M, Selby K, McClure T, Wilson DM, Sherman ML, Escolar D, Attie KM. Myostatin inhibitor ACE‐031 treatment of ambulatory boys with Duchenne muscular dystrophy: Results of a randomized, placebo‐controlled clinical trial. Muscle Nerve 55: 458‐464, 2017.
 34.Canto C, Gerhart‐Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056‐1060, 2009.
 35.Canto C, Houtkooper RH, Pirinen E, Youn DY, Oosterveer MH, Cen Y, Fernandez‐Marcos PJ, Yamamoto H, Andreux PA, Cettour‐Rose P, Gademann K, Rinsch C, Schoonjans K, Sauve AA, Auwerx J. The NAD(+) precursor nicotinamide riboside enhances oxidative metabolism and protects against high‐fat diet‐induced obesity. Cell Metab 15: 838‐847, 2012.
 36.Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M, Zierath JR, Auwerx J. Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11: 213‐219, 2010.
 37.Carey AL, Bruce CR, Sacchetti M, Anderson MJ, Olsen DB, Saltin B, Hawley JA, Febbraio MA. Interleukin‐6 and tumor necrosis factor‐alpha are not increased in patients with Type 2 diabetes: Evidence that plasma interleukin‐6 is related to fat mass and not insulin responsiveness. Diabetologia 47: 1029‐1037, 2004.
 38.Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen‐Behrens C, Watt MJ, James DE, Kemp BE, Pedersen BK, Febbraio MA. Interleukin‐6 increases insulin‐stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP‐activated protein kinase. Diabetes 55: 2688‐2697, 2006.
 39.Carling D, Hardie DG. The substrate and sequence specificity of the AMP‐activated protein kinase. Phosphorylation of glycogen synthase and phosphorylase kinase. Biochim Biophys Acta 1012: 81‐86, 1989.
 40.Catoire M, Mensink M, Boekschoten MV, Hangelbroek R, Muller M, Schrauwen P, Kersten S. Pronounced effects of acute endurance exercise on gene expression in resting and exercising human skeletal muscle. PLoS One 7: e51066, 2012.
 41.Centers for Disease Control and Prevention. National Diabetes Statistics Report. Atlanta, GA: Centers for Disease Control and Prevention, US Department of Health and Human Services, 2017.
 42.Chambers MA, Moylan JS, Smith JD, Goodyear LJ, Reid MB. Stretch‐stimulated glucose uptake in skeletal muscle is mediated by reactive oxygen species and p38 MAP‐kinase. J Physiol 587: 3363‐3373, 2009.
 43.Chan KL, Boroumand P, Milanski M, Pillon NJ, Bilan PJ, Klip A. Deconstructing metabolic inflammation using cellular systems. Am J Physiol Endocrinol Metab 312: E339‐E347, 2017.
 44.Chen D, Li X, Zhang L, Zhu M, Gao L. A high‐fat diet impairs mitochondrial biogenesis, mitochondrial dynamics, and the respiratory chain complex in rat myocardial tissues. J Cell Biochem 119: 9602, 2018.
 45.Chen G, Liu P, Thurmond DC, Elmendorf JS. Glucosamine‐induced insulin resistance is coupled to O‐linked glycosylation of Munc18c. FEBS Lett 534: 54‐60, 2003.
 46.Chen L, Gong Q, Stice JP, Knowlton AA. Mitochondrial OPA1, apoptosis, and heart failure. Cardiovasc Res 84: 91‐99, 2009.
 47.Chen S, Murphy J, Toth R, Campbell DG, Morrice NA, Mackintosh C. Complementary regulation of TBC1D1 and AS160 by growth factors, insulin and AMPK activators. Biochem J 409: 449‐459, 2008.
 48.Chen Z, Heierhorst J, Mann RJ, Mitchelhill KI, Michell BJ, Witters LA, Lynch GS, Kemp BE, Stapleton D. Expression of the AMP‐activated protein kinase beta1 and beta2 subunits in skeletal muscle. FEBS Lett 460: 343‐348, 1999.
 49.Cheng H, Lederer W, Cannell M. Calcium sparks: Elementary events underlying excitation‐contraction coupling in heart muscle. Science 262: 740‐744, 1993.
 50.Chiang SH, Baumann CA, Kanzaki M, Thurmond DC, Watson RT, Neudauer CL, Macara IG, Pessin JE, Saltiel AR. Insulin‐stimulated GLUT4 translocation requires the CAP‐dependent activation of TC10. Nature 410: 944‐948, 2001.
 51.Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 23: 1546‐1554, 2011.
 52.Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB 3rd, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus‐like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292: 1728‐1731, 2001.
 53.Chow LS, Greenlund LJ, Asmann YW, Short KR, McCrady SK, Levine JA, Nair KS. Impact of endurance training on murine spontaneous activity, muscle mitochondrial DNA abundance, gene transcripts, and function. J Appl Physiol (1985) 102: 1078‐1089, 2007.
 54.Cleto LS, Oleto AF, Sousa LP, Barreto TO, Cruz JS, Penaforte CL, Magalhaes JC, Sousa‐Franco J, Pinto KM, Campi‐Azevedo AC, Rocha‐Vieira E. Plasma cytokine response, lipid peroxidation and NF‐kB activation in skeletal muscle following maximum progressive swimming. Braz J Med Biol Res 44: 546‐552, 2011.
 55.Coderre L, Kandror KV, Vallega G, Pilch PF. Identification and characterization of an exercise‐sensitive pool of glucose transporters in skeletal muscle. J Biol Chem 270: 27584‐27588, 1995.
 56.Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive‐leptin concentrations in normal‐weight and obese humans. N Engl J Med 334: 292‐295, 1996.
 57.Corral‐Debrinski M, Shoffner JM, Lott MT, Wallace DC. Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 275: 169‐180, 1992.
 58.DeFronzo RA, Jacot E, Jequier E, Maeder E, Wahren J, Felber JP. The effect of insulin on the disposal of intravenous glucose. Results from indirect calorimetry and hepatic and femoral venous catheterization. Diabetes 30: 1000‐1007, 1981.
 59.DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 32 (Suppl 2): S157‐S163, 2009.
 60.D'Erchia AM, Atlante A, Gadaleta G, Pavesi G, Chiara M, De Virgilio C, Manzari C, Mastropasqua F, Prazzoli GM, Picardi E, Gissi C, Horner D, Reyes A, Sbisà E, Tullo A, Pesole G. Tissue‐specific mtDNA abundance from exome data and its correlation with mitochondrial transcription, mass and respiratory activity. Mitochondrion 20: 13‐21, 2015.
 61.Dollerup OL, Christensen B, Svart M, Schmidt MS, Sulek K, Ringgaard S, Stodkilde‐Jorgensen H, Moller N, Brenner C, Treebak JT, Jessen N. A randomized placebo‐controlled clinical trial of nicotinamide riboside in obese men: Safety, insulin‐sensitivity, and lipid‐mobilizing effects. Am J Clin Nutr 108: 343‐353, 2018.
 62.Dolopikou CF, Kourtzidis IA, Margaritelis NV, Vrabas IS, Koidou I, Kyparos A, Theodorou AA, Paschalis V, Nikolaidis MG. Acute nicotinamide riboside supplementation improves redox homeostasis and exercise performance in old individuals: A double‐blind cross‐over study. Eur J Nutr, 2019. DOI: 10.1007/s00394‐019‐01919‐4.
 63.Dufour CR, Wilson BJ, Huss JM, Kelly DP, Alaynick WA, Downes M, Evans RM, Blanchette M, Giguere V. Genome‐wide orchestration of cardiac functions by the orphan nuclear receptors ERRalpha and gamma. Cell Metab 5: 345‐356, 2007.
 64.Dun AR, Rickman C, Duncan RR. The t‐SNARE complex: A close up. Cell Mol Neurobiol 30: 1321‐1326, 2010.
 65.Dyck JR, Gao G, Widmer J, Stapleton D, Fernandez CS, Kemp BE, Witters LA. Regulation of 5′‐AMP‐activated protein kinase activity by the noncatalytic beta and gamma subunits. J Biol Chem 271: 17798‐17803, 1996.
 66.Dzamko N, Schertzer JD, Ryall JG, Steel R, Macaulay SL, Wee S, Chen ZP, Michell BJ, Oakhill JS, Watt MJ, Jorgensen SB, Lynch GS, Kemp BE, Steinberg GR. AMPK‐independent pathways regulate skeletal muscle fatty acid oxidation. J Physiol 586: 5819‐5831, 2008.
 67.Egan D, Kim J, Shaw RJ, Guan KL. The autophagy initiating kinase ULK1 is regulated via opposing phosphorylation by AMPK and mTOR. Autophagy 7: 643‐644, 2011.
 68.Fan W, Evans RM. Exercise mimetics: Impact on health and performance. Cell Metab 25: 242‐247, 2017.
 69.Fasshauer D, Otto H, Eliason WK, Jahn R, Brunger AT. Structural changes are associated with soluble N‐ethylmaleimide‐sensitive fusion protein attachment protein receptor complex formation. J Biol Chem 272: 28036‐28041, 1997.
 70.Fasshauer D, Sutton RB, Brunger AT, Jahn R. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q‐ and R‐SNAREs. Proc Natl Acad Sci U S A 95: 15781‐15786, 1998.
 71.Fazakerley DJ, Holman GD, Marley A, James DE, Stockli J, Coster AC. Kinetic evidence for unique regulation of GLUT4 trafficking by insulin and AMP‐activated protein kinase activators in L6 myotubes. J Biol Chem 285: 1653‐1660, 2010.
 72.Ferrannini E, Simonson DC, Katz LD, Reichard G Jr, Bevilacqua S, Barrett EJ, Olsson M, DeFronzo RA. The disposal of an oral glucose load in patients with non‐insulin‐dependent diabetes. Metabolism 37: 79‐85, 1988.
 73.Ferris LT, Williams JS, Shen CL. The effect of acute exercise on serum brain‐derived neurotrophic factor levels and cognitive function. Med Sci Sports Exerc 39: 728‐734, 2007.
 74.Fink LN, Costford SR, Lee YS, Jensen TE, Bilan PJ, Oberbach A, Bluher M, Olefsky JM, Sams A, Klip A. Pro‐inflammatory macrophages increase in skeletal muscle of high fat‐fed mice and correlate with metabolic risk markers in humans. Obesity (Silver Spring) 22: 747‐757, 2014.
 75.Ford RJ, Fullerton MD, Pinkosky SL, Day EA, Scott JW, Oakhill JS, Bujak AL, Smith BK, Crane JD, Blümer RM. Metformin and salicylate synergistically activate liver AMPK, inhibit lipogenesis and improve insulin sensitivity. Biochem J 468: 125‐132, 2015.
 76.Förstermann U, Sessa WC. Nitric oxide synthases: Regulation and function. Eur Heart J 33: 829‐837d, 2012.
 77.Foster LJ, Yaworsky K, Trimble WS, Klip A. SNAP23 promotes insulin‐dependent glucose uptake in 3T3‐L1 adipocytes: Possible interaction with cytoskeleton. Am J Phys 276: C1108‐C1114, 1999.
 78.Frosig C, Pehmoller C, Birk JB, Richter EA, Wojtaszewski JF. Exercise‐induced TBC1D1 Ser237 phosphorylation and 14‐3‐3 protein binding capacity in human skeletal muscle. J Physiol 588: 4539‐4548, 2010.
 79.Fujii N, Hayashi T, Hirshman MF, Smith JT, Habinowski SA, Kaijser L, Mu J, Ljungqvist O, Birnbaum MJ, Witters LA, Thorell A, Goodyear LJ. Exercise induces isoform‐specific increase in 5′AMP‐activated protein kinase activity in human skeletal muscle. Biochem Biophys Res Commun 273: 1150‐1155, 2000.
 80.Fukuda M, Mikoshiba K. Doc2gamma, a third isoform of double C2 protein, lacking calcium‐dependent phospholipid binding activity. Biochem Biophys Res Commun 276: 626‐632, 2000.
 81.Gallagher D, Kuznia P, Heshka S, Albu J, Heymsfield SB, Goodpaster B, Visser M, Harris TB. Adipose tissue in muscle: a novel depot similar in size to visceral adipose tissue. Am J Clin Nutr 81: 903‐910, 2005.
 82.Geng L, Liao B, Jin L, Huang Z, Triggle CR, Ding H, Zhang J, Huang Y, Lin Z, Xu A. Exercise alleviates obesity‐induced metabolic dysfunction via enhancing FGF21 sensitivity in adipose tissues. Cell Rep 26: 2738‐2752.e2734, 2019.
 83.Gomes LC, Di Benedetto G, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13: 589‐598, 2011.
 84.Gomez‐Merino D, Drogou C, Guezennec CY, Chennaoui M. Effects of chronic exercise on cytokine production in white adipose tissue and skeletal muscle of rats. Cytokine 40: 23‐29, 2007.
 85.Gorgens SW, Eckardt K, Jensen J, Drevon CA, Eckel J. Exercise and regulation of adipokine and myokine production. Prog Mol Biol Transl Sci 135: 313‐336, 2015.
 86.Gorgens SW, Raschke S, Holven KB, Jensen J, Eckardt K, Eckel J. Regulation of follistatin‐like protein 1 expression and secretion in primary human skeletal muscle cells. Arch Physiol Biochem 119: 75‐80, 2013.
 87.Haidet AM, Rizo L, Handy C, Umapathi P, Eagle A, Shilling C, Boue D, Martin PT, Sahenk Z, Mendell JR, Kaspar BK. Long‐term enhancement of skeletal muscle mass and strength by single gene administration of myostatin inhibitors. Proc Natl Acad Sci 105: 4318‐4322, 2008.
 88.Handschin C, Chin S, Li P, Liu F, Maratos‐Flier E, Lebrasseur NK, Yan Z, Spiegelman BM. Skeletal muscle fiber‐type switching, exercise intolerance, and myopathy in PGC‐1alpha muscle‐specific knock‐out animals. J Biol Chem 282: 30014‐30021, 2007.
 89.Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity? Curr Opin Endocrinol Diabetes Obes 19: 81‐87, 2012.
 90.Haugen F, Norheim F, Lian H, Wensaas AJ, Dueland S, Berg O, Funderud A, Skalhegg BS, Raastad T, Drevon CA. IL‐7 is expressed and secreted by human skeletal muscle cells. Am J Physiol Cell Physiol 298: C807‐C816, 2010.
 91.Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. Characterization of the AMP‐activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP‐activated protein kinase. J Biol Chem 271: 27879‐27887, 1996.
 92.Hawley SA, Pan DA, Mustard KJ, Ross L, Bain J, Edelman AM, Frenguelli BG, Hardie DG. Calmodulin‐dependent protein kinase kinase‐beta is an alternative upstream kinase for AMP‐activated protein kinase. Cell Metab 2: 9‐19, 2005.
 93.Heber D, Ingles S, Ashley JM, Maxwell MH, Lyons RF, Elashoff RM. Clinical detection of sarcopenic obesity by bioelectrical impedance analysis. Am J Clin Nutr 64: 472S‐477S, 1996.
 94.Heinonen I, Saltin B, Kemppainen J, Nuutila P, Knuuti J, Kalliokoski K, Hellsten Y. Effect of nitric oxide synthase inhibition on the exchange of glucose and fatty acids in human skeletal muscle. Nutr Metab (Lond) 10: 43, 2013.
 95.Heinonen I, Saltin B, Kemppainen J, Sipila HT, Oikonen V, Nuutila P, Knuuti J, Kalliokoski K, Hellsten Y. Skeletal muscle blood flow and oxygen uptake at rest and during exercise in humans: A pet study with nitric oxide and cyclooxygenase inhibition. Am J Physiol Heart Circ Physiol 300: H1510‐H1517, 2011.
 96.Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 9: 2482‐2496, 2010.
 97.Henriquez‐Olguin C, Knudsen JR, Raun SH, Li Z, Dalbram E, Treebak JT, Sylow L, Holmdahl R, Richter EA, Jaimovich E, Jensen TE. Cytosolic ROS production by NADPH oxidase 2 regulates muscle glucose uptake during exercise. Nat Commun 10: 4623, 2019.
 98.Henríquez‐Olguin C, Knudsen JR, Raun SH, Li Z, Sylow L, Richter EA, Jaimovich E, Jensen TE. OP‐4 ‐ NOX2 is a major ROS source in exercising muscle regulating glucose uptake. Free Radic Biol Med 120: S30, 2018.
 99.Hill JJ, Davies MV, Pearson AA, Wang JH, Hewick RM, Wolfman NM, Qiu Y. The myostatin propeptide and the follistatin‐related gene are inhibitory binding proteins of myostatin in normal serum. J Biol Chem 277: 40735‐40741, 2002.
 100.Hiona A, Sanz A, Kujoth GC, Pamplona R, Seo AY, Hofer T, Someya S, Miyakawa T, Nakayama C, Samhan‐Arias AK, Servais S, Barger JL, Portero‐Otín M, Tanokura M, Prolla TA, Leeuwenburgh C. Mitochondrial DNA mutations induce mitochondrial dysfunction, apoptosis and sarcopenia in skeletal muscle of mitochondrial DNA mutator mice. PLoS One 5: e11468, 2010.
 101.Hittel DS, Berggren JR, Shearer J, Boyle K, Houmard JA. Increased secretion and expression of myostatin in skeletal muscle from extremely obese women. Diabetes 58: 30‐38, 2009.
 102.Hoier B, Nordsborg N, Andersen S, Jensen L, Nybo L, Bangsbo J, Hellsten Y. Pro‐ and anti‐angiogenic factors in human skeletal muscle in response to acute exercise and training. J Physiol 590: 595‐606, 2012.
 103.Hojman P, Brolin C, Norgaard‐Christensen N, Dethlefsen C, Lauenborg B, Olsen CK, Abom MM, Krag T, Gehl J, Pedersen BK. IL‐6 release from muscles during exercise is stimulated by lactate‐dependent protease activity. Am J Physiol Endocrinol Metab 316: E940‐E947, 2019.
 104.Hollander P, Spellman C. Controversies in prediabetes: Do we have a diagnosis? Postgrad Med 124: 109‐118, 2012.
 105.Horak M, Kuruczova D, Zlamal F, Tomandl J, Bienertova‐Vasku J. Follistatin‐like 1 is downregulated in morbidly and super obese central‐European population. Dis Markers 2018: 4140815, 2018.
 106.Horie T, Ono K, Nagao K, Nishi H, Kinoshita M, Kawamura T, Wada H, Shimatsu A, Kita T, Hasegawa K. Oxidative stress induces GLUT4 translocation by activation of PI3‐K/Akt and dual AMPK kinase in cardiac myocytes. J Cell Physiol 215: 733‐742, 2008.
 107.Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose‐specific gene dysregulated in obesity. J Biol Chem 271: 10697‐10703, 1996.
 108.Hundal HS, Ahmed A, Guma A, Mitsumoto Y, Marette A, Rennie MJ, Klip A. Biochemical and immunocytochemical localization of the 'GLUT5 glucose transporter' in human skeletal muscle. Biochem J 286 (Pt 2): 339‐343, 1992.
 109.Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. The Ca2+/calmodulin‐dependent protein kinase kinases are AMP‐activated protein kinase kinases. J Biol Chem 280: 29060‐29066, 2005.
 110.Ishikura S, Bilan PJ, Klip A. Rabs 8A and 14 are targets of the insulin‐regulated Rab‐GAP AS160 regulating GLUT4 traffic in muscle cells. Biochem Biophys Res Commun 353: 1074‐1079, 2007.
 111.Jakobsen SN, Hardie DG, Morrice N, Tornqvist HE. 5′‐AMP‐activated protein kinase phosphorylates IRS‐1 on Ser‐789 in mouse C2C12 myotubes in response to 5‐aminoimidazole‐4‐carboxamide riboside. J Biol Chem 276: 46912‐46916, 2001.
 112.James DE, Brown R, Navarro J, Pilch PF. Insulin‐regulatable tissues express a unique insulin‐sensitive glucose transport protein. Nature 333: 183‐185, 1988.
 113.JeBailey L, Rudich A, Huang X, Di Ciano‐Oliveira C, Kapus A, Klip A. Skeletal muscle cells and adipocytes differ in their reliance on TC10 and Rac for insulin‐induced actin remodeling. Mol Endocrinol 18: 359‐372, 2004.
 114.JeBailey L, Wanono O, Niu W, Roessler J, Rudich A, Klip A. Ceramide‐ and oxidant‐induced insulin resistance involve loss of insulin‐dependent Rac‐activation and actin remodeling in muscle cells. Diabetes 56: 394‐403, 2007.
 115.Jedrychowski MP, Wrann CD, Paulo JA, Gerber KK, Szpyt J, Robinson MM, Nair KS, Gygi SP, Spiegelman BM. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab 22: 734‐740, 2015.
 116.Jenkins A, Zhang SX, Gosmanova A, Aston C, Dashti A, Baker MZ, Lyons T, Ma JX. Increased serum pigment epithelium derived factor levels in Type 2 diabetes patients. Diabetes Res Clin Pract 82: e5‐e7, 2008.
 117.Jensen TE, Angin Y, Sylow L, Richter EA. Is contraction‐stimulated glucose transport feedforward regulated by Ca2+? Exp Physiol 99: 1562‐1568, 2014.
 118.Jensen TE, Schjerling P, Viollet B, Wojtaszewski JF, Richter EA. AMPK alpha1 activation is required for stimulation of glucose uptake by twitch contraction, but not by H2O2, in mouse skeletal muscle. PLoS One 3: e2102, 2008.
 119.Jensen TE, Sylow L, Rose AJ, Madsen AB, Angin Y, Maarbjerg SJ, Richter EA. Contraction‐stimulated glucose transport in muscle is controlled by AMPK and mechanical stress but not sarcoplasmatic reticulum Ca2+ release. Mol Metab 3: 742‐753, 2014.
 120.Jewell JL, Oh E, Bennett SM, Meroueh SO, Thurmond DC. The tyrosine phosphorylation of Munc18c induces a switch in binding specificity from syntaxin 4 to Doc2beta. J Biol Chem 283: 21734‐21746, 2008.
 121.Jewell JL, Oh E, Ramalingam L, Kalwat MA, Tagliabracci VS, Tackett L, Elmendorf JS, Thurmond DC. Munc18c phosphorylation by the insulin receptor links cell signaling directly to SNARE exocytosis. J Cell Biol 193: 185‐199, 2011.
 122.Jheng HF, Tsai PJ, Guo SM, Kuo LH, Chang CS, Su IJ, Chang CR, Tsai YS. Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle. Mol Cell Biol 32: 309‐319, 2012.
 123.Jimenez‐Maldonado A, Virgen‐Ortiz A, Lemus M, Castro‐Rodriguez E, Cerna‐Cortes J, Muniz J, Montero S, Roces E. Effects of moderate‐ and high‐intensity chronic exercise on the adiponectin levels in slow‐twitch and fast‐twitch muscles in rats. Medicina (Kaunas) 55: 291, 2019.
 124.Joan Flynn CM, Aparicio‐Siegmund S, Rose‐John S, Garbers C. ID: 207: Cell‐surface expression of the IL‐6R is controlled by proteolysis, internalization and recycling. Cytokine 76: 102, 2015.
 125.Jones F, Harris P, McGee L. Adherence to prescribed exercise. In: Myers L, Midence K, editors. Adherence to Treatment in Medical Conditions. Amsterdam: Harwood, 1998, p. 343‐363.
 126.Jorgensen SB, Viollet B, Andreelli F, Frosig C, Birk JB, Schjerling P, Vaulont S, Richter EA, Wojtaszewski JF. Knockout of the alpha2 but not alpha1 5′‐AMP‐activated protein kinase isoform abolishes 5‐aminoimidazole‐4‐carboxamide‐1‐beta‐4‐ribofuranosidebut not contraction‐induced glucose uptake in skeletal muscle. J Biol Chem 279: 1070‐1079, 2004.
 127.Ju JS, Gitcho MA, Casmaer CA, Patil PB, Han DG, Spencer SA, Fisher JS. Potentiation of insulin‐stimulated glucose transport by the AMP‐activated protein kinase. Am J Physiol Cell Physiol 292: C564‐C572, 2007.
 128.Kaddai V, Gonzalez T, Bolla M, Le Marchand‐Brustel Y, Cormont M. The nitric oxide‐donating derivative of acetylsalicylic acid, NCX 4016, stimulates glucose transport and glucose transporters translocation in 3T3‐L1 adipocytes. Am J Physiol Endocrinol Metab 295: E162‐E169, 2008.
 129.Kadoglou NP, Perrea D, Iliadis F, Angelopoulou N, Liapis C, Alevizos M. Exercise reduces resistin and inflammatory cytokines in patients with type 2 diabetes. Diabetes Care 30: 719‐721, 2007.
 130.Kamiya A, Ohsawa I, Fujii T, Nagai M, Yamanouchi K, Oshida Y, Sato Y. A clinical survey on the compliance of exercise therapy for diabetic outpatients. Diabetes Res Clin Pract 27: 141‐145, 1995.
 131.Karacabey K. The effect of exercise on leptin, insulin, cortisol and lipid profiles in obese children. J Int Med Res 37: 1472‐1478, 2009.
 132.Karlsson HK, Chibalin AV, Koistinen HA, Yang J, Koumanov F, Wallberg‐Henriksson H, Zierath JR, Holman GD. Kinetics of GLUT4 trafficking in rat and human skeletal muscle. Diabetes 58: 847‐854, 2009.
 133.Karlsson HK, Zierath JR, Kane S, Krook A, Lienhard GE, Wallberg‐Henriksson H. Insulin‐stimulated phosphorylation of the Akt substrate AS160 is impaired in skeletal muscle of type 2 diabetic subjects. Diabetes 54: 1692‐1697, 2005.
 134.Kawanishi M, Tamori Y, Okazawa H, Araki S, Shinoda H, Kasuga M. Role of SNAP23 in insulin‐induced translocation of GLUT4 in 3T3‐L1 adipocytes. Mediation of complex formation between syntaxin4 and VAMP2. J Biol Chem 275: 8240‐8247, 2000.
 135.Kazemi F. The correlation of resistance exercise‐induced myostatin with insulin resistance and plasma cytokines in healthy young men. J Endocrinol Investig 39: 383‐388, 2016.
 136.Ke B, Oh E, Thurmond DC. Doc2beta is a novel Munc18c‐interacting partner and positive effector of syntaxin 4‐mediated exocytosis. J Biol Chem 282: 21786‐21797, 2007.
 137.Keller C, Steensberg A, Pilegaard H, Osada T, Saltin B, Pedersen BK, Neufer PD. Transcriptional activation of the IL‐6 gene in human contracting skeletal muscle: Influence of muscle glycogen content. FASEB J 15: 2748‐2750, 2001.
 138.Kerris JP, Betik AC, Li J, McConell GK. Passive stretch regulates skeletal muscle glucose uptake independent of nitric oxide synthase. J Appl Physiol (1985) 126: 239‐245, 2019.
 139.Kersten S, Lichtenstein L, Steenbergen E, Mudde K, Hendriks HF, Hesselink MK, Schrauwen P, Muller M. Caloric restriction and exercise increase plasma ANGPTL4 levels in humans via elevated free fatty acids. Arterioscler Thromb Vasc Biol 29: 969‐974, 2009.
 140.Khan IM, Perrard X‐Y, Brunner G, Lui H, Sparks LM, Smith SR, Wang X, Shi Z‐Z, Lewis DE, Wu H. Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration and insulin resistance. Int J Obes (Lond) 39: 1607, 2015.
 141.Kim KM, Jang HC, Lim S. Differences among skeletal muscle mass indices derived from height‐, weight‐, and body mass index‐adjusted models in assessing sarcopenia. Korean J Intern Med 31: 643‐650, 2016.
 142.Kimura N, Tokunaga C, Dalal S, Richardson C, Yoshino K, Hara K, Kemp BE, Witters LA, Mimura O, Yonezawa K. A possible linkage between AMP‐activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) signalling pathway. Genes Cells 8: 65‐79, 2003.
 143.Kingwell BA, Formosa M, Muhlmann M, Bradley SJ, McConell GK. Nitric oxide synthase inhibition reduces glucose uptake during exercise in individuals with type 2 diabetes more than in control subjects. Diabetes 51: 2572‐2580, 2002.
 144.Kjobsted R, Munk‐Hansen N, Birk JB, Foretz M, Viollet B, Bjornholm M, Zierath JR, Treebak JT, Wojtaszewski JF. Enhanced muscle insulin sensitivity after contraction/exercise is mediated by AMPK. Diabetes 66: 598‐612, 2017.
 145.Kjobsted R, Roll JLW, Jorgensen NO, Birk JB, Foretz M, Viollet B, Chadt A, Al‐Hasani H, Wojtaszewski JFP. AMPK and TBC1D1 regulate muscle glucose uptake after, but not during, exercise and contraction. Diabetes 68: 1427‐1440, 2019.
 146.Klip A, McGraw TE, James DE. Thirty sweet years of GLUT4. J Biol Chem 294: 11369‐11381, 2019.
 147.Klip A, Volchuk A, He L, Tsakiridis T. The glucose transporters of skeletal muscle. Semin Cell Dev Biol 7: 229‐237, 1996.
 148.Koga H, Terasawa H, Nunoi H, Takeshige K, Inagaki F, Sumimoto H. Tetratricopeptide repeat (TPR) motifs of p67(phox) participate in interaction with the small GTPase Rac and activation of the phagocyte NADPH oxidase. J Biol Chem 274: 25051‐25060, 1999.
 149.Koh HJ, Arnolds DE, Fujii N, Tran TT, Rogers MJ, Jessen N, Li Y, Liew CW, Ho RC, Hirshman MF, Kulkarni RN, Kahn CR, Goodyear LJ. Skeletal muscle‐selective knockout of LKB1 increases insulin sensitivity, improves glucose homeostasis, and decreases TRB3. Mol Cell Biol 26: 8217‐8227, 2006.
 150.Kojima T, Fukuda M, Aruga J, Mikoshiba K. Calcium‐dependent phospholipid binding to the C2A domain of a ubiquitous form of double C2 protein (Doc2 beta). J Biochem 120: 671‐676, 1996.
 151.Kramer HF, Witczak CA, Fujii N, Jessen N, Taylor EB, Arnolds DE, Sakamoto K, Hirshman MF, Goodyear LJ. Distinct signals regulate AS160 phosphorylation in response to insulin, AICAR, and contraction in mouse skeletal muscle. Diabetes 55: 2067‐2076, 2006.
 152.Krolopp JE, Thornton SM, Abbott MJ. IL‐15 activates the Jak3/STAT3 Signaling pathway to mediate glucose uptake in skeletal muscle cells. Front Physiol 7: 626‐626, 2016.
 153.Kunisada K, Hirota H, Fujio Y, Matsui H, Tani Y, Yamauchi‐Takihara K, Kishimoto T. Activation of JAK‐STAT and MAP kinases by leukemia inhibitory factor through gp130 in cardiac myocytes. Circulation 94: 2626‐2632, 1996.
 154.Kurgan N, Noaman N, Pergande MR, Cologna SM, Coorssen JR, Klentrou P. Changes to the human serum proteome in response to high intensity interval exercise: A sequential top‐down proteomic analysis. Front Physiol 10: 362, 2019.
 155.Lacraz G, Rakotoarivelo V, Labbé SM, Vernier M, Noll C, Mayhue M, Stankova J, Schwertani A, Grenier G, Carpentier A, Richard D, Ferbeyre G, Fradette J, Rola‐Pleszczynski M, Menendez A, Langlois M‐F, Ilangumaran S, Ramanathan S. Deficiency of Interleukin‐15 confers resistance to obesity by diminishing inflammation and enhancing the thermogenic function of adipose tissues. PLoS One 11: e0162995, 2016.
 156.Lagouge M, Argmann C, Gerhart‐Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J. Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC‐1alpha. Cell 127: 1109‐1122, 2006.
 157.Laker RC, Garde C, Camera DM, Smiles WJ, Zierath JR, Hawley JA, Barrès R. Transcriptomic and epigenetic responses to short‐term nutrient‐exercise stress in humans. Sci Rep 7: 15134, 2017.
 158.Larsson L, Grimby G, Karlsson J. Muscle strength and speed of movement in relation to age and muscle morphology. J Appl Physiol 46: 451‐456, 1979.
 159.Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves M Jr, Aihara AY, Fernandes Ada R, Tricoli V. Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc 44: 406‐412, 2012.
 160.Lavan BE, Kuhne MR, Garner CW, Anderson D, Reedijk M, Pawson T, Lienhard GE. The association of insulin‐elicited phosphotyrosine proteins with src homology 2 domains. J Biol Chem 267: 11631‐11636, 1992.
 161.Leduc‐Gaudet JP, Picard M, St‐Jean Pelletier F, Sgarioto N, Auger MJ, Vallee J, Robitaille R, St‐Pierre DH, Gouspillou G. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice. Oncotarget 6: 17923‐17937, 2015.
 162.Lee HJ, Moon J, Chung I, Chung JH, Park C, Lee JO, Han JA, Kang MJ, Yoo EH, Kwak S‐Y. ATP synthase inhibitory factor 1 (IF1), a novel myokine, regulates glucose metabolism by AMPK and Akt dual pathways. FASEB J 33: 14825‐14840, 2019. DOI: 10.1096/fj.201901440RR.
 163.Lee J, Pilch PF, Shoelson SE, Scarlata SF. Conformational changes of the insulin receptor upon insulin binding and activation as monitored by fluorescence spectroscopy. Biochemistry 36: 2701‐2708, 1997.
 164.Lee JH, Jun HS. Role of myokines in regulating skeletal muscle mass and function. Front Physiol 10: 42, 2019.
 165.Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, Sinclair AJ, Febbraio MA, Watt MJ. Saturated, but not n‐6 polyunsaturated, fatty acids induce insulin resistance: Role of intramuscular accumulation of lipid metabolites. J Appl Physiol (1985) 100: 1467‐1474, 2006.
 166.Lee JY, Hopkinson NS, Kemp PR. Myostatin induces autophagy in skeletal muscle in vitro. Biochem Biophys Res Commun 415: 632‐636, 2011.
 167.Lee S‐J, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci 98: 9306‐9311, 2001.
 168.Lee SK, Lee JO, Kim JH, Kim SJ, You GY, Moon JW, Jung JH, Park SH, Uhm KO, Park JM. Metformin sensitizes insulin signaling through AMPK‐mediated pten down‐regulation in preadipocyte 3T3‐L1 cells. J Cell Biochem 112: 1259‐1267, 2011.
 169.Lemieux K, Han XX, Dombrowski L, Bonen A, Marette A. The transferrin receptor defines two distinct contraction‐responsive GLUT4 vesicle populations in skeletal muscle. Diabetes 49: 183‐189, 2000.
 170.Li Q, Harraz MM, Zhou W, Zhang LN, Ding W, Zhang Y, Eggleston T, Yeaman C, Banfi B, Engelhardt JF. Nox2 and Rac1 regulate H2O2‐dependent recruitment of TRAF6 to endosomal interleukin‐1 receptor complexes. Mol Cell Biol 26: 140, 2006.
 171.Lim S, Choi SH, Koo BK, Kang SM, Yoon JW, Jang HC, Choi SM, Lee MG, Lee W, Shin H, Kim YB, Lee HK, Park KS. Effects of aerobic exercise training on C1q tumor necrosis factor alpha‐related protein isoform 5 (myonectin): Association with insulin resistance and mitochondrial DNA density in women. J Clin Endocrinol Metab 97: E88‐E93, 2012.
 172.Linnane AW, Marzuki S, Ozawa T, Tanaka M. Mitochondrial DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1: 642‐645, 1989.
 173.Lira VA, Soltow QA, Long JH, Betters JL, Sellman JE, Criswell DS. Nitric oxide increases GLUT4 expression and regulates AMPK signaling in skeletal muscle. Am J Physiol Endocrinol Metab 293: E1062‐E1068, 2007.
 174.Listrat A, Lebret B, Louveau I, Astruc T, Bonnet M, Lefaucheur L, Picard B, Bugeon J. How muscle structure and composition influence meat and flesh quality. Sci World J 2016: 3182746, 2016.
 175.Liu R, Jin P, Yu L, Wang Y, Han L, Shi T, Li X. Impaired mitochondrial dynamics and bioenergetics in diabetic skeletal muscle. PLoS One 9: e92810, 2014.
 176.Lizunov VA, Matsumoto H, Zimmerberg J, Cushman SW, Frolov VA. Insulin stimulates the halting, tethering, and fusion of mobile GLUT4 vesicles in rat adipose cells. J Cell Biol 169: 481‐489, 2005.
 177.Lobo SM, Quinto BM, Oyama L, Nakamichi R, Ribeiro AB, Zanella MT, Dalboni MA, Batista MC. TNF‐alpha modulates statin effects on secretion and expression of MCP‐1, PAI‐1 and adiponectin in 3T3‐L1 differentiated adipocytes. Cytokine 60: 150‐156, 2012.
 178.Loebig M, Klement J, Schmoller A, Betz S, Heuck N, Schweiger U, Peters A, Schultes B, Oltmanns KM. Evidence for a relationship between VEGF and BMI independent of insulin sensitivity by glucose clamp procedure in a homogenous group healthy young men. PLoS One 5: e12610, 2010.
 179.Lokireddy S, Mouly V, Butler‐Browne G, Gluckman PD, Sharma M, Kambadur R, McFarlane C. Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin‐proteasome pathway‐mediated loss of sarcomeric proteins. Am J Physiol Cell Physiol 301: C1316‐C1324, 2011.
 180.Lou X, Shin Y‐K. SNARE zippering. Biosci Rep 36: e00327, 2016.
 181.Louis E, Raue U, Yang Y, Jemiolo B, Trappe S. Time course of proteolytic, cytokine, and myostatin gene expression after acute exercise in human skeletal muscle. J Appl Physiol (1985) 103: 1744‐1751, 2007.
 182.Lucas S, Taront S, Magnan C, Fauconnier L, Delacre M, Macia L, Delanoye A, Verwaerde C, Spriet C, Saule P, Goormachtigh G, Heliot L, Ktorza A, Movassat J, Polakowska R, Auriault C, Poulain‐Godefroy O, Di Santo J, Froguel P, Wolowczuk I. Interleukin‐7 regulates adipose tissue mass and insulin sensitivity in high‐fat diet‐fed mice through lymphocyte‐dependent and independent mechanisms. PLoS One 7: e40351, 2012.
 183.Lund S, Holman GD, Schmitz O, Pedersen O. Contraction stimulates translocation of glucose transporter GLUT4 in skeletal muscle through a mechanism distinct from that of insulin. Proc Natl Acad Sci U S A 92: 5817‐5821, 1995.
 184.Luo B, Soesanto Y, McClain DA. Protein modification by O‐linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells. Arterioscler Thromb Vasc Biol 28: 651‐657, 2008.
 185.Luzzo KM, Wang Q, Purcell SH, Chi M, Jimenez PT, Grindler N, Schedl T, Moley KH. High fat diet induced developmental defects in the mouse: Oocyte meiotic aneuploidy and fetal growth retardation/brain defects. PLoS One 7: e49217, 2012.
 186.Maffei á, Halaas J, Ravussin E, Pratley R, Lee G, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S. Leptin levels in human and rodent: Measurement of plasma leptin and Ob RNA in obese and weight‐reduced subjects. Nat Med 1: 1155, 1995.
 187.Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458‐471, 2007.
 188.Mammucari C, Schiaffino S, Sandri M. Downstream of Akt: FoxO3 and mTOR in the regulation of autophagy in skeletal muscle. Autophagy 4: 524‐526, 2008.
 189.Marcinko K, Bujak AL, Lally JSV, Ford RJ, Wong TH, Smith BK, Kemp BE, Jenkins Y, Li W, Kinsella TM, Hitoshi Y, Steinberg GR. The AMPK activator R419 improves exercise capacity and skeletal muscle insulin sensitivity in obese mice. Mol Metab 4: 643‐651, 2015.
 190.Mascher H, Tannerstedt J, Brink‐Elfegoun T, Ekblom B, Gustafsson T, Blomstrand E. Repeated resistance exercise training induces different changes in mRNA expression of MAFbx and MuRF‐1 in human skeletal muscle. Am J Physiol Endocrinol Metab 294: E43‐E51, 2008.
 191.Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA. Brain‐derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP‐activated protein kinase. Diabetologia 52: 1409‐1418, 2009.
 192.Maury E, Ehala‐Aleksejev K, Guiot Y, Detry R, Vandenhooft A, Brichard SM. Adipokines oversecreted by omental adipose tissue in human obesity. Am J Physiol Endocrinol Metab 293: E656‐E665, 2007.
 193.McGee SL, Howlett KF, Starkie RL, Cameron‐Smith D, Kemp BE, Hargreaves M. Exercise increases nuclear AMPK α2 in human skeletal muscle. Diabetes 52: 926‐928, 2003.
 194.Mclntyre HD, Paterson CA, Ma A, Ravenscroft PJ, Bird DM, Cameron DP. Metformin increases insulin sensitivity and basal glucose clearance in type 2 (non‐insulin dependent) diabetes mellitus. Aust NZ J Med 21: 714‐719, 1991.
 195.McPherron AC, Lee SJ. Double muscling in cattle due to mutations in the myostatin gene. Proc Natl Acad Sci U S A 94: 12457‐12461, 1997.
 196.Mejia GL, Asiedu MN, Hitoshi Y, Dussor G, Price TJ. The potent, indirect adenosine monophosphate‐activated protein kinase activator R419 attenuates mitogen‐activated protein kinase signaling, inhibits nociceptor excitability, and reduces pain hypersensitivity in mice. Pain Rep 1. pii: e562, 2016.
 197.Mellbin LG, Anselmino M, Ryden L. Diabetes, prediabetes and cardiovascular risk. Eur J Cardiovasc Prev Rehabil 17 (Suppl 1): S9‐S14, 2010.
 198.Merrill GF, Kurth EJ, Hardie DG, Winder WW. AICA riboside increases AMP‐activated protein kinase, fatty acid oxidation, and glucose uptake in rat muscle. Am J Phys 273: E1107‐E1112, 1997.
 199.Min J, Okada S, Kanzaki M, Elmendorf JS, Coker KJ, Ceresa BP, Syu LJ, Noda Y, Saltiel AR, Pessin JE. Synip: A novel insulin‐regulated syntaxin 4‐binding protein mediating GLUT4 translocation in adipocytes. Mol Cell 3: 751‐760, 1999.
 200.Miotto PM, LeBlanc PJ, Holloway GP. High‐fat diet causes mitochondrial dysfunction as a result of impaired ADP sensitivity. Diabetes 67: 2199‐2205, 2018.
 201.Mishra P, Varuzhanyan G, Pham AH, Chan DC. Mitochondrial dynamics is a distinguishing feature of skeletal muscle fiber types and regulates organellar compartmentalization. Cell Metab 22: 1033‐1044, 2015.
 202.Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M, Shitrit A, Fuchs Z. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest 75: 809‐817, 1985.
 203.Morey C, Kienle CN, Klopper TH, Burkhardt P, Fasshauer D. Evidence for a conserved inhibitory binding mode between the membrane fusion assembly factors Munc18 and syntaxin in animals. J Biol Chem 292: 20449‐20460, 2017.
 204.Morvan F, Rondeau JM, Zou C, Minetti G, Scheufler C, Scharenberg M, Jacobi C, Brebbia P, Ritter V, Toussaint G, Koelbing C, Leber X, Schilb A, Witte F, Lehmann S, Koch E, Geisse S, Glass DJ, Lach‐Trifilieff E. Blockade of activin type II receptors with a dual anti‐ActRIIA/IIB antibody is critical to promote maximal skeletal muscle hypertrophy. Proc Natl Acad Sci U S A 114: 12448‐12453, 2017.
 205.Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA. A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3: e79, 2007.
 206.Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Asp Med 34: 121‐138, 2013.
 207.Muller‐Newen G, Kuster A, Hemmann U, Keul R, Horsten U, Martens A, Graeve L, Wijdenes J, Heinrich PC. Soluble IL‐6 receptor potentiates the antagonistic activity of soluble gp130 on IL‐6 responses. J Immunol 161: 6347‐6355, 1998.
 208.Myers MG, Backer JM, Sun XJ, Shoelson S, Hu P, Schlessinger J, Yoakim M, Schaffhausen B, White MF. IRS‐1 activates phosphatidylinositol 3′‐kinase by associating with src homology 2 domains of p85. Proc Natl Acad Sci U S A 89: 10350‐10354, 1992.
 209.Nadeau L, Patten DA, Caron A, Garneau L, Pinault‐Masson E, Foretz M, Haddad P, Anderson BG, Quinn LS, Jardine K, McBurney MW, Pistilli EE, Harper ME, Aguer C. IL‐15 improves skeletal muscle oxidative metabolism and glucose uptake in association with increased respiratory chain supercomplex formation and AMPK pathway activation. Biochim Biophys Acta Gen Subj 1863: 395‐407, 2019.
 210.Nakane M, Schmidt HH, Pollock JS, Forstermann U, Murad F. Cloned human brain nitric oxide synthase is highly expressed in skeletal muscle. FEBS Lett 316: 175‐180, 1993.
 211.Narkar VA, Downes M, Yu RT, Embler E, Wang YX, Banayo E, Mihaylova MM, Nelson MC, Zou Y, Juguilon H, Kang H, Shaw RJ, Evans RM. AMPK and PPARdelta agonists are exercise mimetics. Cell 134: 405‐415, 2008.
 212.Narkar VA, Fan W, Downes M, Yu RT, Jonker JW, Alaynick WA, Banayo E, Karunasiri MS, Lorca S, Evans RM. Exercise and PGC‐1alpha‐independent synchronization of type I muscle metabolism and vasculature by ERRgamma. Cell Metab 13: 283‐293, 2011.
 213.Nielsen AR, Mounier R, Plomgaard P, Mortensen OH, Penkowa M, Speerschneider T, Pilegaard H, Pedersen BK. Expression of interleukin‐15 in human skeletal muscle effect of exercise and muscle fibre type composition. J Physiol 584: 305‐312, 2007.
 214.Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am J Physiol Endocrinol Metab 301: E1013‐E1021, 2011.
 215.Oakhill JS, Steel R, Chen ZP, Scott JW, Ling N, Tam S, Kemp BE. AMPK is a direct adenylate charge‐regulated protein kinase. Science 332: 1433‐1435, 2011.
 216.Oh E, Spurlin BA, Pessin JE, Thurmond DC. Munc18c heterozygous knockout mice display increased susceptibility for severe glucose intolerance. Diabetes 54: 638‐647, 2005.
 217.O'Hagan C, De Vito G, Boreham CA. Exercise prescription in the treatment of type 2 diabetes mellitus: Current practices, existing guidelines and future directions. Sports Med 43: 39‐49, 2013.
 218.Ojuka EO, Jones TE, Nolte LA, Chen M, Wamhoff BR, Sturek M, Holloszy JO. Regulation of GLUT4 biogenesis in muscle: Evidence for involvement of AMPK and Ca2+. Am J Physiol Endocrinol Metab 282: E1008‐E1013, 2002.
 219.Okada S, Ohshima K, Uehara Y, Shimizu H, Hashimoto K, Yamada M, Mori M. Synip phosphorylation is required for insulin‐stimulated Glut4 translocation. Biochem Biophys Res Commun 356: 102‐106, 2007.
 220.Olson AL, Knight JB, Pessin JE. Syntaxin 4, VAMP2, and/or VAMP3/cellubrevin are functional target membrane and vesicle SNAP receptors for insulin‐stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 17: 2425‐2435, 1997.
 221.O'Neill HM, Maarbjerg SJ, Crane JD, Jeppesen J, Jorgensen SB, Schertzer JD, Shyroka O, Kiens B, van Denderen BJ, Tarnopolsky MA, Kemp BE, Richter EA, Steinberg GR. AMP‐activated protein kinase (AMPK) beta1beta2 muscle null mice reveal an essential role for AMPK in maintaining mitochondrial content and glucose uptake during exercise. Proc Natl Acad Sci U S A 108: 16092‐16097, 2011.
 222.Orita S, Naito A, Sakaguchi G, Maeda M, Igarashi H, Sasaki T, Takai Y. Physical and functional interactions of Doc2 and Munc13 in Ca2+‐dependent exocytotic machinery. J Biol Chem 272: 16081‐16084, 1997.
 223.Orita S, Sasaki T, Komuro R, Sakaguchi G, Maeda M, Igarashi H, Takai Y. Doc2 enhances Ca2+‐dependent exocytosis from PC12 cells. J Biol Chem 271: 7257‐7260, 1996.
 224.Orita S, Sasaki T, Naito A, Komuro R, Ohtsuka T, Maeda M, Suzuki H, Igarashi H, Takai Y. Doc2: A novel brain protein having two repeated C2‐like domains. Biochem Biophys Res Commun 206: 439‐448, 1995.
 225.Ostrowski K, Rohde T, Asp S, Schjerling P, Pedersen BK. Pro‐ and anti‐inflammatory cytokine balance in strenuous exercise in humans. J Physiol 515 (Pt 1): 287‐291, 1999.
 226.Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen B. Evidence that interleukin‐6 is produced in human skeletal muscle during prolonged running. J Physiol 508: 949‐953, 1998.
 227.Pallavi B, Nagaraj R. Palmitoylated peptides from the cysteine‐rich domain of SNAP‐23 cause membrane fusion depending on peptide length, position of cysteines, and extent of palmitoylation. J Biol Chem 278: 12737‐12744, 2003.
 228.Papanicolaou DA, Petrides JS, Tsigos C, Bina S, Kalogeras KT, Wilder R, Gold PW, Deuster PA, Chrousos GP. Exercise stimulates interleukin‐6 secretion: Inhibition by glucocorticoids and correlation with catecholamines. Am J Phys 271: E601‐E605, 1996.
 229.Park SY, Choi JH, Ryu HS, Pak YK, Park KS, Lee HK, Lee W. C1q tumor necrosis factor alpha‐related protein isoform 5 is increased in mitochondrial DNA‐depleted myocytes and activates AMP‐activated protein kinase. J Biol Chem 284: 27780‐27789, 2009.
 230.Park SY, Ryu J, Lee W. O‐GlcNAc modification on IRS‐1 and Akt2 by PUGNAc inhibits their phosphorylation and induces insulin resistance in rat primary adipocytes. Exp Mol Med 37: 220‐229, 2005.
 231.Parker G, Taylor R, Jones D, McClain D. Hyperglycemia and inhibition of glycogen synthase in streptozotocin‐treated mice: Role of O‐linked N‐acetylglucosamine. J Biol Chem 279: 20636‐20642, 2004.
 232.Pehmoller C, Treebak JT, Birk JB, Chen S, Mackintosh C, Hardie DG, Richter EA, Wojtaszewski JF. Genetic disruption of AMPK signaling abolishes both contraction‐ and insulin‐stimulated TBC1D1 phosphorylation and 14‐3‐3 binding in mouse skeletal muscle. Am J Physiol Endocrinol Metab 297: E665‐E675, 2009.
 233.Percival JM, Anderson KN, Huang P, Adams ME, Froehner SC. Golgi and sarcolemmal neuronal NOS differentially regulate contraction‐induced fatigue and vasoconstriction in exercising mouse skeletal muscle. J Clin Invest 120: 816‐826, 2010.
 234.Perrotta C, Bizzozero L, Cazzato D, Morlacchi S, Assi E, Simbari F, Zhang Y, Gulbins E, Bassi MT, Rosa P, Clementi E. Syntaxin 4 is required for acid sphingomyelinase activity and apoptotic function. J Biol Chem 285: 40240‐40251, 2010.
 235.Pirinen E, Canto C, Jo YS, Morato L, Zhang H, Menzies KJ, Williams EG, Mouchiroud L, Moullan N, Hagberg C, Li W, Timmers S, Imhof R, Verbeek J, Pujol A, van Loon B, Viscomi C, Zeviani M, Schrauwen P, Sauve AA, Schoonjans K, Auwerx J. Pharmacological inhibition of poly(ADP‐ribose) polymerases improves fitness and mitochondrial function in skeletal muscle. Cell Metab 19: 1034‐1041, 2014.
 236.Pistilli EE, Alway SE. Systemic elevation of interleukin‐15 in vivo promotes apoptosis in skeletal muscles of young adult and aged rats. Biochem Biophys Res Commun 373: 20‐24, 2008.
 237.Poirier MA, Xiao W, Macosko JC, Chan C, Shin YK, Bennett MK. The synaptic SNARE complex is a parallel four‐stranded helical bundle. Nat Struct Biol 5: 765‐769, 1998.
 238.Polekhina G, Gupta A, Michell BJ, van Denderen B, Murthy S, Feil SC, Jennings IG, Campbell DJ, Witters LA, Parker MW, Kemp BE, Stapleton D. AMPK beta subunit targets metabolic stress sensing to glycogen. Curr Biol 13: 867‐871, 2003.
 239.Pollock CB, Rodriguez O, Martin PL, Albanese C, Li X, Kopelovich L, Glazer RI. Induction of metastatic gastric cancer by peroxisome proliferator‐activated receptordelta activation. PPAR Res 2010: 571783, 2010.
 240.Pollock CB, Yin Y, Yuan H, Zeng X, King S, Li X, Kopelovich L, Albanese C, Glazer RI. PPARdelta activation acts cooperatively with 3‐phosphoinositide‐dependent protein kinase‐1 to enhance mammary tumorigenesis. PLoS One 6: e16215, 2011.
 241.Proenza C, O'Brien J, Nakai J, Mukherjee S, Allen PD, Beam KG. Identification of a region of RyR1 that participates in allosteric coupling with the alpha(1S) (Ca(V)1.1) II‐III loop. J Biol Chem 277: 6530‐6535, 2002.
 242.Quinn LS, Anderson BG, Drivdahl RH, Alvarez B, Argiles JM. Overexpression of interleukin‐15 induces skeletal muscle hypertrophy in vitro: Implications for treatment of muscle wasting disorders. Exp Cell Res 280: 55‐63, 2002.
 243.Quinn LS, Anderson BG, Strait‐Bodey L, Stroud AM, Argiles JM. Oversecretion of interleukin‐15 from skeletal muscle reduces adiposity. Am J Physiol Endocrinol Metab 296: E191‐E202, 2009.
 244.Quinn LS, Strait‐Bodey L, Anderson BG, Argiles JM, Havel PJ. Interleukin‐15 stimulates adiponectin secretion by 3T3‐L1 adipocytes: Evidence for a skeletal muscle‐to‐fat signaling pathway. Cell Biol Int 29: 449‐457, 2005.
 245.Ramalingam L, Lu J, Hudmon A, Thurmond DC. Doc2b serves as a scaffolding platform for concurrent binding of multiple Munc18 isoforms in pancreatic islet beta‐cells. Biochem J 464: 251‐258, 2014.
 246.Ramalingam L, Oh E, Thurmond DC. Doc2b enrichment enhances glucose homeostasis in mice via potentiation of insulin secretion and peripheral insulin sensitivity. Diabetologia 57: 1476‐1484, 2014.
 247.Ramalingam L, Oh E, Yoder SM, Brozinick JT, Kalwat MA, Groffen AJ, Verhage M, Thurmond DC. Doc2b is a key effector of insulin secretion and skeletal muscle insulin sensitivity. Diabetes 61: 2424‐2432, 2012.
 248.Rana KS, Pararasa C, Afzal I, Nagel DA, Hill EJ, Bailey CJ, Griffiths HR, Kyrou I, Randeva HS, Bellary S, Brown JE. Plasma irisin is elevated in type 2 diabetes and is associated with increased E‐selectin levels. Cardiovasc Diabetol 16: 147, 2017.
 249.Rangwala SM, Wang X, Calvo JA, Lindsley L, Zhang Y, Deyneko G, Beaulieu V, Gao J, Turner G, Markovits J. Estrogen‐related receptor gamma is a key regulator of muscle mitochondrial activity and oxidative capacity. J Biol Chem 285: 22619‐22629, 2010.
 250.Raschke S, Eckardt K, Bjorklund Holven K, Jensen J, Eckel J. Identification and validation of novel contraction‐regulated myokines released from primary human skeletal muscle cells. PLoS One 8: e62008, 2013.
 251.Raschke S, Eckel J. Adipo‐myokines: Two sides of the same coin–mediators of inflammation and mediators of exercise. Mediat Inflamm 2013: 320724, 2013.
 252.Rehman A, Hu SH, Tnimov Z, Whitten AE, King GJ, Jarrott RJ, Norwood SJ, Alexandrov K, Collins BM, Christie MP, Martin JL. The nature of the Syntaxin4 C‐terminus affects Munc18c‐supported SNARE assembly. PLoS One 12: e0183366, 2017.
 253.Riechman SE, Balasekaran G, Roth SM, Ferrell RE. Association of interleukin‐15 protein and interleukin‐15 receptor genetic variation with resistance exercise training responses. J Appl Physiol (1985) 97: 2214‐2219, 2004.
 254.Ritov VB, Menshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54: 8‐14, 2005.
 255.Rojas Vega S, Struder HK, Vera Wahrmann B, Schmidt A, Bloch W, Hollmann W. Acute BDNF and cortisol response to low intensity exercise and following ramp incremental exercise to exhaustion in humans. Brain Res 1121: 59‐65, 2006.
 256.Rose AJ, Jeppesen J, Kiens B, Richter EA. Effects of contraction on localization of GLUT4 and v‐SNARE isoforms in rat skeletal muscle. Am J Physiol Regul Integr Comp Physiol 297: R1228‐R1237, 2009.
 257.Ross RM, Wadley GD, Clark MG, Rattigan S, McConell GK. Local nitric oxide synthase inhibition reduces skeletal muscle glucose uptake but not capillary blood flow during in situ muscle contraction in rats. Diabetes 56: 2885‐2892, 2007.
 258.Roth SM, Martel GF, Ferrell RE, Metter EJ, Hurley BF, Rogers MA. Myostatin gene expression is reduced in humans with heavy‐resistance strength training: A brief communication. Exp Biol Med (Maywood) 228: 706‐709, 2003.
 259.Rotter V, Nagaev I, Smith U. Interleukin‐6 (IL‐6) induces insulin resistance in 3T3‐L1 adipocytes and is, like IL‐8 and tumor necrosis factor‐alpha, overexpressed in human fat cells from insulin‐resistant subjects. J Biol Chem 278: 45777‐45784, 2003.
 260.Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM. A PGC‐1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151: 1319‐1331, 2012.
 261.Sabater M, Moreno‐Navarrete JM, Ortega FJ, Pardo G, Salvador J, Ricart W, Fruhbeck G, Fernandez‐Real JM. Circulating pigment epithelium‐derived factor levels are associated with insulin resistance and decrease after weight loss. J Clin Endocrinol Metab 95: 4720‐4728, 2010.
 262.Sabina RL, Patterson D, Holmes E. 5‐Amino‐4‐imidazolecarboxamide riboside (Z‐riboside) metabolism in eukaryotic cells. J Biol Chem 260: 6107‐6114, 1985.
 263.Safdar A, Saleem A, Tarnopolsky MA. The potential of endurance exercise‐derived exosomes to treat metabolic diseases. Nat Rev Endocrinol 12: 504‐517, 2016.
 264.Saito T, Okada S, Yamada E, Ohshima K, Shimizu H, Shimomura K, Sato M, Pessin JE, Mori M. Syntaxin 4 and Synip (syntaxin 4 interacting protein) regulate insulin secretion in the pancreatic beta HC‐9 cell. J Biol Chem 278: 36718‐36725.
 265.Saitoh T, Okada S, Pessin JE, Ohshima K, Sato M, Mori M. The role of Syntaxin4 binding protein; synip and Munc18c on insulin secretion. Diabetes 49: A63, 2000.
 266.Sakamoto K, McCarthy A, Smith D, Green KA, Grahame Hardie D, Ashworth A, Alessi DR. Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J 24: 1810‐1820, 2005.
 267.Samaras K, Botelho NK, Chisholm DJ, Lord RV. Subcutaneous and visceral adipose tissue gene expression of serum adipokines that predict type 2 diabetes. Obesity (Silver Spring) 18: 884‐889, 2010.
 268.Sanders MJ, Grondin PO, Hegarty BD, Snowden MA, Carling D. Investigating the mechanism for AMP activation of the AMP‐activated protein kinase cascade. Biochem J 403: 139‐148, 2007.
 269.Sandow A. Excitation‐contraction coupling in muscular response. Yale J Biol Med 25: 176‐201, 1952.
 270.Sandrini L, Di Minno A, Amadio P, Ieraci A, Tremoli E, Barbieri SS. Association between obesity and circulating brain‐derived neurotrophic factor (BDNF) levels: Systematic review of literature and meta‐analysis. Int J Mol Sci 19. pii: E2281, 2018.
 271.Sano H, Eguez L, Teruel MN, Fukuda M, Chuang TD, Chavez JA, Lienhard GE, McGraw TE. Rab10, a target of the AS160 Rab GAP, is required for insulin‐stimulated translocation of GLUT4 to the adipocyte plasma membrane. Cell Metab 5: 293‐303, 2007.
 272.Sano H, Kane S, Sano E, Lienhard GE. Synip phosphorylation does not regulate insulin‐stimulated GLUT4 translocation. Biochem Biophys Res Commun 332: 880‐884, 2005.
 273.Sano H, Kane S, Sano E, Miinea CP, Asara JM, Lane WS, Garner CW, Lienhard GE. Insulin‐stimulated phosphorylation of a Rab GTPase‐activating protein regulates GLUT4 translocation. J Biol Chem 278: 14599‐14602, 2003.
 274.Saremi A, Gharakhanloo R, Sharghi S, Gharaati MR, Larijani B, Omidfar K. Effects of oral creatine and resistance training on serum myostatin and GASP‐1. Mol Cell Endocrinol 317: 25‐30, 2010.
 275.Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100: 7265‐7270, 2003.
 276.Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296: C1248‐C1257, 2009.
 277.Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270: 26746‐26749, 1995.
 278.Seldin MM, Lei X, Tan SY, Stanson KP, Wei Z, Wong GW. Skeletal muscle‐derived myonectin activates the mammalian target of rapamycin (mTOR) pathway to suppress autophagy in liver. J Biol Chem 288: 36073‐36082, 2013.
 279.Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 287: 11968‐11980, 2012.
 280.Seldin MM, Wong GW. Regulation of tissue crosstalk by skeletal muscle‐derived myonectin and other myokines. Adipocyte 1: 200‐202, 2012.
 281.Shelton GD, Engvall E. Gross muscle hypertrophy in whippet dogs is caused by a mutation in the myostatin gene. Neuromuscul Disord 17: 721‐722, 2007.
 282.Shi H, Munk A, Nielsen TS, Daughtry MR, Larsson L, Li S, Hoyer KF, Geisler HW, Sulek K, Kjobsted R, Fisher T, Andersen MM, Shen Z, Hansen UK, England EM, Cheng Z, Hojlund K, Wojtaszewski JFP, Yang X, Hulver MW, Helm RF, Treebak JT, Gerrard DE. Skeletal muscle O‐GlcNAc transferase is important for muscle energy homeostasis and whole‐body insulin sensitivity. Mol Metab 11: 160‐177, 2018.
 283.Soesanto Y, Luo B, Parker G, Jones D, Cooksey RC, McClain DA. Pleiotropic and age‐dependent effects of decreased protein modification by O‐linked N‐acetylglucosamine on pancreatic beta‐cell function and vascularization. J Biol Chem 286: 26118‐26126, 2011.
 284.Soesanto YA, Luo B, Jones D, Taylor R, Gabrielsen JS, Parker G, McClain DA. Regulation of Akt signaling by O‐GlcNAc in euglycemia. Am J Physiol Endocrinol Metab 295: E974‐E980, 2008.
 285.Sollner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly‐disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75: 409‐418, 1993.
 286.Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, Yoo SH, Takahashi JS, Butler AA, Kamenecka TM, Burris TP. Regulation of circadian behaviour and metabolism by synthetic REV‐ERB agonists. Nature 485: 62‐68, 2012.
 287.Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Zhou Y, Poquiz P, Tjong J, Pouladi MA, Hayden MR. Mutant huntingtin binds the mitochondrial fission GTPase dynamin‐related protein‐1 and increases its enzymatic activity. Nat Med 17: 377, 2011.
 288.Sorensen JB, Wiederhold K, Muller EM, Milosevic I, Nagy G, de Groot BL, Grubmuller H, Fasshauer D. Sequential N‐ to C‐terminal SNARE complex assembly drives priming and fusion of secretory vesicles. EMBO J 25: 955‐966, 2006.
 289.Souto Padron de Figueiredo A, Salmon AB, Bruno F, Jimenez F, Martinez HG, Halade GV, Ahuja SS, Clark RA, DeFronzo RA, Abboud HE, El Jamali A. Nox2 mediates skeletal muscle insulin resistance induced by a high fat diet. J Biol Chem 290: 13427‐13439, 2015.
 290.Spurlin BA, Thomas RM, Nevins AK, Kim HJ, Kim YJ, Noh HL, Shulman GI, Kim JK, Thurmond DC. Insulin resistance in tetracycline‐repressible Munc18c transgenic mice. Diabetes 52: 1910‐1917, 2003.
 291.Srikanthan P, Hevener AL, Karlamangla AS. Sarcopenia exacerbates obesity‐associated insulin resistance and dysglycemia: Findings from the National Health and Nutrition Examination Survey III. PLoS One 5: e10805, 2010.
 292.Steensberg A, Van Hall G, Osada T, Sacchetti M, Saltin B, Pedersen BK. Production of interleukin‐6 in contracting human skeletal muscles can account for the exercise‐induced increase in plasma interleukin‐6. J Physiol 529: 237‐242, 2000.
 293.Steneberg P, Lindahl E, Dahl U, Lidh E, Straseviciene J, Backlund F, Kjellkvist E, Berggren E, Lundberg I, Bergqvist I, Ericsson M, Eriksson B, Linde K, Westman J, Edlund T, Edlund H. PAN‐AMPK activator O304 improves glucose homeostasis and microvascular perfusion in mice and type 2 diabetes patients. JCI Insight 3. pii: 99114, 2018.
 294.Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS, Lazar MA. The hormone resistin links obesity to diabetes. Nature 409: 307‐312, 2001.
 295.Sun H, Ma Y, Gao M, Liu D. IL‐15/sIL‐15Rα gene transfer induces weight loss and improves glucose homeostasis in obese mice. Gene Ther 23: 349‐356, 2016.
 296.Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF. Structure of the insulin receptor substrate IRS‐1 defines a unique signal transduction protein. Nature 352: 73‐77, 1991.
 297.Sun Y, Bilan PJ, Liu Z, Klip A. Rab8A and Rab13 are activated by insulin and regulate GLUT4 translocation in muscle cells. Proc Natl Acad Sci U S A 107: 19909‐19914, 2010.
 298.Sun Y, Jaldin‐Fincati J, Liu Z, Bilan PJ, Klip A. A complex of Rab13 with MICAL‐L2 and α‐actinin‐4 is essential for insulin‐dependent GLUT4 exocytosis. Mol Biol Cell 27: 75‐89, 2016.
 299.Suwa M, Egashira T, Nakano H, Sasaki H, Kumagai S. Metformin increases the PGC‐1α protein and oxidative enzyme activities possibly via AMPK phosphorylation in skeletal muscle in vivo. J Appl Physiol 101: 1685‐1692, 2006.
 300.Sylow L, Jensen TE, Kleinert M, Mouatt JR, Maarbjerg SJ, Jeppesen J, Prats C, Chiu TT, Boguslavsky S, Klip A, Schjerling P, Richter EA. Rac1 is a novel regulator of contraction‐stimulated glucose uptake in skeletal muscle. Diabetes 62: 1139‐1151, 2013.
 301.Sylow L, Moller LL, Kleinert M, Richter EA, Jensen TE. Rac1 – A novel regulator of contraction‐stimulated glucose uptake in skeletal muscle. Exp Physiol 99: 1574‐1580, 2014.
 302.Sylow L, Moller LLV, Kleinert M, D'Hulst G, De Groote E, Schjerling P, Steinberg GR, Jensen TE, Richter EA. Rac1 and AMPK account for the majority of muscle glucose uptake stimulated by ex vivo contraction but not in vivo exercise. Diabetes 66: 1548‐1559, 2017.
 303.Takenaka N, Nakao M, Matsui S, Satoh T. A crucial role for the small GTPase Rac1 downstream of the protein kinase Akt2 in insulin signaling that regulates glucose uptake in mouse adipocytes. Int J Mol Sci 20. pii: 5443, 2019.
 304.Tamori Y, Kawanishi M, Niki T, Shinoda H, Araki S, Okazawa H, Kasuga M. Inhibition of insulin‐induced GLUT4 translocation by Munc18c through interaction with syntaxin4 in 3T3‐L1 adipocytes. J Biol Chem 273: 19740‐19746, 1998.
 305.Taylor AH, Doust J, Webborn N. Randomised controlled trial to examine the effects of a GP exercise referral programme in Hailsham, East Sussex, on modifiable coronary heart disease risk factors. J Epidemiol Community Health 52: 595‐601, 1998.
 306.Tellam JT, McIntosh S, James DE. Molecular identification of two novel Munc‐18 isoforms expressed in non‐neuronal tissues. J Biol Chem 270: 5857‐5863, 1995.
 307.Thiebaud D, Jacot E, Defronzo RA, Maeder E, Jequier E, Felber J‐P. The effect of graded doses of insulin on total glucose uptake, glucose oxidation, and glucose storage in man. Diabetes 31: 957‐963, 1982.
 308.Thomson DM, Porter BB, Tall JH, Kim HJ, Barrow JR, Winder WW. Skeletal muscle and heart LKB1 deficiency causes decreased voluntary running and reduced muscle mitochondrial marker enzyme expression in mice. Am J Physiol Endocrinol Metab 292: E196‐E202, 2007.
 309.Thong FS, Bilan PJ, Klip A. The Rab GTPase‐activating protein AS160 integrates Akt, protein kinase C, and AMP‐activated protein kinase signals regulating GLUT4 traffic. Diabetes 56: 414‐423, 2007.
 310.Thorens B, Mueckler M. Glucose transporters in the 21st century. Am J Physiol Endocrinol Metab 298: E141‐E145, 2010.
 311.Thurmond DC, Ceresa BP, Okada S, Elmendorf JS, Coker K, Pessin JE. Regulation of insulin‐stimulated GLUT4 translocation by munc18c in 3T3L1 adipocytes. J Biol Chem 273: 33876‐33883, 1998.
 312.Thurmond DC, Pessin JE. Discrimination of GLUT4 vesicle trafficking from fusion using a temperature‐sensitive Munc18c mutant. EMBO J 19: 3565‐3575, 2000.
 313.Tiano JP, Springer DA, Rane SG. SMAD3 negatively regulates serum irisin and skeletal muscle FNDC5 and PGC‐1α during exercise. J Biol Chem 290: 7671‐7684, 2015.
 314.Tong M, Saito T, Zhai P, Oka SI, Mizushima W, Nakamura M, Ikeda S, Shirakabe A, Sadoshima J. Mitophagy is essential for maintaining cardiac function during high fat diet‐induced diabetic cardiomyopathy. Circ Res 124: 1360‐1371, 2019.
 315.Torres PA, Helmstetter JA, Kaye AM, Kaye AD. Rhabdomyolysis: Pathogenesis, diagnosis, and treatment. Ochsner J 15: 58‐69, 2015.
 316.Trammell SA, Weidemann BJ, Chadda A, Yorek MS, Holmes A, Coppey LJ, Obrosov A, Kardon RH, Yorek MA, Brenner C. Nicotinamide riboside opposes type 2 diabetes and neuropathy in mice. Sci Rep 6: 26933, 2016.
 317.Treebak JT, Frosig C, Pehmoller C, Chen S, Maarbjerg SJ, Brandt N, MacKintosh C, Zierath JR, Hardie DG, Kiens B, Richter EA, Pilegaard H, Wojtaszewski JF. Potential role of TBC1D4 in enhanced post‐exercise insulin action in human skeletal muscle. Diabetologia 52: 891‐900, 2009.
 318.Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Phys Cell Phys 296: C1258‐C1270, 2009.
 319.Trenerry MK, Carey KA, Ward AC, Cameron‐Smith D. STAT3 signaling is activated in human skeletal muscle following acute resistance exercise. J Appl Physiol 102: 1483‐1489, 2007.
 320.Tunduguru R, Chiu TT, Ramalingam L, Elmendorf JS, Klip A, Thurmond DC. Signaling of the p21‐activated kinase (PAK1) coordinates insulin‐stimulated actin remodeling and glucose uptake in skeletal muscle cells. Biochem Pharmacol 92: 380‐388, 2014.
 321.Tunduguru R, Zhang J, Aslamy A, Salunkhe VA, Brozinick JT, Elmendorf JS, Thurmond DC. The actin‐related p41ARC subunit contributes to p21‐activated kinase‐1 (PAK1)‐mediated glucose uptake into skeletal muscle cells. J Biol Chem 292: 19034‐19043, 2017.
 322.Turki A, Hayot M, Carnac G, Pillard F, Passerieux E, Bommart S, de Mauverger ER, Hugon G, Pincemail J, Pietri S, Lambert K, Belayew A, Vassetzky Y, Juntas Morales R, Mercier J, Laoudj‐Chenivesse D. Functional muscle impairment in facioscapulohumeral muscular dystrophy is correlated with oxidative stress and mitochondrial dysfunction. Free Radic Biol Med 53: 1068‐1079, 2012.
 323.Tuso P. Prediabetes and lifestyle modification: Time to prevent a preventable disease. Perm J 18: 88‐93, 2014.
 324.Vaughan RA, Gannon NP, Mermier CM, Conn CA. Irisin, a unique non‐inflammatory myokine in stimulating skeletal muscle metabolism. J Physiol Biochem 71: 679‐689, 2015.
 325.Vazirani RP, Verma A, Sadacca LA, Buckman MS, Picatoste B, Beg M, Torsitano C, Bruno JH, Patel RT, Simonyte K, Camporez JP, Moreira G, Falcone DJ, Accili D, Elemento O, Shulman GI, Kahn BB, McGraw TE. Disruption of adipose Rab10‐dependent insulin Signaling causes hepatic insulin resistance. Diabetes 65: 1577‐1589, 2016.
 326.Vella L, Caldow MK, Larsen AE, Tassoni D, Della Gatta PA, Gran P, Russell AP, Cameron‐Smith D. Resistance exercise increases NF‐kappaB activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 302: R667‐R673, 2012.
 327.Volchuk A, Wang Q, Ewart HS, Liu Z, He L, Bennett MK, Klip A. Syntaxin 4 in 3T3‐L1 adipocytes: Regulation by insulin and participation in insulin‐dependent glucose transport. Mol Biol Cell 7: 1075‐1082, 1996.
 328.Vosseller K, Wells L, Lane MD, Hart GW. Elevated nucleocytoplasmic glycosylation by O‐GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3‐L1 adipocytes. Proc Natl Acad Sci U S A 99: 5313‐5318, 2002.
 329.Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating interleukin‐6 in relation to adiposity, insulin action, and insulin secretion. Obes Res 9: 414‐417, 2001.
 330.Wagner KR, Fleckenstein JL, Amato AA, Barohn RJ, Bushby K, Escolar DM, Flanigan KM, Pestronk A, Tawil R, Wolfe GI, Eagle M, Florence JM, King WM, Pandya S, Straub V, Juneau P, Meyers K, Csimma C, Araujo T, Allen R, Parsons SA, Wozney JM, Lavallie ER, Mendell JR. A phase I/IItrial of MYO‐029 in adult subjects with muscular dystrophy. Ann Neurol 63: 561‐571, 2008.
 331.Wahren J, Felig P, Ahlborg G, Jorfeldt L. Glucose metabolism during leg exercise in man. J Clin Invest 50: 2715‐2725, 1971.
 332.Wallberg‐Henriksson H. Repeated exercise regulates glucose transport capacity in skeletal muscle. Acta Physiol Scand 127: 39‐44, 1986.
 333.Wang D, Ning W, Xie D, Guo L, DuBois RN. Peroxisome proliferator‐activated receptor delta confers resistance to peroxisome proliferator‐activated receptor gamma‐induced apoptosis in colorectal cancer cells. Oncogene 31: 1013‐1023, 2012.
 334.Wang Q, Somwar R, Bilan PJ, Liu Z, Jin J, Woodgett JR, Klip A. Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol Cell Biol 19: 4008‐4018, 1999.
 335.Wang Y, An H, Liu T, Qin C, Sesaki H, Guo S, Radovick S, Hussain M, Maheshwari A, Wondisford FE, O'Rourke B, He L. Metformin improves mitochondrial respiratory activity through activation of AMPK. Cell Rep 29: 1511‐1523.e1515, 2019.
 336.Warram JH, Martin BC, Krolewski AS, Soeldner JS, Kahn CR. Slow glucose removal rate and hyperinsulinemia precede the development of type II diabetes in the offspring of diabetic parents. Ann Intern Med 113: 909‐915, 1990.
 337.Way KL, Hackett DA, Baker MK, Johnson NA. The effect of regular exercise on insulin sensitivity in type 2 diabetes mellitus: A systematic review and meta‐analysis. Diabetes Metab J 40: 253‐271, 2016.
 338.Whelan SA, Dias WB, Thiruneelakantapillai L, Lane MD, Hart GW. Regulation of insulin receptor substrate 1 (IRS‐1)/AKT kinase‐mediated insulin signaling by O‐linked beta‐N‐acetylglucosamine in 3T3‐L1 adipocytes. J Biol Chem 285: 5204‐5211, 2010.
 339.Whitfield J, Paglialunga S, Smith BK, Miotto PM, Simnett G, Robson HL, Jain SS, Herbst EAF, Desjardins EM, Dyck DJ, Spriet LL, Steinberg GR, Holloway GP. Ablating the protein TBC1D1 impairs contraction‐induced sarcolemmal glucose transporter 4 redistribution but not insulin‐mediated responses in rats. J Biol Chem 292: 16653‐16664, 2017.
 340.Whitham M, Chan MHS, Pal M, Matthews VB, Prelovsek O, Lunke S, El‐Osta A, Broenneke H, Alber J, Brüning JC, Wunderlich FT, Lancaster GI, Febbraio MA. Contraction‐induced interleukin‐6 gene transcription in skeletal muscle is regulated by c‐Jun terminal kinase/activator protein‐1. J Biol Chem 287: 10771‐10779, 2012.
 341.Wilden PA, Siddle K, Haring E, Backer JM, White MF, Kahn CR. The role of insulin receptor kinase domain autophosphorylation in receptor‐mediated activities. Analysis with insulin and anti‐receptor antibodies. J Biol Chem 267: 13719‐13727, 1992.
 342.Wiseman DA, Kalwat MA, Thurmond DC. Stimulus‐induced S‐nitrosylation of syntaxin 4 impacts insulin granule exocytosis. J Biol Chem 286: 16344‐16354, 2011.
 343.Witczak CA, Jessen N, Warro DM, Toyoda T, Fujii N, Anderson ME, Hirshman MF, Goodyear LJ. CaMKII regulates contraction‐ but not insulin‐induced glucose uptake in mouse skeletal muscle. Am J Physiol Endocrinol Metab 298: E1150‐E1160, 2010.
 344.Wojtaszewski JF, Higaki Y, Hirshman MF, Michael MD, Dufresne SD, Kahn CR, Goodyear LJ. Exercise modulates postreceptor insulin signaling and glucose transport in muscle‐specific insulin receptor knockout mice. J Clin Invest 104: 1257‐1264, 1999.
 345.Woldt E, Sebti Y, Solt LA, Duhem C, Lancel S, Eeckhoute J, Hesselink MK, Paquet C, Delhaye S, Shin Y, Kamenecka TM, Schaart G, Lefebvre P, Neviere R, Burris TP, Schrauwen P, Staels B, Duez H. Rev‐erb‐alpha modulates skeletal muscle oxidative capacity by regulating mitochondrial biogenesis and autophagy. Nat Med 19: 1039‐1046, 2013.
 346.Woods A, Dickerson K, Heath R, Hong SP, Momcilovic M, Johnstone SR, Carlson M, Carling D. Ca2+/calmodulin‐dependent protein kinase kinase‐beta acts upstream of AMP‐activated protein kinase in mammalian cells. Cell Metab 2: 21‐33, 2005.
 347.World Health Organization. Global report on diabetes. Geneva, Switzerland, 2016.
 348.Wright DC, Hucker KA, Holloszy JO, Han DH. Ca2+ and AMPK both mediate stimulation of glucose transport by muscle contractions. Diabetes 53: 330‐335, 2004.
 349.Xiong Y, Wu Z, Zhang B, Wang C, Mao F, Liu X, Hu K, Sun X, Jin W, Kuang S. Fndc5 loss‐of‐function attenuates exercise‐induced browning of white adipose tissue in mice. FASEB J 33: 5876‐5886, 2019.
 350.Yamada E, Okada S, Saito T, Ohshima K, Sato M, Tsuchiya T, Uehara Y, Shimizu H, Mori M. Akt2 phosphorylates Synip to regulate docking and fusion of GLUT4‐containing vesicles. J Cell Biol 168: 921‐928, 2005.
 351.Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, Yamashita S, Noda M, Kita S, Ueki K. Adiponectin stimulates glucose utilization and fatty‐acid oxidation by activating AMP‐activated protein kinase. Nat Med 8: 1288, 2002.
 352.Yang C, Coker KJ, Kim JK, Mora S, Thurmond DC, Davis AC, Yang B, Williamson RA, Shulman GI, Pessin JE. Syntaxin 4 heterozygous knockout mice develop muscle insulin resistance. J Clin Invest 107: 1311‐1318, 2001.
 353.Yang H, Chang J, Chen W, Zhao L, Qu B, Tang C, Qi Y, Zhang J. Treadmill exercise promotes interleukin 15 expression in skeletal muscle and interleukin 15 receptor alpha expression in adipose tissue of high‐fat diet rats. Endocrine 43: 579‐585, 2013.
 354.Yang J, Holman GD. Insulin and contraction stimulate exocytosis, but increased AMP‐activated protein kinase activity resulting from oxidative metabolism stress slows endocytosis of GLUT4 in cardiomyocytes. J Biol Chem 280: 4070‐4078, 2005.
 355.Yang SJ, Hong HC, Choi HY, Yoo HJ, Cho GJ, Hwang TG, Baik SH, Choi DS, Kim SM, Choi KM. Effects of a three‐month combined exercise programme on fibroblast growth factor 21 and fetuin‐A levels and arterial stiffness in obese women. Clin Endocrinol 75: 464‐469, 2011.
 356.Yarasheski K, Bhasin S, Sinha‐Hikim I, Pak‐Loduca J, Gonzalez‐Cadavid N. Serum myostatin‐immunoreactive protein is increased in 60‐92 year old women and men with muscle wasting. J Nutr Health Aging 6: 343‐348, 2002.
 357.Yeo NH, Woo J, Shin KO, Park JY, Kang S. The effects of different exercise intensity on myokine and angiogenesis factors. J Sports Med Phys Fitness 52: 448‐454, 2012.
 358.Yin Y, Russell RG, Dettin LE, Bai R, Wei ZL, Kozikowski AP, Kopelovich L, Glazer RI. Peroxisome proliferator‐activated receptor delta and gamma agonists differentially alter tumor differentiation and progression during mammary carcinogenesis. Cancer Res 65: 3950‐3957, 2005.
 359.Young A, Stokes M, Crowe M. The size and strength of the quadriceps muscles of old and young men. Clin Physiol 5: 145‐154, 1985.
 360.Yu H, Rathore SS, Lopez JA, Davis EM, James DE, Martin JL, Shen J. Comparative studies of Munc18c and Munc18‐1 reveal conserved and divergent mechanisms of Sec1/Munc18 proteins. Proc Natl Acad Sci U S A 110: E3271‐E3280, 2013.
 361.Yu KT, Czech MP. Tyrosine phosphorylation of the insulin receptor beta subunit activates the receptor‐associated tyrosine kinase activity. J Biol Chem 259: 5277‐5286, 1984.
 362.Zhang J, Oh E, Merz KE, Aslamy A, Veluthakal R, Salunkhe VA, Ahn M, Tunduguru R, Thurmond DC. DOC2B promotes insulin sensitivity in mice via a novel KLC1‐dependent mechanism in skeletal muscle. Diabetologia 62: 845‐859, 2019.
 363.Zhang X, Rebane AA, Ma L, Li F, Jiao J, Qu H, Pincet F, Rothman JE, Zhang Y. Stability, folding dynamics, and long‐range conformational transition of the synaptic t‐SNARE complex. Proc Natl Acad Sci 113: E8031‐E8040, 2016.
 364.Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS, Xu A. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57: 1246‐1253, 2008.
 365.Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, Lacey DL, Goldberg AL, Han HQ. Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142: 531‐543, 2010.
 366.Zmijewski JW, Banerjee S, Bae H, Friggeri A, Lazarowski ER, Abraham E. Exposure to hydrogen peroxide induces oxidation and activation of AMP‐activated protein kinase. J Biol Chem 285: 33154‐33164, 2010.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Karla E. Merz, Debbie C. Thurmond. Role of Skeletal Muscle in Insulin Resistance and Glucose Uptake. Compr Physiol 2020, 10: 785-809. doi: 10.1002/cphy.c190029