Comprehensive Physiology Wiley Online Library
Home Browse Topics Latest Issue All Issues

Biosynthesis of Insulin

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Insulin: Properties and Structure
2 Biosynthesis of Insulin
2.1 Structure and Functions of Precursor Forms
2.2 Cell Biology
2.3 Mechanism of Proteolytic Conversion of Proinsulin to Insulin
2.4 Insulin Storage Vesicles
2.5 C Peptide, a Co‐secretory Product of the β Cell
3 Regulation of Insulin Biosynthesis
4 The Insulin Gene and its Defects
4.1 Mutations in the Insulin Gene
5 Defects in Insulin Biosynthesis
5.1 Prohormone Convertase Defects
6 Conclusion
Figure 1. Figure 1.

Primary structure of human insulin Residues shown in boxes are conserved in all known vertebrate insulins.

Figure 2. Figure 2.

Structure of the two‐zinc porcine insulin hexamer (peptide main chain) based on x‐ray crystallographic data . The threefold axis is perpendicular to the page; the two zinc atoms lie on this axis, above and below the center of the hexamer, each coordinated by three B10 histidine side chains. Light and dark ribbons represent dimer pairs shown on their twofold axes (lines).

Figure 3. Figure 3.

Structure of the porcine insulin monomer. The B‐chain peptide backbone is shown as a dark ribbon and the A chain as a light ribbon.

Figure 4. Figure 4.

A: Covalent structure of rat preproinsulin I.

B: Primary sequences of representative vertebrate proinsulins compared with the human sequence. Conserved residues are highlighted. Sources are as follows: human , hummingbird , Xenopus, zebraflsh , hagfish , amphioxus .

Figure 5. Figure 5.

Subcellular organization of the insulin biosynthetic pathway. Arrows indicate direction of movement of (pro)insulin via subcellular compartments. Dashed arrow pointing downward indicates the mannose‐6‐P receptor pathway to the lysosome. Dashed arrow pointing upward indicates granule degradative pathway (autophagy). Time scales indicate intracompartmental residence times (see text for details). RER, rough endoplasmic reticulum.

Figure 6. Figure 6.

Schematic diagram showing “constitutive‐like” alternative secretory pathway arising from immature secretory granules (vesicles) via passive sorting of soluble, nonaggregated C peptide generated by proinsulin processing during early phases of secretory granule maturation. Other granule constituents, such as furin and/or lysosomal enzyme precursors, may be actively removed from the maturing granules via clathrin‐clad vesicles by virtue of cytosolic domain interactions (furin) or mannose‐6‐P receptor (M‐6‐PR)–mediated pathways (cathepsins) (see text and ref. for details). TGN, trans‐Golgi network.

Figure 7. Figure 7.

Proinsulin processing pathways in the β cell. On the right is the predominant pathway, beginning with cleavage of proinsulin by prohormone convertase 3 (PC3) to yield des‐31, 32‐proinsulin, a preferred substrate for PC2. However, evidence summarized in the text indicates that either enzyme is capable of cleavage at both junctions in the prohormone to generate insulin. Carboxy peptidase E (CPE) removes C‐terminal basic amino acids from products (not shown) generated by the endoproteolytic action of PC2 or PC3.

Figure 8. Figure 8.

Structures of the subtilisin‐like proprotein convertases. The upper three [Prohormone convertase 2 (PC2), PC1/PC3, and PC4] are neuroendocrine‐specific in their localization and functions, while the lower group (furin, PACE, PC6, and PC7) are expressed more widely and tend to process a variety of constitutively secreted precursors (for review, see ref. ). Pre, signal peptide; Pro, pro domain; Cat, catalytic domain; P, P domain; CR cysteine‐rich domain; AH, amphipathic helix; TM, transmembrane segment; S/TR, serinethreonine‐rich region. Catalytic residues D, H, N, and S are shown above the catalytic domains. Glycosylation sites are not shown.

Figure 9. Figure 9.

Structure of the insulin gene in selected vertebrates, showing highly conserved intron–exon structure and the promoter region. Numbers indicate variable size (in nucleotides) of each intron.

Figure 10. Figure 10.

Electron micrograph of β cells in wild‐type (PC2 +/+) or mutant (PC‐/‐) mice. Note abundance of mature secretory granules in wild‐type contrasting with large numbers of immature‐appearing secretory granules in the mutant, indicative of increased proinsulin content . Bar = 1 mM.

(Photomicrograph courtesy of Hewson H. Swift.)


Figure 1.

Primary structure of human insulin Residues shown in boxes are conserved in all known vertebrate insulins.



Figure 2.

Structure of the two‐zinc porcine insulin hexamer (peptide main chain) based on x‐ray crystallographic data . The threefold axis is perpendicular to the page; the two zinc atoms lie on this axis, above and below the center of the hexamer, each coordinated by three B10 histidine side chains. Light and dark ribbons represent dimer pairs shown on their twofold axes (lines).



Figure 3.

Structure of the porcine insulin monomer. The B‐chain peptide backbone is shown as a dark ribbon and the A chain as a light ribbon.



Figure 4.

A: Covalent structure of rat preproinsulin I.

B: Primary sequences of representative vertebrate proinsulins compared with the human sequence. Conserved residues are highlighted. Sources are as follows: human , hummingbird , Xenopus, zebraflsh , hagfish , amphioxus .



Figure 5.

Subcellular organization of the insulin biosynthetic pathway. Arrows indicate direction of movement of (pro)insulin via subcellular compartments. Dashed arrow pointing downward indicates the mannose‐6‐P receptor pathway to the lysosome. Dashed arrow pointing upward indicates granule degradative pathway (autophagy). Time scales indicate intracompartmental residence times (see text for details). RER, rough endoplasmic reticulum.



Figure 6.

Schematic diagram showing “constitutive‐like” alternative secretory pathway arising from immature secretory granules (vesicles) via passive sorting of soluble, nonaggregated C peptide generated by proinsulin processing during early phases of secretory granule maturation. Other granule constituents, such as furin and/or lysosomal enzyme precursors, may be actively removed from the maturing granules via clathrin‐clad vesicles by virtue of cytosolic domain interactions (furin) or mannose‐6‐P receptor (M‐6‐PR)–mediated pathways (cathepsins) (see text and ref. for details). TGN, trans‐Golgi network.



Figure 7.

Proinsulin processing pathways in the β cell. On the right is the predominant pathway, beginning with cleavage of proinsulin by prohormone convertase 3 (PC3) to yield des‐31, 32‐proinsulin, a preferred substrate for PC2. However, evidence summarized in the text indicates that either enzyme is capable of cleavage at both junctions in the prohormone to generate insulin. Carboxy peptidase E (CPE) removes C‐terminal basic amino acids from products (not shown) generated by the endoproteolytic action of PC2 or PC3.



Figure 8.

Structures of the subtilisin‐like proprotein convertases. The upper three [Prohormone convertase 2 (PC2), PC1/PC3, and PC4] are neuroendocrine‐specific in their localization and functions, while the lower group (furin, PACE, PC6, and PC7) are expressed more widely and tend to process a variety of constitutively secreted precursors (for review, see ref. ). Pre, signal peptide; Pro, pro domain; Cat, catalytic domain; P, P domain; CR cysteine‐rich domain; AH, amphipathic helix; TM, transmembrane segment; S/TR, serinethreonine‐rich region. Catalytic residues D, H, N, and S are shown above the catalytic domains. Glycosylation sites are not shown.



Figure 9.

Structure of the insulin gene in selected vertebrates, showing highly conserved intron–exon structure and the promoter region. Numbers indicate variable size (in nucleotides) of each intron.



Figure 10.

Electron micrograph of β cells in wild‐type (PC2 +/+) or mutant (PC‐/‐) mice. Note abundance of mature secretory granules in wild‐type contrasting with large numbers of immature‐appearing secretory granules in the mutant, indicative of increased proinsulin content . Bar = 1 mM.

(Photomicrograph courtesy of Hewson H. Swift.)
References
 1. Adham, I. M., E. Burkhardt, M. Benahmed, and W. Engel. Cloning of a cDNA for a novel insulin‐like peptide of the testicular Leydig cells. J. Biol. Chem. 268: 26668–26672, 1993.
 2. Anderson, E. D., J. K. Van Slyke, C. D. Thulin, F. Jean, and G. Thomas. Activation of the furin endoprotease is a multiple‐step process: requirements for acidification and internal propeptide cleavage. EMBO J. 16: 1508–1518, 1977.
 3. Anderson, R. G. W., and L. Orci. A view of acidic intracellular compartments. J. Cell Biol. 106: 539–543, 1988.
 4. Arnold, E., M. Luo, G. Vriend, M. G. Rossmann, A. C. Palmenberg, G. D. Parks, M. J. Nicklin, and E. Wimmer. Implications of the picornavirus capsid structure for polyprotein processing. Proc. Natl. Acad. Sci. U.S.A. 84: 21–25, 1987.
 5. Arquilla, E. R., P. V. Miles, and J. W. Morris. Immunochemistry of insulin. In: Handbook of Physiology. Endocrinology. Endocrine Pancreas, edited by D. F. Steiner and N. Freinkel. Washington DC: Am. Physiol. Soc., 1972, sect. 7, vol. I, p. 159–174. p. 159.
 6. Arvan, P., and D. Castle. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell Biol. 2: 327–331, 1992.
 7. Arvan, P., R. Kuliawat, D. Prabakaran, A.‐M. Zavacki, D. Elahi, S. Wang, and D. Pilkey. Protein discharge from immature secretory granules displays both regulated and constitutive characteristics. J. Biol. Chem. 266: 14171–14174, 1991.
 8. Asplund, K.. Effects of glucose on insulin biosynthesis in foetal and newborn rats. Horm. Metab. Res. 5: 410–415, 1973.
 9. Assoian, R. K., N. E. Thomas, E. T. Kaiser, and H. S. Tager. [Leu B24] insulin and [Ala B24] insulin: altered structures and cellular processing of B24‐substituted insulin analogs. Proc. Natl. Acad. Sci. U.S.A. 79: 5147–5151, 1982.
 10. Baba, S., T. Kaucko, and N. Yanaihara. Proinsulin, Insulin, C‐Peptide. Amsterdam: Excerpta Med., 1979.
 11. Bailyes, E. M., K. I. J. Shennan, A. J. Seal, S. P. Smeekens, D. F. Steiner, J. C. Hutton, and K. Docherty. A member of the eukaryotic subtilisin family (PC3) has the enzymic properties of the type 1 proinsulin‐converting endopeptidase. Biochem. J. 285: 391–394, 1992.
 12. Bajaj, M., T. Blundell, and S. Wood. Evolution in the insulin family: molecular clocks that tell the wrong time. Biochem. Soc. Symp. 49: 45–54, 1984.
 13. Baker, E. N., T. L. Blundell, J. F. Cutfield, S. M. Cutfield, E. J. Dodson, G. G. Dodson, D. M. Hodgkin, R. E. Hubbard, N. W. Issacs, C. D. Reynolds, K. Sakabe, N. Sakabe, and N. M. Vijayan. The structure of 2Zn pig insulin crystals at 1.5 °A resolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 319: 369–456, 1988.
 14. Banting, F. G., C. H. Best, and J. B. Collip. Insulin patent. Chem. Abstracts 17: 3571, 1923.
 15. Barr, P. J., O. B. Mason, K. E. Landsberg, P. A. Wong, M. C. Keifer, and A. J. Brake. cDNA and gene structure for a human subtilisin‐like protease with cleavage specificity for paired basic amino acid residues. DNA Cell Biol. 10: 319–328, 1991.
 16. Barron, M.. The relation of the islets of Langerhans to diabetes with special reference to cases of pancreatic lithiasis. Surg. Gynecol. Obstet. 31: 437–448, 1920.
 17. Bell, G. I., R. L. Pictet, W. J. Rutter, B. Cordell, E. Tisher, and H. M. Goodman. Sequence of the human insulin gene. Nature 284: 26–32, 1980.
 18. Bell, G. I., M. J. Selby, and W. J. Rutter. The highly polymorphic region near the human insulin gene is composed of simple tandemly repeating sequences. Nature 295: 31–35, 1982.
 19. Benjannet, S., N. Rondeau, R. Day, M. Chretién, and N. G. Seidah. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc. Natl. Acad. Sci. U.S.A. 88: 3564–3568, 1991.
 20. Bennett, D. L., E. M. Bailyes, E. Nielsen, P. C. Guest, N. G. Rutherford, S. D. Arden, and J. C. Hutton. Identification of the type 2 proinsulin processing endopeptidase as PC2, a member of the eukaryote subtilisin family. J. Biol. Chem. 267: 15229–15236, 1992.
 21. Berman, Y. L., L. Juliano, and L. A. Devi. Purification and characterization of a dynorphin‐processing endopeptidase. J. Biol. Chem. 270: 23845–23850, 1995.
 22. Bliss, M.. The Discovery of Insulin. Chicago: University of Chicago Press, 1982.
 23. Bloomquist, B. T., B. A. Eipper, and R. E. Mains. Prohormone‐converting enzymes: regulation and evaluation of function using antisense RNA. Mol. Endocrinol. 5: 2014–2024, 1991.
 24. Blundell, T. L., G. G. Dodson, D. C. Hodgkin, and M. Vijayan. X‐ray analysis and the structure of insulin. Recent Prog. Horm. Res. 27: 1–40, 1971.
 25. Blundell, T. L., G. G. Dodson, D. C. Hodgkin, and D. A. Mercola. Insulin: the structure in the crystals and its reflection in chemistry and biology. Adv. Protein Chem. 26: 279, 1972.
 26. Blundell, T., and S. Wood. The conformation, flexibility, and dynamics of polypeptide hormones. In: Annual Review of Biochemistry, edited by E. E. Snell, P. D. Boyer, A. Meister, and C. C. Richardson. Palo Alto: Annual Reviews, 1982, vol. 51, p. 123–154.
 27. Bosch, V., and M. Pawlita. Mutational analysis of the human immunodeficiency virus type 1 env gene product proteolytic cleavage site. J. Virol. 64: 2337–2344, 1990.
 28. Bourbonnais, Y., J. Ash, M. Daigle, and D. Y. Thomas. Isolation and characterization of S. cerevisiae mutants defective in somatostatin expression: cloning and functional role of a yeast gene encoding an aspartyl protease in precursor processing at monobasic cleavage sites. EMBO J. 12: 285–294, 1993.
 29. Braks, J. A., and G. J. M. Martens. 7B2 is a neuroendocrine chaperone that transiently interacts with prohormone convertase PC2 in the secretory pathway. Cell 78: 263–273, 1994.
 30. Brand, C. L., P. N. Jorgensen, I. Svendsen, and J. J. Holst. Evidence for a major role for glucagon in regulation of plasma glucose in conscious, nondiabetic, and alloxan‐induced diabetic rabbits. Diabetes 45: 1076–1083, 1996.
 31. Brandenburg, D., and A. Wollmer. Insulin: chemistry, structure and function of insulin and related hormones. Proc. 2 Int. Insulin Symp. Aachen, Germany, September 4–7, 1979. Berlin: de Gruyter, 1980.
 32. Brange, J., O. Halllund, and E. Sorensen. Chemical stability of insulin. 5. Isolation, characterization and identification of insulin transformation products. Acta Pharm. Nord. 4: 223–232, 1992.
 33. Bresnahan, P. A., R. Leduc, L. Thomas, J. Thorner, H. L. Gibson, A. J. Brake, P. J. Barr, and G. Thomas. Human fur gene encodes a yeast KEX2‐like endoprotease that cleaves pro‐beta‐NGF in vivo. J. Cell Biol. 111: 2851–2859, 1990.
 34. Bruni, B., M. D'Alberto, M. Osenda, C. Ricci, and G. L. Turco. Clinical trial with monocomponent lente insulins. Diabetologia 9: 492–498, 1973.
 35. Bruzzaniti, A., K. Goodge, P. Jay, S. A. Taviaux, M. H. Lam, P. Berta, T. J. Martin, J. M. Moseley, and M. T. Gillespie. PC8, a new member of the convertase family. Biochem. J. 314: 727–731, 1996.
 36. Carroll, R. J., R. E. Hammer, S. J. Chan, H. H. Swift, A. H. Rubeinstein, and D. F. Steiner. A mutant human proinsulin is secreted from islets of Langerhans in increased amounts via an unregulated pathway. Proc. Natl. Acad. Sci. U.S.A. 85: 8943–8947, 1988.
 37. Cawley, N. X., L.‐P. Pu, and Y. P. Loh. Immunological identification and localization of yeast aspartic protease 3‐like prohormone‐processing enzymes in mammalian brain and pituitary. Endocrinology 137: 5135–5143, 1996.
 38. Chan, S. J., Q.‐P. Cao, and D. F. Steiner. Evolution of the insulin superfamily: cloning of a hybrid insulin/insulin‐like growth factor cDNA from amphioxus. Proc. Natl. Acad. Sci. U.S.A. 87: 9319–9323, 1990.
 39. Chan, S. J., S. O. Emdin, S. C. M. Kwok, J. M. Kramer, S. Falkmer, and D. F. Steiner. Messenger RNA sequence and primary structure of preproinsulin in a primitive vertebrate, the Atlantic hagfish. J. Biol. Chem. 256: 7595–7602, 1981.
 40. Chan, S. J., V. Episkopou, S. Zeitlin, S. K. Karathanasis, A. MacKrell, D. F. Steiner, and A. Efstratiadis. Guinea pig preproinsulin gene: an evolutionary compromise? Proc. Natl. Acad. Sci. U.S.A. 81: 5046–5050, 1984.
 41. Chan, S. J., P. Keim, and D. F. Steiner. Cell‐free synthesis of rat preproinsulins: characterization and partial amino acid sequence determination. Proc. Natl. Acad. Sci. U.S.A. 73: 1964–1968, 1976.
 42. Chan, S. J., A. A. Oliva, Jr., J. LaMendola, A. Grens, H. Bode, and D. F. Steiner. Conservation of the prohormone convertase gene family in metazoa: analysis of cDNAs encoding a PC3‐like protein from hydra. Proc. Natl. Acad. Sci. U.S.A. 89: 6678–6682, 1992.
 43. Chan, S. J., S. Seino, P. A. Grupposo, R. Schwartz, and D. F. Steiner. A mutation in the B chain coding region of the human insulin gene is associated with impaired proinsulin conversion in a family with hyperproinsulinemia. Proc. Natl. Acad. Sci. U.S.A. 84: 2194–2197, 1987.
 44. Chan, S. J., J. Weiss, M. Konrad, T. White, C. Bahl, S. D. Yu, D. Marks, and D. F. Steiner. Biosynthesis and periplasmic segregation of human proinsulin in E. coli. Proc. Natl. Acad. Sci. U.S.A. 78: 5401–5405, 1981.
 45. Chance, R. E., R. M. Ellis, and W. W. Bromer. Porcine proinsulin: characterization and amino acid sequence. Science 161: 165–167, 1968.
 46. Chance, R. E., E. P. Kroeff, and J. A. Hoffmann. Chemical, physical, and biological properties of recombinant human insulin. In: Insulins, Growth Hormone, and Recombinant DNA Technology, edited by J. L. Guerigian. New York: Raven, 1981, p. 71–86.
 47. Clark, J. L., and D. F. Steiner. Insulin biosynthesis in the rat: demonstration of two proinsulins. Proc. Natl. Acad. Sci. U.S.A. 62: 278–285, 1969.
 48. Cohen, R. M., B. D. Given, J. Licinio‐Paixao, S. A. Provow, P. A. Rue, B. H. Frank, M. A. Root, K. S. Polonsky, H. S. Tager, and A. H. Rubenstein. Proinsulin radioimmunoassay in the evaluation of insulinomas and familial hyperproinsulinemia. Metabolism 35: 1137–1146, 1986.
 49. Conlon, J. M., J. H. Youson, and J. Whittaker. Structure and receptor‐binding activity of insulin from a holostean fish, the bowfin (Amia calva). Biochem. J. 276: 261–264, 1991.
 50. Cool, D. R., E. Normant, F. S. Shen, H. C. Chen, L. Pannell, Y. Zhang, and Y. P. Loh. Carboxypeptidase E is a regulated secretory pathway sorting receptor: genetic obliteration leads to endocrine disorders in Cpefat mice. Cell 88: 73–83, 1997.
 51. Cutfield, J. F., S. M. Cutfield, E. J. Dodson, G. G. Dodson, S. F. Emdin, and C. D. Reynolds. Structure and biological activity of hagfish insulin. J. Mol. Biol. 132: 85–100, 1979.
 52. Davidson, H. W., C. J. Rhodes, and J. C. Hutton. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic cell via two distinct site‐specific endopeptidases. Nature 333: 93–96, 1988.
 53. Davoren, P. R.. The isolation of insulin from a single cat pancreas. Biochim. Biophys. Acta 63: 150, 1962.
 54. Day, R., C. Lazure, A. Basak, A. Boudreault, P. Limperis, and W. Dong. Prodynorphin processing by proprotein convertase 2. Cleavage at single basic residues and enhanced processing in the presence of carboxypeptidase activity. J. Biol. Chem. 273: 829–836, 1998.
 55. Day, R., M. K.‐H. Schafer, S.J. Watson, M. Chretién, and N. G. Seidah. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol. Endocrinol. 6: 485–497, 1992.
 56. DeMeyts, P.. The structural basis of insulin and insulin‐like growth factor‐1 receptor binding and negative co‐operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia 37 (Suppl. 2): S135–S148, 1994.
 57. Derewenda, U., Z. Derewenda, E. J. Dodson, G. G. Dodson, X. Bing, and J. Markussen. X‐ray analysis of the single chain B29‐A1 peptide‐linked insulin molecule. J. Mol. Biol. 220: 425–433, 1991.
 58. Dittié, A. S., L. Thomas, G. Thomas, and S. A. Tooze. Interaction of furin in immature secretory granules from neuroendocrine cells with the AP‐1 adaptor complex is modulated by casein kinase II phosphorylation. EMBO J. 16: 4859–4870, 1997.
 59. Dixon, G. H., and A. C. Wardlaw. Regeneration of insulin activity from the separated and inactive A and B chains. Nature 188: 721–724, 1960.
 60. Drakenberg, K., V. R. Sara, S. Falkmer, S. Gammeltoft, C. Maake, and M. Reinecke. Identification of IGF‐1 receptors in primitive vertebrates. Regul. Pept. 43: 73–81, 1993.
 61. Duguay, S. J., W. M. Milewski, B. D. Young, K. Nakayama, and D. F. Steiner. Processing of wild‐type and mutant proinsulin‐like growth factor‐IA by subtilisin‐related proprotein convertases. J. Biol. Chem. 272: 6663–6670, 1997.
 62. Duvillié, B., N. Cordonnier, L. Deltour, F. Dandoy‐Dron, J. M. Itier, E. Monthioux, J. Jami, R. L. Joshi, and D. Bucchini. Phenotypic alterations in insulin‐deficient mutant mice. Proc. Natl. Acad. Sci. U.S.A. 94: 5137–5140, 1997.
 63. Edman, P.. Phenylthiohydantoins. Preparation of phenylthiohydantoins from some natural amino acids. Acta Chem. Scand. 4: 277–283, 1950.
 64. Emdin, S. O., G. G. Dodson, J. M. Cutfield, and S. M. Cutfield. Role of zinc in insulin biosynthesis. Diabetologia 19: 174–182, 1980.
 65. Emdin, S. O., and S. Falkmer. Phylogeny of insulin. Some evolutionary aspects of insulin production with particular regard to the biosynthesis of insulin in Myxine glutinosa. Acta Paediatr. Scand. Suppl. 270: 15–25, 1977.
 66. Emdin, S. O., S. Gammeltoft, and J. Gliemann. Degradation, binding affinity and potency of insulin from the Atlantic hagfish (Myxine glutinosa) determined in isolated rat fat cells. J. Biol. Chem. 252: 602–608, 1977.
 67. Falkmer, S.. Sulfhydryl compounds and heavy metals in islet morphology and metabolism. In: Proc. 7th Congr. Int. Diabetes Federation, edited by R. R. Rodriquez and J. J. Vallance‐Owne. Amsterdam: Excerpta Med., 1971, p. 219–225.
 68. Falkmer, S., M. El‐Salhy, and M. Titlbach. Evolution of the neuroendocrine system in vertebrates: a review with particular reference to the phylogeny and postnatal maturation of the islet parenchyma. In: Evolution and Tumour Pathology of the Neuroendocrine System, edited by S. Falkmer, R. Hokanson, and F. Sundler. Amsterdam: Elsevier, 1984, p. 59–87.
 69. Fan, L., P. Gardner, S. J. Chan, and D. F. Steiner. Cloning and analysis of the gene encoding hummingbird proinsulin. Gen. Comp. Endocrinol. 91: 25–30, 1993.
 70. Farquhar, M. G., and G. E. Palade. The Golgi apparatus (complex)—(1954–1981)—from artifact to center stage. J. Cell Biol. 91: 77s–103s, 1981.
 71. Frank, B. H., and A. J. Veros. Physical studies on proinsulin: association behavior and conformation in solution. Biochem. Biophys. Res. Commun. 32: 155–160, 1968.
 72. Frank, B. H., and A. J. Veros. Interaction of zinc with proinsulin. Biochem. Biophys. Res. Commun. 38: 284–289, 1970.
 73. French, M. B., J. Allison, D. S. Cram, H. E. Thomas, M. Dempsey‐Collier, A. Silva, H. M. Georgiou, T. W. Kay, L. C. Harrison, and A. M. Lew. Transgenic expression of mouse proinsulin II prevents diabetes in nonobese diabetic mice. Diabetes 46: 34–39, 1997.
 74. Fricker, L. D.. Peptide Biosynthesis and Processing. Boca Raton, FL: CRC, 1991.
 75. Fricker, L. D.. Peptide processing exopeptidases: amino‐and carboxypeptidases involved with peptide biosynthesis. In: Peptide Biosynthesis and Processing, edited by L. D. Fricker. Boca Raton, FL: CRC, 1991, p. 199–229.
 76. Fricker, L. D., C. J. Evans, F. S. Esch, and E. Herbert. Cloning and sequence analysis of cDNA for bovine carboxypeptidase E. Nature 323: 461–464, 1986.
 77. Fuller, R. S., A. J. Brake, and J. Thorner. Intracellular targeting and structural conversation of a prohormone‐processing endoprotease. Science 246: 482–486, 1989.
 78. Fuller, R. S., R. E. Sterne, and J. Thorner. Enzymes required for yeast prohormone processing. Annu. Rev. Physiol. 50: 345–362, 1988.
 79. Furuta, M., R. Carroll, S. Martin, L. Orci, M. Ravazzola, H. H. Swift, and D. F. Steiner. Incomplete processing of proinsulin to insulin accompanied by elevation of des‐31, 32 proinsulin intermediates in islets of mice lacking active PC2. J. Biol. Chem. 273: 3431–3437, 1998, 1997.
 80. Furuta, M., H. Yano, A. Zhou, Y. Rouillé, J. J. Holst, R. Carroll, M. Ravazzola, L. Orci, H. Furuta, and D. F. Steiner. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc. Natl. Acad. Sci. U.S.A. 94: 6646–6651, 1997.
 81. Galloway, J. A., S. A. Hooper, C. T. Spradlin, D. C. Howey, B. H. Frank, R. R. Bowsher, and J. H. Anderson. Biosynthetic human proinsulin. Review of chemistry, in vitro and in vivo receptor binding, animal and human pharmacology studies, and clinical experience. Diabetes Care 5: 126, 1982.
 82. Garcia, S. D., C. Jarrousse, and G. Rosselin. Biosynthesis of proinsulin and insulin in newborn rat pancreas. Interaction of glucose, cyclic AMP, somatostatin, and sulfonylureas on the (3H) leucine incorporation into immunoreactive insulin. J. Clin. Invest. 57: 230–243, 1976.
 83. Geiger, R., H. Wissman, H. L. Weidenmuller, and H.‐G. Schröder. Rekombination der A‐ und B‐ketten von schweine insulin in anwesenheit von synthetischem C‐peptid der schweine‐proinsulins. Z Naturforsch. 24b: 1489–1490, 1969.
 84. German, M. S.. Glucose sensing in pancreatic islet beta‐cells: the key role of glucokinase and the glycolytic intermediates. Proc. Natl. Acad. Sci. U.S.A. 90: 1781–1785, 1993.
 85. Giddings, S. J., J. Chirgwin, and M. A. Permutt. Evaluation of rat insulin messenger RNA in pancreatic and extrapancreatic tissues. Diabetologia 28: 343–347, 1985.
 86. Giddings, S. J., J. M. Chirgwin, and M. A. Permutt. Glucose regulated insulin biosynthesis in isolated rat pancreatic islets is accompanied by changes in proinsulin mRNA. Diabetes Res. 2: 71–75, 1985.
 87. Given, B. D., R. M. Cohen, S. E. Shoelson, B. H. Frank, A. H. Rubenstein, and H. S. Tager. Biochemical and clinical implications of proinsulin conversion intermediates. J. Clin. Invest. 76: 1398–1405, 1985.
 88. Glauber, H. S., R. R. Henry, and P. Wallace. The effects of biosynthetic human proinsulin on carbohydrate metabolism in noninsulin‐dependent diabetes mellitus. N. Engl. J. Med. 316: 443–449, 1987.
 89. Gliemann, J., and H. H. Sorenson. Assay of insulin‐like activity by the isolated fat cell method: IV. The biological activity of proinsulin. Diabetologia 6: 499–504, 1970.
 90. Gold, G., M. L. Gishizky, and G. M. Grodsky. Evidence that glucose “marks” cells resulting in preferential release of newly synthesized insulin. Science 218: 56–58, 1982.
 91. Grant, P. T., and T. L. Coombs. Proinsulin, a biosynthetic precursor of insulin. In: Essays in Biochemistry, edited by P. N. Campbell and G. D. Greville. London: Academic, 1971, vol. 6, p. 69–92.
 92. Grant, P. T., T. L. Coombs, and B. H. Frank. Differences in the nature of the interaction of insulin and proinsulin with zinc. Biochem. J. 126: 433–440, 1972.
 93. Greider, M. H., S. L. Howell, and P. E. Lacy. Isolation and properties of secretory granules from rat islets of Langerhans. II. Ultrastructure of the beta granule. J. Cell Biol. 41: 162–166, 1969.
 94. Gross, D. J., P. A. Halban, C. R. Kahn, and G. C. Weir. Partial diversion of a mutant proinsulin (B10 aspartic acid) from the regulated to the constitutive secretory pathway in transfected AtT‐20 cells. Proc. Natl. Acad. Sci. U.S.A. 86: 4107–4111, 1989.
 95. Gruppuso, P. A., P. Gorden, C. R. Kahn, M. Cornblath, W. P. Zeller, and R. Schwartz. Familial hyperproinsulinemia due to a proposed defect in conversion of proinsulin to insulin. N. Engl. J. Med. 311: 629–634, 1984.
 96. Gueriguian, J. L.. Insulins, Growth Hormone, and Recombinant DNA Technology. New York: Raven, 1981.
 97. Guest, P. C., E. M. Bailyes, and J. C. Hutton. Endoplasmic reticulum Ca2+ is important for the proteolytic processing and intracellular transport of proinsulin in the pancreatic β‐cell. Biochem. J. 323: 445–450, 1997.
 98. Guest, P. C., E. M. Bailyes, N. G. Rutherford, and J. C. Hutton. Insulin secretory granule biogenesis. Co‐ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem. J. 274: 73–78, 1991.
 99. Guest, P. C., M. Ravazzola, H. W. Davidson, L. Orci, and J. C. Hutton. Molecular heterogeneity and cellular localization of carboxypeptidase H in the islets of Langerhans. Endocrinology 129: 734–740, 1991.
 100. Guest, P. C., C. J. Rhodes, and J. C. Hutton. Regulation of the biosynthesis of insulin‐secretory‐granule proteins. Biochem. J. 257: 431–437, 1989.
 101. Gutfreund, H.. The molecular weight of insulin and its dependence upon pH, concentration and temperature. Biochem. J. 42: 544—548, 1948.
 102. Halban, P. A.. Structural domains and molecular lifestyles of insulin and its precursors in the pancreatic beta cell. Diabetologia 34: 767–778, 1991.
 103. Hales, C. N., C. D. Byrne, C. J. Petry, and N. J. Wareham. Measurement of insulin and proinsulin. Diabetes Rev. 4: 320–335, 1996.
 104. Hall, S. S.. Invisible Frontiers. New York: Atlantic Monthly Press, 1987.
 105. Haneda, M., S. J. Chan, S. C. M. Kwok, A. H. Rubenstein, and D. F. Steiner. Studies on mutant human insulin genes: identification and sequence analysis of a gene encoding SerB24 insulin. Proc. Natl. Acad. Sci. U.S.A. 80: 6366–6370, 1983.
 106. Haneda, M., K. S. Polonsky, R. M. Bergenstal, J. B. Jaspan, S. E. Shoelson, P. M. Blix, S. J. Chan, S. C. M. Kwok, W. B. Wishner, A. Zeidler, J. M. Olefsky, G. Freidenberg, H. S. Tager, D. F. Steiner, and A. H. Rubenstein. Familial hyper‐insulinemia due to a structurally abnormal insulin: definition of an emerging new clinical syndrome. N. Engl. J. Med. 310: 1288–1294, 1984.
 107. Hani, E. H., D. A. Stoffers, J.‐C. Chèvre, E. Durand, V. Stanojevic, C. Dina, J. F. Haberner, and P. Froguel. Defective mutations in the insulin promoter factor‐1 (IPF‐1) gene in late‐onset type 2 diabetes mellitus. J. Clin. Invest. 104: R41–R48, 1999.
 108. Hard, L.. The origin and differentiation of the alpha and beta cells in the pancreatic islets of the rat. Am. J. Anat. 75: 369, 1944.
 109. Harfenist, E. J., and L. C. Craig. Molecular weight of insulin. J. Am. Chem. Soc. 74: 3087–3089, 1952.
 110. Harper, M. E., A. Ullrich, and G. F. Saunders. Localization of the human insulin gene to the distal end of the short arm of chromosome 11. Proc. Natl. Acad. Sci. U.S.A. 78: 4458–4460, 1981.
 111. Hatsuzawa, K., M. Hosaka, T. Nakagawa, M. Nagase, A. Shoda, K. Murakami, and K. Nakayama. Structure and expression of mouse furin, yeast Kex2‐related protease. J. Biol. Chem. 265: 22075–22078, 1990.
 112. Hatsuzawa, K., M. Nagahama, S. Takahashi, K. Takada, K. Murakami, and K. Nakayama. Purification and characterization of furin, Kex2‐like processing endoprotease, produced in Chinese hamster ovary cells. J. Biol. Chem. 267: 16094–16099, 1992.
 113. Hobart, P. M., L. P. Shen, R. Crawford, R. L. Pictet, and W. J. Rutter. Comparison of the nucleic acid sequence of anglerfish and mammalian insulin mRNAs from cloned cDNAs. Science 210: 1360–1363, 1980.
 114. Hook, V. Y. H., A. V. Azaryan, S.‐R. Hwang, and N. Tezapsidis. Proteases and the emerging role of protease inhibitors in prohormone processing. FASEB J. 8: 1269–1278, 1994.
 115. Hosaka, M., M. Nagahama, W. S. Kim, T. Watanabe, K. Hatsuzawa, J. Ikemizu, K. Murakami, and K. Nakayama. Arg‐X‐Lys/Arg‐Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J. Biol. Chem. 266: 12127–12130, 1991.
 116. Howell, S. L.. Role of ATP in the intracellular translocation of proinsulin and insulin in the rat pancreatic B cell. Nature (New Biol.) 235: 85–86, 1972.
 117. Howell, S. L., M. Kostianovsky, and P. E. Lacy. Beta granule formation in isolated islets of Langerhans: a study by electron microscopic radioautography. J. Cell. Biol. 42: 695–705, 1969.
 118. Howell, S. L., M. Tyhurst, H. Duvefelt, A. Anderson, and C. Hellerstrom. Role of zinc and calcium in the formation and storage of insulin in the pancreatic β‐cell. Cell Tissue Res. 188: 107–118, 1978.
 119. Hua, Q. X., S. E. Shoelson, N. M. Kochoyan, and M. A. Weiss. Receptor binding redefined by a structural switch in a mutant human insulin. Nature 354: 238–241, 1991.
 120. Huang, X. F., and P. Arvan. Formation of the insulin‐containing secretory granule core occurs within immature β‐granules. J. Biol. Chem. 269: 20838–20844, 1994.
 121. Huang, X. F., and P. Arvan. Intracellular transport of proinsulin in pancreatic β‐cells. J. Biol. Chem. 270: 20417–20423, 1995.
 122. Humbel, R. E., H. R. Bosshard, and H. Zahn. Chemistry of insulin. In: Handbook of Physiology. Endocrinology. Endocrine Pancreas, edited by D. F. Steiner and N. Freinkel. Washington, DC: Am. Physiol. Soc., sect. 7, vol. I, 1972, p. 111–132.
 123. Ido, Y., A. Vindigni, K. Chang, L. Stramm, R. Chance, W. F. Health, R. D. DiMarchi, E. Di Cera, and J. R. Williamson. Prevention of vascular and neural dysfunction in diabetic rats by C‐peptide. Science 277: 563–566, 1997.
 124. Irminger, J. C., K. Meyer, and P. Halban. Proinsulin processing in the rat insulinoma cell line INS after overexpression of the endoproteases PC2 or PC3 by recombinant adenovirus. Biochem. J. 320: 11–15, 1996.
 125. Irminger, J. C., C. B. Verchere, K. Meyer, and P. A. Halban. Proinsulin targeting to the regulated pathway is not impaired in carboxypeptidase E‐deflcient Cpefat/Cpefatmice. J. Biol. Chem. 1997. 272: 27532–27534
 126. Itoh, Y., S. Tanaka, S. Takekoshi, J. Itoh, and R. Y. Osamura. Prohormone convertases (PC1/3 and PC2) in rat and human pancreas and islet cell tumors: subcellular immunohistochemical analysis. Pathol. Int. 46: 726–737, 1996.
 127. Jackson, R. S., J. W. M. Creemers, S. Ohagi, M. L. Raffin‐Sanson, L. Sanders, C. T. Montague, J. C. Hutton, and S. O'Rahilly. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 16: 303–306, 1997.
 128. Jensen, H., and E. A. Evans. Studies on crystalline insulin. XVIII. The nature of the free amino groups in insulin and the isolation of phenylalanine and proline from crystalline insulin. J. Biol. Chem. 108: 1–9, 1935.
 129. Jhoti, H., A. N. McLeod, T. L. Blundell, H. Ishizaki, H. Nagasawa, and A. Suzuki. Prothoracicotropic hormone has an insulin‐like tertiary structure. FEBS Lett. 219: 419–425, 1987.
 130. Johanning, K., M. A. Juliano, L. Juliano, C. Lazure, N. S. Lamango, D. F. Steiner, and I. Lindberg. Specificity of prohormone convertase 2 on proenkephalin and proenkephalin‐related substrates. J. Biol. Chem. 273: 22672–22680, 1998.
 131. Johansson, B. L., B. Linde, and J. Wahren. Effects of C‐peptide on blood flow, capillary diffusion capacity and glucose utilization in the exercising forearm of type 1 (insulin‐dependent) diabetic patients. Diabetologia 35: 1151–1158, 1992.
 132. Jolicoeur, C., D. Hanahan, and K. M. Smith. T‐cell tolerance toward a transgenic β‐cell antigen and transcription of endogenous pancreatic genes in thymus. Proc. Natl. Acad. Sci. U.S.A. 91: 6707–6711, 1994.
 133. Jones, B. G., L. Thomas, S. S. Molloy, C. D. Thulin, M. D. Fry, K. A. Walsh, and G. Thomas. Intracellular trafficking of furin is modulated by the phosphorylation state of a casein kinase II site in its cytoplasmic tail. EMBO J. 14: 5869–5883, 1995.
 134. Jonsson, J., L. Carlsson, T. Edlund, and H. Edlund. Insulin‐promoter‐factor 1 is required for pancreas development in mice. Nature 371: 606–609, 1994.
 135. Judah, J. D., M. Gamble, and J. H. Steadman. Biosynthesis of serum albumin in rat liver: evidence for the existence of “prealbumin.” Biochem. J. 134: 1083–1091, 1973.
 136. Julier, C., R. N. Hyer, J. Davies, F. Merlin, P. Soularue, L. Briant, G. Cathelineau, I. Deschamps, J. I. Rotter, P. Froguel, C. Boitard, G. I. Bell, and G. M. Lathrop. Insulin‐IGF2 region on chromosome 11p encodes a gene implicated in HLA‐DRA‐dependent diabetes susceptibility. Nature 354: 155–159, 1991.
 137. Julius, D., A. Brake, L. Blair, R. Kunisawa, and J. Thorner. Isolation of the putative structural gene for the lysine‐arginine‐cleavage endopeptidase required for processing of yeast prepro‐alpha‐factor. Cell 37: 1075–1078, 1984.
 138. Jung, L. J., and R. H. Scheller. Peptide processing and targeting in the neuronal secretory pathway. Science 251: 1330–1335, 1991.
 139. Kantanen, M. L., P. Leinikki, and E. Kuismanen. Endoproteolytic cleavage of HIV‐1 gp160 envelope precursor occurs after exit from the trans‐Golgi network (TGN). Arch. Virol. 140: 1441–1449, 1995.
 140. Katsoyannis, P. G., and A. Tometsko. Insulin synthesis by recombination of A and B chains: a highly efficient method. Proc. Natl. Acad. Sci. U.S.A. 55: 1554–1561, 1966.
 141. Kawakami, A., M. Iwami, H. Nagasawa, A. Suzuki, and H. Ishizaki. Structure and organization of four clustered genes that encode bombyxin, as insulin‐related brain secretory peptide of the silkmoth Bombyx mori. Proc. Natl. Acad. Sci. U.S.A. 86: 6843–6847, 1989.
 142. Kemmler, W., J. D. Peterson, and D. F. Steiner. Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and carboxypeptidase B. J. Biol. Chem. 246: 6786–6791, 1971.
 143. Kemmler, W., D. F. Steiner, and J. Borg. Studies on the conversation of proinsulin to insulin. III. Studies in vitro with a crude secretion granule fraction isolated from islets of Langerhans. J. Biol. Chem. 248: 4544–4551, 1973.
 144. Kiefer, M. C., J. E. Tucker, R. Joh, K. E. Landsberg, D. Saltman, and P. J. Barr. Identification of a second human subtilisin‐like protease gene in the fes/fps region of chromosome 15. DNA Cell Biol. 10: 757–769, 1991.
 145. Kline, A. D., and R. M. Justice. Complete sequence‐specific 1H NMR assignments for human insulin. Biochemistry 29: 2906–2913, 1990.
 146. Klostermeyer, H., and R. E. Humbel. The chemistry and biochemistry of insulin. Angew Chem. Int. Edit. 5: 807–822, 1966.
 147. Koman, A., S. Cazaubon, P.‐O. Couraud, A. Ulrich, and A. D. Strosberg. Molecular characterization and in vitro biological activity of placentin, a new member of the insulin gene family. J. Biol. Chem. 271: 20238–20241, 1996.
 148. Korner, J., J. Chun, L. O'Bryan, and R. Axel. Prohormone processing in Xenopus oocytes: characterization of cleavage signals and cleavage enzymes. Proc. Natl. Acad. Sci. U.S.A. 33: 11393–11397, 1991.
 149. Kuliawat, R., and P. Arvan. Protein targeting via the constitutive‐like secretory pathway in isolated pancreatic islets: passive sorting in the immature granule compartment. J. Cell Biol. 118: 521–529, 1992.
 150. Kuliawat, R., and P. Arvan. Distinct molecular mechanisms for protein sorting within immature secretory granules of pancreatic beta‐cells. J. Cell Biol. 126: 77–86, 1994.
 151. Kuliawat, R., J. Klumperman, T. Ludwig, and P. Arvan. Differential sorting of lysosomal enzymes out of the regulated secretory pathway in pancreatic beta‐cells. J. Cell Biol. 137: 595–608, 1997.
 152. Kung, Y. T., Y. C. Du, W. T. Huang, C. C. Chen, and L. T. Ke. Synthesis of insulin. Sci. Sin. 14: 1710, 1965.
 153. Kuzuya, J., R. E. Chance, D. F. Steiner, and A. H. Rubenstein. On the preparation and characterization of standard materials for natural human proinsulin and C‐peptide. Diabetes 27: 161–169, 1978.
 154. Kwok, S. C. M., S. J., Chan, and D. F. Steiner. Cloning and nucleotide sequence analysis of the dog insulin gene: coded amino acid sequence of canine preproinsulin predicts an additional C‐peptide fragment. J. Biol. Chem. 258: 2357–2363, 1983.
 155. Kwok, S. C. M., D. F. Steiner, A. H. Rubenstein, and H. S. Tager. Identification of a point mutation in the human insulin gene giving rise to a structurally abnormal insulin (insulin Chicago). Diabetes 32: 872–875, 1983.
 156. Lagueux, M., L. Lwoff, M. Meister, F. Goltzene, and J. A. Hoffmann. cDNAs from neurosecretory cells of brains of Locusta migratoria (Insecta, Orthoptera) encoding a novel member of the superfamily of insulins. Eur. J. Biochem. 187: 249–254, 1990.
 157. Lane, M. A.. The cytological character of the areas of Langerhans. Am. J. Anat. 7: 409–423, 1907.
 158. Lange, R. H., S. Boseck, and S. S. Ali. Cristallographische interpretation der feinstruktur der B‐granula in den Langerhansschen inseln der ringelnatter, Natrix n. natrix (L.). Z. Zellforsch. 131: 559–570, 1972.
 159. Langerhans, P.. Beiträge zur microkopischen Anatomie der Bauch‐speicheldrüse. Berlin: Lange, 1869, p. 32. Inaugural Dissertation.
 160. Lernmark, Å., S. J. Chan, R. Choy, A. Nathans, R. Carroll, H. S. Tager, A. H. Rubenstein, H. H. Swift, and D. F. Steiner. Biosynthesis of insulin and glucagon: a view of the current state of the art. In: Polypeptide Hormones: Molecular and Cellular Aspects, edited by CIBA Foundation. Amsterdam: Excerpta Med. 1976, p. 7–30.
 161. Li, K. W., R. M. Hoek, F. Smith, C. R. Jimenez, R. C. van der Schors, P. A. van Veelen, S. Chen, J. van der Greef, D. C. Paris, P. R. Benjamin, and W. P. M. Geraerts. Direct peptide profiling by mass spectrometry of single identified neurons reveals complex neuropeptide‐processing pattern. J. Biol. Chem. 269: 30288–30292, 1994.
 162. Linde, S., J. H. Nielsen, B. Hansen, and B. S. Welinder. Reversed‐phase high‐performance liquid chromatographic analyses of insulin biosynthesis in isolated rat and mouse islets. J. Chromatogr. 462: 243–254, 1989.
 163. Lodish, H. F.. Transport of secretory and membrane glycoproteins from the rough endoplasmic reticulum to the Golgi. J. Biol. Chem. 263: 2107–2110, 1988.
 164. Logothetopoulos, J., M. Kaneko, G. A. Wrenshall, and C. H. Best. Zinc, granulation, and extractable insulin of islet cells following hyperglycemia or prolonged treatment with insulin. In: The Structure and Metabolism of the Pancreatic Islets, edited by S. E. Brolin, B. Hellman, and H. Knutson. Oxford: Pergamon, 1964, vol. 3, p. 333–347. Wenner‐Gren Center Int. Symp. Ser.
 165. Lomedico, P. T., S. J. Chan, D. F. Steiner, and G. F. Saunders. Immunological and chemical characterization of bovine preproinsulin. J. Biol. Chem. 252: 7971–7978, 1977.
 166. Low, B. W., W. W. Fullerton, and L. S. Rosen. Insulin/proinsulin, a new crystalline complex. Nature 248: 339–340, 1974.
 167. Macfarlane, W. M., T. M. Frayling, S. Elland, J. C. Evans, L. I. Allen, M. P. Bulman, S. Ayres, M. Shepherd, P. Clark, A. Millward, A. Demaine, T. Wilkin, K. Docherty, and A. T. Hattersley. Missense mutations in the insulin promoter factor‐1 gene predispose to type 2 diabetes. J. Clin. Invest. 104: R33–R39, 1999.
 168. Macleod, J. J. R., and W. R. Campbell. Insulin: its use in the treatment of diabetes. In: Medicine Monographs, Baltimore: Williams & Wilkins, 1925, vol. VI, pt. I and II.
 169. Madsen, O. D., R. M. Cohen, F. W. Fitch, A. H. Rubenstein, and D. F. Steiner. Production and characterization of monoclonal antibodies specific for human proinsulin using a sensitive micro‐dot assay procedure. Endocrinology 113: 2135–2144, 1983.
 170. Madsen, O. D., B. H. Frank, and D. F. Steiner. Human proinsulin specific antigenic determinants identified by monoclonal antibodies. Diabetes 33: 1012–1016, 1984.
 171. Mains, R. E., I. M. Dickerson, V. May, D. A. Stoffers, S. N. Perkins, L. Ouafik, E. J. Huster, and B. A. Eipper. Cellular and molecular aspects of peptide hormone biosynthesis. Front. Neuroendocrinal 11: 52–89, 1990.
 172. Malide, D., N. G. Seidah, M. Chretién, and M. Bendayan. Electron microscopic immunocytoehemical evidence for the involvement of the convertases PC1 and PC2 in the processing of proinsulin in pancreatic β‐cells. J. Histochem. Cytochem. 43: 11–19, 1995.
 173. Man, Z.‐W., M. Zhu, Y. Noma, K. Toide, T. Sato, Y. Ashahi, T. Hirashima, S. Mori, K. Kawano, A. Mizuno, T. Sano, and K. Shima. Impaired β‐cell function and deposition of fat droplets in the pancreas as a consequence of hypertriglyceridemia in OLETF rat, a model of spontaneous NIDDM. Diabetes 46: 1718–1724, 1997.
 174. Markussen, J.. Proteolytic degradation of proinsulin and of the intermediate forms: application to synthesis and biosynthesis of insulin. In: Proinsulin, Insulin, C‐peptide, edited by S. Baba, T. Kaneko, and M. Yanaihara. Amsterdam: Excerpta Med., 1979, p. 50–61.
 175. Marshak, S., H. Totary, E. Cerasi, and D. Melloul. Purification of the β‐cell glucose‐sensitive factor that transactivates the insulin gene differentially in normal and transformed islet cells. Proc. Natl. Acad. Sci. U.S.A. 93: 15057–15062, 1996.
 176. Martens, G. J. M., J. A. M. Braks, D. W. Eib, Y. Zhou, and I. Lindberg. The neuroendocrine polypeptide 7B2 is an endogenous inhibitor of prohormone convertase PC2. Proc. Natl. Acad. Sci. U.S.A. 91: 5784–5787, 1994.
 177. Martin, S. K., R. Carroll, M. Benig, and D. F. Steiner. Regulation by glucose of the biosynthesis of PC2, PC3 and proinsulin in (ob/ob) mouse islets of Langerhans. FEBS Lett. 356: 339–341, 1994.
 178. Mbikay, M., M.‐L. Raffin‐Sanson, H. Tadros, F. Sirois, N. G. Seidah, and M. Chretién. Structure of the gene for the testis‐specific protein convertase 4 and of its alternate messenger RNA isoforms. Genomics 20: 231–237, 1994.
 179. McGwire, G. B., and R. A. Skidgel. Extracellular conversion of epidermal growth factor (EGF) to des‐Arg53‐EGF by carboxypeptidase M. J. Biol. Chem. 270: 17154–17158, 1995.
 180. Meerabux, J., M.‐L. Yaspo, A. J. Roebroek, W. J. M. Van de Ven, T. A. Lister, and B. D. Young. A new member of the proprotein convertase gene family (LPC) is located at a chromosome translocation breakpoint in lymphomas. Cancer Res. 56: 448–451, 1996.
 181. Meglasson, M. D., and F. M. Matschinksy. Pancreatic islet glucose metabolism and regulation of insulin secretion. Diabetes Metab. Rev. 2: 163–214, 1986.
 182. Michael, J., R. Carroll, H. Swift, and D. F. Steiner. Studies on the molecular organization of rat insulin secretory granules. J. Biol. Chem. 262: 16531–16535, 1987.
 183. Milewski, W. M., S. J. Duguay, S. J. Chan, and D. F. Steiner. Conservation of PDX‐1 structure, function and expression in zebrafish. Endocrinology 139: 1440–1449, 1998.
 184. Mizuno, K., T. Nakamura, T. Ohshima, S. Tanaka, and H. Matsuo. Yeast KEX2 gene encodes an endopeptidase homologous to subtilisin‐like serine proteases. Biochem. Biophys. Res. Commun. 156: 246–254, 1988.
 185. Mizuno, K., T. Nakamura, T. Ohshima, S. Tanaka, and H. Matsuo. Characterization of KEX2‐encoded endopeptidase from yeast Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 159: 305–311, 1989.
 186. Molloy, S. S., P. A. Bresnahan, S. I. Leppla, K. R. Klimpel, and G. Thomas. Human furin is a calcium‐dependent serine endoprotease that recognizes the sequence Arg‐X‐X‐arg and efficiently cleaves anthrax toxin protective antigen. J. Biol. Chem. 267: 16396–16402, 1992.
 187. Molloy, S. S., L. Thomas, J. K. Van Slyke, P. E. Stenberg, and G. Thomas. Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 13: 18–33, 1994.
 188. Mommsen, T. P., and E. M. Plisetskaya. Insulin in fishes and agnathans: history, structure, and metabolic regulation. Rev. Aquatic Sci. 4: 225, 1991.
 189. Muggeo, M., B. H. Ginsberg, J. Roth, D. M. Neville, Jr., P. DeMeyts, and C. R. Kahn. The insulin receptor in vertebrates is functionally more conserved during evolution than insulin itself. Endocrinology 104: 1393–1402, 1979.
 190. Muggeo, M., E. Van Obberghen, C. R. Kahn, B. H. Ginsberg, P. De Meyts, S. O. Emdin, and S. Falkmer. The insulin receptor and insulin of the Atlantic hagfish. Extraordinary conservation of binding specificity and negative cooperativity in the most primitive vertebrate. Diabetes 28: 175–181, 1979.
 191. Munger, B. L.. A light and electron microscopic study of cellular differentiation in the pancreatic islets of the mouse. Am. J. Anat. 103: 275, 1958.
 192. Munro, S., and H. R. B. Pelham. A C‐terminal signal prevents secretion of luminal ER proteins. Cell 48: 899–907, 1987.
 193. Murnaghan, J. H., and P. Talalay. John Jacob Abel and the crystallization of insulin. Perspect. Biol. Med. 10: 334–380, 1967.
 194. Nagamatsu, S., J. L. Bolaffi, and G. M. Grodsky. Direct effects of glucose on proinsulinsynthesis and processing during desensitization. Endocrinology 120: 1225–1231, 1987.
 195. Naggert, J. K., L. D. Fricker, O. Varlamov, P. M. Nishina, Y. Rouillé, D. F. Steiner, R. J. Carroll, B. J. Paigen, and E. H. Leiter. Hyperproinsulinemia in obese fat/fat mice is associated with a point mutation in the carboxypeptidase E gene and reduced carboxypeptidase activity in the pancreatic islets. Nat. Genet. 10: 135–142, 1995.
 196. Nakayama, K., W.‐S. Kim, S. Torij, M. Hosaka, T. Nakagawa, J. Ikemizu, T. Baba, and K. Murakami. Identification of the fourth member of the mammalian endoprotease family homologous to the yeast Kex2 protease. J. Biol. Chem. 267: 5897–5900, 1992.
 197. Nakayama, K., T. Watanabe, T. Nakagawa, W. S. Kim Nagahama, M. Hosaka, K. Hatsuzawa, K. Kondoh‐Hashiba, and K. Murakami. Consensus sequence for precursor processing at mono‐arginyl sites. J. Biol. Chem. 267: 16335–16340, 1992.
 198. Nanjo, K., T. Sanke, M. Miyano, K. Okai, R. Sowa, M. Kondo, S. Nishimura, K. Iwo, K. Miyamura, B. D. Given, S. J. Chan, D. F. Steiner, and A. H. Rubenstein. Diabetes due to secretion of a structurally abnormal insulin (insulin Wakayama): clinical and functional characteristics of [Leu A3] insulin. J. Clin. Invest. 77: 514–519, 1986.
 199. Nichol, D. S. H. W., and L. F. Smith. Amino‐acid sequence of human insulin. Nature 187: 483–485, 1960.
 200. Nielsen, D. A., M. Welsh, M. J. Casadaban, and D. F. Steiner. Control of insulin gene expression in pancreatic β‐cells and in an insulin‐producing cell line, RIN‐5F cells. I. Effects on the transcription of insulin mRNA. J. Biol. Chem. 260: 13585–13589, 1985.
 201. Nishi, M., T. Sanke, S. Nagamatsu, G. I. Bell, and D. F. Steiner. Islet amyloid polypeptide. A new beta cell secretory product related to islet amyloid depsosits. J. Biol. Chem. 265: 4173–4176, 1990.
 202. Nolan, C., E. Margoliash, J. D. Peterson, and D. F. Steiner. The structure of bovine proinsulin. J. Biol. Chem. 246: 2780–2795, 1971.
 203. Ohagi, S., J. LaMendola, M. M. LeBeau, R. Espinosa III, J. Takeda, S. P. Smeekens, S. J. Chan, and D. F. Steiner. Identification and analysis of the gene encoding human PC2, a prohormone convertase expressed in neuroendocrine tissues. Proc. Natl. Acad. Sci. U.S.A. 89: 4977–4981, 1992.
 204. Ohagi, S., H. Sakaguchi, T. Sanke, H. Tatsuta, T. Hanabusa, and K. Nanjo. Human prohormone convertase 3 gene: exon–intron organization and molecular scanning for mutations in Japanese subjects with NIDDM. Diabetes 45: 897–901, 1996.
 205. Olson, L. K., A. Sharma, M. Peshavaria, C. V. E. Wright, H. C. Towle, R. P. Robertson, and R. Stein. Reduction of insulin gene transcription in HIT‐T15 β cells chronically exposed to a supra‐physiologic glucose concentration is associated with loss of STF‐1 transcription factor expression. Proc. Natl. Acad. Sci. U.S.A. 92: 9127–9131, 1995.
 206. O'Rahilly, S., H. Gray, P. J. Humphreys, A. Krook, K. S. Polonsky, A. White, S. Gibson, K. Taylor, and C. Carr. Impaired processing of prohormones associated with abnormalities of glucose homeostasis and adrenal function. N. Engl. J. Med. 333: 1386–1390, 1995.
 207. Orci, L.. The insulin factory: a tour of the plant surroundings and a visit to the assembly line. Diabetologia 28: 528–546, 1985.
 208. Orci, L., P. Halban, A. Perrelet, M. Amherdt, M. Ravazzola, and R. G. Anderson. pH‐independent and‐dependent cleavage of proinsulin in the same secretory vesicle. J. Cell Biol. 126: 1149–1156, 1994.
 209. Orci, L., A. E. Lambert, Y. Kanazawa, M. Amherdt, C. Rouiller, and A. E. Renold. Morphological and biochemical studies of B cells in fetal rat endocrine pancreas in organ culture. Evidence for proinsulin biosynthesis. J. Cell Biol. 50: 565–582, 1971.
 210. Orci, L., M. Ravazzola, M. Amherdt, O. Madsen, A. Perrelet, J. D. Vassalli, and R. G. Anderson. Conversion of proinsulin to insulin occurs coordinately with acidification of maturing secretory vesicles. J. Cell Biol. 103: 2273–2281, 1986.
 211. Orci, L., M. Ravazzola, M. Amherdt, O. Madsen, J. D. Vassalli, and A. Perrelet. Direct identification of prohormone conversion site in insulin‐secreting cells. Cell 42: 671–681, 1985.
 212. Orci, L., M. Stamnes, M. Ravazzola, M. Amherdt, A. Perrelet, T. H. Sollner, and J. E. Rothman. Bidirectional transport by distinct populations of COPI‐coated vesicles. Cell 90: 335–349, 1997.
 213. Orland, M. J., R. Chyn, and M. A. Permutt. Modulation of proinsulin messenger RNA after partial pancreatectomy in rats: relationships to glucose homeostasis. J. Clin. Invest. 75: 2047–2055, 1985.
 214. Ostrega, D., K. Polonsky, D. Nagi, J. Yudkin, L. J. Cox, P. M. S. Clark, and C. H. Hales. Measurement of proinsulin and intermediates. Validation of immunoassay methods by high‐performance liquid chromatography. Diabetes 44: 437–440, 1995.
 215. Owerbach, D., G. I. Bell, W. J. Rutter, J. A. Brown, and T. B. Shows. The insulin gene is located on the short arm of chromosome 11 in humans. Diabetes 30: 267–270, 1981.
 216. Oyer, P. E., E. Cho, J. D. Peterson, and D. F. Steiner. Studies on human proinsulin. Isolation and amino acid sequence of the human pancreatic C‐peptide. J. Biol. Chem. 246: 1375–1386, 1971.
 217. Pashmforoush, M., S. J. Chan, and D. F. Steiner. Structure and expression of the insulin‐like peptide receptor from amphioxus. Mol. Endocrinol. 10: 857–866, 1996.
 218. Paterson, R. G., M. A. Shaughnessy, and R. A. Lamb. Analysis of the relationship between cleavability of a paramyxovirus fusion protein and length of the connecting peptide. J. Virol. 63: 1293–1301, 1989.
 219. Patzelt, C., A. D. Labrecque, J. R. Duguid, R. J. Carroll, P. S. Keim, R. L. Heinrikson, and D. F. Steiner. Detection and kinetic behavior of preproinsulin in pancreatic islets. Proc. Natl. Acad. Sci. U.S.A. 75: 1260–1264, 1978.
 220. Permutt, M. A., and D. M. Kipnis. Insulin biosynthesis: studies of islet polyribosomes. Proc. Natl. Acad. Sci. U.S.A. 69: 505–509, 1972.
 221. Peterson, J. D., D. F. Steiner, S. O. Emdin, and S. Falkmer. The amino acid sequence of the insulin from a primitive vertebrate, the Atlantic hagfish (Myxine glutinosa). J. Biol. Chem. 250: 5183–5191, 1975.
 222. Philippe, J.. Structure and pancreatic expression of the insulin and glucagon genes. Endocr. Rev. 12: 252–271, 1991.
 223. Pittman IV, I., and H. S. Tager. A spectroscopic investigation of the conformational dynamics of insulin in solution. Biochemistry 34: 10578–10590, 1995.
 224. Poulsen, J. E., and T. Deckert. Insulin preparations and the clinical use of insulin. In: Insulin: Islet Pathology‐Islet Function‐Insulin Treatment, edited by R. Luft. Mölndal, Sweden: Lindgren & Soner, 1976, p. 197.
 225. Powell, S. K., L. Orci, C. S. Craik, and H.‐P. H. Moore. Efficient targeting to storage granules of human proinsulins with altered propeptide domain. J. Cell Biol. 106: 1843–1851, 1988.
 226. Prentki, M., and F. M. Matschinsky. Ca2+, cAMP, and phospholipid‐derived messengers in coupling mechanisms of insulin secertion. Physiol. Rev. 67: 1185–1248, 1987.
 227. Pugliese, A., M. Zeller, A. Fernandez, Jr., L. J. Zalcberg, R. J. Bartlett, C. Ricordi, M. Pietropaolo, G. S. Eisenbarth, S. T. Bennett, and D. D. Patel. The insulin gene is transcribed in the human thymus and transcription levels correlated with allelic variation at the INS VNTR‐IDDM2 susceptibility locus for type 1 diabetes. Nat. Genet. 15: 293–297, 1997.
 228. Qian, F., S. J. Chan, A. Frankfater, and D. F. Steiner. The structure of the mouse cathepsin B gene and its putative promoter. DNA Cell Biol. 19: 159–168, 1991.
 229. Quinn, D., L. Orci, M. Ravazzola, and H.‐P. H. Moore. Intracellular transport and sorting of mutant human proinsulins that fail to form hexamers. J. Cell Biol. 113: 987–996, 1991.
 230. Rehemtulla, A., A. J. Dorner, and R. J. Kaufman. Regulation of PACE propeptide‐processing activity: requirement for a post‐endoplasmic reticulum compartment and autoproteolytic activation. Proc. Natl. Acad. Sci. U.S.A. 89: 8235–8239, 1992.
 231. Rehemtulla, A., and R. J. Kaufman. Preferred sequence requirements for cleavage of pro‐von Willebrand factor by propeptide‐processing enzymes. Blood 79: 2349–2355, 1992.
 232. Rhodes, C. J., and P. A. Halban. The intracellular handling of insulin‐related peptides in isolated pancreatic islets. Biochem. J. 251: 23–30, 1988.
 233. Rhodes, C. J., B. Lincoln, and S. E. Shoelson. Preferential cleavage of des‐31, 32‐proinsulin over intact proinsulin by the insulin secretory granule type II endopeptidase. J. Biol. Chem. 267: 22719–22727, 1992.
 234. Robbins, D. C., P. M. Blix, A. H. Rubenstein, Y. Kanazawa, K. Kosaka, and H. S. Tager. A human proinsulin variant at arginine 65. Nature 291: 679–681, 1981.
 235. Robbins, D. C., S. E. Shoelson, A. H. Rubenstein, and H. S. Tager. Familial hyper‐proinsulinemia: two cohorts secreting indistinguishable type II intermediates of proinsulin conversion. J. Clin. Invest. 73: 714–719, 1984.
 236. Roebroek, A. J. M., J. A. Schalken, J. A. M. Leunissen, C. Onnekink, H. P. Bloemers, and W. J. Van de Ven. Evolutionarily conserved close linkage of the c‐fes/fps proto‐oncogene and genetic sequences encoding a receptor‐like protein. EMBO J. 5: 2197–2202, 1986.
 237. Rouillé, Y., M. Bianchi, J.‐C. Irminger, and P. A. Halban. Role of the prohormone convertase PC2 in the processing of proglucagon to glucagon. FEBS Lett. 413: 119–123, 1997.
 238. Rouillé, Y., S. J. Duguay, K. Lund, M. Furuta, Q. Gong, G. Lipkind, A. A. Oliva, Jr., S. J. Chan, and D. F. Steiner. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: the subtilisin‐like proprotein convertases. Front. Neuroendocrinal. 16: 322–361, 1995.
 239. Rouillé, Y., S. Martin, and D. F. Steiner. Differential processing of proglucagon by the subtilisin‐like prohormone convertases PC2 and PC3 to generate either glucagon or glucagon‐like peptide. J. Biol. Chem. 270: 26488–26496, 1995.
 240. Rouillé, Y., G. Westermark, S. K. Martin, and D. F. Steiner. Proglucagon is processed to glucagon by prohormone convertase PC2 in alpha TC1–6 cells. Proc. Natl. Acad. Sci. U.S.A. 91: 3242–3246, 1994.
 241. Rovere, C., A. Viale, J.‐L. Nahon, and P. Kitabgi. Impaired processing of brain proneurotensin and promelanin‐concentrating hormone in obese fat/fat mice. Endocrinology 137: 2954–2958, 1996.
 242. Rubenstein, A. H., J. L. Clark, F. Melani, and D. F. Steiner. Secretion of proinsulin C‐peptide by pancreatic B cells and its circulation in blood. Nature 224: 697–699, 1969.
 243. Rubenstein, A. H., M. Mako, W. P. Welbourne, F. Melani, and D. F. Steiner. Comparative immunology of bovine, porcine, and human proinsulin and C‐peptides. Diabetes 19: 546–553, 1970.
 244. Rubenstein, A. H., F. Melani, S. Pilkis, and D. F. Steiner. Proinsulin: secretion, metabolism, immunological and biological properties. Postgrad. Med. J. 45 (Suppl.): 476–481, 1969.
 245. Rubenstein, A. H., D. F. Steiner, and D. F. Horwitz. Clinical significance of circulating proinsulin and C‐peptide. Recent Prog. Horm. Res. 33: 435–475, 1977.
 246. Sanders, S. L., and R. Schekman. Polypeptide translocation across the endoplasmic reticulum membrane. J. Biol. Chem. 267: 13791–13794, 1992.
 247. Sando, H., J. Borg, and D. F. Steiner. Studies on the secretion of newly synthesized proinsulin and insulin from isolated rat islets of Langerhans. J. Clin. Invest. 51: 1476–1485, 1972.
 248. Sanger, F.. Chemistry of insulin. Science 129: 1340–1344, 1959.
 249. Schäfer, E. A.. An introduction to the study of internal secretion. In: The Endocrine Organs. London: Longmans, Green, 1916.
 250. Schäfer, L.. A model for insulin binding to the insulin receptor. Eur. J. Biochem. 221: 1127–1132, 1994.
 251. Schäfer, W., A. Stroh, S. Berghöfer, J. Seiler, M. Vey, M. L. Kruse, H. F. Kern, H. D. Klenk, and W. Garten. Two independent targeting signals in cytoplasmic domain determine trans‐Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBO J. 14: 2424–2435, 1995.
 252. Schatz, H., C. Nierle, and E. F. Pfeiffer. (Pro‐)insulin biosynthesis and release of newly synthesized (pro‐)insulin from isolated islets of rat pancreas in the presence of amino acids and sulfonylureas. Eur. J. Clin. Invest. 5: 477–485, 1975.
 253. Schekman, R., and L. Orci. Coat proteins and vesicle budding. Science 271: 1526–1533, 1996.
 254. Schwartz, T. W.. The processing of precursors. FEBS Lett. 200: 1–10, 1986.
 255. Scopsi, L., M. Gullo, F. Rilke, S. Martin, and D. F. Steiner. Proprotein convertases (PC1/PC3 and PC2) in normal and neoplastic human tissues: their use as markers of neuroendocrine differentiation. J. Clin. Endocrinol. Metab. 80: 294–301, 1995.
 256. Scott, E. L.. On the influence of intravenous injections of an extract of the pancreas on experimental pancreatic diabetes. Am. J. Physiol. 29: 306, 1912.
 257. Seidah, N. G., L. Gaspar, P. Mion, M. Marcinkiewicz, M. Mbikay, and M. Chretién. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue‐specific mRNAs encoding candidates for prohormone processing proteinases. DNA Cell Biol. 9: 415–424, 1990.
 258. Seidah, N. G., J. Hamelin, M. Mamarbachi, W. Dong, H. Tardos, M. Mbikay, M. Chretién, and R. Day. cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin‐like proteinases. Proc. Natl. Acad. Sci. U.S.A. 93: 3388–3393, 1996.
 259. Seidah, N. G., M. Marcinkiewicz, S. Benjannet, L. Gaspar, G. Beaubien, M. G. Mattei, C. Lazure, M. Mbikay, and M. Chretién. Cloning and primary sequence of a mouse candidate prohormone convertase PC1 homologous to PC2, furin, and kex2: distinct chromosomal localization and messenger RNA distribution in brain and pituitary compared to PC2. Mol. Endocrinol. 5: 111–122, 1990.
 260. Seino, S., D. F. Steiner, and G. I. Bell. Sequence of a new world primate insulin having low biological potency and immunoreactivity. Proc. Natl. Acad. Sci. U.S.A. 84: 7423–7427, 1987.
 261. Shalwitz, R. A., T. Herbst, L. R. Carnaghi, and S. J. Giddings. Time course for effects of hypoglycemia on insulin gene transcription in vivo. Diabetes 43: 929–934, 1994.
 262. Shen, F.‐S., and Y. P. Loh. Intracellular misrouting and abnormal secretion of adrenocorticotropin and growth hormone in Cpefat mice associated with a carboxypeptida.se E mutation. Proc. Natl. Acad. Sci. U.S.A. 94: 5314–5319, 1997.
 263. Shennan, K. I. J., A. J. Seal, S. P. Smeekens, D. F. Steiner, and K. Docherty. Site‐directed mutagenesis and expression of PC2 in microinjected Xenopus oocytes. J. Biol. Chem. 266: 24011–24017, 1991.
 264. Shennan, K. I. J., S. P. Smeekens, D. F. Steiner, and K. Docherty. Characterization of PC2, a mammalian Kex2 homologue, following expression of the cDNA in microinjected Xenopus oocytes. FEBS Lett. 284: 277–280, 1991.
 265. Shibasaki, Y., T. Kawakami, Y. Kanazawa, A. H. Rubenstein, and F. Takaku. Posttranslational cleavage of proinsulin is blocked by a point mutation in familial hyperproinsulinemia. J. Clin. Invest. 76: 378–380, 1985.
 266. Shoelson, S., M. Fickova, M. Haneda, A. Nahum, G. Musso, E. T. Kaiser, A. H. Rubenstein, and H. Tager. Identification of a mutant human insulin predicted to contain a serine‐for‐phenylalanine substitution. Proc. Natl. Acad. Sci. U.S.A. 80: 7390–7394, 1983.
 267. Shoelson, S., M. Haneda, P. Blix, A. Nanjo, T. Sanke, K. Inouye, D. Steiner, A. Rubenstein, and H. Tager. Three mutant insulins in man. Nature 302: 540–543, 1983.
 268. Shoelson, S. E., K. S. Polonsky, A. Zeidler, A. H. Rubenstein, and H. S. Tager. Human insulin B24 (Phe→Ser): secretion and metabolic clearance of the abnormal insulin in man and in a dog model. J. Clin. Invest. 73: 1351–1358, 1984.
 269. Shuldiner, A. R., S. Phillips, C. T. Roberts, Jr., D. LeRoith, and J. Roth. Xenopus laevis contains two nonallelic preproinsulin genes. cDNA cloning and evolutionary perspective. J. Biol. Chem. 264: 9428–9432, 1989.
 270. Sizonenko, S. V., and P. A. Halban. Differential rates of conversion of rat proinsulin I and II. Evidence for slow cleavage at the B‐chain/C‐peptide junction of proinsulin II. Biochem. J. 278: 621–625, 1991.
 271. Sizonenko, S., J.‐C. Irminger, L. Buhler, S. Deng, P. Morel, and P. A. Halban. Kinetics of proinsulin conversion in human islets. Diabetes 42: 933–936, 1993.
 272. Smeekens, S. P., C. Albiges‐Rizo, R. Carroll, et al. Proinsulin processing by the subtilisin‐related proprotein convertases furin, PC2 and PC3. Proc. Natl. Acad. Sci. U.S.A. 89: 8822–8826, 1992.
 273. Smeekens, S. P., A. S. Avruch, J. LaMendola, S. J. Chan, and D. F. Steiner. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc. Natl. Acad. Sci. U.S.A. 88: 340–344, 1991.
 274. Smeekens, S. P., and D. F. Steiner. Identification of a human insulinoma cDNA encoding a novel mammalian protein structurally related to the yeast diabasic processing protease Kex2. J. Biol. Chem. 265: 2997–3000, 1990.
 275. Smit, A. B., W. P. M. Geraerts, I. Meester, H. van Heerikhuizen, and J. Joose. Characterization of a cDNA clone encoding molluscan insulin‐related peptide II of Lymnaea stagnalis. Eur. J. Biochem. 199: 699–703, 1991.
 276. Smith, L. F.. Amino acid sequences of insulins. Diabetes 21 (Suppl. 2): 457–460, 1972.
 277. Sobey, W. J., S. F. Beer, C. A. Carrington, P. M. S. Clark, B. H. Frank, I. P. Gray, S. D. Luzio, D. R. Owens, A. E. Schneider, K. Siddle, R. C. Temple, and C. N. Hales. Sensitive and specific two‐site immunoradiometric assays for human insulin, proinsulin, 65–66 split and 32–33 split proinsulins. Biochem. J. 260: 535–541, 1989.
 278. Song, L., and L. D. Fricker. Tissue distribution and characterization of soluble and membrane‐bound forms of metallocarboxypeptidase D. J. Biol. Chem. 271: 28884–28889, 1996.
 279. Song, L., and L. D. Fricker. Cloning and expression of human carboxypeptidase Z, a novel metallocarboxypeptidase. J. Biol. Chem. 272: 10543–10550, 1997.
 280. Spaete, R. R., A. Saxena, P. I. Scott, G. J. Song, W. S. Probert, W. J. Britt, W. Gibson, L. Rasmussen, and C. Pachl. Sequence requirements for proteolytic processing of glycoprotein B of human cytomegalovirus strain towne. J. Virol. 64: 2922–2931, 1990.
 281. Steiner, D. F.. Evidence for a precursor in the biosynthesis of insulin. Ann. N.Y. Acad. Sci. 30: 60–68, 1967.
 282. Steiner, D. F.. Cocrystallization of proinsulin and insulin. Nature 243: 528–530, 1973.
 283. Steiner, D. F.. Amino acid sequences of protein‐hormones. In: Handbook of Biochemistry and Molecular Biology. Proteins, edited by G. D. Fasman. Boca Raton, FL: CRC, 1976, vol. III, p. 378–81.
 284. Steiner, D. F.. Insulin today. Diabetes 26: 322–340, 1976.
 285. Steiner, D. F.. The biosynthesis of insulin: genetic, evolutionary and pathophysiologic aspects. The Harvey Lectures, edited by E. C. Gotshlich. New York: Academic, 1984, p. 191–228. (Ser. 78.)
 286. Steiner, D. F., G. I. Bell, and H. S. Tager. Chemistry and biosynthesis of pancreatic protein hormones. In: Endocrinology, edited by L. DeGroot. Philadelphia: Saunders, 1995, chapt. 76, p. 1296–1328.
 287. Steiner, D. F., S. J. Chan, J. M. Welsh, and S. C. M. Kwok. Structure and evolution of the insulin gene. Annu. Rev. Genet. 19: 463–484, 1985.
 288. Steiner, D. F., S. J. Chan, J. M. Welsh, D. Nielsen, J. Michael, H. S. Tager, and A. H. Rubenstein. Models or peptide biosynthesis—the molecular and cellular basis of insulin production. Clin. Invest. Med. 9: 328–336, 1986.
 289. Steiner, D. F., S. Cho, P. E. Oyer, S. Terris, J. D. Peterson, and A. H. Rubenstein. Isolation and characterization of proinsulin C‐peptide from bovine pancreas. J. Biol. Chem. 246: 1365–1374, 1971.
 290. Steiner, D. F., and J. L. Clark. The spontaneous reoxidation of reduced beef and rat proinsulins. Proc. Natl. Acad. Sci. U.S.A. 60: 622–629, 1968.
 291. Steiner, D. F., J. L. Clark, C. Nolan, A. H. Rubenstein, E. Margoliash, B. Aten, and P. E. Oyer. Proinsulin and the biosynthesis of insulin. Recent. Prog. Horm. Res. 25: 207–292, 1969.
 292. Steiner, D. F., J. L. Clark, C. Nolan, A. H. Rubenstein, E. Margoliash, F. Melani, and P. E. Oyer. The biosynthesis of insulin and some speculation regarding the pathogenesis of human diabetes. In: The Pathogenesis of Diabetes Mellitus, edited by E. Cerasi and R. Luft. New York: Wiley, 1970, p. 57–80.
 293. Steiner, D. F., D. D. Cunningham, L. Spigelman, and B. Aten. Insulin biosvnthesis: evidence for a precursor. Science 157: 697–700, 1967.
 294. Steiner, D. F., O. Hallund, A. H. Rubenstein, S. Cho, and S. Bayliss. Isolation and properties of proinsulin, intermediate forms, and other minor components from crystalline bovine insulin. Diabetes 17: 725–736, 1968.
 295. Steiner, D. F., W. Kemmler, J. L. Clark, P. E. Oyer, and A. H. Rubenstein. The biosynthesis of insulin. In: Handbook of Physiology. Endocrinology. Endocrine Pancreas, edited by D. F. Steiner and N. Freinkel. Washington, DC: Am. Physiol. Soc. 1972, sect. 7, vol. I, p. 175–198.
 296. Steiner, D. F., W. Kemmler, H. S. Tager, and A. H. Rubenstein, Å. Lernmark, and H. Zühlke. Proteolytic mechanisms in the biosynthesis of polypeptide hormones. In: Proteases and Biological Control, edited by D. B. Rifkin E. Shaw E. Reich, et al. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory, 1975, p. 531.
 297. Steiner, D. F., and P. E. Oyer. The biosynthesis of insulin and a probable precursor of insulin by a human islet cell adenoma. Proc. Natl. Acad. Sci. U.S.A. 57: 473–480, 1967.
 298. Steiner, D. F., P. S. Quinn, S. J. Chan, J. Marsh, and H. S. Tager. Processing mechanisms in the biosynthesis of proteins. Ann. N.Y. Acad. Sci. 343: 1–16, 1980.
 299. Steiner, D. F., and A. H. Rubenstein. Proinsulin C‐peptide—biological activity? Science 277: 531–532, 1997.
 300. Steiner, D. F., S. P. Smeekens, S. Ohagi, and S. J. Chan. The new enzymology of precursor processing endoproteases. J. Biol. Chem. 267: 23435–23438, 1992.
 301. Steiner, D. F., H. S. Tager, K. Nanjo, S. J. Chan, and A. H. Rubenstein. Familial syndromes of hyperproinsulinemia and hyperinsulinemia with mild diabetes. In: The Metabolic Basis of Inherited Disease (7th ed.). New York: McGraw‐Hill, 1995, vol. 1, p. 897–904.
 302. Stieneke‐Grober, A., M. Vey, H. Angliker, E. Shaw, G. Thomas, C. Roberts, H. D. Klenk, and W. Garten. Influenza virus hemagglutinin with multibasic cleavage site is activated by furin, a subtilisin‐like endoprotease. EMBO J. 11: 2407–2414, 1992.
 303. Storch, M.‐J., T. Licht, K.‐G. Peterson, R. Obermeier, and L. Kerp. Specificity of monoclonal anti‐human insulin antibodies. Diabetes 36: 1005–1009, 1987.
 304. Swenne, I.. The role of glucose in the in vitro regulation of cell cycle kinetics and proliferation of fetal pancreatic B‐cells. Diabetes 31: 754–760, 1982.
 305. Tager, H. S., S. O. Emdin, J. L. Clark, and D. F. Steiner. Studies on the conversion of proinsulin to insulin. II. Evidence for a chymotrypsin‐like cleavage in the connecting peptide region of insulin precursors in the rat. J. Biol Chem. 248: 3476–3482, 1973.
 306. Tager, H., B. Given, D. Baldwin, M. Mako, J. Markese, A. Rubenstein, J. Olefsky, M. Kobayashi, O. Kolterman, and R. Poucher. A structurally abnormal insulin causing human diabetes. Nature 281: 122–125, 1979.
 307. Takahashi, S., T. Nakagawa, T. Banno, T. Watanabe, K. Murakami, and K. Nakayama. Localization of furin to the trans‐Golgi network and recycling from the cell surface involves Ser and Tyr residues within the cytoplasmic domain. J. Biol. Chem. 270: 28397–28401, 1995.
 308. Tanaka, S., S. Kurabuchi, H. Mochida, T. Kato, S. Takahashi, T. Watanabe, and K. Nakayama. Immunocytochemical localization of prohormone convertases PC1/PC3 and PC2 in rat pancreatic islets. Arch. Histol. Cytol. 59: 261–271, 1996.
 309. Taylor, N. A., and K. Docherty. Sequence requirements for processing of proinsulin transfected mouse pituitary AtT20 cells. Biochem. J. 286: 619–622, 1992.
 310. Taylor, S. I., A. Cama, and D. Accili. Mutations in the insulin receptor gene. Endocr. Rev. 13: 566–595, 1992.
 311. Terris, S., C. Hofmann, and D. F. Steiner. Mode of uptake and degradation of 125I‐labelled insulin by isolated hepatocytes and H4 hepatoma cells. Can. J. Biochem. 57: 459–468, 1979.
 312. Terris, S., and D. F. Steiner. Binding and degradation of 125I‐insulin by rat hepatocytes. J. Biol. Chem. 250: 8389–8398, 1975.
 313. Terris, S., and D. F. Steiner. Retention and degradation of 125I‐insulin by perfused rat livers. J. Clin. Invest. 57: 885–896, 1976.
 314. Thiele, C. S., H.‐H. Gerdes, and W. B. Huttner. Protein secretion: puzzling receptors. Curr. Biol. 7: R497–R500, 1997.
 315. Thim, L., M. T. Hansen, and K. Norris. Secretion and processing of insulin precursors in yeast. Proc. Natl. Acad. Sci. U.S.A. 83: 6766–6770, 1986.
 316. Thomas, G., B. A. Thorne, L. Thomas, R. G. Allen, D. E. Hruby, R. Fuller, and J. Thorner. Yeast KEX2 endopeptidase correctly cleaves a neuroendocrine prohormone in mammalian cells. Science 241: 226–230, 1988.
 317. Thomas, L., R. Leduc, B. A. Thorne, S. P. Smeekens, D. F. Steiner, and G. Thomas. Kex2‐like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: evidence for a common core of neuroendocrine processing enzymes. Proc. Natl. Acad. Sci. U.S.A. 88: 5297–5301, 1991.
 318. Thorne, B. A., O. H. Viveros, and G. Thomas. Expression of mouse proopiomelanocortin in bovine adrenal chromaffin cells. J. Biol. Chem. 266: 13607–13615, 1991.
 319. Tsuji, A., C. Hine, Y. Tamai, K. Yonemoto, K. Mori, S. Yoshida, M. Bando, E. Sakai, K. Mori, T. Akamatsu, and Y. Matsuda. Genomic organization and alternative splicing of human PACE4 (SPC4), kexin‐like processing endoprotease. J. Biochem. 122: 438–452, 1997.
 320. Udupi, V., P. Gomez, L. Song, O. Varlamov, J. T. Reed, E. H. Leiter, L. D. Fricker, and G. H. Greeley, Jr.. Effect of carboxypeptidase E deficiency on progastrin processing and gastrin messenger ribonucleic acid expression in mice with the fat mutation. Endocrinology 138: 1959–1963, 1997.
 321. Ullrich, A., J. Shine, J. Chirgwin, R. Pictet, E. Tischer, W. J. Rutter, and H. M. Goodman. Rat insulin genes: construction of plasmids containing the coding sequences. Science 196: 1313–1319, 1977.
 322. Valverde, I., P. Garcia‐Morales, M. Ghiglione, and W. J. Malaisse. The stimulus–secretion coupling of glucose‐induced insulin release LIII. Calcium dependency of the cyclic AMP response to nutrient secretagogues. Horm. Metab. Res. 15: 62–68, 1983.
 323. Van den Ouweland, A. M. W., J. L. P. van Duijnhoven, G. D. Keizer, L. C. J. Dorssers, and W. J. M. Van de Ven. Structural homology between the human fur gene product and the subtilisin‐like protease encoded by yeast KEX2. Nucleic Acids Res. 18: 664, 1990.
 324. Van de Ven, W. J. M., J. Voorberg, R. Fontijan, H. Pannekoek, A. M. van den Ouweland, H. L. van Duijnhoven, A. J. Roebroek, and R. J. Siezen. Furin is a subtilisin‐like proprotein processing enzyme in higher eukaryotes. Mol. Biol. Rep. 14: 265–275, 1990.
 325. Verchere, C. B., M. Paoletta, M. Neerman‐Arbez, K. Rose, J. C. Irminger, R. L. Gingerich, S. E. Kahn, and P. A. Halban. Des‐(27–31) C‐peptide. A novel secretory product of the rat pancreatic beta cell produced by truncation of proinsulin connecting peptide in secretory granules. J. Biol. Chem. 271: 27475–27481, 1996.
 326. Vigh, G., Z. Varga‐Puchony, J. Hlavay, and E. Papp‐Hites. Factors influencing the retention of insulins in reversed‐phase high‐performance liquid chromatographic systems. J. Chromatogr. 236: 51, 1982.
 327. Von Mering, J., and O. Minkowski. Diabetes mellitus nach pankreas extirpation. Arch. Exp. Pathol. Pharmacol. (Leipzig) 26: 371, 1890.
 328. Wahren, J., B.‐L. Johansson, and H. Wallberg‐Henriksson. Does C‐peptide have a physiological role? Diabetologia 37 (Suppl. 2): S99–S107, 1994.
 329. Warnotte, C., P. Gilon, M. Nequin, and J.‐C. Henquin. Mechanisms of the stimulation of insulin release by saturated fatty acids. A study of palmitate effect in mouse β‐cells. Diabetes 43: 703–711, 1994.
 330. Watanabe, T., T. Nakagawa, J. Ikemizu, M. Nagahama, K. Murakami, and K. Nakayama. Sequence requirements for precursor cleavage within the constitutive secretory pathway. J. Biol. Chem. 267: 8270–8274, 1992.
 331. Weiss, M. A., B. H. Frank, I. Khait, A. Pekar, R. Heiney, S. E. Shoelson, and L. J. Neuringer. NMR and photo‐CIDNP studies of human proinsulin and prohormone processing intermediates with application to endopeptidase recognition. Biochemistry 29: 8389–8401, 1990.
 332. Wells, J. A., B. C. Cunningham, T. P. Graycar, and D. A. Estell. Importance of hydrogen‐bond formation in stabilizing the transition state of subtilisin. Philas. Trans. R. Soc. Lond. B Biol Sci. 317: 415, 1986.
 333. Welsh, M., R. E. Hammer, R. L. Brinster, and D. F. Steiner. Stimulation of growth hormone synthesis by glucose in islets of Langerhans isolated from transgenic mice. J. Biol. Chem. 261: 12915–12917, 1986.
 334. Welsh, M., D. A. Nielsen, A. J. MacKrell, and D. F. Steiner. Control of insulin gene expression in pancreatic β‐cells and in an insulin‐producing cell line, RIN‐5F cells II. Regulation of insulin mRNA stability. J. Biol. Chem. 260: 13590–13594, 1985.
 335. Welsh, M., N. Scherberg, R. Gilmore, and D. F. Steiner. Translational control of insulin biosynthesis: evidence for regulation of elongation, initiation and signal recognition particle‐mediated translational arrest by glucose. Biochem. J. 235: 459–467, 1985.
 336. Westphal, C., L. Muller, A. Zhou, X. Zhu, S. Ronner‐Weir, D. Steiner, I. Lindberg, and P. Leder. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell 96: 689–700, 1999.
 337. Wilcox, C. A., and R. S. Fuller. Posttranslational processing of the prohormone‐cleaving Kex2 protease in the Saccharomyces cerevisiae secretory pathway. J. Cell Biol. 115: 297–307, 1991.
 338. Wise, R. J., P. J. Barr, P. A. Wong, M. C. Kiefer, A. J. Brake, and R. J. Kaufman. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc. Natl. Acad. Sci. U.S.A 87: 9378–9382, 1990.
 339. Yamaji, K., K. Tada, and A. C. Trakatellis. On the biosynthesis of insulin in anglerfish islets. J. Biol. Chem. 247: 4080–4088, 1972.
 340. Yano, H., N. Kitano, M. Morimoto, K. S. Polonsky, H. Imura, and Y. Seino. A novel point mutation in the human insulin gene giving rise to hyperproinsulinemia (proinsulin Kyoto). J. Clin. Invest. 89: 1902–1907, 1992.
 341. Yoshimasa, Y., J. I. Paul, J. Whittaker, and D. F. Steiner. Effects of amino acid replacements within the tetrabasic cleavage site on the processing of the human insulin receptor precursor expressed in Chinese hamster ovary cells. J. Biol. Chem. 265: 17230–17237, 1990.
 342. Yu, J.‐H., J. Eng, and R. S. Yalow. Isolation and amino acid sequences of squirrel monkey (Saimiri sciurea) insulin and glucagon. Proc. Natl. Acad. Sci. U.S.A. 87: 9766–9768, 1990.
 343. Zahn, I. H.. Synthese der insulinketten und deren kombination zu biologisch aktiven präparaten. Z. Textilindust. 3: 197–200, 1964.
 344. Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–431, 1994.
 345. Zhou, A., and R. E. Mains. Endoproteolytic processing of proopiomelanocortin and prohormone convertases 1 and 2 in neuroendocrine cells overexpressing prohormone convertases 1 or 2. J. Biol. Chem. 269: 17440–17447, 1994.
 346. Zhou, Y. P., and V. Grill. Long term exposure of fatty acids and ketones inhibits B‐cell functions in human pancreatic islets of Langerhans. J. Clin. Endocrinol. Metab. 80: 1584–1590, 1995.
 347. Zhu, X., N. S. Lamango, and I. Lindberg. Involvement of a polyproline helix‐like structure in the interaction of 7B2 with prohormone convertase 2. J. Biol. Chem. 271: 23582–23587, 1996.
 348. Zhu, X., and I. Lindberg. 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity. J. Cell Biol. 129: 1641–1650, 1995.
 349. Zühlke. H., D. F. Steiner, Å. Lernmark, and C. Lipsey. Carboxy‐peptidase B‐like and trypsin‐like activities in isolated rat pancreatic islets. In: Polypeptide Hormones: Molecular and Cellular Aspects, edited by CIBA Foundation. Amsterdam: Excerpta Med. 1976, p. 183–195.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Donald F. Steiner, Shu Jin Chan, Arthur H. Rubenstein. Biosynthesis of Insulin. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 49-78. First published in print 2001. doi: 10.1002/cphy.cp070203