Comprehensive Physiology Wiley Online Library

Amylin and Related Proteins: Physiology and Pathophysiology

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Protein Chemistry of Amylin
1.1 Isolation, Structure, Nomenclature, and Evolutionary Relationships
1.2 Chemical Synthesis
1.3 Molecular Structure of Soluble Amylin
1.4 Amylin as the Monomer of Islet Amyloid
2 Molecular Biology
2.1 Preproamylin
2.2 Structure and Chromosomal Location of the Human Amylin Gene
2.3 A Disease‐Associated Mutation in Human Amylin
3 Biosynthesis and Secretion of Amylin
3.1 Measurement of Amylin Concentrations
3.2 Tissue Localization and Content
3.3 Regulation of Biosynthesis
3.4 Amylin in Extra‐Islet Tissues
3.5 Circulating Concentrations and Pancreatic Secretion
3.6 Effects of Secretion Modulators
3.7 Amylin Secretion in Humans
4 The Amylin Family: Role in the Regulation of Fuel Metabolism
4.1 Insulin Resistance In Vivo
4.2 Actions in Skeletal Muscle
4.3 Role of Calcitonin Gene‐Related Peptide in Skeletal Muscle Metabolism
4.4 Actions in the Liver
4.5 Adipose Tissue
5 Regulation of Pancreatic Function
5.1 Endocrine Pancreas
5.2 Exocrine Pancreas
6 Regulation of The Gastrointestinal Tract
6.1 Effects on Gastric Function
6.2 Intestinal Function
7 Actions in The Central Nervous System: Modulation of Appetite
8 Actions in The Cardiovascular System
8.1 Calcitonin Gene‐Related Peptide
8.2 Adrenomedullin
8.3 Biological Actions of Adrenomedullin in the Cardiovascular System
8.4 Vascular Actions of Amylin
9 Renal Function
9.1 Role of Amylin in the Regulation of Renal Function
9.2 Adrenomedullin: Roles in Renal Function and Sodium Homeostasis
10 Effects on Calcium Metabolism and Bone
10.1 Actions of Amylin
11 Other Biological Actions
11.1 Respiratory System
11.2 Effects in Endocrine Tissues Other than Pancreas
11.3 Effects in the Immune System
12 Receptors for Amylin and Related Proteins
12.1 Receptor Nomenclature
12.2 Pharmacological and Biochemical Studies
12.3 Calcitonin Receptors
12.4 Specific Calcitonin Gene‐Related Peptide Binding Sites that Can Interact with Amylin
12.5 Amylin Binding to Skeletal Muscle and Liver
12.6 Biochemical Characterization of Putative Amylin and Calcitonin Gene‐Related Peptide Receptors
13 Disease Associations
13.1 Insulin‐Dependent Diabetes Mellitus
13.2 Animal Models of Insulin Resistance, Obesity, and Diabetes
13.3 Obesity and Non‐Insulin‐Dependent Diabetes Mellitus in Humans
13.4 Other Diabetic Syndromes
13.5 Amylin in Endocrine Neoplasms
13.6 Relationship to Aging
13.7 Other Diseases
14 Conclusion and Future Prospects
Figure 1. Figure 1.

A: section of pancreas from a 54‐year‐old woman with adult onset diabetes mellitus from which the original description of islet hyaline, subsequently known as amyloid, was made , . The normally cellular islets have been substantially replaced by amorphous, faintly pink‐staining islet amyloid. This section is retained at the Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD. B: section of a single large islet (c. 350 mm in longest diameter) from the pancreas of a human patient with a history of NIDDM, and stained using immunoperoxidase with polyclonal rabbit anti‐human amylin19,37 antiserum (brown) . Amylin‐like immunoreactivity is present both in association with endocrine nuclei (grey‐purple; presumably intracytoplasmic, granule associated), and in extracellular, nuclei‐free regions (presumably aggregated as amylin‐containing amyloid (dense, variable brown staining; e.g. top right). Immunoreactivity associated with ducts (e.g. bottom left) could be due either to amylin or to cross‐reactivity with calcitonin gene‐related peptide. C: alkaline Congo red‐stained particles of islet amyloid, isolated from the postmortem pancreas of a human with NIDDM and photographed under polarized light (yellow) . Particle diameters were between 5 and 30 mm, and the background material was mainly collagen.

[Reproduced with permission of Robert D. Hoffman, M.D., Ph.D., Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD].
Figure 2. Figure 2.

Chromatographic purification of amylin from islet amyloid isolated from the pancreas of a human patient with non‐insulin‐dependent diabetes mellitus. A: High‐performance liquid chromatographic (HPLC) gel filtration, in 6 M guanidine hydrochloride, 0.2 M Na2HPO4‐NaH2PO4 (pH 7.5) on Zorbax GF‐450 and GF‐250 columns in series, of an extract from an amyloid‐containing diabetic pancreas. Amylin was present in the region indicated by the bar. B: Reversed‐phase HPLC of material from the region indicated by the bar in A, with mobile phase of trifluoroacetic acid, 1% (vol/vol)/acetonitrile gradient, 5% to 80% (vol/vol, shown as a dotted line), a solid‐phase Partisil 10 ODS‐3 column, and monitoring at 280 nm. Nonreduced amylin was present in peak 3. The elevation of baseline absorbance was produced by nonproteinaceous material. C: Reversed‐phase HPLC of control, extract as in B. Peaks 1 and 2 in this profile corresponded in elution time and amino acid composition to 1 and 2 in B. D: Repurification using the reversed‐phase system in B of material in peak 3 after reduction and alkylation of cysteine residues performed in 6 M guanidine hydrochloride, 0.2 M Tris (pH 8.0), and 3 mM Na2EDTA by the addition (to 20 mM) of dithiothreitol to approximately 1 nmol of purified amylin, shaking for 3 h, and subsequent addition of iodo[2‐14C]acetic acid (54 Ci/mol, 1 Ci = 37 GBq) for 5 min at 0°C in the dark, followed by freshly neutralized iodoacetic acid to 40 mM. Peaks 4 and 5 had amino acid compositions distinct from that of 3RA, which was reduced and alkylated amylin. Other peaks were either nonproteinaceous solutes or part of the system. E: Separation of product peptides after tryptic digestion of reduced and alkylated amylin by reversed‐phase HPLC in trifluoroacetic acid 0.1% (vol/vol)/acetonitrile gradient as in B, with monitoring at 206 nm. Tryptic cleavage (L‐1‐tosylamido‐2‐phenylethyl chloromethyl ketone‐treated trypsin, EC 3.4.21.4) of purified amylin was done for 3 h at 37°C in 100 mM NH4HCO3 buffer, enzyme:substrate molar ratio = 1:100, with termination of reaction by addition of diisopropylfluoro‐phosphate to 25 mM. Peak 6 was the smaller, more hydrophilic amylin and peak 7 the larger, more hydrophobic amylin(12–37). All radiolabel was present in peak 6. Identities of peaks were confirmed by quantitative amino acid analysis and by protein sequencing. The ratio of peak heights is consistent with the relative lengths of the peptides. Full methods were as in reference .

[From Cooper et al. with permission.]
Figure 3. Figure 3.

Structure of human amylin. Residues Cys2 and Cys7 are joined by an intramolecular disulfide bond, and the COOH‐terminal residue is tyrosine amide.

Figure 4. Figure 4.

Sequence comparisons between human amylin and other members of the amylin/CGRP/adrenomedullin grouping of peptides. Percentage sequence identity is between human amylin (100%) and other amylin and calcitonin gene‐related peptide molecules. The intra‐molcecular disulfide bond between Cys2 and Cys7 and the carboxy‐terminal amide group have been directly identified in all members of the family in which they have been sought. Residues different from those in equivalent positions in human amylin are shown in bold type. aSpecies in which islet amyloid may be present in animals having a non‐insulindependent diabetes mellitus‐like syndrome. bThere is evidence that the islet amyloid found in diabetic degus is formed from insulin rather than amylin . Residues in the putative amyloid‐forming region, amylin(20–29), are underlined. Residues indicated by u (unknown) have yet to be determined. In this table, CGRP‐1 is equivalent to α‐CGRP and CGRP‐2 to β‐CGRP. CGRP, calcitonin gene‐related peptide; Consensus‐Amy, amylin family consensus sequence; Consensus‐CGRP, CGRP family consensus; Consensus‐AmCG, amylin/CGRP family consensus.

Figure 5. Figure 5.

Cartoon illustrating the solution structure of human amylin based on two‐dimensional nuclear magnetic resonance studies of calcitonin gene‐related peptide with subsequent molecular modeling, which indicated an α‐helix between Val8 and Arg18 and a β‐strand between Ser19 and Pro29 in the latter . Basic residues are shown in black, and hydrophobic residues in gray.

Figure 6. Figure 6.

Polymorphism of human amylin fibrillar structures revealed by negative stain electron microscopy. Ribbons of variable width and coiled fibrils with distinct axial crossover repeats of 25 or 50 nm are illustrated. Bar = 100nm.

[From Goldsbury et al. with permission.]
Figure 7. Figure 7.

Lateral (side‐by‐side) association of human amylin protofibrils. a: Single 5 nm protofibril. bd: Ribbons assembled by lateral association of two (b), three (c), or five (d) 5 nm protofibrils. The latter often crossed over in a left‐handed sense at moderately regular intervals. e: Lateral assembly of 5 nm protofibrils into single‐layered, sheet‐like arrays. Bar = 100 nm.

[From Goldsbury et al. with permission.]
Figure 8. Figure 8.

Coiled association of human amylin protofibrils. a,b: Fibrils (8 nm) with a left‐handed, 25 nm axial crossover repeat. c,d: Fibrils (13 nm) with a left‐handed, 50 nm axial crossover repeat. e: Two 8 nm fibrils join to form a fibril with an 11 nm diameter. Bar = 100 nm.

[From Goldsbury et al. with permission.]
Figure 9. Figure 9.

Predicted structure of human preproamylin. References are as given in the text. The sequence of human amylin is given in bold type. Suggested processing signals for amylin are boxed. The Gly residue in the carboxy‐terminal Gly‐Lys‐Arg sequence is predicted to generate an amide moiety at the COOH‐terminal tyrosine residue. Arrow indicates the likely end of the signal sequence. Predicted NH2‐ and COOH‐terminal propeptides are underlined. It is not known at present whether the COOH‐terminal propetide is cleaved at positions 80 and 81 to yield the two smaller peptides, b and c, as indicated here.

Figure 10. Figure 10.

Electron micrograph of a pancreatic section from a human patient with non‐insulin‐dependent diabetes mellitus. Note juxtaposition of amyloid with islet β‐cell surface. Am, amyloid; A, glucagon cell; B, insulin cell; PP, pancreatic polypeptide cell. Bar = 1 μm.

[From Clark et al. with permission.]
Figure 11. Figure 11.

A, B: fluorescence immunohistochemical study of a single section from a normal rat islet stained both for amylin. A: rhodamine‐labeled anti‐amylin (red) and B: fluorescein‐labeled anti‐insulin (green). Most cells are positive for both amylin and insulin, demonstrating amylin in islet β‐cells. C, D: In situ hybridization histochemistry of amylin and insulin messenger ribonucleic acid (RNA) in a normal rat islet. Dark field photograph of autoradiographs from a study of the expression of C: amylin and D: insulin in serial sections from the same normal rat islet. Complementary RNA probes were prepared from cloned rat amylin and insulin complementary deoxyribonucleic acid probes.

[Reproduced with permission from K. L. Luskey, M.D., University of Texas Medical Center, Dallas, TX.]
Figure 12. Figure 12.

Glucose and arginine stimulation of amylin and insulin secretion from cultured HIT‐T15 islet β cells. Content of amylin was 12.4 ± 4.6 pmol/106 cells and that of insulin, 12.3 ± 4.6 pmol/106 cells. A: HIT cells were incubated with increasing concentrations of glucose. Mean basal rates of amylin and insulin secretion were 0.12 ± 0.03 and 0.44 ± 0.18 pmol/(106 cells·h−1), respectively. Both hormones were half‐maximally released at about 3 mM glucose. Maximum secretion rates for amylin and insulin were, respectively, 0.30 ± 0.05 and 0.83 ± 0.20 pmol/(106 cells·h−1) and occurred at 10 mM glucose. The mean secreted amylin to insulin ration of 0.41 ± 0.06 did not vary significantly across the glucose concentration range studied. Data are expressed as percent of amylin or insulin release in the absence of glucose. Mean ± SEM of four replicate experiments. B: Arginine‐stimulated amylin and insulin release. HIT cells were incubated with increasing concentrations of arginine. Data are expressed as percent of basal amylin or insulin release in the absence of arginine.

[From Moore and Cooper with permission.]
Figure 13. Figure 13.

In vivo insulin resistance evoked by amylin and (CGRP) in rats. A: Effect of amylin on insulin action in vivo. Representative study in which insulin (13 pmol·kg−1·min−1) was infused for 220 min with amylin (5 nmol·kg−1·min−1) from 70 to 140 min. B: Effect of CGRP on insulin action in vivo. Representative study in which insulin (13 pmol·kg−1·min−1) was infused for 210 min with CGRP‐1 (5 nmol·kg−1·min−1) from 80 to 150 min, demonstrating CGRP‐evoked insulin resistance.

[From Molina et al. with permission.]
Figure 14. Figure 14.

Amylin‐evoked insulin resistance in isolated incubated rat soleus muscle, illustrating the mutual non‐competitive inhibition between the actions of amylin and insulin on glucose incorporation into glycogen in vitro. A: Insulin dose‐response relationships in the presence of different amylin concentrations. Symbols representing means of actual responses are connected to relevant curves. Amylin concentrations in media predicted by quantitative amino acid analysis are shown for each curve. B: Amylin dose‐response relationships in the presence of different insulin concentrations. Means of actual responses are connected to relevant curves. Predicted media insulin concentrations are shown for each curve.

[From Young et al. with permission.]
Figure 15. Figure 15.

Dose‐related effects of rat calcitonin gene‐related peptide (CGRP) and isoprenaline on insulin‐stimulated rates of lactate formation and glycogen synthesis in isolated incubated rat soleus muscle. Glucose concentration was 5.5 mM in all experiments. Comparisons of the effects of CGRP (○) and isoprenaline (•) on (A) insulin‐stimulated rates of lactate production and (B) [14C]glycogen accumulation. Values are means of four separate experiments. Rates of lactate secretion and [14C]glycogen accumulation in the absence of isoprenaline or CGRP were 12.0 ± 0.8 and 3.2 ± 0.2 mmol·h−1·g−1, respectively (SEM values, which were on average 7% have been omitted for clarity). °Statistically significant changes from control muscles (Student's t‐test, P < 0.05).

[From Leighton and Cooper with permission.]
Figure 16. Figure 16.

Plasma glucose and lactate concentrations in rats following administration of rat amylin. Arterial glucose (upper graph) and lactate (lower graph) concentrations following a bolus of 75 nmol·kg−1 rat amylin, intravenous with somatostatin preinfusion for 2 h at 3.4 nmol·h−1 (•), intravenous without somatostatin (○), and subcutaneous (□). Broken line shows the control response. Symbols represent means ± SEM (n = 5 to 12).

[From Young et al. with permission.]
Figure 17. Figure 17.

Increased production of amylin in a rodent model of obesity and insulin resistance, the Lister Albany/NIH rat. A: Autoradiographs illustrating ribonuclease protection analysis of amylin and insulin mRNA in the pancreas of Lister Albany/NIH (LA/N‐lean) (lanes 1 to 5) and insulin‐resistant obese (LA/N‐cp) (lanes 6 to 10) rats showing relative evaluations of amylin (7.8 ± 0.7‐fold, mean ± SEM) and insulin (7.4 ± 0.5‐fold) mRNA in obese animals compared with their lean littermates. Bands corresponding to rat amylin mRNA (Am) and rat insulin I mRNA (In) are arrowed. B: Plasma concentrations of amylin (left graph) and insulin (right graph) in the blood of LA/N‐lean and LAshN‐cp rats. Hormone concentrations are expressed in pM; error bars represent SEM.

[From Huang et al. with permission.]
Figure 18. Figure 18.

Amylin and insulin secretion from the pancreata of (A) normal and (B) diabetic rats. Amylin (□) and insulin (○) secretion (pmol·pancreas−1·min−1) in response to a stepped glucose profile (…) during 1 min intervals from the isolated perfused pancreata of (A) control Wistar (n = 4) and (B) diabetic fatty Zucker (n = 4) rats. Methods as described in reference 302. Results are plotted as mean ± SEM of duplicate estimate at each point for each of four rats.

[From Gedulin et al. with permission.]
Figure 19. Figure 19.

Demonstration of amyloid deposits in pancreatic islets of human amylin‐transgenic male mice. Thioflavin S staining of sections of pancreas from A: 16‐month‐old, hyperglycemic human amylin‐transgenic male mouse exhibiting severe amyloid deposition; B: 16‐month‐old, hyperglycemic, nontransgenic male mouse; and C: human with NIDDM. Thioflavin S‐positive staining is present in islet of hyperglcemic transgenic mouse and diabetic human, but not in that of hyperglycemic nontransgenic mouse. Bars = 50 μm.

[Reproduced with permission from C. B. Verchere et al., .]
Figure 20. Figure 20.

Scanning electron micrographs illustrating amylin‐mediated apoptosis of RINm5F islet β cells. Islet β cells incubated for 22 h with or without 10 μM human amylin on glass coverslips were fixed with glutaraldehyde (3% in 0.1 M Sorenson's buffer, pH 7.2) for 3 h, washed, and then postfixed for 1 h in 1% OsO4. Following dehydration in increasing concentrations of ethanol, cells were critically dried and mounted onto a G040 pin‐type SEM mount (ϕ = 12 mm). Specimens were coated with gold palladium for 2 min and examined with a Philips SEM 505 model scanning electron microscope. A: Control RINm5F cells cultured in the presence of medium alone. B: Cells cultured for the same time in the presence of 10 μM human amylin. Cells in B are undergoing apoptosis, as demonstrated by the presence of membrane blebbing and formation of apoptotic bodies. Bars = 10 μM.

[From E. L. Saafi and G. J. S. Cooper, unpublished data.]


Figure 1.

A: section of pancreas from a 54‐year‐old woman with adult onset diabetes mellitus from which the original description of islet hyaline, subsequently known as amyloid, was made , . The normally cellular islets have been substantially replaced by amorphous, faintly pink‐staining islet amyloid. This section is retained at the Department of Pathology, the Johns Hopkins University School of Medicine, Baltimore, MD. B: section of a single large islet (c. 350 mm in longest diameter) from the pancreas of a human patient with a history of NIDDM, and stained using immunoperoxidase with polyclonal rabbit anti‐human amylin19,37 antiserum (brown) . Amylin‐like immunoreactivity is present both in association with endocrine nuclei (grey‐purple; presumably intracytoplasmic, granule associated), and in extracellular, nuclei‐free regions (presumably aggregated as amylin‐containing amyloid (dense, variable brown staining; e.g. top right). Immunoreactivity associated with ducts (e.g. bottom left) could be due either to amylin or to cross‐reactivity with calcitonin gene‐related peptide. C: alkaline Congo red‐stained particles of islet amyloid, isolated from the postmortem pancreas of a human with NIDDM and photographed under polarized light (yellow) . Particle diameters were between 5 and 30 mm, and the background material was mainly collagen.

[Reproduced with permission of Robert D. Hoffman, M.D., Ph.D., Department of Biological Chemistry, The Johns Hopkins University, School of Medicine, Baltimore, MD].


Figure 2.

Chromatographic purification of amylin from islet amyloid isolated from the pancreas of a human patient with non‐insulin‐dependent diabetes mellitus. A: High‐performance liquid chromatographic (HPLC) gel filtration, in 6 M guanidine hydrochloride, 0.2 M Na2HPO4‐NaH2PO4 (pH 7.5) on Zorbax GF‐450 and GF‐250 columns in series, of an extract from an amyloid‐containing diabetic pancreas. Amylin was present in the region indicated by the bar. B: Reversed‐phase HPLC of material from the region indicated by the bar in A, with mobile phase of trifluoroacetic acid, 1% (vol/vol)/acetonitrile gradient, 5% to 80% (vol/vol, shown as a dotted line), a solid‐phase Partisil 10 ODS‐3 column, and monitoring at 280 nm. Nonreduced amylin was present in peak 3. The elevation of baseline absorbance was produced by nonproteinaceous material. C: Reversed‐phase HPLC of control, extract as in B. Peaks 1 and 2 in this profile corresponded in elution time and amino acid composition to 1 and 2 in B. D: Repurification using the reversed‐phase system in B of material in peak 3 after reduction and alkylation of cysteine residues performed in 6 M guanidine hydrochloride, 0.2 M Tris (pH 8.0), and 3 mM Na2EDTA by the addition (to 20 mM) of dithiothreitol to approximately 1 nmol of purified amylin, shaking for 3 h, and subsequent addition of iodo[2‐14C]acetic acid (54 Ci/mol, 1 Ci = 37 GBq) for 5 min at 0°C in the dark, followed by freshly neutralized iodoacetic acid to 40 mM. Peaks 4 and 5 had amino acid compositions distinct from that of 3RA, which was reduced and alkylated amylin. Other peaks were either nonproteinaceous solutes or part of the system. E: Separation of product peptides after tryptic digestion of reduced and alkylated amylin by reversed‐phase HPLC in trifluoroacetic acid 0.1% (vol/vol)/acetonitrile gradient as in B, with monitoring at 206 nm. Tryptic cleavage (L‐1‐tosylamido‐2‐phenylethyl chloromethyl ketone‐treated trypsin, EC 3.4.21.4) of purified amylin was done for 3 h at 37°C in 100 mM NH4HCO3 buffer, enzyme:substrate molar ratio = 1:100, with termination of reaction by addition of diisopropylfluoro‐phosphate to 25 mM. Peak 6 was the smaller, more hydrophilic amylin and peak 7 the larger, more hydrophobic amylin(12–37). All radiolabel was present in peak 6. Identities of peaks were confirmed by quantitative amino acid analysis and by protein sequencing. The ratio of peak heights is consistent with the relative lengths of the peptides. Full methods were as in reference .

[From Cooper et al. with permission.]


Figure 3.

Structure of human amylin. Residues Cys2 and Cys7 are joined by an intramolecular disulfide bond, and the COOH‐terminal residue is tyrosine amide.



Figure 4.

Sequence comparisons between human amylin and other members of the amylin/CGRP/adrenomedullin grouping of peptides. Percentage sequence identity is between human amylin (100%) and other amylin and calcitonin gene‐related peptide molecules. The intra‐molcecular disulfide bond between Cys2 and Cys7 and the carboxy‐terminal amide group have been directly identified in all members of the family in which they have been sought. Residues different from those in equivalent positions in human amylin are shown in bold type. aSpecies in which islet amyloid may be present in animals having a non‐insulindependent diabetes mellitus‐like syndrome. bThere is evidence that the islet amyloid found in diabetic degus is formed from insulin rather than amylin . Residues in the putative amyloid‐forming region, amylin(20–29), are underlined. Residues indicated by u (unknown) have yet to be determined. In this table, CGRP‐1 is equivalent to α‐CGRP and CGRP‐2 to β‐CGRP. CGRP, calcitonin gene‐related peptide; Consensus‐Amy, amylin family consensus sequence; Consensus‐CGRP, CGRP family consensus; Consensus‐AmCG, amylin/CGRP family consensus.



Figure 5.

Cartoon illustrating the solution structure of human amylin based on two‐dimensional nuclear magnetic resonance studies of calcitonin gene‐related peptide with subsequent molecular modeling, which indicated an α‐helix between Val8 and Arg18 and a β‐strand between Ser19 and Pro29 in the latter . Basic residues are shown in black, and hydrophobic residues in gray.



Figure 6.

Polymorphism of human amylin fibrillar structures revealed by negative stain electron microscopy. Ribbons of variable width and coiled fibrils with distinct axial crossover repeats of 25 or 50 nm are illustrated. Bar = 100nm.

[From Goldsbury et al. with permission.]


Figure 7.

Lateral (side‐by‐side) association of human amylin protofibrils. a: Single 5 nm protofibril. bd: Ribbons assembled by lateral association of two (b), three (c), or five (d) 5 nm protofibrils. The latter often crossed over in a left‐handed sense at moderately regular intervals. e: Lateral assembly of 5 nm protofibrils into single‐layered, sheet‐like arrays. Bar = 100 nm.

[From Goldsbury et al. with permission.]


Figure 8.

Coiled association of human amylin protofibrils. a,b: Fibrils (8 nm) with a left‐handed, 25 nm axial crossover repeat. c,d: Fibrils (13 nm) with a left‐handed, 50 nm axial crossover repeat. e: Two 8 nm fibrils join to form a fibril with an 11 nm diameter. Bar = 100 nm.

[From Goldsbury et al. with permission.]


Figure 9.

Predicted structure of human preproamylin. References are as given in the text. The sequence of human amylin is given in bold type. Suggested processing signals for amylin are boxed. The Gly residue in the carboxy‐terminal Gly‐Lys‐Arg sequence is predicted to generate an amide moiety at the COOH‐terminal tyrosine residue. Arrow indicates the likely end of the signal sequence. Predicted NH2‐ and COOH‐terminal propeptides are underlined. It is not known at present whether the COOH‐terminal propetide is cleaved at positions 80 and 81 to yield the two smaller peptides, b and c, as indicated here.



Figure 10.

Electron micrograph of a pancreatic section from a human patient with non‐insulin‐dependent diabetes mellitus. Note juxtaposition of amyloid with islet β‐cell surface. Am, amyloid; A, glucagon cell; B, insulin cell; PP, pancreatic polypeptide cell. Bar = 1 μm.

[From Clark et al. with permission.]


Figure 11.

A, B: fluorescence immunohistochemical study of a single section from a normal rat islet stained both for amylin. A: rhodamine‐labeled anti‐amylin (red) and B: fluorescein‐labeled anti‐insulin (green). Most cells are positive for both amylin and insulin, demonstrating amylin in islet β‐cells. C, D: In situ hybridization histochemistry of amylin and insulin messenger ribonucleic acid (RNA) in a normal rat islet. Dark field photograph of autoradiographs from a study of the expression of C: amylin and D: insulin in serial sections from the same normal rat islet. Complementary RNA probes were prepared from cloned rat amylin and insulin complementary deoxyribonucleic acid probes.

[Reproduced with permission from K. L. Luskey, M.D., University of Texas Medical Center, Dallas, TX.]


Figure 12.

Glucose and arginine stimulation of amylin and insulin secretion from cultured HIT‐T15 islet β cells. Content of amylin was 12.4 ± 4.6 pmol/106 cells and that of insulin, 12.3 ± 4.6 pmol/106 cells. A: HIT cells were incubated with increasing concentrations of glucose. Mean basal rates of amylin and insulin secretion were 0.12 ± 0.03 and 0.44 ± 0.18 pmol/(106 cells·h−1), respectively. Both hormones were half‐maximally released at about 3 mM glucose. Maximum secretion rates for amylin and insulin were, respectively, 0.30 ± 0.05 and 0.83 ± 0.20 pmol/(106 cells·h−1) and occurred at 10 mM glucose. The mean secreted amylin to insulin ration of 0.41 ± 0.06 did not vary significantly across the glucose concentration range studied. Data are expressed as percent of amylin or insulin release in the absence of glucose. Mean ± SEM of four replicate experiments. B: Arginine‐stimulated amylin and insulin release. HIT cells were incubated with increasing concentrations of arginine. Data are expressed as percent of basal amylin or insulin release in the absence of arginine.

[From Moore and Cooper with permission.]


Figure 13.

In vivo insulin resistance evoked by amylin and (CGRP) in rats. A: Effect of amylin on insulin action in vivo. Representative study in which insulin (13 pmol·kg−1·min−1) was infused for 220 min with amylin (5 nmol·kg−1·min−1) from 70 to 140 min. B: Effect of CGRP on insulin action in vivo. Representative study in which insulin (13 pmol·kg−1·min−1) was infused for 210 min with CGRP‐1 (5 nmol·kg−1·min−1) from 80 to 150 min, demonstrating CGRP‐evoked insulin resistance.

[From Molina et al. with permission.]


Figure 14.

Amylin‐evoked insulin resistance in isolated incubated rat soleus muscle, illustrating the mutual non‐competitive inhibition between the actions of amylin and insulin on glucose incorporation into glycogen in vitro. A: Insulin dose‐response relationships in the presence of different amylin concentrations. Symbols representing means of actual responses are connected to relevant curves. Amylin concentrations in media predicted by quantitative amino acid analysis are shown for each curve. B: Amylin dose‐response relationships in the presence of different insulin concentrations. Means of actual responses are connected to relevant curves. Predicted media insulin concentrations are shown for each curve.

[From Young et al. with permission.]


Figure 15.

Dose‐related effects of rat calcitonin gene‐related peptide (CGRP) and isoprenaline on insulin‐stimulated rates of lactate formation and glycogen synthesis in isolated incubated rat soleus muscle. Glucose concentration was 5.5 mM in all experiments. Comparisons of the effects of CGRP (○) and isoprenaline (•) on (A) insulin‐stimulated rates of lactate production and (B) [14C]glycogen accumulation. Values are means of four separate experiments. Rates of lactate secretion and [14C]glycogen accumulation in the absence of isoprenaline or CGRP were 12.0 ± 0.8 and 3.2 ± 0.2 mmol·h−1·g−1, respectively (SEM values, which were on average 7% have been omitted for clarity). °Statistically significant changes from control muscles (Student's t‐test, P < 0.05).

[From Leighton and Cooper with permission.]


Figure 16.

Plasma glucose and lactate concentrations in rats following administration of rat amylin. Arterial glucose (upper graph) and lactate (lower graph) concentrations following a bolus of 75 nmol·kg−1 rat amylin, intravenous with somatostatin preinfusion for 2 h at 3.4 nmol·h−1 (•), intravenous without somatostatin (○), and subcutaneous (□). Broken line shows the control response. Symbols represent means ± SEM (n = 5 to 12).

[From Young et al. with permission.]


Figure 17.

Increased production of amylin in a rodent model of obesity and insulin resistance, the Lister Albany/NIH rat. A: Autoradiographs illustrating ribonuclease protection analysis of amylin and insulin mRNA in the pancreas of Lister Albany/NIH (LA/N‐lean) (lanes 1 to 5) and insulin‐resistant obese (LA/N‐cp) (lanes 6 to 10) rats showing relative evaluations of amylin (7.8 ± 0.7‐fold, mean ± SEM) and insulin (7.4 ± 0.5‐fold) mRNA in obese animals compared with their lean littermates. Bands corresponding to rat amylin mRNA (Am) and rat insulin I mRNA (In) are arrowed. B: Plasma concentrations of amylin (left graph) and insulin (right graph) in the blood of LA/N‐lean and LAshN‐cp rats. Hormone concentrations are expressed in pM; error bars represent SEM.

[From Huang et al. with permission.]


Figure 18.

Amylin and insulin secretion from the pancreata of (A) normal and (B) diabetic rats. Amylin (□) and insulin (○) secretion (pmol·pancreas−1·min−1) in response to a stepped glucose profile (…) during 1 min intervals from the isolated perfused pancreata of (A) control Wistar (n = 4) and (B) diabetic fatty Zucker (n = 4) rats. Methods as described in reference 302. Results are plotted as mean ± SEM of duplicate estimate at each point for each of four rats.

[From Gedulin et al. with permission.]


Figure 19.

Demonstration of amyloid deposits in pancreatic islets of human amylin‐transgenic male mice. Thioflavin S staining of sections of pancreas from A: 16‐month‐old, hyperglycemic human amylin‐transgenic male mouse exhibiting severe amyloid deposition; B: 16‐month‐old, hyperglycemic, nontransgenic male mouse; and C: human with NIDDM. Thioflavin S‐positive staining is present in islet of hyperglcemic transgenic mouse and diabetic human, but not in that of hyperglycemic nontransgenic mouse. Bars = 50 μm.

[Reproduced with permission from C. B. Verchere et al., .]


Figure 20.

Scanning electron micrographs illustrating amylin‐mediated apoptosis of RINm5F islet β cells. Islet β cells incubated for 22 h with or without 10 μM human amylin on glass coverslips were fixed with glutaraldehyde (3% in 0.1 M Sorenson's buffer, pH 7.2) for 3 h, washed, and then postfixed for 1 h in 1% OsO4. Following dehydration in increasing concentrations of ethanol, cells were critically dried and mounted onto a G040 pin‐type SEM mount (ϕ = 12 mm). Specimens were coated with gold palladium for 2 min and examined with a Philips SEM 505 model scanning electron microscope. A: Control RINm5F cells cultured in the presence of medium alone. B: Cells cultured for the same time in the presence of 10 μM human amylin. Cells in B are undergoing apoptosis, as demonstrated by the presence of membrane blebbing and formation of apoptotic bodies. Bars = 10 μM.

[From E. L. Saafi and G. J. S. Cooper, unpublished data.]
References
 1. Abdelrahman, A., Y.‐X., Wang, S.‐D. Chang and C. Pang. Mechanism of the vasodilator action of calcitonin gene‐related peptide in conscious rats. Br. J. Pharmacol. 106: 45–48, 1992.
 2. Abe, Y., H., Utsunomiya, and Y. Tsutsumi. Atypical carcinoid tumor of the lung with amyloid stroma. Acta Pathol. Jpn. 42: 286–292, 1992.
 3. Abood, M. E., J. B., Hurley, M. C. Pappone, H. R. Bourne, and L. Stryer. Functional homology between signal‐coupling proteins. Cholera toxin inactivates the GTPase activity of transducin. J. Biol. Chem. 257: 10540–10543, 1982.
 4. Abou‐Samra, A. B., H., Jüppner, T. Force, M. W. Freeman, X. F. Kong, E. Schipani, P. Urena, J. Richards, J. V. Bonventre, J. J. T. Potts, H. M. Kronenberg, and G. V. Segre. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone‐related peptide from rat osteoblast‐like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol tris‐phosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. U.S.A. 89: 2732–2736, 1992.
 5. Adeghate, E., and T. Donath. Distribution of neuropeptide Y and vasoactive intestinal polypeptide immunoreactive nerves in normal and transplanted pancreatic tissue. Peptides 11: 1087–1092, 1990.
 6. Adrian, T. E., J., Permert, and G. T. Westermark. Islet hormones in pancreatic cancer—the association between islet amyloid polypeptide levels and diabetes. Int. J. Pancreatol. 16: 274–277, 1994.
 7. Ahrén, B., R., Ekman, and P. Laurberg. Calcium stimulates the release of calcitonin gene‐related peptide from the canine thyroid. Am. J. Physiol. 256 (Endocrinol. Metab. 19): E597–E599, 1989.
 8. Ahrén, B., and I. Lundquist. Effects of vasoactive intestinal polypeptide (VIP), secretin and gastrin on insulin secretion in the mouse. Diabetologia. 20: 54–59, 1981.
 9. Ahrén, B., H., Mårartensson, and A. Nobin. Effects of calcitonin gene‐related peptide (CGRP) on islet hormone secretion in the pig. Diabetologia 30: 354–359, 1987.
 10. Ahrén, B., and M. Petterson. Calcitonin gene–related peptide (CGRP) and amylin and the endocrine pancreas. Int. J. Pancreatol. 6: 1–15, 1990.
 11. Aiyar, N., E., Baker, J. Martin, A. Patel, J. M. Stadel, R. N. Willette, and F. C. Barone. Differential calcitonin gene–related peptide (CGRP) and amylin binding sites in nucleus accumbens and lung—potential models for studying CGRP/amylin receptor subtypes. J. Neurochem. 65: 1131–1138, 1995.
 12. Akerblom, I. E., E. C., Ridgway, and P. L. Mellon. An alphasubunit‐secreting cell line derived from a mouse thyrotroph tumor. Mol. Endocrinol. 4: 589–596, 1990.
 13. Akimoto, K., M., Nakazato, S. Matsukura, and K. Hayakawa. Plasma concentration of islet amyloid polypeptide in healthy children and patients with insulin‐dependent diabetes mellitus. Acta Paediatr. 82: 310–311, 1993.
 14. Alam, A. S., C. M., Bax, V. S. Shanker, B. E. Bax, P. J. Bevis, C. L. Huang, B. S. Moonga, M. Pazianas, and M. Zaidi. Further studies on the mode of action of calcitonin on isolated rat osteoclasts: pharmacological evidence for a second site mediating intracellular Ca2+ mobilization and cell retraction. J. Endocrinol. 136: 7–15, 1993.
 15. Alam, A. S., B. S., Moonga, P. J. Bevis, C. L. Huang, and M. Zaid. Amylin inhibits bone resorption by a direct effect on the motility of rat osteoclasts. Exp. Physiol. 78: 183–196, 1993.
 16. Alam, T., L., Chen, A. Ogawa, J. D. Leffert, R. H. Unger, and K. L. Luskey. Coordinate regulation of amylin and insulin expression in response to hypoglycemia and fasting. Diabetes. 41: 508–514, 1992.
 17. Alam, T., J., Leffert, and K. L. Luskey. Regulation of amylin mRNA in pancreatic islets. Diabetes. 39 (Suppl. 1): 12A, 1990.
 18. Albrandt, K., E. M., Brady, C. X. Moore, E. Mull, M. E. Sierzega, and K. Beaumont. Molecular cloning and functional expression of a third isoform of the human calcitonin receptor and partial characterization of the calcitonin receptor gene. Endocrinology 136: 5377–5384, 1995.
 19. Albrandt, K., E., Mull, E. M. G. Brady, J. Herich, C. X. Moore, and K. Beaumont. Molecular cloning of two receptors from rat brain with high affinity for salmon calcitonin. FEBS Lett. 325: 225–232, 1993.
 20. Albrandt, K., E., Mull, G. J. S. Cooper, and M. J. Johnson. Nucleotide sequence of a cDNA for canine amylin. Biochim. Biophys. Acta. 1130: 97–99, 1992.
 21. Albrecht, E., Y., Harada, G. J. S. Cooper, K. Jones, and L. S. Lehman de Gaeta. Synthesis and activity of human amylin and analogs. In: Peptides: Chemistry and Biology, edited by J. A. Smith and J. E. Rivier. Leiden: Escom, 1992, p. 441–443.
 22. Allison, J., L., Malcolm, J. Culvenor, R. K. Bartholomeusz, K. Holmberg, and J. F. Miller. Overexpression of beta2‐microglobulin in transgenic mouse islet beta cells results in defective insulin secretion. Proc. Natl. Acad. Sci. U.S.A. 88: 2070–2074, 1991.
 23. Amara, S. G., J. L., Arriza, S. E. Leff, L. W. Swanson, R. M. Evans, and M. G. Rosenfeld. Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene‐related peptide. Science. 229: 1094–1097, 1985.
 24. Amara, S. G., V., Jonas, M. G. Rosenfeld, E. S. Ong, and R. M. Evans. Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature. 298: 240–244, 1982.
 25. Amiel, S.. Amylin and diabetes. Lancet. 341: 1249–1250, 1993.
 26. Ancill, A. K., Z. A., Bascal, G. Whitaker, and C. G. Dacke. Calcitonin gene‐related peptide promotes transient radiocalcium uptake into chick bone in vivo. Exp. Physiol. 76: 143–146, 1991.
 27. Andersson, S. E.. Effects of intravenous calcitonin gene‐related peptide (CGRP) on local blood flow in the cat. Acta Physiol. Scand. 137: 259–270, 1989.
 28. Andersen, S. L., and T. Clausen. Calcitonin gene‐related peptide stimulates active Na+‐K+ transport in rat soleus muscle. Am. J. Physiol. 264 (Cell Physiol. 33): C419–C429, 1993.
 29. Ando, K., B. L., Pegram, and E. D. Frohlich. Hemodynamic effects of calcitonin gene‐related peptide in spontaneously hypertensive rats. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R425–R429, 1990.
 30. Arimura, A.. Receptors for pituitary adenylate cyclase‐activating polypeptide. Trends Endocrinol. Metab. 3: 288–294, 1992.
 31. Arnelo, U., J. E., Blevins, J. Larsson, J. Permert, P. Westermark, R. D. Reidelberger, and T. E. Adrian. Effects of acute and chronic infusion of islet amyloid polypeptide on food intake in rats. Scand. J. Gastroenterol. 31: 83–89, 1996.
 32. Asai, J., M., Nakazato, K. Kangawa, S. Matsukura, and H. Matsuo. Isolation and sequence determination of rat islet amyloid polypeptide. Biochem. Biophys. Res. Commun. 164: 400–405, 1989.
 33. Asai, J., M. Nakazato. M. Miyazato, K. Kangawa, H. Matsuo, and S. Matsukura. Regional distribution and molecular forms of rat islet amyloid polypeptide. Biochem. Biophys. Res. Commun. 169: 788–795, 1990.
 34. Ashburn, T. T., M. Auger, and P. T. Lansbury, Jr. The structural basis of pancreatic amyloid formation: isotope‐edited spectroscopy in the solid state. J. Am. Chem. Soc. 114: 790–791, 1992.
 35. Ashburn, T. T., H., Han, B. F. McGuinness, and P. T. Lansbury, Jr. Amyloid probes based on Congo red distinguish between fibrils comprising different peptides. Chem. Biol. 3: 351–358, 1996.
 36. Azria, M.. The Calcitonins: Physiology and Pharmacology. Basel: Karger, 1989.
 37. Badman, M. K., K. I., Shennan, J. L. Jermany, K. Docherty, and A. Clark. Processing of pro‐islet amyloid polypeptide (proIAPP) by the prohormone convertase PC2. FEBS Lett. 378: 227–231, 1996.
 38. Bailey, C. J., L. C., Wilkes, J. M. Conlon, P. H. Armstrong, and K. D. Buchanan. Effects of gastric inhibitory polypeptide, vasoactive intestinal polypeptide and peptide leucine histidine isoleucine on the secretion of hormones by isolated mouse pancreatic islets. J. Endocrinol. 125: 375–379, 1990.
 39. Balasubramaniam, A., V., Renugopalakrishnan, M. Stein, J. E. Fischer, and W. T. Chance. Syntheses, structures, and anorectic effects of human and rat amylin. Peptides 12: 919–924, 1991.
 40. Banks, W. A., A. J., Kastin, L. M. Maness, W. Huang, and J. B. Jaspan. Permeability of the blood‐brain barrier to amylin. Life Sci. 57: 1993–2001, 1995.
 41. Barakat, A., J.‐C., Marie, and G. Rosselin. Direct interaction of islet amyloid polypeptide (IAPP) with calcitonin gene‐related peptide (CGRP) receptor present in β cell membrane. Diabetologia 33: A112, 1990.
 42. Barakat, A., J.‐C., Marie, and G. Rosselin. Receptors for calcitonin gene‐related peptide (CGRP) on insulinoma membranes. C. R. Acad. Sci. 111 310: 189–194, 1990.
 43. Barakat, A., G., Rosselin, and J. C. Marie. Characterization of specific calcitonin gene‐related peptide receptors present in hamster pancreatic beta cells. Biosci. Rep. 13: 221–231, 1993.
 44. Barakat, A., G., Skoglund, C. Boissard, G. Rosselin, and J. C. Marie. Calcitonin gene‐related peptide and islet amyloid polypeptide stimulate insulin secretion in RINm5F cells through a common receptor coupled to a generation of cAMP. Biosci. Rep. 14: 1–11, 1994.
 45. Barbezat, G. O., and L. O. Tim. Prolonged inhibition of basal gastric acid secretion by calcitonin in man. S. Afr. Med. J. 63: 813–815, 1983.
 46. Barlet, J. P.. The influence of porcine calcitonin given intragastrically on restraint‐induced gastric ulcers in pigs. Horm. Metab. Res. 6: 517–521, 1974.
 47. Barlet, J. P., and R. F. Bates. Calcitonin given intragastrally and resistance to histamine‐induced peptic ulcer in guinea‐pigs. J. Endocrinol. 63: 407–408, 1974.
 48. Barsony, J., and S. J. Marx. Dual effects of calcitonin and calcitonin gene‐related peptide on intracellular cyclic adenosine 3',5'‐monophosphate in a human breast cancer cell line. Endocrinology 122: 1218–1223, 1988.
 49. Baskaya, M. K., Y., Suzuki, M. Anzai, Y. Seki, K. Saito, M. Takayasu, M. Shibuya, and K. Sugita. Effects of adrenomedullin, calcitonin gene‐related peptide, and amylin on cerebral circulation in dogs. J. Cereb. Blood Flow Metab. 15: 827–834, 1995.
 50. Bauer, H. H., U., Aebi, M. Häner, R. Hermann, M. Müller, T. Arvinte, and H. P. Merkle. Architecture and polymorphism of fibrillar supramolecular assemblies produced by in vitro aggregation of human calcitonin. J. Struct. Biol. 115: 1–15, 1995.
 51. Bauerfiend, P., R., Hof, A. Hof, M. Cucala, S. Siegrist, C. von Ritter, J. A. Fischer, and A. L. Blum. Effects of hCGRP I and II on gastric blood flow and acid secretion in anesthetized rabbits. Am. J. Physiol. 256 (Gastrointest. Liver Physiol. 19): G145–G149, 1989.
 52. Baxter, M. A., and A. H. Barnett. Does amylin have a pathophysiological endocrine role in diabetes mellitus in man? J. Diabetes Complications 8: 63–67, 1994.
 53. Beaumont, K., M. A., Kenney, A. A. Young, and T. J. Rink. High affinity amylin binding sites in rat brain. Mol. Pharmacol. 44: 493–497, 1993.
 54. Beaumont, K., C. X., Moore, R. A. Pittner, K. S. Prickett, S. L. Gaeta, T. J. Rink, and A. A. Young. Differential antagonism of amylin's metabolic and vascular actions with amylin receptor antagonists. Can. J. Physiol. Pharmacol. 73: 1025–1029, 1995.
 55. Beaumont, K., R. A., Pittner, C. X. Moore, D. Wolfe‐Lopez, K. S. Prickett, A. A. Young, and T. J. Rink. Regulation of muscle glycogen metabolism by CGRP and amylin: CGRP receptors not involved. Br. J. Pharmacol. 115: 713–715, 1995.
 56. Becker, H. D., S. J., Konturek, D. D. Reeder, and J. C. Thompson. Effect of calcium and calcitonin on gastrin and gastric secretion in cats. Am. J. Physiol. 225: 277–280, 1973.
 57. Becker, H. D., D. D., Reeder, M. T. Scurry, and J. C. Thompson. Inhibition of gastrin release and gastric secretion by calcitonin in patients with peptic ulcer. Am. J. Surg. 127: 71–75, 1974.
 58. Beeley, N. R. A., and K. S. Prickett. The amylin, CGRP and calcitonin family of peptides. Expert Opin. Ther. Patents 6: 555–567, 1996.
 59. Beglinger, C., W., Born, P. Hildebrand, J. W. Ensinck, F. Burkhardt, J. A. Fischer, and K. Gyr. Calcitonin gene‐related peptides I and II and calcitonin: distinct effects on gastric acid secretion in humans. Gastroenterology 95: 958–965, 1988.
 60. Beglinger, C, W., Born, R. Munch, A. Kurtz, J. P. Gutzwiller, K. Jager, and J. A. Fischer. Distinct hemodynamic and gastric effects of human CGRP I and II in man. Peptides 12: 1347–1351, 1991.
 61. Bell, D., and B. J. McDermott. Inhibition by verapamil and diltiazem of agonist‐stimulated contractile responses in mammalian ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 27: 1977–1987, 1995.
 62. Bell, D., K. D., Schluter, X. J. Zhou, B. J. McDermott, and H. M. Piper. Hypertrophic effects of calcitonin gene‐related peptide (CGRP) and amylin on adult mammalian ventricular cardiomyocytes. J. Mol. Cell. Cardiol. 27: 2433–2443, 1995.
 63. Bell, E. T.. Hyalinization of the islets of Langerhans in non‐diabetic individuals. Am. J. Pathol. 35: 801–805, 1959.
 64. Bell, G. I.. Molecular defects in diabetes mellitus. Diabetes 40: 413–422, 1991.
 65. Bell, G. I., and T. Reisine. Molecular biology of somatostatin receptors. Trends Neurosci. 16: 34–38, 1993.
 66. Bell, G. I., R. F., Santerre, and G. T. Mullenbach. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature 302: 716–718, 1983.
 67. Beloff‐Chain, A., P., Carr, and A. Watkinson. Action of beta‐cell tropin on insulin secretion in vivo and on lipid synthesis. FEBS Lett. 139: 230–232, 1982.
 68. Beloff‐Chain, A., J., Morton, S. Dunmore, G. W. Taylor, and H. R. Morris. Evidence that the insulin secretagogue, beta‐cell‐tropin, is ACTH22–39 Nature 301: 255–258, 1983.
 69. Bendayan, M., and I.‐S. Park. Presence of extrapancreatic islets of Langerhans in the duodenal wall of the rat. Diabetologia 34: 604–606, 1991.
 70. Bernard, G. W., and C. Shih. The osteogenic stimulating effect of neuroactive calcitonin gene‐related peptide. Peptides 11: 625–632, 1990.
 71. Bernoussi, A., and F. Rioux. Effects of capsaicin desensitization on the stimulatory effect of kinins, prostaglandins, biogenic amines and various drugs in guinea‐pig isolated atria. Br. J. Pharmacol. 96: 563–572, 1989.
 72. Berzlanovich, A., B., Ludvik, E. Hartter, B. Lell, H. Graf, and R. Prager. Increased amylin levels in patients on chronic hemodialysis. Diabetologia 33: A111, 1990.
 73. Betsholtz, C., L., Christmanson, S. Gebre‐Medhin, and P. Westermark. Islet amyloid polypeptide—hen or egg in type 2 diabetes pathogenesis? Acta Oncol. 32: 149–154, 1993.
 74. Betsholtz, C., V., Svensson, F. Rorsman, U. Engström, G. T. Westermark, E. Wilander, K. Johnson, and P. Westermark. Islet amyloid polypeptide (IAPP): cDNA cloning and identification of an amyloidogenic region associated with the species‐specific occurrence of age‐related diabetes mellitus. Exp. Cell Res. 183: 484–493, 1989.
 75. Betts, J. J., J. R., Lupien, and E. S. Horton. Amylin induces in vivo insulin resistance in rats. Diabetes 40 (Suppl. 1): 35A, 1991.
 76. Betz, H., and J.‐P. Changeux. Regulation of muscle acetylcholine receptor synthesis in vitro by cyclic nucleotide derivatives. Nature 278: 749–752, 1979.
 77. Bevis, P. J. R., M., Zaidi, and I. MacIntyre. A dual effect of calcitonin gene‐related peptide on plasma calcium levels in the chick. Biochem. Biophys. Res. Commun. 169: 846–850, 1990.
 78. Bhogal, R., R. L., Sheldrick, R. A. Coleman, D. M. Smith, and S. R. Bloom. The effects of IAPP and CGRP on guinea pig tracheal smooth muscle in vitro. Peptides 15: 1243–1247, 1994.
 79. Bhogal, R., D. M., Smith, and S. R. Bloom. Investigation and characterization of binding sites for islet amyloid polypeptide in rat membranes. Endocrinology 130: 906–913, 1992.
 80. Bhogal, R., D. M., Smith, and S. R. Bloom. Solubilization of binding sites for IAPP and CGRP from rat lung. Peptides 15: 1383–1390, 1994.
 81. Bhogal, R., D. M., Smith, P. Purkiss, and S. R. Bloom. Molecular identification of binding sites for calcitonin gene‐related peptide (CGRP) and islet amyloid polypeptide (IAPP) in mammalian lung: species variation and binding of truncated CGRP and IAPP. Endocrinology 133: 2351–2361, 1993.
 82. Bieberdorf, F. A., T. K., Gray, J. H. Walsh, and J. S. Fordtran. Effect of calcitonin on meal‐stimulated gastric acid secretion and serum gastrin concentration. Gastroenterology 66: 343–346, 1974.
 83. Billingham, N., A., Beloff‐Chain, and M. A. Cawthorne. Identification of beta‐cell‐tropin, a peptide of the pituitary pars intermedia which stimulates insulin secretion in plasma from genetically obese (ob/ob) mice. J. Endocrinol. 94: 125–130, 1982.
 84. Bjurholm, A.. Neuroendocrine peptides in bone. Int. Orthop. 15: 325–329, 1991.
 85. Bjurholm, A., A., Kreicbergs, E. Brodin, and M. Schultzberg. Substance P‐ and CGRP‐immunoreactive nerves in bone. Peptides 9: 165–171, 1985.
 86. Blackard, W. G., J. N., Clore, and J. M. Kellum. Amylin/insulin secretory ratios in morbidly obese man: inverse relationship with glucose disappearance rate. J. Clin. Endocrinol. Metab. 78: 1257–1260, 1994.
 87. Blessing, M., U., Ruther, and W. W. Franke. Ectopic synthesis of epidermal cytokeratins in pancreatic islet cells of transgenic mice interferes with cytoskeletal order and insulin production. J. Cell Biol. 120: 743–755, 1993.
 88. Blosser, J. C., and S. H. Appel. Regulation of acetylcholine receptor by cyclic AMP. J. Biol. Chem. 255: 1235–1238, 1980.
 89. Boam, D. S. W., A. R., Clark, and K. Docherty. Positive and negative regulation of the human insulin gene by multiple trans‐acting factors. J. Biol. Chem. 265: 8285–8296, 1990.
 90. Bobalik, G. R., R. R., Kleszynski, J. P. Aldred, J. W. Bastian, and R. J. Schlueter. Differential effects of salmon, porcine, and human calcitonin on gastric secretion and gastric emptying in rats. Proc. Soc. Exp. Biol. Med. 147: 284–288, 1974.
 91. Bolman, R. M., Jr., C. W. Cooper, S. C. Garner, P. L. Munson, and S. A. Wells, Jr. Stimulation of gastrin secretion in the pig by parathyroid hormone and its inhibition by thyrocalcitonin. Endocrinology 100: 1014–1021, 1977.
 92. Bööj, S., M., Goldstein, R. Fischer‐Colbrie, and A. Dahlström. Calcitonin gene‐related peptide and chromogranin A: presence and intra‐axonal transport in lumbar motor neurons in the rat, a comparison with synaptic vesicle antigens in immunohistochemical studies. Neuroscience 30: 479–501, 1989.
 93. Born, W., C., Beglinger, and J. A. Fischer. Diagnostic relevance of the amino‐terminal cleavage peptide of procalcitonin (PAS‐57), calcitonin and calcitonin gene‐related peptide in medullary thyroid carcinoma. Regul. Pept. 32: 311–319, 1991.
 94. Bracq, S., B., Clement, E. Pidoux, M. S. Moukhtar, and A. Jullienne. CGRP is expressed in primary cultures of human hepatocytes and in normal liver. FEBS Lett. 351: 63–66, 1994.
 95. Bracq, S., M., Machairas, B. Clement, E. Pidoux, M. Andreoletti, M. S. Moukhtar, and A. Jullienne. Calcitonin gene expression in normal human liver. FEBS Lett. 331 : 15–18, 1993.
 96. Bradbury, A. F., M. D. A., Finnie, and D. G. Smyth. Mechanism of C‐terminal amide formation by pituitary enzymes. Nature 298: 686–688, 1982.
 97. Bradbury, A. F., and D. G. Smyth. Biosynthesis of the C‐terminal amide in peptide hormones. Biosci. Rep. 7: 907–916, 1987.
 98. Brain, S. D., I., MacIntyre, S. Wimalawansa, and T. J. Williams. Amylin amide, which is structurally similar to calcitonin gene‐related peptide (CGRP), stimulates increased blood flow in vitro. Eur. J. Pharmacol. 183: 2221, 1990.
 99. Brain, S. D., and T. J. Williams. Substance P regulates the vasodilator activity of calcitonin gene‐related peptide. Nature 335: 73–75, 1988.
 100. Brain, S. D., T. J., Williams, J. R. Tipping, H. R. Morris, and I. MacIntyre. Calcitonin gene‐related peptide is a potent vasodilator. Nature 313: 54–56, 1985.
 101. Brain, S. D., S., Wimalawansa, I. MacIntyre, and T. J. Williams. The demonstration of vasodilator activity of pancreatic amylin amide in the rabbit. Am. J. Pathol. 136: 487–490, 1990.
 102. Braslis, K. G., D. R., Fletcher, A. Shulkes, B. A. Scoggins, J. Tresham, and K. J. Hardy. The cardiovascular effects of human calcitonin gene‐related peptide in conscious sheep. J. Hypertens. 6: 881–887, 1988.
 103. Bratveit, M., A., Haugan, and K. B. Helle. Effects of calcitonin gene‐related peptide (CGRP) on regional hemodynamics and on selected hepato‐splanchnic arteries from the rat: a comparison with VIP and atriopeptin II. Scan. J. Clin. Lab. Invest. 51: 167–174, 1991.
 104. Bray, G. A.. Nutrient intake is modulated by peripheral peptide administration. Obes. Res. 3 (Suppl. 4): 569S–572S, 1995.
 105. Breeze, A. L., T. S., Harvey, R. Bazzo, and I. D. Campbell. Solution structure of human calcitonin gene‐related peptide by 1H NMR and distance geometry with restrained molecular dynamics. Biochemistry 30: 575–582, 1991.
 106. Breimer, L. H., I., MacIntyre, and M. Zaidi. Peptides from the calcitonin genes: molecular genetics, structure and function. Biochem. J. 255: 377–390, 1988.
 107. Brenner, W., T. R., Hendrix, and P. R. McHugh. Regulation of the gastric emptying of glucose. Gastroenterology 85: 76–82, 1983.
 108. Bretherton‐Watt, D., S. E., Bloom, M. A. Ghatei, J. Wilding, H. Jamal, R. Batt, and S. R. Bloom. Islet amyloid polypeptide (IAPP) and 7B2 in the obese (ob/ob) mouse pancreas. J. Endocrinol. 129 (Suppl.): 91A, 1991.
 109. Bretherton‐Watt, D., M. A., Ghatei, S. E. Bloom, S. Williams, and S. R. Bloom. Islet amyloid polypeptide‐like immunoreactivity in human tissue and endocrine tumors. J. Clin. Endocrinol. Metab. 76: 1072–1074, 1993.
 110. Bretherton‐Watt, D., M. A., Ghatei, S. R. Bloom, H. Jamal, G. J. Ferrier, S. I. Girgis, and S. Legon. Altered islet amyloid polypeptide (amylin) gene expression in rat models of diabetes. Diabetologia 32: 881–883, 1989.
 111. Bretherton‐Watt, D., M. A., Ghatei, H. Jamal, S. G. Gilbey, P. M. Jones, and S. R. Bloom. The physiology of calcitonin gene‐related peptide in the islet compared with that of islet amyloid polypeptide (amylin). Ann. N.Y. Acad. Sci. 657: 299–312, 1992.
 112. Bretherton‐Watt, D., M. A., Ghatei, S. Legon, H. Jamal, K. Suda, and S. R. Bloom. Depletion of islet amyloid polypeptide in the spontaneously diabetic (BB) Wistar rat. J. Mol. Endocrinol. 6: 3–7, 1991.
 113. Bretherton‐Watt, D., M. A., Ghatei, K. Suda, H. Jamal, S. G. Gilbey, and S. R. Bloom. IAPP (amylin) in normal human tissues and neuroendocrine tumours. J. Endocrinol. 124 (Suppl.): 109A, 1990.
 114. Bretherton‐Watt, D., S. G., Gilbey, M. A. Ghatei, J. Beacham, and S. R. Bloom. Failure to establish islet amyloid polypeptide (amylin) as a circulating beta cell inhibiting hormone in man. Diabetologia 33: 115–117, 1990.
 115. Bretherton‐Watt, D., S. G., Gilbey, M. A. Ghatei, J. Beacham, A. D. Macrae, and S. R. Bloom. Very high concentrations of islet amyloid polypeptide are necessary to alter the insulin response to intravenous glucose in man. J. Clin. Endocrinol. Metab. 74: 1032–1035, 1992.
 116. Bretherton‐Watt, D., N., Gore, and D. S. Boam. Insulin upstream factor 1 and a novel ubiquitous factor bind to the human islet amyloid polypeptide/amylin gene promoter. Biochem. J. 313: 495–502, 1996.
 117. Broderick, C. L., G. S., Brooke, R. D. DiMarchi, and G. Gold. Human and rat amylin have no effects on insulin secretion in isolated rat pancreatic islets. Biochem. Biophys. Res. Commun. 117: 932–938, 1991.
 118. Brown, K., A., Menius, E. Sandefer, J. Edwards, and M. James. The effects of amylin on changes in plasma glucose and gastric emptying following an oral glucose load in conscious dogs. Diabetes 43 (Suppl. 1): A536, 1994.
 119. Bryer‐Ash, M., L., Follett, N. Hodges, and S. Wimalawansa. Amylin‐mediated reduction in insulin sensitivity corresponds to reduced insulin receptor kinase activity in the rat in vivo. Metabolism 44: 705–711, 1995.
 120. Bucht, E., O., Wisen, B. Granberg, and H. E. Sjoberg. Immunoextracted calcitonin in human gastric secretion. Peptides 9: 295–299, 1988.
 121. Buckle, V. J., A. M., Marsland, S. Mosselman, and J. W. M. Höppener. Localization of the human islet amyloid polypeptide (IAPP) gene to 12p11.2‐p12.3. Cytogenet. Cell Genet. 51: 972, 1989.
 122. Bueno, L., J., Fioramonti, and J. P. Ferre. Calcitonin—C.N.S. action to control the pattern of intestinal mobility in rats. Peptides 4: 63–66, 1983.
 123. Bunnett, N. W., W. S., Helton, H. T. Debas, and J. W. Ensinck. CGRP stimulates the release of pro‐somatostatin‐derived peptides from the gastric fundus. Am. J. Physiol. 258 (Gastrointest. Liver Physiol. 21): G316–G319, 1990.
 124. Burgevin, M. C., M., Passat, N. Daniel, M. Capet, and A. Doble. Congo red protects against toxicity of beta‐amyloid peptides on rat hippocampal neurones. Neuroreport 5: 2429–2432, 1994.
 125. Bushfield, M., A., Savage, N. J. Morris, and M. D. Houslay. A mnemonical or negative‐cooperativity model for the activation of adenylate cyclase by a common G‐protein‐coupled calcitonin‐gene‐related neuropeptide (CGRP)/amylin receptor. Biochem J. 293: 229–236, 1993.
 126. Butler, P. C., J., Chou, W. B. Carter, Y.‐N. Wang, B.‐H. Bu, D. Chang, J.‐K. Chang, and R. A. Rizza. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 39: 752–756, 1990.
 127. Carstairs, J. R.. Distribution of calcitonin gene‐related peptide receptors in the lung. Eur. J. Pharmacol. 140: 357–358, 1987.
 128. Castillo, M. J., A. J., Scheen, and P. J. Lefèbvre. Amylin/islet amyloid polypeptide: biochemistry, physiology, patho‐physiology. Diabetes Metab. 21: 3–25, 1995.
 129. Chabre, O., B. R., Conklin, H. Y. Lin, H. F. Lodish, E. Wilson, H. E. Ives, L. Catanzariti, B. A. Hemmings, and H. R. Bourne. A recombinant calcitonin receptor independently stimulates 3',5'‐cyclic adenosine monophosphate and Ca2+/inositol phosphate signaling pathways. Mol. Endocrinol. 6: 551–556, 1992.
 130. Chakder, S., and S. Rattan. [Tyr0]‐calcitonin gene‐related peptide 28–37 (rat) as a putative antagonist of calcitonin gene‐related peptide responses on opossum internal anal sphincter smooth muscle. J. Pharmacol. Exp. Ther. 253: 200–206, 1990.
 131. Chakder, S., and S. Rattan. Antagonism of calcitonin gene‐related peptide (CGRP) by human CGRP(8–37): role of CGRP in internal anal sphincter relaxation. J. Pharmacol. Exp. Ther. 256: 1019–1024, 1991.
 132. Chakraborty, M., D., Chatterjee, S. Kellokumpu, H. Rasmussen, and R. Baron. Cell cycle‐dependent coupling of calcitonin receptors to different G proteins. Science 251: 1078–1082, 1991.
 133. Champion, H. C., C. D., Duperier, W. E. Fitzgerald, D. G. Lambert, W. A. Murphy, D. H. Coy, and P. J. Kadowitz. (MPR‐14)‐rADM(14–50), a novel analog of adrenomedullin, possesses potent vasodilator activity in the hindlimb vascular bed of the cat. Life Sci. 59: PL1–PL7, 1996.
 134. Chance, W. T., A., Balasubramaniam, X. Chen, and J. E. Fischer. Tests of adipsia and conditioned taste aversion following the intra‐hypothalamic injection of amylin. Peptides 13: 961–964, 1992.
 135. Chance, W. T., A., Balasubramaniam, F. S. Zhang, S. J. Wimalawansa, and J. E. Fischer. Anorexia following the intrahypothalamic administration of amylin. Brain Res. 539: 352–354, 1991.
 136. Chantry, A., E. A., Foot, B. Leighton, A. J. Day, and A. C. Willis. Biotinyl analogues of amylin as biologically active probes for amylin/CGRP receptor recognition. FEBS Lett. 296: 123–127, 1992.
 137. Chantry, A., B., Leighton, and A. J. Day. Cross‐reactivity of amylin with calcitonin‐gene‐related peptide binding sites in rat liver and skeletal muscle membranes. Biochem. J. 277: 139–143, 1991.
 138. Chargé, S. B. P., E. J. P. de Koning, and A. Clark. Effect of pH and insulin on fibrillogenesis of islet amyloid polypeptide in vitro. Biochemistry 34: 14588–14593, 1995.
 139. Chargé, S. B. P., M. M., Esiri, C. A. Bethune, B. C. Hansen, and A. Clark. Apolipoprotein E is associated with islet amyloid and other amyloidoses—implications for Alzheimer's disease. J. Pathol. 179: 443–447, 1996.
 140. Charles, C. J., M. T., Rademaker, A. M. Richards, G. J. S. Cooper, N.‐Y. Jing, D. H. Coy, and M. G. Nicholls. Hemodynamic, hormonal, and renal effects of adrenomedullin in conscious sheep. Am. J. Physiol. 272: (Regulatory Integrative Comp. Physiol. 41): R2040–R2047, 1997.
 141. Chatterjee, T. K., J. A., Moy, and R. A. Fisher. Characterization and regulation of high affinity calcitonin gene‐related peptide receptors in cultured neonatal rat cardiac myocytes. Endocrinology. 128: 2731–2738, 1991.
 142. Chen, R. Y., D. S., Li, and P. H. Guth. Role of calcitonin gene‐related peptide in capsaicin‐induced gastric submucosal arteriolar dilation. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H1350–H1355, 1992.
 143. Cheng, D. Y., B. J., DeWitt, M. J. Wegmann, D. H. Coy, K. Bitar, W. A. Murphy, and P. J. Kadowitz. Synthetic human adrenomedullin and ADM15–52 have potent short‐lasting vasodilator activity in the pulmonary vascular bed of the cat. Life Sci. 55: PL251–PL256, 1994.
 144. Chiba, T., T., Taminato, S. Kadowaki, Y. Goto, K. Mori, Y. Seino, H. Abe, K. Chihara, S. Matsukura, T. Fujita, and T. Kondo. Effects of [Asu1,7]‐eel calcitonin on gastric somatostatin and gastrin release. Gut 21: 94–97, 1980.
 145. Chiba, T., A., Yamaguchi, T. Yamatani, A. Nakamura, T. Morishita, T. Inui, M. Fukase, T. Noda, and T. Fujita. Calcitonin gene‐related peptide receptor antagonist human CGRP‐(8–37). Am. J. Physiol. 256 (Endocrinol. Metab. 19): E331–E335, 1989.
 146. Chijiiwa, Y., T., Kabemura, T. Misawa, O. Kawakami, and H. Nawata. Direct inhibitory effect of calcitonin gene‐related peptide and atrial natriuretic peptide on gastric smooth muscle cells via different mechanisms. Life Sci. 50: 1615–1623, 1992.
 147. Chin, S. Y., J. M., Hall, S. D. Brain, and I. K. Morton. Vasodilator responses to calcitonin gene‐related peptide (CGRP) and amylin in the rat isolated perfused kidney are mediated via CGRP1 receptors. J. Pharmacol. Exp. Ther. 269: 989–992, 1994.
 148. Chini, E. N., E., Choi, J. P. Grande, J. C. Burnett, and T. P. Dousa. Adrenomedullin suppresses mitogenesis in rat mesangial cells via cAMP pathway. Biochem. Biophys. Res. Commun. 215: 868–873, 1995.
 149. Choi, S. B., S., Frontoni, and L. Rosetti. Mechanisms by which calcitonin gene‐related peptide antagonizes insulin action in vivo. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E321–E325, 1991.
 150. Chou, P. Y., and G. D. Fasman. Empirical predictions of protein conformation. Annu. Rev. Biochem. 47: 251–276, 1978.
 151. Christmanson, L., C., Betsholtz, A. Leckström, U. Engström, C. Cortie, K. H. Johnson, T. E. Adrian, and P. Westermark. Islet amyloid polypeptide in the rabbit and European hare: studies on its relationship to amyloidogenesis. Diabetologia 36: 183–188, 1993.
 152. Christmanson, L., F., Rorsman, G. Stenman, P. Westermark, and C. Betsholtz. The human islet amyloid polypeptide (IAPP) gene. Organization, chromosomal localization and functional identification of a promoter region. FEBS Lett. 267: 160–166, 1990.
 153. Chuang, L. M., H. P., Wu, T. S. Jou, T. Y. Tai, and B. J. Lin. Inhibitory effect of islet amyloid polypeptide on glucose‐induced proinsulin biosynthesis in rat insulinoma cells. Pancreas 7: 472–476, 1992.
 154. Churchill, P. C.. Second messengers in renin secretion. Am. J. Physiol. 249 (Renal Fluid Electrolyte Physiol. 18): F175–F184, 1985.
 155. Clark, A.. Islet amyloid and type 2 diabetes. Diabet. Med. 6: 561–567, 1989.
 156. Clark, A.. Islet amyloid: an enigma of type 2 diabetes. Diabetes Metab. Rev. 8: 117–132, 1992.
 157. Clark, A., S. B. P., Chargé, M. K. Badman, and E. J. P. de Koning. Islet amyloid in type 2 (non‐insulin‐dependent) diabetes. APMIS 104: 12–18, 1996.
 158. Clark, A., S. B. P., Chargé, M. K. Badman, D. A. Macarthur, and E. J. P. de Koning. Islet amyloid polypeptide—actions and role in the pathogenesis of diabetes. Biochem. Soc. Trans. 24: 594–599, 1996.
 159. Clark, A., G. J. S., Cooper, C. E. Lewis, J. F. Morris, A. C. Willis, K. B. M. Reid, and R. C. Turner. Islet amyloid formed from diabetes‐associated peptide may be pathogenic in type‐2 diabetes. Lancet 2: 231–234, 1987.
 160. Clark, A., E. J. de Koning, A. T. Hattersley, B. C. Hansen, C. S. Yajnik, and J. Poulton. Pancreatic pathology in non‐insulin dependent diabetes (NIDDM). Diabetes Res. Clin. Pract. 28: S39–S47, 1995.
 161. Clark, A., C. A., Edwards, L. R. Ostle, R. Sutton, J. B. Rothbard, J. F. Morris, and R. C. Turner. Localization of islet amyloid peptide in lipofuscin bodies and secretory granules of human B‐cells and in islets of type‐2 diabetic subjects. Cell Tissue Res. 257: 179–185, 1989.
 162. Clark, A., J., Lloyd, A. Novials, J. C. Hutton, and J. F. Morris. Localization of islet amyloid polypeptide and its carboxy terminal flanking peptide in islets of diabetic man and monkey. Diabetologia 34: 449–451, 1991.
 163. Clark, A., J. F., Morris, L. A. Scott, A. McLay, A. Foulis, N. Bodkin, and B. C. Hansen. Amyloid forms intracellularly in B‐cells of human insulinomas and monkey islets. Diabetologia 33 (Suppl. 1): A111, 1990.
 164. Clark, A., M. F., Saad, T. Nezzer, C. Uren, W. C. Knowler, P. H. Bennet and R. C. Turner. Islet amyloid polypeptide in diabetic and non‐diabetic Pima indians. Diabetologia 33: 285–289, 1990.
 165. Clark, A., C. A., Wells, I. D. Buley, J. K. Cruickshank, R. I. Vanhegan, D. R. Matthews, G. J. S. Cooper, R. R. Holman, and R. C. Turner. Islet amyloid, increased A‐cells, reduced B‐cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res. 9: 151–159, 1988.
 166. Clark, A., S. M. Yon, E. J. de Koning, and R. R. Holman. Auto‐antibodies to islet amyloid polypeptide in diabetes. Diabet. Med. 8: 668–673, 1991.
 167. Clausen, T.. Long‐ and short‐term regulation of the Na+‐K+ pump in skeletal muscle. News Physiol. Sci. 11: 24–30, 1996.
 168. Clausen, T.. The Na+,K+ pump in skeletal muscle—quantification, regulation and functional significance. Acta Physiol. Scand. 156: 227–235, 1996.
 169. Clementi, G., E., Bapisarda, C. E. Fiore, A. Prato, M. Amico‐Roxas, A. Millia, R. Bernardini, S. Maugeri, and U. Scapagnini. Effects of salmon calcitonin on plasma renin activity and systolic blood pressure in the rat. Neurosci. Lett. 166: 351–353, 1986.
 170. Clementi, G., A., Caruso, V. M. Cutuli, A. Prato, E. de Bernardis, C. E. Fiore, and M. Amico‐Roxas. Anti‐inflammatory activity of amylin and CGRP in different experimental models of inflammation. Life Sci. 57: L193–L197, 1995.
 171. Clementi, G., A., Caruso, V. M. C. Cutuli, E. Debernardis, A. Prato, and M. Amicoroxas. Amylin given by central or peripheral routes decreases gastric emptying and intestinal transit in the rat. Experientia 52: 677–679, 1996.
 172. Clementi, G., C., Valerio, I. Emmi, A. Prato, and F. Drago. Behavioral effects of amylin injected intracerebroventricularly in the rat. Peptides 17: 589–591, 1996.
 173. Cobb, J. E., D. B., Kassel, E. E. Sugg, W. Burkhart, N. Geddie, A. Steele, and R. J. Anderegg. Mercury in a commercial preparation of rat amylin. Pept. Res. 5: 161–164, 1992.
 174. Cockburn, D. C., S. M., Holt, A. Roberts, G. J. S. Cooper, K. B. M. Reid, and Y. Boyd. Localization of the amylin locus to chromosome 12. Cytogenet. Cell Genet. 51: 977, 1989.
 175. Cody, W. L., A. B., Giordani, S. Werness, M. D. Reily, J. A. Bristol, G. Zhu, and D. T. Dudley. Analysis of rat amylin amide from commercial sources: identification of a mercury complex. Bioorg. Med. Chem. Lett. 1: 415–420, 1991.
 176. Colburn, W. A., A. B., Gottlieb, J. Koda, and O. G. Kolterman. Pharmacokinetics and pharmacodynamics of AC137 (25,28,29 tripro‐amylin, human) after intravenous bolus and infusion doses in patients with insulin‐dependent diabetes. J. Clin. Pharmacol. 36: 13–24, 1996.
 177. Collyear, K., S. I., Girgis, G. Saunders, I. MacIntyre, and G. Holt. Predicted structure of the bovine calcitonin gene‐related peptide and the carboxy‐terminal flanking peptide of bovine calcitonin precursor. J. Mol. Endocrinol. 6: 147–152, 1991.
 178. Conlon, J. M., G. P., McGregor, S. Grondal, and L. Grimelius. Synthesis of alpha‐ and beta‐calcitonin gene‐related peptide by a human phaeochromacytoma. Peptides. 10: 327–331, 1989.
 179. Cook, J. T. E., P. P., Patel, A. Clark, J. W. M. Höppener, C. J. M. Lips, S. Mosselman, S. O'Rahilly, R. C. Page, J. S. Wainscoat, and R. C. Turner. Non‐linkage of the islet amyloid polypeptide gene with type 2 (non‐insulin‐dependent) diabetes mellitus. Diabetologia 34: 103–108, 1991.
 180. Cooper, C. W.. Recent advances with thyrocalcitonin. Ann. Clin. Lab. Sci. 6: 119–129, 1976.
 181. Cooper, C. W., R. M. Bolman, III., W. M. Linehan, and S. A. J. Wells. Interrelationships between calcium, calcemic hormones and gastrointestinal hormones. Recent Prog. Horm. Res. 34: 259–283, 1978.
 182. Cooper, G. J. S., The Characterisation of Amylin and Analysis of Its Role in Diabetes Mellitus. Oxford: Univ. of Oxford, 1989. Dissertation.
 183. Cooper, G. J. S.. Amylin and insulin co‐replacement therapy for insulin‐dependent (type 1) diabetes mellitus. Med. Hypotheses 36: 284–288, 1991.
 184. Cooper, G. J. S.. Rôle de l'amyline dans la régulation physiologique et pathophysiologique du métabolisme énergétique. In: Journées Annuelles de Diabétologie de l'Hôtel‐Dieu. edited by G. Slama. Paris: Flammarion, 1991. P. 125–139.
 185. Cooper, G. J. S.. Amylin compared with calcitonin gene‐related peptide: structure, biology, and relevance to metabolic disease. Endocr. Rev. 15: 163–201, 1994.
 186. Cooper, G. J. S.. Therapeutic potential of amylin analogues in diabetes mellitus. Biodrugs 10: 1–9, 1998.
 187. Cooper, G. J. S., A. J., Day, A. C. Willis, A. N. Roberts, K. B. M. Reid, and B. Leighton. Amylin and the amylin gene: structure, function and relationship to islet amyloid and to diabetes mellitus. Biochim. Biophys. Acta 1014: 247–258, 1989.
 188. Cooper, G. J. S., H.‐J., Huang, M.‐W. Wang, J. E. Koda, B. Gedulin, L. S. Lehman de Gaeta, K. Beaumont, D. Wolfe‐Lopez, T. J. Rink, and A. A. Young. Amylin action: physiologic basis and pathologic correlations. In: Diabetes, edited by: H. Rifkin, J. A. Colwell, and S. I. Taylor. Amsterdam: Elsevier, p. 497–500, 1991.
 189. Cooper, G. J. S., B., Leighton, G. D. Dimitriadis, M. Parry‐Billings, J. M. Kowalchuk, K. Howland, J. B. Rothbard, A. C. Willis, and K. B. M. Reid. Amylin found in amyloid deposits in human type 2 diabetes mellitus may be a hormone that regulates glycogen metabolism in skeletal muscle. Proc. Natl. Acad. Sci. U.S.A. 85: 7763–7766, 1988.
 190. Cooper, G. J. S., B., Leighton, A. C. Willis, and A. J. Day. The amylin superfamily: a novel grouping of biologically active polypeptides related to the insulin A‐chain. Prog. Growth Factor Res. 1: 99–105, 1989.
 191. Cooper, G. J. S., and C. A. Tse. Amylin, amyloid and age‐related disease. Drugs Aging 9: 202–212, 1996.
 192. Cooper, G. J. S., A. C., Willis, A. Clark, R. C. Turner, R. B. Sim, and K. B. M. Reid. Purification and characterization of a peptide from amyloid‐rich pancreases of type 2 diabetic patients. Proc. Natl. Acad. Sci. U.S.A. 84: 8628–8632, 1987.
 193. Cooper, G. J. S., A. C., Willis, and B. Leighton. Amylin hormone [letter] Nature 340: 272, 1989.
 194. Cooper, G. J. S., A. C., Willis, K. B. M. Reid, A. Clark, C. A. Baker, R. C. Turner, C. E. Lewis, J. F. Morris, K. Howland, and J. B. Rothbard. Diabetes‐associated peptide [letter]. Lancet. 2: 966, 1987.
 195. Cooper, M. E., P. G., McNally, P. A. Phillips, and C. I. Johnston. Amylin stimulates plasma renin concentration in humans. Hypertension. 26: 460–464, 1995.
 196. Copp, D. H., E. C., Cameron, B. A. Cheney, G. F. Davidson, and K. G. Henze. Evidence for calcitonin—a new hormone from the parathyroid that lowers blood calcuim. Endocrinology 70: 638–649, 1962.
 197. Cornish, J., K. E., Callon, G. J. S. Cooper, and I. R. Reid. Amylin stimulates osteoblast proliferation and increases mineralized bone volume in adult mice. Biochem. Biophys. Res. Commun. 207: 133–139, 1995.
 198. Cornish, J., K. E., Callon, Q. C. Lin, T. B. Mulvey, G. J. S. Cooper, and I. R. Reid. Dissociation of amylin's effects on bone formation and bone resorption. Program, Australian and New Zealand Bone and Mineral Society Annual Scientific Meeting, Sydney, Australia. October, 1996, p. 50.
 199. Cort, J., Z., Liu, G. Lee, S. M. Harris, K. S. Prickett, L. S. Gaeta, and N. H. Andersen. Beta‐structure in human amylin and two designer beta‐peptides: CD and NMR spectroscopic comparisons suggest soluble beta‐oligomers and the absence of significant populations of beta‐strand dimers. Biochem. Biophys. Res. Commun. 204: 1088–1095, 1994.
 200. Couce, M. O., L., Kane, T. D. O'Brien, J. Charlesworth, W. Soeller, J. McNeish, D. Kreutter, P. Roche, and P. C. Butler. Treatment with growth hormone and dexamethasone in mice transgenic for human islet amyloid polypeptide causes islet amyloidosis and beta‐cell dysfunction. Diabetes 45: 1094–1101, 1996.
 201. Couce, M. O., T. D., O'Brien, A. Moran, P. C. Roche, and P. C. Butler. Diabetes mellitus in cystic fibrosis is characterized by islet amyloidosis. J. Clin. Endocrinol. Metab. 81: 1267–1272, 1996.
 202. Coupe, M. O., J. C. W. Mak. M. Yacoub, P. J. Oldershaw, and P. J. Barnes. Autoradiographic mapping of calcitonin gene‐related peptide receptors in human and guinea pig hearts. Circulation 81: 741–747, 1990.
 203. Creese, R., and J. Northover. Maintenance of isolated diaphragm with normal sodium content. J. Physiol. (Lond.) 155: 343–357, 1961.
 204. D'Alessio, D. A., C. B., Verchere, S. E. Kahn, V. Hoagland, D. G. Baskin, R. D. Palmiter, and J. W. Ensinck. Pancreatic expression and secretion of human islet amyloid polypeptide in a transgenic mouse. Diabetes 43: 1457–1461, 1994.
 205. Datta, H. K., M., Zaidi, S. J. Wimalawansa, M. A. Ghatei, J. L. Beacham, S. R. Bloom, and I. MacIntyre. In vivo and in vitro effects of amylin and amylin‐amide on calcium metabolism in the rat and rabbit. Biochem. Biophys. Res. Commun. 162: 876–881, 1989.
 206. Davenport, M., J. L., Morton, A. Beloff‐Chain, S. J. Dunmore, and M. A. Cawthorne. The effects of insulin and the pituitary peptide beta‐cell tropin on the incorporation of D‐3‐3H‐glucose into lipid in brown adipocytes from lactating and non‐lactating rats. Biochem. Biophys. Res. Commun. 181: 1437–1441, 1991.
 207. Dayhoff, M. O., W. C., Barker, and L. T. Hunt. Establishing homologies in protein sequences. Methods Enzymol. 191: 524–545, 1983.
 208. Deems, R. O., F., Cardinaux, R. W. Deacon, and D. A. Young. Amylin or CGRP (8–37) fragments reverse amylin‐induced inhibition of 14C‐glycogen accumulation. Biochem. Biophys. Res. Commun. 181: 116–120, 1991.
 209. Deems, R. O., R. W., Deacon, and D. A. Young. Amylin activates glycogen phosphorylase and inactivates glycogen synthase via a cAMP‐independent mechanism. Biochem. Biophys. Res. Commun. 174: 716–720, 1991.
 210. DeFronzo, R. A.. Glucose intolerance and aging: and evidence for tissue insensitivity to insulin. Diabetes 28: 1095–1101, 1979.
 211. Dégano, P., R. A., Silvestre, M. Salas, E. Peiró, and J. Marco. Amylin inhibits glucose‐induced insulin secretion in a dose‐dependent manner. Study in the perfused rat pancreas. Regul. Pept. 43: 91–96, 1993.
 212. de Giorgio, R., C. Sternini, K. Anderson, N. C. Brecha, and V. L. Go. Tissue distribution and innervation pattern of peptide immunoreactivities in the rat pancreas. Peptides 13: 91–98, 1992.
 213. de Koning, E. J. P., N. L. Bodkin, B. C. Hansen, and A. Clark. Diabetes mellitus in Macaca mulatta monkeys is characterised by islet amyloidosis and reduction in beta‐cell population. Diabetologia 36: 378–384, 1993.
 214. de Koning, E. J. P., K. A. Fleming, D. W. Gray, and A. Clark. High prevalence of pancreatic islet amyloid in patients with end‐stage renal failure on dialysis treatment. J. Pathol. 175: 253–258, 1995.
 215. de Koning, E. J. P., K. A. Fleming, D. W. R. Gray, and A. Clark. Pancreatic islet amyloid is present in non‐diabetic subjects with end‐stage chronic renal failure on dialysis treatment. Diabet. Med. 9 (Suppl. 1): 13A, 1992.
 216. de Koning, E. J. P., J. W. Höppener, J. S. Verbeek, C. Oosterwijk, K. L. van Hulst, C. A. Baker, C. J. Lips, J. F. Morris, and A. Clark. Human islet amyloid polypeptide accumulates at similar sites in islets of transgenic mice and humans. Diabetes 43: 640–644, 1994.
 217. de Koning, E. J. P., E. R. Morris, F. M. Hofhuis, G. Posthuma, J. W. Hoppener, J. F. Morris, P. J. Capel, A. Clark, and J. S. Verbeek. Intra‐ and extracellular amyloid fibrils are formed in cultured pancreatic islets of transgenic mice expressing human islet amyloid polypeptide. Proc. Natl. Acad. Sci. U.S.A. 91: 8467–8471, 1994.
 218. Demol, P., J., Hotz, M. K. Muller, R. Trompeter, J. Muttathil, and H. Goebell. Effect of calcitonin on the interdigestive motility and on gastric and pancreatic secretion in humans. Arch. Int. Physiol. Biochim. 94: 331–328, 1986.
 219. Denijn, M., R. A. de Weger, A. D. M. van Mansfeld, J. A. M. van Unnik, and C. J. M. Lips. Islet amyloid polypeptide (IAPP) is synthesized in the islets of Langerhans. Histochemistry 97: 33–37, 1992.
 220. Dennis, T., A., Fournier, A. Cadineux, F. Pomerleau, F. B. Jolicoeur, S. St. Perre, and R. Quirion. hCGRP8–37: a calcitonin gene‐related peptide antagonist revealing calcitonin gene‐related peptide heterogeneity in brain and periphery. J. Pharmacol. Exp. Ther. 254: 123–128, 1990.
 221. Dennis, T., A. Fournier, S. St Pierre, and R. Quirion. Structure‐activity profile of calcitonin gene‐related peptide in peripheral and brain tissues. Evidence for receptor multiplicity. J. Pharmacol. Exp. Ther. 251: 718–725, 1989.
 222. D'Este, L., R., Buffa, M. Pelagi, A. G. Siccardi, and T. Renda. Immunohistochemical localization of chromogranin A and B in the endocrine cells of the alimentary tract of the green frog, Rana esculenta. Cell Tissue Res. 277: 341–349, 1994.
 223. de Vroede, M., A. Foriers, M. van de Winkel, O. Madsen, and D. Pipeleers. Presence of islet amyloid polypeptide in rat islet B and D cells determines parallelism and dissociation between rat pancreatic islet amyloid polypeptide and insulin content. Biochem. Biophys. Res. Commun. 182: 886–893, 1992.
 224. de Wit, L., A. D. van Mansfeld, H. A. van Teeffelen, C. J. Lips, and J. W. Höppener. Strong promoter activity of human and rat islet amyloid polypeptide/amylin gene constructs in mouse beta cells (beta TC 3). Biochem. Biophys. Res. Commun. 192: 840–848, 1993.
 225. de Witt, B. J., D. Y. Cheng, G. N. Caminiti, B. D. Nossaman, D. H. Coy, W. A. Murphy, and P. J. Kadowitz. Comparison of responses to adrenomedullin and calcitonin gene‐related peptide in the pulmonary vascular bed of the cat. Eur. J. Pharmacol. 257: 303–306, 1994.
 226. Diabetes Control and Complications Research Group. The effect of intensive treatment of diabetes on the development and progression of long‐term complications in insulin‐dependent diabetes mellitus. N. Engl. J. Med. 329: 977–986, 1993.
 227. Dimsdale, J. E., O., Kolterman, J. Koda, and R. Nelesen. Effect of race and hypertension on plasma amylin concentrations. Hypertension 27: 1273–1276, 1996.
 228. Ding, X.‐Z., P. R., Flatt, and T. E. Adrian. Tumor necrosis factor stimulates amylin secretion but inhibits insulin from islet β‐cells by independent pathways. Regul. Pept. 64: 35, 1996.
 229. Ding, X.‐Z., P. R., Flatt, J. Permert, and T. E. Adrian. Pancreatic cancer cells secrete a factor that selectively stimulates amylin secretion from pancreatic β‐islet cells. Regul. Pept. 64: 36, 1996.
 230. Dische, F. E., C., Wernstedt, G. T. Westermark, P. Westermark, M. B. Pepys, J. A. Rennie, S. G. Gilbey, and P. J. Watkins. Insulin as an amyloid‐fibril protein at sites of repeated insulin injections in a diabetic patient. Diabetologia 31: 158–161, 1988.
 231. Dobbins, D. E.. CGRP‐mediated changes in segmental resistance in the canine forelimb. Microcirc. Endothel. Lymph. 6: 465–481, 1990.
 232. Doepfner, W., and U. Briner. Inhibition of gastric secretion and ulcer formation with synthetic salmon calcitonin in animal experiments. Triangle 16: 105–113, 1977.
 233. Doepfner, W., U., Briner, and E. Ohnhaus. Effects of synthetic salmon calcitonin on gastric secretion and ulcer formation in conscious cats and rats. Z. Gastroenterol. Verh. 10: 60–70, 1976.
 234. Dotti‐Sigrist, S., W., Born, and J. A. Fischer. Identification of a receptor for calcitonin gene‐related peptides I and II in human cerebellum. Biochem. Biophys. Res. Commun. 151: 1081–1087, 1988.
 235. D'Santos, C. S., A., Gatti, D. R. Poyner, and M. R. Hanley. Stimulation of adenylate cyclase by amylin in CHO‐K1 cells. Mol. Pharmacol. 41: 894–899, 1992.
 236. Dun, N. J., and N. Mo. Calcitonin gene‐related peptide evokes distinct types of excitatory response in guinea pig coeliac ganglion cells. Brain Res. 476: 256–264, 1989.
 237. Dunmore, S. J., M. A., Cawthorne, D. C. J. Hislop, J. L. Morton, and A. Beloff‐Chain. β‐cell tropin‐ and glucose‐induced hypersecretion of insulin and amylin from the perfused fatty pancreas. J. Endocrinol. 137: 375–381, 1993.
 238. Dunning, B. E. and G. J. Taborsky, Jr. Calcitonin gene‐related peptide: a potent and selective stimulator of gastrointestinal somatostatin secretion. Endocrinology 120: 1774–1781, 1987.
 239. Dunning, B. E., and D. A. Young. Plasma and pancreatic amylin to insulin ratios are markedly elevated in obese SHR/N‐cp rats. Diabetes 40 (Suppl 1): 216A, 1991.
 240. Dyrks, T., E., Dyrks, C. L. Masters, and K. Beyreuther. Amyloidogenicity of rodent and human βA4 sequences. FEBS Lett. 324: 231–236, 1993.
 241. Ebara, T., K., Miura, M. Okumura, T. Matsuura, S. Kim, T. Yukimura, and H. Iwao. Effect of adrenomedullin on renal hemodynamics and functions in dogs. Eur. J. Pharmacol. 263: 69–73, 1994.
 242. Edbrooke, M. R., D., Parker, J. H. McVey, J. H. Riley, G. D. Sorenson, O. S. Pettengill, and R. K. Craig. Expression of the human calcitonin/CGRP gene in lung and thyroid carcinoma. EMBO J. 4: 715–724, 1985.
 243. Edgington, S. M.. Amyloid plaque and diabetes. Biotechnology 12: 591–594, 1994.
 244. Edwards, B. J., H. M., Perry, F. E. Kaiser, J. E. Morley, D. Kraenzle, D. K. Kreutter, and R. W. Stevenson. Age‐related changes in amylin secretion. Mech. Biophys. Res. Commun. 86: 39–51, 1996.
 245. Edwards, R. M., and W. Trizna. Calcitonin gene‐related peptide: effects on renal arteriolar tone and tubular cAMP levels. Am. J. Physiol. 258 (Renal Fluid Electrolyte Physiol. 27): F121–F2125, 1990.
 246. Egerton, M., M., Needham, S. Evans, A. Millest, G. Cerillo, J. McPheat, M. Popplewell, D. Johnstone, and M. Hollis. Identification of multiple human calcitonin receptor isoforms: heterologous expression and pharmacological characterization. J. Mol. Endocrinol. 14: 179–189, 1995.
 247. Eguchi, S., Y., Hirata, H. Iwasaki, K. Sato, T. X. Watanabe, T. Inui, K. Nakajima, S. Sakakibara, and F. Marumo. Structure‐activity relationship of adrenomedullin, a novel vasodilatory peptide, in cultured rat vascular smooth muscle cells. Endocrinology 135: 2454–2458, 1994.
 248. Eguchi, S., Y., Hirata, H. Kano, K. Sato, Y. Watanabe, T. X. Watanabe, K. Nakajima, S. Sakakibara, and F. Marumo. Specific receptors for adrenomedullin in cultured rat vascular smooth muscle cells. FEBS Lett. 340: 226–230, 1994.
 249. Ehrlich, J. C., and I. M. Ratner. Amyloidosis of the islets of Langerhans. Am. J. Pathol. 38: 49–59, 1961.
 250. Eipper, B. A., and R. E. Mains. Peptide α‐amidation. Annu. Rev. Physiol. 50: 333–344, 1988.
 251. Eissele, R., C., Neuhaus, M. E. Trautmann, A. Funk, R. Arnold, and H. Hofler. Immunoreactivity and expression of amylin in gastroenteropancreatic endocrine tumors. Am. J. Pathol. 143: 283–291, 1993.
 252. Elhawary, A. M., J., Poon, and C. C. Y. Pang. Effects of calcitonin gene‐related peptide receptor antagonists on renal actions of adrenomedullin. Br. J. Pharmacol. 115: 1133–1140, 1995.
 253. Enoki, S., T., Mitsukawa, J. Takemura, M. Nakazato, J. Aburaya, H. Toshimori, and S. Matsukura. Plasma islet amyloid polypeptide levels in obesity, impaired glucose tolerance and non‐insulin‐dependent diabetes mellitus. Diabetes Res. Clin. Pract. 15: 97–102, 1992.
 254. Entzeroth, M., H. N., Doods, H. A. Wieland, and W. Wienen. Adrenomedullin mediates vasodilation via CGRP1 receptors. Life Sci. 56: PL19–PL25, 1995.
 255. Eriksson, J., M., Nakazato, M. Miyazato, K. Shiomi, S. Matsukura, and L. Groop. Islet amyloid polypeptide plasma concentrations in individuals at increased risk of developing type 2 (non‐insulin‐dependent) diabetes mellitus. Diabetologia 35: 291–293, 1992.
 256. Eusebi, F., D., Farini, F. Grassi, L. Monaco, and F. Ruzzier. Effects of calcitonin gene‐related peptide on synaptic acetylcholine receptor‐channels in rat muscle fibres. Proc. R. Soc. Lond. B Biol. Sci. 234: 333–342, 1988.
 257. Eysselein, V. E., J. R., Reeve, C. Sternini, F. Cominell, W. M. Davis, M. T. Davis, T. D. Lee, F.‐J. Ho, D. Ridout, and J. E. Shively. Strucutural characterization of calcitonin gene‐related peptide purified from rabbit intestine. Peptides 12: 289–295, 1991.
 258. Fahrenkrug, J., O. B. Schaffalitzky de Muckadell, I. Hornum, and J. F. Rehfeld. The mechanism of hypergastrinemia in achlorhydria. Effect of food, acid, and calcitonin on serum gastrin concentrations and component pattern in pernicious anemia, with correlation to endogenous secretin concentrations in plasma. Gastroenterology 71: 33–37, 1976.
 259. Fan, L., G. T., Westermark, S. J. Chan, and D. F. Steiner. Altered gene structure and tissue expression of islet amyloid polypeptide in the chicken. Mol. Endocrinol. 8: 713–721, 1994.
 260. Feher, E., G., Burnstock, I. M. Varndell, and J. M. Polak. Calcitonin gene‐related peptide‐immunoreactive nerve fibres in the small intestine of the guinea‐pig: electron‐microscopic immunocytochemistry. Cell Tissue Res. 245: 353–358, 1986.
 261. Fehmann, H.‐C., and B. Göke. Amylin, insel‐amyloid und diabetes mellitus typ. II. Dtsch. Med. Wochenschr. 115: 1769–1772, 1990.
 262. Fehmann, H.‐C., V., Weber, R. Göke, B. Göke, and R. Arnold. Cosecretion of amylin and insulin from isolated rat pancreas. FEBS Lett. 262: 279–281, 1990.
 263. Fehmann, H.‐C., V., Weber, R. Göke, B. Göke, R. Eissele, and R. Arnold. Islet amyloid polypeptide (IAPP:amylin) influences the endocrine but not the exocrine rat pancreas. Biochem. Biophys. Res. Commun. 167: 1102–1108, 1990.
 264. Felig, P., T., Pozefsky, E. B. Marliss, and J. G. F. Cahill. Alanine: key role in gluconeogenesis. Science 167: 1003–1004, 1970.
 265. Feng, C. J., B., Kang, A. D. Kaye, P. J. Kadowitz, and B. D. Nossaman. L‐NAME modulates responses to adrenomedullin in the hindquarters vascular bed of the rat. Life Sci. 55: PL433–PL438, 1994.
 266. Ferrannini, E., G., Buzzigoli, R. Bonadonna, M. A. Giorico, M. Oleggini, R. Pedrinelli, L. Brandi, and S. Bevilacqua. Insulin resistance in essential hypertension. N. Engl. J. Med. 317: 350–357, 1987.
 267. Ferrier, G. J. M., A. M., Pierson, P. M. Jones, S. R. Bloom, S. I. Girgis, and S. Legon. Expression of the rat amylin (IAPP/DAP) gene. J. Mol. Endocrinol. 3: RI‐R4, 1989.
 268. Feyen, J. H. M., F., Cardinaux, R. Gamse, C. Bruns, M. Azria, and U. Trechsel. N‐terminal truncation of salmon calcitonin leads to calcitonin antagonists. Biochem. Biophys. Res. Commun. 187: 8–13, 1992.
 269. Fisher, L. A., D. O., Kikkawa, J. E. Rivier, S. G. Amara, R. M. Evans, M. G. Rosenfeld, W. W. Vale, and M. R. Brown. Stimulation of noradrenergic sympathetic outflow by calcitonin gene‐related peptide. Nature. 305: 534–536, 1983.
 270. Fisher, R. A., S. M., Robertson, and M. S. Olson. Stimulation and homologous desensitization of calcitonin gene‐related peptide receptors in cultured beating rat heart cells. Endocrinology 123: 106–112, 1988.
 271. Fleming, N. W., B. K., Lewis, D. A. White, and K. L. Dretchen. Acute effects of calcitonin gene‐related peptide on the mechanical and electrical responses of the rat hemidiaphragm. J. Pharmacol. Exp. Ther. 265: 1199–1204, 1993.
 272. Flood, J. F., and J. E. Morley. Differential effects of amylin on memory processing using peripheral and central routes of administration. Peptides 13: 577–580, 1992.
 273. Fontaine, B., A., Klarsfeld, and J.‐P. Changeux. Calcitonin gene‐related peptide and muscle activity regulate acetylcholine receptor α‐subunit mRNA levels by distinct intracellular pathways. J. Cell Biol. 105: 1337–1342, 1987.
 274. Fontaine, B., A., Klarsfeld, T. Hökfelt, and J.‐P. Changeux. Calcitonin gene‐related peptide, a peptide present in spinal cord motoneurons, increases the number of acetylcholine receptors in primary cultures of chick embryo myotubes. Neurosci. Lett. 71: 59–65, 1986.
 275. Foord, S. M., and R. K. Craig. Isolation and characterisation of a human calcitonin gene‐related‐peptide receptor. Eur. J. Biochem. 170: 373–379, 1987.
 276. Force, T., J. V., Bonventre, M. R. Flannery, A. H. Gorn, M. Yamin, and S. R. Goldring. A cloned porcine renal calcitonin receptor couples to adenylyl cyclase and phospholipase C. Am. J. Physiol. 262 (Renal Fluid Electrolyte Physiol. 31): F1110–F1115, 1992.
 277. Forster, E. R., and G. Dockray. Immunoneutralization suggests that calcitonin gene related peptide regulates gastric emptying in the rat. Neurosci. Lett. 131: 5–7, 1991.
 278. Fox, N., J., Schrementi, M. Nishi, S. Ohagi, S. J. Chan, J. A. Heisserman, G. T. Westermark, A. Leckström, P. Westermark, and D. F. Steiner. Human islet amyloid polypeptide transgenic mice as a model of non‐insulin‐dependent diabetes mellitus (NIDDM). FEBS Lett. 323: 40–44, 1993.
 279. Franco‐Cereceda, A., H., Henke, J. M. Lundberg, J. B. Petermann, T. Hökfelt, and J. A. Fischer. Calcitonin gene‐related peptide (CGRP) in capsaicin‐sensitive substance P‐immunoreactive sensory neurons in animals and man: distribution and release by capsaicin. Peptides 8: 399–410, 1987.
 280. Franco‐Cereceda, A., and J. M. Lundberg. Calcitonin gene‐related peptide (CGRP) and capsaicin‐induced stimulation of heart contractile rate and force. Naunyn Schmiedebergs Arch. Pharmacol. 331: 145–151, 1985.
 281. Fraser, P. E., L., Levesque, and D. R. McLachlan. Alzheimer A beta amyloid forms an inhibitory neuronal substrate. J. Neurochem. 62: 1227–1230, 1994.
 282. Fraser, P. E., J. T., Nguyen, H. Inouye, W. K. Surewicz, D. J. Selkoe, M. B. Podlisny, and D. A. Kirschner. Fibril formation by primate, rodent and Dutch‐hemorrhagic analogues of Alzheimer amyloid beta‐protein. Biochemistry 31: 10716–10723, 1992.
 283. Freed, W. J., M. J., Perlow, and R. J. Wyatt. Calcitonin: inhibitory effect on eating in rats. Science 206: 850–852, 1979.
 284. Freedland, R. A., and A. Carmona. Effect of glycerol and dihydroxyacetone on hepatic lipogenesis. Arch. Biochem. Biophys. 271: 130–138, 1989.
 285. Friedman, J., and L. G. Raisz. Thyrocalcitonin: inhibitor of bone resorption in tissue culture. Science 150: 1465–1467, 1965.
 286. Frontoni, S., S. B., Choi, D. Banduch, and L. Rossetti. In vivo insulin resistance induced by amylin primarily through inhibition of insulin‐stimulated glycogen synthesis in skeletal muscle. Diabetes 40: 568–573, 1991.
 287. Fujimura, M., G. H., Greeley, M. B. Hancock, A. Alwmark, A. Santos, C. W. Cooper, K. J. Reumont, J. Ishizuka, and J. C. Thompson. Colocalization of calcitonin gene‐related peptide and somatostatin in pancreatic islet cells and inhibition of insulin secretion by calcitonin gene‐related peptide in the rat. Pancreas 3: 49–52, 1988.
 288. Fukuhara, M., T., Tsuchihashi, I. Abe, and M. Fujishima. Cardiovascular and neurohormonal effects of intravenous adrenomedullin in conscious rabbits. Am. J. Physiol. 269 (Regulatory Integrative Comp. Physiol. 39): R1289–R1293, 1995.
 289. Funaki, K., and K. Mikamo. Developmental‐stage‐dependent teratogenic effects of maternal spontaneous diabetes in Chinese hamster. Diabetes 32: 637–643, 1983.
 290. Funakoshi, A., K., Miyasaka, K. Kitani, J. Nakamura, S. Funakoshi, H. Fukuda, and N. Fujii. Stimulatory effects of islet amyloid polypeptide (amylin) on exocrine pancreas and gastrin release in conscious rats. Regul. Pept. 38: 135–143, 1992.
 291. Fürnsinn, C., M., Alma, M. Roden, T. Pieber, P. Nowotny, B. Schneider, and W. Waldhäusl. Insulin‐like growth factor‐I inhibits insulin and amylin secretion in conscious rats. Endocrinology 135: 2144–2149, 1994.
 292. Fürnsinn, C., H., Leuvenink, M. Roden, P. Nowotny, B. Schneider, M. Rohac, T. Pieber, M. Clodi, and W. Waldhäusl. Islet amyloid polypeptide inhibits insulin secretion in conscious rats. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E300–E305, 1994.
 293. Fürnsinn, C., H., Leuvenink, M. Roden, P. Nowotny, and W. Waldhäusl. Inhibition of glucose induced insulin secretion by amylin in rats in vivo. Diabetologia 35 (Suppl. 1): A29, 1992.
 294. Fürnsinn, C., P., Nowotny, M. Roden, M. Rohac, and W. Waldhäusl. Diabetogenic action of acute, but not chronic (>22h) hyperamylinemia. Diabetes 40 (Suppl. 1): 35A, 1991.
 295. Gaeta, L. S., and T. J. Rink. Amylin: a new hormone as a therapeutic target in diabetes mellitus and other metabolic diseases. Med. Chem. Res. 3: 483–490, 1994.
 296. Gajic, D., and D. J. Drucker. Multiple cis‐acting domains mediate basal and adenosine 3',5'‐monophosphate‐dependent glucagon gene transcription in a mouse neuroendocrine cell line. Endocrinology 132: 1055–1062, 1993.
 297. Galeazza, M. T., T. D., O'Brien, K. H. Johnson, and V. Seybold. Islet amyloid polypeptide (IAPP) competes for two binding sites of CGRP. Peptides 12: 585–591, 1991.
 298. Gambino, V., S., Menzel, J. B. Trabb, K. S. Xiang, T. Lindner, A. Louit, E. Chen, L. E. Mereu, H. Furuta, N. Iwasaki, M. Kawamura, Y. Omori, H. Rietzsch, J. Schulze, H. E. Schroder, P. Concannon, C. L. Hanis, R. S. Spielman, K. Yamagata, N. J. Cox, and G. I. Bell. An approach for identifying simple sequence repeat DNA polymorphisms near cloned cDNAs and genes. Linkage studies of the islet amyloid polypeptide/amylin and liver glycogen synthase genes and NIDDM. Diabetes 45: 291–294, 1996.
 299. Gardiner, S. M., A. M., Compton, and T. Bennett. Regional hemodynamic effects of calcitonin gene‐related peptide. Am. J. Physiol. 256 (Regultory Integrative Comp. Physiol. 25): R332–R338, 1989.
 300. Gardiner, S. M., A. M., Compton, P. A. Kemp, T. Bennett, C. Bose, R. Foulkes, and B. Hughes. Antagonistic effect of human α‐CGRP [8–37] on the in vivo regional haemodynamic actions of human α‐CGRP. Biochem. Biophys. Res. Commun. 171: 938–943, 1990.
 301. Gardiner, S. M., A. M., Compton, P. A. Kemp, T. Bennett, C. Bose, R. Foulkes, and B. Hughes. Antagonistic effect of human α‐calcitonin gene‐related peptide (8–37) on regional hemodynamic actions of rat islet amyloid polypeptide in conscious Long‐Evans rats. Diabetes 40: 948–951, 1991.
 302. Gardiner, S. M., P. A., Kemp, J. E. March, and T. Bennett. Regional haemodynamic effects of human and rat adrenomedullin in conscious rats. Br. J. Pharmacol. 114: 584–591, 1995.
 303. Garel, J. M., J. P., Barlet, and A. Kervran. Metabolic effects of calcitonin in the newborn. Am. J. Physiol. 229: 669–675, 1975.
 304. Garg, A., M., Chandalia, and F. Vuitch. Severe islet amyloidosis in congenital generalized lipodystrophy. Diabetes Care 19: 28–31, 1996.
 305. Gates, T. S., R. P. Zimmerman, C. R. Mantyh, S. R. Vigna, and P. W. Mantyh. Calcitonin gene‐related peptide‐alpha receptor binding sites in the gastrointestinal tract. Neuroscience 31: 757–770, 1989.
 306. Geary, N., W., Langhans, and E. Scharrer. Metabolic concomitants of glucagon‐induced suppression of feeding in the rat. Am. J. Physiol. 241 (Regulatory Integrative Comp. Physiol. 10): R330–R335, 1981.
 307. Gedulin, B., G. J. S., Cooper and A. A. Young. Amylin secretion from the perfused pancreas: dissociation from insulin and abnormal elevation in insulin‐resistant diabetic rats. Biochem. Biophys. Res. Commun. 180: 782–789, 1991.
 308. Gennari, C., R., Nami, D. Agnusdei, and J. A. Fisher. Improved cardiac performance with human calcitonin gene‐related peptide in patients with congestive heart failure. Cardiovasc. Res. 24: 239–241, 1990.
 309. Geppetti, P., M., Tramontana, S. Evangelista, D. Renzi, C. A. Maggi, B. M. Fusco, and E. Del Bianco. Differential effects on neuropeptide release of different concentrations of hydrogen ions on afferent and intrinsic neurons of the rat stomach. Gastroenterology. 101: 1505–1511, 1991.
 310. German, M. S., L. G., Moss, J. Wang, and W. J. Rutter. The insulin and islet amyloid polypeptide genes contain similar cell‐specific promoter elements that bind identical β‐cell nuclear complexes. Mol. Cell. Biol. 12: 1777–1788, 1992.
 311. Gerritsen, G. C.. The Chinese hamster as a model for the study of diabetes mellitus. Diabetes 31 (Suppl. 1): 14–21, 1982.
 312. Ghatei, M. A., H. K., Datta, M. Zaidi, D. Bretherton‐Watt, S. J. Wimalawansa, I. MacIntyre, and S. R. Bloom. Amylin and amylin‐amide lack an acute effect on blood glucose and insulin. J. Endocrinol. 124: R9–R11, 1990.
 313. Gibbs, J., R. C., Young, and G. P. Smith. Cholecystokinin decreases food intake in rats. J. Comp. Physiol. Psychol. 84: 488–495, 1973.
 314. Gibson, S. J., J. M., Polak, S. R. Bloom, I. M. Sabate, P. M. Mulderry, M. A. Ghatei, G. P. McGregor, J. F. B. Morrison, J. S. Kelly, R. M. Evans, and M. G. Rosenfeld. Calcitonin gene‐related peptide immunoreactivity in the spinal cord of man and of eight other species. J. Neurosci. 4: 3101–3111, 1984.
 315. Gibson, S. J., J. M., Polak, A. Giaid, Q. A. Hamid, S. Kar, P. M. Jones, P. Denny, S. Legon, S. G. Amara, R. K. Craig, S. R. Bloom, R. J. A. Penketh, C. Rodek, N. B. N. Ibrahim, and A. Dawson. Calcitonin gene‐related peptide messenger RNA is expressed in sensory neurones of the dorsal root ganglia and also in spinal moto‐neurones in man and rat. Neurosci. Lett. 91: 283–288, 1988.
 316. Giddings, S. J., L. R., Carnaghi, and A. D. Mooradian. Age‐related changes in pancreatic islet cell gene expression. Metabolism 44: 320–324, 1995.
 317. Gilbey, S. G., M. A., Ghatei, D. Bretherton‐Watt, M. Zaidi, P. M. Jones, T. Perera, J. Beacham, S. Girgis, and S. R. Bloom. Islet amyloid polypeptide: production by an osteoblast cell line and possible role as a paracrine regulator of osteoclast function in man. Clin. Sci. (Colch.) 81: 803–808, 1991.
 318. Gill, A. M., and T. T. Yen. Effects of ciglitazone on endogenous plasma islet amyloid polypeptide and insulin sensitivity in obese‐diabetic viable yellow mice. Life Sci. 48: 703–710, 1991.
 319. Girgis, S. I., D. W. R., MacDonald, J. C. Stevenson, P. J. R. Bevis, C. Lynch, S. J. Wimalawansa, C. H. Self, H. R. Morris, and I. MacIntyre. Calcitonin gene‐related peptide: potent vasodilator and major product of the calcitonin gene. Lancet 2: 14–16, 1985.
 320. Glenner, G. G.. Amyloid deposits and amyloidoisis I. The β‐fibrilloses. N. Engl. J. Med. 302: 1283–1292, 1980.
 321. Glenner, G. G.. Amyloid deposits and amyloidosis II. The β‐fibrilloses. N. Engl. J. Med. 302: 1333–1343, 1980.
 322. Glener, G. G., E. D., Eanes, and C. A. Wiley. Amyloid fibrils formed from a segment of the pancreatic islet amyloid protein. Biochem. Biophys. Res. Commun. 155: 608–614, 1988.
 323. Gnaedinger, M. P., D. E., Uehlinger, P. Weidmann, S. G. Sha, R. Muff, W. Born, W. Rascher, and J. A. Fischer. Distinct hemodynamic and renal effects of calcitonin gene‐related peptide and calcitonin in men. Am. J. Physiol. 257 (Endocrinol. Metab. 19): E848–E854, 1989.
 324. Goehler, L. E., C., Sternini, and N. C. Brecha. Calcitonin gene‐related peptide immunoreactivity in the biliary pathway and liver of the guinea‐pig: distribution and colocalization with substance P. Cell Tissue Res. 253: 145–150, 1988.
 325. Göke, R., G. P., McGregor, and B. Göke. Amylin alters biological effects of GLP‐1 in the beta cell. Digestion 54: 355–356, 1993.
 326. Goldmuntz, E. A., E. F., Remmers, Y. Du, H. Zha, P. Mathern, L. J. Crofford, and R. L. Wilder. Genetic map of 16 polymorphic markers forming three linkage groups assigned to rat chromosome 4. Mamm. Genome 6: 459–463, 1995.
 327. Goldring, S. R., A. H., Gorn, M. Yamin, S. M. Krane, and J. T. Wang. Characterization of the structural and functional properties of cloned calcitonin receptor cDNAs. Horm. Metab. Res. 25: 477–480, 1993.
 328. Goldsbury, C. S., G. J. S., Cooper, K. N. Goldie, S. A. Müller, E. L. Saafi, W. T. M. Gruijters, M. P. Misur, A. Engel, U. Aebi, and J. Kistler. Polymorphic fibrillar assemblies of human amylin. J. Struct. Biol. 119: 17–27, 1997.
 329. Goltzman, D., and J. Mitchell. Interaction of calcitonin and calcitonin gene‐related peptide at receptor sites in target tissues. Science 227: 1343–1345, 1985.
 330. Gómez‐Foix, A. M., J. E., Rodriguez‐Gil, and J. J. Guinovart. Anti‐insulin effects of amylin and calcitonin‐gene‐related peptide on hepatic glycogen metabolism. Biochem. J. 276: 607–610, 1991.
 331. Goodman, E. C., and L. L. Iversen. Calcitonin gene‐related peptide: novel neuropeptide. Life Sci. 38: 2169–2178, 1986.
 332. Gorn, A. H., H. Y., Lin, M. Yamin, P. E. Auron, M. R. Flannery, D. R. Tapp, C. A. Manning, H. F. Lodish, S. M. Krane, and S. R. Goldring. The cloning, characterization and expression of a human calcitonin receptor from an ovarian carcinoma cell line. J. Clin. Invest. 90: 1726–1735, 1992.
 333. Gorus, F. K., J. C., Sodoyez, D. G. Pipeleers, B. Keymeulen, A. Foriers, and C. F. van Schravendijk. Detection of autoantibodies against islet amyloid polypeptide in human serum. Lack of association with type 1 (insulin‐dependent) diabetes mellitus, or with conditions favouring amyloid deposition in islets. Diabetologia 35: 1080–1086, 1992.
 334. Gracz, K. C.. The effect of calcium and calcitonin on pentagastrin‐induced gastric secretion in intact and thyroidectomized dogs. J. Surg. Res. 21: 345–353, 1976.
 335. Green, T., and G. J. Dockray. Calcitonin gene‐related peptide and substance P in afferents to the upper gastrointestinal tract in the rat. Neurosci. Lett. 76: 151–156, 1987.
 336. Green, T., and G. J. Dockray. Characterization of the peptidergic afferent innervation of the stomach in the rat, mouse and guinea‐pig. Neuroscience 25: 181–193, 1988.
 337. Greenbergg, B., K., Rhoden, and P. Barnes. Calcitonin gene‐related peptide (CGRP) is a potent non‐endothelium‐dependent inhibitor of coronary vasomotor tone. Br. J. Pharmacol. 92: 789–794, 1987.
 338. Grodsky, G. M., Y. H., Ma, B. Cullen, and N. Sarvetnick. Effect on insulin production sorting and secretion by major histocompatibility complex class II gene expression in the pancreatic beta‐cell of transgenic mice. Endocrinology 131: 933–938, 1992.
 339. Grunditz, T., R., Ekman, R. H°akanson, C. Rerup, F. Sundler, and R. Uddman. Calcitonin gene‐related peptide in the thyroid nerve fibers and C cells: effects on thyroid hormone secretion and response to hypercalcemia. Endocrinology 119: 2313–2324, 1986.
 340. Gu, Z. F., R. T., Jensen, and P. N. Maton. A primary role for protein kinase A in smooth muscle relaxation induced by adrenergic agonists and neuropeptides. Am. J. Physiol. 263 (Gastrointest. Liver Physiol. 26): G360–G364, 1992.
 341. Guglietta, A., R. V., Nardi, and L. H. Lazarus. Indomethacin (i.c.v.) reverses the inhibitory action of peptides on gastric secretion. Eur. J. Pharmacol. 170: 87–90, 1989.
 342. Guidobono, F., M., Coluzzi, F. Pagani, A. Pecile, and C. Netti. Amylin given by central and peripheral routes inhibits acid gastric secretion. Peptides 15: 699–702, 1994.
 343. Guidobono, F., C., Netti, F. Pagani, P. Bettica, V. Sibilia, A. Pecile, and J. Zanelli. Effect of unmodified eel calcitonin on gastric acid secretion and gastric ulcers in the rat. Farmaco 46: 555–563, 1991.
 344. Guidobono, F., C., Netti, and A. Pecile. Calcitonin binding site distribution in the cat central nervous system: a wider insight of the peptide involvement in brain functions. Neuropeptides 10: 265–273, 1987.
 345. Guidobono, F., C., Netti, A. Pecile, J. M. Zanelli, and R. E. Gaines‐Das. Specific inhibition of basal gastric acid secretion by salmon calcitonin in rats does not necessarily involve a central pathway. Pharmacol. Res. 22: 287–295, 1990.
 346. Guillot, E., A., Coste, and I. Angel. Alpha 2‐adrenoceptors and the regulation of glucose, insulin and amylin levels in diabetic rats. Life Sci. 57: 2081–2090, 1995.
 347. Guyton, A. C.. Textbook of Medical Physiology. Philadelphia: Saunders, 1986.
 348. Hakala, J. M. L., and M. Vihinen. Modelling the structure of the calcitonin gene‐related peptide. Protein Eng. 7: 1069–1075, 1994.
 349. Haller‐Brem, S., R., Muff, J. B. Petermann, W. Born, B. A. Roos, and J. A. Fischer. Role of cytoplasmic free calcium concentration in the secretion of calcitonin gene‐related peptide and calcitonin from medullary thyroid carcinoma cells. Endocrinology 121: 1272–1277, 1987.
 350. Halter, J. B.. Alzheimer's disease and non‐insulin‐dependent diabetes mellitus—common features do not make common bedfellows. J. Am. Geriatr. Soc. 44: 992–993, 1996.
 351. Han, S.‐P., L., Naes, and T. C. Westfall. Calcitonin gene‐related peptide is the endogenous mediator of nonadrenergic‐noncholinergic vasodilation in rat mesentery. J. Pharmacol. Exp. Ther. 255: 423–428, 1990.
 352. Hanabusa, T., K., Kuba, C. Oki, Y. Nakano, K. Okai, T. Sanke, and K. Nanjo. Islet amyloid polypeptide (IAPP) secretion from islet cells and its plasma concentration in patients with non‐insulin‐dependent diabetes mellitus. Diabetes Res. Clin. Pract. 15: 89–96, 1992.
 353. Hanna, F. W., D. M., Smith, C. F. Johnston, K. O. Akinsanya, M. L. Jackson, D. G. Morgan, R. Bhogal, K. D. Buchanan, and S. R. Bloom. Expression of a novel receptor for the calcitonin peptide family and a salmon calcitonin‐like peptide in the alpha‐thyrotropin thyrotroph cell line. Endocrinology 136: 2377–2382, 1995.
 354. Hao, Q., J. K., Chang, H. Gharavi, Y. Fortenberry, A. Hyman, and H. Lippton. An adrenomedullin (ADM) fragment retains the systemic vasodilator activity of human ADM. Life Sci. 54: PL265–PL270, 1994.
 355. Hargrove, D. M., G. J., Bagby, C. M. Lang, and J. J. Spitzer. Adrenergic blockade does not abolish elevated glucose turnover during bacterial infection. Am. J. Physiol. 254 (Endocrinol. Metab. 17): E16–E22, 1988.
 356. Harris, M. I.. Undiagnosed NIDDM: clinical and public health issues. Diabetes Care 16: 642–652, 1993.
 357. Hartter, E., T., Svoboda, B. Ludvik, M. Schuller, B. Lell, E. Kuenburg, M. Brunnbauer, W. Woloszczuk, and R. Prager. Basal and stimulated plasma levels of pancreatic amylin indicate its co‐secretion with insulin in humans. Diabetologia 34: 52–54, 1991.
 358. Hashimoto, K., S., Uchida, and H. Yoshida. Effects of calcitonin gene‐related peptide on the adenylate cyclase system in cultured rat skeletal muscle cells. Life Sci. 45: 2183–2192, 1989.
 359. Hayek, A, and W., Woodside. Correlation between morphology and function in isolated islets of the Zucker rat. Diabetes 28: 565–569, 1979.
 360. Haynes, J. M., P. J., Wookey, C. M. Tikellis, H. C. Du, P. M. Sexton, and M. E. Cooper. Amylin and calcitonin gene‐related peptide in rat kidney: functional and autoradiographic studies. Can. J. Physiol. Pharmacol. 72 (Suppl): 566, 1994.
 361. He, H., H., Bessho, Y. Fujisawa, K. Horiuchi, A. Tomohiro, T. Kita, Y. Aki, S. Kimura, T. Tamaki, and Y. Abe. Effects of a synthetic rat adrenomedullin on regional hemodynamics in rats. Eur. J. Pharmacol. 273: 209–214, 1995.
 362. Heaton, J., B., Lin, J. K. Chang, S. Steinberg, A. Hyman, and H. Lippton. Pulmonary vasodilation to adrenomedullin—a novel peptide in humans. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H2211–H2215, 1995.
 363. Hellman, U., C., Wernstedt, P. Westermark, T. D. O'Brien, W. B. Rathbun, and K. H. Johnson. Amino acid sequence from degu islet amyloid‐derived insulin shows unique sequence characteristics. Biochem. Biophys. Res. Commun. 169: 571–577, 1990.
 364. Helton, W. S., M. M., Mulholland, N. W. Bunnett, and H. T. Debas. Inhibition of gastric and pancreatic secretion in dogs by CGRP: role of somatostatin. Am. J. Physiol. 256 (Gastrointest. Liver Physiol. 19): G715–G720, 1989.
 365. Henke, H., P. H., Tobler, and J. A. Fischer. Localization of salmon calcitonin binding sites in rat brain by autoradiography. Brain Res. 272: 373–377, 1983.
 366. Henke, H., F. A., Tschoop, and J. A. Fischer. Distinct binding sites for calcitonin gene‐related peptide and salmon calcitonin in rat central nervous system. Brain Res. 360: 165–171, 1985.
 367. Hermansen, K., and B. Ahrén. Dual effects of calcitonin gene‐related peptide on insulin secretion in the perfused dog pancreas. Regul. Pept. 27: 149–157, 1990.
 368. Hesch, R. D., M., Hufner, B. Hasenhager, and W. Creutzfeld. Inhibition of gastric secretion by calcitonin in man. Horm. Metab. Res. 3: 140, 1971.
 369. Heynen, G., A., Brassine, J. C. Daubresse, G. Ligny, J. A. Kanis, S. Gaspar, and P. Franchimont. Lack of clinical and physiological relationship between gastrin and calcitonin. Eur. J. Clin. Invest. 11: 331–335, 1981.
 370. Hill, E. L., and R. Elde. Calcitonin gene‐related peptide immunoreactive nerve fibers in mandibular periosteum of rat: evidence for primary afferent origin. Neurosci. Lett. 85: 172–178, 1988.
 371. Hilton, J. M., S. Y., Chai, and P.M. Sexton. In vitro autoradiographic localization of the calcitonin receptor isoforms, C1a and C1b, in rat brain. Neuroscience 69: 1223–1237, 1995.
 372. Hiramatsu, S., K., Inoue, Y. Sako, F. Umeda, and H. Nawata. Insulin treatment improves relative hypersecretion of amylin to insulin in rats with non‐insulin‐dependent diabetes mellitus induced by neonatal streptozocin injection. Metabolism 43: 766–770, 1994.
 373. Hirata, Y., H., Hayakawa, Y. Suzuki, et al, Mechanisms of adrenomedullin‐induced vasodilation in the rat kidney. Hypertension 25: 790–795, 1995.
 374. Hirata, Y., C., Mitaka, K. Sato, T. Nagura, Y. Tsunoda, K. Amaha, and F. Marumo. Increased circulating adrenomedullin, a novel vasodilatory peptide, in sepsis. J. Clin. Endocrinol. Metab. 81: 1449–1453, 1996.
 375. Hirata, Y., Y., Takagi, S. Takata, Y. Fukuda, H. Yoshimi, and T. Fujita. Calcitonin gene‐related peptide receptor in cultured vascular smooth muscle and endothelial cells. Biochem. Biophys. Res. Commun. 151: 1113–1121, 1988.
 376. Hiroshima, O., Y., Sano, T. Yuzuriha, C. Yamoto, A. Saito, N. Okamura, Y. Uchiyama, S. Kimura, and K. Goto. Solubilization and characterization of calcitonin gene‐related peptide binding site from porcine spinal cord. J. Neurochem. 50: 480–485, 1988.
 377. Hofle, G., R., Weiler, R. Fischer‐Colbrie, C. Humpel, A. Laslop, T. Wohlfarter, R. Hogue‐Angeletti, A. Saria, P. J. Fleming, and H. Winkler. Stimulation of rat adrenal medulla can induce differential changes in the peptide and mRNA levels of chromogranins, neuropeptides and other constituents of chromaffin granules. Regul. Pept. 32: 321–331, 1991.
 378. Hökfelt, T., V. R., Holets, W. Staines, B. Meister, T. Melander, M. Schalling, M. Schultzberg, J. Freedman, H. Björklund, L. Olson, B. Lindh, L.‐G. Elfvin, J. M. Lundberg, J. A. Lindgren, B. Samuelsson, B. Pernow, L. Terenius, C. Post, B. Everitt, and M. Goldstein. Coexistence of neuronal messengers‐an overview. Prog. Brain Res. 68: 33–70, 1986.
 379. Holman, J. J., R. K., Craig, and I. Marshall. Human α‐ and β‐CGRP and rat α‐CGRP are coronary vasodilators in the rat. Peptides 7: 231–235, 1986.
 380. Holst, J. J., C., Orskov, O. V. Nielsen, and T. W. Schwartz. Truncated glucagon‐like peptide I: an insulin‐releasing hormone from the distal gut. FEBS Lett. 211: 169–174, 1987.
 381. Holzer, P.. Local effector functions of capsaicin‐sensitive sensory nerve endings: involvement of tachykinins, calcitonin gene‐related peptide and other neuropeptides. Neuroscience 24: 739–768, 1988.
 382. Holzer, P., and P. H. Guth. Neuropeptide control of rat gastric mucosal blood flow. Increase by calcitonin gene‐related peptide and vasoactive intestinal polypeptide, but not substance P and neurokinin A. Circ. Res. 68: 100–105, 1991.
 383. Holzer, P., and I. T. Lippe. Role of calcitonin gene‐related peptide in gastrointestinal blood flow. Ann. N.Y. Acad. Sci. 657: 228–239, 1992.
 384. Holzer, P., I. T., Lippe, H. E. Raybould, M. A. Pabst, E. H. Livingston, R. Amann, B. M. Peskar, Y. Taché, and P. H. Guth. Role of peptidergic sensory neurons in gastric mucosal blood flow and protection. Ann. N.Y. Acad. Sci. 632: 272–282, 1991.
 385. Holzer, P., B. M., Peskar, B. A. Peskar, and R. Amann. Release of calcitonin gene‐related peptide induced by capsaicin in the vascularly perfused rat stomach. Neurosci. Lett. 108: 195–200, 1990.
 386. Honda, T., Z. C., Zhou, Z. F. Gu, Y. Kitsukawa, J. E. J. Mrozinski, and R. T. Jensen. Structural analysis of CGRP receptors on gastric smooth muscle and pancreatic acinar cells. Am. J. Physiol. 264 (Gastriontest. Liver Physiol. 27): G1142–G1152, 1993.
 387. Hoovers, J. M., E., Redeker, F. Speleman, J. W. Höppener, S. Bhola, J. Bliek, N. van Roy, N. J. Leschot, A. Westerveld, and M. Mannens. High‐resolution chromosomal localization of the human calcitonin/CGRP/IAPP gene family members. Genomics 3: 15, 1993.
 388. Höppener, J. W., C., Oosterwijk, S. J. Verbeek, K. van Hulst, H. J. Visser, F. Hofhuis, M. Berends, H. S. Jansz, and C. J. Lips. IAPP/amylin transgenic mice as an in vivo model system for type‐2 diabetes mellitus? Biochem. Soc. Trans. 21: 28S, 1993.
 389. Horio, T., M., Kohno, H. Kano, M. Ikeda, K. Yasunari, K. Yokokawa, M. Minami, and T. Takeda. Adrenomedullin as a novel antimigration factor of vascular smooth muscle cells. Circ. Res. 77: 660–664, 1995.
 390. Horne, W. C., J. F., Shyu, M. Chakraborty, and R. Baron. Signal transduction by calcitonin. Multiple ligands, receptors, and signaling pathways. Trends Endocrinol. Metab. 5: 395–401, 1994.
 391. Hothersall, J. S., and R. P. Muirhead. Effect of amylin and calcitonin gene‐related peptide on insulin‐stimulated glucose and calcium transport in the diaphragm. Biochem. Soc. Trans. 18: 1241–1243, 1990.
 392. Hothersall, J. S., R. P., Muirhead, and S. Wimalawansa. The effect of amylin and calcitonin gene‐related peptide on insulin‐stimulated glucose transport in the diaphragm. Biochem. Biophys. Res. Commun. 169: 451–454, 1990.
 393. Hotz, J., and H. Goebell. Long‐term effects of calcitonin on gastric secretion in normals, peptic ulcer and high risk patients. Z. Gastroenterol. Verh. 10: 71–77, 1976.
 394. Hotz, J., and H. Goebell. Pharmacological actions of calcitonin on the gastrointestinal tract and their therapeutical implications. Z. Gastroenterol. Verh. 19: 637–645, 1981.
 395. Hotz, J., H., Goebell, H. Hirche, H. Minne, and R. Ziegler. Inhibition of human gastric secretion by intragastrically administered calcitonin. Digestion 20: 180–189, 1980.
 396. Hotz, J., H., Goebell, H. Minne, and R. Ziegler. Persistent inhibition of gastric secretion by an intravenous 12‐hour infusion of calcitonin in normals, peptic ulcer and high risk patients. Digestion 11: 311–314, 1974.
 397. Houchi, H., M., Yoshizumi, M. Shono, Y. Ishimura, T. Ohuchi, and M. Oka. Adrenomedullin stimulates calcium efflux from adrenal chromaffin cells in culture: possible involvement of an Na+/Ca2+ exchange mechanism. Life Sci. 58: PL35–PL40, 1996.
 398. Houslay, M. D., N. J., Morris, A. Savage, A. Marker, and M. Bushfield. Regulation of hepatocyte adenylate cyclase by amylin and CGRP: a single receptor displaying apparent negative cooperativity towards CGRP and simple saturation kinetics for amylin, a requirement for phosphodiesterase inhibition to observe elevated hepatocyte cyclic AMP levels and the phosphorylation of Gi‐2. J. Cell. Biochem. 55: 66–82, 1994.
 399. Houssami, S., D. M., Findlay, C. L. Brady, D. E. Myers, T. J. Martin, and P. M. Sexton. Isoforms of the rat calcitonin receptor: consequences for ligand binding and signal transduction. Endocrinology 135: 183–190, 1994.
 400. Howard, C. F., Jr. Longitudinal studies on the development of diabetes in individual Macaca nigra. Diabetologia 29: 301–306, 1986.
 401. Hsiung, H. M., D. P., Smith, X. Y. Zhang, T. Bennett, P. R. J Rosteck, and M. H. Lai. Structure and functional expression of a complementary cDNA for porcine growth hormone‐releasing hormone receptor. Neuropeptides 25: 1–10, 1993.
 402. Huang, H.‐J. S., G. J. S., Cooper, A. A. Young, and M. J. Johnson. Deficiency of amylin expression in the pancreas of autoimmune BB/ Wor diabetic rats. J. Cell. Biochem. Suppl. 15B: 67, 1991.
 403. Huang, H.‐J. S., A. A., Young, J. E. Koda, O. L. Tulp, M. J. Johnson, and G. J. S. Cooper. Hyperamylinemia, hyperinsulinemia, and insulin resistance in genetically obese LA/N‐cp rats. Hypertension 19: 1101–1109, 1992.
 404. Huang, Y., J. E., Fischer, and A. Balasubramaniam. Amylin mobilizes [Ca2+](I) and stimulates the release of pancreatic digestive enzymes from rat acinar Ar42J cells—evidence for an exclusive receptor system of amylin. Peptides 17: 497–502, 1996.
 405. Huganir, R. L., A. H., Delcour, P. Greengard, and G. P. Hess. Phosphorylation of the nicotinic acetylcholine receptor regulates its rate of desensitization. Nature 321: 774–776, 1986.
 406. Huganir, R. L., K., Miles, and P. Greengard. Phosphorylation of the nicotinic acetylcholine receptor by an endogenous tyrosine‐specific protein kinase. Proc. Natl. Acad. Sci. U.S.A. 81: 6968–6972, 1984.
 407. Hughes, J. J., A. S., Levine, J. E. Morley, B. A. Gosnell, and S. E. Silvis. Intraventricular calcitonin gene‐related peptide inhibits gastric acid secretion. Peptides 5: 665–667, 1984.
 408. Hui, S. L., S., Epstein, and C. C. J. Johnston. A prospective study of bone mass in patients with type I diabetes. J. Clin. Endocrinol. Metab. 60: 74–80, 1985.
 409. Hutton, J. C.. The insulin secretory granule. Diabetologia 32: 271–281, 1989.
 410. Iannucci, A., K., Mukai, D. Johnson, and B. Burke. Endocrine pancreas in cystic fibrosis: an immunohistochemical study. Hum. Pathol. 15: 278F–284F, 1984.
 411. Ichiki, Y., K., Kitamura, K. Kangawa, M. Kawamoto, H. Matsuo, and T. Eto. Distribution and characterization of immunoreactive adrenomedullin in human tissue and plasma. FEBS Lett. 338: 6–10, 1994.
 412. Ichiki, Y., K., Kitamura, K. Kangawa, M. Kawamoto, H. Matsuo, and T. Eto. Distribution and characterization of immunoreactive adrenomedullin in porcine tissue, and isolation of adrenomedullin [26–52] and adrenomedullin [34–52] from porcine duodenum. J. Biochem. 118: 765–770, 1995.
 413. Ikeda, U., T., Kanbe, and K. Shimada. Adrenomedullin increases inducible nitric oxide synthase in rat vascular smooth muscle cells stimulated with interleukin‐1. Hypertension 27: 1240–1244, 1996.
 414. Imai, T., Y., Hirata, M. Iwashina, and F. Marumo. Hormonal regulation of rat adrenomedullin gene in vasculature. Endocrinology 136: 1544–1548, 1995.
 415. Inagaki, N., H., Yoshida, M. Mizuta, N. Mizuno, Y. Fujii, T. Gonoi, J.‐I. Miyazaki, and S. Seino. Cloning and functional characterization of a third pituitary adenylate cyclase‐activating polypeptide receptor expressed in insulin‐secreting cells. Proc. Natl. Acad. Sci. U.S.A. 91: 2679–2683, 1994.
 416. Inagaki, S., S., Kito, Y. Kubota, S. Girgis, C. J. Hillyard, and I. MacIntyre. Autoradiographic localization of calcitonin gene‐related peptide binding sites in human and rat brains. Brain Res. 374: 287–298, 1986.
 417. Inman, L., J. Le Chago, Y. Roitelman, and K. Luskey. Pancreatic β‐cell expression of amylin in streptozotocin‐induced diabetes in rats. Diabetes 39 (Suppl. 1): 143A, 1990.
 418. Inoue, K., S., Hiramatsu, A. Hisatomi, F. Umeda, and H. Nawata. Effects of amylin on the release of insulin and glucagon from the perfused rat pancreas. Horm. Metab. Res. 25: 135–137, 1993.
 419. Inoue, K., S., Hiramatsu, A. Hisatomi, F. Umeda, and H. Nawata. Hypersecretion of amylin from the perfused pancreas of genetically obese (fa/fa) rats and its alteration with aging. Metabolism 42: 654–658, 1993.
 420. Inoue, K., A., Hisatomi, F. Umeda, and H. Nawata. Amylin release from perfused rat pancreas in response to glucose and arginine. Diabetes Res. Clin. Pract. 10: 189–192, 1990.
 421. Inoue, K., A., Hisatomi, F. Umeda, and H. Nawata. Effects of glucagon‐like peptide 1 (7–36) amide and glucagon on amylin release from perfused rat pancreas. Horm. Metab. Res. 23: 407–409, 1991.
 422. Inoue, K., A., Hisatomi, F. Umeda, and H. Nawata. Effects of exogenous somatostatin and insulin on islet amyloid polypeptide (amylin) release from perfused rat pancreas. Horm. Metab. Res. 24: 251–253, 1992.
 423. Inoue, K., A., Hisatomi, F. Umeda, and H. Nawata. Relative hypersecretion of amylin to insulin from rat pancreas after neonatal STZ treatment. Diabetes 41: 723–727, 1992.
 424. In't Veld, P. A., F. Zhang, O. D. Madsen, and G. Klöppel. Islet amyloid polypeptide immunoreactivity in the human fetal pancreas. Diabetologia 35: 272–276, 1992.
 425. Inui, T., T., Chiba, Y. Okimura, T. Morishita, A. Nakamura, A. Yamaguchi, T. Yamatani, S. Kadowaki, K. Chihara, and T. Fujita. Presence and release of calcitonin gene‐related peptide in rat stomach. Life Sci. 45: 1199–1206, 1989.
 426. Inui, T., Y., Kinoshita, A. Yamaguchi, T. Yamatani, and T. Chiba. Linkage between capsaicin‐stimulated calcitonin gene‐related peptide and somatostatin release in rat stomach. Am. J. Physiol. 261 (Gastrointest. Liver Physiol. 24): G770–G774, 1991.
 427. Ishida‐Yamamoto, A., and M. Tohyama. Calcitonin gene‐related peptide in the nervous tissue. Prog. Neurobiol. 33: 335–386, 1989.
 428. Ishihara, T., S., Nakamura, Y. Kaziro, T. Takahashi, K. Takahashi, and S. Nagata. Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J. 10: 1635–1641, 1991.
 429. Ishihara, T., R., Shigemoto, K. Mori, K. Takahashi, and S. Nagata. Functional expression and tissue distribution of a novel receptor for vasoactive intestinal polypeptide. Neuron 8: 811–819, 1992.
 430. Ishimitsu, T., M., Kojima, K. Kangawa, J. Hino, H. Matsuoka, K. Kitamura, T. Eto, and H. Matsuo. Genomic structure of human adrenomedullin gene. Biochem. Biophys. Res. Commun. 203: 631–639, 1994.
 431. Ishimitsu, T., T., Nishikimi, Y. Saito, K. Kitamura, T. Eto, K. Kangawa, H. Matsuo, T. Omae, and H. Matsuoka. Plasma levels of adrenomedullin, a newly identified hypotensive peptide, in patients with hypertension and renal failure. J. Clin. Invest. 94: 2158–2161, 1994.
 432. Ishiyama, Y., K., Kitamura, Y. Ichiki, S. Nakamura, O. Kida, K. Kangawa, and T. Eto. Hemodynamic effects of a novel hypotensive peptide, human adrenomedullin, in rats. Eur. J. Pharmacol. 241: 271–273, 1993.
 433. Ishiyama, Y., K., Kitamura, Y. Ichiki, J. Sakata, O. Kida, K. Kangawa, and T. Eto. Haemodynamic responses to rat adrenomedullin in anaesthetized spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 22: 614–618, 1995.
 434. Ishizaka, Y., Y., Ishizaka, M. Tanaka, K. Kitamura, K. Kangawa, N. Minamino, H. Matsuo, and T. Eto. Adrenomedullin stimulates cyclic AMP formation in rat vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 200: 642–646, 1994.
 435. Ishizuka, J., G. H., Greeley, C. W. Cooper, and J. C. Thompson. Effect of calcitonin gene‐related peptide on glucose and gastric inhibitory polypeptide‐stimulated insulin release from cultured newborn and adult rat islet cells. Regul. Pept. 20: 73–82, 1988.
 436. Ito, H., J., Hata, H. Yokozaki, and E. Tahara. Calcitonin in human gastric mucosa and carcinoma. J. Cancer Res. Clin. Oncol. 112: 50–56, 1986.
 437. Ito, H., T., Sakurada, and H. Orimo. Role of endogenous calcitonin in the secretion of gastrin and gastric acid in rats. Horm. Metab. Res. 9: 89–92, 1977.
 438. Iwamoto, Y., G., Inooka, N. Sakuma, I. Shiraishi, S. Kumakura, T. Awata, and T. Kuzuya. Additive effect of islet amyloid polypeptide (IAPP/amylin) and insulin on 2‐deoxyglucose uptake in mouse pancreatic acini. Biochem. Biophys. Res. Commun. 180: 1513–1517, 1991.
 439. Iwamoto, Y., Y., Takahashi, N. Sakuma, I. Shiraishi, G. Inooka, S. Kumakura, T. Awata, and T. Kuzuya. Effect of islet amyloid polypeptide (IAPP/amylin) on 2‐deoxyglucose uptake in mouse pancreatic acini. Diabetes Res. Clin. Pract. 15: 71–75, 1992.
 440. Jacobs, T. W., M., Takizawa, C. C. Liu, J. A. Berlin, I. A. Katz, B. Stein, I. I. Joffe, G. J. S. Cooper, and S. Epstein. Amylin stimulates bone cell turnover in vivo in normal and diabetic rats. J. Bone Miner. Res. (Suppl. 1): S226, 1992.
 441. Jäger, K., R., Muench, H. Seifert, C. Beglinger, A. Bollinger, and J. A. Fischer. Calcitonin gene‐related peptide (CGRP) causes redistribution of blood flow in humans. Eur. J. Clin. Pharmacol. 39: 491–494, 1990.
 442. Jakab, G., H. D., Webster, I. Salamon, and E. Mezey. Neural and non‐neural origin of calcitonin gene‐related peptide (CGRP) in the gastric mucosa. Neuropeptides 24: 117–122, 1993.
 443. Jakob, W.. Untersuchungen über die amyloidose der karnivoren unter besonderer berücksichtigung der altersamyloidose. Zentralbl. Veterinarmid. A 17: 818–829, 1970.
 444. Jamal, H., D., Bretherton‐Watt, K. Suda, M. A. Ghatei, and S. R. Bloom. Islet amyloid polypeptide‐like immunoreactivity (amylin) in rats treated with dexamethasone and streptozotocin. J. Endocrinol. 126: 425–429, 1990.
 445. Jamal, H., P. M., Jones, J. Byrne, K. Suda, M. A. Ghatei, S. M. Kanse, and S. R. Bloom. Peptide contents of neuropeptide Y, vasoactive intestinal polypeptide, and β‐calcitonin gene‐related peptide and their messenger ribonucleic acids after dexamethasone treatment in the isolated rat islets of Langerhans. Endocrinology 129: 3372–3380, 1991.
 446. Jamal, H., K., Suda, D. Bretherton‐Watt, M. A. Ghatei, and S. R. Bloom. Molecular form of islet amyloid polypeptide (amylin) released from isolated rat islets of Langerhans. Pancreas 8: 261–266, 1993.
 447. Jameson, J. L., J., Weis, J. M. Polak, G. V. Childs, S. R. Bloom, J. H. Steel, C. C. Capen, D. E. Prentice, A. W. Fetter, and J. M. Langloss. Glycoprotein hormone alpha‐subunit‐producing pituitary adenomas in rats treated for one year with calcitonin. Am. J. Pathol. 140: 75–84, 1992.
 448. Jansen, J. B., and C. B. Lamers. Calcitonin and secretin inhibit bombesin‐stimulated serum gastrin and gastric acid secretion in man. Regul. Pept. 1: 415–421, 1981.
 449. Janson, J., W. C., Soeller, P. C. Roche, R. T. Nelson, A. J. Torchia, D. K. Kreutter, and P. C. Butler. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc. Natl. Acad. Sci. U.S.A. 93: 7283–7288, 1996.
 450. Jansz, H. S., and J. Zandberg. Identification and partial characterization of the salmon calcitonin/CGRP gene by polymerase chain reaction. Ann. N.Y. Acad. Sci. 657: 63–69, 1992.
 451. Jarrett, J. T., and P. T. Lansbury, Jr. Seeding “one‐dimensional crystallization” of amyloid: a pathogenic mechanism in Alzheimer's disease and scrapie? Cell 73: 1055–1058, 1993.
 452. Jelinek, L. J., S., Lok, G. B. Rosenberg, R. A. Smith, F. J. Grant, S. Biggs, P. A. Bensch, J. L. Kuijper, P. O. Sheppard, C. A. Sprecher, P. J. O'Hara, D. Foster, K. M. Walker, L. H. J. Chen, P. A. Mc‐Kernon, and N. Kindsvogel. Expression cloning and signaling properties of the rat glucagon receptor. Science 259: 1614–1616, 1993.
 453. Jennings, C. G. B., and A. W. Mudge. Chick myotubes in culture express high‐affinity receptors for calcitonin gene‐related peptide. Brain Res. 504: 199–205, 1989.
 454. Jensen, J., P., Serup, C. Karlsen, T. F. Nielsen, and O. D. Madsen. mRNA profiling of rat islet tumors reveals NKX 6.1 as a beta‐cell‐specific homeodomain transcription factor. J. Biol. Chem. 271: 18749–18758, 1996.
 455. Jenssen, T., N., Nurjhan, A. Consoli, and J. E. Gerich. Failure of substrate‐induced gluconeogenesis to increase overall glucose appearance in normal humans. J. Clin. Invest. 86: 489–497, 1990.
 456. Jinnai, K., K., Chihara, F. Kanda, K. Tada, and T. Fujita. Calcitonin gene‐related peptide enhances spontaneous acetylcholine release from the rat motor nerve terminal. Neurosci. Lett. 103: 64–68, 1989.
 457. Johnson, K. H., T. D., O'Brien, C. Betsholtz, and P. Westermark. Islet amyloid, islet‐amyloid polypeptide, and diabetes mellitus. N. Engl. J. Med. 321: 513–518, 1989.
 458. Johnson, K. H., T. D., O'Brien, C. Betsholtz, and P. Westermark. Islet amyloid polypeptide: mechanisms of amyloidogenesis in the pancreatic islets and potential roles in diabetes mellitus. Lab. Invest. 66: 522–535, 1992.
 459. Johnson, K. H., T. D., O'Brien, D. W. Hayden, K. Jordan, H. K. Ghobrial, W. C. Mahoney, and P. Westermark. Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase‐antiperoxidase (PAP) and protein A‐gold techniques. Am. J. Pathol. 130: 1–8, 1988.
 460. Johnson, K. H., T. D., O'Brien, K. Jordan, C. Betsholtz, and P. Westermark. The putative hormone islet amyloid polypeptide (IAPP) induces impaired glucose tolerance in cats. Biochem. Biophys. Res. Commun. 167: 507–513, 1990.
 461. Johnson, K. H., C., Wernstedt, T. D. O'Brien, and P. Westermark. Amyloid in the pancreatic islets of the cougar (Felis concolor) is derived from islet amyloid polypeptide (IAPP). Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 98: 115–119, 1991.
 462. Johnson, K. H., P., Westermark, G. Nilsson, K. Sletten, T. D. O'Brien, and D. W. Hayden. Feline insular amyloid: immunohistochemical and immunochemical evidence that the amyloid is insulin‐related. Vet. Pathol. 22: 463–468, 1985.
 463. Johnston, C. I., G. P., Hodsman, M. Kohzuki, D. Casley, B. Fabris, and P. A. Phillips. Interaction between atrial natriuretic peptide (ANP) and the renin‐angiotensin aldosterone system: endogenous antagonists. Am. J. Med. 86: 30–35, 1989.
 464. Jonderko, G., T., Golab, and K. Jonderko. Calcitonin suppresses gastric emptying of a radiolabelled solid meal in humans. Br. J. Clin. Pharmacol. 24: 103–105, 1987.
 465. Jonderko, G., T. Golab, and K. Jonderko. Effect of calcitonin on gastric emptying. Digestion 40: 191–196, 1988.
 466. Jonderko, G., K., Jonderko, and T. Golab. Effect of calcitonin on gastric emptying and on postprandial gastrin and insulin release in patients with type I gastric ulcer. Neth. J. Med. 37: 11–16, 1990.
 467. Jonderko, K.. Effect of calcitonin on gastric emptying in patients with an active duodenal ulcer. Gut 30: 430–435, 1989.
 468. Jonderko, K., G., Jonderko, and T. Golab. Effect of calcitonin on gastric emptying and on serum insulin and gastrin concentrations after ingestion of a mixed solid‐liquid meal in humans. J. Clin. Gastroenterol. 12: 22–28, 1990.
 469. Jordan, K., M. P., Murtaugh, T. D. O'Brien, P. Westermark, C. Betsholtz, and K. H. Johnson. Canine IAPP cDNA sequence provides important clues regarding diabetogenesis and amyloidogenesis in type 2 diabetes. Biochem. Biophys. Res. Commun. 169: 502–508, 1990.
 470. Jordan, K., S. J., O'Brien, K. H. Johnson, and T. D. O'Brien. Assignment of islet amyloid polypeptide (IAPP) gene to feline chromosome B4 using the polymerase chain reaction technique on feline‐rodent hybrid cell lines. Vet. Pathol. 32: 195–197, 1995.
 471. Jordan, K. C., T. D., O'Brien, and K. H. Johnson. Sequence of raccoon IAPP supports importance of a specific structural motif in the development of pancreatic islet amyloidosis. Int. J. Exp. Clin. Invest. 1: 160–164, 1994.
 472. Jougasaki, M., R. J., Rodeheffer, M. M. Redfield, K. Yamamoto, C. M. Wei, L. J. McKinley, and J. C. Burnett, Jr. Cardiac secretion of adrenomedullin in human heart failure. J. Clin. Invest. 97: 2370–2376, 1996.
 473. Jougasaki, M., C. M., Wei, L. L. Aarhus, D. M. Heublein, S. M. Sandberg, and J. C. Burnett, Jr. Renal localization and actions of adrenomedullin: a natriuretic peptide. Am. J. Physiol. 268 (Renal Fluid Electrolyte Physiol. 37): F657–F663, 1995.
 474. Jougasaki, M., C. M., Wei, D. M. Heublein, S. M. Sandberg, and J. C. Burnett, Jr. Immunohistochemical localization of adrenomedullin in canine heart and aorta. Peptides 16: 773–775, 1995.
 475. Jougasaki, M., C. M., Wei, L. J. McKinley, and J. C. Burnett, Jr. Elevation of circulating and ventricular adrenomedullin in human congestive heart failure. Circulation 92: 286–289, 1995.
 476. Jouneaux, C., Y., Audigier, P. Goldsmith, F. Pecker, and S. Lotersztajn. Gs mediates hormonal inhibition of the calcium pump in liver plasma membranes. J. Biol. Chem. 268: 2368–2372, 1992.
 477. Jüppner, H., A.‐B., Abou‐Samra, M. Freeman, X. F. Kong, E. Schipani, J. Richards, J. L. F. Kolakowski, J. Hock, J. J. T. Potts, H. M. Kronenberg, and G. V. Segre. A G protein‐linked receptor for parathyroid hormone and parathyroid hormone‐related peptide. Science 254: 1024–1026, 1991.
 478. Kahn, S. E., D. A., D'Alessio, M. W. Schwartz, W. Y. Fujimoto, J. W. Ensinck, G. J. Taborsky, Jr., and D. Porte, Jr. Evidence of cosecretion of islet amyloid polypeptide and insulin by β‐cells. Diabetes 39: 634–638, 1990.
 479. Kahn, S. E., W. Y., Fujimoto, D. A. D'Alessio, J. W. Ensinck, and D. Porte, Jr. Glucose stimulates and potentiates islet amyloid polypeptide secretion by the B‐cell. Horm. Metab. Res. 23: 577–580, 1991.
 480. Kahn, S. E., C. B., Verchere, D. A. D'Alessio, D. L. Cook, and W. Y. Fujimoto. Evidence for selective release of rodent islet amyloid polypeptide through the constitutive secretory pathway. Diabetologia 36: 570–573, 1993.
 481. Kajio, H., T., Kobayashi, M. Hara, et al, Islet amyloid polypeptide (IAPP) gene analysis in a Japanese diabetic with marked islet amyloid deposition. Diabetes Res. Clin. Pract. 15: 45–48, 1992.
 482. Kanatsuka, A., H., Makino, H. Ohsawa, Y. Tokuyama, T. Yamaguchi, S. Yoshida, and M. Adachi. Secretion of islet amyloid polypeptide in response to glucose. FEBS Lett. 259: 199–201, 1989.
 483. Kanatsuka, A., H., Makino, K. Yagui, C. I. Huang, M. Taira, A. Mikata, and S. Yoshida. Islet amyloid polypeptide and its N‐terminal and C‐terminal flanking peptides' immunoreactivity in islet amyloid of diabetic patients. Diabetes Res. Clin. Pract. 26: 101–107, 1994.
 484. Kanatsuka, A., H., Makino, T. Yamaguchi, H. Ohsawa, Y. Tokuyama, T. Saitoh, K. Yamamura, J. Miyazaki, and S. Yoshida. Islet amyloid polypeptide/amylin in pancreatic beta‐cell line derived from transgenic mouse insulinoma. Diabetes 41: 1409–1414, 1992.
 485. Kanazawa, H., T., Kawaguchi, T. Fujii, S. Kudoh, K. Hirata, N. Kurihara, and T. Takeda. Comparison of bronchodilator responses to adrenomedullin and proadrenomedullin N‐terminal 20 peptide. Life Sci. 57: PL241–PL245, 1995.
 486. Kanazawa, H., N., Kurihara, K. Hirata, S. Kudoh, T. Kawaguchi, and T. Takeda. Adrenomedullin, a newly discovered hypotensive peptide, is a potent bronchodilator. Biochem. Biophys. Res. Commun. 205: 251–254, 1994.
 487. Kapas, S., K. J., Catt, and A. J. J. Clark. Cloning and expression of cDNA encoding a rat adrenomedullin receptor. J. Biol. Chem. 270: 25344–25347, 1995.
 488. Kapas, S., and A. J. Clark. Identification of an orphan receptor gene as a type 1 calcitonin gene‐related peptide receptor. Biochem. Biophys. Res. Commun. 217: 832–838, 1995.
 489. Kassir, A. A., A. K., Upadhyay, T. J. Lim, A. R. Moossa, and J. M. Olefsky. Lack of effect of islet amyloid polypeptide in causing insulin resistance in conscious dogs during euglycemic clamp studies. Diabetes 40: 998–1004, 1991.
 490. Kato, J., K., Kitamura, K. Kangawa, and T. Eto. Receptors for adrenomedullin in human vascular endothelial cells. Eur. J. Pharmacol. 289: 383–385, 1995.
 491. Kato, J., K., Kobayashi, T. Etoh, M. Tanaka, K. Kitamura, T. Imamura, Y. Koiwaya, K. Kangawa, and T. Eto. Plasma adrenomedullin concentration in patients with heart failure. J. Clin. Endocrinol. Metab. 81: 180–183, 1996.
 492. Katoh, F., H., Niina, K. Kitamura, Y. Ichiki, Y. Yamamoto, K. Kangawa, T. Eto, and A. Wada. Ca(2+)‐dependent cosecretion of adrenomedullin and catecholamines mediated by nicotinic receptors in bovine cultured adrenal medullary cells. FEBS Lett. 348: 61–64, 1994.
 493. Katsoulis, S., and J. M. Conlon. Calcitonin gene‐related peptides relax guinea pig and rat gastric smooth muscle. Eur. J. Pharmacol. 161: 129–134, 1989.
 494. Kautzky Willer, A., K. Thomaseth, G. Pacini, M. Clodi, B. Ludvik, C. Streli, W. Waldhäusl, and R. Prager. Role of islet amyloid polypeptide secretion in insulin‐resistant humans. Diabetologia 37: 188–194, 1994.
 495. Kawada, N., and M. Inoue. Effect of adrenomedullin on hepatic pericytes (stellate cells) of the rat. FEBS Lett. 356: 109–113, 1994.
 496. Kawasaki, H., K., Takasaki, A. Saito, and K. Goto. Calcitonin gene‐related peptide acts as a novel vasodilator neurotransmitter in mesenteric resistance vessels of the rat. Nature 335: 164–167, 1988.
 497. Kenney, M. A., C. X., Moore, R. Pittner, and K. Beaumont. Salmon calcitonin binding and stimulation of cyclic AMP generation in rat skeletal muscle. Biochem. Biophys. Res. Commun. 197: 8–14, 1993.
 498. Keshavarzian, A., F. L., Iber, and J. Vaeth. Gastric emptying in patients with insulin‐requiring diabetes mellitus. Am. J. Gastroenterol. 82: 29–35, 1987.
 499. Kikuchi, T.. Correlation between the compact regions predicted by the average distance map (ADM) and the biologically active sites in atrial natriuretic peptide. J. Protein Chem. 11: 579–581, 1992.
 500. Kimura, S., Y., Sugita, I. Kanazawa, A. Saito, and K. Goto. Isolation and amino acid sequence of calcitonin gene related peptide from porcine spinal cord. Neuropeptides 9: 75–82, 1987.
 501. Kirilovsky, J., A., Duclert, B. Fontaine, A. Devillers‐Thiery, M. Österlund, and J.‐P. Changeux. Acetylcholine receptor expression in primary cultures of embryonic chick myotubes—II. Comparison between the effects of spinal cord cells and calcitonin gene‐related peptide. Neuroscience 32: 289–296, 1989.
 502. Kitamura, K., Y., Ichiki, M. Tanaka, M. Kawamoto, J. Emura, S. Sakakibara, K. Kangawa, H. Matsuo, and T. Eto. Immunoreactive adrenomedullin in human plasma. FEBS Lett. 341: 288–290, 1994.
 503. Kitamura, K., K., Kangawa, Y. Ishiyama, H. Washimine, Y. Ichiki, M. Kawamoto, N. Minamino, H. Matsuo, and T. Eto. Identification and hypotensive activity of proadrenomedullin N‐terminal 20 peptide (PAMP). FEBS Lett. 351: 35–37, 1994.
 504. Kitamura, K., K., Kangawa, M. Kawamoto, Y. Ichiki, S. Nakamura, H. Matsuo, and T. Eto. Adrenomedullin: a novel hypotensive peptide from human phaeochromacytoma. Biochem. Biophys. Res. Commun. 192: 553–560, 1993.
 505. Kitamura, K., K., Kangawa, M. Kojima, Y. Ichiki, H. Matsuo, and T. Eto. Complete amino acid sequence of porcine adrenomedullin and cloning of cDNA encoding its precursor. FEBS Lett. 338: 306–310, 1994.
 506. Kitamura, K., J., Sakata, K. Kangawa, M. Kojima, H. Matsuo, and T. Eto. Cloning and characterization of cDNA encoding a precursor for human adrenomedullin. Biochem. Biophys. Res. Commun. 194: 720–725, 1993.
 507. Koda, J. E., M., Fineman, T. J. Rink, G. E. Dailey, D. B. Muchmore, and L. G. Linarelli. Amylin concentrations and glucose control [letter]. Lancet 339: 1179–1180, 1992.
 508. Kogire, M., J., Ishizuka, J. C. Thompson, and G. H. Greeley, Jr. Inhibitory action of islet amyloid polypeptide and calcitonin gene‐related peptide on release of insulin from the isolated perfused rat pancreas. Pancreas 6: 459–463, 1991.
 509. Kohno, M., T., Hanehira, H. Kano, T. Horio, K. Yokokawa, M. Ikeda, M. Minami, K. Yasunari, and J. Yoshikawa. Plasma adrenomedullin concentrations in essential hypertension. Hypertension 27: 102–107, 1996.
 510. Kolterman, O. G., A., Gottlieb, C. Moyses, and W. Colburn. Reduction of postprandial hyperglycemia in subjects with IDDM by intravenous infusion of AC137, a human amylin amlin analogue. Diabetes Care 18: 1179–1182, 1995.
 511. Kolterman, O. G., S., Schwartz, C. Corder, B. Levy, L. Klaff, J. Peterson, and A. Gottlieb. Effect of 14 days subcutaneous administration of the human amylin analogue, pramlintide (AC137), on an intravenous insulin challenge and response to a standard liquid meal in patients with IDDM. Diabetologia 39: 492–499, 1996.
 512. Konturek, S. J., T., Radecki, D. Konturek, and T. Dimitrescu. Effect of calcitonin on gastric and pancreatic secretion and peptic ulcer formation in cats. Am. J. Dig. Dis. 19: 235–241, 1974.
 513. Koop, H., R., Eissele, V. Kuhlkamp, E. Bothe, J. Dionysius, and R. Arnold. Calcitonin gene‐related peptide stimulates rat gastric somatostatin release in vitro. Life Sci. 40: 541–546, 1987.
 514. Koopmans, S. J., J. K., Radder, H. M. Krans, and R. M. Barge. Biological action of pancreatic amylin: relationship with glucose metabolism, diabetes, obesity and calcium metabolism. Neth. J. Med. 41: 82–90, 1992.
 515. Koopmans, S. J., A. D. van Mansfeld, H. S. Jansz, H. M. Krans, J. K. Radder, M. Frolich, S. F. de Boer, D. K. Kreutter, G. C. Andrews, and J. A. Maassen. Amylin‐induced in vivo insulin resistance in conscious rats: the liver is more sensitive to amylin than peripheral tissues. Diabetologia 34: 218–224, 1991.
 516. Koranyi, L., Y., Tanizawa, L. Penicaud, N. Atef, J. Girard, and M. A. Permutt. Developmental regulation of amylin and insulin‐gene expression in lean (Fa/Fa) and obese (fa/fa) Zucker rats. Diabetes 41: 685–690, 1992.
 517. Kraenzlin, M. E., J. L. C, Ch'ng, P. K. Mulderry, M. A. Ghatei, and S. R. Bloom. Infusion of a novel peptide, calcitonin gene‐related peptide (CGRP) in man. Pharmacokinetics and effects on gastric acid secretion and on gastrointestinal hormones. Regul. Pept. 10: 189–197, 1985.
 518. Krahn, D. D., B. A., Gosnell, A. S. Levine, and J. E. Morley. Effects of calcitonin gene‐related peptide on food intake. Peptides 5: 861–864, 1984.
 519. Krahn, D. D., B. A., Gosnell, A. S. Levine, and J. E. Morley. The effect of calcitonin gene‐related peptide on food intake involves aversive mechanisms. Pharmacol. Biochem. Behav. 24: 5–7, 1986.
 520. Kreutter, D. K., S. J., Orena, and K. M. Andrews. Suppression of insulin‐stimulated glucose transport in L6 myocytes by calcitonin gene‐related peptide. Biochem. Biophys. Res. Commun. 164: 461–467, 1989.
 521. Kreutter, D. K., S. J., Orena, A. J. Torchia, L. G. Contillo, G. C. Andrews, and R. W. Stevenson. Amylin and CGRP induce insulin resistance via a receptor distinct from cAMP‐coupled CGRP receptor. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E606–E613, 1993.
 522. Kreutter, D. K., S. J., Orena, A. J. Torchia, W. Soeller, and R. W. Stevenson. Amylin mRNA and plasma peptide levels in animal models of NIDDM. Diabetes 40 (Suppl. 1): 159A, 1991.
 523. Krootila, K., H., Uusitalo, and A. Palkama. Effect of neurogenic irritation and calcitonin gene‐related peptide (CGRP) on ocular blood flow in the rabbit. Curr. Eye Res. 7: 695–703, 1988.
 524. Kruger, L., P. W., Mantyh, C. Sternini, N. C. Brecha, and C. R. Mantyh. Calcitonin gene‐related peptide CGRP in the rat central nervous system: patterns of immunoreactivity and receptor binding sites. Brain Res. 463: 223–244, 1988.
 525. Kuestner, R. E., R. D., Elrod, F. J. Grant, et al, Cloning and characterization of an abundant subtype of the human calcitonin receptor. Mol. Pharmacol. 46: 246–255, 1994.
 526. Kulkarni, R. N., D. M., Smith, M. A. Ghatei, and S. R. Bloom. A 67 kDa protein mediates pituitary adenylate cyclase‐activating polypeptide and vasoactive intestinal peptide‐stimulated insulin secretion in a hamster clonal beta‐cell line. J. Endocrinol. 147: 121–130, 1995.
 527. Kulkarni, R. N., D. M., Smith, M. A. Ghatei, P. M. Jones, and S. R. Bloom. Investigation of the effects of antisense oligodeoxynucleotides to islet amyloid polypeptide mRNA on insulin release, content and expression. J. Endocrinol. 151: 341–348, 1996.
 528. Kummer, W., and C. Heym. Different types of calcitonin gene‐related peptide‐immunoreactive neurons in the guinea‐pig stellate ganglion as revealed by triple‐labelling immunofluorescence. Neurosci. Lett. 128: 187–190, 1991.
 529. Kuramoto, H., R., Kondo, and T. Fujita. Calcitonin gene‐related peptide (CGRP)‐like immunoreactivity in scattered chromaffin cells and nerve fibers in the adrenal glands of rats. Cell Tissue Res. 247: 309–315, 1987.
 530. Kureishi, Y., S., Kobayashi, J. Nishimura, T. Nakano, and H. Kanaide. Adrenomedullin decreases both cytosolic Ca2+ concentration and Ca2+‐sensitivity in pig coronary arterial smooth muscle. Biochem. Biophys. Res. Commun. 212: 572–579, 1995.
 531. Kurtz, A., R., Muff, W. Born, J. M. Lundberg, B. I. Millberg, M. P. Gnadinger, D. E. Uelinger, P. Weidman, T. Hokfelt, and J. A. Fischer. Calcitonin gene‐related peptide is a stimulator of renin secretion. J. Clin. Invest. 82: 538–543, 1988.
 532. Kurtz, A., H.‐J., Schurek, W. Jelkmann, R. Muff, H.‐P. ipp, U. Heckmann, K.‐U. Eckardt, H. Scholz, J. A. Fischer, and C. Bauer. Renal mesangium is a target for calcitonin gene‐related peptide. Kidney Int. 36: 222–227, 1989.
 533. Kurz, B., B. von Gaudecker, A. Kranz, B. Krisch, and R. Mentlein. Calcitonin gene‐related peptide and its receptor in the thymus. Peptides 16: 1497–1503, 1995.
 534. Lainchbury, J. G., C. J., Charles, G. J. S. Cooper, D. H. Coy, N.‐Y. Jing, L. K. Lewis, T. G. Yandle, A. M. Richards, and M. G. Nicholls. Adrenomedullin: a potent hypotensive hormone in man. Clin. Sci. (Colch.) 92: 467–472, 1997.
 535. Lambrecht, N., M., Burchert, M. Respondek, K. Muller, and B. M. Peskar. Role of calcitonin gene‐related peptide and nitric oxide in the gastroprotective effect of capsaicin in the rat. Gastroenterology 104: 1371–1380, 1993.
 536. Lappe, R. W., M. J., Slivjak, J. A. Todt, and R. L. Wendt. Hemodymamic effects of calcitonin gene‐related peptide in conscious rats. Regul. Pept. 19: 307–312, 1987.
 537. Larsson, H., and B. Ahrén. Effects of arginine on the secretion of insulin and islet amyloid polypeptide in humans. Pancreas 11: 201–205, 1995.
 538. Laslop, A., T., Wohlfarter, R. Fischer‐Colbrie, H. J. Steiner, C. Humpel, A. Saria, K. W. Schmid, G. Sperk, and H. Winkler. Insulin hypoglycemia increases the levels of neuropeptide Y and calcitonin gene‐related peptide, but not of chromogranins A and B, in rat chromaffin granules. Regul. Pept. 26: 191–202, 1989.
 539. Laufer, R., and J.‐P. Changeux. Calcitonin gene‐related peptide elevates cyclic AMP levels in chick skeletal muscle: possible neurotropic role for a coexisting neuronal messenger. EMBO J. 6: 901–906, 1987.
 540. Laufer, R., and J.‐P. Changeux. Calcitonin gene‐related peptide and cyclic AMP stimulate phosphoinositide turnover in skeletal muscle cells. Interaction between two second messenger systems. J. Biol. Chem. 264: 2683–2689, 1989.
 541. Lawrence, J. C., Jr., and J. N., Zhang. Control of glycogen synthase and phosphorylase by amylin in rat skeletal muscle. Hormonal effects on the phosphorylation of phosphorylase and on the distribution of phosphate in the synthase subunit. J. Biol. Chem. 269: 11595–11600, 1994.
 542. Leckstrom, A., C. G., Ostenson, S. Efendic, U. Arnelo, J. Permert, I. Lundquist, and P. Westermark. Increased storage and secretion of islet amyloid polypeptide relative to insulin in the spontaneously diabetic GK rat. Pancreas 13: 259–267, 1996.
 543. Leff, S. G., M. G., Rosenfeld, and R. M. Evans. Complex transcriptional units: diversity in gene expression by alternative RNA processing. Annu. Rev. Biochem. 55: 1091–1117, 1986.
 544. Leffert, J. D., W. L., Chick, and K. L. Luskey. Islet specific expression of rat amylin. Clin. Res. 37: 571A, 1989.
 545. Leffert, J. D., C. B., Newgard, H. Okamoto, J. L. Milburn, and K. L. Luskey. Rat amylin: cloning and tissue‐specific expression in pancreatic islets. Proc. Natl. Acad. Sci. U.S.A. 86: 3127–3130, 1989.
 546. Lehman de Gaeta, S., A. C. Willis, A. A. Young, E. Foot, E. Albrecht, B. Leighton, T. J. Rink, and G. J. S. Cooper. Variability of chemically synthesized human amylin. Diabetes 40 (Suppl. 1): 236A, 1991.
 547. Lehto, M., J., Eriksson, and M. Nakazato. Could a mutation in the amylin gene promoter region explain hyperamylinemia in individuals predisposed to NIDDM? Diabetes 41 (Suppl. 1): 92A, 1992.
 548. Leibiger, B., R., Walther, and I. B. Leibiger. The role of the proximal CTAAT‐box of the rat glucokinase upstream promoter in transcriptional control in insulin‐producing cells. Biol. Chem. Hoppe Seyler 375: 93–98, 1994.
 549. Leighton, B., and G. J. S. Cooper. Pancreatic amylin and calcitonin gene‐related peptide cause resistance to insulin in skeletal muscle in vitro. Nature 335: 632–635, 1988.
 550. Leighton, B., and G. J. S. Cooper. The role of amylin in the insulin resistance of non‐insulin‐dependent diabetes mellitus. Trends Biochem. Sci. 15: 295–299, 1990.
 551. Leighton, B., and E. Foot. The effects of amylin on carbohydrate metabolism in skeletal muscle in vitro and in vivo. Biochem. J. 269: 19–23, 1990.
 552. Leighton, B., E. A., Foot, G. J. S. Cooper, and J. M. King. Calcitonin gene‐related peptide‐1 (CGRP‐1) is a potent regulator of glycogen metabolism in rat skeletal muscle. FEBS Lett. 249: 357–361, 1989.
 553. Leiter, E. H., D. A., Gapp, J. J. Eppig, and D. L. Coleman. Ultra‐structural and morphometric studies of delta cells in pancreatic islets from C57BL/Ks diabetes mice. Diabetologia 17: 297–309, 1979.
 554. Leiter, E. H., F., Premdas, D. E. Harrison, and L. G. Lipson. Aging and glucose homeostasis in C57BL/6J mice. FASEB J. 2: 2708–2711, 1988.
 555. Lenz, H. J.. Calcitonin and CGRP inhibit gastrointestinal transit via distinct neuronal pathways. Am. J. Physiol. 254 (Gastrointest. Liver Physiol. 17): G920–G924, 1988.
 556. Lenz, H. J. and M. R., Brown. Intracerebroventricular administration of human calcitonin and human calcitonin gene‐related peptide inhibits meal‐stimulated gastric acid secretion in the dog. Dig. Dis. Sci. 32: 409–416, 1987.
 557. Lenz, H. J., S. E., Hester, R. P. Saik, and M. R. Brown. CNS actions of calcitonin gene‐related peptide on gastric acid secretion in dogs. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G742–G748, 1986.
 558. Lenz, H. J., M. T., Mortrud, J. E. Rivier, and M. R. Brown. Calcitonin gene‐related peptide inhibits basal, pentagastrin, histamine, and bethanecol stimulated gastric acid secretion. Gut 26: 550–555, 1985.
 559. Lenz, H. J., M. T., Mortrud, J. E. Rivier, and M. R. Brown. Central nervous system actions of calcitonin gene‐related peptide on gastric secretion in the rat. Gastroenterology 88: 539–544, 1985.
 560. Lenz, H. J., M. T., Mortrud, W. W. Vale, J. E. Rivier, and M. R. Brown. Calcitonin gene‐related peptide acts within the central nervous system to inhibit gastric acid secretion. Regul. Pept. 9: 271–277, 1984.
 561. Lenz, H. J., J. E., Rivier, and M. R. Brown. Biological actions of human and rat calcitonin and calcitonin gene‐related peptide. Regul. Pept. 12: 81–89, 1985.
 562. Le Sauter, J., and N. Geary. Hepatic portal glucagon infusion decreases spontaneous meal size in rats. Am. J. Physiol. 261 (Regulatory Integrative Comp. Physiol. 30): R154–R161, 1991.
 563. Le Sauter, J., and N. Geary. Le glucagon pancréatique: signal physiologique de la satiété post prandiale. Ann. Endocrinol. (Paris) 54: 149–161, 1993.
 564. Leung, F. W., E. G., Tallos, Y. F. Taché, and P. H. Guth. Calcitonin gene‐related peptide inhibits acid secretion without modifying blood flow. Am. J. Physiol. 252 (Gastrointest. Live Physiol. 15): G215–G218, 1987.
 565. Levy, J. C., J. L., Morton, M. Davenport, A. Beloff‐Chain, and R. C. Turner. Elevated plasma concentrations of beta‐cell tropin (ACTH22–39) in diet‐treated type II diabetic patients. Diabetes 41: 1160–1164, 1992.
 566. Lewis, C. E., A., Clark, S. J. H. Ashcroft, G. J. S. Cooper, and J. F. Morris. Calcitonin gene‐related peptide and somatostatin inhibit insulin release from individual rat B cells. Mol. Cell. Endocrinol. 57: 41–49, 1988.
 567. Li, D. S., H. E., Raybould, E. Quintero, and P. H. Guth. Role of calcitonin gene‐related peptide in gastric hyperemic response to intragastric capsaicin. Am. J. Physiol. 261 (Gastrointest. Liver Physiol. 24): G657–G661, 1991.
 568. Li, D. S., H. E., Raybould, E. Quintero, and P. H. Guth. Calcitonin gene‐related peptide mediates the gastric hyperemic response to acid back‐diffusion. Gastroenterology 102: 1124–1128, 1992.
 569. Libert, F., M., Parmentier, A. Lefort, C. Dinsart, J. Van Sande, C. Maenhaut, M.‐J. Simons, J. Dumont, and G. Vassart. Selective amplification and cloning of four new members of the G protein‐coupled receptor family, Science 244: 569–572, 1989.
 570. Lin, B., Y., Gao, J. K. Chang, J. Heaton, A. Hyman, and H. Lippton. An adrenomedullin fragment retains the systemic vasodepressor activity of rat adrenomedullin. Eur. J. Pharmacol. 260: 1–4, 1994.
 571. Lin, H. Y., T. L., Harris, M. S. Flannery, A. Aruffo, E. H. Kaji, A. Gorn, L. F. Kolakowski, Jr., H. F. Lodish, and S. R. Goldring. Expression cloning of an adenylate cyclase‐coupled calcitonin receptor. Science 254: 1022–1024, 1991.
 572. Lippton, H., J. K. Chang, Q. Hao. W. Summer, and A. L. Hyman. Adrenomedullin dilates the pulmonary vascular bed in vivo. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 76: 2154–2156, 1994.
 573. Lippton, H., Y., Gao, B. Lin, J. Heaton, J. Ferrara, M. DeVito, T. Granger, J. Pigott, J. K. Chang, and A. Hyman. Prodepin: a new product of the adrenomedullin (ADM) gene has systemic vasodilator activity. Life Sci. 54: PL409–PL412, 1994.
 574. Liu, J., and T. E. Adrian. Amylin inhibits glycogen synthase activity and glucose uptake in L6 rat myoblasts at physiological concentrations. Regul. Pept. 64: 112A, 1996.
 575. Lorenzo, A., B., Razzaboni, G. C. Weir, and B. A. Yankner. Pancreatic islet cell toxicity of amylin associated with type‐2 diabetes mellitus. Nature 368: 756–760, 1994.
 576. Lorenzo, A., and B. A. Yankner. Beta‐amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. U.S.A. 91: 12243–12247, 1994.
 577. Lowry, F.. Compound could help diabetic patients walk tightrope between hyperglycemia, hypoglycemia. Can. Med. Assoc. J. 154: 705–707, 1996.
 578. Ludvik, B., M., Clodi, A. Kautzky‐Willer, M. Capek, E. Hartter, G. Pacini, and R. Prager. Effect of dexamethasone on insulin sensitivity, islet amyloid polypeptide and insulin secretion in humans. Diabetologia 36: 84–87, 1993.
 579. Luebke, A. E., G. P., Dahl, B. A. Roos, and I. M. Dickerson. Identification of a protein that confers calcitonin gene‐related peptide responsiveness to oocytes by using a cystic fibrosis transmembrane conductance regulator assay. Proc. Natl. Acad. Sci. U.S.A. 93: 3455–3460, 1996.
 580. Lueck, J. D., and H. J. Fromm. Kinetics, mechanism, and regulation of rat skeletal muscle hexokinase. J. Biol. Chem. 249: 1341–1347, 1974.
 581. Lukinius, A., E., Wilander, G. T. Westermark, U. Engström, and P. Westermark. Co‐localization of islet amyloid polypeptide and insulin in the B cell secretory granules of the human pancreatic islets. Diabetologia 32: 240–244, 1989.
 582. Lutz, T. A., J., Ainscow, and J. S. Rand. Frequency of pancreatic amyloid deposition in cats from southeast Queensland. Aust. Vet. J. 71: 254–256, 1994.
 583. Lutz, T. A., E. Del Prete, and E. Scharrer. Reduction of food intake in rats by intraperitoneal injection of low does of amylin. Physiol. Behav. 55: 891–895, 1994.
 584. Lutz, T. A., E. Del Prete, and E. Scharrer. Subdiaphragmatic vagotomy does not influence the anorectic effect of amylin. Peptides 16: 457–462, 1995.
 585. Lutz, T. A., E. Del Prete, M. M. Szabady, and E. Scharrer. Attenuation of the anorectic effects of glucagon, cholecystokinin, and bombesin by the amylin receptor antagonist CGRP(8–37). Peptides 17: 119–124, 1996.
 586. Lutz, T. A., N., Geary, M. M. Szabady, E. Del Prete, and E. Scharrer. Amylin decreases meal size in rats. Physiol. Behav. 58: 1197–1202, 1995.
 587. Lutz, T. A., and J. S. Rand. A review of new developments in type 2 diabetes in human beings and cats. Br. Vet. J. 149: 527–536, 1993.
 588. Lutz, T. A., and J. S. Rand. Pathogenesis of feline diabetes mellitus. Vet. Clin. North Am. Small Anim. Pract. 25: 527–552, 1995.
 589. MacIntyre, I.. Amylinamide, bone conservation, and pancreatic β‐cells. Lancet 2: 1026–1027, 1989.
 590. MacIntyre, I.. The calcitonin peptide family: relationship and mode of action. Bone Miner. 16: 160–161, 1992.
 591. MacKenzie, R. C., S., Lotersztajn, C. Pavoine, F. Pecker, R. M. Epand, and R. C. Orlowski. Inhibition of the calcium pump by human parathyroid hormone (1–34) and human calcitonin in liver plasma membranes. Biochem. J. 266: 817–822, 1990.
 592. Maclean, N., and R. F. Ogilvie. Quantitative estimation of the pancreas islet tissue in diabetic subjects. Diabetes 4: 367–376, 1955.
 593. Madsen, O. D., J. H., Nielsen, B. Michelsen, P. Westermark, C. Betsholtz, M. Nishi, and D. F. Steiner. Islet amyloid polypeptide and insulin expression are controlled differently in primary and transformed islet cells. Mol. Endocrinol. 5: 143–148, 1991.
 594. Maeda‐Hagiwara, M., and H. Watanabe. Inhibitory effects of intrahypothalamic injection of calcitonin on TRH‐stimulated gastric acid secretion in rats. Jpn. J. Pharmacol. 39: 173–178, 1985.
 595. Maggi, C. A., T., Chiba, and S. Giuliani. Human α‐calcitonin gene‐related peptide‐(8–37) as an antagonist of exogenous and endogenous calcitonin gene‐related peptide. Eur. J. Pharmacol. 192: 85–88, 1991.
 596. Maggi, C. A., P., Rovero, S. Giuliani, S. Evangelista, D. Regoli, and A. Meli. Biological activity of N‐terminal fragments of calcitonin gene‐related peptide. Eur. J. Pharmacol. 179: 217–219, 1990.
 597. Malgaroli, A., J., Meldolesi, A. Z. Zallone, and A. Teti. Control of cytosolic free calcium in rat and chicken osteoclasts: the role of extracellular calcium and calcitonin. J. Biol. Chem. 264: 14342–14347, 1989.
 598. Mally, M. I., T., Otonkoski, A. D. Lopez, and A. Hayek. Developmental gene expression in the human fetal pancreas. Pediatr. Res. 36: 537–544, 1994.
 599. Maloy, A. L., D. S., Longnecker, and E. R. Greenberg. The relation of islet amyloid to the clinical type of diabetes. Hum. Pathol. 12: 917–922, 1981.
 600. Manela, F. D., R. L., Young, J. Ren, and R. F. Harty. Stimulation of rat antral CGRP release by intraluminal peptone. Ann. N.Y. Acad. Sci. 657: 528–530, 1992.
 601. Martin, L., G. A., Keller, D. Liggitt, H. Oakley, S. L. Pitts‐Meek, M. W. Siegel, T. Terrell, and T. A. Stewart. Male‐specific beta‐cell dysfunction and diabetes resulting from increased expression of a syngeneic MHC class I protein in the pancreata of transgenic mice. New Biol. 2: 1101–1110, 1990.
 602. Martinez, A., M. J., Miller, E. J. Unsworth, J. M. Siegfried, and F. Cuttitta. Expression of adrenomedullin in normal human lung and in pulmonary tumors. Endocrinology 136: 4099–4105, 1995.
 603. Martinez, A., C., Weaver, J. Lopez, S. J. Bhathena, T. H. Elsasser, M. J. Miller, T. W. Moody, E. J. Unsworth, and F. Cuttitta. Regulation of insulin secretion and blood glucose metabolism by adrenomedullin. Endocrinology 137: 2626–2632, 1996.
 604. Mason, R. T., R. A., Peterfreund, P. E. Sawchenko, A. Z. Corrigan, J. E. Rivier, and W. W. Vale. Release of the predicted calcitonin gene‐related peptide from cultured rat trigeminal ganglion cells. Nature 308: 653–655, 1984.
 605. Maton, P. N., V. E., Sutliff, Z.‐C. Zhou, S. M. Collins, J. D. Gardner, and R. T. Jensen. Characterization of receptors for calcitonin gene‐related peptide on gastric smooth muscle cells. Am. J. Physiol. 254: (Gastrointest. Liver Physiol. 17) G789–G749, 1988.
 606. Matsumoto, N., S., Uchida, X. B. Wang, and H. Yoshida. Effect of denervation of the phrenic nerve on the action of calcitonin gene‐related peptide in rat diaphragm. Life Sci. 47: 547–555, 1990.
 607. Matsumoto, N., X. B., Wang, and S. Uchida. Different natures of supersensitivity of adenylate cyclase stimulated by calcitonin gene‐related peptide and isoproterenol in rat diaphragm after denervation and reserpine treatment. J. Neurochem. 58: 357–361, 1992.
 608. Matteoli, M., C., Haimann, F. Torri‐Tarelli, J. M. Polak, B. Ceccarelli, and P. De Camilli. Differential effect of α‐latrotoxin on exocytosis from small synaptic vesicles and from large dense‐core vesicles containing calcitonin gene‐related peptide at the frog neuromuscular junction. Proc. Natl. Acad. Sci. U.S.A. 85: 7366–7370, 1988.
 609. May, P. C., L. N., Boggs, and K. S. Fuson. Neurotoxicity of human amylin in rat primary hippocampal cultures: similarity to Alzheimer's disease amyloid‐beta neurotoxicity. J. Neurochem. 61: 2330–2333, 1993.
 610. Mazzocchi, G., P., Rebuffat, G. Gottardo, and G. G. Nussdorfer. Adrenomedullin and calcitonin gene‐related peptide inhibit aldosterone secretion in rats, acting via a common receptor. Life Sci. 58: 839–844, 1996.
 611. McCormack, D. G., J. C. W., Mak, M. O. Coupe, and P. J. Barnes. Calcitonin gene‐related peptide vasodilation of human pulmonary vessels. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 67: 1265–1270, 1989.
 612. McCulloch, J., R., Uddman, T. A. Kingman, and L. Edvinsson. Calcitonin gene‐related peptide: functional role in cerebrovascular regulation. Proc. Natl. Acad. Sci. U.S.A. 83: 5731–5735, 1986.
 613. McEwan, J. R., N., Benjamin, S. Larkin, R. W. Fuller, C. T. Dollery, and I. MacIntyre. Vasodilatation by calcitonin gene‐related peptide and substance P: a comparison of their effects on resistance and capacitance vessels of human forearms. Circulation 77: 1072–1080, 1988.
 614. McEwan, J. R., J. M., Ritter, and J. MacDermot. Calcitonin gene‐related peptide (CGRP) activates adenylate cyclase of bovine aortic endothelial cells: guanosine 5' triphosphate dependence and partial agonist activity of a tyrosinated analogue. Cardiovasc. Res. 23: 921–927, 1989.
 615. McGarry, J. D.. Disordered metabolism in diabetes: have we underemphasized the fat component? J. Cell. Biochem. 55: 29–38, 1994.
 616. McGillis, J. P., S., Humphreys, and S. Reid. Characterization of functional calcitonin gene‐related peptide receptors on rat lymphocytes. J. Immunol. 147: 3482–3489, 1991.
 617. Meier, H., and G. A. Yarganian. Spontaneous hereditary diabetes mellitus in Chinese hamster (Cricetulus griseus). 1. Pathological findings. Proc. Soc. Exp. Biol. Med. 100: 810–815, 1959.
 618. Michelangeli, V. P., A. E., Fletcher, E. H. Allan, G. C. Nicholson, and T. J. Martin. Effects of calcitonin gene‐related peptide on cyclic AMP formation in chicken, rat, and mouse bone cells. J. Bone. Miner. Res. 4: 269–272, 1989.
 619. Miles, K., D. T., Anthony, L. L. Rubin, P. Greengard, and R. L. Huganir. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP. Proc. Natl. Acad. Sci. U.S.A. 84: 6591–6595, 1987.
 620. Minamino, N., H., Shoji, S. Sugo, K. Kangawa, and H. Matsuo. Adrenocortical steroids, thyroid hormones and retinoic acid augment the production of adrenomedullin in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 211: 686–693, 1995.
 621. Minor, D. L., Jr., and P. S., Kim. Measurement of the beta‐sheet‐forming propensities of amino acids. Nature 367: 660–663, 1994.
 622. Minvielle, S., M., Cressent, F. Lasmoles, A. Jullienne, G. Milhaud, and M. S. Moukhtar. Isolation and partial purification of the calcitonin gene in a lower vertebrate: predicted structure of avian calcitonin gene‐related peptide. FEBS Lett. 203: 7–10, 1986.
 623. Mirzabekov, T. A., M. C., Lin, and B. L. Kagan. Pore formation by the cytotoxic islet amyloid peptide amylin. J. Biol. Chem. 271: 1988–1992, 1996.
 624. Mitsukawa, T., J., Takemura, J. Asai, M. Nakazato, K. Kangawa, H. Matsuo, and S. Matsukura. Islet amyloid polypeptide response to glucose, insulin, and somatostatin analogue administration. Diabetes 39: 639–642, 1990.
 625. Miura, K., T., Ebara, M. Okumura, T. Matsuura, S. Kim, T. Yukimura, and H. Iwao. Attenuation of adrenomedullin‐induced renal vasodilatation by N‐G‐nitro‐L‐arginine but not glibenclamide. Br. J. Pharmacol. 115: 917–924, 1995.
 626. Miyata, A., A., Arimura, R. R. Dahl, N. Minamino, A. Vehara, L. Jiang, M. D. Culler, and D. H. Coy. Isolation of a novel 38‐residue hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem. Biophys. Res. Commun. 164: 567–574, 1989.
 627. Miyata, A., L., Jiang, R. D. Dahl, C. Kitada, K. Kubo, M. Fujino, N. Minamino, and A. Arimura. Isolation of a neuropeptide corresponding to the N‐terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem. Biophys. Res. Commun. 170: 643–648, 1990.
 628. Miyauchi, T., T., Ishikawa, Y. Sugishita, A. Saito, and K. Goto. Effects of capsaicin on nonadrenergic noncholinergic nerves in the guinea pig atria: role of calcitonin gene‐related peptide as cardiac neurotransmitter. J. Cardiovasc Pharmacol. 10: 675–682, 1987.
 629. Miyazato, M., M., Nakazato, K. Shiomi, J. Aburaya, K. Kangawa, H. Matsuo, and S. Matsukura. Molecular forms of islet amyloid polypeptide (IAPP/amylin) in four mammals. Diabetes Res. Clin. Pract. 15: 31–36, 1992.
 630. Miyazato, M., M., Nakazato, K. Shiomi, J. Aburaya, H. Toshimori, K. Kangawa, H. Matsuo, and S. Matsukura. Identification and characterization of islet amyloid polypeptide in mammalian gastrointestinal tract. Biochem. Biophys. Res. Commun. 181: 293–300, 1991.
 631. Miyazato, M., M., Nakazato, K. Shiomi, K. Kangawa, H. Matsuo, and S. Matsukura. Isolation and sequence determination of two N‐terminal fragments of islet amyloid polypeptide in rat pancreas. Regul. Pept. 49: 203–210, 1994.
 632. Moldovan, S., A., Atiya, T. E. Adrian, et al, Somatostatin inhibits B‐cell secretion via a subtype‐2 somatostatin receptor in the isolated perfused human pancreas. J. Surg. Res. 59: 85–90, 1995.
 633. Molina, J. M., G. J. S., Cooper, B. Leighton, and J. M. Olefsky. Induction of insulin resistance in vivo by amylin and calcitonin gene‐related peptide. Diabetes 39: 260–265, 1990.
 634. Moonga, B. S., A. S. M. T., Alam, P. J. R. Bevis, F. Avaldi, R. Soncini, C.‐H. Huang, and M. Zaidi. Regulation of cytosolic free calcium in isolated rat osteoclasts by calcitonin. J. Endocrinol. 132: 241–249, 1992.
 635. Moore, C. X., and G. J. S. Cooper. Co‐secretion of amylin and insulin from cultured islet β‐cells: modulation by nutrient secretagogues, islet hormones and hypoglycemic agents. Biochem. Biophys. Res. Commun. 179: 1–9, 1991.
 636. Mora, M., M., Marchi, J. M. Polak, S. J. Gibson, and F. Cornelio. Calcitonin gene‐related peptide immunoreactivity at the human neuromuscular junction. Brain Res. 492: 404–407, 1989.
 637. Moran, T. H., and P. R. McHugh. Gastric and nongastric mechanisms for satiety action of cholecystokinin. Am. J. Physiol. 254 (Regulatory Integrative Comp. Physiol. 23): R628–R632, 1988.
 638. Mordes, J. P., J., Desemone, and A. A. Rossini. The BB rat. Diabetes Metab. Rev. 3: 725–750, 1987.
 639. Morishita, T., A., Yamaguchi, T. Fujita, and T. Chiba. Activation of adenylate cyclase by islet amyloid polypeptide with COOH‐terminal amide via calcitonin gene‐related peptide receptors on rat liver plasma membranes. Diabetes 39: 875–877, 1990.
 640. Morishita, T., A., Yamaguchi, T. Yamatani, A. Nakamura, N. Arima, Y. Yamashita, H. Nakata, T. Fujita, and T. Chiba. Effects of islet amyloid polypeptide (amylin) and calcitonin gene‐related peptide (CGRP) on glucose metabolism in the rat. Diabetes Res. Clin. Pract. 15: 63–69, 1992.
 641. Morley, J. E.. The neuroendocrine control of appetite. Life Sci. 27: 355–368, 1980.
 642. Morley, J. E., S. A., Farr, and J. F. Flood. Peripherally administered calcitonin gene‐related peptide decreases food intake in mice. Peptides 17: 511–516, 1996.
 643. Morley, J. E. and J. F., Flood. Amylin decreases food intake in mice. Peptides 12: 865–869, 1991.
 644. Morley, J. E., J. F., Flood, S. A. Farr, H. J. Perry, F. E. Kaiser, and P. M. K. Morley. Effects of amylin on appetite regulation and memory. Can. J. Physiol. Pharmacol. 73: 1042–1046, 1995.
 645. Morley, J. E., J. F. Flood. M. Horowitz, P. M. Morley, and M. J. Walter. Modulation of food intake by peripherally administered amylin. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R178–R184, 1994.
 646. Morley, J. E., A. S., Levine, J. Kneip, and M. Grace. The effect of vagotomy on the satiety effects of neuropeptides and naloxone. Life Sci. 30: 1943–1947, 1982.
 647. Morley, J. E., A. S., Levine, and S. E. Silvis. Intraventricular calcitonin inhibits gastric acid secretion. Science 214: 671–673, 1981.
 648. Morley, J. E., P. M., Morley, and J. F. Flood. Anorectic effects of amylin in rats over the life span. Pharmacol. Biochem. Behav. 44: 577–580, 1993.
 649. Morris, H. R., M., Panico, T. Etienne, J. Tippins, S. I. Girgis, and I. MacIntyre. Isolation and characterization of human calcitonin gene related peptide. Nature 308: 746–748, 1984.
 650. Morton, J. L., M., Davenport, A. Beloff‐Chain, N. L. Bodkin, and B. C. Hansen. Correlation between plasma beta‐cell tropin concentrations and body weight in obese rhesus monkeys. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E963–E967, 1992.
 651. Moss, S. J., P. C., Harkness, I. J. Mason, E. A. Barnard, and A. W. Mudge. Evidence that CGRP and cAMP increase transcription of AChR alpha‐subunit gene, but not of other subunit genes. J. Mol. Neurosci. 3: 101–108, 1991.
 652. Mosselman, S., J. W., Höppener, C. J. Lips, and H. S. Jansz. The complete islet amyloid polypeptide precursor is encoded by two exons. FEBS Lett. 247: 154–158, 1989.
 653. Mosselman, S., J. W., Höppener, J. Zandberg, A. D. van Mansfeld, A. H. Geurts van Kessel, C. J. Lips, and H. S. Jansz. Islet amyloid polypeptide: identification and chromosomal localization of the human gene. FEBS Lett. 239: 227–232, 1988.
 654. Motta, A., A., Pastore, N. A. Goud, and M. A. Castiglione‐Morelli. Solution conformation of salmon calcitonin in sodium dodecyl sulfate micelles as determined by two‐dimensional NMR and distance geometry calculations. Biochemistry 30: 10444–10450, 1991.
 655. Muff, R., W., Born, and J. A. Fischer. Calcitonin, calcitonin gene‐related peptide, adrenomedullin and amylin: homologous peptides, separate receptors and overlapping biological actions. Eur. J. Endocrinol. 133: 17–20, 1995.
 656. Muff, R., W., Born, and J. A. Fischer. Receptors for calcitonin, calcitonin gene related peptide, amylin, and adrenomedullin. Can. J. Physiol. Pharmacol. 73: 963–967, 1995.
 657. Mulder, H., B., Ahrén, S. Karlsson, and S. Sundler. Adrenomedullin: localization in the gastrointestinal tract and effects on insulin secretion. Regul. Pept. 62: 107–112, 1996.
 658. Mulder, H., B., Ahrén, M. Stridsberg, and F. Sundler. Nonparallelism of islet amyloid polypeptide (amylin) and insulin gene expression in rat islets following dexamethasone treatment. Diabetologia 38: 395–402, 1995.
 659. Mulder, H., B., Ahrén, and F. Sundler. Differential expression of islet amyloid polypeptide (amylin) and insulin in experimental diabetes in rodents. Mol. Cell. Endocrinol. 114: 101–109, 1995.
 660. Mulder, H., A., Leckström, R. Uddman, E. Ekblad, P. Westermark, and F. Sundler. Islet amyloid polypeptide (amylin) is expressed in sensory neurons. J. Neurosci. 15: 7625–7632, 1995.
 661. Mulder, H., A. C., Lindh, E. Ekblad, P. Westermark, and F. Sundler. Islet amyloid polypeptide is expressed in endocrine cells of the gastric mucosa in the rat and mouse. Gastroenterology 107: 712–719, 1994.
 662. Mulder, H., A. C., Lindh, and F. Sundler. Islet amyloid polypeptide gene expression in the endocrine pancreas of the rat: a combined in situ hybridization and immunocytochemical study. Cell Tissue Res. 274: 467–474, 1993.
 663. Mulle, C., P., Benoit, C. Pinset, M. Roa, and J.‐P. Changeux. Calcitonin gene‐related peptide enhances the rate of desensitization of the nicotinic acetylcholine receptor in cultured mouse muscle cells. Proc. Natl. Acad. Sci. U.S.A. 85: 5728–5732, 1988.
 664. Murphy, T. C., and W. K. Samson. The novel vasoactive hormone, adrenomedullin, inhibits water drinking in the rat. Endocrinology 136: 2459–2463, 1995.
 665. Nagamatsu, S., R. J., Carroll, G. M. Grodsky, and D. F. Steiner. Lack of islet amyloid polypeptide regulation of insulin biosynthesis or secretion in normal rat islets. Diabetes 39: 871–874, 1990.
 666. Nagamatsu, S., M., Nishi, and D. F. Steiner. Biosynthesis of islet amyloid polypeptide. Elevated expression in mouse βTC3 cells. J. Biol. Chem. 266: 13737–13741, 1991.
 667. Nagamatsu, S., M., Nishi, and D. F. Steiner. Effects of islet amyloid polypeptide (IAPP) on insulin biosynthesis or secretion in rat islets and mouse βTC3 cells. Biosynthesis of IAPP in mouse βTC3 cells. Diabetes Res. Clin. Pract. 15: 49–55, 1992.
 668. Nakajima, K., A., Morikawa, and I. Makino. Natural history of B‐cell dysfunction in spontaneously diabetic Chinese hamsters. Diabetes Res. Clin. Pract. 24: 131–142, 1994.
 669. Nakamuta, H., Y., Fukuda, M. Koida, N. Fujii, A. Okata, S. Funakoshi, H. Yajima, N. Mitsuyasu, and R. Orlowski. Binding sites of calcitonin gene‐related peptide (CGRP): abundant occurrence in visceral organs. Jpn. J. Pharmacol. 42: 175–180, 1986.
 670. Nakazato, M., J., Asai, K. Kangawa, S. Matsukura, and H. Matsuo. Establishment of radioimmunoassay for human islet amyloid polypeptide and its tissue content and plasma concentration. Biochem. Biophys. Res. Commun. 164: 394–399, 1989.
 671. Nakazato, M., J., Asai, M. Miyazato, S. Matsukura, and H. Matsuo. Isolation and identification of islet amyloid polypeptide in normal human pancreas. Regul. Pept. 31: 179–186, 1990.
 672. Nakazato, M., and S. Matsukura. New type of amyloidosis, b). Islet amyloid polypeptide (IAPP/amylin) in non‐insulin‐dependent diabetes mellitus. Intern. Med. 32: 928–929, 1993.
 673. Nakazato, M., M., Miyazato, J. Asai, T. Mitsukawa, K. Kangawa, H. Matsuo, and S. Matsukura. Islet amyloid polypeptide, a novel pancreatic peptide, is a circulating hormone secreted under glucose stimulation. Biochem. Biophys. Res. Commun. 169: 713–718, 1990.
 674. Netti, C., V., Sibilia, F. Pagani, N. Lattuada, M. Coluzzi, A. Pecile, and F. Guidobono. Inhibitory effect of amylin on growth hormone responsiveness to growth‐hormone‐releasing hormone in the rat. Neuroendocrinology 62: 313–318, 1995.
 675. New, H. V., and A. W. Mudge. Calcitonin gene‐related peptide regulates muscle acetylcholine receptor synthesis. Nature 323: 809–811, 1986.
 676. Newgard, C. B., L. J., Hirsch, D. W. Foster, and J. D. McGarry. Studies on the mechanism by which exogenous glucose is converted into liver glycogen in the rat: a direct or an indirect pathway? J. Biol. Chem. 258: 8046–8052, 1983.
 677. Nicholl, C. G., J. M., Bhatavdekar, J. Mak, S. I. Girgis, and S. Legon. Extra‐pancreatic expression of the rat islet amyloid polypeptide (amylin) gene. J. Mol. Endocrinol. 9: 157–163, 1992.
 678. Nielson, K. A., J. H., Nolan, N. C. Berchtold, C. A. Sandman, R. A. Mulnard, and C. W. Cotman. Apolipoprotein‐E‐genotyping of diabetic dementia patients: is diabetes rare in Alzheimer's disease? J. Am. Geriatr. Soc. 44: 897–904, 1996.
 679. Nieuwenhuis, M. G., K. L. van Hulst, W. H. L. Hackeng, and C. J. M. Lips. Islet amyloid polypeptide plasma concentrations in patients with insulinoma. Diabetologia 35 (Suppl. 1): A119, 1992.
 680. Nieuwenhuis, M. G., A. D. van Mansfeld, J. A. van Unnik, M. J. Berends, and C. J. Lips. No constant relationship between islet amyloid polypeptide (IAPP) and insulin expression in insulinomas. Neth. J. Med. 41: 264–271, 1992.
 681. Nilsson, L., and E. Hultman. Liver glycogen in man—the effect of total starvation or a carbohydrate‐poor diet followed by carbohydrate refeeding. Scand. J. Clin. Lab. Invest. 32: 325–330, 1973.
 682. Nimmo, A. J., J. F. B., Morrison, and E. M. Whitaker. A comparison of the distribution of substance P and calcitonin gene‐related peptide receptors in the rat bladder. Q. J. Exp. Physiol. 73: 789–792, 1988.
 683. Nishi, M., G. I., Bell, and D. F. Steiner. Islet amyloid polypeptide (amylin): no evidence of an abnormal precursor sequence in 25 type 2 (non‐insulin‐dependent) diabetic patients. Diabetologia 33: 628–630, 1990.
 684. Nishi, M., G. I., Bell, and D. F. Steiner. Sequence of a cDNA encoding Syrian hamster islet amyloid polypeptide precursor. Nucleic Acids Res. 18: 6726, 1990.
 685. Nishi, M., S. J., Chan, S. Nagamatsu, G. I. Bell, and D. F. Steiner. Conservation of the sequence of islet amyloid polypeptide in five mammals is consistent with its putative role as an islet hormone. Proc. Natl. Acad. Sci. U.S.A. 86: 5738–5742, 1989.
 686. Nishi, M., T., Sanke, S. Nagamatsu, G. I. Bell, and D. F. Steiner. Islet amyloid polypeptide. A new beta cell secretory product related to islet amyloid deposits. J. Biol. Chem. 265: 4173–4176, 1990.
 687. Nishi, M., T., Sanke, S. Ohagi, K. Ekawa, H. Wakasaki, K. Nanjo, G. I. Bell, and D. F. Steiner. Molecular biology of islet amyloid polypeptide. Diabetes Res. Clin. Pract. 15: 37–44, 1992.
 688. Nishi, M., T., Sanke, S. Seino, R. L. Eddy, Y. S. Fan, M. G. Byers, T. B. Shows, G. I. Bell, and D. F. Steiner. Human islet amyloid polypeptide gene: complete nucleotide sequence, chromosomal localization, and evolutionary history. Mol. Endocrinol. 3: 1775–1781, 1989.
 689. Nishi, M., and D. F. Steiner. Cloning of complementary DNAs encoding islet amyloid polypeptide, insulin, and glucagon precursors from a New World rodent, the degu, Octodon degus. Mol. Endocrinol. 4: 1192–1198, 1990.
 690. Nishikimi, T., Y., Saito, K. Kitamura, T. Ishimitsu, T. Eto, K. Kangawa, H. Matsuo, T. Omae, and H. Matsuoka. Increased plasma levels of adrenomedullin in patients with heart failure. J. Am. Coll. Cardiol. 26: 1424–1431, 1995.
 691. Nishimura, S., T., Sanke, K. Machida, H. Bessho, T. Hanabusa, K. Nakai, and K. Nanjo. Lack of effect of islet amyloid polypeptide on hepatic glucose output in the in situ‐perfused rat liver. Metabolism 41: 431–434, 1992.
 692. Nishizawa, Y., Y., Okui, M. Inaba, S. Okuno, K. Yukioka, T. Miki, Y. Watanabe, and H. Morii. Calcium/calmodulin‐mediated action of calcitonin on lipid metabolism in rats. J. Clin. Invest. 82: 1165–1172, 1988.
 693. Noble, B. S., D. N., McMillan, and C. A. Maltin. Calcitonin gene‐related peptide stimulates differentiation of neonatal rat myogenic cultures. Growth Regul. 3: 245–248, 1993.
 694. Nordgren, C. E., L. M., Nyhus, and C. T. Bombeck. The effects of thyrocalcitonin on gastric acid secretion in intact and thyroidectomized thyroxin‐substituted gastric fistula cats. Scand. J. Gastroenterol. 9: 103–109, 1974.
 695. Nossaman, B. D., C. J., Feng, D. Y. Cheng, B. J. Dewitt, D. H. Coy, W. A. Murphy, and P. J. Kadowitz. Comparative effects of adrenomedullin, an adrenomedullin analog, and CGRP in the pulmonary vascular bed of the cat and rat. Life Sci. 56: PL63–PL66, 1995.
 696. Novials, A., Y., Sarri, R. Casamitjana, F. Rivera, and R. Gomis. Regulation of islet amyloid polypeptide in human pancreatic islets. Diabetes 42: 1514–1519, 1993.
 697. Nowak, T. V., A. N., Roza, J. P. Weisbruch, and M. R. Brosnan. Accelerated gastric emptying in diabetic rodents: effect of insulin treatment and pancreas transplantation. J. Lab. Clin. Med. 123: 110–116, 1994.
 698. Nuki, C., H., Kawasaki, K. Kitamura, M. Takenaga, K. Kangawa, T. Eto, and A. Wada. Vasodilator effect of adrenomedullin and calcitonin gene‐related peptide receptors in rat mesenteric vascular beds. Biochem. Biophys. Res. Commun. 196: 245–251, 1993.
 699. Nussenzveig, D. R., S. Mathew and M. C. Gershengorn. Alternative splicing of a 48‐nucleotide exon generates two isoforms of the human calcitonin receptor. Endocrinology 136: 2047–2051, 1995.
 700. Nyholm, B., N., Moller, C. H. Gravholt, L. Orsk, A. Mengel, G. Bryan, C. Moyses, K. G. Alberti, and O. Schmitz. Acute effects of the human amylin analog AC137 on basal and insulin‐stimulated euglycemic and hypoglycemic fuel metabolism in patients with insulin‐dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 81: 1083–1089, 1996.
 701. O'Brien, T. D., A. E., Butler, P. C. Roche, K. H. Johnson, and P. C. Butler. Islet amyloid polypeptide in human insulinomas. Evidence for intracellular amyloidogenesis. Diabetes 43: 329–336, 1994.
 702. O'Brien, T. D., P. C., Butler, D. K. Kreutter, L. A. Kane, and N. L. Eberhardt. Human islet amyloid polypeptide expression in COS‐1 cells. A model of intracellular amyloidogenesis. Am. J. Pathol. 147: 609–616, 1995.
 703. O'Brien, T. D., R. A., Rizza, J. A. Carney, and P. C. Butler. Islet amyloidosis in a patient with chronic massive insulin resistance due to antiinsulin receptor antibodies. J. Clin. Endocrinol. Metab. 79: 290–292, 1994.
 704. O'Brien, T. D., P., Westermark, and K. H. Johnson. Islet amyloid polypeptide and calcitonin gene‐related peptide immunoreactivity in amyloid and tumor cells of canine pancreatic endocrine tumors. Vet. Pathol. 27: 194–198, 1990.
 705. O'Brien, T. D., P., Westermark, and K. H. Johnson. Islet amyloid polypeptide and insulin secretion from isolated perfused pancreas of fed, fasted, glucose‐treated, and dexamethasone‐treated rats. Diabetes 40: 1701–1706, 1991.
 706. Ochoa, E. L. M., A., Chattopadhyay, and M. G. McNamee. Desensitization of the nicotinic acetylcholine receptor: molecular mechanisms and effect of modulators. Cell. Mol. Neurobiol. 9: 141–178, 1989.
 707. O'Connell, J. P., S. M., Kelly, D. P. Raleigh, J. A. M. Hubbard, N. C. Price, C. M. Dobson, and B. J. Smith. On the role of the C‐terminus of α‐calcitonin‐gene‐related peptide (α‐CGRP): the structure of des‐phenylalaninamide (37)‐α‐CGRP and its interaction with the CGRP receptor. Biochem. J. 291: 205–210, 1993.
 708. Ogawa, A., V., Harris, S. K. McCorkle, R. H. Unger, and K. L. Luskey. Amylin secretion from the rat pancreas and its selective loss after streptozotocin treatment. J. Clin. Invest. 85: 973–976, 1990.
 709. Ogi, K., C., Kimura, H. Onda, A. Arimura, and M. Fujino. Molecular cloning and characterization of cDNA for the precursor of rat pituitary adenylate cyclase activating peptide (PACAP). Biochem. Biophys. Res. Commun. 173: 1271–1279, 1990.
 710. Ohagi, S., K., Ekawa, T. Sanke, M. Nishi, and K. Nanjo. Restriction fragment length polymorphisms near the islet amyloid polypeptide gene in Japanese subjects. Diabetes Res. Clin. Pract. 18: 71–74, 1992.
 711. Ohagi, S., M., Nishi, G. I. Bell, J. W. Ensinck, and D. F. Steiner. Sequences of islet amyloid polypeptide precursors of an Old World monkey, the pig‐tailed macaque (Macaca nemestrina), and the dog (Canis familiaris). Diabetologia 34: 555–558, 1991.
 712. O'Halloran, D. J. and S. R., Bloom. Calcitonin gene related peptide: a major neuropeptide and the most powerful vasodilator known. BMJ 302: 739–740, 1991.
 713. Ohhashi, T., and D. M. Jacobowitz. Effects of calcitonin gene‐related peptide on neuromuscular transmission in the isolated rat diaphragm. Peptides 9: 613–617, 1988.
 714. Ohno, H., M., Noguchi, and N. Takayanagi. Effect of elcatonin on experimental gastric and duodenal ulcers. Jpn. J. Pharmacol. 37: 67–75, 1985.
 715. Ohsawa, H., A., Kanatsuka, Y. Mizuno, Y. Tokuyama, K. Takada, A. Mikata, H. Makino, an S. Yoshida. Islet amyloid polypeptide‐derived amyloid deposition increases along with the duration of type 2 diabetes mellitus. Diabetes. Res. Clin. Pract. 15: 17–21, 1992.
 716. Ohsawa, H., A., Kanatsuka, T. Yamaguchi, H. Makino, and S. Yoshida. Islet amyloid polypeptide inhibits glucose‐stimulated insulin secretion from isolated rat pancreatic islets. Biochem. Biophys. Res. Commun. 160: 961–967, 1989.
 717. Ohtsuka, H., T., Iwanaga, M. A. Fujino, and T. Fujita. Amylin‐containing cells in the gastro‐entero‐pancreatic (GEP) endocrine system of the rat and humans: an immunohistochemical study. Acta Histochem. Cytochem. 26: 405–414, 1993.
 718. Okimura, Y., K., Chihara, H. Abe, H. Kaji, T. Kita, Y. Kashio, and T. Fujita. Effect of intracerebroventricular administration of rat calcitonin gene‐related peptide (CGRP), human calcitonin and [Asu1,7]‐eel calcitonin on gastric secretion in rats. Endocrinol. Jpn. 33: 273–277, 1986.
 719. Okimura, Y., K., Chihara, H. Abe, T. Kita, Y. Kashio, M. Sato, and T. Fujita. Calcitonin gene‐related peptide‐like immunoreactivity in the central nervous system and peripheral organs of rats. Regul. Pept. 17: 327–337, 1987.
 720. Ono, K., M., Delay, T. Nakajima, H. Irisawa, and W. Giles. Calcitonin gene‐related peptide regulates calcium current in heart muscle. Nature 340: 721–724, 1989.
 721. Oosterwijk, C., J. W. Höppener, K. L. van Hulst, and C. J. Lips. Pancreatic islet amyloid formation in patients with noninsulin‐dependent diabetes mellitus. Implication for therapeutic strategy. Int. J. Pancreatol. 18: 7–14, 1995.
 722. Opie, E. L.. On the relation of chronic interstitial pancreatitis to the islands of Langerhans and to diabetes mellitus. J. Exp. Med. 5: 397–428, 1900–01.
 723. Opie, E. L.. The relation of diabetes mellitus to lesions of the pancreas: hyaline degeneration of the islands of Langerhans. J. Exp. Med. 5: 527–540, 1900–01.
 724. Orimo, H., T., Oyama, and H. Ito. Calcitonin inhibition of gastric secretion in rat. Endocrinol. Jpn. 20: 439–445, 1973.
 725. Orskov, C., M., Bersani, A. H. Johnson, P. Hojrup, and J. J. Holst. Complete sequences of glucagon‐like peptide‐I from human and pig small intestine. J. Biol. Chem. 264: 12826–12829, 1989.
 726. Osajima, A., Y., Mutoh, Y. Uezono, M. Kawamura, F. Izumi, M. Takasugi, and A. Kuroiwa. Adrenomedullin increases cyclic AMP more potently than CGRP and amylin in rat renal tubular basolateral membranes. Life Sci. 57: 457–462, 1995.
 727. Österlund, M., B. Fontaine, A. Devillers‐Thiery, B. Geoffroy, and J.‐P. Changeux. Acetylcholine receptor expression in primary cultures of embryonic chick myotubes—I. Discoordinate regulation of α‐, δ‐ and γ‐subunit gene expression by calcitonin gene‐related peptide and by muscle electrical activity. Neuroscience 32: 279–287, 1989.
 728. Owan, I., and K. Ibaraki. The role of calcitonin gene‐related peptide (CGRP) in macrophages: the presence of functional receptors and effects on proliferation and differentiation into osteoclast‐like cells. Bone Miner. 24: 151–164, 1994.
 729. Owji, A. A., D. M., Smith, H. A. Coppock, D. G. Morgan, R. Bhogal, M. A. Ghatei, and S. R. Bloom. An abundant and specific binding site for the novel vasodilator adrenomedullin in the rat. Endocrinology 136: 2127–2134, 1995.
 730. Pappas, T., H. T., Debas, J. W. Walsh, J. Rivier, and Y. Taché. Calcitonin gene‐related peptide‐induced selective inhibition of gastric acid secretion in dogs. Am. J. Physiol. 250 (Gastrointest. Liver Physiol. 13): G127–G133, 1986.
 731. Parkes, D. G., and C. N. May. ACTH‐suppressive and vasodilator actions of adrenomedullin in conscious sheep. J. Neuroendocrinol. 7: 923–929, 1995.
 732. Parkman, H. P., J. C., Reynolds, K. S. Elfman, and C. P. Ogorek. Calcitonin gene‐related peptide: a sensory and motor neurotransmitter in the lower esophageal sphincter. Regul. Pept. 25: 131–146, 1989.
 733. Patel, Y., and C. B. Srikant. Subtype selectivity of peptide analogs for all five cloned human somatostatin receptors (hsstr 1–5). Endocrinology 135: 2814–2817, 1994.
 734. Paul, F., F., Neumann, and H. Huchzermeyer. Response of basal and pentagastrin‐stimulated gastric secretion and of serum gastrin to short‐and long‐term intravenous infusion of salmon calcitonin in hyperchlorhydric subjects. Scand. J. Gastroenterol. 13: 959–967, 1978.
 735. Pauling, L.. The Structure of the Chemical Bond. Ithaca: Cornell University Press, 1960.
 736. Peiró, E., P., Dégano, R. A. Silvestre, and J. Marco. Inhibition of insulin release by amylin is not mediated by changes in somatostatin output. Life Sci. 49: 761–765, 1991.
 737. Pepys, M. B.. Amyloidosis: some recent developments. Q. J. Med. 67: 283–298, 1988.
 738. Percy, A. J., D., Trainor, J. Rittenhouse, S. Janes, and J. E. Koda. Sensitive two‐site enzyme immunoassays for amylin and amylin‐like peptides in human plasma. Diabetologia 37 (Suppl. 1): A117, 1994.
 739. Percy, A. J., D. A., Trainor, J. Rittenhouse, J. Phelps and J. E. Koda. Development of sensitive immunoassays to detect amylin and amylin‐like peptides in unextracted plasma. Clin. Chem. 42: 576–585, 1996.
 740. Permert, J., I., Ihse, L. Jorfeldt, H. von Schenck, H. Arnquist, and J. Larsson. Improved glucose metabolism after subtotal pancreatectomy for pancreatic cancer. Br. J. Surg. 80: 1047–1050, 1993.
 741. Permert, J., I., Ihse, L. Jorfeldt, H. von Schenck, H. Arnquist, and J. Larsson. Pancreatic cancer is associated with impaired glucose metabolism. Eur. J. Surg. 159: 101–107, 1993.
 742. Permert, J., J., Larsson, G. T. Westermark, M. K. Herrington, L. Christmanson, P. M. Pour, P. Westermark, and T. E. Adrian. Islet amyloid polypeptide in patients with pancreatic cancer and diabetes. N. Engl. J. Med. 330: 313–318, 1994.
 743. Pernow, J.. Actions of constrictor (NPY and endothelin) and dilator (substance P, CGRP and VIP) peptides on pig splenic and human skeletal muscle arteries: involvement of the endothelium. Br. J. Pharmacol. 97: 983–999, 1989.
 744. Perret, M., H., Broussard, T. LeGros, A. Burns, J. K. Chang, W. Summer, A. Hyman, and H. Lippton. The effect of adrenomedullin on the isolated heart. Life Sci. 53: PL377–PL379, 1993.
 745. Pettersson, M., B. Ahrén, G. Böttcher, and F. Sundler. Calcitonin gene‐related peptide: occurrence in pancreatic islets in the mouse and the rat and inhibition of insulin secretion in the mouse. Endocrinology 119: 865–867, 1986.
 746. Pickett‐Gies, C. A., and D. A. Walsh. Phosphorylase kinase. In: The Enzymes. Control by Phosphorylation, edited by P. D. K. Boyer and E. G. Krebs. Chapter 10, p. 395–459, Orlando: Academic, 1986, pt. A.
 747. Pieber, T. R., J., Roitelman, Y. Lee, K. L. Luskey, and D. T. Stein. Direct plasma radioimmunoassay for rat amylin‐(1–37): concentrations with acquired and genetic obesity. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E156–E164, 1994.
 748. Pieber, T. R., D. T., Stein, A. Ogawa, T. Alam, M. Ohneda, K. McCorkle, L. Chen, J. D. McGarry, and R. H. Unger. Amylininsulin relationships in insulin resistance with and without diabetic hyperglycemia. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E446–E453, 1993.
 749. Pietschmann, P., K. H., Farsoudi, O. Hoffmann, K. Klaushofer, H. Horandner, and M. Peterlik. Inhibitory effect of amylin on basal and parathyroid hormone‐stimulated bone resorption in cultured neonatal mouse calvaria. Bone 14: 167–172, 1993.
 750. Pike, C. J., D., Burdick, A. J. Walencewicz, C. G. Glabe, and C. W. Cotman. Neurodegeneration induced by beta‐amyloid peptides in vitro: the role of peptide assembly state. J. Neurosci. 13: 1676–1687, 1993.
 751. Pike, C. J., A., Walencewicz, C. G. Glabe, and C. W. Cotman. Aggregation‐related toxicity of synthetic β‐amyloid protein in hippocampal cultures. Eur. J. Pharmacol. 207: 367–368, 1991.
 752. Pittner, R. A., K., Albrandt, K. Beaumont, S. L. Gaeta, J. E. Koda, C. X. Moore, J. Rittenhouse, and T. J. Rink. Molecular physiology of amylin. J. Cell. Biochem. 55: 19–28, 1994.
 753. Pittner, R. A., D., Wolfe‐Lopez, A. A. Young, and K. Beaumont. Different pharmacological characteristics in L6 and C2C12 muscle cells and intact rat skeletal muscle for amylin, CGRP and calcitonin. Br. J. Pharmacol. 117: 847–852, 1996.
 754. Plourde, V., S. St. Pierre, A. Fournier, and Y. Taché. CGRP8–37 blocks the inhibition of gastric emptying induced by intravenous injection of alpha‐CGRP in rats. Life Sci. 52: 857–862, 1993.
 755. Popper, P., and P. E. Micevych. Localization of calcitonin gene‐related peptide and its receptors in a striated muscle. Brain Res. 496: 180–186, 1989.
 756. Porte, D., Jr., and S. E., Kahn. Hyperproinsulinemia and amyloid in NIDDM. Clues to etiology of islet beta‐cell dysfunction? Diabetes 38: 1333–1336, 1989.
 757. Poyner, D. R.. Pharmacology of receptors for calcitonin gene‐related peptide and amylin. Trends. Pharmacol. Sci. 16: 424–428, 1995.
 758. Poyner, D. R., D. P., Andrew, D. Brown, C. Bose, and M. R. Hanley. Pharmacological characterization of a receptor for calcitonin gene‐related peptide on rat L6 myocytes. Br. J. Pharmacol. 105: 441–447, 1992.
 759. Raybould, H. E.. Inhibitory effects of calcitonin gene‐related peptide on gastrointestinal motility. Ann. N.Y. Acad. Sci. 657: 248–257, 1992.
 760. Raybould, H. E., E. Kolve, and Y. Taché. Central nervous system action of calcitonin gene‐related peptide to inhibit gastric emptying in the conscious rat. Peptides 9: 735–737, 1988.
 761. Raybould, H. E., D. S., Li, and P. H. Guth. Calcitonin gene‐related peptide mediates the gastric hyperemic response to acid back diffusion. Ann. N.Y. Acad. Sci. 657: 536–537, 1992.
 762. Reaven, E. P., G., Gold, and G. M. Reaven. Effect of age on glucose stimulated insulin release by the β‐cell of the rat. J. Clin. Invest. 64: 591–599, 1979.
 763. Redfern, J. S., and T. M. O'Dorisio. Therapeutic uses of gastrointestinal peptides. Endocrinol. Metab. Clin. North. Am. 22: 845–873, 1993.
 764. Reid, I. R., M. C., Evans, G. J. S. Cooper, R. W. Ames, and J. Stapleton. Circulating insulin levels are related to bone density in normal postmenopausal women. Am. J. Physiol. 265 (Endocrinol. Metab. 28): E655–E659, 1993.
 765. Renzi, D., S., Evangelista, P. Mantellini, P. Santicioli, C. A. Maggi, P. Geppetti, and C. Surrenti. Capsaicin‐induced release of neurokinin A from muscle and mucosa of gastric corpus: correlation with capsaicin‐evoked release of calcitonin gene‐related peptide. Neuropeptides 19: 137–145, 1991.
 766. Réthelyi, M., C. B., Metz, and P. K. Lund. Distribution of neurons expressing calcitonin gene‐related peptide mRNAs in the brain stem, spinal cord and dorsal root ganglia of rat and guinea‐pig. Neuroscience 29: 225–239, 1989.
 767. Rindi, G., G., Terenghi, G. Westermark, P. Westermark, G. Moscoso, and J. M. Polak. Islet amyloid polypeptide in proliferating pancreatic B cells during development, hyperplasia, and neoplasia in humans and mice. Am. J. Pathol. 138: 1321–1334, 1991.
 768. Rink, T. J., K., Beaumont, J. Koda, and A. A. Young. Structure and biology of amylin. Trends. Pharmacol. Sci. 14: 113–118, 1993.
 769. Roa, M., and J.‐P. Changeux. Characterization and developmental evolution of a high‐affinity binding site for calcitonin gene‐related peptide on chick skeletal muscle membrane. Neuroscience 41: 563–570, 1991.
 770. Roberts, A. N., B., Leighton, J. A. Todd, et al, Molecular and functional characterization of amylin, a peptide associated with type 2 diabetes mellitus. Proc. Natl. Acad. Sci. U.S.A. 86: 9662–9666, 1989.
 771. Roden, M., K., Liener, C. Fürnsinn, P. Nowotny, U. Hollenstein, H. Vierhapper, and W. Waldhäusl. Effects of islet amyloid polypeptide on hepatic insulin resistance and glucose production in the isolated perfused rat liver. Diabetologia 35: 116–120, 1992.
 772. Rodrigo, J., J. M., Polak, L. Fernandez, M. A. Ghatei, P. Mulderry, and S. R. Bloom. Calcitonin gene‐related peptide immunoreactive sensory and motor nerves of the rat, cat, and monkey esophagus. Gastroenterology 88: 444–451, 1985.
 773. Roman, L. M., L. F., Simons, R. E. Hammer, J. F. Sambrook, and M. J. Gething. The expression of influenza virus hemagglutinin in the pancreatic beta cells of transgenic mice results in autoimmune diabetes. Cell 61: 383–396, 1990.
 774. Roos, B. A., J. A., Fischer, W. Pignat, C. B. Alander, and L. G. Raisz. Evaluation of the in vivo and in vitro calcium‐regulating actions of noncalcitonin peptides produced via calcitonin gene expression. Endocrinology 118: 46–51, 1986.
 775. Rosenfeld, M. G., J.‐J., Mermod, S. G. Amara, L. W. Swanson, P. E. Sawchenko, J. Rivier, W. W. Vale, and R. M. Evans. Production of a novel neuropeptide encoded by the calcitonin gene via tissue‐specific RNA processing. Nature 304: 129–135, 1983.
 776. Rother, K. I., J. A., Carney, M. Couce, J. Charlesworth, and P. C. Butler. Islet amyloid polypeptide in pancreatic tissue of children with persistent hyperinsulinemic hypoglycemia caused by primary islet hyperplasia and nesidioblastosis. J. Clin. Endocrinol. Metab. 80: 1956–1959, 1995.
 777. Rovero, P., S., Giuliani, and C. A. Maggi. CGRP antagonist activity of short C‐terminal fragments of human alpha CGRP, CGRP(23–37) and CGRP(19–37). Peptides 13: 1025–1027, 1992.
 778. Saad, M. F., S., Lillioja, B. L. Nyomba, C. Castillo, R. Ferraro, M. De Gregario, E. Ravussin, W. C. Knowler, P. Bennet, and B. Howard. Racial difference in the relation between blood pressure and insulin resistance. N. Engl. J. Med. 324: 733–739, 1991.
 779. Sabate, M. I., L. S., Stolarsky, J. M. Polak, S. R. Bloom, M. Varndell, M. A. Ghatei, R. M. Evans, and M. G. Rosenfeld. Regulation of neuroendocrine gene expression by alternative RNA processing. Colocalization of calcitonin and calcitonin gene‐related peptide in thyroid C‐cells. J. Biol. Chem. 260: 2589–2592, 1985.
 780. Sabbatini, F., C. J., Fimmel, F. Pace, P. H. Tobler, R. A. Hinder, A. L. Blum, and J. A. Fischer. Distribution of intraventricular salmon calcitonin and suppression of gastric secretion. Digestion 32: 273–281, 1985.
 781. Sacks, D. B.. Amylin—a glucoregulatory hormone involved in the pathogenesis of diabetes mellitus. Clin. Chem. 42: 494–495, 1996.
 782. Saito, K., K., Yaginuma, and T. Takahashi. Differential volumetry of A, B and D cells in the pancreatic islets of diabetic and non‐diabetic subjects. Tohoku J. Exp. Med. 129: 273–283, 1979.
 783. Sakagashira, S., T., Sanke, T. Hanabusa, H. Shimomura, S. Ohagi, K. Y. Kumagaye, K. Nakajima, and K. Nanjo. Missense mutation of amylin gene (S20G) in Japanese NIDDM patients. Diabetes 45: 1279–1281, 1996.
 784. Sakaguchi, M., Y., Inaishi, Y. Kashihara, and M. Kuno. Release of calcitonin gene‐related peptide from nerve terminals in rat skeletal muscle. J. Physiol. (Lond). 434: 257–270, 1991.
 785. Sakaguchi, M., Y., Inaishi, Y. Kashihara, and M. Kuno. Degeneration of motor nerve fibers enhances the expression of calcitonin gene‐related peptide in rat sensory neurons. Neurosci. Lett. 137: 61–64, 1992.
 786. Sakata, J., T., Shimokubo, K. Kitamura, S. Nakamura, K. Kangawa, H. Matsuo, and T. Eto. Molecular cloning and biological activities of rat adrenomedullin, a hypotensive peptide. Biochem. Biophys. Res. Commun. 195: 921–927, 1993.
 787. Sakata, J., T., Shimokubo, K. Kitamura, M. Nishizono, Y. Iehiki, K. Kangawa, H. Matsuo, and T. Eto. Distribution and characterization of immunoreactive rat adrenomedullin in tissue and plasma. FEBS Lett. 352: 105–108, 1994.
 788. Saltin, B., and P. D. Gollnick. Skeletal muscle adaptability: significance for metabolism and performance. In: Handbook of Physiology. Skeletal Muscle, edited by L. D. Peachey. Bethesda, MD: Am. Physiol. Soc. 1983, Sect. 10, p. 555–631.
 789. Salvatoni, A., S. J., Dunmore, J. L. Morton, A. T. Etienne, A. Beloff‐Chain, and R. R. Abraham. Evidence for the presence of the pituitary insulin secretagogue beta‐cell tropin in human plasma. J. Endocrinol. 110: 303–307, 1986.
 790. Samson, W. K., T., Murphy, and D. A. Schell. A novel vasoactive peptide, adrenomedullin, inhibits pituitary adrenocorticotropin release. Endocrinology 136: 2349–2352, 1995.
 791. Sandvik, A. K., R., Dimaline, E. R. Forster, D. Evans, and G. J. Dockray. Differential control of somatostatin messenger RNA in rat gastric corpus and antrum. Role of acid, food, and capsaicin‐sensitive neurons. J. Clin. Invest. 91: 244–250, 1993.
 792. Sanke, T., G. I., Bell, C. Sample, A. H. Rubenstein, and D. F. Steiner. An islet amyloid peptide is derived from an 89‐amino acid precursor by proteolytic processing. J. Biol. Chem. 263: 17243–17246, 1988.
 793. Sanke, T., T., Hanabusa, Y. Nakano, C. Oki, K. Okai, S. Nishimura, M. Kondo, and K. Nanjo. Plasma islet amyloid polypeptide (amylin) levels and their responses to oral glucose in type 2 (non‐insulin‐dependent) diabetic patients. Diabetologia 34: 129–132, 1991.
 794. Sano, Y., O., Hiroshima, T. Yuzuriha, C. Yamoto, A. Saito, S. Kimura, T. Hirabayshi, and K. Goto. Calcitonin gene‐related peptide‐binding sites of porcine cardiac muscles and coronary arteries: solubilization and characterization. J. Neurochem. 52: 1919–1924, 1989.
 795. Santiago, J. A., E., Garrison, W. L. Purnell, R. E. Smith, H. C. Champion, D. H. Coy, W. A. Murphy, and P. J. Kadowitz. Comparison of responses to adrenomedullin and adrenomedullin analogs in the mesenteric vascular bed of the cat. Eur. J. Pharmacol. 272: 115–118, 1995.
 796. Santiago, J. A., E. A., Garrison, V. L. Ventura, D. H. Coy, K. Bitar, W. A. Murphy, D. B. McNamara, and P. J. Kadowitz. Synthetic human adrenomedullin and adrenomedullin 15–52 have potent short‐lived vasodilator activity in the hindlimb vascular bed of the cat. Life Sci. 55: PL85–PL90, 1994.
 797. Santicioli, P., E. Del Bianco, P. Geppetti, and C. A. Maggi. Release of calcitonin gene‐related peptide‐like immunoreactivity from rat isolated soleus muscle by low pH, capsaicin and potassium. Neurosci. Lett. 143: 19–22, 1992.
 798. Sarma, J. S. P., and Y. R. Rao. Diabetes II and amylin: a modern perspective. Curr. Sci. (Bangalore) 62: 679–683, 1992.
 799. Sarvetnick, N., J., Shizuru, D. Liggitt, L. Martin, B. McIntyre, A. Gregory, T. Parslow, and T. Stewart. Loss of pancreatic islet tolerance induced by beta‐cell expression of interferon‐gamma. Nature 346: 844–847, 1990.
 800. Sasaki, Y., N., Hayashi, A. Kasahara, H. Matsuda, H. Fusamoto, N. Sato, C. J. Hillyard, S. Girgis, I. MacIntyre, P. C. Emson, S. Shiosaka, M. Tohyama, Y. Shiotani, and T. Kamada. Calcitonin gene‐related peptide in the hepatic and splanchnic vascular systems of the rat. Hepatology 6: 676–681, 1986.
 801. Sato, A., and D. J. Autelitano. Adrenomedullin induces expression of c‐fos and ap‐1 activity in rat vascular smooth muscle cells and cardiomyocytes. Biochem. Biophys. Res. Commun. 217: 211–216, 1995.
 802. Sato, K., Y., Hirata, T. Imai, M. Iwashina, and F. Marumo. Characterization of immunoreactive adrenomedullin in human plasma and urine. Life Sci. 57: 189–194, 1995.
 803. Satoh, F., K., Takahashi, O. Murakami, K. Totsune, M. Sone, M. Ohneda, H. Sasano, and T. Mouri. Immunocytochemical localization of adrenomedullin‐like immunoreactivity in the human hypothalamus and the adrenal gland. Neurosci. Lett. 203: 207–210, 1996.
 804. Schepp, W., S. E., Miederer, and H. J. Ruoff. Effects of hormones (calcitonin, GIP) and pharmacological antagonists (ranitidine and famotidine) on isolated rat parietal cells. Regul. Pept. 12: 297–308, 1985.
 805. Schifter, S.. Circulating concentrations of calcitonin gene‐related peptide (CGRP) in normal man determined with a new, highly sensitive radioimmunoassay. Peptides. 12: 365–369, 1991.
 806. Schuit, F. C., P. A. In't Veld, and D. G. Pipeleers. Glucose stimulates proinsulin biosynthesis by a dose‐dependent recruitment of pancreatic beta cells. Proc. Natl. Acad. Sci. U.S.A. 85: 3865–3869, 1988.
 807. Schwartz, G. J., G., Berkow, P. R. McHugh, and T. H. Moran. Gastric branch vagotomy blocks nutrient and cholecystokinin‐induced suppression of gastric emptying. Am. J. Physiol. 264 (Regulatory Integrative Comp. Physiol. 33): R630–R637, 1993.
 808. Schwartz, T. W., S. A. Hjorth, and J. S. Kastrup, editors. Structure and Function of 7TM Receptors. Alfred Benzon Symposium 39. Copenhagen: Munksgaard, 1996.
 809. Seifert, H., P., Sawchenko, J. Chesnut, J. Rivier, W. Vale, and S. J. Pandol. Receptor for calcitonin gene‐related peptide: binding to exocrine pancreas mediates biological actions. Am. J. Physiol. 249 (Gastrointest. Liver Physiol. 12): G147–G157, 1985.
 810. Sexton, P. M., W. R., Adam, J. M. Moseley, T. J. Martin, and F. Mendelsohn. Localisation and characterisation of renal calcitonin receptors by in vitro autoradiography. Kidney Int. 32: 862–868, 1987.
 811. Sexton, P. M., S., Houssami, C. L. Brady, D. E. Myers, and D. M. Findlay. Amylin is an agonist of the renal porcine calcitonin receptor. Endocrinology 134: 2103–2107, 1994.
 812. Sexton, P. M., S., Houssami, J. M. Hilton, L. M. O'Keefe, R. J. Center, M. T. Gillespie, P. Darcy, and D. M. Findlay. Identification of brain isoforms of the rat calcitonin receptor. Mol. Endocrinol. 7: 815–821, 1993.
 813. Sexton, P. M., J. S., McKenzie, R. T. Mason, J. M. Moseley, T. J. Martin, and F. A. O. Mendelsohn. Localization of binding sites for calctonin gene‐related peptide by in vitro autoradiography. Neuroscience 19: 1235–1245, 1986.
 814. Sexton, P. M., J. S., McKenzie, and F. A. O. Mendelsohn. Evidence of a new subclass of calcitonin/calcitonin gene‐related peptide binding sites in rat brain. Neurochem. Int. 12: 323–335, 1988.
 815. Sexton, P. M., G., Paxinos, M. A. Kenney, P. J. Wookey, and K. Beaumont. In vitro autoradiographic localization of amylin binding sites in rat brain. Neuroscience 62: 553–567, 1994.
 816. Sexton, P. M. and K. J., Perry. Amylin receptors in the central nervous system. Recent. Res. Dev. Neurochem. 1: 157–166, 1996.
 817. Shah, G. V., L. J., Deftos, and W. R. Crowley. Synthesis and release of calcitonin‐like immunoreactivity by anterior pituitary cells: evidence for a role in paracrine regulation of prolactin secretion. Endocrinology 132: 1367–1372, 1993.
 818. Sheriff, S., J. E., Fischer, and A. Balasubramaniam. Amylin inhibits insulin‐stimulated glucose uptake in C2C12 muscle cell line through a cholera‐toxin‐sensitive mechanism. Biochim. Biophys. Acta 1136: 219–222, 1992.
 819. Shimekake, Y., K., Nagata, S. Ohta, Y. Kambayashi, H. Teraoka, K. Kitamura, T. Eto, K. Kangawa, and H. Matsuo. Adrenomedullin stimulates two signal transduction pathways, cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells. J. Biol. Chem. 270: 4412–4417, 1995.
 820. Shimokubo, T., J., Sakata, K. Kitamura, K. Kangawa, H. Matsuo, and T. Eto. Augmented adrenomedullin concentrations in right ventricle and plasma of experimental pulmonary hypertension. Life Sci. 57: 1771–1779, 1995.
 821. Shimosawa, T., Y., Ito, K. Ando, K. Kitamura, K. Kangawa, and T. Fujita. Proadrenomedullin NH2‐terminal 20 peptide, a new product of the adrenomedullin gene, inhibits norepinephrine overflow from nerve endings. J. Clin. Invest. 96: 1672–1676, 1995.
 822. Shiomi, K., M., Nakazato, M. Miyazato, K. Kangawa, H. Matsuo, and S. Matsukura. Establishment of hypersensitive radioimmunoassay for islet amyloid polypeptide using antiserum specific for its N‐terminal region. Biochem. Biophys. Res. Commun. 186: 1065–1073, 1992.
 823. Shoji, H., N., Minamino, K. Kangawa, and H. Matsuo. Endotoxin markedly elevates plasma concentration and gene transcription of adrenomedullin in rat. Biochem. Biophys. Res. Commun. 215: 531–537, 1995.
 824. Sigrist, S., A., Franco‐Cereceda, R. Muff, H. Henke, J. M. Lundberg, and J. A. Fischer. Specific receptor and cardiovascular effects of calcitonin gene‐related peptide. Endocrinology 119: 381–389, 1986.
 825. Silver, A. J., and J. E. Morley. Role of CCK in regulation of food intake. Prog. Neurobiol. 36: 23–34, 1991.
 826. Silverman, J. D., and L. Kruger. An interpretation of dental innervation based upon the pattern of calcitonin gene‐related peptide (CGRP) immunoreactive thin sensory axons. Somatosens. Res. 5: 157–175, 1987.
 827. Silvestre, R. A., E., Peiró, P. Dégano, P. Miralles, and J. Marco. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas. Regul. Pept. 31: 23–31, 1990.
 828. Silvestre, R. A., M., Salas, P. Dégano, E. Peiró, and J. Marco. Reversal of the inhibitory effects of calcitonin gene‐related peptide (CGRP) and amylin on insulin secretion by the 8–37 fragment of human CGRP. Biochem. Pharmacol. 45: 2343–2347, 1993.
 829. Silvestre, R. A., M., Salas, O. Garcia‐Hermida, T. Fontela, P. Dégano, and J. Marco. Amylin (islet amyloid polypeptide) inhibition of insulin release in the perfused rat pancreas: implication of the adenylate cyclase/cAMP system. Regul. Pept. 50: 193–199, 1994.
 830. Silvestre, R. A., M., Salas, J. Rodriguez‐Gallardo, O. Garcia‐Hermida, T. Fontela, and J. Marco. Effect of (8–32) salmon calcitonin, an amylin antagonist, on insulin, glucagon and somatostatin release: study in the perfused pancreas of the rat. Br. J. Pharmacol. 117: 347–350, 1996.
 831. Skofitsch, G., and D. M. Jacobowitz. Autoradiographic distribution of 125I‐calcitonin binding sites in the rat central nervous system. Peptides. 6: 975–986, 1985.
 832. Skofitsch, G., and D. M. Jacobowitz. Calcitonin gene‐related peptide: detailed immunohistochemical distribution in the central nervous system. Peptides. 6: 721–745, 1985.
 833. Skofitsch, G., S. J., Wimalawansa, D. M. Jacobowitz, and W. Gubisch. Comparative immunohistochemical distribution of amylin‐like and calcitonin gene related peptide‐like immunoreactivity in the rat central nervous system. Can. J. Physiol. Pharmacol. 73: 945–956, 1995.
 834. Smith, D. M., and S. R. Bloom. Paracrine/autocrine control of the islet and the amylin family. Biochem. Soc. Trans. 23: 336–340, 1995.
 835. Smith, G. P., and J. Gibbs. Satiating effect of cholecystokinin. Ann. N.Y. Acad. Sci. 713: 236–241, 1994.
 836. Smith, G. P., C., Jerome, B. J. Cushin, R. Etemo, and K. L. Simansky. Abdominal vagotomy blocks the satiety effect of cholecystokinin in rats. Science 213: 1036–1038, 1981.
 837. So, S., Y., Hattori, K. Kasai, S. Shimoda, and S. S. Gross. Up‐regulation of rat adrenomedullin gene expression by endotoxin: relation to nitric oxide synthesis. Life Sci. 58: PL309–PL315, 1996.
 838. Soeller, W. C., J. C. Parker, S. G. Emeigh Hart, D. K. Kreutter, and R. W. Stevenson. Glucose intolerance and late‐onset hyperglycemia in Avy/a mice expressing a human islet amyloid polypeptide (huIAPP) transgene. Diabetes 45 (Suppl. 2): 77A, 1996.
 839. Sowa, R., T., Sanke, J. Hirayama, H. Tabata, H. Furuta, S. Nishimura, and K. Nanjo. Islet amyloid polypeptide amide causes peripheral insulin resistance in‐vivo in dogs. Diabetologia 33: 118–120, 1990.
 840. Spear, G. S., M. V., Caple, and L. R. Sutherland. The pancreas in the degu. Exp. Mol. Pathol. 40: 295–310, 1984.
 841. Stace, P. B., H. R., Fatania, A. Jackson, A. L. Kerbey, and P. J. Randle. Cyclic AMP and free fatty acids in the longer‐term regulation of pyruvate dehydrogenase kinase in rat soleus muscle. Biochim. Biophys. Acta 1135: 201–206, 1992.
 842. Staden, R.. The current status and portability of our sequence handling software. Nucleic Acids Res. 14: 217–231, 1986.
 843. Stangl, D., W., Born, and J. A. Fischer. Characterization and photoaffinity labeling of a calcitonin gene‐related peptide receptor solubilized from human cerebellum. Biochemistry 30: 8605–8611, 1991.
 844. Stangl, D., R., Muff, C. Schmolck, and J. A. Fischer. Photoaffinity labeling of rat calcitonin gene‐related peptide receptors and adenylate cyclase activation: identification of receptor subtypes. Endocrinology 132: 744–750, 1993.
 845. Steenbergh, P. H., J. W. M., Höppener, J. Zandberg, C. J. M. Lips, and H. S. Jansz. A second human calcitonin/CGRP gene. FEBS Lett. 183: 403–407, 1985.
 846. Steiner, D. F., S., Ohagi, S. Nagamatsu, G. I. Bell, and M. Nishi. Is islet amyloid polypeptide a significant factor in pathogenesis or pathophysiology of diabetes? Diabetes 40: 305–309, 1991.
 847. Stephens, T. W., W. F., Heath, and R. N. Hermeling. Presence of liver CGRP/amylin receptors in only nonparenchymal cells and absence of direct regulation of rat liver glucose metabolism by CGRP/amylin. Diabetes 40: 395–400, 1991.
 848. Sternini, C., and N. Brecha. Immunocytochemical identification of islet cells and nerve fibers containing calcitonin gene‐related peptide‐like immunoreactivity in the rat pancreas. Gastrenterology 90: 1155–1163, 1986.
 849. Sterini, C., and J. P. Card. Ultrastructural characterization of calcitonin gene‐related peptide‐containing fibers and islet cells in the rat pancreas. Pancreas 6: 375–384, 1991.
 850. Sternini, C., R. De Giorgio, K. Anderson, P. C. Watt, F. C. Brunicardi, A. L. Widdison, H. Wong, H. A. Reber, J. H. Walsh, and V. L. W. Go. Species differences in the immunoreactive patterns of calcitonin gene‐related peptide in the pancreas. Cell Tissue Res. 269: 447–458, 1992.
 851. Sternini, C., R. De Giorgio, and J. B. Furness. Calcitonin gene‐related peptide neurons innervating the canine digestive system. Regul. Pept. 42: 15–26, 1992.
 852. Stevenson, J. C., T. E., Adrian, N. D. Christofides, and S. R. Bloom. Effect of calcitonin on gastrointestinal regulatory peptides in man. Clin. Endocrinol. (Oxf.) 22: 655–680, 1985.
 853. Stewart, A. F. and A. E., Broadus. Mineral metabolism. In: Endocrinology and Metabolism (2nd ed.), edited by P. Felig, J. D. Baxter, A. E. Broadus, L. A. Frohman. New York: McGraw‐Hill, p. 1317–1453, 1987.
 854. Stridsberg, M., C., Berne, S. Sandler, E. Wilander, and K. Öberg. Inhibition of insulin secretion, but normal peripheral insulin sensitivity, in a patient with a malignant endocrine pancreatic tumour producing high amounts of an islet amyloid polypeptide‐like molecule. Diabetologia 36: 843–849, 1993.
 855. Stridsberg, M., B., Eriksson, G. Lundqvist, B. Skogseid, E. Wilander, and K. Öberg. Islet amyloid polypeptide (IAPP) in patients with neuroendocrine tumours. Regul. Pept. 55: 119–131, 1995.
 856. Stridsberg, M., S., Sandler, and E. Wilander. Cosecretion of islet amyloid polypeptide (IAPP) and insulin from isolated rat pancreatic islets following stimulation or inhibition of beta‐cell function. Regul. Pept. 45: 363–370, 1993.
 857. Stridsberg, M., E. Wilander, K. Öberg, G. Lundqvist, and B. Eriksson. Islet amyloid polypeptide‐producing pancreatic islet cell tumor. A clinical and biochemical characterization. Scand. J. Gastroenterol. 27: 381–387, 1992.
 858. Suda, K., D. M., Smith, M. A. Ghatei, and S. R. Bloom. Investigation of the interaction of VIP binding sites with VIP and PACAP in human brain. Neurosci. Lett. 137: 19–23, 1992.
 859. Sugawara, K., T., Kobayashi, K. Nakanishi, H. Kajio, M. Ohkubo, T. Sugimoto, T. Murase, T. Itoh, M. Hara, and K. Kosaka. Marked islet amyloid polypeptide‐positive amyloid deposition: a possible cause of severely insulin‐deficient diabetes mellitus with atrophied exocrine pancreas. Pancreas 8: 312–315, 1993.
 860. Sugo, S., N., Minamino, K. Kangawa, K. Miyamoto, K. Kitamura, J. Sakata, T. Eto, and H. Matsuo. Endothelial cells actively synthesize and secrete adrenomedullin. Biochem. Biophys. Res. Commun. 201: 1160–1166, 1994.
 861. Sugo, S., N., Minamino, H. Shoji, K. Kangawa, K. Kitamura, T. Eto, and H. Matsuo. Production and secretion of adrenomedullin from vascular smooth muscle cells: augmented production by tumor necrosis factor‐alpha. Biochem. Biophys. Res. Commun. 203: 719–726, 1994.
 862. Sugo, S., N., Minamino, H. Shoji, K. Kangawa, K. Kitamura, T. Eto, and H. Matsuo. Interleukin‐1, tumor necrosis factor and lipopolysaccharide additively stimulate production of adrenomedullin in vascular smooth muscle cells. Biochem. Biophys. Res. Commun. 207: 25–32, 1995.
 863. Surina‐Baumgartner, D. M., N., Geary, and W. Langhans. Effect of hepatic portal insulin antibody or insulin infusion on meal size in the rat. Proc. Soc. Nutr. Physiol. 4: 72, 1995.
 864. Sutherland, D. E., A. J., Matas, M. W. Steffes, and J. S. Najarian. Infant human pancreas. A potential source of islet tissue for transplantation. Diabetes 25: 1123–1128, 1976.
 865. Suzuki, S., M., Murakami, S. Abe, Y. Satoh, S. Shintani, J. Ishizuka, K. Suzuki, J. C. Thompson, and T. Toyota. The effects of amylin on insulin secretion from RINm5F cells and glycogen synthesis and lipogenesis in rat primary cultured hepatocytes. Diabetes Res. Clin. Pract. 15: 77–84, 1992.
 866. Svensson, A. M., S., Sandler, and L. Jansson. Pancreatic islet blood flow in the rat after administration of islet amyloid polypeptide or calcitonin gene‐related peptide. Diabetes 43: 454–458, 1994.
 867. Tabata, H., J., Hirayama, R. Sowa, H. Furuta, T. Negoro, T. Sanke, and K. Nanjo. Islet amyloid polypeptide (IAPP/amylin) causes insulin resistance in perfused rat hindlimb muscle. Diabetes Res. Clin. Pract. 15: 57–61, 1992.
 868. Taché, Y., T., Garrick, and H. Raybould. Central nervous system action of peptides to influence gastrointestinal motor function. Gastroenterology 98: 517–528, 1990.
 869. Taché, Y., M., Gunion, M. Lauffenberger, and Y. Goto. Inhibition of gastric acid secretion by intracerebral injection of calcitonin gene related peptide in rats. Life Sci. 35: 871–878, 1984.
 870. Taché, Y., T., Pappas, M. Lauffenberger, Y. Goto, J. H. Walsh, and H. Debas. Calcitonin gene‐related peptide: potent peripheral inhibitor of gastric acid secretion in rats and dogs. Gastroenterology 87: 344–349, 1984.
 871. Takahashi, H., T. X., Watanabe, M. Nishimura, T. Nakanishi, M. Sakamoto, M. Yoshimura, Y. Komiyama, M. Masuda, and T. Murakami. Centrally induced vasopressor and sympathetic responses to a novel endogenous peptide, adrenomedullin, in anesthetized rats. Am. J. Hypertens. 7: 478–482, 1994.
 872. Takahashi, K., T., Mouri, M. Sone, O. Murakami, K. Itoi, Y. Imai, M. Ohneda, K. Yoshinaga, and N. Sasano. Calcitonin gene‐related peptide in the human hypothalamus. Endocrinol. Jpn. 36: 409–415, 1989.
 873. Takami, K., K., Hashimoto, S. Uchida, M. Tohyama, and H. Yoshida. Effect of calcitonin gene‐related peptide on the cyclic AMP level of isolated mouse diaphragm. Jpn. J. Pharmacol. 42: 345–350, 1986.
 874. Takami, K., Y., Kawai, S. Shiosaka, Y. Lee, S. Girgis, C. J. Hillyard, I. MacIntyre, P. C. Emson, and M. Tohyama. Immunohistochemical evidence for the coexistence of calcitonin gene‐related peptide‐and choline acetyltransferase‐like immunoreactivity in neurons of the rat hypoglossal, facial, and ambiguous nuclei. Brain Res. 328: 386–389, 1985.
 875. Takami, K., Y., Kawai, S. Uchida, M. Tohyama, Y. Shiotani, H. Yoshida, P. C. Emson, S. Girgis, C. J. Hillyard, and I. MacIntyre. Effect of calcitonin gene‐related peptide on contraction of striated muscle in the mouse. Neurosci. Lett. 60: 227–230, 1985.
 876. Takamori, M., and H. Yoshikawa. Effect of calcitonin gene‐related peptide on skeletal muscle via specific binding site and G protein. J. Neurol. Sci. 90: 99–109, 1989.
 877. Takeuchi, K., O., Furukawa, H. Tanaka, H. Nishiwaki, and S. Okabe. Effects of elcatonin, a synthetic analogue of eel calcitonin, on acute gastric and duodenal lesions and gastroduodenal function in rats. Nippon Yakurigaku Zasshi 87: 123–133, 1986.
 878. Tamura, T., C., Miyaura, I. Owan, and T. Suda. Mechanism of action of amylin in bone. J. Cell. Physiol. 153: 6–14, 1992.
 879. Tanaka, M., K., Kitamura, Y. Ishizaka, Y. Ishiyama, J. Kato, K. Kangawa, and T. Eto. Plasma adrenomedullin in various diseases and exercise‐induced change in adrenomedullin in healthy subjects. Intern. Med. 34: 728–733, 1995.
 880. Tang, J. A., D., Xu, Q. X. Yuan, Z. H. Meng, F. R. Cheng, M. Z. Chen, G.‐Z. Liu, and Z. K. Zhang. Calcitonin gene‐related peptide in the pathogenesis and treatment of hypertension. Chin. Med. J. (Engl.) 102: 897–901, 1989.
 881. Tasaka, Y., F., Nakaya, H. Matsumoto, Y. Iwamoto, and Y. Omori. Pancreatic amylin content in human diabetic subjects and its relation to diabetes. Pancreas 11: 303–308, 1995.
 882. Tasaka, Y., M., Takei, and Y. Hirata. C‐peptide, insulin and proinsulin‐like components in diabetic and nondiabetic human pancreas. Endocrinol. Jpn. 26: 313–318, 1979.
 883. Taubes, G.. Misfolding the way to disease. Science 271: 1493–1495, 1996.
 884. Taylor, G. M., K., Meeran, D. Oshea, D. M. Smith, M. A. Ghatei, and S. R. Bloom. Adrenomedullin inhibits feeding in the rat by a mechanism involving calcitonin gene‐related peptide receptors. Endocrinology 137: 3260–3264, 1996.
 885. Tedstone, A. E., T., Nezzer, S. J. Hughes, A. Clark, and D. R. Matthews. The effect of islet amyloid polypeptide (amylin) and calcitonin gene‐related peptide on glucose removal in the anaesthetized rat and on insulin secretion from rat pancreatic islets in vitro. Biosci. Rep. 10: 339–345, 1990.
 886. Thom, S. M., A. D., Hughes, P. Goldberg, G. Martin, M. Schachter, and P. S. Sever. The actions of calcitonin gene related peptide and vasoactive intestinal peptide as vasodilators in man in vivo and in vitro. Br. J. Clin. Pharmacol. 24: 139–144, 1987.
 887. Thorens, B.. Expression cloning of the pancreatic beta cell receptor for the gluco‐incretin hormone glucagon‐like peptide 1. Proc. Natl. Acad. Sci. U.S.A. 89: 8641–8645, 1992.
 888. Tippins, J. R., H. R., Morris, M. Panico, T. Etienne, P. Bevis, S. Girgis, I. MacIntyre, M. Azria, and M. Attinger. The myotropic and plasma‐calcium modulating effects of calcitonin gene related peptide (CGRP). Neuropeptides 4: 425–434, 1984.
 889. Tisch, R., X.‐D., Yang, S. M. Singer, R. S. Liblau, L. Fugger, and H. O. McDevitt. Immune response to glutamic acid decarboxylase correlates with insulitis in non‐obese diabetic mice. Nature 366: 72–75, 1993.
 890. Tokuyama, Y., A., Kanatsuka, H. Ohsawa, T. Yamaguchi, H. Makino, S. Yoshida, H. Nagase, and S. Inoue. Hypersecretion of islet amyloid polypeptide from pancreatic islets of ventromedial hypothalamic‐lesioned rats and obese Zucker rats. Endocrinology 128: 2739–2744, 1991.
 891. Tokuyama, Y., A., Kanatsuka, H. Ohsawa, T. Yamaguchi, H. Makino, S. Yoshida, H. Nagase, and S. Inoue. Hypersecretion of IAPP from the islets of VMH‐lesioned rats and obese Zucker rats. Diabetes Res. Clin. Pract. 15: 23–29, 1992.
 892. Tokuyama, Y., A., Kanatsuka, Y. Suzuki, T. Yamaguchi, M. Taira, H. Makino, and S. Yoshida. Islet amyloid polypeptide gene: no evidence of abnormal promoter region in thirty‐five type 2 diabetic patients. Diabetes Res. Clin. Pract. 22: 99–105, 1994.
 893. Tomlinson, A. E., and D. R. Poyner. Multiple receptors for calcitonin gene‐related peptide and amylin on guinea‐pig ileum and vas deferens. Br. J. Pharmacol. 117: 1362–1368, 1996.
 894. Toshimori, H., R., Narita, M. Nakazato, J. Asai, T. Mitsukawa, K. Kangawa, H. Matsuo, and S. Matsukura. Islet amyloid polypeptide (IAPP) in the gastrointestinal tract and pancreas of man and rat. Cell Tissue Res. 262: 401–406, 1990.
 895. Toshimori, H., R., Narita, M. Nakazato, J. Asai, T. Mitsukawa, K. Kangawa, H. Matsuo, K. Takahashi, and S. Matsukura. Islet amyloid polypeptide in insulinoma and in the islets of the pancreas of nondiabetic and diabetic subjects. Virchows Arch. A Pathol. Anat. Histopathol. 418: 411–441 1991.
 896. Tschopp, F. A., H., Henke, J. B. Petermann, P. H. Tobler, R. Janzer, T. Hökfelt, J. M. Lundberg, C. Cuello, and J. A. Fischer. Calcitonin gene‐related peptide and its binding sites in the human central nervous system and pituitary. Proc. Natl. Acad. Sci. U.S.A. 82: 248–252, 1985.
 897. Turner, R. C., J. C., Levy, and A. Clark. Complex genetics of type‐2 diabetes—thrifty genes and previously neutral polymorphisms. Q. J. Med. 86: 413–417, 1993.
 898. Twery, M. J., J. F., Obie, and C. W. Cooper. Ability of calcitonins to alter food and water consumption in the rat. Peptides 3: 749–755, 1982.
 899. Uchida, S., S., Yamamoto, S. Iio, N. Matsumoto, X.‐B. Wang, N. Yonehara, Y. Imai, R. Inoki, and H. Yoshida. Release of calcitonin gene‐related peptide‐like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem. 54: 1000–1003, 1990.
 900. Uddman, R., E., Edvinsson, E. Ekblad, R. H°akanson, and F. Sundler. Calcitonin gene‐related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul. Pept. 15: 1–23, 1986.
 901. Umeda, Y., and M. Arisawa. Characterization of calcitonin gene‐related peptide (CGRP) receptors in guinea pig lung. Jpn. J. Pharmacol. 51: 377–384, 1989.
 902. Umeda, Y., and T. Okada. Inhibition of gastric acid secretion by human calcitonin gene‐related peptide with picomolar potency in guinea‐pig parietal cell preparations. Biochem. Biophys. Res. Commun. 146: 430–436, 1987.
 903. Uttenthal, L. O., M., Ghiglione, S. K. George, A. E. Bishop, J. M. Polak, and S. R. Bloom. Molecular forms of glucagon‐like peptide‐1 in human pancreas and glucagonomas. J. Clin. Endocrinol. Metab. 61: 472–479, 1985.
 904. Valdermarsson, S., A., Leckström, P. Westermark, and A. Bergenfelz. Increased plasma levels of islet amyloid polypeptide in patients with primary hyperparathyroidism. Eur. J. Endocrinol. 134: 320–325, 1996.
 905. Vallotton, M. B., W., Dolci, C. Gerber‐Wicht, and J. A. Fischer. Action of calcitonin gene‐related peptide on rat aortic smooth muscle. Eur. J. Pharmacol. 166: 219–222, 1989.
 906. Vanderweele, D. A.. Insulin is a prandial satiety hormone. Physiol. Behav. 56: 619–622, 1994.
 907. van Hulst, K. L., W. H. Hackeng, J. W. Höppener, B. C. van Jaarsveld, M. G. Nieuwenhuis, M. A. Blankenstein, and C. J. Lips. An improved method for the determination of islet amyloid polypeptide levels in plasma. Ann. Clin. Biochem. 31: 165–170, 1994.
 908. van Hulst, K. L., M. G. Nieuwenhuis, J. W. M. Höppener, C. J. M. Lips, and M. A. Blankenstein. Lack of islet amyloid polypeptide/amylin‐immunoreactivity in urine collected from healthy volunteers after ingestion of a carbohydrate‐rich meal. Exp. Clin. Endocrinol. Diabetes 104: 177–179, 1996.
 909. van Jaarsveld, B. C., W. H. L. Hackeng, M. G. Nieuwenhuis, D. W. Erkelens, R. A. Geerdink, and C. J. M. Lips. Islet amyloid polypeptide in human plasma [letter]. Lancet 1: 60, 1990.
 910. van Rossum, D., D. P. Menard, A. Fournier, S. St‐Pierre, and R. Quirion. Autoradiographic distribution and receptor binding profile of [125I]Bolton Hunter‐rat amylin binding sites in the rat brain. J. Pharmacol. Exp. Ther. 270: 779–787, 1994.
 911. Vari, R. C., S. D., Adkins, and W. K. Samson. Renal effects of adrenomedullin in the rat. Proc. Soc. Exp. Biol. Med. 211: 178–183, 1996.
 912. Veale, P. R., R., Bhogal, D. G. Morgan, D. M. Smith, and S. R. Bloom. The presence of islet amyloid polypeptide/calcitonin gene‐related peptide/salmon calcitonin binding sites in the rat nucleus accumbens. Eur. J. Pharmacol. 262: 133–141, 1994.
 913. Verchere, C. B., D. A., D'Alessio, R. D. Palmiter, and S. E. Kahn. Transgenic mice overproducing islet amyloid polypeptide have increased insulin storage and secretion in vitro. Diabetologia 37: 725–728, 1994.
 914. Verchere, C. B., D. A., D'Alessio, R. D. Palmiter, G. C. Weir, S. Bonner‐Weir, D. G. Baskin, and S. E. Kahn. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc. Natl. Acad. Sci. U.S.A. 93: 3492–3496, 1996.
 915. Vignery, A., F., Wang, and M. B. Ganz. Macrophages express functional receptors for calcitonin‐gene‐related peptide. J. Cell. Physiol. 149: 301–306, 1991.
 916. Vishwanathan, K. A., G., Bazaz‐Malik, J. Dandekar, and O. Vishnava. A qualitative and quantitative histological study of the islets of Langerhans in diabetes mellitus. Indian J. Med. Sci. 26: 807–812, 1972.
 917. Volpe, P., F. Di Virgilio, T. Pozzan, and G. Salviati. Role of inositol 1,4,5‐trisphosphate in excitation‐contraction coupling in skeletal muscle. FEBS Lett. 197: 1–4, 1986.
 918. Wagner, U., D., Bredenbröker, P. J. Barth, H. C. Fehmann, and P. von Wichert. Amylin immunoreactivity in the rat trachea and characterization of the interaction of amylin and somatostatin on airway mucus secretion. Res. Exp. Med. 195: 289–296, 1995.
 919. Wagner, U., H. C., Fehmann, D. Bredenbröker, F. Yu, P. J. Barth, P. von Wichert, and B. Göke. The stimulatory effect of amylin on mucus secretion in isolated rat trachea. Res. Exp. Med. 193: 347–352, 1993.
 920. Wagoner, P. K., C., Chen, J. F. Worley, I. D. Dukes, and G. S. Oxford. Amylin modulates beta‐cell glucose sensing via effects on stimulus‐secretion coupling. Proc. Natl. Acad. Sci. U.S.A. 90: 9145–9149, 1993.
 921. Wahlstedt, C., B., Beding, R. Ekman, O. Oksala, J. Stjernschantz, and R. Hak°anson. Calcitonin gene‐related peptide in the eye: release by sensory nerve stimulation and effects associated with neurogenic inflammation. Regul. Pept. 16: 107–115, 1986.
 922. Wakelam, M. J. O.. The fusion of myoblasts. Biochem. J. 228: 1–12, 1985.
 923. Wang, B. C., P., Bie, R. J. Leadley, and K. L. Goetz. Cardiovascular effects of calcitonin gene‐related peptide in conscious dogs. Am. J. Physiol. 257 (Regulartory Integrative Comp. Physiol. 26): R726–R731, 1989.
 924. Wang, M.‐W., P., Carlo, M. Fineman, T. J. Rink, and A. A. Young. Induction of acute hyperglycemia, hyperlactemia and hypocalcemia in fed and fasted BALB/c mice by intravenous amylin injection. Endocr. Res. 18: 321–332, 1992.
 925. Wang, M.‐W., P., Carlo, T. J. Rink, and A. A. Young. Amylin is more potent and more effective than glucagon in raising plasma glucose concentration in fasted, anesthetized rats. Biochem. Biophys. Res. Commun. 181: 1288–1293, 1991.
 926. Wang, M.‐W., G. J. S., Cooper, and A. A. Young. Dose response characteristics for the hyperglycemic, hyperlactemic, hypotensive and hypocalcemic effects of amylin in the rat. Diabetes 40 (Suppl. 1): 241A, 1991.
 927. Wang, M.‐W., A. A., Young, T. J. Rink, and G. J. S. Cooper. 8–37h‐CGRP antagonizes actions of amylin on carbohydrate metabolism in vitro and in vivo. FEBS Lett. 291: 195–198, 1991.
 928. Wang, X. K., T. L., Yue, F. C. Barone, R. F. White, R. K. Clark, R. N. Willette, A. C. Sulpizio, N. V. Aiyar, R. R. Ruffolo, and G. Z. Feuerstein. Discovery of adrenomedullin in rat ischemic cortex and evidence for its role in exacerbating focal brain ischemic damage. Proc. Natl. Acad. Sci. U.S.A. 92: 11480–11484, 1995.
 929. Wang, Z. L., W. M., Bennet, M. A. Ghatei, P. G. Byfield, D. M. Smith, and S. R. Bloom. Influence of islet amyloid polypeptide and the 8–37 fragment of islet amyloid polypeptide on insulin release from perfused rat islets. Diabetes 42: 330–335, 1993.
 930. Warshawsky, H., D., Goltzman, M. F. A. Rouleau, and J. J. M. Bergeron. Direct in vivo demonstration by radioautography of specific binding sites for calcitonin in skeletal and renal tissues of the rat. J. Cell Biol. 85: 682–694, 1980.
 931. Washimine, H., Y., Yamamoto, K. Kitamura, M. Tanaka, Y. Ichiki, K. Kangawa, H. Matsuo, and T. Eto. Plasma concentration of human adrenomedullin in patients on hemodialysis. Clin. Nephrol. 44: 389–393, 1995.
 932. Watanabe, K., A., Morikawa, M. Eto, Y. Iwashima, Y. Sasaki, and T. Takebe. Characterization of diabetic Chinese hamsters in the Asahikawa colony. In: Lessons from Animal Diabetes, edited by E. Shafrir London: Libbey, p. 99–105, 1984.
 933. Watanabe, T. X., Y., Itahara, T. Inui, K. Yoshizawa‐Kumagaye, K. Nakajima, and S. Sakakibara. Vasopressor activities of N‐terminal fragments of adrenomedullin in anesthetized rat. Biochem. Biophys. Res. Commun. 219: 59–63, 1996.
 934. Watkins, W. B., and R. Y. Moore. Immunoreactive calcitonin in the rat anterior pituitary gland and its localization in thyrotrophs. Am. J. Anat. 158: 445–454, 1980.
 935. Watschinger, B., E., Hartter, O. Traindl, E. Pohanka, J. Pidlich, and J. Kovarik. Increased levels of plasma amylin in advanced renal failure. Clin. Nephrol. 37: 131–134, 1992.
 936. Weir, G. C., S., Mojsov, G. K. Hendrick, and J. F. Habener. Glucagonlike peptide‐I (7–37) amide actions on endocrine pancreas. Diabetes 38: 338–342, 1989.
 937. Weischselbaum, A., and E. Stangl. Zur kenntnis der feineren veränderungen des pankreas bei diabetes mellitus. Wein Klin. Wochenschr. 14: 968–972, 1901.
 938. Welborn, T. A., A., Brechenridge, A. H. Rubinstein, C. T. Dollery, and T. R. Fraser. Serum‐insulin in essential hypertension and in peripheral vascular disease. Lancet i: 1336–1337, 1966.
 939. Westermark, G. T., M. B., Arora, N. Fox, R. Carroll, S. J. Chan, P. Westermark, and D. F. Steiner. Amyloid formation in response to beta cell stress occurs in vitro, but not in vivo, in islets of transgenic mice expressing human islet amyloid polypeptide. Mol. Med. 1: 542–553, 1995.
 940. Westermark, G. T., L., Christmanson, G. Terenghi, J. Permerth, C. Betsholtz, J. Larsson, J. M. Polak, and P. Westermark. Islet amyloid polypeptide: demonstration of mRNA in human pancreatic islets by in situ hybridization in islets with and without amyloid deposits. Diabetologia 36: 323–328, 1993.
 941. Westermark, P.. On the nature of the amyloid in human islets of Langerhans. Histochemistry 38: 27–33, 1974.
 942. Westermark, P., D. L., Eizirik, D. G. Pipeleers, C. Hellerstrom, and A. Andersson. Rapid deposition of amyloid in human islets transplanted into nude mice. Diabetologia 38: 543–549, 1995.
 943. Westermark, P., U., Engström, K. H. Johnson, G. T. Westermark, and C. Betsholtz. Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc. Natl. Acad. Sci. U.S.A. 87: 5036–5040, 1990.
 944. Westermark, P., U., Engström, G. T. Westermark, K. H. Johnson, J. Permerth, and C. Betsholtz. Islet amyloid polypeptide (IAPP) and pro‐IAPP immunoreactivity in human islets of Langerhans. Diabetes Res. Clin. Pract. 7: 219–226, 1989.
 945. Westermark, P., and K. H. Johnson. The pathogenesis of maturity‐onset diabetes mellitus: is there a link to islet amyloid polypeptide? Bioessays 9: 30–33, 1988.
 946. Westermark, P., K. H., Johnson, T. D. O'Brien, and C. Betsholtz. Islet amyloid polypeptide—a novel controversy in diabetes research. Diabetologia 35: 297–303, 1992.
 947. Westermark, P., Z. C., Li, G. T. Westermark, A. Leckström, and D. F. Steiner. Effects of beta cell granule components on human islet amyloid polypeptide fibril formation. FEBS Lett. 379: 203–206, 1996.
 948. Westermark, P., M., Skinner, and A. S. Cohen. The P‐component of amyloid of human islets of Langerhans. Scand. J. Immunol. 4: 95–97, 1975.
 949. Westermark, P., C., Wernstedt, T. D. O'Brien, D. W. Hayden, and K. H. Johnson. Islet amyloid in type 2 human diabetes mellitus and adult diabetic cats contains a novel putative polypeptide hormone. Am. J. Pathol. 127: 414–417, 1987.
 950. Westermark, P., C., Wernstedt, E. Wilander, D. W. Hayden, T. D. O'Brien, and K. H. Johnson. Amyloid fibrils in human insulinoma and islets of Langerhans of the diabetic cat are derived from a neuropeptide‐like protein also present in normal islet cells. Proc. Natl. Acad. Sci. U.S.A. 84: 3881–3885, 1987.
 951. Westermark, P., C., Wernstedt, E. Wilander, and K. Sletten. A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem. Biophys. Res. Commun. 140: 827–831, 1986.
 952. Westermark, P., and E. Wilander. The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia 15: 417–421, 1978.
 953. Westermark, P., and E. Wilander. Islet amyloid in type 2 (non‐insulin‐dependent) diabetes is related to insulin. Diabetologia 24: 342–346, 1983.
 954. Westermark, P., E., Wilander, G. T. Westermark, and K. H. Johnson. Islet amyloid polypeptide‐like immunoreactivity in the islet B cells of type 2 (non‐insulin‐dependent) diabetic and non‐diabetic individuals. Diabetologia 30: 887–892, 1987.
 955. Westfall, T. C., and M. Curfman‐Falvey. Amylin‐induced relaxation of the perfused mesenteric arterial bed: mediation by calcitonin gene‐related peptide receptors. J. Cardiovasc. Pharmacol. 26: 932–936, 1995.
 956. Whittle, B. J., J., Lopez‐Belmonte, and S. Moncada. Nitric oxide mediates rat mucosal vasodilatation induced by intragastric capsaicin. Eur. J. Pharmacol. 218: 339–341, 1992.
 957. Wilander, E.. Diagnostic pathology of gastrointestinal and pancreatic neuroendocrine tumors. Acta Oncol. 28: 363–369, 1989.
 958. Wilding, J. P., N., Khandan‐Nia, W. M. Bennet, S. G. Gilbey, J. Beacham, M. A. Ghatei, and S. R. Bloom. Lack of acute effect of amylin (islet associated polypeptide) on insulin sensitivity during hyperinsulinaemic euglycaemic clamp in humans. Diabetologia 37: 166–169, 1994.
 959. Williams, A. J., P. J., Coates, D. G. Lowe, C. McLean, and E. A. Gale. Immunochemical investigation of insulinomas for islet amyloid polypeptide and insulin: evidence for differential synthesis and storage. Histopathology 21: 215–223, 1992.
 960. Wimalawansa, S. J., and A. A. el‐Kholy. Comparative study of distribution and biochemical characterization of brain calcitonin gene‐related peptide receptors in five different species. Neuroscience 54: 513–519, 1993.
 961. Wimalawansa, S. J., P. C., Emson, and I. MacIntyre. Regional distribution of calcitonin gene‐related peptide and its specific binding sites in rats with particular reference to the nervous system. Neuroendocrinology 46: 131–136, 1987.
 962. Wohlwend, A., K., Malmström, H. Henke, H. Murer, J.‐D. Vassalli, and J. A. Fischer. Calcitonin and calcitonin gene‐related peptide interact with the same receptor in cultured LLC‐PK1 kidney cells. Biochem. Biophys. Res. Commun. 131: 537–542, 1985.
 963. Wookey, P. J., C., Tikellis, H. C. Du, H. F. Qin, P. M. Sexton, and M. E. Cooper. Amylin binding in rat renal cortex, stimulation of adenylyl cyclase, and activation of plasma renin. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F289–F294, 1996.
 964. Wookey, P. J., C., Tikellis, H. C. Du, P. Sexton, A. A. Young, L. S. Gaeta, K. S. Prickett, K. Beaumont, and M. E. Cooper. Identification, characterisation and localisation of amylin binding sites in rat kidney using specific amylin antagonists. J. Hypertens. 12 (Suppl. 3): S9, 1994.
 965. Yada, T., M., Sakurada, K. Ihida, M. Nakata, F. Murata, A. Arimura, and M. Kikuchi. Pituitary adenylate cyclase activating polypeptide is an extraordinarily potent intra‐pancreatic regulator of insulin secretion from islet beta‐cells. J. Biol. Chem. 269: 1290–1293, 1994.
 966. Yagui, K., T., Yamaguchi, A. Kanatsuka, et al, Formation of islet amyloid fibrils in beta‐secretory granules of transgenic mice expressing human islet amyloid polypeptide/amylin. Eur. J. Endocrinol. 132: 487–496, 1995.
 967. Yamaguchi, A., T., Chiba, Y. Okimura, T. Yamatani, T. Morishita, A. Nakamura, T. Inui, T. Noda, and T. Fujita. Receptors for calcitonin gene‐related peptide on the rat liver plasma membrane. Biochem. Biophys. Res. Commun. 152: 383–391, 1988.
 968. Yamaguchi, A., T., Chiba, T. Yamatani, T. Inui, T. Morishita, A. Nakamura, S. Kadowaki, M. Fukase, and T. Fujita. Calcitonin gene‐related peptide stimulates adenylate cyclase activation via a guanine nucleotide‐dependent process in rat liver plasma membranes. Endocrinology 123: 2591–2596, 1988.
 969. Yamaguchi, M.. Calcitonin stimulates gluconeogenesis in fasted rats. Endocrinol. Jpn. 28: 51–57, 1981.
 970. Yamaguchi, M.. Calcitonin stimulates glycogenosis in the liver of fasted rats. Endocrinol. Jpn. 28: 643–646, 1981.
 971. Yamaguchi, M.. Stimulatory effect of calcitonin on Ca2+ inflow in isolated rat hepatocytes. Mol. Cell. Endocrinol. 75: 65–70, 1991.
 972. Yamaguchi, M., and J. R. Williamson. Stimulatory effect of calcitonin on calcium uptake and glucose production in isolated rat hepatocytes. Horm. Metab. Res. 15: 176–180, 1983.
 973. Yamaguchi, T., K., Baba, Y. Doi, and K. Yano. Effect of adrenomedullin on aldosterone secretion by dispersed rat adrenal zona glomerulosa cells. Life Sci. 56: 379–387, 1995.
 974. Yamatani, T., S., Kadowaki, T. Chiba, H. Abe, K. Chihara, M. Fukase, and T. Fujita. Calcitonin gene elated peptide stimulates somatostatin release from isolated perfused rat stomach. Endocrinology 118: 2144–2145, 1986.
 975. Yankner, B. A., L. K., Duffy, and D. A. Kirschner. Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250: 279–282, 1990.
 976. Yano, B. L., D. W., Hayden, and K. H. Johnson. Feline insular amyloid: association with diabetes mellitus. Vet. Pathol. 18: 621–627, 1981.
 977. Young, A. A., P., Carlo, T. J. Rink, and M. W. Wang. 8–37 hCGRP, an amylin receptor antagonist, enhances the insulin response and perturbs the glucose response to infused arginine in anesthetized rats. Mol. Cell. Endocrinol. 84: R1–R5, 1992.
 978. Young, A. A., G. J. S., Cooper, P. Carlo, T. J. Rink, and M. W. Wang. Response to intravenous injections of amylin and glucagon in fasted, fed, and hypoglycemic rats. Am. J. Physiol. 264 (Endocrinol. Metab. 27): E943–E950, 1993.
 979. Young, A. A., L. B., Crocker, D. Wolfe‐Lopez, and G. J. S. Cooper. Daily amylin replacement reverses hepatic glycogen depletion in insulin‐treated streptozotocin diabetic rats. FEBS Lett. 287: 203–205, 1991.
 980. Young, A. A., B., Gedulin, W. Vine, A. Percy, and T. J. Rink. Gastric emptying is accelerated in diabetic BB rats and is slowed by subcutaneous injections of amylin. Diabetologia 38: 642–648, 1995.
 981. Young, A. A., B., Gedulin, D. Wolfe‐Lopez, H. E. Greene, T. J. Rink, and G. J. S. Cooper. Interaction of amylin and insulin in the isolated soleus muscle of the rat: concentration‐response relations for co‐secreted non‐competitive antagonists. Am. J. Physiol. 263 (Endocrinol. Metab. 26): E274–E281, 1992.
 982. Young, A. A., B. R., Gedulin, and T. J. Rink. Dose‐responses for the slowing of gastric emptying in a rodent model by glucagon‐like peptide (7–36) NH2, amylin, cholecystokinin, and other possible regulators of nutrient uptake. Metabolism 45: 1–3, 1996.
 983. Young, A. A., D. M., Mott, K. Stone, and G. J. S. Cooper. Amylin activates glycogen phosphorylase in the isolated soleus muscle of the rat. FEBS Lett. 281: 149–151, 1991.
 984. Young, A. A., R., Pittner, B. Gedulin, W. Vine, and T. Rink. Amylin regulation of carbohydrate metabolism. Biochem. Soc. Trans. 23: 325–331, 1995.
 985. Young, A. A., T. J., Rink, W. Vine, and B. Gedulin. Amylin and syndrome‐X. Drug Dev. Res. 32: 90–99, 1994.
 986. Young, A. A., T. J., Rink, and M. W. Wang. Dose response characteristics for the hyperglycemic, hyperlactemic, hypotensive and hypocalcemic actions of amylin and calcitonin gene‐related peptide‐I (CGRP alpha) in the fasted, anaesthetized rat. Life Sci. 52: 1717–1726, 1993.
 987. Young, A. A., W., Vine, B. R. Gedulin, R. Pittner, S. Janes, S. L. Gaeta, A. Percy, C. X. Moore, J. E. Koda, T. J. Rink, and K. Beaumont. Preclinical pharmacology of pramlintide in the rat—comparisons with human and rat amylin. Drug Dev. Res. 37: 231–248, 1996.
 988. Young, A. A., M. W., Wang, and G. J. S. Cooper. Amylin injection causes elevated plasma lactate and glucose in the rat. FEBS Lett. 291: 101–104, 1991.
 989. Young, A. A., M.‐W., Wang, G. J. S. Cooper, and D. M. Mott. Amylin and insulin exert complementary control over Cori cycle activity. J. Cell. Biochem. Suppl. 15B: 68, 1991.
 990. Young, A. A., M. W., Wang, B. Gedulin, T. J. Rink, R. Pittner, and K. Beaumont. Diabetogenic effects of salmon calcitonin are attributable to amylin‐like activity. Metabolism 44: 1581–1589, 1995.
 991. Young, A. A., M.‐W., Wang, T. J. Rink, and G. J. S. Cooper. Effects of intravenous injections of amylin in the fasted, anaesthetised rat. J. Physiol. (Lond.) 438: 250P, 1991.
 992. Young, D. A., R. O., Deems, R. W. Deacon, R. H. McIntosh, and J. E. Foley. Effects of amylin on glucose metabolism and glycogenolysis in vivo and in vitro. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E457–E461, 1990.
 993. Young, I. D., L., Ailles, S. Narindrasorasak, R. Tan, and R. Kisilevsky. Localization of the basement membrane heparan sulfate proteoglycan in islet amyloid deposits in type II diabetes mellitus. Arch. Pathol. Lab. Med. 116: 951–954, 1992.
 994. Yu, N. T., B. H., Jo, R. C. Chang, and J. D. Huber. Single‐crystal Raman spectra of native insulin. Structures of insulin fibrils, glucagon fibrils, and intact calf lens. Arch. Biochem. Biophys. 160: 614–622, 1974.
 995. Zaidi, M., P. J. R., Bevis, G. Abeyasekera, S. I. Girgis, S. J. Wimalawansa, H. R. Morris, and I. MacIntyre. The origin of circulating calcitonin gene‐related peptide in the rat. J. Endocrinol. 111: 185–190, 1986.
 996. Zaidi, M., S. D., Brain, J. R. Tippins, V. D. Marzo, B. S. Moonga, T. J. Chambers, H. R. Morris, and I. MacIntyre. Structure‐activity relationship of human calcitonin gene‐related peptide. Biochem. J. 269: 775–780, 1990.
 997. Zaidi, M., L. H., Breamer, and I. MacIntyre. Biology of peptides from the calcitonin genes. Q. J. Exp. Physiol. 72: 371–408, 1987.
 998. Zaidi, M., T. J. Chambers, R. E. Gaines Das, H. R. Morris, and I. MacIntyre. A direct action of human calcitonin gene‐related peptide on isolated osteoclasts. J. Endocrinol. 115: 511–518, 1987.
 999. Zaidi, M., H., Datta, B. S. Moonga, and I. MacIntyre. Evidence that the action of calcitonin on rat osteoclasts is mediated by two G proteins acting via separate post‐receptor pathways. J. Endocrinol. 126: 473–481, 1990.
 1000. Zaidi, M., H. K., Datta, P. J. Bevis, S. J. Wimalawansa, and I. MacIntyre. Amylin‐amide: a new bone‐conserving peptide from the pancreas. Exp. Physiol. 75: 529–536, 1990.
 1001. Zaidi, M., K., Fuller, P. J. R. Bevis, R. E. Gaines Das, T. J. Chambers, and I. MacIntyre. Calcitonin gene‐related peptide inhibits osteoclastic bone resorption: a comparative study. Calcif. Tissue Int. 40: 149–154, 1987.
 1002. Zaidi, M., M., Pazianas, V. S. Shankar, et al, Osteoclast function and its control. Exp. Physiol. 78: 721–739, 1993.
 1003. Zaidi, M., V. S., Shankar, C. L. H. Huang, M. Pazianas, and S. R. Bloom. Amylin in bone conservation—current evidence and hypothetical considerations. Trends Endocrinol. Metab. 4: 255–259, 1993.
 1004. Zdon, M. J., T. E., Adrian, and I. M. Modlin. Gastric somatostatin release: evidence for direct mediation by calcitonin gene‐related peptide and vasoactive intestinal peptide. J. Surg. Res. 44: 680–686, 1988.
 1005. Zhu, G. C., D. T., Dudley, and A. R. Saltiel. Amylin increases cyclic AMP formation in L6 myocytes through calcitonin gene‐related peptide receptors. Biochem. Biophys. Res. Commun. 177: 771–776, 1991.
 1006. Ziegler, R., H., Minne, J. Hotz, and H. Goebell. Inhibition of gastric secretion in man by oral administration of calcitonin. Digestion 11: 157–160, 1974.
 1007. Zierath, J. R., D., Galuska, A. Engström, K. H. Johnson, C. Betsholtz, P. Westermark, and H. Wallberg‐Henriksson. Human islet amyloid polypeptide at pharmacological levels inhibits insulin and phorbol ester‐stimulated glucose transport in in vitro incubated human muscle strips. Diabetologia 35: 26–31, 1992.
 1008. Zimmermann, U., J. A., Fischer, K. Frei, A. H. Fischer, R. K. Reinscheid, and R. Muff. Identification of adrenomedullin receptors in cultured rat astrocytes and in neuroblastoma X glioma hybrid cells (NG108–115). Brain Res. 724: 238–245, 1996.
 1009. Zimmermann, U., J. A., Fischer, and R. Muff. Adrenomedullin and calcitonin gene‐related peptide interact with the same receptor in cultured human neuroblastoma SK‐N‐MC cells. Peptides 16: 421–424, 1995.
 1010. Zweers, E. J. K., B. Bravenboer, K. L. van Hulst, C. J. M. Lips, G. C. M. Christiaens, W. H. L. Hackeng, and D. W. Erkelens. Glucose stimulated islet amyloid polypeptide and gestational diabetes mellitus. Diabetologia 35 (Suppl. 1): A179, 1992.

Related Articles:

Diabetes and Obesity

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Garth J. S. Cooper. Amylin and Related Proteins: Physiology and Pathophysiology. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 303-396. First published in print 2001. doi: 10.1002/cphy.cp070210