Comprehensive Physiology Wiley Online Library

Regulation of Gluconeogenesis in Liver

Full Article on Wiley Online Library


The sections in this article are:

1 Gluconeogenic Substrates
2 Organization of Glycolysis and Gluconeogenesis
2.1 Occurrence of Futile Cycles
2.2 Metabolic Crossroads
2.3 Analysis of Flux Control
3 Regulation and Role of the Three Cycles
3.1 The Glucose–Glucose‐6‐Phosphate Cycle
3.2 The Fructose‐6‐Phosphate‐Fructose‐1,6‐Bisphosphate Cycle
3.3 The Pyruvate–Phosphoenolpyruvate Cycle
4 Integrated Control by Substrates and Hormones
4.1 Coordinated Control of Flux by Metabolites
4.2 Short‐Term Control by Hormones
4.3 Long‐Term Control by Hormones and Substrates
4.4 Control by End Products
4.5 Inhibitors of Gluconeogenesis
5 Conclusions
 1. Adam, P. A., and R. C. Haynes, Jr.. Control of hepatic mitochondrial CO2 fixation by glucagon, epinephrine, and cortisol. J. Biol. Chem. 24: 6444–6450, 1969.
 2. Agius, L., M. Peak, C. B. Newgard, A. M. Gomez‐Foix, and J. J. Guinovart. Evidence for a role of glucose‐induced translocation of glucokinase in the control of hepatic glycogen synthesis. J. Biol. Chem. 271: 30479–30486, 1996.
 3. Agius, L., M. Peak, and E. Van Schaftingen. The regulatory protein of glucokinase binds to the hepatocyte matrix, but, unlike glucokinase, does not translocate during substrate stimulation. Biochem. J. 309: 711–713, 1995.
 4. Argaud, D., T. L. Kirby, C. B. Newgard, and A. J. Lange. Stimulation of glucose‐6‐phosphatase gene expression by glucose and fructose‐2,6‐bisphosphate. J. Biol. Chem. 272: 12854–12861, 1997.
 5. Arion, W. J., A. J. Lange, H. E. Walls, and L. M. Ballas. Evidence for the participation of independent translocation for phosphate and glucose 6‐phosphate in the microsomal glucose‐6‐phosphatase system. Interactions of the system with orthophosphate, inorganic pyrophosphate, and carbamyl phosphate. J. Biol. Chem. 255: 10396–10406, 1980.
 6. Bartrons, R., L. Hue, E. Van Schaftingen, and H. G. Hers. Hormonal control of fructose 2,6‐bisphosphate concentration in isolated hepatocytes. Biochem. J. 214: 829–837, 1983.
 7. Barzilai, N., and L. Rossetti. Role of glucokinase and glucose‐6‐phosphatase in the acute and chronic regulation of hepatic glucose fluxes by insulin. J. Biol. Chem. 268: 25019–25025, 1993.
 8. Berteloot, A., H. Vidal, and G. Van de Werve. Rapid kinetics of liver microsomal glucose‐6‐phosphatase. Evidence for tight‐coupling between glucose‐6‐phosphate transport and phosphohydrolase activity. J. Biol. Chem. 266: 5497–5507, 1991.
 9. Bertrand, L., D. Vertommen, E. Depiereux, L. Hue, M. H. Rider, and E. Feytmans. Modelling the 2‐kinase domain of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase on adenylate kinase. Biochem. J. 321: 615–621, 1997.
 10. Bertrand, L., D. Vertommen, P.M. Freeman, J. Wouters, E. Depiereux, A. Di Pietro, L. Hue and M. H. Rider. Mutagenesis of the fructose‐6‐phosphate‐binding site in the 2‐kinase domain of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase. Eur. J. Biochem. 254: 490–496, 1998.
 11. Bode, A. M., J. P. Foster, and R. C. Nordlie. Glyconeogenesis from proline involves metabolite inhibition of the glucose‐6‐phosphatase system. J. Biol. Chem. 42: 1614–1620, 1992.
 12. Brown, K. S., S. S. Kalinowski, J. R. Megill, S. K. Durham, and K. A. Mookhtiar. Glucokinase regulatory protein may interact with glucokinase in the hepatocyte nucleus. Diabetes 46: 179–186, 1997.
 13. Cardenas, M. L.. Glucokinase: Its Regulation and Role in Liver Metabolism. Berlin: Springer‐Verlag, 1995.
 14. Chen, Y. T., and A. Burchell. Glycogen storage diseases. In: The Metabolic and Molecular Bases of Inherited Disease (7th ed.), edited by C. R. Scriver, A. L. Beaudet, W. C. Sly, and D. Valle. New York: McGraw‐Hill, 1995, vol. I, p. 935–965.
 15. Claus, J. H., J. R. Schlumpf, M. R. El‐Maghrabi, J. Pilkis, and S. J. Pilkis. Mechanism of action of glucagon on hepatocyte phosphofructokinase activity. Proc. Natl. Acad. Sci. U.S.A. 77: 6501–6505, 1980.
 16. Conaglen, J. C., A. B. Williams, R. S. Malthus, D. Glover, and J. G. Sneyd. Blood glucose homeostasis in rats with a deficiency of liver phosphorylase kinase. Am. J. Physiol. 248 (Endocrinol. Metab. 11): E44–E50, 1985.
 17. Denton, R. M., and A. P. Halestrap. Regulation of pyruvate metabolism in mammalian tissues. Essays Biochem. 15: 37–77, 1979.
 18. Depre, C., S. Ponchaut, J. Deprez, L. Maisin, and L. Hue. Cyclic AMP suppresses the inhibition of glycolysis by alternative oxidizable substrates in the heart. J. Clin. Invest. 101: 390–397, 1998.
 19. Engstrom, L.. The regulation of liver pyruvate kinase by phosphorylation‐dephosphorylation. Curr. Top. Cell. Regul. 13: 29–51, 1978.
 20. Exton, J. H.. Mechanisms of hormonal regulation of hepatic glucose metabolism. Diabetes Metab. Rev. 3: 163–183, 1987.
 21. Exton, J. H.. Molecular mechanisms involved in α‐adrenergic responses. Mol. Cell. Endocrinol. 23: 233–264, 1981.
 22. Exton, J. H., L. E. Mallette, L. S. Jefferson, E. H. A. Wong, N. Friedmann, J. B. Miller, and C. R. Park. The hormonal control of hepatic gluconeogenesis. Recent Prog. Horm. Res. 26: 411–461, 1970.
 23. Exton, J. H., and C. R. Park. Control of gluconeogenesis in liver. III. Effects of L‐lactate, pyruvate, fructose, glucagon, epinephrine, and adenosine 3′,5′‐monophosphate on gluconeogenic intermediates in the perfused rat liver. J. Biol. Chem. 244: 1424–1433, 1969.
 24. Feliu, J. E., L. Hue, and H. G. Hers. Hormonal control of pyruvate kinase activity and of gluconeogenesis in isolated hepatocytes. Proc. Natl. Acad. Sci. U.S.A. 73: 2762–2766, 1976.
 25. Ferre, T., A. Pujol, E. Riu, F. Bosch, and A. Valera. Correction of diabetic alterations by glucokinase. Proc. Natl. Acad. Sci. U.S.A. 93: 7225–7230, 1996.
 26. Ferre, T. E., E. Riu, F. Bosch, and A. Valera. Evidence from transgenic mice that glucokinase is rate limiting for glucose utilization in the liver. FASEB J. 10: 1213–1218, 1996.
 27. Foster, J. D., B. A. Pederson, and R. C. Nordlie. Glucose‐6‐phosphatase structure, regulation, and function: an update. Proc. Soc. Exp. Biol. Med. 215: 314–332, 1997.
 28. Furuya, E., and K. Uyeda. An activation factor of liver phosphofructo‐kinase. Proc. Natl. Acad. Sci. U.S.A. 77: 5861–5864, 1980.
 29. Gardner, L. B., Z. Liu, and E. J. Barret. The role of glucose‐6‐phosphatase in the action of insulin in hepatic glucose production in the rat. Diabetes 42: 1614–1620, 1993.
 30. Garrison, J. C., and R. C. Haynes, Jr.. The hormonal control of gluconeogenesis by regulation of mitochondrial pyruvate carboxylation in isolated rat liver cells. J. Biol. Chem. 250: 2769–2777, 1975.
 31. Girard, J., P. Ferre, and F. Foufelle. Mechanisms by which carbohydrates regulate expression of genes for glycolytic and lipogenic enzymes. Annu. Rev. Nutr. 17: 325–352, 1997.
 32. Gitzelmann, R., B. Steinmann, and G. Van Den Berghe. Disorders of fructose metabolism. In: The Metabolic and Molecular Bases of Inherited Disease (7th ed.), edited by C. R. Scriver, A. L. Beaudet, W. C. Sly, and D. Valle. New York: McGraw‐Hill. 1995, vol. I, p. 905–934.
 33. Groen, A. K., R. C. Vervoorn, R. Van der Meer, and J. M. Tager. Control of gluconeogenesis in rat liver cells. 1. Kinetics of the individual enzymes and the effect of glucagon. J. Biol. Chem. 258: 14346–14353, 1983.
 34. Guillam, M. T., E. Hummler, E. Schaerer, J. Y. Wu, M. J. Birnbaum, F. Beermann, A. Schmidt, N. Deriaz, and B. Thorens. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking GLUT2. Nat. Genet. 17: 327–330, 1997.
 35. Hanson, R. W., and L. Reshef. Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu. Rev. Biochem. 66: 581–611, 1997.
 36. Hasemann, C. A., E. S. Istvan, K. Uyeda, and J. Deisenhofer. The crystal structure of the bifunctional enzyme 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase reveals distinct domain homologies. Structure 4: 1017–1029, 1996.
 37. Henin, N., M. F. Vincent, H. E. Gruber, and G. Van den Berghe. Inhibition of fatty acid and cholesterol synthesis by stimulation of AMP‐activated protein kinase. FASEB J. 9: 541–546, 1995.
 38. Hers, H. G.. The control of glycogen metabolism in the liver. Annu. Rev. Biochem. 45: 167–189, 1976.
 39. Hers, H. G., and L. Hue. Gluconeogenesis and related aspects of glycolysis. Annu. Rev. Biochem. 52: 617–653, 1983.
 40. Hofmeyr, J. H., and A. Cornish‐Bowden. Quantitative assessment of regulation in metabolic systems. Eur. J. Biochem. 200: 223–236, 1991.
 41. Horton, R. A., E. D. Ceppi, R. G. Knowles, and M. A. Titheradge. Inhibition of hepatic gluconeogenesis by nitric oxide: a comparison with endotoxin shock. Biochem. J. 299: 735–739, 1994.
 42. Hue, L.. Futile cycles and regulation of metabolism. In: Metabolic Compartmentation, edited by H. Sies. New York: Academic, 1982, p. 71–97.
 43. Hue, L.. The role of futile cycles in the regulation of carbohydrate metabolism in the liver. Adv. Enzymol. 52: 247–331, 1981.
 44. Hue, L., and R. Bartons. Role of fructose 2,6‐bisphosphate in the control by glucagon of gluconeogenesis from various precursors in isolated rat hepatocytes. Biochem. J. 218: 165–170, 1984.
 45. Hue, L., J. E. Feliu, and H. G. Hers. Control of gluconeogenesis and of enzymes of glycogen metabolism in isolated rat hepatocytes. Biochem. J. 176: 791–797, 1978.
 46. Hue, L., and M. H. Rider. Role of fructose 2,6‐bisphosphate in the control of glycolysis in mammalian tissues. Biochem. J. 245: 313–324, 1987.
 47. Hue, L., F. Sobrino, and L. Bosca. Difference in glucose sensitivity of liver glycolysis and glycogen synthesis. Relationship between lactate production and fructose 2,6‐bisphosphate concentration. Biochem. J. 224: 779–786, 1984.
 48. Hue, L., E. Van Schaftingen, and P. E. Blackmore. Stimulation of glycolysis and accumulation of a stimulator of phosphofructokinase in hepatocytes incubated with vasopressin. Biochem. J. 194: 1023–1026, 1981.
 49. Kacser, H., and J. A. Burns. The control of flux. Symp. Soc. Exp. Biol. 27: 65–104, 1973.
 50. Kacser, H., and J. W. Porteous. Control of metabolism: what do we have to measure? TIBS 12: 5–14, 1987.
 51. Katz, J., and R. Rognstad. Futile cycles in the metabolism of glucose. Curr. Top. Cell. Regul. 10: 237–289, 1976.
 52. Kemp, R. G., and F. Marcus. Effects of fructose‐2,6‐bisphosphate on 6‐phosphofructo‐1‐kinase and fructose‐1,6‐bisphosphatase. In: Fructose‐2,6‐Bisphosphate, edited by S. J. Pilkis. Boca Raton, FL: CRC, 1990, p. 17–37.
 53. Kraus‐Friedmann, N.. Hormonal regulation of hepatic gluconeogenesis. Physiol. Rev. 64: 170–259, 1984.
 54. Krebs, H. A.. Some aspects of the regulation of fuel supply in omnivorous animals. Adv. Enzyme Regul. 10: 397–420, 1972.
 55. Krebs, H. A.. The Pasteur effect and the relations between respiration and fermentation. Essays Biochem. 8: 1–34, 1972.
 56. Kurland, I. J., and S. J. Pilkis. Covalent control of 6‐phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase: insights into autoregulation of a bifunctional enzyme. Protein Sci. 4: 1023–1027, 1995.
 57. Kuwajima, M. I., S. Golden, J. Katz, R. H. Unger, D. W. Foster, and J. D. McGarry. Active hepatic glycogen synthesis from gluconeogenic precursors despite high tissue levels of fructose 2,6‐bisphosphate. J. Biol. Chem. 261: 2632–2637, 1986.
 58. Lei, K. J., L. L. Shelly, B. Lin, J. B. Sidbury, Y. T. Chen, R. C. Nordlie, and J. Y. Chou. Mutations in the glucose‐6‐phosphatase gene are associated with glycogen storage disease types 1a and 1aSP but not 1b and 1c. J. Clin. Invest. 95: 234–240, 1995.
 59. Lei, K. J., L. L. Shelly, C. J. Pan, J. B. Sidbury, and J. Y. Chou. Mutations in the glucose‐6‐phosphatase gene that cause glycogen storage disease type 1a. Science 262: 580–583, 1993.
 60. Lemaigre, F., and G. G. Rousseau. Transcriptional control of genes that regulate glycolysis and gluconeogenesis in adult liver. Biochem. J. 303: 1–14, 1994.
 61. Liu, F., and H. J. Fromm. The sites of interaction of fructose‐2,6‐bisphosphate and fructose‐1,6‐bisphosphate with their target enzymes: 6‐phosphofructo‐1‐kinase and fructose‐1,6‐bisphosphatase. In: Fructose‐2,6‐Bisphosphate, edited by S. J. Pilkis. Boca Raton, FL: CRC, 1990, p. 39–49.
 62. Meek, D. W., and H. G. Nimmo. Effects of phosphorylation on the kinetic properties of rat liver fructose 1,6‐bisphosphatase. Biochem. J. 222: 125–130, 1984.
 63. Minassian, C., N. Daniele, J.‐C. Bordet, C. Zitoun, and G. Mithieux. Liver glucose‐6‐phosphatase activity is inhibited by refeeding in rats. J. Nutr. 125: 2727–2732, 1995.
 64. Moore, M. C., A. D. Cherrington, G. Cline, M. J. Pagliassotti, E. M. Jones, D. W. Neal, C. Badet, and G. I. Shulman. Sources of carbon for hepatic glycogen synthesis in the conscious dog. J. Clin. Invest. 88: 578–587, 1991.
 65. Owen, O. E., P. Felig, A. P. Morgan, J. Wahren, and G. F. Cahill, Jr.. Liver and kidney metabolism during prolonged starvation. J. Clin. Invest. 48: 574–583, 1969.
 66. Petersen, K. F., J. B. Blair, and G. I. Shulman. Triiodothyronine treatment increases substrate cycling between pyruvate carboxylase and malic enzyme in perfused rat liver. Metabolism 44: 1380–1383, 1995.
 67. Pilkis, S. J., T. H. Claus, I. J. Kurland, and A. J. Lange. 6‐Phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase: a metabolic signaling enzyme. Annu. Rev. Biochem. 64: 799–835, 1995.
 68. Pilkis, S. J., M. R. El Maghrabi, and T. H. Claus. Hormonal regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Biochem. 57: 755–783, 1988.
 69. Pilkis, S. J., and D. K. Granner. Molecular physiology of the regulation of hepatic gluconeogenesis and glycolysis. Annu. Rev. Physiol. 54: 885–909, 1992.
 70. Pilkis, S. J., C. R. Park, and T. H. Claus. Hormonal control of hepatic gluconeogenesis. Vitam. Horm. 36: 383–460, 1978.
 71. Randle, P. J., P. B. Garland, C. N. Hales, and E. A. Newsholme. The glucose/fatty acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1: 785–789, 1963.
 72. Ross, B. D., R. Hems, and H. A. Krebs. The rate of gluconeogenesis from various precursors in the perfused rat liver. Biochem. J. 102: 942–951, 1967.
 73. Rothman, D. L., I. Magnusson, L. D. Katz, R. G. Shulman, and G. I. Shulman. Quantitation of hepatic glycogenolysis and gluconeogenesis in fasting humans with 13C NMR. Science 254: 573–576, 1991.
 74. Ruderman, N.. Muscle amino acid metabolism and gluconeogenesis. Annu. Rev. Med. 26: 245–258, 1975.
 75. Santer, R., R. Schneppenheim, A. Dombrowski, H. Gotze, B. Steinmann, and J. Schaub. Mutations in Glut2, the gene for the livertype glucose transporter, in patients with Fanconi‐Bickel syndrome. Nat. Genet. 17: 324–326, 1997.
 76. Shelly, L. L., K. J. Lei, C. J. Pan, S. F. Sakata, S. Ruppert, G. Schutz, and J. Y. Chou. Isolation of the gene for murine glucose‐6‐phosphatase, the enzyme deficient in glycogen storage disease type 1A. J. Biol. Chem. 268: 21482–21485, 1993.
 77. Siess, E. A., and O. H. Wieland. Early kinetics of glucagon action in isolated hepatocytes at the mitochondrial level. Eur. J. Biochem. 110: 203–210, 1980.
 78. Sistare, E. D., and R. C. Haynes, Jr.. Estimation of the relative contribution of enhanced production of oxalacetate and inhibition of pyruvate kinase to acute hormonal stimulation of gluconeogenesis in rat hepatocytes. J. Biol. Chem. 260: 12761–12768, 1985.
 79. Stalmans, W.. The hepatic threshold to glucose. Curr. Top. Cell. Regul. 11: 51–97, 1976.
 80. St‐Denis, J. F., A. Berteloot, H. Vidal, B. Annabi, and G. Van de Werve. Glucose transport and glucose 6‐phosphate hydrolysis in intact rat liver microsomes. J. Biol. Chem. 270: 21092–21097, 1995.
 81. Toyoda, Y., I. Miwa, S. Satake, M. Anai, and Y. Oka. Nuclear location of the regulatory protein of glucokinase in rat liver and translocation of the regulator to the cytoplasm in response to high glucose. Biochem. Biophys. Res. Commun. 215: 467–473, 1995.
 82. Uyeda, K.. Phosphofructokinase. Adv. Enzymol. 48: 193–244, 1979.
 83. Uyeda, K., E. Furuya, C. S. Richard, and M. Yokoyama. Fructose‐2,6‐P2, chemistry and biological function. Mol. Cell. Endocrinol. 48: 97–120, 1982.
 84. Van Schaftingen Fructose, E.. 2,6‐bisphosphate. Adv. Enzymol. 59: 315–395, 1987.
 85. Van Schaftingen, E.. Short‐term regulation of glucokinase. Diabetologia 37: 43–47, 1994.
 86. Van Schaftingen, E., M. Detheux, and M. Veiga‐da‐Cunha. Short‐term control of glucokinase activity: role of a regulatory protein. FASEB J. 8: 414–419, 1994.
 87. Van Schaftingen, E., L. Hue, and H. G. Hers. Control of the fructose 6‐phosphate/fructose 1,6‐bisphosphate cycle in isolated hepatocytes by glucose and glucagon. Role of a low molecular‐weight stimulator of phosphofructokinase. Biochem. J. 192: 887–895, 1980.
 88. Van Schaftingen, E., L. Hue, and H. G. Hers. Fructose 2,6‐bisphosphate, the probable structure of the glucose‐ and glucagon‐sensitive stimulator of phosphofructokinase. Biochem. J. 192: 897–901, 1980.
 89. Villeret, V., S. Huang, Y. Zhang, and W. N. Lipscomb. Structural aspects of the allosteric inhibition of fructose‐1,6‐bisphosphatase by AMP: the binding of both the substrate analogue 2,5‐anhydro‐d‐glucitol 1,6‐bisphosphate and catalytic metal ions monitored by x‐ray crystallography. Biochemistry 34: 4307–4315, 1995.
 90. Vincent, M. F., M. D. Erion, H. E. Gruber, and G. Van den Berghe. Hypoglycaemic effect of AICAriboside in mice. Diabetologia 39: 1148–1155, 1996.
 91. Xue, Y., S. Huang, J. Y. Liang, Y. Zhang, and W. N. Lipscomb. Crystal structure of fructose‐1,6‐bisphosphatase complexed with fructose‐2,6‐bisphosphate, AMP and Zn2+ at 2.0 Angström‐resolution: aspects of synergism between inhibitors. Proc. Natl. Acad. Sci. U.S.A. 91: 12482–12486, 1994.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Louis Hue. Regulation of Gluconeogenesis in Liver. Compr Physiol 2011, Supplement 21: Handbook of Physiology, The Endocrine System, The Endocrine Pancreas and Regulation of Metabolism: 649-657. First published in print 2001. doi: 10.1002/cphy.cp070220