Comprehensive Physiology Wiley Online Library

Roles of Parathyroid Hormone and Parathyroid Hormone–Related Peptide in Calcium Metabolism and Bone Biology: Biological Actions and Receptors

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Parathyroid Hormone
1.1 Chemistry
1.2 Peripheral Metabolism
1.3 Actions in Kidney and Bone
2 Parathyroid Hormone‐Related Peptide
2.1 Chemistry: Role of the Amino‐terminal Portion in Calcium Metabolism
2.2 Biological Role in Bone Development
3 Receptors That Mediate Analogous and Distinct Molecular Actions of Parathyroid Hormone and Parathyroid Hormone–Related Peptide
3.1 The Parathyroid Hormone/Parathyroid Hormone–Related Peptide Receptor
3.2 The Type 2 Parathyroid Hormone Receptor
3.3 Additional Receptors
3.4 Structure‐Based Design of Analogues
4 Summary
Figure 1. Figure 1.

Parathyroid hormone (PTH), PTH‐related peptide (PTHrP), and a putative PTH‐like peptide from hypothalamus mediate their actions through the PTH/PTHrP receptor (solid line) and/or the PTH2 receptor (cross‐hatched line). Both receptors are closely related and belong to a distinct family of G protein–coupled receptors. In contrast to the PTH/PTHrP receptor, which is expressed in a large variety of fetal and adult tissues, the PTH2 receptor is expressed in only few organs and its biological functions are not established.

Figure 2. Figure 2.

Alignment of amino acid sequences of all known vertebrate parathyroid hormone (PTH) (left) and PTH‐related peptide species (right). Conserved residues are shaded; numbers indicate positions of amino acids in the mammalian peptide sequences.

Figure 3. Figure 3.

Alignment of the (1–34) amino acid sequences of all known vertebrate parathyroid hormone (PTH) and PTH‐related peptide (PTHrP) species. Amino acid residues conserved in both peptide families are shown in white boxes; amino acids identical to those residues found in either human PTH or human PTHrP are indicated by a dash; numbers indicate amino acid positions.

Figure 4. Figure 4.

Scheme of parathyroid hormone (PTH) secretion by the parathyroid gland and its interaction with the PTH/PTH‐related peptide receptor, the PTH2 receptor, and other putative receptors on target cells. Cleavage of intact hormone into amino‐terminal (N, hatched bar) and carboxyl‐terminal (C, solid bar) fragments by the parathyroid gland and by peripheral organs.

Figure 5. Figure 5.

Parathyroid hormone (PTH) triggers the translocation of preformed voltage‐dependent calcium channels from sites of intracellular sequestration to the apical membrane, which also undergoes rapid morphological changes that greatly increase its surface area. Intracellular free calcium rises significantly, and increased net transepithelial calcium transport occurs, mainly via enhanced Na+−Ca2+ exchange at the basolateral membrane, supported in turn by Na+−K+‐ATPase. Analogous events underlie PTH regulation of proximal tubular phosphate transport.

Figure 6. Figure 6.

Schematic representation of the intron–exon organization of the genes encoding parathyroid hormone (PTH) and PTH‐related peptide (PTHrP). Introns are represented by a solid line, coding and noncoding exons are shown (as boxes); numbers indicate amino acids, Met is the initiator methionine of the prepro‐sequences (cross‐hatched boxes), and +1 is the first residue of the mature peptide (solid boxes). UTR, untranslated region.

Figure 7. Figure 7.

Macroscopic findings in mice homozygous for parathyroid hormone–related peptide ablation of the (PTHrP) gene [From Karaplis et al. 129 with permission.]. A wild‐type fetus (left) and a PTHrP‐ablated littermate (right) were obtained by cesarean section at day 18.5 postcoitum and fixed in buffered formalin. The mutant exhibits a chondroskeletal phenotype characterized by a domed skull, short snout and mandible, protruding tongue, narrow thorax, and disproportionately short limbs.

Figure 8. Figure 8.

Schematic representation of the human parathyroid hormone (PTH)/PTH‐related peptide receptor and its gene organization. Upper panel: Amino acids shown in single‐letter code; amino terminus of the receptor at top; potential sites for N‐linked glycosylaton (three‐pronged branches); bars indicate boundaries between each of 14 coding exons; exon S encodes the putative signal peptide. Lower panel: Intron–exon structure; coding exons shown as boxes, with names and sizes (bp) indicated (n.d., not determined). The size of each intron is shown, and the approximate locations of two frequent polymorphisms are indicated.

Figure 9. Figure 9.

Amino acid sequence comparison of receptors for parathyroid hormone (PTH) and PTH‐related peptide (PTHrP). Strict consensus cladogram for aligning the known PTH/PTHrP receptors (PPR) and the human PTH2 receptor. Human corticotropin‐releasing factor receptor (CRFR) and mouse calcitonin receptor (CTR) were used as outgroups [From Bergwitz et al. 23 with permission.]

Figure 10. Figure 10.

Putative interaction between parathyroid hormone (PTH) or PTH‐related peptide (PTHrP) (gray) and the PTH/PTHrP receptor (black). The carboxyl‐terminus of the ligand appears to interact predominantly with the receptor's amino‐terminal extracellular domain, while the ligand's amino‐terminus interacts with the membrane‐spanning helices and the extracellular loops. Individual residues (black circles) in either PTH or PTHrP likely to interact directly with distinct portions of the PTH/PTHrP receptor are indicated (white) 20, 27, 164, 310.

Figure 11. Figure 11.

Regulation of chondrocyte proliferation and differentiation by parathyroid hormone‐related peptide (PTHrP) and Indian hedgehog (Ihh). PPR, PTH/PTHrP receptor; Ptc, Patched; Smo, Smoothened; Bmp, bone morphogenic protein; Col X, collagen X.

Figure 12. Figure 12.

Patients with Jansen's metaphyseal chondrodysplasia [259; photograph kindly provided by Drs. Kooh and Cole, Hospital for Sick Children, Toronto, Canada, and 57, 117].

Figure 13. Figure 13.

Upper panel: Schematic presentation of the human parathyroid hormone (PTH)/PTH‐related peptide receptor; two amino acid substitutions (H223 and T410) identified in patients with Jansen's metaphyseal chondrodysplasia are indicated 176, 236, 237.Lower panel: Conservation of the equivalent of residues H223 and T410 in all mammalian members of this family of G protein–coupled receptors; numbers indicate the position of the residue within the amino acid sequence of the respective receptors. GHRH, growth hormone–releasing hormone; VIP, vasoactive intestinal peptide; GIP, gastric inhibitory peptide; GLP, glucagon‐like peptide; PACAP, pituitary adenylate cyclase–activating peptide; CRE, corticotropin‐releasing factor.

Figure 14. Figure 14.

Functional properties of wild‐type (HKrk) and mutant parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptors (HKrk‐H223R and HKrk‐T410P), which are transiently expressed in COS‐7 cells. [From Schipani et al. 237 with permission.] Basal cAMP accumulation of COS‐7 cells that express increasing (to maximal) concentrations of wild‐type or mutant PTH/PTHrP receptors (A), basal (B) and PTH‐stimulated (C) cAMP accumulation, and PTH‐stimulated inositol phosposphate accu mulation (D).

Figure 15. Figure 15.

Constitutive cAMP accumulation of COS‐7 cells expressing wild‐type (HKrk) or mutant (HKrk‐H223R and HKrk‐T410P) parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptors is partially reversed by PTH or PTHrP analogues. [From Gardella et al. 87 with permission.] Effect of [D‐Trp12,Tyr34]bPTH(7–34)amide (solid triangle) [Leu11,D‐Trp12]PTHrP(7–34)amide (solid square), [Nle8,18,Tyr34]bPTH(7–34)amide (open triangle), or PTHrP(7–34)amide (open square) is shown with COS‐7 cells expressing the wild‐type PTH/PTHrP receptor (A), HKrk‐H223R (B), or HKrk‐T410P (C). D: Data generated with [Leu11,D‐Trp12]PTHrP(7–34)amide were replotted as percent of basal cAMP accumulation: wild‐type PTH/PTHrP receptor (solid circle), HKrk‐H223R (solid square), or HKrk‐T410P (open circle).

Figure 16. Figure 16.

Residues 5 and 23 in parathyroid hormone (PTH) and PTH‐related peptide (PTHrP) are important for the interaction with the PTH2 receptor: PTH (open square) binds to the PTH2 receptor with high affinity (IC50) and is an efficient activator of cAMP accumulation (EC50), while PTHrP (solid square) shows only poor binding and activation. Replacement of residue 5 and/or 23 in PTH by the corresponding PTHrP‐specific residue reduced binding affinity and/or activation efficacy, while the converse findings were made when PTH‐specific residues were introduced into PTHrP [From Gardella et al. 86 with permission.]



Figure 1.

Parathyroid hormone (PTH), PTH‐related peptide (PTHrP), and a putative PTH‐like peptide from hypothalamus mediate their actions through the PTH/PTHrP receptor (solid line) and/or the PTH2 receptor (cross‐hatched line). Both receptors are closely related and belong to a distinct family of G protein–coupled receptors. In contrast to the PTH/PTHrP receptor, which is expressed in a large variety of fetal and adult tissues, the PTH2 receptor is expressed in only few organs and its biological functions are not established.



Figure 2.

Alignment of amino acid sequences of all known vertebrate parathyroid hormone (PTH) (left) and PTH‐related peptide species (right). Conserved residues are shaded; numbers indicate positions of amino acids in the mammalian peptide sequences.



Figure 3.

Alignment of the (1–34) amino acid sequences of all known vertebrate parathyroid hormone (PTH) and PTH‐related peptide (PTHrP) species. Amino acid residues conserved in both peptide families are shown in white boxes; amino acids identical to those residues found in either human PTH or human PTHrP are indicated by a dash; numbers indicate amino acid positions.



Figure 4.

Scheme of parathyroid hormone (PTH) secretion by the parathyroid gland and its interaction with the PTH/PTH‐related peptide receptor, the PTH2 receptor, and other putative receptors on target cells. Cleavage of intact hormone into amino‐terminal (N, hatched bar) and carboxyl‐terminal (C, solid bar) fragments by the parathyroid gland and by peripheral organs.



Figure 5.

Parathyroid hormone (PTH) triggers the translocation of preformed voltage‐dependent calcium channels from sites of intracellular sequestration to the apical membrane, which also undergoes rapid morphological changes that greatly increase its surface area. Intracellular free calcium rises significantly, and increased net transepithelial calcium transport occurs, mainly via enhanced Na+−Ca2+ exchange at the basolateral membrane, supported in turn by Na+−K+‐ATPase. Analogous events underlie PTH regulation of proximal tubular phosphate transport.



Figure 6.

Schematic representation of the intron–exon organization of the genes encoding parathyroid hormone (PTH) and PTH‐related peptide (PTHrP). Introns are represented by a solid line, coding and noncoding exons are shown (as boxes); numbers indicate amino acids, Met is the initiator methionine of the prepro‐sequences (cross‐hatched boxes), and +1 is the first residue of the mature peptide (solid boxes). UTR, untranslated region.



Figure 7.

Macroscopic findings in mice homozygous for parathyroid hormone–related peptide ablation of the (PTHrP) gene [From Karaplis et al. 129 with permission.]. A wild‐type fetus (left) and a PTHrP‐ablated littermate (right) were obtained by cesarean section at day 18.5 postcoitum and fixed in buffered formalin. The mutant exhibits a chondroskeletal phenotype characterized by a domed skull, short snout and mandible, protruding tongue, narrow thorax, and disproportionately short limbs.



Figure 8.

Schematic representation of the human parathyroid hormone (PTH)/PTH‐related peptide receptor and its gene organization. Upper panel: Amino acids shown in single‐letter code; amino terminus of the receptor at top; potential sites for N‐linked glycosylaton (three‐pronged branches); bars indicate boundaries between each of 14 coding exons; exon S encodes the putative signal peptide. Lower panel: Intron–exon structure; coding exons shown as boxes, with names and sizes (bp) indicated (n.d., not determined). The size of each intron is shown, and the approximate locations of two frequent polymorphisms are indicated.



Figure 9.

Amino acid sequence comparison of receptors for parathyroid hormone (PTH) and PTH‐related peptide (PTHrP). Strict consensus cladogram for aligning the known PTH/PTHrP receptors (PPR) and the human PTH2 receptor. Human corticotropin‐releasing factor receptor (CRFR) and mouse calcitonin receptor (CTR) were used as outgroups [From Bergwitz et al. 23 with permission.]



Figure 10.

Putative interaction between parathyroid hormone (PTH) or PTH‐related peptide (PTHrP) (gray) and the PTH/PTHrP receptor (black). The carboxyl‐terminus of the ligand appears to interact predominantly with the receptor's amino‐terminal extracellular domain, while the ligand's amino‐terminus interacts with the membrane‐spanning helices and the extracellular loops. Individual residues (black circles) in either PTH or PTHrP likely to interact directly with distinct portions of the PTH/PTHrP receptor are indicated (white) 20, 27, 164, 310.



Figure 11.

Regulation of chondrocyte proliferation and differentiation by parathyroid hormone‐related peptide (PTHrP) and Indian hedgehog (Ihh). PPR, PTH/PTHrP receptor; Ptc, Patched; Smo, Smoothened; Bmp, bone morphogenic protein; Col X, collagen X.



Figure 12.

Patients with Jansen's metaphyseal chondrodysplasia [259; photograph kindly provided by Drs. Kooh and Cole, Hospital for Sick Children, Toronto, Canada, and 57, 117].



Figure 13.

Upper panel: Schematic presentation of the human parathyroid hormone (PTH)/PTH‐related peptide receptor; two amino acid substitutions (H223 and T410) identified in patients with Jansen's metaphyseal chondrodysplasia are indicated 176, 236, 237.Lower panel: Conservation of the equivalent of residues H223 and T410 in all mammalian members of this family of G protein–coupled receptors; numbers indicate the position of the residue within the amino acid sequence of the respective receptors. GHRH, growth hormone–releasing hormone; VIP, vasoactive intestinal peptide; GIP, gastric inhibitory peptide; GLP, glucagon‐like peptide; PACAP, pituitary adenylate cyclase–activating peptide; CRE, corticotropin‐releasing factor.



Figure 14.

Functional properties of wild‐type (HKrk) and mutant parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptors (HKrk‐H223R and HKrk‐T410P), which are transiently expressed in COS‐7 cells. [From Schipani et al. 237 with permission.] Basal cAMP accumulation of COS‐7 cells that express increasing (to maximal) concentrations of wild‐type or mutant PTH/PTHrP receptors (A), basal (B) and PTH‐stimulated (C) cAMP accumulation, and PTH‐stimulated inositol phosposphate accu mulation (D).



Figure 15.

Constitutive cAMP accumulation of COS‐7 cells expressing wild‐type (HKrk) or mutant (HKrk‐H223R and HKrk‐T410P) parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptors is partially reversed by PTH or PTHrP analogues. [From Gardella et al. 87 with permission.] Effect of [D‐Trp12,Tyr34]bPTH(7–34)amide (solid triangle) [Leu11,D‐Trp12]PTHrP(7–34)amide (solid square), [Nle8,18,Tyr34]bPTH(7–34)amide (open triangle), or PTHrP(7–34)amide (open square) is shown with COS‐7 cells expressing the wild‐type PTH/PTHrP receptor (A), HKrk‐H223R (B), or HKrk‐T410P (C). D: Data generated with [Leu11,D‐Trp12]PTHrP(7–34)amide were replotted as percent of basal cAMP accumulation: wild‐type PTH/PTHrP receptor (solid circle), HKrk‐H223R (solid square), or HKrk‐T410P (open circle).



Figure 16.

Residues 5 and 23 in parathyroid hormone (PTH) and PTH‐related peptide (PTHrP) are important for the interaction with the PTH2 receptor: PTH (open square) binds to the PTH2 receptor with high affinity (IC50) and is an efficient activator of cAMP accumulation (EC50), while PTHrP (solid square) shows only poor binding and activation. Replacement of residue 5 and/or 23 in PTH by the corresponding PTHrP‐specific residue reduced binding affinity and/or activation efficacy, while the converse findings were made when PTH‐specific residues were introduced into PTHrP [From Gardella et al. 86 with permission.]

References
 1. Abou‐Samra, A. B., H., Juppner, T. Force, M. W. Freeman, X. F. Kong, E. Schipani, P. Urena, J. Richards, J. V. Bonventre, J. T. Potts, Jr., H. M. Kronenberg, and G. V. Segre. Expression cloning of a common receptor for parathyroid hormone and parathyroid hormone‐related peptide from rat osteoblast‐like cells: a single receptor stimulates intracellular accumulation of both cAMP and inositol triphosphates and increases intracellular free calcium. Proc. Natl. Acad. Sci. U.S.A. 89: 2732–2736, 1992.
 2. Abou‐Samra, A. B. H. Jüppner, A. Khalifa, H. Karga, X. F. Kong, D. Schiffer‐Alberts, L. Y. Xie, and G. V. Segre. Parathyroid hormone (PTH) stimulates adrenocorticotropin release in AtT‐20 cells stably expressing a common receptor for PTH and PTH‐related peptide. Endocrinology 132: 801–805, 1993.
 3. Abou‐Samra, A.‐B., S., Uneno, H. Jüppner, H. Keutmann, J. T. Potts, Jr. G. V. Segre, and S. R. Nussbaum. Non‐homologous sequences of parathyroid hormone and the parathyroid hormone related peptide bind to a common receptor on ROS 17/2.8 cells. Endocrinology 125: 2215–2217, 1989.
 4. Adams, A. E., M., Pines, C. Nakamoto, V. Behar, Q. M. Yang, R. Bessalle, M. Chorev, M. Rosenblatt, M. A. Levine, and L. J. Suva. Probing the bimolecular interactions of parathyroid hormone and the human parathyroid hormone/parathyroid hormone‐related protein receptor. 2. Cloning, characterization, and photoaffinity labeling of the recombinant human receptor. Biochemistry 34: 10553–10559, 1995.
 5. Agus, Z. S., L. B., Gardner, L. H. Beck, and M. Goldberg. Effects of parathyroid hormone on renal tubular reabsorption of calcium, sodium and phosphate. Am. J. Physiol. 224: 1143–1148, 1973.
 6. Albright, F. Case records of the Massachusetts General Hospital; case 27461. N. Engl. J. Med. 255: 789–791, 1941.
 7. Amiel, C., H., Kuntziger, and G. Richet. Micropuncture study of handling of phosphate by proximal and distal nephron in normal and parathyroidectomized rat: evidence for distal reabsorption. Pflugers Arch. 317: 93–109, 1970.
 8. Amizuka, N., A. C., Karaplis, J. E. Henderson, H. Warshawsky, M. L. Lipman, Y. Matsuki, S. Ejiri, M. Tanaka, N. Izumi, H. Ozawa, and D. Goltzman. Haploinsufficiency of parathyroid hormone‐related peptide (PTHrP) results in abnormal post‐natal bone development. Dev. Biol. 175: 166–176, 1996.
 9. Amizuka, N., H. S., Lee, M. Y. Khan, A. Arazani, H. Warhawsky, G. N. Hendy, H. Ozawa, J. H. White, D. Goltzman. Cell‐specific expression of the parathyroid hormone (PTH)/PTH‐related peptide receptor gene in kidney from kidney‐specific and ubiquitous promotors. Endocrinology 138: 469–481, 1997.
 10. Anderson, D. A., E., Maraskovsky, W. L. Billingsley, W. C. Dougall, M. E. Tometsko, E. R. Roux, M. C. Teepe, R. F. DuBose, D. Cosman, and L. Galibert, A homologue of the TNF receptor and its ligand enhance T‐cell growth and dendritic‐cell function. 390: 3597–3602, 1997.
 11. Antonorakis, S. E., J. A., Phillips, R. L. Mallonee, H. H. J. Kazazian, E. R. Fearon, P. G. Waber, H. M. Kronenberg, A. Ullrich, and D. A. Meyers. β‐Globin locus is linked to the parathyroid hormone (PTH) locus and lies between insulin and PTH loci in man. Proc. Natl. Acad. Sci. U.S.A. 80: 6615–6619, 1983.
 12. Aurbach, G. D. Isolation of parathyroid hormone after extraction with phenol. J. Biol. Chem. 234: 3179, 1959.
 13. Aurbach, G. D., and J. T. Potts, Jr.. Partition of parathyroid hormone on sephadex G‐100. Endocrinology 75: 290, 1964.
 14. Bacskai, B. J., and P. A. Friedman. Activation of latent Ca2+ channels in renal epithelial cells by parathyroid hormone. Nature 347: 388–391, 1990.
 15. Barany, G., and R. B. Merrifield. Solid phase peptide synthesis. In: The Peptides, edited by E. Gross, and J. Meinhofer. New York: Academic, 1979, vol. 2, p. 1–284.
 16. Barden, J. A., and B. E. Kemp. NMR study of a 34–residue N‐terminal fragment of the parathyroid‐hormone‐related protein secreted during humoral hypercalcemia of malignancy. Eur. J. Biochem. 184: 379–394, 1989.
 17. Baud, V., S. L., Chissoe, E. Viegas‐Pequignot, S. Diriong, V. C. N'Guyen, B. A. Roe, and M. Lipinski. EMR1, an unusual member in the family of hormone receptors with seven transmembrane segments. Genomics 26: 334–344, 1995.
 18. Behar, V., C., Nakamoto, Z. Greenberg, A. Bisello, L. J. Suva, M. Rosenblatt, and M. Chorev. Histidine at position 5 is the specificity “switch” between two parathyroid hormone receptor subtypes. Endocrinology 137: 4217–4224, 1996.
 19. Bengele, H. H., C. P., Lechene, and E. A. Alexander. Phosphate transport along the inner medullary collecting duct of the rat. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F48–F54, 1979.
 20. Bergwitz, C., T. J., Gardella, M. R. Flannery, J. T. Potts, Jr., H. M. Kronenberg, S. R. Goldring, and H. Jüppner. Full activation of chimeric receptors by hybrids between parathyroid hormone and calcitonin. J. Biol. Chem. 271: 26466–26472, 1996.
 21. Bergwitz, C., S. A., Jusseaume, M. D. Luck, H. Jüppner, and T. J. Gardella. Residues in the membrane‐spanning and extracellular regions of the parathyroid hormone (PTH)‐2 receptor determine signaling selectivity for PTH and PTH‐related peptide. J. Biol. Chem. 272: 28861–28868, 1997.
 22. Bergwitz, C., P., Klein, and H. Jüppner. Molecular cloning of complementary DNAs encoding the Xenopus laevis (Daudin) PTH/PTHrP receptor. In: The Comparative Endocrinology of Calcium Regulation, edited by C. Drase, F. Dauss, I. Caple, G. Feis, Bristol: Journal of Endocrinology, 1996, p. 97–102.
 23. Bergwitz, C., P., Klein, H. Kohno, S. A. Forman, K. Lee, D. Rubin, and H. Jüppner. Identification, functional characterization, and developmental expression of two nonallelic parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptor isoforms in Xenopus laevis (Daudin). Endocrinology 139: 723–732, 1998.
 24. Berson, S. A., and R. S. Yalow. Immunochemical heterogeneity of parathyroid hormone in plasma. J. Clin. Endocrinol. Metab. 28: 1037–1947, 1968.
 25. Bettoun, J. D., M., Minagawa, M. Y. Kwan, H. S. Lee, T. Yasuda, G. N. Hendy, D. Goltzman, and J. H. White. Cloning and characterization of the promoter regions of the human parathyroid hormone (PTH)/PTH‐related peptide receptor gene: analysis of deoxyribonucleic acid from normal subjects and patients with pseudohypoparathyroidism type Ib. J. Clin. Endocrinol. Metab. 82: 1031–1040, 1997.
 26. Bingham, P. J., I. A., Brazell, and M. Owen. The effect of parathyroid extract on cellular activity and plasma calcium levels in vivo. J. Endocrinol. 45: 387–400, 1969.
 27. Bisello, A., Z., Greenberg, V. Behar, M. Rosenblatt, L. J. Suva, and M. Chorev. Direct mapping of interactions between PTH and the PTH/PTHrP receptor by photoaffinity crosslinking: identification of two distinct contact domains. J. Bone Miner. Res. 12 (Suppl. 1): S363, 1997.
 28. Bitgood, M. J., and A. P. McMahon. Hedgehog and Bmp genes are coexpressed at many diverse sites of cell‐cell interaction in the mouse embryo. Dev. Biol. 172: 126–138, 1995.
 29. Blind, E., H., Schmidt‐Gayk, S. Scharla, D. Flentje, S. Fischer, U. Gohring, and W. Hitzler. Two‐site assay of intact parathyroid hormone in the investigation of primary hyperparathyroidism and other disorders of calcium metabolism compared with a midregion assay. J. Clin. Endocrinol. Metab. 67: 353–360, 1988.
 30. Bouhtiauy, I., D., Lajeunesse, and M. G. Brunette. The mechanism of parathyroid hormone action on calcium reabsorption by the distal tubule. Endocrinology 128: 251–258, 1991.
 31. Brewer, H. B., Jr., T. Fairwell, W. Rittel, et al. Recent studies on the chemistry of human, bovine and porcine parathyroid hormone. Am. J. Med. 56: 17, 1974.
 32. Brewer, H. B., Jr., T. Fairwell, R. Ronan, et al. Human parathyroid hormone: amino acid sequence of the amino‐terminal residues 1–34. Proc. Natl. Acad. Sci. U.S.A. 69: 3585, 1972.
 33. Brewer, H. B., Jr., and R. Ronan. Bovine parathyroid hormone: amino acid sequence. Proc. Natl. Acad. Sci. U.S.A. 67: 1862, 1970.
 34. Bringhurst, F. R., Calcium and phosphate distribution, turnover, and metabolic actions. In: Endocrinology (2nd ed.), edited by L.J. DeGroot. Philadelphia: Saunders, 1989, vol. 2, p. 805–843.
 35. Bringhurst, F. R., A. M., Stern, and M. Yotts. Peripheral metabolism of PTH: fate of the biologically active amino‐terminus in vivo. Am. J. Physiol. 255 (Endocrinol. Metab. 18): E886–E893, 1988.
 36. Bringhurst, F. R., A. M., Stern, and M. Yotts. Peripheral metabolism of [35S]PTH in vivo: influence of alterations in calcium availability and parathyroid status. Endocrinology 122: 235–245, 1989.
 37. Broadus, A. E., and A. F. Stewart. Parathyroid hormone‐related protein: structure, processing, and physiological actions. In: The Parathyroids. Basic and Clinical Concepts, edited by J. P. Bilezikian, M. A. Levine, and R. Marcus. New York: Raven, 1994, p. 259–294.
 38. Brossard, J. H., M., Clouthier, L. Roy, R. Lepage, M. Gascon‐Barre, and P. D'Amour. Accumulation of a non‐(1–84) molecular form of parathyroid hormone (PTH) detected by intact PTH assay in renal failure: importance in the interpretation of PTH values. J. Clin. Endocrinol. Metab. 81: 3923–3929, 1996.
 39. Burtis, W. J., T. G., Brady, J. J. Orloff, J. B. Ersbak, R. P. Warrell, B. R. Olsen, M. E. Mitnick, A. E. Broadus, and A. F. Stewart. Immunochemical characterization of circulating parathyroid hormone related protein in patients with humoral hypercalcemia of cancer. N. Engl. J. Med. 322: 1106–1112, 1990.
 40. Burtis, W. J., P., Dann, G. A. Gaich, and N. E. Soifer. A high abundance midregion species of parathyroid hormone‐related protein: immunological and chromatographic characterization in plasma. J. Clin. Endocrinol. Metab. 78: 317–322, 1994.
 41. Burton, P. B. J., C., Moniz, P. Quirke, C. Tzannatos, A. Pickles, M. Dixit, J. T. Triffit, H. Jüppner, G. V. Segre, and D. E. Knight. Parathyroid hormone‐related peptide in the human fetal urogenital tract. Mol. Cell. Endocrinol. 69: R13–R17, 1990.
 42. Catherwood, B. D., R. M., Friedler, and F. R. Singer. Sites of clearance of endogenous parathyroid hormone in the vitamin D‐deficient dog. Endocrinology 98: 228, 1976.
 43. Caulfield, M. P., and M. Rosenblatt. Parathyroid hormone‐receptor interactions. Trends Endocrinol. Metab. 2: 164–168, 1990.
 44. Caverzasio, J., R., Rizzoli, and J. V. Bonjour. Sodium‐dependent phosphate transport inhibited by parathyroid hormone and cyclic AMP stimulation in an opossum kidney cell line. J. Biol. Chem. 261: 3233–3237, 1986.
 45. Chambers, T. J., N. A., Athanasou, and K. Fuller. Effect of parathyroid hormone and calcitonin on the cytoplasmic spreading of isolated osteoclasts. J. Endocrinol. 102: 281–286, 1984.
 46. Chorev, M., M. E., Goodman, R. L. McKee, E. Roubini, J. J. Levy, C. T. Gay, J. E. Reagan, J. E. Fisher, L. H. Caporale, E. E. Golub, M. P. Caulfield, R. F. Nutt, and M. Rosenblatt. Modifications of position 12 in parathyroid hormone and parathyroid hormone related protein: toward the design of highly potent antagonists. Biochemistry 29: 1580–1586, 1990.
 47. Chorev, M., and M. Rosenblatt. Structure‐function analysis of parathyroid hormone and parathyroid hormone‐related protein. In: M. A. Levine, and R. Marcus. edited by The Parathyroids, New York: Raven, 1994, vol. 1, p. 139–156.
 48. Chorev, M., and M. Rosenblatt. Parathyroid hormone: structure‐function relations and analog design. In: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and G. A. Rodan. New York: Academic, 1996, p. 305–323.
 49. Chorev, M., E., Roubini, M. E. Goodman, R. L. McKee, S. W. Gibbons, J. E. Reagan, M. P. Caulfield, and M. Rosenblatt. Effects of hydrophobic substitutions at position 18 on the potency of parathyroid hormone antagonists. Int. J. Pept. Protein Res. 36: 465–470, 1990.
 50. Civitelli, R., K. A., Hruska, J. J. Jeffrey, A. J. Kahn, L. V. Avioli, and N. C. Partridge. Second messenger signaling in the regulation of collagenase production by osteogenic osteosarcoma cells. Endocrinology 124: 2928–2934, 1989.
 51. Collip, J. B. Extraction of a parathyroid hormone which will prevent or control parathyroid tetany and which regulates the level of blood calcium. J. Biol. Chem. 63: 395, 1925.
 52. Cornish, J., K. E., Callon, C. G. Nicholson, and I. R. Reid. Parathyroid hormone‐related protein‐(107–139) inhibits bone resorption in vivo. Endocrinology 138: 1299–1304, 1997.
 53. D'Amour, P., P., Huet, G. V. Segre, and M. Rosenblatt. Characteristics of bovine parathyroid hormone extraction by dog liver in vitro. Am. J. Physiol. 241 (Endocrinol. Metab. 4): E208, 1981.
 54. D'Amour, P., G. V., Segre, S. I. Roth, and J. T. J. Potts. Analysis of parathyroid hormone and its fragments in rat tissues: chemical identification and microscopical localization. J. Clin. Invest. 63: 89, 1979.
 55. Danks, J. A., A. J., Devlin, P. M. W. Ho, H. Diefenbach‐Jagger, D. M. Power, A. Canario, T. J. Martin, and P. M. Ingleton. Parathyroid hormone‐related protein is a factor in normal fish pituitary. Gen. Comp. Endocrinol. 92: 201–212, 1993.
 56. Danks, J. A., J. C., McHale, J. T. Martin, and P. M. Ingleton. Parathyroid hormone‐related protein in tissues of the emerging frog (Rana temporaria): immunohistochemistry and in situ hybridization. J. Anat. 190: 229–238, 1997.
 57. De Haas, W. H. D., W. De Boer, and F. Griffioen. Metaphysial dysostosis. A late follow‐up of the first reported case. J. Bone Joint Surg. 51B: 290–299, 1969.
 58. Demay, M., J., Mitchell, and D. Goltzman. Comparison of renal and osseous binding of parathyroid hormone and hormonal fragments. Am. J. Physiol. 249 (Endocrinol. Metab. 12): E437–E446, 1985.
 59. Devlin, A. J., J. A. Danks, M. K. Faulkner, D. M. Power, A. V. M. Canario, T. J. Martin, and P. M. Ingleton. Immunochemical detection of parathyroid hormone‐related protein in the saccus vasculosus of a teleost fish. Gen. Comp. Endocrinol. 101: 83–90, 1996.
 60. DeVos, D. M., M., Ultsch, and A. A. Kossiakoff. Human growth hormone and extracellular domain of its receptor: crystal structure of the complex. Science 255: 306–312, 1992.
 61. Ding, C. L., T. B., Usdin, M. Labuda, and M. A. Levine. Molecular genetic analysis of pseudohypoparathyroidism type lb: exclusion of the genes encoding the type 1 and type 2 PTH receptors. J. Bone Miner. Res. 11 (Suppl. 1): M483, 1996.
 62. Doppelt, S. H., R. M., Neer, S. R. Nussbaum, P. Federico, J. T. Potts, Jr., and M., Rosenblatt. Inhibition of the in vivo parathyroid hormone‐mediated calcemic response in rats by a synthetic hormone antagonist. Proc. Natl. Acad. Sci. U.S.A. 83: 7557–7560, 1986.
 63. Eggenberger, M., B., Flühmann, R. Muff, M. Lauber, W. Lich‐tensteiger, W. Hunziker, J. A. Fischer, and W. Born. Structure of a parathyroid hormone/parathyroid hormone‐related peptide receptor of the human cerebellum and functional expression in human neuroblastoma SK‐N‐MC cells. Brain Res. Mol. Brain Res. 36: 127–136, 1997.
 64. Erdmann, S., W., Muller, S. Bahrami, S. I. Vornehm, H. Mayer, P. Bruckner, K. von der Mark, and H. Burkhardt. Differential effects of parathyroid hormone fragments on collagen gene expression in chondrocytes. J. Cell. Biol. 135: 1179–1191, 1996.
 65. Everhart‐Caye, M., S. E., Inzucchi, J. Guinness‐Henry, M. A. Mitnick, and A. F. Stewart. Parathyroid hormone (PTH)‐rekted protein(1–36) is equipotent to PTH(1–34) in humans. J. Clin. Endocrinol. Metab. 81: 199–208, 1996.
 66. Feldman, R. S., N. S., Krieger, A. H. Tashjian, Jr.. Effects of parathyroid hormone and calcitonin on osteoclast formation in vitro. Endocrinology 107: 1137–1143, 1980.
 67. Felix, R., H., Fleisch, and P. R. Elford. Bone‐resorbing cytokines enhance release of macrophage colony‐stimulating activity by the osteoblastic cell MC3T3–E1. Calcif. Tissue Int. 44: 356–360, 1989.
 68. Fenton, A. J., B. E., Kemp, R. G. Hammonds, Jr., K. Mitchelhill, J. M. Moseley, T. J. Martin, and G. C. Nicholson. A potent inhibitor of osteoclastic bone resorption within a highly conserved pentapeptide region of parathyroid hormone‐related protein; PTHrP(107–111). Endocrinology 129: 3424–3426, 1991.
 69. Fenton, A. J., B. E., Kemp, G. N. Kent, J. M. Moseley, M. H. Zheng, D. J. Rowe, J. M. Britto, T. J. Martin, and G. C. Nicholson. A carboxyl‐terminal peptide from the parathyroid hormone‐related protein inhibits bone resorption by osteoclasts. Endocrinology 129: 1762–1768, 1991.
 70. Ferguson, J. E., J. V., Gorman, D. E. Bruns, E. C. Weir, W. J. Burtis, T. J. Martin, and M. E. Bruns. Abundant expression of parathyroid hormone‐related protein in human amnion and its association with labor. Physiology 89: 8384–8388, 1992.
 71. Ferrier, J., A., Ward, J. Kanehisa, and J. N. Heersche. Electrophysiological responses of osteoclasts to hormones. J. Cell. Physiol. 128: 23–26, 1986.
 72. Finkelstein, J. S., Pharmacological mechanisms of therapeutics: parathyroid hormone. In: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and G. A. Rodan. New York: Academic, 1996, p. 993–1005.
 73. Flueck, J. A., F. B., Dibella, and A. J. Edis. Immunoheterogeneity of parathyroid hormone in venous effluent serum from hyperfunctioning parathyroid glands. J. Clin. Invest. 60: 1367–1375, 1977.
 74. Fox, J., and M. B. Mathew. Heterogeneous response to PTH in aging rates: evidence for skeletal PTH resistance. Am. J. Physiol. 260 (Endocrinol. Metab. 23): E933–E937, 1991.
 75. Fraher, L. J., A. B., Hodsman, K. Jonas, D. Saunders, C. I. Rose, J. E. Henderson, G. N. Hendy, and D. Goltzman. A comparison of the in vivo. biochemical responses to exogenous parathyroid hormone‐(1–34) [PTH‐(1–34)] and PTH‐related peptide‐(1–34) in man. J. Clin. Endocrinol. Metab. 75: 417–423, 1992.
 76. Fraser, D. R., and E. Kodicek. Regulation of 25–hydroxycholecalciferol‐1‐hydroxylase activity in kidney by parathyroid hormone. Nature 241: 163–166, 1973.
 77. Fraser, R. A., T., Kaneko, P. K. T. Pang, and S. Harvey. Hypo‐ and hypercalcemic peptides in fish pituitary glands. Am. J. Physiol. 260: R622–R626, 1991.
 78. Fraser, R. A., H. M., Kronenberg, P. K. Pang, and S. Harvey. Parathyroid hormone messenger ribonucleic acid in the rat hypothalamus. Endocrinology 127: 2517–2522, 1990.
 79. Fukayama, S., A. H., Tashjian, and J. N. Davis. Signaling by N‐and C‐terminal sequences of parathyroid hormone‐related protein in hippocampal neurons. Proc. Natl. Acad. Sci. U.S.A. 92: 10182–10186, 1995.
 80. Fukumoto, S., M., Suzawa, Y. Takeuchi, K. Nakayama, Y. Kodama, E. Ogata and T. Matsumoto. Absence of mutations in parathyroid hormone (PTH)/PTH‐related protein receptor complementary deoxyribonucleic acid in patients with pseudohypoparathyroidism type lb. J. Clin. Endocrinol. Metab. 81: 2554–2558, 1996.
 81. Gaich, G., J. J., Orloff, E. J. Atillasoy, W. J. Burtis, M. B. Ganz, and A. F. Stewart. Amino‐terminai parathyroid hormone‐related protein: specific binding and cytosolic calcium responses in rat insulinoma cells. Endocrinology 132: 1402–1409, 1993.
 82. Garabedian, M., M. F., Holick, H. F. Deluca, and I. T. Boyle. Control of 25‐hydrocholecalciferol metabolism by parathyroid glands. Proc. Natl. Acad. Sci. U.S.A. 69: 1673–1676, 1972.
 83. Gardella, T. J., D., Axelrod, D. Rubin, H. T. Keutmann, J. T. Potts, Jr., H. M. Kronenberg, and S. R. Nussbaum. Mutational analysis of the receptor‐activating region of human parathyroid hormone. J. Biol. Chem. 266: 13141–13146, 1991.
 84. Gardella, T. J., H., Jüppner, A. K. Wilson, H. T. Keutmann, A. B. Abou‐Samra, G. V. Segre, F. R. Bringhurst, J. T. Potts, Jr., S. R. Nussbaum, and H. M. Kronenberg. Determinants of [Arg2]PTH‐(1–34) binding and signaling in the transmembrane region of the parathyroid hormone receptor. Endocrinology 135: 1186–1194, 1994.
 85. Gardella, T. J., M. D., Luck, M.‐H. Fan, and C. W. Lee. Transmembrane residues of the parathyroid hormone (PTH)/PTH‐related peptide receptor that specifically affect binding and signaling by agonist ligands. J. Biol. Chem. 271: 12820–12825, 1996.
 86. Gardella, T. J., M. D., Luck, G. S. Jensen, T. B. Usdin, and H. Jüppner. Converting parathyroid hormone‐related peptide (PTHrP) into a potent PTH‐2 receptor agonist. J. Biol. Chem. 271: 19888–19893, 1996.
 87. Gardella, T. J., M. D., Luck, E. Schipani, J. T. Potts, Jr., and H., Jüppner. Inverse agonism of amino‐terminally truncated parathyroid hormone (PTH) and PTH‐related peptide (PTHrP) analogs revealed with constitutively active mutant PTH/PTHrP receptors linked to Jansen's metaphyseal chondrodysplasia. Endocrinology 137: 3936–3941, 1996.
 88. Gardella, T. J., M. D., Luck, A. K. Wilson, H. T. Keutmann, S. R. Nussbaum, J. T. Potts, Jr., and H. M., Kronenberg. Parathyroid hormone (PTH)/PTH‐related peptide hybrid peptides reveal functional interactions between the 1–14 and 15–34 domains of the ligand. J. Biol. Chem. 270: 6584–6588, 1995.
 89. Gelbert, L., E., Schipani, H. Jüppner, A. B. Abou‐Samra, G. V. Segre, S. Naylor, H. Drabkin, R. White, and H. Heath. Chromosomal location of the parathyroid hormone/parathyroid hormone‐related protein receptor gene to human chromosome 3p21.2–p24.2. J. Clin. Endocrinol. Metab. 79: 1046–1048, 1994.
 90. Gmaj, P., and H. Murer. Cellular mechanisms of inorganic phosphate transport in kidney. Physiol. Rev. 66: 36–70, 1986.
 91. Goldman, M. E., M., Chorev, J. E. Reagan, R. F. Nutt, J. J. Levy, and M. Rosenblatt. Evaluation of novel parathyroid hormone analogs using a bovine renal membrane receptor binding assay. Endocrinology 123: 1468–1475, 1988.
 92. Goligorsky, M. S., D. N., Menton, and K. A. Hruska. Parathyroid hormone‐induced changes of the brush border membrane topography and cytoskeletlon in cultured renal proximal tubular cells. J. Membr. Biol. 92: 151–162, 1986.
 93. Goltzman, D., A., Peytremann, E. Callahan, G. W. Tregear, J. T. Potts, Jr.. Analysis of the requirements for parathyroid hormone action in renal membranes with the use of inhibiting analogues. J. Biol. Chem. 250: 3199–3203, 1975.
 94. Greger, R., F., Lang, and H. Oberleithner. Distal site of calcium reabsorption in the rat nephron. Pflugers Arch. 374: 153–157, 1978.
 95. Guenther, H. L., W., Hofstetter, A. Stutzer, R. Muhlbauer, and H. Fleisch. Evidence for heterogeneity of the osteoblastic phenotype determined with clonal rat bone cells established from transforming growth factor‐B‐induced cell colonies grown anchorage independently in semisolid medium. Endocrinology 125: 2092–2102, 1989.
 96. Guo, J., B., Lanske, B. Liu, P. Divieti, H. M. Kronenberg, and F. R. Bringhurst. Ablation of PTH/PTHrP receptors in conditionally immortalized, PTH‐responsive chondrocyte cell lines. J. Bone Miner. Res. 10 (Suppl. 1): S172, 1995.
 97. Habener, J. F., G. P., Mayer, P. C. Dee, and J. T. J. Potts. Metabolism of amino‐ and carboxyl‐sequence immunoreactive parathyroid hormone in the bovine: evidence for peripheral cleavage of hormone. Metabolism 25: 385, 1976.
 98. Habener, J. F., and J. T. Potts, Jr., Parathyroid physiology and primary hyperparathyroidism. In: Metabolic Bone Disease, edited by L. V. Avioli, and S. M. Krane. New York: Academic, vol. II, 1978, p. 1–147.
 99. Habener, J. F., D., Powell, and T. M. Murray. Parathyroid hormone secretion and metabolism in vivo. Proc. Natl. Acad. Sci. U.S.A. 68: 2986–2991, 1971.
 100. Hakeda, Y., K., Hiura, T. Sato, R. Okazaki, T. Matsumoto, E. Ogata, R. Ishitani, and M. Kumegawa. Existence of parathyroid hormone binding sites on murine hemopoietic blast cells. Biochem. Biophys. Res. Commun. 163: 1481–1486, 1989.
 101. Hamann, J., W., Eichler, D. Hamann, H. M.J. Kerstens, P.J. Poddighe, J. M. N. Hoovers, E. Hartmann, M. Strauss, and R. A. W. Van Lier. Expression cloning and chromosomal mapping of the leukocyte activation antigen CD97, a new seven‐span transmembrane molecule of the secretin receptor super‐family with an unusual extracellular domain. J. Immunol. 155: 1942–1950, 1995.
 102. Heinrich, G., H. M., Kronenberg, J. T. Potts, Jr., and J. F. Habener. Gene encoding parathyroid hormone: nucleotide sequence of the rat gene and deduced amino acid sequence of rat preproparathyroid hormone. J. Biol. Chem. 259: 3320–3329, 1984.
 103. Hendy, G. N., H. M., Kronenberg, J. T. Potts, Jr., and A., Rich. Nucleotide sequence of cloned cDNAs encoding human preproparathyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 78: 7365–7369, 1981.
 104. Horiuchi, N., M. F., Holick, J. T. Potts, Jr., and M., Rosenblatt. A parathyroid hormone inhibitor in vivo: design and biologic evaluation of a hormone analog. Science 220: 1053–1055, 1983.
 105. Horiuchi, N., M. P., Caulfield, J. E. Fisher, M. E. Goldman, R. L. McKee, J. E. Reagan, J. J. Levy, R. F. Nutt, S. B. Rodan, T. L. Schofield, T. L. Clemens, and M. Rosenblatt. Similarity of synthetic peptide from human tumor to parathyroid hormone in vivo and in vitro. Science 238: 1566–1568, 1987.
 106. Houssami, S., D. M., Findlay, C. L. Brady, T. J. Martin, R. M. Epand, E. E. Moore, E. Murayama, T. Tamura, R. C. Orlowski, and P. M. Sexton. Divergent structural requirements exist for calcitonin receptor binding specificity and adenylate cyclase activation. Mol. Pharmacol. 47: 798–809, 1995.
 107. Howard, G. A., B. L., Bottemiller, R. T. Turner, J. T. Rader, and D. L. Baylink. Parathyroid hormone stimulates bone formation and resorption in organ culture: evidence for a coupling mechanism. Proc. Natl. Acad. Sci. U.S.A. 78: 3208, 1981.
 108. Hruska, K. A., A., Korkor, K. Martin, and E. Slatopolsky. Peripheral metabolism of intact parathyroid hormone: role of liver and kidney and the effect of chronic renal failure. J. Clin. Invest. 67: 885, 1981.
 109. Hustmyer, F. G., E., Schipani, and M. Peacock. BsmI polymorphism at the parathyroid hormone receptor locus (PTHR) in three populations. Hum. Mol. Genet. 2: 1330, 1993.
 110. Iida‐Klein, A., J., Guo, L. Y. Xie, H. Jüppner, J. T. Potts, Jr., H. M. Kronenberg, F. R. Bringhurst, A. B. Abou‐Samra, and G. V. Segre. Truncation of the carboxyl‐terminal region of the parathyroid hormone (PTH)/PTH‐related peptide receptor en‐hances PTH stimulation of adenylate cyclase but not phospholipase C. J. Biol. Chem. 270: 8458–8465, 1995.
 111. Ikeda, K., E. C., Weir, M. Mangin, P. S. Dannies, B. Kinder, L.J. Deftos, E. M. Brown, and A. E. Broadus. Expression of messenger ribonucleic acids encoding a parathyroid hormonelike peptide in normal human and animal tissues with abnormal expression in human parathyroid adenomas and rat keratinocytes. Mol. Endocrinol. 2: 1230–1236, 1988.
 112. Imai, M. Effects of parathyroid hormone and N6, O2‐dibutyryl cyclic AMP on Ca2+ transport across the rabbit distal nephron segments perfused in vitro. Pflugers Arch. 390: 145–151, 1981.
 113. Inomata, N., M., Akiyama, N. Kubota, and H. Jüppner. Characterization of a novel PTH‐receptor with specificity for the carsoxyl‐terrr.inal region of PTH(1–84). Endocrinology 136: 4732–4740, 1995.
 114. Ishihara, T., S., Nakamura, Y. Kaziro, T. Takahashi, K. Takahashi, and S. Nagata. Molecular cloning and expression of a cDNA encoding the secretin receptor. EMBO J. 10: 1635–1641, 1991.
 115. Iwamoto, M., A., Jikko, H. Murakami, A. Shimazu, K. Nakashima, M. Iwamoto, M. Takigawa, H. Baba, F. Suzuki, and Y. Kato. Changes in parathyroid hormone receptors during chondrocyte cytodifferentiation. J. Biol. Chem. 269: 17245–17251, 1994.
 116. Jaeger, P., W., Jones, M. Kashgarian, G. V. Segre, and J. P. Hayslett. Parathyroid hormone directly inhibits tubular reabsorotion of bicarbonate in normocalcemic rats with chronic hyperparathyroidism. Eur. J. Clin. Invest. 17: 415–420, 1987.
 117. Jansen, M. Über atypische Chondrodystrophie (Achondroplasie) und über eine noch nicht beschriebene angeborene Wachstumsstörung des Knochensystems: Metaphysäre Dysostosis. Z. Orthop. Chir. 61: 253–286, 1934.
 118. Jikko, A., H., Murakami, W. Yan, K. Nakashima, Y. Ohya, H. Satakeda, M. Noshiro, T. Kawamoto, S. Nakamura, Y. Okada, F. Suzuki, and Y. Kato. Effects of cyclic adenosine 3′,5′‐monophosphate on chondrocyte terminal differentiation and cartilage‐matrix calcification. Endocrinology 137: 122–128, 1996.
 119. Jouishomme, H., J. F., Whitfield, B. Chakravarthy, J. P. Durkin, L. Gagnon, R. J. Isaacs, S. MacLean, W. Neugebauer, G. Willick, and R. H. Rixon. The protein kinase‐c activation domain of the parathyroid hormone. Endocrinology 130: 53–59, 1992.
 120. Joun, H., B., Lanske, M. Karperien, F. Qian, L. Defize, and A. Abou‐Samra. Tissue‐specific transcription start sites and alternative splicing of the parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptor gene: a new PTH/PTHrP receptor splice variant that lacks the signal peptide. Endocrinology 138: 1742–1749, 1997.
 121. Jüppner, H. 1992. Molecular cloning and characterization of a parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptor: a member of an ancient family of G protein–coupled receptors. Curr. Opin. Nephrol. Hypertens. 3: 371–378, 1994.
 122. Jüppner, H. Jansen's metaphyseal chondrodysplasia: a disorder due to a PTH/PTHrP receptor gene mutation. Trends Endocrinol. Metab. 7: 157–162, 1996.
 123. Jüppner, H., A. B., Abou‐Samra, M. W. Freeman, X. F. Kong, E. Schipani, J. Richards, L. F. Kolakowski, Jr., J. Hock, J. T. Potts, Jr., H. M. Kronenberg, and G. V. Segre. A G protein–linked receptor for parathyroid hormone and parathyroid hormone–related peptide. Science 254: 1024–1026, 1991.
 124. Jüppner, H., A. B., Abou‐Samra, S. Uneno, W. X. Gu, J. T. Potts, Jr., and G. V., Segre. The parathyroid hormone‐like peptide associated with humoral hypercalcemia of malignancy and parathyroid hormone bind to the same receptor on the plasma membrane of ROS 17/2.8 cells. J. Biol. Chem. 263: 8557–8560, 1988.
 125. Jüppner, H., A. B., Abou‐Samra, S. Uneno, E. Schipani, H. T. Keutmann, J. T. Potts, Jr., and G. V., Segre. Properties of amino‐terminal parathyroid hormone–related peptides modified at positions 11–13. Peptides 11: 1139–1142, 1990.
 126. Jüppner, H., and E. Schipani. Receptors for parathyroid hormone and parathyroid hormone–related peptide: from molecular cloning to definition of diseases. Curr. Opin. Nephrol. Hypertens. 5: 300–306, 1996.
 127. Jüppner, H., E., Schipani, F. R. Bringhurst, I. McClure H. T. Keutmann, J. T. Potts, Jr., H. M. Kronenberg, A. B. Abou‐Samra, G. V. Segre, and T. J. Gardella. The extracellular, amino‐terminal region of the parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptor determines the binding affinity for carboxyl‐terminal fragments of PTH(1–34). Endocrinology 134: 879–884, 1994.
 128. Kaji, H., T., Sugimoto, M. Kanatani, A. Miyauchi, T. Kimura, S. Sakakibara, M. Fukase, K. Chihara. Carboxyl‐terminal PTH fragments stimulate osteoclast‐like cell formation and osteoclastic activity. Endocrinology 134: 1897–1904, 1994.
 129. Karaplis, A. C., A., Luz, J. Glowacki, R. Bronson, V. Tybulewicz, H. M. Kronenberg, and R. C. Mulligan. Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone–related peptide gene. Genes Dev. 8: 277–289, 1994.
 130. Karperien, M., T. B. Van Dijk, T. Hoeijmakers, F. Cremers, A. B. Abou‐Samra, J. Boonstra, S. W. de Laat, and L. H. K. Defize. Expression pattern of parathyroid hormone/parathyroid hormone related peptide receptor mRNA in mouse postimplantation embryos indicates involvement in multiple developmental processes. Mech. Dev. 47: 29–42, 1994.
 131. Kemp, B. E. J. M. Mosely, C. P. Rodda, P. R. Ebeling, R. E. H. Wettenhall, D. Stapleton, H. Diefenbach‐Jagger, F. Ure, V. P. Michelangali, H. A. Simmons, L. G. Raisz, and T. J. Martin. Parathyroid hormone–related protein of malignancy: active synthetic fragments. Science 238: 1568–1570, 1987.
 132. Keutmann, H. T., G. D., Aurbach, B. F. Dawson, H. D. Niall, L. J. Deftos, J. T. Potts, Jr.. Isolation and characterization of the bovine parathyroid isohormones. Biochemistry 10: 2779–2787, 1971.
 133. Keutmann, H. T., P. M., Barline, G. N. Hendy, et al. Isolation of human parathyroid hormone. Biochemistry 13: 1646, 1974.
 134. Keutmann, H. T., A. W., Griscom, S. R. Nussbaum, B. F. Reiner, A. N. Goud, J. T. Potts, Jr., and M., Rosenblatt. Rat parathyroid hormone–(1–34) fragment: renal adenylate cyclase activity and receptor binding properties in vitro. Endocrinology 117: 1230–1234, 1985.
 135. Keutmann, H. T., H. D., Niall, J. L. H. O'Riordan, et al. A reinvestigation of the amino‐terminal sequence of human parathyroid hormone. Biochemistry 14: 1842, 1975.
 136. Keutmann, H. T., M. M., Sauer, G. N. Hendy, et al. The complete amino acid sequence of human parathyroid hormone. Biochemistry 17: 552, 1978.
 137. Khosla, S., M., Demay, M. Pines, S. Hurwitz, J. T. Potts, Jr., and H. M., Kronenberg. Nucleotide sequence of cloned cDNAs encoding chicken preproparathyroid hormone. J. Bone Miner. Res. 3: 689–698, 1988.
 138. Klaus, W., T., Dieckmann, V. Wray, D. Schomburg, E. Wingender, and H. Mayer. Investigation of the solution structure of the human parathyroid hormone fragment (1–34) by 1H NMR spectroscopy, distance geometry, and molecular dynamics calculations. Biochemistry 30: 6936–6942, 1991.
 139. Koike, T., M., Iwamoto, A. Shimazu, K. Nakashima, F. Suzuki, and Y. Kato. Potent mitogenic effects of parathyroid hormone (PTH) on embryonic chick and rabbit chondrocytes. Differential effects of age on growth, proteoglycan, and cyclic AMP responses of chondrocytes to PTH. J. Clin. Invest. 85: 626–631, 1990.
 140. Kolakowski, L. F. J. GCRDb: a G‐protein‐coupled receptor database. Receptors Channels 2: 1–7, 1994.
 141. Kong, X. F., E., Schipani, B. Lanske, H. Joun, M. Karperien, L. H. K. Defize, H. Jüppner, J. T. Potts, G. V. Segre, H. M. Kronenberg, and A. B. Abou‐Samra. The rat, mouse and human genes encoding the receptor for parathyroid hormone and parathyroid hormone–related peptide are highly homologous. Biochem. Biophys. Res. Commun. 200: 1290–1299, 1994.
 142. Kovacs, C. S., B., Lanske, J. L. Hunzelman, J. Guo, A. C. Kar‐aplis, and H. M. Kronenberg. Parathyroid hormone–related peptide (PTHrP) regulates fetal placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc. Natl. Acad. Sci. U.S.A. 93: 15233–15238, 1996.
 143. Kronenberg, H. K., T., Igarashi, M. W. Freeman, T. Okazaki, S. J. Brand, K. M. Wiren, and J. T. Potts. Structure and expression of the human parathyroid hormone gene. Recent Prog. Horm. Res. 42: 641–663, 1986.
 144. Kronenberg, H. M., B. E., McDevitt, J. A. Majzoub, J. Nathans, P. A. Sharp, J. T. Potts, Jr., and A., Rich. Cloning and nucleotide sequence of DNA coding for bovine preproparathyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 76: 4981–4985, 1979.
 145. Kuroda, T., E., Shiohara, Y. Haba, G. Kaneko, K. Hanazaki, S. Kajikawa, and F. Iida. Effects of parathyroid hormone on pancreatic exocrine secretion. Pancreas 8: 732–737, 1993.
 146. Lanske, B., A. C., Karaplis, A. Luz, A. Vortkamp, A. Pirro, M. Karperien, L. H. K. Defize, C. Ho, R. C. Mulligan, A. B. Abou‐Samra, H. Jüppner, G. V. Segre, and H. M. Kronenberg. PTH/PTHrP receptor in early development and Indian hedgehogregulated bone growth. Science 273: 663–666, 1996.
 147. Latronico, A. C., J., Anasti, I. J. P. Arnhold, B. B. Mendonca, S. Domenice, M. C. Albano, K. Zachman, B. L. Wajchenberg, and C. Tsigos. A novel mutation of the luteinizing hormone receptor gene causing male gonadotropin‐independent precocious puberty. J. Clin. Endocrinol. Metab. 80: 2490–2494, 1995.
 148. Lebovitz, H. E., and G. S. Eisenbarth. Hormonal regulation of cartilage growth and metabolism. Vitam. Horm. 33: 575–648, 1975.
 149. Lee, C., T. J., Gardella, A. B. Abou‐Samra, S. R. Nussbaum, G. V. Segre, J. T. Potts, Jr., H. M. Kronenberg, and H. Jüppner. Role of the extracellular regions of the parathyroid hormone (PTH)/PTH‐related peptide receptor in hormone binding. Endocrinology 135: 1488–1495, 1994.
 150. Lee, C., Luck, M. D. Jüppner, H., Potts, J. T., Jr., Kronenberg, H. M., Gardella, T. J. Homolog‐scanning mutagenesis of the parathyroid hormone (PTH) receptor reveals PTH‐(1–34) binding determinants in the third extracellular loop. Mol. Endocrinol. 9: 1269–1278, 1995.
 151. Lee, K., D., Brown, P. Urena, N. Ardaillou, R. Ardaillou, J. Deeds, and G. V. Segre. Localization of parathyroid hormone/parathyroid hormone–related peptide receptor mRNA in kidney. Am. J. Physiol. 270 (Renal Fluid Electrolyte Physiol. 39): F186–F191, 1996.
 152. Lee, K., J. D., Deeds, S. Chiba, M. Un‐no, A. T. Bond, and G. V. Segre. Parathyroid hormone induces sequential c‐fos expression in bone cells in vivo: in situ localization of its receptor and c‐fos messenger ribonucleic acids. Endocrinology 134: 441–450, 1994.
 153. Lee, K., J. D., Deeds, and G. V. Segre. Expression of parathyroid hormone–related peptide and its receptor messenger ribonucleic acid during fetal development of rats. Endocrinology 136: 453–463, 1995.
 154. Lee, S. C., and A. F. Russell. Two‐dimensional 1H‐NMR study of the 1–34 fragment of human parathyroid hormone. Biopolymers 28: 1115–1127, 1989.
 155. Levine, M. A., and G. D. Aurbach. Pseudohypoparathyroidism. In: Endocrinology, edited by L. J. DeGroot. Philadelphia: Saunders, 1989, p. 1065–1079.
 156. Lin, H. Y., T. L., Harris, M. S. Flannery, A. Aruffo, E. H. Kaji, A. Gorn, L. F. Kolakowski, Jr., H. F. Lodish, S. R. Goldring. Expression cloning of an adenylate cyclase–coupled calcitonin receptor. Science 254: 1022–1024, 1991.
 157. Lomri, A., and P. J. Marie. Distinct effects of calcium‐ and cyclic AMP–enhancing factors on cytoskeletal synthesis and assembly in mouse osteoblastic cells. Biochim. Biophys. Acta 1052: 179–186, 1990.
 158. Löwik, C. W. G. M., G. Van der Pluijm, H. Bloys, K. Hoekman, O. L. M. Bijvoet, L. A. Aarden, and S. E. Papapoulos. Parathyroid hormone (PTH) and PTH‐like protein (PLP) stimulate interleukin‐6 production by osteogenic cells: a possible role of interleukin‐6 in osteoclastogenesis. Biochem. Biophys. Res. Commun. 162: 1546–1552, 1989.
 159. Lyles, K. W., Oncogenic osteomalacia. In: Principles of Bone Biology, edited by J. P. Bilezikian L. G. Raisz, and G. A. Rodan. New York: Academic, 1996, p. 935–940.
 160. MacGregor, R. R., J. W., Hamilton, and G. N. Kent. The degradation of proparathormone and parathormone by parathyroid and liver cathepsin B. J. Biol. Chem. 254: 4428–4433, 1979.
 161. MacGregor, R. R., J. W., Hamilton, R. E. Shofstall, and D. V. Cohn. Isolation and characterization of porcine parathyroid cathespin B. J. Biol. Chem. 254: 4423–4427, 1979.
 162. Malmstrom, K., and H. Murer. Parathyroid hormone inhibits phosphate transport in OK cells but not in LLC‐PK1 and JTC‐12.P3 cells. Am. J. Physiol. 251 (Cell Physiol. 20): C23–C31, 1986.
 163. Mangin, M., A. C., Webb, B. E. Dreyer, J. T. Posillico, K. Ikeda, E. C. Weir, A. F. Stewart, N. H. Bander, L. Milstone, D. E. Barton, U. Francke, and A. E. Broadus. Identification of a cDNA encoding a parathyroid hormone‐like peptide from a human tumor associated with humoral hypercalcemia of malignancy. Proc. Natl. Acad. Sci. U.S.A. 85: 597–601, 1988.
 164. Mannstadt, M., M., Luck, T. J. Gardella, and H. Jüppner. Evidence for a ligand interaction site at the amino‐terminus of the PTH/PTHrP receptor from crosslinking and mutational studies. J. Biol. Chem. 273: 16890–16896, 1998.
 165. Marigo, V., R. A., Davey, Y. Zuo, J. M. Cunningham, and C. J. Tabin. Biochemical evidence that Patched is the hedgehog receptor. Nature 384: 176–179, 1996.
 166. Martin, J. T., J. M., Moseley, and M. T. Gillespie. Parathyroid hormone–related protein: biochemistry and molecular biology. Crit. Rev. Biochem. Mol. Biol. 26: 377–395, 1991.
 167. Martin, K. J., K. A., Hruska, and J.J. Freitag. The peripheral metabolism of parathyroid hormone. N. Engl. J. Med. 301: 1092–1098, 1979.
 168. Martin, K. J., K. A., Hruska, and A. Greenwalt. Selective uptake of intact parathyroid hormone by the liver: differences between hepatic and renal uptake. J. Clin. Invest. 58: 781–788, 1976.
 169. Martin, K. J., K. A., Hruska, and J. Lewis. The renal handling of parathyroid hormone. J. Clin. Invest. 60: 808–814, 1977.
 170. Marx, U. C., S., Austermann, P. Bayer, K. Adermann, A. Ejchart, H. Sticht, S. Walter, F.‐X. Schmid, R. Jaenicke, W.‐G. Forssmann, and P. Rosch. Structure of human parathyroid hormone 1–37 in solution. J. Biol. Chem. 270: 15194–15202, 1995.
 171. McCuaig, K. A., J. C., Clarke, and J. H. White. Molecular cloning of the gene encoding the mouse parathyroid hormone/parathyroid hormone–related peptide receptor. Proc. Natl. Acad. Sci. U.S.A. 91: 5051–5055, 1994.
 172. McCuaig, K. A., H., Lee, J. C. Clarke, H. Assar, J. Horsford and J. H. White. Parathyroid hormone/parathyroid hormone related peptide receptor gene transcripts are expressed from tissue‐specific and ubiquitous promotors. Nucleic Acids Res. 23: 1948–1955, 1995.
 173. McKee, R. L., M. P., Caulfield, and M. Rosenblatt. Treatment of bone‐derived ROS 17/2.8 cells with dexamethasone and pertussis toxin enables detection of partial agonist activity for parathyroid hormone antagonists. Endocrinology 127: 76–82, 1990.
 174. McKee, R. L., M. E., Goldman, M. P. Caulfield, P. A. De‐Haven, J. J. Levy, R. F. Nutt and M. Rosenblatt. The 7–34 fragment of human hypercalcemia factor is a partial agonist/antagonist for parathyroid hormone–stimulated cAMP production. Endocrinology 122: 3008–3010, 1988.
 175. Mears, D. C. Effects of parathyroid hormone and thyrocalcitonin on the membrane potential of osteoclasts. Endocrinology 88: 1021–1028, 1971.
 176. Minagawa, M., K., Arakawa, K. Minamitani, T. Yasuda, and H. Niimi,. Jansen‐type metaphyseal chondrodysplasia: analysis of PTH/PTH‐related protein receptor messenger RNA by the reverse transcription‐polymerase chain method. Endocr. J. 44: 493–499, 1997.
 177. Morel, F., M., Imbert‐Teboul, and D. Charbardes. Distribution of hormone‐dependent adenylate cyclase in the nephron and its physiological significance. Annu. Rev. Physiol. 43: 569–581, 1981.
 178. Morrissey, J. J, J. W., Hamilton, R. R. MacGregor, and D. V. Cohn. The secretion of parathormone and glycosylated proteins by parathyroid cells in culture. Biochem. Biopbys. Res. Commun. 82: 1279–1286, 1978.
 179. Moseley, J. M., M., Kubota, H. Diefenbach‐Jagger, R. E. H. Wettenhall, B. E. Kemp, L. J. Suva, C. P. Rodda, P. R. Ebeling, P. J. Hudson, J. D. Zajac, and J. T. Martin. Parathyroid hormone–related protein purified from a human lung cancer cell line. Proc. Natl. Acad. Sci. U.S.A. 84: 5048–5052, 1987.
 180. Moseley, J. M., and T. J. Martin. Parathyroid hormone–related protein: physiological actions. In: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and R. A. Rodan. New York: Academic, 1996, p. 363–376.
 181. Murray, T., E. Gomez Rao, M. M. Wong, J. P. Waddell, R. McBroom, C. S. Tarn, F. Rosen, and M. A. Levine. Pseudohypoparathyroidism with osteitis fibrosa cystica: direct demonstration of skeletal responsiveness to parathyroid hormone in cells cultured from bone. J. Bone Miner. Res. 8: 83–91, 1993.
 182. Murray, T. M., L. G., Rao, and S. A. Muzaffar. Dexamethasone‐treated ROS 17/2.8 rat osteosarcoma cells are responsive to human carboxylterminal parathyroid hormone peptide hPTH(53–84): stimulation of alkaline phosphatase. Calcif. Tissue Int. 49: 120–123, 1991.
 183. Murray, T. M., L. G., Rao, S. A. Muzaffar, and H. Ly. Human parathyroid hormone carboxyterminal peptide (53–84) stimulates alkaline phosphatase activity in dexamethasone‐treated rat osteosarcoma cells in vitro. Endocrinology 124: 1097–1099, 1989.
 184. Murray, T. M., L. G., Rao, and R. E. Rizzoli. Interaction of parathyroid hormone, parathyroid hormone–related peptide, and their fragments with conventional and nonconventional receptor sites. In: The Parathyroids. Basic and Clinical Concepts, edited by J. P. Bilezikian, M. A. Levine, and R. Marcus. New York: Raven, 1994, p. 185–211.
 185. Nakamoto, C., H., Baba, M. Fukase, K. Nakajima, T. Kimura, S. Sakakibara, T. Fujita, and K. Chihara. Individual and combined effects of intact PTH, amino‐terminal, and a series of truncated carboxyl‐terminal PTH fragments on alkaline phosphatase activity in dexamethasone‐treated rat osteoblastic osteosarcoma cells, ROS 17/2.8. Acta Endocrinol. (Copenh.) 128: 367–372, 1993.
 186. Neer, R. M., Calcium and inorganic phosphate homeostasis. In: DeGroot LJ, ed. Endocrinology (2nd ed.), edited by L.J. DeGroot. Philadelphia: Saunders, 1989, vol. 2, p. 927–953.
 187. Neugebauer, W., W. K., Surewicz, H. L. Gordon, R. L. Somorjai, W. Sung, and G. E. Willick. Structural elements of human parathyroid hormone and their possible relation to biological activities. Biochemistry 31: 2056–2063, 1992.
 188. Neumann, W. F., M. W., Neuman, and K. Lane. The metabolism of labeled parathyroid hormone: V Collected biological studies. Calcif. Tissue Res. 18: 271, 1975.
 189. Neumann, W. F., M. W., Neuman, and P.J. Sammon. The metabolism of labeled parathyroid hormone: III. Calcif. Tissue Res. 18: 251–261, 1975.
 190. Niall, H. D., H. T., Keutmann, R. T. Sauer, M. L. Hogan, B. F. Dawson, G. D. Aurbach, J. T. Potts, Jr.. The amino‐acid sequence of bovine parathyroid hormone I. Hoppe Seyler Z. Physiol. Chem. 351: 1586–1588, 1970.
 191. Niall, H. D., R. T., Sauer, J. W. Jacobs, et al. The amino acid sequence of the amino‐terminal 37 residues of human parathyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 71: 384, 1974.
 192. Nissenson, R. A., D., Diep, and G.J. Strewler. Synthetic peptides comprising the amino‐terminal sequence of a parathyroid hormone‐like protein from human malignancies: binding to parathyroid hormone receptors and activation of adenylate cyclase in bone cells and kidney. J. Biol. Chem. 263: 12866–12871, 1988.
 193. Norman, A. W., J., Roth, and L. Orci. The vitamin D endocrine system: steroid metabolisms, hormone receptors and biological response. Endocr. Rev. 3: 331–366, 1982.
 194. Nussbaum, S. R., M. Rosenblatt, and J. T. Potts, Jr.. Parathyroid hormone/renal receptor interactions: demonstration of two receptor‐binding domains. J. Biol. Chem. 255: 10183–10187, 1980.
 195. Nussbaum, S. R., R. J., Zahradnik, and J. R. Lavigne. A highly sensitive two‐site immunoradiometric assay of parathyrin (PTH) and its clinical utility in evaluating patients with hypercalcemia. Clin. Chem. 33: 1364, 1987.
 196. Nutley, M. T., S. A., Parimi, and S. Harvey. Sequence analysis of hypothalamic parathyroid hormone messenger ribonucleic acid. Endocrinology 136: 5600–5607, 1995.
 197. Nutt, R. F., M. P., Caulfield, J. J. Levy, S. W. Gibbons, M. Rosenblatt, and R. L. McKee. Removal of partial agonism from parathyroid hormone (PTH)–related protein‐(7–34)NH2 by substitution of PTH amino acids at positions 10 and 11. Endocrinology 127: 491–493, 1990.
 198. Orloff, J. J., M. B., Ganz, H. Nathanson, M. S. Moyer, Y. Kats, M. Mitnick, A. Behal, J. Gasalla‐Herraiz, and C. M. Isales. A midregion parathyroid hormone–related peptide mobilizes cytosolic calcium and stimulates formation of inositol trisphosphate in a squamous carcinoma cell line. Endocrinology 137: 5376–5385, 1996.
 199. Orloff, J. J., M. B., Ganz, A. E. Ribaudo, W. J. Burtis, M. Reiss, L. M. Milstone, A. F. Stewart. Analysis of PTHrP binding and signal transduction mechanisms in benign and malignant squamous cells. Am. J. Physiol. 262 (Endocrinol. Metab. 25): E599–607, 1992.
 200. Orloff, J. J., Y., Kats, P. Urena, E. Schipani, R. C. Vasavada, W. M. Philbrick, A. Behal, A. B. Abou‐Samra, G. V. Segre, and H. Jüppner. Further evidence for a novel receptor for amino‐terminal parathyroid hormone–related protein on keratinocytes and squamous carcinoma cell lines. Endocrinology 136: 3016–3023, 1995.
 201. Orloff, J.J. A. E. Ribaudo, R. L. McKee, M. Rosenblatt, and A. F. Stewart. A pharmacological comparison of parathyroid hormone receptors in human bone and kidney. Endocrinology 131: 1603–1611, 1992.
 202. Orloff, J. J., N. E., Soifer, J. P. Fodero, P. Dann, and W. J. Burtis. Accumulation of carboxy‐terminal fragments of parathyroid hormone–related protein in renal failure. Kidney Int. 43: 1371–1376, 1993.
 203. Orloff, J. J., T. L., Wu, H. W. Heath, T. G. Brady, M. L. Brines, and A. F. Stewart. Characterization of canine renal receptors for the parathyroid hormone‐like protein associated with humoral hypercalcemia of malignancy. J. Biol. Chem. 264: 6097–6103, 1989.
 204. Orloff, J. J., T. L., Wu, and A. F. Stewart. Parathyroid hormone‐like proteins: biochemical responses and receptor interactions. Endocr. Rev. 10: 476–495, 1989.
 205. Paliwal, I., and K. Insogna. Partial purification and characterization of the 9,000‐dalton bone‐resorbing activity from parathyroid hormone–related protein‐treated SaOS2 cells. J. Bone Miner. Res. 6 (Suppl. 1): S144, 1991. Abstract nr. 245.
 206. Pang, P. T. K., and R. K. Pang. Hormones and calcium regulation in vertebrates: an evolutionary and overall consideration. In: Regulation of Calcium and Phosphate, edited by P. K. T. Pang, and M. P. Schreibman. San Diego: Academic, 1989, vol. 3, p. 343–352.
 207. Parma, J., J. Van Sande, S. Swillens, M. Tonacchera, J. Dumont, and G. Vassart. Somatic mutations causing constitutive activity of the thyrotropin receptor are the major cause of hyperfunctioning thyroid adenomas: identification of additional mutations activating both the cyclic adenosine 3′,5′‐monophosphate and inositol phosphate‐Ca2+ cascades. Mol. Endocrinol. 9: 725–733, 1995.
 208. Parsons, J. A., and C. J. Robinson. Calcium shift into bone causing transient hypocalcaemia after injection of parathyroid hormone. Nature 230: 581–582, 1971.
 209. Pastoriza‐Munoz, E., R. E., Colindres, W. E. Lassiter, and C. Lechene. Effect of parathyroid hormone on phosphate reabsorption in rat distal convolution. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F321–F330, 1978.
 210. Pausova, Z., J., Bourdon, D. Clayton, M. ‐G. Mattei, T. M. F. Seldin, N. Janicic, M. Riviere, J. Szpirer, G. Levan, C. Szpirer, D. Goltzman, and G. N. Hendy. Cloning of a parathyroid hormone/parathyroid hormone–related peptide receptor (PTHR) cDNA from a rat osteosarcoma (UMR106) cell line: chromosomal assignment of the gene in the human, mouse, and rat genomes. Genomics 20: 20–26, 1994.
 211. Perry, H. M., III, Skogen, W., Chappel, J., Kahn, A. J., Wilner, G., Teitelbaum, S. L. Partial characterization of a parathyroid hormone–stimulated resorption factor(s) from osteoblast‐like cells. Endocrinology 125: 2075–2082, 1989.
 212. Pollak, M. R., E. M., Brown, H. L. Estep, P. N. McLaine, O. Kifor, J. Park, S. C. Hebert, C. E. Seidman, and J. G. Seidman. Autosomal dominant hypocalcaemia caused by a Ca2+‐sensing receptor gene mutation. Nat. Genet. 8: 303–307, 1994.
 213. Potts, J. T., Jr., F. R. Bringhurst, T. J. Gardella, S. R. Nussbaum, G. V. Segre, H. M. Kronenberg. Parathyroid hormone: physiology, chemistry, biosynthesis, secretion, metabolism, and mode of action. In: Endocrinology, edited by L. J. DeGroot. Philadelphia: Saunders, 1996, p. 920–965.
 214. Potts, J. T., Jr., G. W. Tregear, H. T. Keutmann, H. D. Niall, R. Sauer, L. J. Deftos, B. F. Dawson, M. L. Hogan, and G. D. Aurbach. Synthesis of a biologically active N‐terminal tetratriacontapeptide of parathyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 68: 63–67, 1971.
 215. Qi, L., J. A. Leung, Y. Xiong, K. A. Marx, and A. B. Abou‐Samra. Extracellular cysteines of corticotropin‐releasing factor receptor (CRFR) are critical for ligand interaction. Biochemistry 36: 12442–1248, 1997.
 216. Qiang, C., S. F., Hodgson, P. C. Kao, V. A. Lennon, G. G. Klee, A. R. Zinsmiester, and R. Kumar. Inhibition of renal phosphate transport by a tumor product in a patient with oncogenic osteomalacia. N. Engl. J. Med. 330: 1645–1649, 1994.
 217. Rabbani, S. A., J., Mitchell, D. R. Roy, et al. Influence of the amino‐terminus on in vitro and in vivo biological activity of synthetic parathyroid hormone‐like peptides of malignancy. Endocrinology 123: 2709–2716, 1988.
 218. Rao, L. G., and T. M. Murray. Binding of intact parathyroid hormone to rat osteosarcoma cells: major contribution of binding sites for the carboxyl‐terminal region of the hormone. Endocrinology 117: 1632–1638, 1985.
 219. Rao, L. G., T. M., Murray, and J. N. M. Heersche. Immunohistochemical demonstration of parathyroid hormone binding to specific cell types in fixed rat bone tissue. Endocrinology 113: 805–810, 1983.
 220. Rasmussen, H., and C. Craig. The parathyroid polypeptides. Recent Prog. Horm. Res. 18: 269, 1962.
 221. Rasmussen, H., and L. C. Craig. Purification of parathyroid hormone by use of counter‐current distribution. J. Am. Chem. Soc. 81: 5003, 1959.
 222. Rasmussen, H., Y. L., Sze, and R. Young. Further studies on the isolation and characterization of parathyroid polypeptides. J. Biol. Chem. 239: 2852, 1964.
 223. Rixon, R. H., J. F., Whitfield, L. Gagnon, R. J. Isaacs, S. MacLean, B. Chakravarthy, J. P. Durkin, W. Neugebauer, V. Ross, W. Sung, and G. E. Willick. Parathyroid hormone fragments may stimulate bone growth in ovariectomized rats by activating adenylyl cyclase. J. Bone Miner. Res. 9: 1179–1189, 1994.
 224. Rodan, G. A., J. K., Heath, K. Yoon, M. Noda, and S. B. Rodan. Diversity of the osteoblastic phenotype. In: Cell and Molecular Biology of Vertebrate Hard Tissues. Ciba Foundation Symposium 136. New York: Wiley, 1988, p. 78.
 225. Rodan, G. A., and T. J. Martin. Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif. Tissue Int. 33: 349–351, 1981.
 226. Rodda, C. P., M., Kubota, J. A. Heath, P. R. Ebeling, J. M. Moseley, A. D. Care, I. W. Caple, and J. T. Martin. Evidence for a novel parathyroid hormone–related protein in fetal lamb parathyroid glands and sheep placenta: comparison with a similar protein implicated in humoral hypercalcemia of malignancy. J. Endocrinol. 117: 261–271, 1988.
 227. Rosenberg, J., and H. M. Kronenberg. Parathyroid hormone without parathyroid glands: a sequence resembling PTH in a teleost fish. J. Bone Miner. Res. 6 (Suppl. 1): 379, 1991.
 228. Rosenblatt, M., E. N. Callahan, J. E. Mahaffey, et al. Parathyroid hormone inhibitors: design, synthesis, and biologic evaluation of hormone analogues. J. Biol. Chem. 252: 5847–5851, 1977.
 229. Rosenblatt, M., G. V., Segre, G. A. Tyler, G. L. Shepard, S. R. Nussbaum, and J. T. Potts, Jr.. Identification of a receptor‐binding region in parathyroid hormone. Endocrinology 107: 545–550, 1980.
 230. Rosol, T. J., C. L., Steinmeyer, L. K. McCauley, A. Grone, J. W. DeWille, and C. C. Capen. Sequences of the cDNAs encoding canine parathyroid hormone‐ related protein and parathyroid hormone. Gene 160: 241–243, 1995.
 231. Roth, S. I., and A. L. Schiller. Comparative anatomy of the parathyroid glands. Handbook of Physiology. Section 7, vol. VII, 1981, p. 281–311.
 232. Rouleau, M. F., L., Mitchell, and D. Goltzman. In vivo distribution of parathyroid hormone receptors in bone: evidence that a predominant osseous target cell is not the mature osteoblast. Endocrinology 123: 187–191, 1988.
 233. Russell, J., and L. M. Sherwood. Nucleotide sequence of the DNA complementary to avian (chicken) preproparathyroid hormone mRNA and the deduced sequence of the hormone precursor. Mol. Endocrinol. 3: 325–331, 1989.
 234. Sauer, R. T., H. D., Niall, M. L. Hogan, et al. The amino acid sequence of porcine parathyroid hormone. Biochemistry 13: 1994, 1974.
 235. Schipani, E., H., Karga, A. C. Karaplis, J. T. Potts, Jr., H. M. Kronenberg, G. V. Segre, A. B. Abou‐Samra, and H. Jüppner. Identical complementary deoxyribonucleic acids encode a human renal and bone parathyroid hormone (PTH)/PTH‐related peptide receptor. Endocrinology 132: 2157–2165, 1993.
 236. Schipani, E., K., Kruse, and H. Jüppner. A constitutively active mutant PTH‐PTHrP receptor in Jansen‐type metaphyseal chondrodysplasia. Science 268: 98–100, 1995.
 237. Schipani, E., C. B., Langman, A. M. Parfitt, G. S. Jensen, S. Kikuchi, S. W. Kooh, W. G. Cole, H. Jüppner. Constitutively activated receptors for parathyroid hormone and parathyroid hormone‐related peptide in Jansen's metaphyseal chondrodysplasia. N. Engl. J. Med. 335: 708–714, 1996.
 238. Schipani, E., B., Lanske, J. Hunzelman, C. S. Kovacs, K. Lee, A. Pirro, H. M. Kronenberg, and H. Jüppner. Targeted expression of constitutively active PTH/PTHrP receptors delays encochondral bone formation and rescues PTHrP‐less mice. Proc. Natl. Acad. Sci. U.S.A. 94: 13689–13694, 1997.
 239. Schipani, E., L. S., Weinstein, C. Bergwitz, A. Iida‐Klein, X. F. Kong, M. Stuhrmann, K. Kruse, M. P. Whyte, T. Murray, J. Schmidtke, C. Van Dop, A. S. Brickman, J. D. Crawford, J. T. Potts, Jr., H. M. Kronenberg, A. B. Abou‐Samra, G. V. Segre, and H. Jüppner. Pseudohypoparathyroidism type Ib is not caused by mutations in the coding exons of the human parathyroid hormone (PTH)/PTH‐related peptide receptor gene. J. Clin. Endocrinol. Metab. 80: 1611–1621, 1995.
 240. Schlüter, K.‐D., H., Hellstern, E. Wingender, and H. Mayer. The central part of parathyroid hormone stimulates thymidine incorporation of chondrocytes. J. Biol. Chem. 264: 11087–11092, 1989.
 241. Schneider, H., J. H. M., Feyen, K. Seuwen, and N. R. Movva. Cloning and functional expression of a human parathyroid hormone (parathormone)/parathormone‐related peptide receptor. Eur. J. Pharmacol. 246: 149–155, 1993.
 242. Segre, G. V., P., D'Amour, A. Hultman, and J. T. J. Potts. Effects of hepatectomy, nephrectomy, and nephrectomy/uremia on the metabolism of parathyroid hormone in the rat. J. Clin. Invest. 67: 439–448, 1981.
 243. Segre, G. V., P., D'Amour, and J. T. Potts. Metabolism of radioiodinated bovine parathyroid hormone in the rat. Endocrinology 99: 1645–1652, 1976.
 244. Segre, G. V., and S. R. Goldring. Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH‐related peptide, vasoactive intestinal peptide, glucagon‐like peptide 1, growth hormone‐releasing hormone, and glucagon belong to a newly discovered G protein‐linked receptor family. Trends Endocrinol. Metab. 4: 309–314, 1993.
 245. Segre, G. V., H. D., Niall, and J. R. Habener. Metabolism of parathyroid hormone: physiological and clinical significance. Am. J. Med. 56: 114, 1974.
 246. Segre, G. V., H. D., Niall, and R. T. Sauer. Edman degradation of radioiodinated parathyroid hormone: application to sequence analysis and hormone metabolism in vivo. Biochemistry 16: 2417, 1977.
 247. Segre, G. V., A. S., Perkins, L. A. Witters, and J. T. J. Potts. Metabolism of parathyroid hormone by isolated rat Kupffer cells and hepatocytes. J. Clin. Invest. 67: 449–457, 1981.
 248. Sexton, P., S., Houssami, J. Hilton, L. O'Keeffe, R. Center, M. Gillespie, P. Darcy, and D. Findley. Identification of brain isoforms of the rat calcitonin receptor. Mol. Endocrinol. 7: 815–821, 1993.
 249. Shareghi, G. R., and L. C. Stoner. Calcium transport across segments of the rabbit distal nephron in vitro. Am. J. Physiol. 235 (Renal Fluid Electrolyte Physiol. 4): F367–F375, 1978.
 250. Shenker, A., L., Laue, S. Kosugi, J. J. Merendino, Jr., T. Minegishi, and G. B. Cutler. A constitutively activating mutation of the luteinizing hormone receptor in familial male precocious puberty. Nature 365: 652–654, 1993.
 251. Sherwood, L. M., J. S., Rodman, and W. B. Lundberg. Evidence for a precursor to circulating parathyroid. Proc. Natl. Acad. Sci. U.S.A. 67: 1631–1638, 1970.
 252. Shigematsu, T., N., Horiuchi, and Y. Ogura. Human parathyroid hormone inhibits renal 24‐hydroxylase activity of 25‐hydroxyvitamin D3 by a mechanism involving adenosine 3′,5′‐monophosphate in rats. Endocrinology 118: 1583–1589, 1986.
 253. Shigeno, C., I., Yamamoto, N. Kitamura, T. Noda, K. Lee, T. Sone, K. Shiomi, A. Ohtaka, N. Fujii, H. Yajima, and J. Konish. Interaction of human parathyroid hormone‐related peptide with parathyroid hormone receptors in clonal rat osteosarcoma cells. J. Biol. Chem. 34: 18369–18377, 1988.
 254. Shimizu, T., K., Yoshitomi, M. Nakamura, and M. Imai. Effect of parathyroid hormone on the connecting tubule from the rabbit kidney: biphasic response of transmural voltage. Pflugers Arch. 416: 254–261, 1990.
 255. Silve, C., A., Santora, N. Breslau, A. Moses, and A. Spiegel. Selective resistance to parathyroid hormone in cultured skin fibroblasts from patients with pseudohypoparathyroidism type Ib. J. Clin. Endocrinol. Metab. 62: 640–644, 1986.
 256. Silve, C. M., G. T., Hradek, A. L. Jones, and C. D. Arnaud. Parathyroid hormone receptor in intact embryonic chicken bone: characterization and cellular localization. J. Cell. Biol. 94: 379–386, 1982.
 257. Silver, J., and H. M. Kronenberg. Parathyroid hormone—molecular biology and regulation. In: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and G. A. Rodan. New York: Academic, 1996, p. 325–346.
 258. Silverman, R., and R. S. Yalow. Heterogeneity of parathyroid hormone: clinical and physiologic implications. J. Clin. Invest. 52: 1958–1971, 1973.
 259. Silverthorn, K. G., C. S., Houston, and B. P. Duncan. Murk Jansen's metaphyseal chondrodysplasia with long‐term followup. Pediatr. Radiol. 17: 119–123, 1983.
 260. Simonet, S. W., D. L., Lacey, C. R. Dunstan, et al. Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89: 309–319, 1997.
 261. Singer, F. R., G. V., Segre, J. F. Habener, and J. T. J. Potts. Peripheral metabolism of bovine parathyroid hormone in the dog. Am. J. Med. 56: 774, 1975.
 262. Smith, D. M., L. M., Roth, and C. C. Johnston. Hormonal responsiveness of adenylate cyclase activity in cartilage. Endocrinology 98: 242–246, 1976.
 263. Smith, D. P., X. Y., Zang, C. A. Frolik, A. Harvey, S. Chandra‐sekhar, E. C. Black, and H. M. Hsiung. Structure and functional expression of a complementary DNA for porcine parathyroid hormone/parathyroid hormone‐related peptide receptor. Biochim. Biophys. Acta 1307: 339–347, 1996.
 264. Soifer, N. E., K., Dee, K. L. Insogna, W. J. Burtis, L. Matovcik, T. L. Wu, L. M. Milstone, A. E. Broadus, W. M. Philbrick, and A. F. Stewart. Parathyroid hormone‐related protein. Evidence for secretion of a novel mid‐region fragment by three different cell types. J. Biol. Chem. 267: 18236–18243, 1992.
 265. Somjen, D., I., Binderman, K. Schlüter, E. Wingender, H. Mayer, and A. M. Kaye. Stimulation by defined parathyroid hormone fragments of cell proliferation in skeletal‐derived cell cultures. Biochem. J. 272: 781–785, 1990.
 266. Sone, T., H., Kohno, H. Kikuchi, T. Ikeda, R. Kasai, Y. Kikuchi, R. Takeuchi, J. Konishi, and C. Shigeno. Human parathyroid hormone‐related peptide‐(107–111) does not inhibit bone resorption in neonatal mouse calvariae. Endocrinology 131: 2742–2746, 1992.
 267. Stewart, A. F., R., Horst, L. J. Deftos, E. C. Cadman, R. Lang, A. E. Broadus. Biochemical evaluation of patients with cancer‐associated hypercalcemia. Evidence for humoral and non‐humoral groups. N. Engl. J. Med. 303: 1377–1381, 1980.
 268. Stone, D. M., M., Hynes, M. Armanini, T. A. Swanson, Q. Gu, R. L. Johnson, M. P. Scott, D. Pennica, A. Goddard, H. Phillips, M. Noll, J. E. Hopper, F. de Sauvage, and A. Rosenthal. The tumour‐suppressor gene patched encodes a candidate receptor for Sonic hedgehog. Nature 384: 129–134, 1996.
 269. Strewler, G. J., P. H., Stern, J. W. Jacobs, J. Eveloff, R. F. Klein, S. C. Leung, M. Rosenblatt, and R. A. Nissenson. Parathyroid hormone‐like protein from human renal carcinoma cells. Structural and functional homology with parathyroid hormone. J. Clin. Invest. 80: 1803–1807, 1987.
 270. Stroop, S. D., R. E., Kuestner, T. F. Serwold, L. Chen, and E. E. Moore. Chimeric human calcitonin and glucagon receptors reveal two dissociable calcitonin interaction sites. Biochemistry 34: 1050–1057, 1995.
 271. Suarez, F., J. J., Lebrun, D. Lecossier, B. Escoubet, C. Coureau, and C. Silve. Expression and modulation of the parathyroid hormone (PTH)/PTH‐related peptide receptor messenger ribonucleic acid in skin fibroblasts from patients with type lb pseudohypoparathyroidism. J. Clin. Endocrinol. Metab. 80: 965–970, 1995.
 272. Suki, W. N. Calcium transport in the nephron. Am. J. Physiol. 237 (Renal Fluid Electrolyte Physiol. 6): F1–F6, 1979.
 273. Suva, L. J., G. A., Winslow, R. E. Wettenhall, R. G. Hammonds, J. M. Moseley, H. Diefenbach‐Jagger, C. P. Rodda, B. E. Kemp, H. Rodriguez, E. Y. Chen, P. J. Hudson, J. T. Martin, and W. I. Wood. A parathyroid hormone‐related protein implicated in malignant hypercalcemia: cloning and expression. Science 237: 893–896, 1987.
 274. Takano, T., M., Takigawa, E. Shirai, F. Suzuki, and M. Rosenblatt. Effects of synthetic analogs and fragments of bovine parathyroid hormone on adenosine 3′,5′‐monophosphate level, ornithine decarboxylase activity, and glycosaminoglycan synthesis in rabbit costal chondrocytes in culture: structure‐activity relations. Endocrinology 116: 2536–2542, 1985.
 275. Takasu, H., H., Baba, N. Inomata, Y. Uchiyama, N. Kubota, K. Kumaki, A. Matsumoto, K. Nakajima, T. Kimura, S. Sakakibara, T. Fujita, K. Chihara, and I. Nagai. The 69–84 amino acid region of the parathyroid hormone molecule is essential for the interaction of the hormone with the binding sites with carboxyl‐terminal specificity. Endocrinology 137: 5537–5543, 1996.
 276. Talmage, R. V., S. H., Doppelt, and F. B. Fondren. An interpretation of acute changes in plasma 45Ca following parathyroid hormone administration to thyroparathyroidectomized rats. Calcif. Tissue Res. 22: 117–128, 1976.
 277. Tanaka, Y., R. S., Lorenc, and H. F. Deluca. The role of 1,25‐dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25‐hydroxy‐vitamin D3–24‐hydroxylase. Arch. Biochem. Biophys. 171: 521–526, 1975.
 278. Teti, A., R., Rizzoli, and A. Z. Zallone. Parathyroid hormone binding to cultured avian osteoclasts. Biochem. Biophys. Res. Commun. 174: 1217–1222, 1991.
 279. Thiede, M. A., and G. A. Rodan. Expression of a calcium‐mobilizing parathyroid hormone‐like peptide in lactating mammary tissue. Science 242: 278–280, 1988.
 280. Tian, J., M., Smorgorzewski, L. Kedes, and S. G. Massry. Parathyroid hormone‐parathyroid hormone related protein receptor messenger RNA is present in many tissues besides the kidney. Am. J. Nephrol. 13: 210–213, 1993.
 281. Torikai, S., M.‐S., Wang, K. L. Klein, K. Kurokawa. Adenylate cyclase and cell cyclic AMP of rat cortical thick ascending limb of Henle. Kidney Int. 20: 649–654, 1981.
 282. Tregear, G. W., J. Van Rietschoten, E. Greene, H. T. Keutmann, H. D. Niall, B. Reit, J. A. Parsons, and J. T. Potts, Jr.. Bovine parathyroid hormone: minimum chain length of synthetic peptide required for biological activity. Endocrinology 93: 1349–1353, 1973.
 283. Tsuda, E., M., Goto, S. Mochizuki, K. Yano, F. Kobayashi, T. Morinaga, and K. Higashio. Isolation of a novel cytrosine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234: 137–142, 1997.
 284. Turner, P. R., T., Bambino, and R. A. Nissenson. A putative selectivity filter in the G‐protein‐coupled receptors for parathyroid hormone and secretin. J. Biol. Chem. 271: 9205–9208, 1996.
 285. Urena, P., A., Iida‐Klein, X. F. Kong, H. Jüppner, H. M. Kronenberg, A. B. Abou‐Samra, and G. V. Segre. Regulation of parathyroid hormone (PTH)/PTH‐related peptide receptor messenger ribonucleic acid by glucocorticoids and PTH in ROS 17/2.8 and OK cells. Endocrinology 134: 451–156, 1994.
 286. Urena, P., X. F., Kong, A. B. Abou‐Samra, H. Jüppner, H. M. Kronenberg, J. T. Potts, Jr., and G. V., Segre. Parathyroid hormone (PTH)/PTH‐related peptide (PTHrP) receptor mRNA are widely distributed in rat tissues. Endocrinology 133: 617–623, 1993.
 287. Usdin, T. B. Evidence for a parathyroid hormone‐2 receptor selective ligand in the hypothalamus. Endocrinology 138: 831–834, 1997.
 288. Usdin, T. B., T. I., Bonner, G. Harta, and E. Mezey. Distribution of PTH‐2 receptor messenger RNA in rat. Endocrinology 137: 4285–4297, 1996.
 289. Usdin, T. B., C., Gruber, and T. I. Bonner. Identification and functional expression of a receptor selectively recognizing parathyroid hormone, the PTH2 receptor. J. Biol. Chem. 270: 15455–15458, 1995.
 290. Van de Stolpe, A., M. Karperien, C. W. G. M. Löwik, H. Jüppner, A. B. Abou‐Samra, G. V. Segre, S. W. de Laat, and L. H. K. Defize. Parathyroid hormone‐related peptide as an endogenous inducer of parietal endoderm differentiation. J. Cell. Biol. 120: 235–243, 1993.
 291. Vasavada, R. C., C., Cavaliere, A.J. D'Ercole, P. Dann, W.J. Burtis, A. L. Madlener, K. Zawalich, W. M. Philbrick, and A. F. Stewart. Overexpression of parathyroid hormone‐related protein in the pancreatic islet of transgenic mice causes islet hyperplasia, hyperinsulinemia and hypoglycemia. J. Biol. Chem. 271: 1200–1208, 1996.
 292. Vasicek, T., B. E., McDevitt, M. W. Freeman, J. T. Potts, Jr., A. Rich, and H. M. Kronenberg. Nucleotide sequence of genomic DNA encoding human parathyroid hormone. Proc. Natl. Acad. Sci. U.S.A. 80: 2127–2131, 1983.
 293. Vortkamp, A., K., Lee, B. Lanske, G. V. Segre, H. M. Kronenberg, and C. J. Tabin. Regulation of rate of cartilage differentiation by Indian hedgehog and PTH‐related protein. Science 273: 613–622, 1996.
 294. Weaver, D. R., J. D., Deeds, K. Lee, and G. V. Segre. Localization of parathyroid hormone‐related peptide (PTHrP) and PTH/PTHrP receptor mRNAs in rat brain. Mol. Brain Res. 28: 296–310, 1995.
 295. Weir, E. C., W. M., Philbrick, M. Amling, L. A. Neff. R. Baron, and A. E. Broadus. Targeted overexpression of parathyroid hormone‐relared peptide in chondrocytes causes skeletal dysplasia and delayed endochondral bone formation. Proc. Natl. Acad. Sci. U.S.A. 93: 10240–10245, 1996.
 296. Wen, S. F. Micropuncture studies of phosphate transport in the proximal tubule of the dog: the relationship to sodium reabsorption. J. Clin. Invest. 53: 143–153, 1974.
 297. Wendelaar‐Bonga, S. E., and P. K. Pang. Control of calcium regulating hormones in the vertebrates: parathyroid hormone, calcitonin, prolactin, and stanniocalcin. Int. Rev. Cytol. 128: 139–213, 1991.
 298. Winter, J. S. D., and I. A. Hughes. Familial pseudohypoparathyroidism without somatic anomalities. Can. Med. Assoc. J. 123: 26–31, 1980.
 299. Wojcik, S. F., F. L., Schanbacher, L. K. McCauley, H. Zhou, V. Kartsogniannis, C. C. Capen, and T. J. Rosol. Cloning of bovine parathyroid hormone‐related peptide (PTHrP) cDNA and expression of PTHrP mRNA in the bovine mammary gland. J. Mol. Endocrinol. 20: 271–280, 1998.
 300. Wong, B. R., J., Rho, J. Aaron, E. Robinson, J. Orlinick, M. Chao, S. Kalachikow, E. Cayani, F. S. Bartlett, W. N. Frankel, S. Y. Lee, and Y. Choi. TRANCE is a a novel ligand of the tumor necrosis factor receptor family that activates c‐Jun N‐terminal kinase in T cells. J. Biol. Chem. 272: 25190–25194, 1997.
 301. Wong, G. L. Paracrine interactions in bone‐secreted products of osteoblasts permit osteoclasts to respond to parathyroid hormone. J. Biol. Chem. 259: 4019–4022, 1984.
 302. Wu, T. L., N. E., Soifer, W. J. Burtis, L. M. Milstone, and A. F. Stewart. Glycosylation of parathyroid hormone‐related peptide secreted by human epidermal keratinocytes. J. Clin. Endocrinol. Metab. 73: 1002–1007, 1991.
 303. Wu, T. L., R. C., Vasavada, K. Yang, T. Massfelder, M. Ganz, S. K. Abbas, A. D. Care, and A. F. Stewart. Structural and physiological characterization of the mid‐region secretory species of parathyroid hormone‐related protein. J. Biol. Chem. 271: 24371–24381, 1996.
 304. Yamamoto, S., Morimoto, I., Yanagihara, N., Zeki, K., Fujihira, T., Izumi, F., Yamashita, H., Eto, S. Parathyroid hormone‐related peptide‐(1–34) [PTHrP‐(1–34)] induces vasopressin release from the rat supraoptic nucleus in vitro through a novel receptor distinct from a type I or type II PTH/PTHrP receptor. Endocrinology 138: 2066–2072, 1997.
 305. Yamamoto, S., I., Morimoto, K. Zeki, Y. Ueta, H. Yamashita, H. Kannan, and S. Eto. Centrally administered parathyroid hormone (PTH)‐related protein (1–34) but not PTH(1–34) stimulates arginine‐vasopressin secretion and its messenger ribonucleic acid expression in supraoptic nucleus of the conscious rats. Endocrinology 139: 383–388, 1998.
 306. Yang, K. H., A. E. dePapp, N. E. Soifer, B. E. Dreyer, T. L. Wu, S. E. Porter, M. Bellantoni, W. J. Burtis, K. L. Insogna, A. E. Broadus, W. M. Philbrick, and A. F. Stewart. Parathyroid hormone‐related protein: evidence for isoform‐ and tissue‐specific posttranslational processing. Biochemistry 33: 7460–7469, 1994.
 307. Yang, K. H., and A. F. Stewart. Parathyroid hormone‐related protein: the gene, its mRNA species, and protein products. In: Principles of Bone Biology, edited by J. P. Bilezikian, L. G. Raisz, and G. A. Rodan. New York: Academic, 1996, p. 347–362.
 308. Yasuda, H., N., Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. I. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, and T. Suda. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis‐inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. U.S.A. 95: 3597–3602, 1998.
 309. Yoon, K., R., Buenaga, and G. A. Rodan. Tissue specificity and developmental expression of rat osteopontin. Biochem. Biophys. Res. Commun. 148: 1129–1136, 1987.
 310. Zhou, A., T. R. Bessalle, A. Bisello, C. Nakamoto, M. Rosenblatt, L. J. Suva, and M. Chorev. Direct mapping of an agonist‐binding domain within the parathyroid hormone/parathyroid hormone‐related protein receptor by photoaffinity cross‐linking. Proc. Natl. Acad. Sci. U.S.A. 94: 3644–3649, 1997.
 311. Zull, J. E., and J. Chuang. Characterization of parathyroid hormone fragments produced by cathespin D. J. Biol. Chem. 260: 1608, 1985.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Harald Jüppner, John T. Jr. Potts. Roles of Parathyroid Hormone and Parathyroid Hormone–Related Peptide in Calcium Metabolism and Bone Biology: Biological Actions and Receptors. Compr Physiol 2011, Supplement 22: Handbook of Physiology, The Endocrine System, Endocrine Regulation of Water and Electrolyte Balance: 663-698. First published in print 2000. doi: 10.1002/cphy.cp070317