Comprehensive Physiology Wiley Online Library

Synthesis, Storage, and Secretion of Adrenal Medullary Hormones: Physiology and Pathophysiology

Full Article on Wiley Online Library


The sections in this article are:

1 Phylogeny and Ontogeny of Adrenal Medulla
2 Morphology of Adrenal Medulla
2.1 Types of Chromaffin Cells
2.2 Blood Supply of the Adrenal Gland
2.3 Innervation of the Adrenal Gland
3 Biosynthesis of Catecholamines in Adrenal Medulla and its Regulation
3.1 Tyrosine Hydroxylase
3.2 Aromatic‐L‐Amino Acid Decarboxylase
3.3 Dopamine β‐Hydroxylase
3.4 Phenylethanolamine N‐Methyltransferase
3.5 Activity‐Induced Changes in Enzyme Activity
3.6 Activity‐Induced Changes in Tyrosine Hydroxylase Gene Expression
3.7 Role of Glucocorticoids in Regulation of Phenylethanolamine N‐Methyltransferase
4 Role of Adrenal Catecholamines in Regulation of Adrenal Cortical Function
4.1 Effects of Catecholamines on Adrenocortical Responses to Corticotropin
4.2 Role of Catecholamines in Compensatory Adrenal Growth
5 Neuropeptides Released from Adrenal Chromaffin Cells
6 Regulation of Catecholamine and Neuropeptide Secretion from Adrenal Medulla
7 Adrenal Medullary Responses to Stress
7.1 Ontogeny of Responses
7.2 Adrenomedullary Responses to Stressful Stimuli
7.3 Relation between Adrenal Medullary and Sympathetic Nervous System Responses to Stress
7.4 Physiological Interactions between Adrenal Cortical and Medullary Responses to Stress
7.5 Does the Adrenal Medulla Play a Role in the Activities of Daily Living?
7.6 Are Alterations in Adrenal Medullary Function Involved in the Pathogenesis of Chronic Glucose Intolerance?
8 Release of Catecholamines and Neuropeptides from Chromaffin Tumors
9 Conclusions
Figure 1. Figure 1.

Schematic representation of innervation of adrenal medulla. The various neuronal types that comprise the splanchnic nerve innervating the adrenal medulla. These include: afferent fibers of sensory nerves in dorsal root ganglion; postganglionic sympathetic nerves in paraspinal and suprarenal sympathetic ganglia; preganglionic sympathetic nerves innervating either epinephrine (Epi)—or norepinephrine (NE)—containing chromaffin cells or medullary ganglion cells (GC); and fibers originating from ganglion cells traveling retrograde in splanchnic nerve to an unknown destination. IML refers to the intermediolateral column of the spinal cord from which the preganglionic sympathetic fibers arise.

Figure 1.

Schematic representation of innervation of adrenal medulla. The various neuronal types that comprise the splanchnic nerve innervating the adrenal medulla. These include: afferent fibers of sensory nerves in dorsal root ganglion; postganglionic sympathetic nerves in paraspinal and suprarenal sympathetic ganglia; preganglionic sympathetic nerves innervating either epinephrine (Epi)—or norepinephrine (NE)—containing chromaffin cells or medullary ganglion cells (GC); and fibers originating from ganglion cells traveling retrograde in splanchnic nerve to an unknown destination. IML refers to the intermediolateral column of the spinal cord from which the preganglionic sympathetic fibers arise.

 1. Abou‐Donia, M. M., and O. H. Viveros. Tetrahydrobiopterin increases in adrenal medulla and cortex: a factor in the regulation of tyrosine hydroxylase. Proc. Natl. Acad. Sci. USA 78: 2703–2706, 1981.
 2. Adams, M. B., I. D. Phillips, G. Simonetta, and I. C. McMillen. Differential effects of increasing gestational age and placental restriction on tyrosine hydroxylase, phenylethanolamine N‐methyltransferase, and proenkephalin A mRNA levels in the fetal sheep adrenal. J. Neurochem. 71: 394–401, 1998.
 3. Afework, M., V. Ralevic, and G. Burnstock. The intra‐adrenal distribution of intrinsic and extrinsic nitrergic nerve fibres in the rat. Neurosci. Lett. 190: 109–112, 1995.
 4. Amiel, S. A., A. Maran, J. K. Powrie, A. M. Umpleby, and I. A. Macdonald. Gender differences in counterregulation to hypoglycemia. Diabetologia 36: 460–464, 1993.
 5. Anderson, D. J. Cell fate determination in the peripheral nervous system: the sympathoadrenal progenitor. J. Neurobiol. 24: 185–198, 1993.
 6. Anderson, D. J., J. F. Carnahan, A. Michelsohn, and P. H. Patterson. Antibody markers identify a common progenitor to sympathetic neurons and chromaffin cells in vivo and reveal the timing of commitment to neuronal differentiation in the sympathoadrenal lineage. J. Neurosci. 11: 3507–3519, 1991.
 7. Andersson, K. K., D. D. Cox, L. Que, Jr., T. Flatmark, and J. Haavik. Resonance Raman studies on the blue‐green‐colored bovine adrenal tyrosine 3‐monooxygenase (tyrosine hydroxylase). Evidence that the feedback inhibitors adrenaline and noradrenaline are coordinated to iron. J. Biol. Chem. 263: 18621–18626, 1988.
 8. Arbeeny, C. M., D. S. Meyers, D. E. Hillyer, and K. E. Bergquist. Metabolic alterations associated with the antidiabetic effect of β3‐adrenergic receptor agonists in obese mice. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E678–E684, 1995.
 9. Astrup, A. V., N. J. Christensen, and L. Breum. Reduced plasma noradrenaline concentrations in simple‐obese and diabetic obese patients. Clin. Sci. 80: 53–58, 1991.
 10. Barker, D.J.P., C. N. Hales, C.H.D. Fall, C. Osmond, K. Phipps, and P.M.S. Clark. Type 2 (non‐insulin‐dependent) diabetes mellitus, hypertension and hyperlipidaemia (syndrome X): relation to reduced fetal growth. Diabetologia 36: 62–67, 1993.
 11. Berne, C., J. Fagius, and F. Niklasson. Sympathetic response to oral carbohydrate administration: evidence from micro‐electrode nerve recordings. J. Clin. Invest. 84: 1403–1409, 1989.
 12. Bernet, F., J. Bernard, C. Laborie, V. Montel, E. Maubert, and J. P. Dupouy. Neuropeptide Y (NPY)‐ and vasoactive intestinal peptide (VIP)‐induced aldosterone secretion by rat capsule/glomerular zone could be mediated by catecholamines via β1 adrenergic receptors. Neurosci. Lett. 166: 109–112, 1994.
 13. Besse, J. C., and A. D. Bass. Potentiation by hydrocortisone of responses to catecholamines in vascular smooth muscle. J. Pharmacol. Exp. Ther. 154: 224–238, 1966.
 14. Björntorp, P., The metabolic syndrome in man. In: Current Topics in Diabetes Research, edited by F. Belfiore, R. N. Bergman, and G. M. Molinatti. Basel: Karger, 1993, p. 182–192.
 15. Bornstein, S. R., J. A. Gonzalez‐Hernandez, M. Ehrhart‐Bornstein, G. Adler, and W. A. Scherbaum. Intimate contact of chromaffin and cortical cells within the human adrenal gland forms the cellular basis for important intraadrenal interactions. J. Clin. Endocrinol. Metab. 78: 225–232, 1994.
 16. Ornstein, S. R., T. Tajima, G. Eisenhofer, A. Haidan, and G. Aguilera. Adrenomedullary function is severely impaired in 21‐hydroxylase‐deficient mice. FASEB J. 13: 1185–1194, 1999.
 17. Bornstein, S. R., and H. Vaudry. Paracrine and neuroendocrine regulation of the adrenal gland—basic and clinical aspects. Horm. Metab. Res. 30: 292–296, 1998.
 18. Breslow, M. J. Regulation of adrenal medullary and cortical blood flow. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H1317–H1330, 1992.
 19. Breslow, M. J., J. R. Tobin, D. S. Bredt, C. D. Ferris, S. H. Snyder, and R. J. Traystman. Role of nitric oxide in adrenal medullary vasodilation during catecholamine secretion. Eur. J. Pharmacol. 210: 105–106, 1992.
 20. Brooks, S., M. E. Nevill, L. Meleagros, H. K. Lakomy, G. M. Hall, S. R. Bloom, and C. Williams. The hormonal responses to repetitive brief maximal exercise in humans. Eur. J. Appl. Physiol. 60: 144–148, 1990.
 21. Burgoyne, R. D. Control of exocytosis in adrenal chromaffin cells. Biochim. Biophys. Acta 1071: 174–202, 1991.
 22. Böttner, A., G. Eisenhofer, D. J. Torpy, M. Ehrhart‐Bornstein, H. R. Keiser, G. P. Chrousos, and S. R. Bornstein. Lack of leptin suppression in response to hypersecretion of catecholamines in pheochromocytoma patients. Metabolism 48: 543–545, 1999.
 23. Cahill, A. L., and R. L. Perlman. Phorbol esters cause preferential secretion of norepinephrine from bovine chromaffin cells. J. Neurochem. 58: 768–771, 1992.
 24. Cannon, W. B. The Wisdom of the Body. New York: W. W. Norton & Co, 1939, p. 19–333.
 25. Cao, G.‐Y., R. V. Considine, and R. B. Lynn. Leptin receptors in the adrenal medulla of the rat. Am. J. Physiol. 273 (Endocrinol. Metab. 36): E448–E452, 1997.
 26. Carlsson, S., I. H. Jónsdóttir, J. O. Skarphedinsson, and P. Thorén. Evidence for an adrenergic innervation of the adrenal cortical blood vessels in rats. Acta Physiol. Scand. 149: 23–30, 1993.
 27. Carmichael, S. W., Morphology and innervation of the adrenal medulla. In: Stimulus‐Secretion Coupling in Chromaffin Cells, Vol. 1, edited by K. Rosenheck and P. I. Lelkes. Boca Raton, Florida: CRC Press, Inc., 1987, p. 1–29.
 28. Carmichael, S. W. The history of the adrenal medulla. Rev. Neurosci. 2: 83–99, 1989.
 29. Carmichael, S. W., D. B. Spagnoli, R. G. Frederickson, W. J. Krauss, and J. L. Culberson. Opossum adrenal medulla: I. Postnatal development and normal anatomy. Am. J. Anat. 179: 211–219, 1987.
 30. Caro, J. F., M. K. Sinha, J. W. Kolaczynski, P. L. Zhang, and R. V. Considine. Leptin: the tale of an obesity gene. Diabetes 45: 1455–1462, 1996.
 31. Ceccatelli, S., Å. Dagerlind, M. Schalling, A.‐C. Wikstróm, S. Okret, J. Å. Gustafsson, M. Goldstein, and T. Hökfelt. The glucocorticoid receptor in the adrenal gland is localized in the cytoplasm of adrenaline cells. Acta Physiol. Scand. 137: 559–560, 1989.
 32. Celander, O. The range of control exercised by the sympathico‐adrenal system. A quantitative study on blood vessels and other smooth muscle effectors in the cat. Acta Physiol. Scand. 32 (Suppl 116): 1–132, 1954.
 33. Charlton, B. G. Adrenal cortical innervation and glucocorticoid secretion. J. Endocrinol. 126: 5–8, 1990.
 34. Charlton, B. G., J. McGadey, D. Russell, and D. E. Neal. Noradrenergic innervation of the human adrenal cortex as revealed by dopamine‐beta‐hydroxylase immunohistochemistry. J. Anat. 180: 501–506, 1992.
 35. Cheung, C. Y. Fetal adrenal medulla catecholamine response to hypoxia‐direct and neural components. Am. J. Physiol. 258 (Regulatory Integrative Comp. Physiol. 27): R1340–R1346, 1990.
 36. Choi, A. Y., A. L. Cahill, B. D. Perry, and R. L. Perlman. Histamine evokes greater increases in phosphatidylinositol metabolism and catecholamine secretion in epinephrine‐containing than in norepinephrine‐containing chromaffin cells. J. Neurochem. 61: 541–549, 1993.
 37. Chua, S. C., Jr., W. K. Chung, X. S. Wu‐Peng, Y. Zhang, S.‐M. Liu, L. Tartaglia, and R. L. Leibel. Phenotypes of mouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 271: 994–996, 1996.
 38. Cohen, W. R., G. J. Piasecki, H. E. Cohn, and B. T. Jackson. Plasma catecholamines in the hypoxaemic fetal rhesus monkey. J. Dev. Physiol. 9: 507–515, 1987.
 39. Cohen, W. R., G. J. Piasecki, H. E. Cohn, J. B. Susa, and B. T. Jackson. Sympathoadrenal responses during hypoglycemia, hyperinsulinemia, and hypoxemia in the ovine fetus. Am. J. Physiol. 261 (Endocrinol. Metab. 24): E95–E102, 1991.
 40. Cole, T. J., J. A. Blendy, A. P. Monaghan, K. Krieglstein, W. Schmid, A. Aguzzi, G. Fantuzzi, E. Hummler, K. Unsicker, and G. Schütz. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev. 9: 1608–1621, 1995.
 41. Collins, S., M. G. Caron, and R.J. Lefkowitz. β2‐Adrenergic receptors in hamster smooth muscle cells are transcriptionally regulated by glucocorticoids. J. Biol. Chem. 263: 9067–9070, 1988.
 42. Cooper, B. R., R. M. Wightman, and J. W. Jorgenson. Quantitation of epinephrine and norepinephrine secretion from individual adrenal medullary cells by microcolumn high‐performance liquid chromatography. J. Chromatogr. 653: 25–34, 1994.
 43. Coupland, R. E. The Natural History of the Chromaffin Cell. London: Longmans, Green and Co, Ltd, 1965, p. 1–272.
 44. Coupland, R. E., Blood supply of the adrenal gland. In: Handbook of Physiology. Section 7: Endocrine. Volume VI: Adrenal Gland, edited by H. Blaschko, G. Sayers, and A. D. Smith. Washington, D.C.: American Physiological Society, 1975. p. 283–294.
 45. Coupland, R. E., and J. E. Selby. The blood supply of the mammalian adrenal medulla: a comparative study. J. Anat. 122: 539–551, 1976.
 46. Craig, S. P., V. J. Buckle, A. Lamouroux, J. Mallet, and I. W. Craig. Localization of the human dopamine beta hydroxylase (DBH) gene to chromosome 9q34. Cytogenet. Cell Genet. 48: 48–50, 1988.
 47. Dagerlind, Å., M. Goldstein, and T. Hökfelt. Most ganglion cells in the rat adrenal medulla are nöradrenergic. Neuroreport 1: 137–140, 1990.
 48. Dagerlind, Å., M. Pelto‐Huikko, M. Diez, and T. Hökfelt. Adrenal medullary ganglion neurons project into the splanchnic nerve. Neuroscience 69: 1019–1023, 1995.
 49. Daubner, S. C., C. Lauriano, J. W. Haycock, and P. F. Fitzpatrick. Site‐directed mutagenesis of serine 40 of rat tyrosine hydroxylase. Effects of dopamine and cAMP‐dependent phosphorylation on enzyme activity. J. Biol. Chem. 267: 12639–12646, 1992.
 50. Davidson, L., R. Vandongen, I. L. Rouse, L. J. Beilin, and A. Tunney. Sex‐related differences in resting and stimulated plasma noradrenaline and adrenaline. Clin. Sci. 67: 347–352, 1984.
 51. De Kloet, E. R., P. Rosenfeld, J. A. Van Eekelen, W. Sutanto, and S. Levine. Stress, glucocorticoids and development. Prog. Brain Res. 73: 101–119, 1988.
 52. Deibert, D. C., and R. A. DeFronzo. Epinephrine‐induced insulin resistance in man. J. Clin. Invest. 65: 717–721, 1980.
 53. Del Rio, G., C. Carani, M. Bonati, P. Marrama, and L. Della Casa. Sexual dimorphism of the autonomic nervous system response to weight loss in obese patients. Int. J. Obes. 16: 897–903, 1992.
 54. Dora, E., K. Hines, G. Kunos, and A. C. McLaughlin. Significance of an opiate mechanism in the adjustment of cerebro‐cortical oxygen consumption and blood flow during hyper‐capnic stress. Brain Res. 573: 293–298, 1992.
 55. Dorovini‐Zis, K., and A. P. Zis. Innervation of the zona fasciculata of the adult human adrenal cortex: a light and electron microscopic study. J. Neural Transm. 84: 75–84, 1991.
 56. Edwards, A. V. Regulation of adrenal function in the conscious calf. Horm. Metab. Res. 30: 303–310, 1998.
 57. Edwards, A. V., and C. T. Jones. Autonomic control of adrenal function. J. Anat. 183: 291–307, 1993.
 58. Edwards, S. L., C. R. Anderson, B. R. Southwell, and R. M. McAllen. Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience 70: 825–832, 1996.
 59. Ehrhart‐Bornstein, M., S. R. Bornstein, H. Güse‐Behling, H. G. Stromeyer, T. N. Rasmussen, W. A. Scherbaum, G. Adler, and J. J. Holst. Sympathoadrenal regulation of adrenal androstenedione release. Neuroendocrinology 59: 406–412, 1994.
 60. Ehrhart‐Bornstein, M., S. R. Bornstein, W. A. Scherbaum, E. F. Pfeiffer, and J. J. Holst. Role of the vasoactive intestinal peptide in a neuroendocrine regulation of the adrenal cortex. Neuroendocrinology 54: 623–628, 1991.
 61. Eigler, N., L. Saccà, and R. S. Sherwin. Synergistic interactions of physiologic increments of glucagon, epinephrine, and cortisol in the dog: a model for stress‐induced hyperglycemia. J. Clin. Invest. 63: 114–123, 1979.
 62. Engeland, W. C. Functional innervation of the adrenal cortex by the splanchnic nerve. Horm. Metab. Res. 30: 311–314, 1998.
 63. Evéquoz, D., B. Waeber, J.‐F. Aubert, J.‐P. Flückiger, J. Nussberger, and H. R. Brunner. Neuropeptide Y prevents the blood pressure fall induced by endotoxin in conscious rats with adrenal medullectomy. Circ. Res. 62: 25–30, 1988.
 64. Evinger, M. J., P. Ernsberger, S. Regunathan, T. H. Joh, and D. J. Reis. A single transmitter regulates gene expression through two separate mechanisms: cholinergic regulation of phenylethanolamine N‐methyltransferase mRNA via nicotinic and muscarinic pathways. J. Neurosci. 14: 2106–2116, 1994.
 65. Feuerstein, G., and Y. Gutman. Preferential secretion of adrenaline or noradrenaline by the cat adrenal in vivo in response to different stimuli. Br. J. Pharmacol. 43: 764–775, 1971.
 66. Finotto, S., K. Krieglstein, A. Schober, F. Deimling, K. Lindner, B. Brühl, K. Beier, J. Metz, J. E. Garcia‐Arraras, J. L. Roig‐Lopez, P. Monaghan, W. Schmid, T. J. Cole, C. Kellendonk, F. Tronche, G. Schütz, and K. Unsicker. Analysis of mice carrying targeted mutations of the glucocorticoid receptor gene argues against an essential role of glucocorticoid signalling for generating adrenal chromaffin cells. Development 126: 2935–2944, 1999.
 67. Folkow, B., and U. S. von Euler. Selective activation of noradrenaline and adrenaline producing cells in the cat's adrenal gland by hypothalamic stimulation. Circ. Res. 2: 191–195, 1954.
 68. Freyschuss, U., J. Fagius, B. G. Wallin, G. Bohlin, A. Perski, and P. Hjemdahl. Cardiovascular and sympathoadrenal responses to mental stress: a study of sensory intake and rejection reactions. Acta Physiol. Scand. 139: 173–183, 1990.
 69. Fryburg, D. A., R. A. Gelfand, L. A. Jahn, D. Oliveras, R. S. Sherwin, L. Saccà, and E. J. Barrett. Effects of epinephrine on human muscle glucose and protein metabolism. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E55–E59, 1995.
 70. Galindo, E., J. Zwiller, M.‐F. Bader, and D. Aunis. Chromostatin inhibits catecholamine secretion in adrenal chromaffin cells by activating a protein phosphatase. Proc. Natl. Acad. Sci. U.S.A. 89: 7398–7402, 1992.
 71. Garber, A. J., P. E. Cryer, J. V. Santiago, M. W. Haymond, A. S. Pagliara, and D. M. Kipnis. The role of adrenergic mechanisms in the substrate and hormonal responses to insulin‐induced hypoglycemia in man. J. Clin. Invest. 58: 7–15, 1976.
 72. Goc, A., and M. K. Stachowiak. Bovine tyrosine hydroxylase gene‐promoter regions involved in basal and angiotensin II‐stimulated expression in nontransformed adrenal medullary cells. J. Neurochem. 62: 834–843, 1994.
 73. Grant, N. J., F. König, J.‐C. Deloulme, D. Aunis, and K. Langley. Noradrenergic, but not adrenergic chromaffin cells in the adrenal gland express neuromodulin (GAP‐43). Eur. J. Neurosci. 4: 1257–1263, 1992.
 74. Grynszpan‐Winograd, O. Adrenaline and noradrenaline cells in the adrenal medulla of the hamster: a morphological study of their innervation. J. Neurocytol. 3: 341–361, 1974.
 75. Guo, X., and A. R. Wakade. Differential secretion of catecholamines in response to peptidergic and cholinergic transmitters in rat adrenals. J. Physiol. (Lond.) 475: 539–545, 1994.
 76. Güse‐Behling, H., M. Ehrhart‐Bornstein, S. R. Bornstein, M. R. Waterman, W. A. Scherbaum, and G. Adler. Regulation of adrenal steroidogenesis by adrenaline: expression of cytochrome P450 genes. J. Endocrinol. 135: 229–237, 1992.
 77. Haavik, J., A. Martinez, and T. Flatmark. pH‐dependent release of catecholamines from tyrosine hydroxylase and the effect of phosphorylation of Ser‐40. FEBS Lett. 262: 363–365, 1990.
 78. Haigh, R. M., and C. T. Jones. Effect of glucocorticoids on alpha 1‐adrenergic receptor binding in rat vascular smooth muscle. J. Mol. Endocrinol. 5: 41–48, 1990.
 79. Hamaji, M., M. Miyata, and Y. Kawashima. A study of the vascular arrangement in the rat adrenal gland using non‐radioactive microspheres. Cell Tissue Res. 240: 277–280, 1985.
 80. Hasser, E. M., and J. C. Schadt. Sympathoinhibition and its reversal by naloxone during hemorrhage. Am. J. Physiol. 262 (Regulatory Integrative Comp. Physiol. 31): R444–R451, 1992.
 81. Haynes, W. G., D. A. Morgan, S. A. Walsh, A. L. Mark, and W. I. Sivitz. Receptor‐mediated regional sympathetic nerve activation by leptin. J. Clin. Invest. 100: 270–278, 1997.
 82. Hexum, T. D., J. Zheng, and J. Zhu. Neuropeptide Y inhibition of nicotinic receptor‐mediated chromaffin cell secretion. J. Pharmacol. Exp. Ther. 271: 61–66, 1994.
 83. Hinson, J. P., S. Kapas, C. D. Orford, and G. P. Vinson. Vasoactive intestinal peptide stimulation of aldosterone secretion by the rat adrenal cortex may be mediated by the local release of catecholamines. J. Endocrinol. 133: 253–258, 1992.
 84. Hinson, J. P., G. P. Vinson, J. Pudney, and B. J. Whitehouse. Adrenal mast cells modulate vascular and secretory responses in the intact adrenal gland of the rat. J. Endocrinol. 121: 253–260, 1989.
 85. Hiremagalur, B., B. Nankova, J. Nitahara, R. Zeman, and E. L. Sabban. Nicotine increases expression of tyrosine hydroxylase gene. Involvement of protein kinase A‐mediated pathway. J. Biol. Chem. 268: 23704–23711, 1993.
 86. Holgert, H., A. Dagerlind, and T. Hökfelt. Immunohistochemical characterization of the peptidergic innervation of the rat adrenal gland. Horm. Metab. Res. 30: 315–322, 1998.
 87. Holgert, H., K. Aman, C. Cozzari, B. K. Hartman, S. Brimijoin, P. Emson, M. Goldstein, and T. Hökfelt. The cholinergic innervation of the adrenal gland and its relation to enkephalin and nitric oxide synthase. Neuroreport 6: 2576–2580, 1995.
 88. Holzbauer, M., and D. F. Sharman. The distribution of catecholamines in vertebrates. In: Handbook of Experimental Pharmacology, Vol. XXXIII. Catecholamines, edited by H. Blaschko and E. Muscholl. Berlin: Springer‐Verlag, 1972, p. 110–185.
 89. Holzwarth, M. A., L. A. Cunningham, and N. Kleitman. The role of adrenal nerves in the regulation of adrenocortical functions. Ann. N. Y. Acad. Sci. 512: 449–464, 1987.
 90. Hsiao, R. J., R. J. Parmer, M. A. Takiyyuddin, and D. T. O'Connor. Chromogranin A storage and secretion: sensitivity and specificity for the diagnosis of pheochromocytoma. Medicine 70: 33–45, 1991.
 91. Huang, M.‐H., D. S. Friend, M. E. Sunday, K. Singh, K. Haley, K. F. Austen, R. A. Kelly, and T. W. Smith. An intrinsic adrenergic system in mammalian heart. J. Clin. Invest. 98: 1298–1303, 1996.
 92. Jänig, W., and E. M. McLachlan. Specialized functional pathways are the building blocks of the autonomic nervous system. J. Auton. Nerv. Syst. 41: 3–13, 1992.
 93. Jansen, A.S.P., X. V. Nguyen, V. Karpitskiy, T. C. Mettenleiter, and A. D. Loewy. Central command neurons of the sympathetic nervous system: basis of the fight‐or‐flight response. Science 270: 644–646, 1995.
 94. Jiang, W., R. Uht, and M. C. Bohn. Regulation of phenylethanolamine N‐methyltransferase (PNMT) mRNA in the rat adrenal medulla by corticosterone. Int. J. Dev. Neurosci. 7: 513–520, 1989.
 95. Johnson, R. G., S. E. Carty, and A. Scarpa. Catecholamine transport and energy‐linked function of chromaffin granules isolated from a human pheochromocytoma. Biochim. Biophys. Acta 716: 366–376, 1982.
 96. Kaneda, N., H. Ichinose, K. Kobayashi, K. Oka, F. Kishi, A. Nakazawa, Y. Kurosawa, K. Fujita, and T. Nagatsu. Molecular cloning of cDNA and chromosomal assignment of the gene for human phenylethanolamine N‐methyltransferase, the enzyme for epinephrine biosynthesis. J. Biol. Chem. 263: 7672–7677, 1988.
 97. Kannan, R., N. J. Grant, D. Aunis, and K. Langley. SNAP‐25 is differentially expressed by noradrenergic and adrenergic chromaffin cells. FEBS Lett. 385: 159–164, 1996.
 98. Kaplan, N. M. The deadly quartet. Upper‐body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch. Intern. Med. 149: 1514–1520, 1989.
 99. Kennedy, B., T. D. Bigby, and M. G. Ziegler. Nonadrenal epinephrine‐forming enzymes in humans. Characteristics, distribution, regulation, and relationship to epinephrine levels. J. Clin. Invest. 95: 2896–2902, 1995.
 100. Kerr, D. S., O. G. Brooke, and H. M. Robinson. Fasting energy utilization in the smaller of twins with epinephrine‐deficient hypoglycemia. Metabolism 30: 6–17, 1981.
 101. Kiely, J., J. R. Hadcock, S. W. Bahouth, and C. C. Malbon. Glucocorticoids down‐regulate β1‐adrenergic‐receptor expression by suppressing transcription of the receptor gene. Biochem. J. 302: 397–403, 1994.
 102. Kikuta, A., and T. Murakami. Relationship between chromaffin cells and blood vessels in the rat adrenal medulla: a transmission electron microscopic study combined with blood vessel reconstructions. Am. J. Anat. 170: 73–81, 1984.
 103. Kopin, I. J., Plasma levels of catecholamines and dopamine‐β‐hydroxylase. In: Handbook of Experimental Pharmacology, Vol. 90/II. Catecholamines, edited by U. Trendelenburg and N. Weiner. Berlin: Springer‐Verlag, 1989, p. 211–275.
 104. Kumakura, K., F. Karoum, A. Guidotti, and E. Costa. Modulation of nicotinic receptors by opiate receptor agonists in cultured adrenal chromaffin cells. Nature 283: 489–492, 1980.
 105. Lagercrantz, H., and P. Bistoletti. Catecholamine release in the newborn infant at birth. Pediatr. Res. 11: 889–893, 1973.
 106. Langley, K., and N. J. Grant. Do adrenergic chromaffin cells exocytose like noradrenergic cells? Trends Neurosci. 18: 440–441, 1995.
 107. Leigh, F.S.M., L. N. Kaufman, and J. B. Young. Diminished epinephrine excretion in genetically obese (ob/ob) mice and monosodium glutamate‐treated rats. Int. J. Obes. 16: 597–604, 1992.
 108. Leonetti, D. L., R. W. Bergstrom, W. P. Shuman, P. W. Wahl, D. A. Jenner, G. A. Harrison, and W. Y. Fujimoto. Urinary catecholamines, plasma insulin and environmental factors in relation to body fat distribution. Int. J. Obes. 15: 345–357, 1991.
 109. Levin, B. E., J. Triscari, and A. C. Sullivan. Abnormal sympatho‐adrenal function and plasma catecholamines in obese Zucker rats. Pharmacol. Biochem. Behav. 13: 107–113, 1980.
 110. Lewis, E. J., and L. P. Asnani. Soluble and membrane‐bound forms of dopamine β‐hydroxylase are encoded by the same mRNA. J. Biol. Chem. 267: 494–500, 1992.
 111. Lewis, J. W., M. G. Tordoff, J. E. Sherman, and J. C. Liebeskind. Adrenal medullary enkephalin‐like peptides may mediate opioid stress analgesia. Science 217: 557–559, 1982.
 112. Lightly, E.R.T., S. W. Walker, I. M. Bird, and B. C. Williams. Subclassification of β‐adrenoceptors responsible for steroidogenesis in primary cultures of bovine adrenocortical zona fasciculata/reticularis cells. Br. J. Pharmacol. 99: 709–712, 1990.
 113. Linde, B., and P. Hjemdahl. Effect of tilting on adipose tissue vascular resistance and sympathetic activity in humans. Am. J. Physiol. 24 2(Heart Circ. Physiol. 11): H161–H167, 1982.
 114. Livett, B. G., and P. D. Marley. Noncholinergic control of adrenal catecholamine secretion. J. Anat. 183: 277–289, 1993.
 115. Livett, B. G., P. D. Marley, D.C.C. Wan, and X.‐F. Zhou. Peptide regulation of adrenal medullary function. J. Neural Transm. Suppl. 29: 77–89, 1990.
 116. Mallet, J., C. Boni, M. Darmon, N. F. Biguet, B. Grima, P. Horellou, and A. Lamouroux. Molecular biology of rat and human tyrosine hydroxylases. In: Progress in Catecholamine Research. Part A: Basic Aspects and Peripheral Mechanisms, edited by A. Dahlström, R. H. Belmaker, and M. Sandler. New York: Alan R. Liss, Inc., 1988, p. 21–27.
 117. Marley, P. D., and B. G. Livett. Differences between the mechanisms of adrenaline and noradrenaline secretion from isolated, bovine, adrenal chromaffin cells. Neurosci. Lett. 77: 81–86, 1987.
 118. Matsui, H. Adrenal medullary secretory response to pontine and mesencephalic stimulation in the rat. Neuroendocrinology 33: 84–87, 1981.
 119. Michelsohn, A. M., and D. J. Anderson. Changes in competence determine the timing of two sequential glucocorticoid effects on sympathoadrenal progenitors. Neuron 8: 589–604, 1992.
 120. Mills, P. J., M. G. Ziegler, and T. A. Morrison. Leptin is related to epinephrine levels but not reproductive hormone levels in cycling African‐American and Caucasian women. Life Sci. 63: 617–623, 1998.
 121. Miner, L. L., S. P. Pandalai, E. P. Weisberg, S. L. Sell, D. M. Kovacs, and B. B. Kaplan. Cold‐induced alterations in the binding of adrenomedullary nuclear proteins to the promoter region of the tyrosine hydroxylase gene. J. Neurosci. Res. 33: 10–18, 1992.
 122. Mitch, W. E., and A. L. Goldberg. Mechanisms of muscle wasting. The role of the ubiquitin‐proteasome pathway. N. Engl. J. Med. 335: 1897–1905, 1996.
 123. Moro, M. A., A. G. Garcia, and O. K. Langley. Characterization of two chromaffin cell populations isolated from bovine adrenal medulla. J. Neurochem. 57: 363–369, 1991.
 124. Mouri, T., M. Sone, K. Takahashi, K. Itoi, K. Totsune, Y. Hayashi, S. Hasegawa, M. Ohneda, O. Murakami, Y. Miura, R. Katakura, S. Tachibana, and M. Maebashi. Neuropeptide Y as a plasma marker for phaeochromocytoma, ganglioneuroblastoma and neuroblastoma. Clin. Sci. 83: 205–211, 1992.
 125. Murabayashi, S., T. Baba, T. Tomiyama, and K. Takebe. Urinary dopamine, noradrenaline and adrenaline in type 2 diabetic patients with and without nephropathy. Horm. Metab. Res. 21: 27–32, 1989.
 126. Murakami, T., H. Oukouchi, Y. Uno, A. Ohtsuka, and T. Taguchi. Blood vascular beds of rat adrenal and accessory adrenal glands, with special reference to the corticomedullary portal system: a further scanning electron microscopic study of corrosion casts and tissue specimens. Arch. Histol. Cytol. 52: 461–476, 1989.
 127. Nagatsu, T. Genes for human catecholamine‐synthesizing enzymes. Neurosci. Res. 12: 315–345, 1991.
 128. Oishi, S., M. Sasaki, and T. Sato. Elevated immunoreactive endothelin levels in patients with pheochromocytoma. Am. J. Hypertens. 7: 717–722, 1994.
 129. Pacak, K., R. McCarry, M. Palkovits, G. Cizza, I.J. Kopin, D. S. Goldstein, and G. P. Chrousos. Decreased central and peripheral catecholaminergic activation in obese Zucker rats. Endocrinology 136: 4360–4367, 1995.
 130. Parker, T. L., W. K. Kesse, A. A. Mohamed, and M. Afework. The innervation of the mammalian adrenal gland. J. Anat. 183: 265–276, 1993.
 131. Perriello, G., S. Pampanelli, P. Del Sindaco, C. Lalli, M. Ciofetta, E. Volpi, F. Santeusanio, P. Brunetti, and G. B. Bolli. Evidence of increased systemic glucose production and gluconeogenesis in an early stage of NIDDM. Diabetes 46: 1010–1016, 1997.
 132. Poulsen, P., A. A. Vaag, K. O. Kyvik, D. Møller Jensen, and H. Beck‐Nielsen. Low birth weight is associated with NIDDM in discordant monozygotic and dizygotic twin pairs. Diabetologia 40: 439–446, 1997.
 133. Pratt, J. H., D. A. Turner, J. A. McAteer, and D. P. Henry. β‐Adrenergic stimulation of aldosterone production by rat adrenal capsular explants. Endocrinology 117: 1189–1194, 1985.
 134. Ramsey, A. J., and P. F. Fitzpatrick. Effects of phosphorylation of serine 40 of tyrosine hydroxylase on binding of catecholamines: evidence for a novel regulatory mechanism. Biochemistry 37: 8980–8986, 1998.
 135. Reaven, G. M. Pathophysiology of insulin resistance in human disease. Physiol. Rev. 75: 473–486, 1995.
 136. Roizen, M. P., M. F. Isambert, J. P. Henry, M. Guillot, and G. Lenoir. Characterization of the monoamine uptake system in catecholamine storage vesicles isolated from a pheochromocytoma taken from a child. Biochem. Pharmacol. 33: 2245–2252, 1984.
 137. Saad, M. F., S. A. Alger, F. Zurlo, J. B. Young, C. Bogardus, and E. Ravussin. Ethnic differences in sympathetic nervous system‐mediated energy expenditure. Am. J. Physiol. 261 (J. Clin. Endocrinol. Metab. 24): E789–E794, 1991.
 138. Sakaue, M., and B. B. Hoffman. Glucocorticoids induce transcription and expression of the α1B adrenergic receptor gene in DTT1 MF‐2 smooth muscle cells. J. Clin. Invest. 88: 385–389, 1991.
 139. Scarpace, P. J., L. A. Baresi, D. A. Sanford, and I. B. Abrass. Desensitization and resensitization of β‐adrenergic receptors in a smooth muscle cell line. Mol. Pharmacol. 28: 495–501, 1985.
 140. Scheidegger, K., D. C. Robbins, and E. Danforth, Jr.. Effects of chronic beta receptor stimulation on glucose metabolism. Diabetes 33: 1144–1149, 1984.
 141. Shamoon, H., R. Hendler, and R. S. Sherwin. Synergistic interactions among antiinsulin hormones in the pathogenesis of stress hyperglycemia in humans. J. Clin. Endocrinol. Metab. 52: 1235–1241, 1981.
 142. Silverman, H. J., R. Penaranda, J. B. Orens, and N. H. Lee. Impaired β‐adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit. Care Med. 21: 31–39, 1993.
 143. Slotkin, T. A., and F. J. Seidler. Adrenomedullary catecholamine release in the fetus and newborn: secretory mechanisms and their role in stress and survival. J. Dev. Physiol. 10: 1–16, 1988.
 144. Smith, M. L., M. D. Carlsori, and M. D. Thames. Naloxone does not prevent vasovagal syncope during simulated orthostasis in humans. J. Auton. Nerv. Syst. 45: 1–9, 1993.
 145. Spagnoli, D. B., R. G. Frederickson, R. L. Robinson, and S. W. Carmichael. Opossum adrenal medulla: II. Differentiation of the chromaffin cell. Am. J. Anat. 179: 220–231, 1987.
 146. Stachowiak, M., E. M. Stricker, M. J. Zigmond, and B. B. Kaplan. A cholinergic antagonist blocks cold stress‐induced alterations in rat adrenal tyrosine hydroxylase mRNA. Mol. Brain Res. 3: 193–196, 1988.
 147. Strack, A. M., W. B. Sawyer, K. B. Platt, and A. D. Loewy. CNS cell groups regulating the sympathetic outflow to adrenal gland as revealed by transneuronal cell body labeling with pseudorabies virus. Brain Res. 491: 274–296, 1989.
 148. Sumi‐Ichinose, C., H. Ichinose, E. Takahashi, T. Hori, and T. Nagatsu. Molecular cloning of genomic DNA and chromosomal assignment of the gene for human aromatic L‐amino acid decarboxylase, the enzyme for catecholamine and serotonin biosynthesis. Biochemistry 31: 2229–2238, 1992.
 149. Tait, S. M., P. Wang, Z. F. Ba, and I. H. Chaudry. Downregulation of hepatic β‐adrenergic receptors after trauma and hemorrhagic shock. Am. J. Physiol. 268 (Gastrointest. Liver Physiol. 31): G749–G753, 1995.
 150. Takekoshi, K., M. Motooka, K. Isobe, F. Nomura, T. Manmoku, K. Ishii, and T. Nakai. Leptin directly stimulates catecholamine secretion and synthesis in cultured porcine adrenal medullary chromaffin cells. biochem. Biophys. Res. Commun. 261: 426–433, 1999.
 151. Tang‐Christensen, M., P.J. Havel, R. R. Jacobs, P.J. Larsen, and J. L. Cameron. Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques. J. Clin. Endocrinol. Metab. 84: 711–717, 1999.
 152. Teraoka, H., T. Sugawara, and Y. Nakazato. Difference in the effectiveness of Ca2+ to evoke catecholamine secretion between adrenaline‐ and noradrenaline‐containing cells of bovine adrenal medulla. J. Neurochem. 60: 1936–1940, 1993.
 153. Tóth, I. E. Transneuronal labeling of CNS neurons involved in the innervation of the adrenal gland. Horm. Metab. Res. 30: 329–333, 1998.
 154. Troisi, R. J., S. T. Weiss, D. R. Parker, D. Sparrow, J. B. Young, and L. Landsberg. Relation of obesity and diet to sympathetic nervous system activity. Hypertension 17: 669–677, 1991.
 155. Trunet, P., F. Lhoste, J.‐C. Ansquer, S. Kestenbaum, C. Sabatier, J.‐P. Tillement, and M. Rapin. Decreased plasma epinephrine concentrations after glucose ingestion in humans. Metabolism 33: 101–103, 1984.
 156. Uemura, K., and J. B. Young. Effects of fat feeding on epinephrine secretion in the rat. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R1329–R1335, 1994.
 157. Valenta, L. J., A. N. Elias, and H. Eisenberg. ACTH stimulation of adrenal epinephrine and norepinephrine release. Horm. Res. 23: 16–20, 1986.
 158. van Lieshout, J. J., W. Wieling, J. M. Karemaker, and D. L. Eckberg. The vasovagal response. Clin. Sci. 81: 575–586, 1991.
 159. Varano, L., Comparative aspects of the adrenal chromaffin cells of vertebrates. In: Biogenic Amines in Development, edited by H. Parvez and S. Parvez. Amsterdam: Elsevier/North Holland Biomedical Press, 1980, p. 213–240.
 160. Verhofstad, A.A.J., R. E. Coupland, and B. Colenbrander. Immunohistochemical and biochemical analysis of the development of the noradrenaline‐and adrenaline‐storing cells in the adrenal medulla of the rat and pig. Arch. Histol. Cytol. 52 (Suppl): 351–360, 1989.
 161. Verhofstad, A.A.J., R. E. Coupland, T. R. Parker, and M. Goldstein. Immunohistochemical and biochemical study on the development of the noradrenaline‐and adrenaline‐storing cells of the adrenal medulla of the rat. Cell Tissue Res. 242: 233–243, 1985.
 162. Victor, R. G., P. Thorén, D. A. Morgan, and A. L. Mark. Differential control of adrenal and renal sympathetic nerve activity during hemorrhagic hypotension in rats. Circ. Res. 64: 686–694, 1989.
 163. Vollmer, R. R., A. Baruchin, S. S. Kolibal‐Pegher, S. P. Corey, E. M. Stricker, and B. B. Kaplan. Selective activation of norepinephrine‐ and epinephrine‐secreting chromaffin cells in rat adrenal medulla. Am. J. Physiol. 263 (Regulatory Integrative Comp. Physiol. 32): R716–R721, 1992.
 164. Wakade, T. D., M. A. Blank, R. K. Malhotra, R. Pourcho, and A. R. Wakade. The peptide VIP is a neurotransmitter in rat adrenal medulla: physiological role in controlling catecholamine secretion. J. Physiol. (Lond.) 444: 349–362, 1991.
 165. Walker, C.‐D. Chemical sympathectomy and maternal separation affect neonatal stress responses and adrenal sensitivity to ACTH. Am. J. Physiol. 268 (Regulatory Integrative Comp. Physiol. 37): R1281–R1288, 1995.
 166. Ward, K. D., D. Sparrow, L. Landsberg, J. B. Young, P. S. Vokonas, and S. T. Weiss. The relationship of epinephrine excretion to serum lipid levels: the Normative Aging Study. Metabolism 43: 509–513, 1994.
 167. Webber, J., and I. A. Macdonald. The cardiovascular, metabolic and hormonal changes accompanying acute starvation in men and women. Br. J. Nutr. 71: 437–447, 1994.
 168. Weyer, C., P. A. Tataranni, S. Snitker, E. Danforth, Jr., and E. Ravussin. Increase in insulin action and fat oxidation after treatment with CL 316,243, a highly selective β3‐adrenoceptor agonist in humans. Diabetes 47: 1555–1561, 1998.
 169. Williams, P. D., I. B. Puddey, L. J. Beilin, and R. Vandongen. Genetic influences on plasma catecholamines in human twins. J. Clin. Endocrinol. Metab. 77: 794–799, 1993.
 170. Wong, D. L., R. J. Hayashi, and R. D. Ciaranello. Regulation of biogenic amine methyltransferases by glucocorticoids via S‐adenosylmethionine and its metabolizing enzymes, methionine adenosyltransferase and S‐adenosylhomocysteine hydrolase. Brain Res. 330: 209–216, 1985.
 171. Wong, D. L., A. Lesage, B. Siddall, and J. W. Funder. Glucocorticoid regulation of phenylethanolamine N‐methyl‐transferase in vivo. FASEB J. 6: 3310–3315, 1992.
 172. Wong, D. L., A. Lesage, S. White, and B. Siddall. Adrenergic expression in the rat adrenal gland: multiple developmental regulatory mechanisms. Dev. Brain Res. 67: 229–236, 1992.
 173. Wurtman, R. J., and J. Axelrod. Control of enzymatic synthesis of adrenaline in the adrenal medulla by adrenal cortical steroids. J. Biol. Chem. 241: 2301–2305, 1966.
 174. Yamada, K., N. Karasawa, T. Fujii, G. Isomura, I. Takagi, M. Sakai, and I. Nagatsu. Immunocytochemical localization of amines and peptides in adrenal chromaffin cells of the house shrew (Suncus murinus). Biog. Amines 7: 223–234, 1990.
 175. Yang, Y. T., and M. A. McElligott. Multiple actions of β‐adrenergic agonists on skeletal muscle and adipose tissue. Biochem. J. 261: 1–10, 1989.
 176. Young, J. B., P. A. Daly, K. Uemura, and F. Chaouloff. Effects of chronic lard feeding on sympathetic nervous system activity in the rat. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R1320–R1328, 1994.
 177. Young, J. B., and L. Landsberg. Adrenergic influence on peripheral hormone secretion. In: Adrenoceptors and Catecholamine Action, Part B, edited by G. Kunos. New York: John Wiley & Sons, 1983, p. 157–217.
 178. Young, J. B., and I. A. Macdonald. Sympathoadrenal activity in human obesity: heterogeneity of findings since 1980. Int. J. Obes. 16: 959–967, 1992.
 179. Young, J. B., R. M. Rosa, and L. Landsberg. Dissociation of sympathetic nervous system and adrenal medullary responses. Am. J. Physiol. 247 (Endocrinol. Metab. 10): E35–E40, 1984.
 180. Young, J. B., R. J. Troisi, S. T. Weiss, D. R. Parker, D. Sparrow, and L. Landsberg. Relationship of catecholamine excretion to body size, obesity, and nutrient intake in middle‐aged and elderly men. Am. J. Clin. Nutr. 56: 827–834, 1992.
 181. Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425–432, 1994.
 182. Zigmond, R. E., M. A. Schwarzschild, and A. R. Rittenhouse. Acute regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Annu. Rev. Neurosci. 12: 415–461, 1989.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

James B. Young, Lewis Landsberg. Synthesis, Storage, and Secretion of Adrenal Medullary Hormones: Physiology and Pathophysiology. Compr Physiol 2011, Supplement 23: Handbook of Physiology, The Endocrine System, Coping with the Environment: Neural and Endocrine Mechanisms: 3-19. First published in print 2001. doi: 10.1002/cphy.cp070401