Comprehensive Physiology Wiley Online Library

Catecholamines in the Brain and Responses to Environmental Challenges

Full Article on Wiley Online Library


The sections in this article are:

1 Neuroanatomy of Central Catecholamine Systems
1.1 Norepinephrine
1.2 Dopamine
1.3 Epinephrine
2 Stress‐Responsive Catecholamine Centers in the Brain
2.1 Nucleus of the Solitary Tract
2.2 Right Ventrolateral Medulla
2.3 Caudal Ventrolateral Medulla
2.4 Dorsal Medulla
2.5 Medial Medulla
2.6 Locus Ceruleus
2.7 Hypothalamus
2.8 Paraventricular Nucleus
2.9 Amygdala
3 Central Catecholamine Responses to Stressors
3.1 Hypoglycemia
3.2 Hemorrhage
3.3 Hypoxia
3.4 Exercise
3.5 Altered Environmental Temperature
3.6 Pain
3.7 Immobilization
4 Conclusions
Figure 1. Figure 1.

A: Microdialysate norepinephrine (NE) levels (means ± SEM) in the hypothalamic paraventricular nucleus (PVN) in SHAM, adrenalectomized (ADX), and ADX rats after 7–10 days of glucocorticoid (hydrocortisone hemisuccinate) treatment (ADX + CORT), * indicates a significant difference (p > 0.001, analysis of variance (ANOVA) for repeated measurements) between SHAM or ADX + CORT and ADX groups.

Figure 2. Figure 2.

Microdialysate NE levels in the PVN in control rats and in rats after 7 days of glucocorticoid (hydrocortisone hemisuccinate) treatments. * indicates a significant difference between control and CORT‐treated groups (p > 0.01, ANOVA for repeated measurements). Same abbreviations as for Figure .

Figure 1.

A: Microdialysate norepinephrine (NE) levels (means ± SEM) in the hypothalamic paraventricular nucleus (PVN) in SHAM, adrenalectomized (ADX), and ADX rats after 7–10 days of glucocorticoid (hydrocortisone hemisuccinate) treatment (ADX + CORT), * indicates a significant difference (p > 0.001, analysis of variance (ANOVA) for repeated measurements) between SHAM or ADX + CORT and ADX groups.

Figure 2.

Microdialysate NE levels in the PVN in control rats and in rats after 7 days of glucocorticoid (hydrocortisone hemisuccinate) treatments. * indicates a significant difference between control and CORT‐treated groups (p > 0.01, ANOVA for repeated measurements). Same abbreviations as for Figure .

 1. Abercrombie, E. D., and B. L. Jacobs. Systemic naloxone administration potentiates locus coeruleus noradrenergic neuronal activity under stressful but not non‐stressful conditions. Brain Res. 441: 362–366, 1988.
 2. Aston‐Jones, G., J. Rajkowski, P. Kubiak, and T. Alexinsky. Locus coeruleus neurons in monkey are selectively activated by attended cues in a vigilance task. J. Neurosci. 14: 4467–4480, 1994.
 3. Aston‐Jones, G., M. T. Shipley, G. Chouvet, M. Ennis, E. Van Bockstaele, V. Pieribone, R. Shiekhattar, H. Akaoka, G. Drolet, and B. Astier. Afferent regulation of locus coeruleus neurons: anatomy, physiology and pharmacology. Prog. Brain Res. 88: 47–75, 1991.
 4. Basbaum, A. L., Anatomical studies of the noradrenergic projection to the spinal cord dorsal horn. In: Towards the Use of Noradrenergic Agonists for the Treatment of Pain, edited by J. M. Besson, and G. Guillbaud. New York: Elsevier Science Publishers BV, p. 77–89, 1992.
 5. Borg, W. P., During, M. J., Sherwin, R. S., Borg, M. A., Brines, M. L. and G. I. Shulman. Ventromedial hypothalamic lesions in rats suppress counterregulatory responses to hypoglycemia. J. Clin. Invest. 93: 1677–1682, 1994.
 6. Borg, W. P., Sherwin, R. S., During, M. J., Borg, M. A. and G. I. Shulman. Local ventromedial hypothalamus glucopenia triggers counterregulatory hormone release. Diabetes 44: 180–184, 1995.
 7. Cahill, L., N. M. Weinberger, B. Roozendaal, and J. L. McGaugh. Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23: 227–228, 1999.
 8. Cannon, W. B. Bodily Changes in Pain, Hunger, Fear and Rage. New York: D. Appleton & Co., 1929.
 9. Cannon, W. B. The Wisdom of the Body. New York: W.W. Norton, 1939.
 10. Chai, C. Y., A.M.Y. Lin, S. R. Hu, J. R. Wang, L. S. Kao, J. S. Kuo, and D. S. Goldstein. Sympathoadrenal excitation and inhibition by lower brainstem stimulation in cats. J. Auton. Nerv. Sys. 33: 35–46, 1991.
 11. Chalmers, J., and P. Pilowsky. Brainstem and bulbospinal neurotransmitter systems in the control of blood pressure. J. Hypertension 9: 675–694, 1991.
 12. Chan, R. K., C. A. Peto, and P. E. Sawchenko. A1 catecholamine cell group: fine structure and synaptic input from the nucleus of the solitary tract. J. Comp. Neurol. 351: 62–80, 1994.
 13. Chapman, W. P., H. R. Schroeder, G. Geyer, M.A.B. Brazier, C. Fages, J. L. Poppen, H. C. Solomon, and P. I. Yakovlev. Physiological evidence concerning importance of the amygdaloid nuclear region in the integration of circulatory function in man. Science 120: 949–950, 1954.
 14. Chozik, B. S. The behavioral effects of lesions of the amygdala: A review. Intern. J. Neurosc. 29: 205–221, 1986.
 15. Ciriello, J., C. V. Rohlicek, and C. Polosa. Aortic baroreceptor reflex pathway: a functional mapping using [3H]2‐deoxyglucose autoradiography in the rat. J. Auton. Nerv. Sys. 8: 111–128, 1983.
 16. Doba, N., and D. J. Reis. Acute fulminating neurogenic hypertension produced by brainstem lesions in rat. Circ. Res. 32: 584–593, 1973.
 17. During, M. J., P. Leone, K. E. Davis, D. Kerr, and R. S. Sherwin. Glucose modulates rat substantia nigra GABA release in vivo via ATP‐sensitive potassium channels. J. Clin. Invest. 95: 2403–2408, 1995.
 18. Elam, M., T. H. Svensson, and P. Thoren. Differentiated cardiovascular afferent regulation of locus coeruleus neurons and sympathetic nerves. Brain Res. 358: 77–84, 1985.
 19. Elam, M., T. Yao, T. H. Svensson, and P. Thoren. Regulation of locus coeruleus neurons and splanchnic, sympathetic nerves by cardiovascular afferents. Brain Res. 290: 281–287, 1984.
 20. Gartside, S. E., M. F. Suaud‐Chagny, and M. Tappaz. Evidence that activation of the hypothalamo‐pituitary‐adrenal axis by electrical stimulation of the noradrenergic A1 group is not mediated by noradrenaline. Neuroendocrinology 62: 2–12, 1995.
 21. Gold, P. W., and G. P. Chrousos. The endocrinology of melancholic and atypical depression: relation to neurocircuitry and somatic consequences. Proc. Assoc. Am. Physicians 111: 22–34, 1999.
 22. Goldfien, A. Effects of glucose deprivation on the sympathetic outflow to the adrenal medulla and adipose tissue. Pharmacol. Rev. 18: 303–311, 1966.
 23. Goldstein, D. S. Stress, Catecholamines, and Cardiovascular Disease. New York: Oxford University Press, 1995.
 24. Granata, A. R., M. Kumada, and D. J. Reis. Sympathoinhibition by A1‐noradrenergic neurons is mediated by neurons in the C1 area of the rostral medulla. J. Auton. Nerv. Sys. 14: 387–395, 1985.
 25. Granata, A. R., Y. Numao, M. Kumada, and D. J. Reis. A1 noradrenergic neurons tonically inhibit sympathoexcitatory neurons of C1 area in rat brainstem. Brain Res. 377: 127–146, 1986.
 26. Gray, T. S., Limbic pathways and neurotransmitters as mediators of autonomic and neuroendocrine responses to stress. In: Stress, Neurobiology and Neuroendocrinology, edited by M. R. Brown, G. F. Koob, and C. Rivier. New York: Marcel Dekker, Inc., p. 73–89, 1991a.
 27. Gray, T. S., Amygdala: Role in autonomic and neuroendocrine responses to stress. In: Stress, Neuropeptides, and Systemic Disease, edited by J. W. McCubbin, P. G. Kaufman, and C. B. Nemeroff. New York: Academic Press, Inc., p. 37–53, 1991b.
 28. Hattori, S., Naoi, M., and Nishino, H. Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running. Brain Res. Bull. 35: 41–49, 1994.
 29. Hegarty, A. A., and W. H. Vogel. Modulation of the stress response by ethanol in the rat frontal cortex. Pharmacol Biochem. Behav. 45: 327–334, 1993.
 30. Hegarty, A. A., and W. H. Vogel. The effect of acute and chronic diazepam treatment on stress‐induced changes in cortical dopamine in the rat. Pharmacol. Biochem. Behav. 52: 771–778, 1995.
 31. Itoi, K., D. L. Helmreich, M. O. Lopez‐Figueroa, and S. J. Watson. Differential regulation of corticotropin‐releasing hormone and vasopressin gene transcription in the hypothalamus by norepinephrine. J. Neurosci. 19: 5464–5472, 1999.
 32. Iwata, J., J. E. LeDoux, M. P. Meeley, S. Arneric, and D. J. Reis. Intrinsic neurons in the amygdaloid field projected to by the medical geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Res. 383: 195–214, 1986a.
 33. Iwata, J., J. E. LeDoux, and D. J. Reis. Destruction of intrinsic neurons in the lateral hypothalamus disrupts the classical conditioning of autonomic but not behavioral emotional responses in the rat. Brain Res. 368: 161–166, 1986b.
 34. Kadekaro, M., H. Savaki, and L. Sokoloff. Metabolic mapping of neural pathways involved in gastrosecretory response to insulin hypoglycaemia in the rat. J. Physiol. (Lond) 300: 393–407, 1980.
 35. Keller‐Wood, M. E., C. E. Wade, J. Shinsako, L. C. Keil, G. R. Van Loon, and M. F. Dallman. Insulin‐induced hypoglycemia in conscious dogs: effect of maintaining carotid arterial glucose levels on the adrenocorticotropin, epinephrine, and vasopressin responses. Endocrinology 112: 624–632, 1983.
 36. Lachuer, J., S. Gaillet, B. Barbagli, M. Buda, and M. Tappaz. Differential early time course activation of the brainstem catecholaminergic groups in response to various stresses. Neuroendocrinology 53: 589–596, 1991.
 37. Makino, S., P. W. Gold, and J. Schulkin. Effects of corticosterone on CRH mRNA and content in the bed nucleus of the stria terminalis; comparison with the effects in the central nucleus of the amygdala and the paraventrucular nucleus of the hypothalamus. Brain Res. 657: 141–149, 1994.
 38. LeDoux, J. Fear and the brain: where have we been, and where are we going? Biol. Psychiatry 44: 1229–1238, 1998.
 39. Li, H. Y., A. Ericsson, and P. E. Sawchenko. Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms. Proc. Natl. Acad. Sci. U.S.A. 93: 2359–2364, 1996.
 40. Maren, S. Long‐term potentiation in the amygdala: a mechanism for emotional learning and memory. Trends Neurosci. 22: 561–567, 1999.
 41. McCall, R. B. GABA‐mediated inhibition of sympathoexcitatory neurons by midline medullary stimulation. Am. J. Physiol. 255 (Regulatory Integrative Comp. Physiol. 24): R605–R615, 1988.
 42. McCall, R. B., Central neurotransmitters involved in cardiovascular regulation. In: Cardiovascular Pharmacology, edited by M. J. Antonaccio New York: Raven, p. 161–200, 1990.
 43. Mizobe, T., K. Maghsoudi, K. Sitwala, G. Tianzhi, J. Ou, and M. Maze. Antisense technology reveals the a2A adrenoceptor to be the subtype mediating the hypnotic response to the highly selective agonist, dexmedetomidine, in the locus coeruleus of the rat. J. Clin. Invest. 98: 1076–1080, 1996.
 44. Morris, M. J., J. A. Hastings, and J. M. Pavia. Catecholamine release in the rat hypothalamic paraventricular nucleus in response to haemorrhage, desipramine and potassium. Brain Res. 665: 5–12, 1994.
 45. Mtui, E. P., M. Anwar, R. Gomez, D. J. Reis, and D. A. Ruggiero. Projections from the nucleus tractus solitarii to the spinal cord. J. Comp. Neurol. 337: 231–252, 1993.
 46. Nagatani, S., H. Tsukamura, K. Murahashi, D. C. Bucholtz, D. L. Foster, and K.‐I. Maeda. Paraventricular norepinephrine release mediates glucoprivic suppression of pulsatile luteinizing hormone secretion. Endocrinology 137: 3183–3186, 1996.
 47. Nakane, H., N. Shimizu, and T. Hori. Stress‐induced norepinephrine release in the rat prefrontal cortex measured by microdialysis. Am. J. Physiol. 267 (Regulatory Integrative Comp. Physiol. 36): R1559–R1566, 1994.
 48. Nathan, M. A., and D. J. Reis. Chronic labile hypertension produced by lesions of the nucleus tractus solitarii in the cat. Circ. Res. 40: 72–81, 1977.
 49. Sawchenko, P. E. Adrenalectomy‐induced enhancement of CRF and vasopressin immunoreactivity in parvocellular neurosecretory neurons: anatomic, peptide, and steroid specificity. J. Neurosci. 7: 1093–1106, 1987.
 50. Niehoff, D. L., and M. J. Kuhar. Benzodiazepine receptors: Localization in rat amygdala. J. Neurosci. 3: 2091–2097, 1983.
 51. Orosco, M., and S. Nicolaidis. Insulin and glucose‐induced changes in feeding and medial hypothalamic monoamines revealed by microdialysis in rats. Brain Res. Bull. 33: 289–297, 1994.
 52. Pacak, K., R. Kvetnansky, M. Palkovits, K. Fukuhara, G. Yadid, I. J. Kopin, and D. S. Goldstein. Adrenalectomy augments in vivo release of norepinephrine in the paraventricular nucleaus during immobilization stress. Endocrinology 133: 1404–1410, 1993a.
 53. Pacak, K., R. McCarty, M. Palkovits, I. J. Kopin, and D. S. Goldstein. Effects of immobilization on in vivo release of norepinephrine in the bed nucleus of the stria terminalis in conscious rats. Brain Res. 688: 242–246, 1995a.
 54. Pacak, K., M. Palkovits, I. J. Kopin, and D. S. Goldstein. Stress‐induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary‐adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front Neuroendocrinol. 16: 89–150, 1995b.
 55. Pacak, K., M. Palkovits, R. Kvetnansky, K. Fukuhara, I. Armando, I. J. Kopin, and D. S. Goldstein. Effects of single or repeated immobilization on release of norepinephrine and its metabolites in the central nucleus of the amygdala in conscious rats. Neuroendocrinology 57: 626–633, 1993b.
 56. Pacak, K., M. Palkovits, R. Kvetnansky, P. Matern, C. Hart, I. J Kopin, and D. S. Goldstein. Catecholaminergic inhibition by hypercortisolemia in the paraventricular nucleus of conscious rats. Endocrinology 136: 4814–4819, 1995c.
 57. Pacak, K., M. Palkovits, R. Kvetnansky, G. Yadid, I. J. Kopin, and D. S. Goldstein. Effects of various stressors on in vivo norepinephrine release in the hypothalamic paraventricular nucleus and on the pituitary‐adrenocortical axis. Ann. N.Y. Acad. Sci. 771: 115–130, 1995d.
 58. Pacak, K., M. Palkovits, G. Yadid, R. Kvetnansky, I. J. Kopin, and D. S. Goldstein. Heterogeneous neurochemical responses to different stressors: a test of Selye's doctrine of nonspecificity. Am. J. Physiol. 27 5, 1998. (Regulatory Integrative Comp. Physiol. 44) R1247–R1255, 1998.
 59. Pagliari, R., and L. Peyrin. Norepinephrine release in the rat frontal cortex under treadmill exercise: a study with microdialysis. J. Appl. Physiol. 78: 2121–2130, 1995.
 60. Pastuszko, A., N. Saadat‐Lajevardi, J. Chen, O. Tammela, D. F. Wilson, and M. Delivoria‐Papadopoulos. Effects of graded levels of tissue oxygen pressure on dopamine metabolism in the striatum of newborn piglets. J. Neurochem. 60: 161–166, 1993.
 61. Rajkowski, J., P. Kubiak, and G. Aston‐Jones. Locus coeruleus activity in monkey: phasic and tonic changes are associated with altered vigilance. Brain Res. Bull. 35: 607–616, 1994.
 62. Reis, D. J., and J. E. LeDoux. Some central neural mechanisms governing resting and behaviorally couples control of blood pressure. Circulation 76 (Suppl. I): 12–19, 1987.
 63. Harbuz, M. S., R. G. Rees, and S. L. Lightman. HPA axis responses to acute stress and adrenalectomy during adjuvant‐induced arthritis in the rat. Am. J. Physilo. 264: R179–R185, 1993.
 64. Ixart, G., P. Siaud, M. Mekaouche, G. Barbanel, L. Givalois, and I. Assenmacher. Short‐term but not long‐term adrenalectomy modulates amplitude and frequency of the CRH41 episodic release in push‐pull cannulated median eminence of free‐moving rats. Brain Res. 658: 185–191, 1994.
 65. Scheurink, A.J.W., A. B. Steffens, and R.P.A. Gaykema. Hypothalamic adrenoceptors mediate sympathoadrenal activity in exercising rats. Am. J. Physiol. 259 (Regulatory Integrative Comp. Physiol. 28): R470–R477, 1990.
 66. Schulkin, J., P. W. Gold, and B. S. McEwen. Induction of corticotropin‐releasing hormone gene expression by glucocorticoids: implication for understanding the states of fear and anxiety and allostatic load. Psychoneuroendocrinology 23: 219–243, 1998.
 67. Shibasaki, T., C. Tsumori, T. Hotta, K. Imaki Yamada, and H. Demura. The response pattern of noradrenaline release to repeated stress in the hypothalamic paraventricular nucleus differs according to the form of stress in rats. Brain Res. 670: 169–172, 1995.
 68. Shido, O., A. A. Romanovsky, A. L. Ungar, and C. M. Blatteis. Role of intrapreoptic norepinephrine in endotoxin‐induced fever in guinea pigs. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34: R1369–R1375, 1993.
 69. Smith, O. A., and J. L. DeVito. Central neural integration for the control of autonomic responses associated with emotion. Ann. Rev. Neurosci. 4: 43–65, 1984.
 70. Smith, O. A., J. L. DeVito, and C. A. Astley. Neurons controlling cardiovascular responses to emotion are located in lateral hypothalamus‐perifornical region. Am. J. Physiol. 259: R943–R954, 1990.
 71. Somers, V. K., M. E. Dyken, A. L. Mark, and F. M. Abboud. Sympathetic‐nerve activity during sleep in normal subjects. N. Engl. J. Med. 328: 303–307, 1993.
 72. Song, D., M. Olano, D. F. Wilson, A. Pastuszko, O. Tammela, K. Nho, and R. G. Shorr. Comparison of the efficacy of blood and polyethylene glycol‐hemoglobin in recovery of newborn piglets from hemorrhagic hypotension: effect on blood pressure, cortical oxygen, and extracellular dopamine in the brain. Transfusion 35: 552–558, 1995.
 73. Sun, M. K., and D. J. Reis. Central neural mechanisms mediating excitation of sympathetic neurons by hypoxia. Prog. Neurobiol. 44: 197–219, 1994.
 74. Sun, M. K., B. S. Young, J. T. Hackett, and P. G. Guyenet. Rostral ventrolateral medullary neurons with intrinsic pacemaker properties are not catecholaminergic. Brain Res. 451: 345–349, 1988.
 75. Szemeredi, K., G. Bagdy, R. Stull, I. J. Kopin, and Goldstein. Cortisol and alpha‐2 adrenergic regulation of sympathoneural activity. Biogenic. Amines 7: 445–454, 1990.
 76. Tanaka, T., H. Yokoo, K. Mizoguchi, M. Yoshida, A. Tsuda, and M. Tanaka. Noradrenaline release in the rat amygdala is increased by stress: studies with intracerebral microdialysis. Brain Res. 544: 174–176, 1991.
 77. Usher, M., J. D. Cohen, D. Servan‐Schreiber, J. Rajkowski, and G. Aston‐Jones. The role of locus coeruleus in the regulation of cognitive performance. Science 283: 549–554, 1999.
 78. Vazdarjanova, A., and J. L. McGaugh. Basolateral amygdala is not critical for cognitive memory of contextual fear conditioning. Proc. Natl. Acad. Sci. U.S.A. 95: 15003–15007, 1998.
 79. Yonetani, M., C. C. Huang, J. McGowan, N. S. Lajevardi, A. Pastuszko, M. Delivoria‐Papadopoulos, and D. F. Wilson. Effect of hemorrhagic hypotension on extracellular level of dopamine, cortical oxygen pressure and blood flow in brain of newborn piglets. Neurosci. Lett. 180: 247–252, 1994.
 80. Zhang, T. X., R. M. Harper, and H. Ni. Cryogenic blockade of the central nucleus of the amygdala attenuates aversively conditioned blood pressure and respiratory responses. Brain Res. 386: 136–145, 1986.
 81. Ziegler, D. R., W. A. Cass, and J. P. Herman. Excitatory influence of the locus coeruleus in hypothalamic‐pituitary‐ adrenocortical axis responses to stress. J. Neuroendocrinol. 11: 361–369, 1999.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

David S. Goldstein, Karel Pacak. Catecholamines in the Brain and Responses to Environmental Challenges. Compr Physiol 2011, Supplement 23: Handbook of Physiology, The Endocrine System, Coping with the Environment: Neural and Endocrine Mechanisms: 45-60. First published in print 2001. doi: 10.1002/cphy.cp070403