Comprehensive Physiology Wiley Online Library

Proopiomelanocortin Synthesis and Cell‐Specific Processing

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Common Precursor to Corticotropin β‐Endorphin, Melanotropins
1.1 A Short History of the Discovery of Corticotropin and Proopiomelanocortin
1.2 The Structure of the Proopiomelanocortin Precursor Molecule
1.3 Steps in Biosynthesis and Processing of Proopiomelanocortin in Anterior Pituitary
1.4 Additional Biosynthetic Steps in the Intermediate Pituitary
1.5 Proopiomelanocortin biosynthesis in Central Nervous System Neurons
1.6 Developmental Changes in the Pattern of Expression of Proopiomelanocortin
1.7 Tools to Study Proopiomelanocortin Biosynthesis
2 Enzymes Responsible for Proopiomelanocortin Biosynthetic Processing
2.1 Endoproteases
2.2 Carboxypeptidases
2.3 Peptidylglycine α‐amidating monooxygenase (PAM)
2.4 Cytochrome b561
2.5 α‐N‐acetyltransferase
2.6 Phosphorylation of Serine Residues
2.7 Glycosylation of Asparagine and Threonine
2.8 Cell Biological Aspects of Proopiomelanocortin Biosynthesis
3 Regulation of Proopiomelanocortin Synthesis, Processing, and Secretion
3.1 Responses to Environmental Stimuli
3.2 Responses to Hormones and Pharmacological Agents
4 Conclusion
Figure 1. Figure 1.

Proopiomelanocortin‐structure and biosynthetic processing.

Figure 2. Figure 2.

Constituents of secretory granules.

Figure 3. Figure 3.

Intracellular aspects of peptide processing.



Figure 1.

Proopiomelanocortin‐structure and biosynthetic processing.



Figure 2.

Constituents of secretory granules.



Figure 3.

Intracellular aspects of peptide processing.

References
 1. Alarcon, C., B. Lincoln, and C. J. Rhodes. The biosynthesis of the subtilisin‐related proprotein convertase PC3, but not that of the PC2 convertase, is regulated by glucose in parallel to proinsulin biosynthesis in rat pancreatic islets. J. Biol. Chem. 268: 4276–4280, 1993.
 2. Allen, R. G., C. Carey, J. D. Parker, M. T. Mortrud, S. H. Mellon, and M. J. Low. Targeted ablation of pituitary pro‐POMC cells by Herpes Simplex virus‐1 thymidine kinase differentially regulates mRNAs encoding the ACTH receptor and aldosterone synthase in the mouse adrenal gland. Mol. Endocrinol. 9: 1005–1016, 1995.
 3. Arvan, P., and J. D. Castle. Protein sorting and secretion granule formation in regulated secretory cells. Trends Cell. Biol. 2: 327–331, 1992.
 4. Austin, C. D., and D. Shields. Formation of nascent secretory vesicles from the trans‐Golgi network of endocrine cells is inhibited by tyrosine kinase and phosphatase inhibitors. J. Cell Biol. 135: 1471–1483, 1996.
 5. Autelitano, D. J., M. Blum, and J. L. Roberts. Changes in rat pituitary nuclear and cytoplasmic POMC RNAs associated with adrenalectomy and glucocorticoid replacement. Mol. Cell Endocrinol. 66: 171–180, 1989.
 6. Baenziger, J. U. Glycosylation: to what end for the glycoprotein hormones? Endocrinology 137: 1520–1522, 1996.
 7. Baumann, J. B., A. N. Eberle, E. Christen, W. Ruch, and J. Girard. Steroidogenic activity of highly potent melanotropic peptides in the adrenal cortex of the rat. Acta Endocrinol 113: 396–402, 1986.
 8. Beatty, D. M., S. J. Morris, and B. M. Chronwall. Heterogeneity in POMC expression among explanted melanotropes decreases with time in culture and bromocriptine treatment. Peptides 19: 659–665, 1998.
 9. Bell, J., D. E. Ash, L M Snyder, R. Kulathila, N. J. Blackburn, and D. J. Merkler. Structural and functional investigations on the role of zinc in bifunctional rat peptidylglycine α‐amidating enzyme. Biochemistry 36: 16239–16246, 1997.
 10. Bell, M. E., T. R. Myers, and D. A. Myers. Expression of POMC and PC1 and PC2 in the late gestation fetal sheep pituitary. Endocrinology 139: 5135–5143, 1998.
 11. Benjannet, S., T. Reudelhuber, C. Mercure, N. Rondeau, M. Chretien, and N. G. Seidah. Proprotein conversion is determined by a multiplicity of factors including convertase processing, substrate specificity, and intracellular environment: cell type‐specific processing of human prorenin by PC1. J. Biol. Chem. 267: 11417–11423, 1992.
 12. Benjannet, S., N. Rondeau, R. Day, M. Chretien, and N. G. Seidah. PC1 and PC2 are proprotein convertases capable of cleaving proopiomelanocortin at distinct pairs of basic residues. Proc. Natl. Acad. Sci. U.S.A. 88: 3564–3568, 1991.
 13. Benjannet, S., N. Rondeau, L. Paquet, A. Boudreault, C. Lazure, M. Chretien, and N. G. Seidah. Comparative biosynthesis, covalent post‐translational modifications and efficiency of prosegment cleavage of PC1 and PC2; glycosylation, sulfation and identification of the intracellular site of prosegment cleavage of PC1 and PC2. Biochem. J. 294: 735–743, 1993.
 14. Bennett, H.P.J. Biosynthetic fate of the amino‐terminal fragment of POMC within the intermediate lobe of the mouse pituitary. Peptides 7: 615–622, 1986.
 15. Bennett, H.P.J., C. A. Browne, and S. Solomon. Characterization of 8 forms of corticotropin‐like intermediate lobe peptide from rat intermediate pituitary. J. Biol. Chem. 257: 10096–10102, 1982.
 16. Birch, N. P., D. J. Hakes, J. E. Dixon, and E. Mezey. Distribution and regulation of the candidate prohormone processing enzymes SPC2 and SPC3 in adult rat brain. Neuropeptides 27: 307–322, 1994.
 17. Birch, N. P., H. L. Tracer, D. J. Hakes, and Y. P. Loh. Coordinate regulation of mRNA levels of pro‐opiomelanocortin and the candidate processing enzymes PC2 and PC3, but not furin, in rat pituitary intermediate lobe. Biochem. Biophys. Res. Commun. 179: 1311–1319, 1991.
 18. Block, W. A., M. L. Draper, J. C. Rose, and J. Schwartz. Maturation of cortisol responses to adrenocorticotropic hormone in twin fetal sheep in vivo. Am. J. Obstet. Gynecol. 181: 498–502, 1999.
 19. Bloomquist, B. T., D. N. Darlington, R. E. Mains, and B. A. Eipper. Resp18, a novel endocrine secretory protein transcript, and 4 other transcripts are regulated in parallel with POMC in melanotropes. J. Biol. Chem. 269: 9113–9122, 1994.
 20. Bloomquist, B. T., B. A. Eipper, and R. E. Mains. Prohormone‐converting enzymes: regulation and evaluation of function using antisense RNA. Mol. Endocrinol. 5: 2014–2024, 1991.
 21. Bloomquist, B. T., and R. E. Mains. The eukaryotic prohormone‐processing endoproteases. Cell Physiol. Biochem. 3: 197–212, 1993.
 22. Bohler, H. C., H. Tracer, G. R. Merriam, and S. L. Petersen. Changes in proopiomelanocortin messenger ribonucleic acid levels in the rostral periarcuate region of the female rat during the estrous cycle. Endocrinology 128: 1265–1269, 1991.
 23. Braks, J.A.M., and G.J.M. Martens. 7B2 is a neuroendocrine chaperone that transiently interacts with PC2 in the secretory pathway. Cell 78: 263–273, 1994.
 24. Breslin, M. B., I. Lindberg, S. Benjannet, J. P. Mathis, C. Lazure, and N. G. Seidah. Differential processing of proenkephalin by PCs 1 and 2 and furin. J. Biol. Chem. 268: 27084–27093, 1993.
 25. Buonasissi, V., G. Sato, and A. I. Cohen. Hormone‐producing cultures of adrenal and pituitary tumor origin. Proc. Natl. Acad. Sci. U.S.A. 48: 221–225, 1962.
 26. Castro, M. G., and E. E. Morrison. Post‐translational processing of proopiomelanocortin in the pituitary and in the brain. Crit. Rev. Neurobiol. 11: 35–57, 1997.
 27. Cawley, N. X., V. Olsen, C. F. Zhang, H. C. Chen, M. Tan, and Y. P. Loh. Activation and processing of non‐anchored yapsin 1 (Yap3p). J. Biol. Chem. 273: 584–591, 1999.
 28. Cheung, S., and R. P. Hammer. Gonadal steroid hormone regulation of proopiomelanocortin gene expression in arcuate neurons that innervate the medial preoptic area of the rat. Neuroendocrinology 62: 283–292, 1995.
 29. Cheung, S., J. Salinas, and R. P. Hammer. Gonadal steroid hormone‐dependence of beta‐endorphin‐like immunoreactivity in the medial preoptic area of the rat. Brain Res. 675: 83–88, 1995.
 30. Creemers, J.W.M., M. Vey, W. Schafer, T.A.Y. Ayoubi, A.J.M. Roebroek, H. D. Klenk, W. Garten, and W.J.M. Van De Ven. Endoproteolytic cleavage of its propeptide is a prerequisite for efficient transport of furin out of the ER. J. Biol. Chem. 270: 2695–2702, 1995.
 31. D'Souza, N. B., and I. Lindberg. Evidence for the phosphorylation of a proenkephalin‐derived peptide, peptide B. J. Biol. Chem. 263: 2548–2552, 1988.
 32. Dallman, M. F., S. F. Akana, L. Jacobson, N. Levin, C. S. Cascio, and J. Shinsako. Characterization of corticosterone feedback regulation of ACTH secretion. Ann. N.Y. Acad. Sci. 512: 402–414, 1987.
 33. Day, R., M. K.‐H. Schafer, S. J. Watson, M. Chretien, and N. G. Seidah. Distribution and regulation of the prohormone convertases PC1 and PC2 in the rat pituitary. Mol. Endocrinol. 6: 485–497, 1992.
 34. De Wied, D., and J. M. Van Rec. Neuropeptides: animal behavior and human psychopathology. Eur. Arch. Psychiatry Neurol. Sci. 238: 323–331, 1989.
 35. De Wildt, D. J., J. C. Van der Ven, P. Van Bergen, H. De Lang, and D. H. Versteeg. A hypotensive and bradycardic action of gamma 2‐melanocyte‐stimulating hormone (gamma 2‐MSH) microinjected into the nucleus tractus solitarii of the rat. Naunyn Schmiedebergs Arch Pharmacol. 349: 50–56, 1994.
 36. Dennis, M., N. G. Seidah, and M. Chretien. Regional heterogeneity in the processing of pro‐opiomelanocortin in rat brain. Life Sci. 33: 49–52, 1983.
 37. Dockray, G. J., A. Varro, H. Desmond, J. Young, H. Gregory, and R. A. Gregory. Post‐translational processing of the porcine gastrin precursor by phosphorylation of the COOH‐terminal fragment. J. Biol. Chem. 262: 8643–8647, 1987.
 38. Dong, W., L. D. Fricker, and R. Day. Carboxypeptidase D is a potential candidate to carry out redundant processing functions of carboxypeptidase E based on comparative distribution studies in the rat central nervous system. Neuroscience 89: 1301–1317, 1999.
 39. Dong, W., M. Marcinkiewicz, D. Vieau, M. Chretien, N. G. Seidah, and R. Day. Distinct mRNA expression of the highly homologous convertases PC5 and PACE4 in the rat brain and pituitary. J. Neurosci. 15: 1778–1796, 1995.
 40. Dores, R. M., and S. Harris. Differential N‐acetylation of alpha‐MSH and beta‐endorphin in the intermediate pituitary of the turtle, Pseudemys scripta. Peptides 14: 849–855, 1993.
 41. Dores, R. M., M. Jain, and H. Akil. Characterization of the forms of beta‐endorphin and alpha‐MSH in the caudal medulla of the rat and guinea pig. Brain Res. 377: 251–260, 1986.
 42. Dores, R. M., T. C. Steveson, and K. Lopez. Differential mechanisms of the N‐acetylation of alpha‐melanocyte stimulating hormone and beta‐endorphin in the intermediate pituitary of the frog, Xenopus laevis. Neuroendocrinology 53: 54–62, 1991.
 43. Dores, R. M., H. Wasinger, D. Vaudry, T. C. Steveson, and A. Lancha. Melanotropes of the lizard, Anolis carolinensis, lack N‐acetylating mechanisms for both alpha‐melanocyte‐stimulating hormone and beta‐endorphin. Neuroendocrinology 59: 603–609, 1994.
 44. Driscoll, W. J., S. A. Mueller, B. A. Eipper, and G. P. Mueller. Differential regulation of peptide α‐amidation by dexamethasone and disulfiram. Mol. Pharmacol. 55: 1067–1076, 1999.
 45. Eberwine, J. H., and J. L. Roberts. Glucocorticoid regulation of POMC gene transcription in the rat pituitary. J. Biol. Chem. 259: 2166–2170, 1984.
 46. Eipper, B. A., B. T. Bloomquist, E. J. Husten, S. L. Milgram, and R. E. Mains. Peptidylglycine alpha‐amidating monooxygenase and other processing enzymes in neurointermediate pituitary. Ann. N.Y. Acad. Sci. 480: 147–160, 1993.
 47. Eipper, B. A., and R. E. Mains. Structure and biosynthesis of pro‐adrenocorticotropin/endorphin and related peptides. Endocr. Rev. 1: 1–27, 1980.
 48. Eipper, B. A., and R. E. Mains. Peptide alpha‐amidation. Annu. Rev. Physiol. 50: 333–344, 1988.
 49. Eipper, B. A., and R. E. Mains. The role of ascorbate in the biosynthesis of neuroendocrine peptides. Am. J. Clin. Nutr. 54: 1153S–1156S, 1991.
 50. Eipper, B. A., V. May, E. I. Cullen, S. M. Sato, A.S.N. Murthy, and R. E. Mains. Cotranslational and posttranslational processing in the production of bioactive peptides. In: Psychopharmacology: The Third Generation of Progress, edited by H. Y. Meltzer. New York: Raven Press, 1987, p. 385–400.
 51. Eipper, B. A., S. L. Milgram, E. J. Husten, H.‐Y. Yun, and R. E. Mains. Peptidylglycine alpha‐amidating monooxygenase: a multifunctional protein with catalytic, processing and routing domains. Protein Sci. 2: 489–497, 1993.
 52. Eipper, B. A., A.S.W. Quon, R. E. Mains, J. S. Boswell, and N. J. Blackburn. The catalytic core of peptidylglycine alpha‐hydroxylating monooxygenase: investigation by site‐directed mutagenesis, Cu X‐ray absorption spectroscopy, and electron paramagnetic resonance. Biochemistry 34: 2857–2865, 1995.
 53. Eipper, B. A., D. A. Stoffers, and R. E. Mains. The biosynthesis of neuropeptides: peptide alpha‐amidation. Annu. Rev. Neurosci. 15: 57–85, 1992.
 54. Emeson, R. B., and B. A. Eipper. Characterization of pro‐ACTH/endorphin‐derived peptides in rat hypothalamus. J. Neurosci. 1986.
 55. Eng, F. J., O. Varlamov, and L. D. Fricker. Sequences within the cytoplasmic domain of gp180/carboxypeptidase D mediate localization to the trans‐Golgi network. Mol. Biol. Cell 10: 35–46, 1999.
 56. Fenger, M., and L. Hilsted. Influence of ascorbic acid on in vivo amidation of α‐melanocyte stimulating hormone in guinea pig pituitary. Acta Endocrinol 118: 119–124, 1988.
 57. Fortenberry, Y., J. Liu, and I. Lindberg. The role of the 7B2 CT peptide in the inhibition of prohormone convertase 2 in endocrine cell lines. J. Neurochem. 73: 994–1003, 1999.
 58. Fricker, L. D., Carboxypeptidase, E. Annu. Rev. Physiol. 50: 309–321, 1988.
 59. Fricker, L. D., B. Das, R. S. Klein, D. Greene, and Y. K. Jung. Regulation of carboxypeptidase E. NIDA Res. Monogr. 111: 171–187, 1991.
 60. Fricker, L. D., and E. H. Leiter. Peptides, enzymes and obesity: new insights from a ‘dead’ enzyme. Trends Biochem. Sci. 24: 390–393, 1999.
 61. Fricker, L. D., B. J. Reaves, B. Das, and P.S. Dannies. Comparison of the regulation of CPE and prolactin in GH4C1 cells. Neuroendocrinology 51: 658–663, 1990.
 62. Furth, J. Experimental pituitary tumors. Rec. Prog. Horm. Res. 11: 221–250, 1955.
 63. Geetha‐Habib, M., H. R. Park, and W. J. Lennarz. In vivo N‐glycosylation and fate of Asn‐X‐Ser/Thr tripeptides. J. Biol. Chem. 265: 13655–13660, 1990.
 64. Glembotski, C. C. Characterization of the peptide acetyltransferase activity in bovine and rat intermediate pituitaries responsible for the acetylation of beta‐endorphin and alpha‐melanotropin. J. Biol. Chem. 257: 10501–10509, 1982.
 65. Green, E. D., J. U. Baenziger, and I. Boime. Cell‐free sulfation of human and bovine pituitary hormones. J. Biol. Chem. 260: 15631–15638, 1985.
 66. Greep, R. O., History of research on anterior pituitary hormones. In: Handbook of Physiology, Section 7: Endocrinology, edited by R. O. Greep, E. B. Astwood, E. Knobil, W. H. Sawyer, and S. R. Geiger. Baltimore: American Physiological Society, 1974, p. 1–27.
 67. Guest, P. C., E. M. Bailyes, N. G. Rutherford, and J. C. Hutton. Insulin secretory granule biogenesis. Biochem. J. 274: 73–78, 1991.
 68. Harrold, J. A., P. S. Widdowson, and G. Williams. Altered energy balance causes selective changes in melanocortin‐4(MC4‐R), but not melanocortin‐3 (MC3‐R), receptors in specific hypothalamic regions: further evidence that activation of MC4‐R is a physiological inhibitor of feeding. Diabetes 48: 267–271, 1999.
 69. Hatfield, J. M., R. G. Allen, J. Stack, and O. Ronnekleiv. Post‐translational processing of POMC‐derived peptides during fetal monkey pituitary development. Devel. Biol. 126: 164–172, 1988.
 70. Hatsuzawa, K., K. Murakami, and K. Nakayama. Molecular and enzymatic properties of furin, a Kex2‐like endoprotease involved in precursor cleavage at Arg‐X‐Lys/Arg‐Arg sites. J. Biochem. 111: 296–301, 1992.
 71. Hook, V.Y.H., S. Noctor, C. A. Sei, T. Toneff, S. Yasothornsrikul, and Y. H. Kang. Evidence for functional localization of the proenkephalin‐processing enzyme, prohormone thiol protease, to secretory vesicles of chromaffin cells. Endocrinology 140: 3744–3754, 1999.
 72. Hook, V.Y.H., N. Tezapsidis, S. R. Hwang, C. A. Sei, M. Byrne, and S. Yasothornsrikul. Alpha 1‐antichymotrypsin‐like proteins I and II purified from bovine adrenal medulla are enriched in chromaffin granules and inhibit the proenkephalin processing enzyme “prohormone thiol protease”. J. Neurochem. 73: 59–69, 1999.
 73. Hosaka, M., M. Nagahama, W. S. Kim, T. Watanabe, K. Hatsuzawa, J. Ikemizu, K. Murakami, and K. Nakayama. Arg‐X‐Lys/Arg‐Arg motif as a signal for precursor cleavage catalyzed by furin within the constitutive secretory pathway. J. Biol. Chem. 266: 12127–12130, 1991.
 74. Huang, X. F., and P. Arvan. Formation of the insulin‐containing secretory granule core occurs within immature beta granules. J. Biol. Chem. 269: 20838–20844, 1994.
 75. Hutton, J. C. Subtilisin‐like proteinases involved in the activation of proproteins of the eukaryotic secretory pathway. Curr. Opin. Cell Biol. 2: 1131–1142, 1990.
 76. Jalukar, V., P. M. Kelley, and D. Njus. Reaction of ascorbic acid with cytochrome B561. J. Biol. Chem. 266: 6878–6882, 1991.
 77. Johnson, R. C., D. N. Darlington, T. A. Hand, B. T. Bloomquist, and R. E. Mains. Pace4: a subtilisin‐like endoprotease prevalent in the anterior pituitary and regulated by thyroid status. Endocrinology 135: 1178–1185, 1994.
 78. Joseph, S. A., W. T. Pilcher, and K. M. Knigge. Anatomy of the corticotropin‐releasing factor and opiomelanocortin systems of the brain. Fed. Proc. 44: 100–107, 1985.
 79. Joshi, M., M. M. Miller, N. G. Seidah, and R. Day. Age‐related alterations in the expression of prohormone convertase messenger ribonucleic acid (mRNA) levels in hypothalamic proopiomelanocortin mRNA neurons in the female C57BL/6J mouse. Endocrinology 136: 2721–2729, 1995.
 80. Jung, Y. K., and L. D. Fricker. Expression of the CPE gene: characterization of initiator binding proteins. Biochimie 76: 336–345, 1994.
 81. Kalra, S. P., G. Dube, S. PU, B. XU, T. L. Horvath, and P. S. Kalra. Interacting appetite‐regulating pathways in the hypothalamic regulation of body weight. Endocr. Rev. 20: 68–100, 1999.
 82. Katapodis, A. G., D. Ping, C. E. Smith, and S. W. May. Functional and structural characterization of peptidylamidoglycolate lyase, the enzyme catalyzing the second step in peptide amidation. Biochemistry 30: 6189–6194, 1991.
 83. Khachaturian, H., M. E. Lewis, M.K.H. Schafer, and S. J. Watson. Anatomy of the CNS opioid systems. Trends Neurosci. 8: 111–119, 1985.
 84. Kimura, S., R. V. Lewis, L. D. Gerber, L. Brink, M. Rubinstein, S. Stein, and S. Udenfriend. Purification to homogeneity of camel pro‐opiocortin, the common precursor of opioid peptides and corticotropin. Proc. Natl. Acad. Sci. U.S.A. 76: 1756–1760, 1979.
 85. Kobayashi, K., M. Tsubaki, and S. Tagawa. Distinct roles of two heme centers for transmembrane electron transfer in cytochrome b561 from bovine adrenal chromaffin vesicles as revealed by pulse radiolysis. J. Biol. Chem. 273: 16038–16042, 1998.
 86. Kolhekar, A. S., H. T. Keutmann, R. E. Mains, A.S.W. Quon, and B. A. Eipper. Peptidyl α‐hydroxylating monooxygenase: active site residues, disulfide linkages and a two‐domain model of the catalytic core. Biochemistry 36: 10901–10909, 1997.
 87. Kolhekar, A. S., R. E. Mains, and B. A. Eipper. Peptidylglycine alpha‐amidating monooxygenase (PAM): an ascorbate requiring enzyme. Mtds. Enzymol. 279: 35–43, 1996.
 88. Kolhekar, A. S., A.S.W. Quon, C. A. Berard, R. E. Mains, and B. A. Eipper. Post‐translational N‐glycosylation of a truncated form of a peptide processing enzyme. J. Biol. Chem. 273: 23012–23018, 1998.
 89. Kulathila, R., K. A. Merkler, and D. J. Merkler. Enzymatic formation of C‐terminal amides. Nat. Prod. Rep. 16: 145–154, 1999.
 90. Kuliawat, R., and P. Arvan. Protein targeting via the constitutive‐like secretory pathway in isolated pancreatic islets. J. Cell Biol. 118: 521–529, 1992.
 91. Kuliawat, R., and P. Arvan. Distinct molecular mechanisms for protein sorting within immature secretory granules of pancreatic beta cells. J. Cell Biol. 126: 77–86, 1994.
 92. Kuliawat, R., M. P. Lisanti, and P. Arvan. Polarized distribution and delivery of plasma membrane proteins in thyroid follicular epithelial cells. J. Biol. Chem. 270: 2478–2482, 1995.
 93. Lacaze‐Masmonteil, T., Y. De Keyzer, J. P. Luton, A. Kahn, and X. Bertagna. Characterization of POMC transcripts in human nonpituitary tissues. Proc. Natl. Acad. Sci. U.S.A. 84: 7261–7265, 1987.
 94. Leduc, R., S. S. Molloy, B. A. Thorne, and G. Thomas. Activation of human furin precursor processing endoprotease occurs by an intramolecular autoproteolytic cleavage. J. Biol. Chem. 267: 14304–14308, 1992.
 95. Lei, Y. H., X. Xin, D. Morgan, J. E. Pintar, and L. D. Fricker. Identification of mouse CPX‐1, a novel member of the metallocarboxypeptidase gene family with highest similarity to CPX‐2. DNA Cell Biol. 18: 175–185, 1999.
 96. Levin, N., and J. L. Roberts. Positive regulation of POMC gene expression in corticotropes and melanotropes. Front. Neuroendocrinol. 12: 1–22, 1991.
 97. Lindberg, I. The new eukaryotic precursor processing proteinases. Mol. Endocrinol. 5: 1361–1365, 1991.
 98. Lindberg, I. Evidence for cleavage of the PC1/PC3 prosegment in the endoplasmic reticulum. Mol. Cell. Neurosci. 5: 263–268, 1994.
 99. Lindberg, I., B. Lincoln, and C. J. Rhodes. Fluorometric assay of a calcium‐dependent, paired‐basic processing endopeptidase present in insulinoma granules. Biochem. Biophys. Res. Commun. 18: 1–7, 1992.
 100. Lindberg, I., W. H. Van Den Hurk, C. Bui, and C. J. Batie. Enzymatic characterization of immunopurified prohormone convertase 2: potent inhibition by a 7B2 peptide fragment. Biochemistry 34: 5486–5493, 1995.
 101. Lindberg, I., and Y. Zhou. Overexpression of neuropeptide precursors and processing enzymes. Mtds. Neurosci. 23: 94–108, 1995.
 102. Loh, Y. P., and N. X. Cawley. Processing enzymes of pepsin family: yeast aspartic protease 3 and POMC converting enzyme. Mtds. Enzymol. 248: 136–146, 1995.
 103. Low, M. J., B. Liu, G. D. Hammer, M. Rubinstein, and R. G. Allen. Post‐translational processing of POMC in mouse pituitary melanotroph tumors induced by a POMC‐SV40 large T antigen transgene. J. Biol. Chem. 268: 24967–24975, 1993.
 104. Lugo, D. I., and J. E. Pintar. Ontogeny of basal and regulated secretion from POMC cells of the developing anterior lobe of the rat pituitary gland. Devel. Biol. 173: 95–109, 1996.
 105. Mains, R. E., C. A. Berard, J. B. Denault, A. Zhou, R. C. Johnson, and R. Leduc. PACE4: a subtilisin‐like endoprotease with unique properties. Biochem. J. 321: 587–593, 1997.
 106. Mains, R. E., B. T. Bloomquist, and B. A. Eipper. Manipulation of neuropeptide biosynthesis through the expression of anti‐sense RNA for peptidylglycine alpha‐amidating monooxygenase. Mol. Endocrinol. 5: 187–193, 1991.
 107. Mains, R. E., I. M. Dickerson, V. May, D. A. Stoffers, S. N. Perkins, L. H. Ouafik, E. J. Husten, and B. A. Eipper. Cellular and molecular aspects of peptide hormone biosynthesis. Front. Neuroendocrinol. 11: 52–89, 1990.
 108. Mains, R. E., and B. A. Eipper. The tissue‐specific processing of pro‐ACTH/endorphin. Trends. Endo. Metab. 1: 388–394, 1990.
 109. Mains, R. E., B. A. Eipper, and N. Ling. Common precursor to corticotropins and endorphins. Proc. Natl. Acad. Sci. U.S.A. 74: 3014–3018, 1977.
 110. Mains, R. E., A. Zhou, and D. Parkinson. The biosynthetic processing and secretion of endogenous carboxypeptidase H in mouse pituitary cells. Ann. N.Y. Acad. Sci. 805: 10–19, 1996.
 111. Manser, E., D. Fernandez, and L. Lim. Processing and secretion of human carboxypeptidase E by C6 glioma cells. Biochem. J. 280: 695–701, 1991.
 112. Marcinkiewicz, M., R. Day, N. G. Seidah, and M. Chretien. Ontogeny of the prohormone convertases PC1 and PC2 in the mouse hypophysis and their colocalization with corticotropin and alpha‐melanotropin. Proc. Natl. Acad. Sci. U.S.A. 90: 4922–4926, 1993.
 113. Marsh, J., G. Hollopeter, D. Huszar, R. Laufer, K. A. Yagaloff, S. L. Fisher, P. Burn, and R. D. Palmiter. Response of melanocortin‐4 receptor‐deficient mice to anorectic and orexigenic peptides. Nat. Genet. 21: 119–122, 1999.
 114. Marti, O., M. S. Harbuz, R. Andres, S. L. Ghtman, and A. Mario. Activation of the hypothalamic‐pituitary axis in adren‐alectomised rats: potentiation by chronic stress. Brain Res. 821: 1–7, 1999.
 115. Matera, C., and S. L. Wardlaw. Aromatization is not required for androgen induced changes in proopiomelanocortin gene expression in the hypothalamus. Mol. Brain Res. 27: 275–280, 1994.
 116. Matthews, S. G., and J.R.G. Challis. Regulation of the hypothalamo‐pituitary‐adrenocortical axis in fetal sheep. Trends. Endo. Metab. 7: 239–246, 1996.
 117. May, V., and B. A. Eipper. Long term culture of primary rat pituitary adrenocorticotropin/endorphin‐producing cells in serum‐free medium. Endocrinology 118: 1284–1295, 1986.
 118. May, V., R. E. Mains, and B. A. Eipper. Ability of cofactors to support peptide amidation is cell‐type specific. Horm. Res. 32: 18–21, 1989.
 119. May, V., D. A. Stoffers, and B. A. Eipper. Proadrenocorticotropin/endorphin production and messenger ribonucleic acid levels in primary intermediate pituitary cultures: effects of serum, isoproterenol, and dibutyryl adenosine 3',5'‐monophosphate. Endocrinology 124: 157–166, 1989.
 120. Mechanick, J. I., N. Levin, J. L. Roberts, and D. J. Autelitano. POMC gene expression in a diistinct population of rat spleen and lung leukocytes. Endocrinology 131: 518–525, 1992.
 121. Mellman, I., and K. Simons. The golgi complex: in vitro veritas? Cell 68: 829–840, 1992.
 122. Menard, D., T. J. Hebert, G. P. Dohanich, and R. E. Harlan. Androgenic‐anabolic steroids modify beta‐endorphin immuno‐reactivity in the rat brain. Brain Res. 669: 255–262, 1995.
 123. Merkler, D. J., U. Glufke, K. J. Ritenour‐Rodgers, L. E. Baumgart, J. L. Diblassio, K. A. Merkler, and J. C. Vederas. Formation of Nicotinamide from Nicotinuric Acid by Peptidylglycine α‐Amidating Monooxygenase (PAM): A Possible Alternative Route from Nicotinic Acid (Niacin) to NADP in Mammals. J. Am. Chem. Soc. 121: 4904–4905, 1999.
 124. Milgram, S. L., and R. E. Mains. Differential effects of temperature blockade on the proteolytic processing of three secretory granule‐associated proteins. J. Cell Sci. 107: 737–745, 1994.
 125. Milgram, S. L., R. E. Mains, and B. A. Eipper. Identification of routing determinants in the cytosolic domain of a secretory granule‐associated integral membrane protein. J. Biol. Chem. 271: 17526–17535, 1996.
 126. Miller, M. M., P. Tousignant, U. Yang, S. Pedvis, and R. B. Billiar. Effects of age and long‐term ovariectomy on the estrogen‐receptor containing subpopulations of beta‐endorphin‐immunoreactive neurons in the arcuate nucleus of female C57BL/6J mice. Neuroendocrinology 61: 542–551, 1995.
 127. Millington, W. R., T. L. O'Donohue, M. C. Chappell, J. L. Roberts, and G. P. Mueller. Coordinate regulation of peptide acetyltransferase activity and POMC gene expression in the intermediate lobe of the rat pituitary. Endocrinology 118: 2024–2033, 1986.
 128. Mori, K., S. Kii, A. Tsuji, M. Nagahama, A. Imammaki, K. Hayashi, T. Akamatsu, H. Nagamune, and Y. Matsuda. A novel human PACE4 isoform PACE4E is an active processing protease containing a hydrophobic cluster at the carboxy terminus. J. Biochem. 121: 941–948, 1997.
 129. Mounier, C. E., J. Shi, S. R. Sirimanne, B. H. Chen, A. B. Moore, M. M. Gill‐Woznichak, D. Ping, and S. W. May. Pyruvate‐extended amino acid derivatives as highly potent inhibitors of carboxyl‐terminal peptide amidation. J. Biol. Chem. 272: 5016–5023, 1997.
 130. Mountjoy, K. G., M. T. Mortrud, M. J. Low, R. B. Simerly, and R. D. Cone. Localization of the melanocortin‐4 receptor (MC4‐R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8: 1298–1308, 1994.
 131. Mueller, G. P., W. J. Driscoll, and B. A. Eipper. In vivo inhibition of peptidylglycine‐α‐hydroxylating monooxygenase by 4‐phenyl‐3‐butenoic acid. J. Pharmacol. Exp. Ther. 290: 1331–1336, 1999.
 132. Muller, L., and I. Lindberg. The cell biology of the prohormone convertases PC1 and PC2. Prog. Nucleic Acid Res. Mol. Biol. 63: 69–108, 1999.
 133. Muller, L., P. Zhu, M. A. Juliano, L. Juliano, and I. Lindberg. A 36‐residue peptide contains all of the information required for 7B2‐mediated activation of prohormone convertase 2. J. Biol. Chem. 274: 21471–21477, 1999.
 134. Nakanishi, S., A. Inoue, T. Kita, M. Nakamura, A.C.Y. Chang, S. N. Cohen, and S. Numa. Nucleotide sequence of cloned cDNA for bovine corticotropin‐β‐lipotropin precursor. Nature 278: 423–427, 1979.
 135. Nakayama, K., M. Hosaka, K. Hatsuzawa, and K. Murakami. Cloning and functional expression of a novel endoprotease involved in prohormone processing at dibasic sites. J. Biochem. 109: 803–806, 1991.
 136. Nakayama, K., T. Watanabe, T. Nakagawa, W. S. Kim, M. Nagahama, M. Hosaka, K. Hatsuzawa, K. K. Hashiba, and K. Murakami. Consensus sequence for precursor processing at mono‐arginyl sites. J. Biol. Chem. 267: 16335–16340, 1992.
 137. Noel, G., H. T. Keutmann, and R. E. Mains. Investigation of the structural requirements for peptide precursor processing in AtT‐20 cells using site‐directed mutagenesis of proadrenocor‐ticotropin/endorphin. Mol. Endocrinol. 5: 404–413, 1991.
 138. Noel, G., and R. E. Mains. Plasticity of peptide biosynthesis in corticotropes: independent regulation of different steps in processing. Endocrinology 129: 1317–1325, 1991.
 139. Novikova, E. G., F. J. Eng, L. Yan, Y. Qian, and L. D. Fricker. Characterization of the Enzymatic Properties of the First and Second Domains of Metallocarboxypeptidase D. J. Biol. Chem. 274: 28887–28892, 1999.
 140. Novikova, E. G., and L. D. Fricker. Purification and characterization of human metallocarboxypeptidase Z. Biochem. Biophys. Res. Commun. 256: 564–568, 1999.
 141. Oki, Y., T. W. Peatman, Z. C. Qu, and D. N. Orth. Effects of intracellular Ca2+ depletion and glucocorticoid on stimulated adrenocorticotropin release by rat anterior pituitary cells in a microperifusion system. Endocrinology 128: 1589–1596, 1991.
 142. Olsen, V., N. X. Cawley, J. Brandt, M. Egel‐Mitani, and Y. P. Loh. Identification and characterization of Saccharomyces cerevisiae yapsin 3, a new member of the yapsin family of aspartic proteases encoded by the YPS3 gene. Biochem. J. 339: 407–411, 1999.
 143. Olsen, V., K. Guruprasad, N. X. Cawley, H. C. Chen, and Y. P. Loh. Cleavage efficiency of the novel aspartic protease yapsin 1 (Yap3p) enhanced for substrates with arginine residues flanking the P1 site: correlation with electronegative active‐site pockets predicted by molecular modeling. Biochemistry 37: 2768–2777, 1999.
 144. Orso, E., K. S. Szalay, D. Szabo, E. Stark, T. Feher, F. Perner, and M. Hidvegi. Effects of joining peptide(1–18) and histamine on dehydroepiandrosterone and dehydroepiandrosterone sulfate production in humanadrenocortical cells in vitro. J. Steroid Biochem. Mol. Biol. 58: 207–210, 1996.
 145. Orth, D. N., W. E. Nicholson, W. M. Mitchell, D. P. Island, M. Shapiro, and R. L. Byyny. ACTH and MSH production by a single cloned mouse pituitary tumor cell line. Endocrinology 92: 385–394, 1973.
 146. Oyarce, A. M., T. A. Hand, R. E. Mains, and B. A. Eipper. Dopaminergic regulation of secretory granule‐associated proteins in rat intermediate pituitary. J. Neurochem. 67: 229–241, 1996.
 147. Paquet, L., F. Bergeron, A. Boudreault, N. G. Seidah, M. Chretien, M. Mbikay, and C. Lazure. The neuroendocrine precursor 7B2 is a sulfated protein proteolytically processed by a ubiquitous furin‐like convertase. J. Biol. Chem. 269: 19279–19285, 1994.
 148. Parkinson, D. Two soluble forms of bovine carboxypeptidase H have different amino terminal sequences. J. Biol. Chem. 265: 17101–17106, 1990.
 149. Parsadaniantz, M. S., V. Dauge, B. P. Roques, and B. Kerdelhue. Acute Intrahippocampal Injection of Human Interleukin‐1 beta Stimulates the Anterior Pituitary POMC Transcription and Increases Plasma Levels of ACTH and Corticosterone in the Male Rat. Neuroendocrinology 69: 77–87, 1999.
 150. Perin, M. S., V. A. Fried, C. A. Slaughter, and T. C. Sudhof. The structure of cytochrome B561, a secretory vesicle‐specific electron transport protein. EMBO J. 7: 2697–2703, 1988.
 151. Perone, M. J., A. N. Chisari, C. L. Gomez‐Dumm, E. Spinedi, and F. E. Estivariz. Bilateral adrenal enucleation‐induced changes in adenohypophyseal pro‐opiomelanocortin (POMC)‐related peptides synthesis and secretion: a comparative study with adrenalectomized rats. J. Endocrinol. Invest. 20: 172–182, 1997.
 152. Presley, J. F., N. B. Cole, T. A. Schroer, K. Hirschberg, K.J.M. Zaal, and J. Lippincott‐Schwartz. ER‐to‐Golgi transport visualized in living cells. Nature 389: 81–85, 1997.
 153. Prigge, S. T., A. S. Kolhekar, B. A. Eipper, R. E. Mains, and L. M. Amzel. Amidation of bioactive peptides: the structure of peptidylglycine α‐hydroxylating monooxygenase. Science 278: 1300–1305, 1997.
 154. Prigge, S. T., A. S. Kolhekar, B. A. Eipper, R. E. Mains, and L. M. Amzel. Substrate‐mediated electron transfer in peptidylglycine alpha‐hydroxylating monooxygenase. Nature Struct. Biol. 6: 976–983, 1999.
 155. Prohaska, J. R., and W. R. Bailey. Alterations of rat brain peptidylglycine α‐amidating monooxygenase and other cuproenzyme activities following perinatal copper deficiency. Proc. Soc. Exp. Biol. Med. 210: 107–116, 1995.
 156. Roberts, J. L., and E. Herbert. Characterization of a common precursor to corticotropin and β‐lipotropin: cell‐free synthesis of the precursor and identification of corticotropin peptides in the molecule. Proc. Natl. Acad. Sci. U.S.A. 74: 4826–4830, 1977.
 157. Rouille, Y., S. Kantengwa, J. C. Irminger, and P. A. Halban. Role of the prohormone convertase PC3 in the processing of proglucagon to glucagon‐like peptide 1. J. Biol. Chem. 272: 32810–32816, 1997.
 158. Rovere, C., J. Luis, J. C. Lissitzky, A. Basak, J. Marvaldi, M. Chretien, and N. G. Seidah. The RGD motif and the C‐terminal segment of proprotein convertase 1 are critical for its cellular trafficking but not for its intracellular binding to integrin α5β1. J. Biol. Chem. 274: 12461–12467, 1999.
 159. Rubinstein, M., J. S. Mogil, M. Japon, E. C. Chan, R. G. Allen, and M. J. Low. Absence of opioid stress‐induced analgesia in mice lacking β‐endorphin by site‐directed mutagenesis. Proc. Natl. Acad. Sci. U.S.A. 93: 3995–4000, 1996.
 160. Saiardi, A., and E. Borelli. Absence of dopaminergic control on melanotrophs leads to Cushing's‐like syndrome in mice. Mol. Endocrinol. 12: 1133–1139, 1998.
 161. Sato, S. M., and R. E. Mains. Posttranslational processing of proadrenocorticotropin/endorphin‐derived peptides during postnatal development in the rat pituitary. Endocrinology 117: 773–786, 1985.
 162. Sato, S. M., and R. E. Mains. Plasticity in the adrenocortico‐tropin‐related peptides produced by primary cultures of neonatal rat pituitary. Ann. N.Y. Acad. Sci. 1988.
 163. Schafer, M.K.H., R. Day, W. E. Cullinan, M. Chretien, N. G. Seidah, and S. J. Watson. Gene expression of prohormone and proprotein convertases in the rat CNS. J. Neurosci. 13: 1258–1279, 1993.
 164. Schauer, E., F. Trautinger, A. Kock, A. Schwarz, R. Bhardwaj, M. Simon, J. C. Ansel, T. Schwarz, and T. A. Luger. Pomc‐derived peptides are synthesized and released by human keratinocytes. J. Clin. Invest. 93: 2258–2262, 1994.
 165. Scopsi, L., M. Gullo, F. Rilke, S. Martin, and D. F. Steiner. Proprotein convertases (PC1/PC3, PC2) in normal and neoplastic human tissues: their use as markers of neuroendocrine differentiation. J. Clin. Endocrinol. Metab. 80: 294–301, 1995.
 166. Scott, A. P., J. G. Ratcliffe, L. H. Rees, J. Landon, H.P.J. Bennett, P. J. Lowry, and C. Mcmartin. Pituitary peptide. Nat. New. Biol. 244: 65–67, 1973.
 167. Scott, R.E.M., and J. E. Pintar. Developmental regulation of POMC gene expression in the fetal and neonatal rat pituitary. Mol. Endocrinol. 7: 585–596, 1993.
 168. Seidah, N. G., and M. Chretien. Proprotein and prohormone convertases of the subtilisin family. Trends. Endo. Metab. 3: 133–140, 1992.
 169. Seidah, N. G., M. Chretien, and R. Day. The family of subtilisin/kexin like proprotein and prohormone convertases: divergent or shared functions. Biochimie 76: 197–209, 1994.
 170. Seidah, N. G., R. Day, M. Marcinkiewicz, and M. Chretien. Precursor convertases: an evolutionary ancient, cell‐specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann. N.Y. Acad. Sci. 839: 9–24, 1998.
 171. Seidah, N. G., C. Gianoulakis, P. Crine, M. Lis, S. Benjannet, R. Routhier, and M. Chretien. In vitro biosynthesis and chemical characterization of β‐lipotropin, gamma‐lipotropin, and β‐endorphin in rat pars intermedia. Proc. Natl. Acad. Sci. U.S.A. 75: 3153–3157, 1978.
 172. Seidel, B., W. Dong, D. Savaria, M. Zheng, J. E. Pintar, and R. Day. Neuroendocrine protein 7B2 is essential for proteolytic conversion and activation of proprotein convertase 2 in vivo. DNA Cell Biol. 17: 1017–1029, 1998.
 173. Siliciano, R. A., H. R. Morris, H.P.J. Bennett, and A. Dell. O‐glycosylation mimics N‐glycosylation in the 16 kDa fragment of bovine POMC. J. Biol. Chem. 269: 910–920, 1994.
 174. Skelly, R. H., G. T. Schuppin, H. Ishihara, Y. Oka, and C. J. Rhodes. Glucose‐regulated translational control of proinsulin biosynthesis with that of the proinsulin endopeptidases PC2 and PC3 in the insulin‐producing MIN6 cell line. Diabetes 45: 37–43, 1996.
 175. Smeekens, S. P. Processing of protein precursors by a novel family of subtilisin‐related mammalian endoproteases. Biotechnology 11: 182–186, 1993.
 176. Smeekens, S. P., A. G. Montag, G. Thomas, C. Albiges‐Rizo, R. Carroll, M. Benig, L. A. Phillips, S. Martin, S. Ohagi, P. Gardner, H. H. Swift, and D. F. Steiner. Proinsulin processing by the subtilisin related proprotein convertases furin, PC2 and PC3. Proc. Natl. Acad. Sci. U.S.A. 89: 8822–8826, 1992.
 177. Srivastava, M., H. B. Pollard, and P. J. Fleming. Mouse cytochrome b561: cDNA cloning and expression in rat brain, mouse embryos, and human glioma cell lines. DNA Cell Biol. 17: 771–777, 1998.
 178. Stefaneanu, L., G. Rindi, E. Horvath, D. Murphy, J. M. Polak, and K. Kovacs. Morphology of adenohypophysial tumors in mice transgenic for vasopressin‐SV40 hybrid oncogene. Endocrinology 130: 1789–1795, 1992.
 179. Steiner, D. F. Prohormone convertase revealed at last. Curr. Biol. 1: 375–377, 1991.
 180. Steiner, D. F. The proprotein convertases. Curr. Opin. Chem. Biol. 2: 31–39, 1998.
 181. Steiner, D. F., P. S. Quinn, S. J. Chan, J. Marsh, and H. S. Tager. Processing mechanisms in the biosynthesis of proteins. Ann. N.Y. Acad. Sci. 343: 1–16, 1980.
 182. Steiner, D. F., Y. Rouille, Q. Gong, S. Martin, R. Carroll, and S. J. Chan. The role of prohormone convertases in insulin biosynthesis: evidence for inherited defects in their action in man and experimental animals. Diabetes Metab. 22: 94–104, 1996.
 183. Thomas, L., R. Leduc, B. A. Thorne, S. P. Smeekens, D. F. Steiner, and G. Thomas. Kex2‐like endoproteases PC2 and PC3 accurately cleave a model prohormone in mammalian cells: Evidence for a common core of neuroendocrine processing enzymes. Proc. Natl. Acad. Sci. U.S.A. 88: 5297–5301, 1991.
 184. Uhler, M., and E. Herbert. Complete amino acid sequence of mouse POMC derived from the nucleotide sequence of POMC cDNA. J. Biol. Chem. 258: 257–261, 1983.
 185. Vale, W., C. Rivier, L. Yang, L. Minick, and R. Guillemin. Effects of purified hypothalamic corticotropin‐releasing factor and other substances on the secretion of adrenocorticotropin and beta‐endorphin‐like immunoactivities in vitro. Endocrinology 103: 1910–1915, 1978.
 186. Van Horssen, A. M., and G. J. Martens. Mapping of the domain in the neuroendocrine protein 7B2 important for its helper function towards prohormone convertase PC2. Mol. Cell Endocrinol. 137: 7–12, 1998.
 187. Van Strien, F. J., L. Galas, B. G. Jenks, and E. W. Ruobos. Differential acetylation of pro‐opiomelanocortin‐derived peptides in the pituitary gland of Xenopus laevis in relation to background adaptation. J. Endocrinol. 146: 159–167, 1995.
 188. Varlamov, O., F. J. Eng, E. G. Novikova, and L. D. Fricker. Localization of metallocarboxypeptidase D in AtT‐20 cells. Potential role in prohormone processing. J. Biol. Chem. 274; 14759–14767, 1999.
 189. Varlamov, O., F. Wu, D. Shields, and L. D. Fricker. Biosynthesis and packaging of carboxypeptidase D into nascent secretory vesicles in pituitary cell lines. J. Biol. Chem. 274: 14040–14045, 1999.
 190. Vazquez, D. M., and H. Akil. Development of pituitary POMC gene and peptide expression: characterization and effect of repeated intermittent maternal isolation. Neuroendocrinology 56: 320–330, 1992.
 191. Viau, V., A. Chu, L. Soriano, and M. F. Dallman. Independent and overlapping effects of corticosterone and testosterone on corticotropin‐releasing hormone and arginine vasopressin mRNA expression in the paraventricular nucleus of the hypothalamus and stress‐induced adrenocorticotropic hormone release. J. Neurosci. 19: 6684–6693, 1999.
 192. Vidricaire, G., J. B. Denault, and R. Leduc. Characterization of a secreted form of human furin endoprotease. Biochem. Biophys. Res. Commun. 195: 1011–1018, 1993.
 193. Wand, G. S., V. May, and B. A. Eipper. Comparison of acute and chronic secretagogue regulation of proadrenocorticotropin/endorphin synthesis, secretion, and messenger ribonucleic acid production in primary cultures of rat anterior pituitary. Endocrinology 123: 1153–1161, 1988.
 194. Wardlaw, S. L., K. C. McCarthy, and I. M. Conwell. Glucocorticoid regulation of hypothalamic POMC. Neuroendocrinology 67: 51–57, 1998.
 195. Watanabe, T., T. Nakagawa, J. Ikemizu, M. Nagahama, K. Murakami, and K. Nakayama. Sequence requirements for precursor cleavage within the constitutive secretory Pathway. J. Biol. Chem. 267: 8270–8274, 1992.
 196. Westphal, C. H., L. Muller, A. Zhou, X. Zhu, S. Bonner‐Weir, M. Schambelan, D. F. Steiner, I. Lindberg, and P. Leder. The neuroendocrine protein 7B2 is required for peptide hormone processing in vivo and provides a novel mechanism for pituitary Cushing's disease. Cell 96: 689–700, 1998.
 197. Wilcox, J. N., and J. L. Roberts. Estrogen decreases rat hypothalamic proopiomelanocortin messenger ribonucleic acid levels. Endocrinology 117: 2392–2396, 1985.
 198. Winkler, A., L. G. Schmidt, H. Rommelspacher, and M. F. Lzig. Quantification of Pomc mRNA in peripheral lymphocytes of alcoholics. Alcohol 15: 43–50, 1998.
 199. Xin, X. N., R. Day, W. J. Dong, Y. H. Lei, and L. D. Fricker. Identification of mouse CPX‐2, a novel member of the metallocarboxypeptidase gene family. DNA Cell Biol. 17: 897–909, 1998.
 200. Yasothornsrikul, S., T. Toneff, S. R. Hwang, and V.Y.H. Hook. Arginine and lysine aminopeptidase activities in chromaffin granules of bovine adrenal medulla: relevance to prohormone processing. J. Neurochem. 70: 153–163, 1998.
 201. Young, E. A., S. F. Akana, and M. F. Dallman. Decreased sensitivity to glucocorticoid fast feedback in chronically stressed rats. Neuroendocrinology 51: 536–542, 1990.
 202. Zheng, M., R. D. Streck, R.E.M. Scott, N. G. Seidah, and J. E. Pintar. Developmental expression in rat of proteases furin, PC1 and PC2, and CPE; implications for early maturation of proteolytic processing capacity. J. Neurosci. 14: 4656–4673, 1994.
 203. Zhou, A., B. T. Bloomquist, and R. E. Mains. The prohormone convertases PC1 and PC2 mediate distinct endoproteolytic cleavages in a strict temporal order during POMC biosynthetic processing. J. Biol. Chem. 268: 1763–1769, 1993.
 204. Zhou, A., and R. E. Mains. Endoproteolytic processing of POMC and the peptide biosynthetic endoproteases PC1 and PC2 in neuroendocrine cells overexpressing PC1 or PC2. J. Biol. Chem. 269: 17440–17447, 1994.
 205. Zhou, A., L. Paquet, and R. E. Mains. Structural elements which direct specific processing of different mammalian subtilisin‐like prohormone convertases. J. Biol. Chem. 270: 21509–21516, 1995.
 206. Zhou, A., G. Webb, X. Zhu, and D. F. Steiner. Proteolytic processing in the secretory pathway. J. Biol. Chem. 274: 20745–20748, 1999.
 207. Zhou, Y., and I. Lindberg. Purification and characterization of the prohormone convertase PC1(PC3). J. Biol. Chem. 268: 5615–5623, 1993.
 208. Zhou, Y., and I. Lindberg. Enzymatic properties of carboxyl‐terminally truncated prohormone convertase 1 (PC1/SPC3) and evidence for autocatalytic conversion. J. Biol. Chem. 269: 18408–18413, 1994.
 209. Zhu, X., and I. Lindberg. 7B2 facilitates the maturation of proPC2 in neuroendocrine cells and is required for the expression of enzymatic activity. J. Cell Biol. 129: 1641–1650, 1995.
 210. Zhu, X., L. Muller, R. E. Mains, and I. Lindberg. Structural elements of PC2 required for interaction with its helper protein 7B2. J. Biol. Chem. 273: 1158–1164, 1998.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Richard E. Mains, Betty A. Eipper. Proopiomelanocortin Synthesis and Cell‐Specific Processing. Compr Physiol 2011, Supplement 23: Handbook of Physiology, The Endocrine System, Coping with the Environment: Neural and Endocrine Mechanisms: 85-101. First published in print 2001. doi: 10.1002/cphy.cp070405