Comprehensive Physiology Wiley Online Library

Development of the Hypothalamic‐Pituitary‐Adrenal Axis and the Stress Response

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Ontogeny of the Hypothalamic‐Pituitary‐Adrenal Axis
1.1 Hypothalamic Paraventricular Nucleus
1.2 Pituitary Function
1.3 Adrenal Function
1.4 Glucocorticoid Feedback
1.5 Hypothalamic‐Pituitary‐Adrenal Function and Stress Responsiveness in Development
2 Conclusions
Figure 1. Figure 1.

Control of the activity of the hypothalamic‐pituitary‐adrenal (HPA) axis by internal and external sensory inputs. Sensory information from the oral cavity and the thoracic and abdominal viscera is carried to the brain stem via the glossopharyngeal and vagus nerves, with other inputs conveyed by the dorsal roots. Brain stem inputs to the hypothalamic paraventricular nucleus (PVN) stimulate secretion of corticotropin‐releasing factor (CRF) and other corticotropin (ACTH) secretagogues (including arginine vasopressin, AVP) into the hypophysial portal circulation. Other inputs to the hypothalamic PVN neurons are provided by the corticolimbic circuit (prefrontal cortex, hippocampus, bed nucleus of the stria terminalis, amygdala) and humoral signals of central and/or peripheral origin. Upon CRF and AVP stimulation, pituitary corticotropes secrete corticotropin in the peripheral circulation, which stimulates corticoster‐oidogenesis and release of glucocorticoids. These steroids limit the activity of the HPA axis by acting at multiple levels (pituitary, hypothalamic, and extrahypothalamic) to inhibit CRF and corticotropin production. The biological activity of glucocorticoids is regulated by their clearance rate as well as by the production of corticosterone‐binding globulin (CBG) from the liver. During development, tight control over glucocorticoid production is critical because of the important role of these steroids in central nervous system and peripheral maturational processes. ADR MED, adrenal medulla; ADR CTX, adrenal cortex; AP, anterior pituitary; PP, posterior pituitary.



Figure 1.

Control of the activity of the hypothalamic‐pituitary‐adrenal (HPA) axis by internal and external sensory inputs. Sensory information from the oral cavity and the thoracic and abdominal viscera is carried to the brain stem via the glossopharyngeal and vagus nerves, with other inputs conveyed by the dorsal roots. Brain stem inputs to the hypothalamic paraventricular nucleus (PVN) stimulate secretion of corticotropin‐releasing factor (CRF) and other corticotropin (ACTH) secretagogues (including arginine vasopressin, AVP) into the hypophysial portal circulation. Other inputs to the hypothalamic PVN neurons are provided by the corticolimbic circuit (prefrontal cortex, hippocampus, bed nucleus of the stria terminalis, amygdala) and humoral signals of central and/or peripheral origin. Upon CRF and AVP stimulation, pituitary corticotropes secrete corticotropin in the peripheral circulation, which stimulates corticoster‐oidogenesis and release of glucocorticoids. These steroids limit the activity of the HPA axis by acting at multiple levels (pituitary, hypothalamic, and extrahypothalamic) to inhibit CRF and corticotropin production. The biological activity of glucocorticoids is regulated by their clearance rate as well as by the production of corticosterone‐binding globulin (CBG) from the liver. During development, tight control over glucocorticoid production is critical because of the important role of these steroids in central nervous system and peripheral maturational processes. ADR MED, adrenal medulla; ADR CTX, adrenal cortex; AP, anterior pituitary; PP, posterior pituitary.

References
 1. Adamson, W. T, R. T. Windh, S. Blackford, and C. M. Kuhn. Ontogeny of mu‐ and kappa‐opiate receptor control of the hypothalamo‐pituitary‐adrenal axis in rats. Endocrinology 129: 959–964, 1991.
 2. Aguilera, G., Angiotensin II receptor subtypes and regulation of aldosterone secretion in the adrenal glomerulosa zone in the rat. In: Progress in Endocrinology, edited by R. Mornex, C. Jaffe, and J. Leclere. New York: Parthenon/Pearl River, p 541–544, 1992.
 3. Akita, S., J. Malkin, and S. Melmed. Disrupted murine leukemia inhibitory factor (LIF) gene attenuates adrenocorticotropic hormone (ACTH) secretion. Endocrinology 137: 3140–3143, 1996.
 4. Aksentijevich, S., H. J. Whitfield, W. S. Young, R. L. Wilder, G. P. Chrousos, P. W. Gold, and E. M. Sternberg. Arthritis‐susceptible Lewis rats fail to emerge from the stress hyporesponsive period. Dev. Brain Res. 65: 115–118, 1992.
 5. Albano, J.D.M., P. M. Jack, T. Joseph, R. P. Gould, P. W. Nathanielsz, and B. L. Brown. The development of adrenocorticotrophin‐sensitive adenylate cyclase activity in the foetal rabbit adrenal: acorrelated biochemical and morphological study. J. Endocrinol. 71: 333–341, 1976.
 6. Albrecht, D., and U. Heinemann. Low calcium‐induced epileptiform activity in hippocampal slices from infant rats. Dev. Brain Res. 48: 316–320, 1989.
 7. Albrecht, E. D., G. W. Aberdeen, J. S. Babischkin, J. L. Tilly, and G. J. Pepe. Biphasic developmental expression of adreno‐corticotropin receptor messenger ribonucleic acid levels in the baboon fetal adrenal gland. Endocrinology 137: 1292–1298, 1996.
 8. Almazan, G., D. L. Lefebvre, and H. H. Zingg. Ontogeny of hypothalamic vasopressin, oxytocin and somatostatin gene expression. Dev. Brain Res. 45: 69–75, 1989.
 9. Als, H. and T. B. Brazelton. A new model of assessing the behavioral organization in preterm and fullterm infants: two cases studies, J. Am. Acad. Child Adolesc. Psychiatry 20: 239–263, 1981.
 10. Als, H., G. Lawhon, E. Brown, R. Gibes, F. H. Duffy G. McAnulty and J. G. Blickman. Individualized behavioral and environmental care for the very low birth weight preterm infant at high risk for bronchopulmonary dysplasia: neonatal intensive care unit and developmental outcome, Pediatrics 78: 1123–1132, 1986.
 11. Altman, J., and S. A. Bayer. Development of the diencephalon in the rat. I. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J. Comp. Neurol. 182: 945–972, 1978.
 12. Altman, J., and S. A. Bayer. The development of the rat hypothalamus Advances in Anatomy. Embryology and Cell Biology, vol. 100, p 65–70, 1986.
 13. Altstein, M., and H. Gainer. Differential biosynthesis and post‐translational processing of vasopressin and oxytocin in rat brain during embyonic and postnatal development. J. Neurosci. 8: 3967–3977, 1988.
 14. Amiel‐Tison, C, D. Cabrol, and S. Shnider. Safety of full‐term birth: can complete safety be guaranteed and at what cost? In: The Newborn Infant. One Brain for Life, edited by C. Amiel‐Tison and A. Stewart. Paris: INSERM, p. 111, 1994.
 15. Anand, K., and A. Aynsley‐Green. Measuring the severity of surgical stress in newborn infants. J. Pediatr. Surg. 23: 297–305, 1988.
 16. Anand, K. J., W. G. Sippell, and A. Aynsley‐Green. Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet 1: 62–66, 1987.
 17. Anand, K.J., and M. P. Ward‐Platt. Neonatal and pediatric stress responses to anesthesia and operation. Int. Anesthesiol. Clin. 26: 218–225, 1988.
 18. Anand, K.J.S. The stress response to surgical trauma: from physiological basis to therapeutic implications. Prog. Food Nutr. Sci. 10: 67–132, 1986.
 19. Anand, K.J.S. Relationships between stress responses and clinical outcome in newborns, infants, and children. Crit. Care Med. 21 (Suppl. 9): S358–S359, 1993.
 20. Anand, K.J.S., M.J. Brown, S. R. Bloom, and A. Aynsley‐Green. Studies on the hormonal regulation of fuel metabolism in the human newborn infant undergoing anaesthesia and surgery. Horm. Res. 22: 115–128, 1985.
 21. Anand, K.J.S., M. J. Brown, R. C. Causon, N. D. Christofides, S. R. Bloom, and A. Aynsley‐Green. Can the human neonate mount an endocrine and metabolic response to surgery? J. Pediatr. Surg. 20: 41–18, 1985.
 22. Anand, K.J.S., and P. R. Hickey. Halothane‐morphine compared with high‐dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. N. Engl. J. Med. 326: 1–9, 1992.
 23. Andersen, B., and M. G. Rosenfeld. Pit‐1 determines cell types during development of the anterior pituitary gland. A model for transcriptional regulation of cell phenotypes in mammalian organogenesis. J. Biol. Chem. 269: 29335–29338, 1994.
 24. Anisman, H., and R. M. Zacharko. Behavioral and neurochemical consequences associated with stressors. Ann. N.Y. Acad. Sci. 467: 205–225, 1986.
 25. Antoni, F. A. Hypothalamic control of adrenocorticotropin secretion: advances since the discovery of 41‐residue corticotropin‐releasing factor. Endocr. Rev., 7: 351–357, 1986.
 26. Antoni, F. A., M. C. Holmes, and M. T. Jones. Oxytocin as well as vasopressin potentiate ovine CRF in vitro. Peptides 4: 411–415, 1983.
 27. Apostolakis, E. M., L. D Longo, and S. M. Yellon. Cortisol feedback regulation of pulsatile ACTH secretion in fetal sheep during late gestation. Am. J. Physiol. 267 (Endocrinol. Metab. 30): E521–E527, 1994.
 28. Arai, M., and E. P. Widmaier. Activation of the pituitary‐adrenocortical axis in day‐old rats by insulin‐induced hypoglycemia. Endocrinology 129: 1505–1512, 1991.
 29. Arai, M., and E. P. Widmaier. Steroidogenesis in isolated adrenocortical cells during development in rats. Mol. Cell. Endocrinol. 92: 91–97, 1993.
 30. Autelitano, D. J., M. Blum, M. Lopingco, R. G. Allen, and J. L. Roberts. Corticotropin‐releasing factor differentially regulates anterior and intermediate pituitary lobe proopiomelanocortin gene transcription, nuclear precursor RNA and mature mRNA in vivo. Neuroendocrinology. 51: 123–130, 1990.
 31. Avanzino, G. L., G. Celasco, C. E. Cogo, R. Ermirio, and P. Ruggeri. Actions of microelectrophoretically applied glucocorticoid hormones on reticular formation neurones in the rat. Neurosci. Lett. 38: 45–49, 1983.
 32. Avishai‐Eliner, S., S. J. Yi, and T. Z. Baram. Developmental profile of messenger RNA for the corticotropin releasing hormone receptor in the rat limbic system. Dev. Brain Res. 91: 159–163, 1995.
 33. Axelrod, J., and T. D. Reisine. Stress hormones: their interaction and regulation. Science 224: 452–459, 1984.
 34. Baethmann, A., Steroids and brain function. In: Brain Insults in Infants and Children, edited by H. James N. G. Anas, and R. M. Perkins. Grune & Stratton, Orlando, FL: 1985, p 3–17.
 35. Baram, T. Z., S. Yi, S. Avishai‐Eliner, and L. Schultz. Development neurobiology of the stress response: multilevel regulation of corticotropin‐releasing hormone function. Ann. N.Y. Acad. Sci. 814: 252–265, 1997.
 36. Barbazanges, A., P. V. Piazza, M. Le Moal, and S. Maccari. Maternal glucocorticoid secretion mediates long term effects of prenatal stress. J. Neurosci. 16: 3943–3949, 1996.
 37. Barr, R. G., V. S. Quck, D. Cousineau, T. F. Oberlander, J. A. Brian, and S. N. Young. Effects of intra‐oral sucrose on crying, mouthing and hand‐mouth contact in newborn and six‐week‐old infants. Dev. Med. Child. Neurol. 36: 608–618, 1994.
 38. Bhatnagar, S., and M. Dallman. Neuroanatomical basis for facilitation of hypothalamic‐pituitary‐adrenal responses to a novel stressor after chronic stress. Neuroscience 84: 1025–1039, 1998.
 39. Begeot, M., M. P. Dubois, and P. M. Dubois. Comparative study in vivo and in vitro of the differentiation of the immunoreactive corticotropic cells in fetal rat anterior pituitary. Neuroendocrinology 35: 255, 1982.
 40. Benediktsson, R, J. Noble, A. A. Calder, C.R.W. Edwards, and J. Seckl. 11Beta‐hydroxysteroid dehydrogenase activity in intact dually‐perfused fresh human placenta predicts birth weight. J. Endocrinol. 144 (Suppl.): 161, 1995.
 41. Bilezikjian, L. M., and W. W. Vale. Regulation of ACTH secretion from corticotrophs: the interaction of vasopressin and CRF. Ann. N.Y. Acad. Sci. 512: 85–96, 1987.
 42. Bill, M. E., T. R. Myers, T. J. McDonald, and D. A. Myers. Fetal sheep pituitary proopiomelanocortin in late gestation: effect of bilateral lesions of the paraventricular nucleus on regional and cellular messenger ribonucleic acid levels. Endocrinology 138: 3873–3880, 1997.
 43. Bodnar, M., A. Sarrieau, C. F. Deschepper, and C.‐D. Walker. Adrenal vasoactive intestinal peptide (VIP) participates in corticosteroid production during development in the rat. Am. J. Physiol. 273 (Regulatory Integrative Comp. Physiol. 42): R1162–R1172, 1997.
 44. Boer, G. J., Vasopressin and oxytocin receptors and the developing brain. In: Receptors in the Developing Nervous System, edited by I. S. Zagon and P. J. McLaughlin. London: Chapman & Hall, p 225–248, 1993.
 45. Bohn, M. C., Glucocorticoid induced teratologies of the nervous system. In: Neurobehavioral Teratologies of the Nervous System, edited by J. Yauci. Amsterdam: Elsevier, p 365–387, 1984.
 46. Bohn, M. C., M. Goldstein, and I. B. Black. Role of glucocorticoids in expression of the adrenergic phenotype in rat embryonic adrenal gland. Dev. Biol. 82: 1–10, 1981.
 47. Bohus, B. Evaluation of the role of the feedback effect of corticosteroids in the control of pituitary ACTH release. Acta. Physiol. Acad. Sci. Hung. 35: 141, 1969.
 48. Boksa, P. Early development profiles of plasma corticosterone are altered by birth condition in the rat: a comparison of vaginal birth, Caesarean section and Caesarean section with added anoxia. Pediatr. Res. 41: 34–43, 1997.
 49. Boksa, P. Birth insult alters ethanol preference in the adult rat. Eur. J. Pharmacol. (in press), 348 (2‐3): 143–153, 1998.
 50. Boksa, P., A. Krishnamurthy, and S. Sharma. Hippocampal and hypothalamic type I corticosteroid receptor affinities are reduced in adult rats born by a Caesarean procedure with or without an added period of anoxia. Neuroendocrinology 64: 25–34, 1996.
 51. Boudouresque, F., V. Guillaume, M. Grino, V. Strbak, T. Chautard, B. Conte‐Devolx, and C. Oliver. Maturation of the pituitary‐adrenal function in rat fetuses. Neuroendocrinology 48: 417–422, 1988.
 52. Braas, K. M., C. A. Brandenburg, and V. May. Pituitary adenylate cyclase‐activating polypeptide regulation of AtT‐20/D16v corticotrope cell proopiomelanocortin expression and secretion. Endocrinology 134: 186–195, 1994.
 53. Brake, W. G., M. B. Noel, P. Boksa, and A. Gratton. Influence of perinatal factors on the nucleus accumbens dopamine response to repeated stress during adulthood: an electrochemical study in the rat. Neuroscience 77: 1067–1076, 1997.
 54. Brieu, V., M. C. Tonon, B. Lutz‐Bucher, and P. Durand. Corticotropin‐releasing factor‐like immunoreactivity, arginine vasopressin‐like immunoreactivity and ACTH‐releasing bioactivity in hypothalamic tissue from fetal and neonatal sheep. Neuroendocrinology 49: 164–168, 1989.
 55. Brooks, A. N., and J.R.G. Challis. Effects of CRF, AVP and opioid peptides on pituitary‐adrenal responses in sheep. Peptides 10: 1291–1293, 1989.
 56. Brooks, A. N., and D. C. Howe. Adrenocorticotrophin and luteinizing hormone responses to N‐methyl‐D‐aspartate during fetal development in sheep. J. Neuroendocrinol. 8: 315–321, 1996.
 57. Brooks, A. N., and A. White. Activation of pituitary‐adrenal function in fetal sheep by corticotropin‐releasing factor and arginine vasopressin. J. Endocrinol. 124: 27–35, 1990.
 58. Brown, R. W., R. Diaz, A. C. Robson, Y. V. Kotelevtsev, J. J. Mullins, M. H. Kaufman, and J. R. Seckl. The ontogeny of 11beta‐hydroxysteroid dehydrogenase type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology 137: 794–797, 1996.
 59. Brown, R. W., Y. Kotolevtsev, C. Leckie, R. S. Lindsay, V. Lyons, P. Murad, J. J. Mullins, K. E. Chapman, C.R.W. Edwards, and J. R. Seckl. Isolation and cloning of human placental 11beta‐hydroxysteroid dehydrogenase‐2 cDNA. Biochem. J. 313: 1007–1017, 1996.
 60. Bruhn, T. O., R. E. Sutton, C. L. Rivier, and W. W. Vale. Corticotropin‐releasing factor regulates proopiomelanocortin messenger ribonucleic acid levels in vivo. Neuroendocrinology 39: 170–175, 1984.
 61. Bugnon, C., D. Fellmann, A. Gouget, J. L. Bresson, M. C. Clavequin, M. Hadjiyiassemis, and J. Cardot. Corticoliberin neurons: cytophysiology, phylogeny and ontogeny. J. Steroid. Biochem. 20: 183, 1984.
 62. Bugnon, C., D. Fellmann, A. Gouget, and J. Cardot. Ontogeny of the corticoliberin neuroglandular system in rat brain. Nature 298: 159–161, 1982.
 63. Buijs, R. M., D. N. Velis, and D. F. Swaab. Ontogeny of vasopressin and oxytocin in the fetal rat: early vasopressinergic innervation of the fetal brain. Peptides 1: 315–324, 1980.
 64. Capuano, C. A., S. F. Leibowitz, and G. A. Barr. The pharmaco‐ontogeny of the paraventricular alpha2‐noradrenergic receptor system mediating norepinephrine‐induced feeding in the rat. Dev. Brain. Res. 68: 67–74, 1992.
 65. Carmichael, S. W., and H. Winkler. The adrenal chromaffin cell. Sci. Am. 253: 40–49, 1985.
 66. Carr, G. A., R. A. Jacobs, I. R. Young, J. Schwartz, A. White, S. Crosby, and G. D. Thorburn. Development of adrenocorticotropin(1–39) and precursor peptide secretory responses in the fetal sheep during the last third of gestation. Endocrinology 136: 5020–5027, 1995.
 67. Challis, J. R., and A. N. Brooks. Maturation and activation of hypothalamic‐pituitary‐adrenal function in fetal sheep. Endocr. Rev. 10: 182–204, 1989.
 68. Chaouloff, F. Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res. Rev. 18: 1–32, 1993.
 69. Chatelain, A., and H. S. Cheong. Immunoreactive forms of ACTH released by the adenohypophysis of the rat during the perinatal period in in vivo and in vitro studies. J. Physiol. (Paris) 81: 361–367, 1986.
 70. Chatelain, A., and H. S. Cheong. The biological activity of different molecular forms of ACTH on corticosterone production by perifused foetal rat adrenal glands in vitro. Acta Endocrinol. (Copenh.) 116: 179–185, 1987.
 71. Chatelain, A., and J. P. Dupouy. Activity of the pituitary‐adrenal system in rat fetuses subjected to encephalectomy in early or late stages of pregnancy. Neuroendocrinology 33: 148, 1981.
 72. Chatelain, A., and J. P. Dupouy. Adrenocorticotrophic hormone in the anterior and the neurointermediate lobes of the rat pituitary during the perinatal period: polymorphism, biological and immunological activities of ACTH. Biol. Neonate 47: 235, 1985.
 73. Chatelain, A., J. P. Dupouy, and P. Allaume. Fetal‐maternal adrenocorticotropin and corticosterone relationships in the fetal rat: effects of maternal adrenalectomy. Endocrinology 106: 1297, 1980.
 74. Chatelain, A., J. P. Dupouy, and M. P. Dubois. Ontogenesis of cells producing polypeptide hormones (ACTH, MSH, LPH, GH, prolactin) in the fetal hypophysis of the rat: influence of the hypothalamus. Cell Tissue Res. 196: 409, 1979.
 75. Chatelain, A., P. Durand, E. Naaman, and J. P. Dupouy. Ontogeny of ACTH(1–24) receptors in rat adrenal glands during the perinatal period. J. Endocrinol. 123: 421–428, 1989.
 76. Chatelain, A., E. Naaman, P. Durand, A. Lepretre, and J. P. Dupouy. Development of adenylate cyclase activity in rat adrenal glands during the perinatal period. J. Endocrinol. 126: 211–216, 1990.
 77. Chatow, U., S. Davidson, B. L. Reichman, and S. Axelrod. Development and maturation of the autonomic nervous system in premature and full‐term infants using spectral analysis of heart rate fluctuations. Pediatr. Res. 37: 294–302, 1995.
 78. Chautard, T, F. Boudouresque, V. Guillaume, and C. Oliver. Effect of excitatory amino acid on the hypothalamo‐pituitaryadrenal axis in the rat during the stress hyporesponsive period. Neuroendocrinology 57: 70–78, 1993.
 79. Cherubini, E., J. L. Gaiarsa, and Y Ben‐Ari. GABA: an excitatory transmitter in early postnatal life. Trends Neurosci. 14: 515–519, 1991.
 80. Childs, G. V., D. G. Ellison, and J. A. Ramaley. Storage of anterior lobe adrenocorticotropin in corticotropes and a subpopulation of gonadotropes during the stress‐nonresponsive period in the neonatal male rat. Endocrinology 110: 1676–1692, 1982.
 81. Chubakov, A. R., E. A. Gromova, G. V. Konovalov, E. F. Sarkisova, and E. I. Chumasov. The effect of serotonin on the morpho‐functional development of rat cerebral neocortex in tissue culture. Brain Res. 369: 285–297, 1986.
 82. Cintra, A., V. Solfrini, B. Bunnemann, S. Okret, F. Bortolotti, J. A. Gustafsson, and K. Fuxe. Prenatal development of glucocorticoid receptor gene expression and immunoreactivity in the rat brain and pituitary gland: a combined in situ hybridization and immunocytochemical analysis. Neuroendocrinology 57: 1133–1147, 1993.
 83. Cirulli, F., D. Santucci, G. Laviola, E. Alleva, and S. Levine. Behavioral and hormonal responses to stress in the newborn mouse: effects of maternal deprivation and chlordiazepoxide. Dev. Psychobiol. 27: 301–316, 1994.
 84. Clarke, A. S., D. J. Wittwer, D. H. Abbott, and M. L. Schneider. Long‐term effects of prenatal stress on HPA axis activity in juvenile rhesus monkeys. Dev. Psychobiol. 27: 257–269, 1994.
 85. Clarke, M. J.O., P. Lowry, and G. Gilles. Assessment of corticotropin releasing factor, vasopressin and somatostatin secretion by fetal hypothalamic neurons in culture. Neuroendocrinology 46: 147, 1987.
 86. Cohen, A. Plasma corticosterone concentration in the foetal rat. Horm. Metab. Res. 5: 66, 1973.
 87. Cohen, A., A. Chatelain, and J. P. Dupouy. Late pregnancy maternal and fetal time course of plasma ACTH and corticosterone after continuous ether inhalation by pregnant rats. Biol. Neonate 43: 220, 1983.
 88. Comline, R. S., and M. Silver. The development of the adrenal medulla of the foetal and newborn calf. J. Physiol. (Lond) 183: 305–340, 1966.
 89. Corbier, P., and J. Roffi. Pituitary adrenocortical response to stress during the first day of postnatal life in the rat. Biol. Neonate 34: 105, 1978.
 90. Cotterrell, M., R. Balazs, and A. L. Johnson. Effects of corticosteroids on the biochemical maturation of rat brain: postnatal cell formation. J. Neurochem. 19: 2151–2167, 1972.
 91. Coulter, C. L., P. C. Goldsmith, S. Mesiano, C. C. Voytech, M. C. Martin, J. I. Mason, and R. B. Jaffe. Functional maturation of the primate fetal adrenal in vivo. II. Ontogeny of corticosteroid synthesis is dependent upon specific zonal expression of 3beta‐hydroxysteroid dehydrogenase/isomerase. Endocrinology 137: 4953–4959, 1996.
 92. Coulter, C. L., L. C. Read, B. R. Carr, A. F. Tarantal, S. Barry, and D. M. Styne. A role for epidermal growth factor in the morphological and functional maturation of the adrenal gland in the fetal rhesus monkey in vivo. J. Clin. Endocrinol. Metab. 81: 1254–1260, 1996.
 93. Cratty, M. S., H. E. Ward, E. A. Johnson, A. J. Azzaro, and D. L. Birkle. Prenatal stress increases corticotropin‐releasing factor (CRF) content and release in rat amygdala minces. Brain Res. 675: 297–302, 1995.
 94. Cudd, T. A., and C. E. Wood. Secretion and clearance of immunoreactive ACTH by fetal lung. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E845–848, 1995.
 95. Cunningham, E. T., M. C. Bohn, and P. E. Sawchenko. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J. Comp. Neurol. 292: 651–667, 1990.
 96. Cunningham, E. T., and P. E. Sawchenko. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J. Comp. Neurol. 274: 60–76, 1988.
 97. D'Agostino, J., and S. J. Henning. Hormonal control of postnatal development of corticosteroid‐binding globulin. Am. J. Physiol. 240 (Endocrinol. Metab. 3): E402–E406, 1981.
 98. Daikoku, S., H. Kawano, K. Abe, and K. Yoshinaga. Topographical appearance of adenohypophysial cells with special reference to the development of the portal system. Arch. Histol. Jpn. 44: 103–116, 1981.
 99. Daikoku, S., H. Morishita, T. Hashimoto, and A. Takahashi. Light microscopic studies on the developemnt of the interrelationship between the neurosecretory pathway and the portal system in rats. Endocrinol. Jpn. 14: 209, 1967.
 100. Dalle, M., A. ElHani, and P. Delost. Changes in cortisol binding and metabolism during neonatal development in the guinea pig. J. Endocrinol. 85: 219–227, 1980.
 101. Dallman, M. F. Control of adrenocortical growth in vivo. Endoc. Res. 10: 213–242, 1985.
 102. Dallman, M. F., S. F. Akana, and C. S. Cascio. D. N. Darlington, L. Jacobson, and N. Levin. Regulation of ACTH secretion: variations on a theme of B. Recent Prog. Horm. Res. 43: 113–173, 1987.
 103. Dallman, M. F., S. F. Akana, K. A. Scribner, M. J. Bradbury, C.‐D. Walker, A. M. Strack, and C. S. Cascio. Stress, feedback and facilitation in the hypothalamo‐pituitary‐adrenal axis. J. Neuroendocrinol. 4: 517–526, 1992.
 104. Dallman, M. F., N. Levin, C. S. Cascio, S. F. Akana, L. Jacobson, and R. Kuhn. Pharmacological evidence that inhibition of diurnal adrenocorticotropin secretion by corticosteroids is mediated via type I corticosterone‐preferring receptors. Endocrinology 124: 2844–2850, 1989.
 105. Day, J. C., M. Koehl, V. Deroche, M. LeMoal, and S. Maccari. Prenatal stress enhances stress‐and corticotropin‐releasing factor‐induced stimulation of hippocampal acetylcholine release in adult rats. J. Neurosci. 18: 1886–1892, 1998.
 106. Deacon, C. F., W. Mosley, and I. C. Jones. The X zone of the mouse adrenal cortex of the Swiss albino strain. Gen. Comp. Endocrinol. 61: 87–99, 1986.
 107. DeKloet, E. R. Brain corticosteroid receptor balance and homeostatic control. Front. Neuroendocrinol. 12: 95–164, 1991.
 108. DeKloet, E. R., P. Rosenfeld, J.A.M. Van Eekelen, W. Sutanto, and S. Levine. Stress, glucocorticoids and development. Prog. Brain Res. 73: 101–120, 1988.
 109. DeKloet, E. R., E. Vreugdenhil, M. S. Oitzl, and M. Joels. Brain corticosteroid receptors in health and disease. Endocr. Rev. 19 (3): 269–301, 1998.
 110. Dent, G., C. Hindman, S. Levine, and M. A. Smith. Ontogeny of corticotropin releasing factor‐binding protein expression in rat brain. Abstract, The 27th Annual Meeting of the Society for Neuroscience, october 25–30, 1997 New Orleans 1997, p 1076. Abstract nr. 424.2.
 111. De Souza, E. B. Corticotropin‐releasing factor receptors: physiology, pharmacology, biochemistry and role in central nervous system and immune disorders. Psychoneuroendocrinology 20: 789–819, 1995.
 112. Devaskar, U., D. Magyar, D. Fridshal, J. Buster, and P. W. Nathanielsz. Development of responsiveness of dispersed rabbit adrenocortical cells to synthetic adrenocorticotropic hormone [ACTH‐(1–24)] and alpha‐melanocyte‐stimulating hormone. Endocrinology 107: 809–815, 1980.
 113. Dijkstra, I., R. Binnekade, and F. J. Tilders. Diurnal variation in resting levels of corticosterone is not mediated by variation in adrenal responsiveness to adrenocorticotropin but involves splanchnic nerve integrity. Endocrinology 137: 540–547, 1996.
 114. Dubois, P. M., and F. J. Hemming. Fetal development and regulation of pituitary cell types. J. Electron Microsc. Tech. 19: 2–20, 1991.
 115. Duman, R. S., and J. D. Alvaro. Developmental expression of adrenergic receptors in the central nervous system. In: Receptors in the Developing Nervous System, edited by I. S. Zagon and P. J. McLaughlin. London: Chapman & Hall, 1993, vol. 2, p 1–19.
 116. Duncan, C. P., F. J. Seidler, S. E. Lappi, and T. A. Slotkin. Dual control of DNA synthesis by alpha and beta‐adrenergic mechanisms in normoxic and hypoxic neonatal rat brain. Dev. Brain Res. 55: 29–33, 1990.
 117. Dupouy, J. P. Sites of the negative feedback action of corticosteroids on the hypothalamo‐hypophysial system of the rat fetus. Neuroendocrinology 16: 148, 1974.
 118. Dupouy, J. P., and A. Chatelain. Hypophysial corticotropic activity during perinatal period: ontogenesis and regulation. J. Physiol. (Paris) 77: 955–968, 1981.
 119. Dupouy, J. P., and A. Chatelain. In vitro effects of corticosterone, synthetic ovine corticotropin releasing factor and arginine vasopressin on the release of adrenocorticotropin by fetal rat pituitary glands. J. Endocrinol. 101: 339–344, 1984.
 120. Dupouy, J. P., A. Chatelain, and P. Allaume. Absence of transplacental passage of ACTH in the rat: direct experimental proof. Biol. Neonate 37: 96, 1980.
 121. Dupouy, J. P., H. Coffigny, and S. Magre. Maternal and fetal corticosterone levels during late pregnancy in rats. J. Endocrinol. 65: 347, 1975.
 122. Dupouy, J. P., and M. P. Dubois. Ontogenesis of the alpha‐MSH, beta‐MSH and ACTH cells in the foetal hypophysis of the rat. Correlation with the growth of the adrenals and adrenocortical activity. Cell Tissue Res. 161: 373, 1975.
 123. Eberwine, J. H., J. A. Jonassen, M.J.Q. Evinger, and J. L. Roberts. Complex transcriptional regulation by glucocorticoids and corticotropin‐releasing hormone of proopiomelanocortin gene expression in rat pituitary cell cultures. DNA 6: 483–492, 1987.
 124. Edwards, C.R.W., R. Benediktsson, R. Lindsay, and J. R. Seckl. Dysfunction of the placental glucocorticoid barrier: a link between the foetal environment and adult hypertension? Lancet 341: 355–357, 1993.
 125. Eghbal‐Ahmadi, M., C. G. Hatalski, S. Avishai‐Eliner, and T. Z. Baram. Corticotropin releasing factor receptor type II (CRF2) messenger ribonucleic acid levels in the hypothalamic ventromedial nucleus of the infant rat are reduced by maternal deprivation. Endocrinology 138: 5048–5051, 1997.
 126. Eghbal‐Ahmadi, M., C. G. Hatalski, T. W. Lovenberg, S. Avishai‐Eliner, D. T. Chalmers, and T. Z. Baram. The developmental profile of the corticotropin releasing factor receptor (CRF2) in rat brain predicts distinct age‐specific functions. Dev. Brain Res. 107: 81–90, 1998.
 127. Eguchi, Y., and L. J. Wells. Responses of the hypothalamic‐hypophyseal adrenal axis to stress: observations in fetal and Caesarean newborn rats. Proc. Soc. Exp. Biol. Med. 120: 675, 1965.
 128. Elfvin, L. G. The development of the secretory granules in the rat adrenal medulla. J. Ultrastruct. Res. 17: 45–62, 1967.
 129. Engeland, W. C., P. Miller, and D. S. Gann. Dissociation between changes in plasma bioactive and immunoreactive adrenocorticotropin after hemorrhage in awake dogs. Endocrinology 124: 2978–2985, 1989.
 130. Engeland, W. C., C. Wotus, and J. C. Rose. Ontogeny of innervation of rat and ovine fetal adrenals [abstract]. Endocr. Res. 24 (3–4): 889–98, 1998.
 131. Feldman, S. Neural pathways mediating adrenocortical responses. Federation Proc. 44: 169–175, 1985.
 132. Feldman, S., D. Saphier, and N. Conforti. Hypothalamic afferent connections mediating adrenocortical responses that follow hippocampal stimulation. Exp. Neurol. 98: 103, 1987.
 133. Fellmann, D., C. Bugnon, J. L. Bresson, A. Gouget, J. Cardot, M. C. Clavequin, and M. Hadjiyiassemis. The CRF neuron: an immunocytochemical study. Peptides 5 (Suppl. 1): 19–33, 1984.
 134. Feuillan, P. P., and G. Aguilera. Regulation of aldosterone in the 7‐day‐old rat. Endocrinology 137: 3992–3998, 1996.
 135. Fiselier, T., L. Monnens, E. Moerman, P. Munster, M. Jansen, and P. Peer. Influence of the stress of venipuncture on basal levels of plasma renin activity in infants and children. Int. J. Pediatr. Nephrol. 4: 181–185, 1983.
 136. Fitzgerald, M. Development of pain mechanisms. Br. Med. Bull. 47: 667–675, 1991.
 137. Fujitaka, M., K. Jinno, N. Sakura, K. Takata, T. Yamasaki, J. Inada, T. Sakano, N. Horino, K. Kidani, and K. Ueda. Serum concentrations of cortisone and cortisol in premature infants. Metabolism 46: 518–521, 1997.
 138. Funder, J. W., J. T. Pearce, R. Smith, and A. I. Smith. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 242: 583–585, 1988.
 139. Fuxe, K., R. Diaz, A. Cintra, M. Bhatnagar, B. Tinner, J. A. Gustafsson, S. O. Ogren, and L. F. Agnati. On the role of glucocorticoid receptors in brain plasticity. Cell. Mol. Neurobiol. 16: 239–258, 1996.
 140. Gann, D. S., D. G. Ward, and D. E. Carlson. Neural control of ACTH: a homeostatic reflex. In: Recent Progress in Hormone Research. San Diego: Academic, 1978, vol. 34, p 357–400.
 141. Gillies, G. E., E. A. Linton, and P. J. Lowry. Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature 299: 355–357, 1982.
 142. Gould, E., C. S. Woolley, and B. S. McEwen. Adrenal steroids regulate postnatal development of the rat dentate gyrus: I. Effects of glucocorticoids on cell death. J. Comp. Neurol. 313: 479–485, 1991.
 143. Gray, P. Pituitary adrenocortical response to stress in the neonatal rat. Endocrinology 89: 1126–1130, 1971.
 144. Greenough, A., and E. Emery. ECMO and outcome of mechanical ventilation in infants of birthweight over 2 kg. Lancet 336: 760, 1990.
 145. Greisen, G., P. S. Frederiksen, J. Hertel, and N. J. Christensen. Catecholamine response to chest physiotherapy and endotracheal suctioning in preterm infants. Acta Paediatr. Scand. 74: 525–529, 1985.
 146. Grigoriadis, D. E., G. W. Dent, J. G. Turner, H. Uno, S. E. Shelton, E. B. De Souza, and N. H. Kalin. Corticotropin‐releasing factor (CRF) receptors in infant rhesus monkey brain and pituitary gland: biochemical characterization and autoradiographic localization. Dev. Neurosci. 17: 357–367, 1995.
 147. Grigoriadis, D. E., T. R. Insel, J. A. Heroux, and E. B. De Souza. Corticotropin releasing hormone receptors and the developing nervous system. In: Receptors in the Developing Nervous System, edited by I. S. Zagon and P. J. McLaughlin. London: Chapman & Hall, 1994, p 147–161.
 148. Grino, M., J. M. Burgunder, R. L. Eskay, and L. E. Eiden. Onset of glucocorticoid responsiveness of anterior pituitary corticotrophs during development is scheduled by corticotropin‐releasing factor. Endocrinology 124: 2686–2692, 1989.
 149. Grino, M., and C. Oliver. Ontogeny of insulin‐induced hypoglycemia stimulation of adrenocorticotropin secretion in the rat: role of catecholamines. Endocrinology 131: 2763–2768, 1992.
 150. Grino, M., O. Paulmyer‐Lacroix, M. Faudon, M. Renard, and G. Anglade. Blockade of alpha‐2 adrenoceptors stimulates basal and stress‐induced adrenocorticotropin secretion in the developing rat through a central mechanism independent from corticotropin‐releasing factor and arginine vasopressin. Endocrinology 135: 2549–2557, 1994.
 151. Grino, M., W. S. Young, and J. M. Burgunder. Ontogeny of expression of the corticotropin releasing factor gene in the hypothalamic paraventricular nucleus and of the proopiomelanocortin gene in rat pituitary. Endocrinology 124: 60–68, 1989.
 152. Grunau, R, M. F. Whitfield, J. H. Petrie, and E. L. Fryer. Early pain experience, child and family factors, as precursors of somatization: a prospective study of extremely premature and fullterm children. Pain 56: 353–359, 1994.
 153. Guillet, R., and S. M. Michaelson. Corticotropin responsiveness in the neonatal rat. Neuroendocrinology 27: 119–125, 1978.
 154. Guillet, R., M. Saffran, and S. M. Michaelson. Pituitaryadrenal response in neonatal rats. Endocrinology 106: 991–994, 1980.
 155. Gulyas, M., Z. Acs, G. Rappay, and G. B. Makara. Corticotroph, somatotroph and mammotroph cell kinetics in the postnatal infant female rat. Histochemistry 100: 503–507, 1993.
 156. Gunnar, M. R. Studies of the human infant's adrenocortical response to potentially stressful events. New Dir. Child Dev. volume # 45: 3–18, 1989.
 157. Gunnar, M. R., R. O. Fisch, and S. Korsvik. The effects of circumcision on serum cortisol and behavior. Psychoneuroendocrinology 6: 269–275, 1981.
 158. Gunnar, M. R., F. L. Porter, C. M. Wolf, J. Rigatuso, and M. C. Larson. Neonatal stress reactivity: predictions to later emotional temperament. Child Dev. 66: 1–13, 1995.
 159. Gyevai, A., G. B. Makara, E. Stark, and M. Palkovits. Long‐term suspension culture of isolated hypothalamic nuclei of the rat: morphological differentiation and release of substances influencing corticotropin and growth hormone secretion. Neuroscience 14: 519, 1985.
 160. Hack, M., H. G. Taylor, N. Klein, R. Eiben, C. Schatschneider, and N. Mercuri‐Minich. School‐age outcomes in children with birth weights under 750 g. N. Engl. J. Med. 331: 753–759, 1994.
 161. Hamon, M., S. Bourgouin, C. Chanez, and F. DeVitry. Do serotonin and other neurotransmitters exert a trophic influence on the immature brain? Dev. Neurobiol. 12: 171–183, 1982 (?).
 162. Hanna, C. E., L. D. Keith, M. A. Colasurdo, D. C. Buffkin, M. R. Laird, S. H. Mandel, D. M. Cook, S. H. LaFranchi, and J. W. Reynolds. Hypothalamic pituitary adrenal function in the extremely low birth weight infant. J. Clin. Endocrinol. Metab. 76: 384–387, 1993.
 163. Harris, K. M., and T. J. Teyler. Evidence for late development of inhibition in area CA1 of the rat hippocampus. Brain Res. 268: 339–343, 1983.
 164. Hary, L., J. P. Dupouy, and A. Chatelain. Pituitary response to bilateral adrenalectomy, metyrapone treatment and ether stress in the newborn rat. Biol. Neonate. 39: 28–36, 1981.
 165. Hary, L., J. P. Dupouy, and A. Chatelain. ACTH secretion from isolated hypophysial anterior lobes of male and female newborn rats: effects of corticotropin‐releasing factor, arginine vasopressin and oxytocin alone or in combination. J. Endocrinol. 137: 123–132, 1993.
 166. Hatalski, C. G., C. Guirguis, and T. Z. Baram. Corticotropin releasing factor mRNA expression in the hypothalamic paraventricular nucleus and the central nucleus of the amygdala is modulated by repeated acute stress in the immature rat. J. Neuroendocrinol. 10 (9): 663–669, 1998.
 167. Henion, P. D., and S. C. Landis. Asynchronous appearance and topographic segregation of neuropeptide‐containing cells in the developing rat adrenal medulla. J. Neurosci. 10: 2886–2896, 1990.
 168. Henning, S. J. Plasma concentrations of total and free corti‐costerone during development in the rat. Am. J. Physiol. 235 (Endocrinol. Metab. Gastrointest. Physiol. 4): E451–E456, 1978.
 169. Henning, S. J., and G. M. Genovese. Postnatal development of cholesterol ester hydrolase activity in the rat adrenal. J. Steroid. Biochem. 22: 803–808, 1985.
 170. Henry, C., M. Kabbaj, H. Simon, M. LeMoal, and S. Maccari. Prenatal stress increases the hypothalamo‐pituitary‐adrenal axis response in young and adult rats. J. Neuroendocrinol. 6: 341–345, 1994.
 171. Herman, J. P., W. E. Cullinan, M. I. Morano, H. Akil, and S. J. Watson. Contribution of the ventral subiculum to inhibitory regulation of the hypothalamo‐pituitary‐adrenocortical axis. J. Neuroendocrinol. 7: 475–482, 1995.
 172. Herman, J. P., M.K.H. Schafer, E. A. Young, R. Thompson, J. Douglass, H. Akil, and S. J. Watson. Evidence for hippocampal regulation of neuroendocrine neurons of the hypothalamo‐pituitary‐adrenocortical axis. J. Neurosci. 9: 3072, 1989.
 173. Hermans, R. H., and L. D. Longo. Altered catecholaminergic behavioral and hormonal responses in rats following early postnatal hypoxia. Physiol. Behav. 55: 469–475, 1994.
 174. Hirasawa, A., K. Hashimoto, and G. Tsujimoto. Distribution and developmental change of vasopressin VIA and V2 receptor mRNA in rats. Eur. J. Pharmacol. 267: 71–75, 1994.
 175. Hiroshige, T., and T. Sato. Circadian rhythm and stress‐induced changes in hypothalamic content of corticotropin‐releasing activity during postnatal development in the rat. Endocrinology 86: 1184, 1970.
 176. Hiroshige, T, T. Sato, and K. Abe. Dynamic changes in the hypothalamic content of corticotropin releasing factor following noxious stimuli: delayed response in early neonates in comparison with biphasic responses in adult rats. Endocrinology 89: 1287, 1971.
 177. Holzwarth, M. A., L. A. Cunningham, and N. Kleitman. The role of adrenal nerves in the regulation of adrenocortical functions. Ann. N.Y. Acad. Sci. 512: 449–464, 1987.
 178. Huether, G., F. Thomke, and L. Adler. Administration of tryptophan‐enriched diets to pregnant rats retards the development of the serotonergic system in their offspring. Dev. Brain Res. 68: 175–181, 1992.
 179. Hummelink, R., and P. L. Ballard. Endogenous corticoids and lung development in the fetal rabbit. Endocrinology 118: 1622–1629, 1986.
 180. Insel, T. R., G. Battaglia, and D. W. Faibanks. The ontogeny of brain receptors for corticotropin‐releasing factor and the development of their functional association with adenylate cyclase. J. Neurosci. 8: 4151–4158, 1988.
 181. Iny, L. J., C. Gianoulakis, R. M. Palmour, and M. J. Meaney. The beta‐endorphin response to stress during postnatal development in the rat. Dev. Brain Res. 31: 177–181, 1987.
 182. Ito, S., and E. Cherubini. Strychnine‐sensitive glycine responses of neonatal rat hippocampal neurones. J. Physiol. (Lond.) 440: 67–83, 1991.
 183. Jacobson, L., and R. M. Sapolsky. The role of the hippocampus in feedback regulation of the hypothalamic‐pituitary‐adrenocortical axis. Endocr. Rev. 12: 118–134, 1991.
 184. Jasper, M. S., and W. C. Engeland. Splanchnic neural activity modulates ultradian and circadian rhythms in adrenocortical secretion in awake rats. Neuroendocrinology 59: 97–109, 1994.
 185. Johnston, C., B. Stevens, F. Yang, and L. Horton. Developmental changes in response to heelstick in preterm infants: a prospective cohort study. Dev. Med. Child Neurol. 38: 438–445, 1996.
 186. Johnston, C. A., and A. Negro‐Vilar. Maturation of the prolactin and proopiomelanocortin‐derived peptide responses to ether stress and morphine: neurochemical analysis. Endocrinology 118: 797–804, 1986.
 187. Jones, C. T., and M. M. Roebuck. ACTH peptides and the development of the fetal adrenal. J. Steroid Biochem. 12: 77–82, 1980.
 188. Jones, C. T, and M. M. Roebuck. The development of the pituitary‐adrenal axis in the guinea pig. Acta Endocrinol. (Copenh.) 94: 107–116, 1980.
 189. Jones, C. T., and T. P. Rolph. Metabolic events associated with the preparation of the fetus for independent life. In: The fetus and Independent Life, Ciba Foundation Symposium, 86: 214–233, 1981.
 190. Jost, A. Problems of fetal endocrinology: the adrenal gland. Recent Prog. Horm. Res. 22: 541, 1966.
 191. Kalimi, M. Glucocorticoid receptors: from development to aging: a review. Mech. Ageing Dev. 24: 129–138, 1984.
 192. Kauffman, K. S., F. J. Seidler, and T. A. Slotkin. Prenatal dexamethasone exposure causes loss of neonatal hypoxia tolerance: cellular mechanisms. Pediatr. Res. 35: 515–522, 1994.
 193. Keegan, C. E., J. P. Herman, I. J. Karolyi, K. S. O'Shea, S. A. Camper, and A. F. Seasholtz. Differential expression of corticotropin‐releasing hormone in developing mouse embryos and adult brain. Endocrinology 134: 2547–2555, 1994.
 194. Keiger, C. J., W. K. O'Steen, G. Brewer, M. Sorci‐Thomas, T. J. Zehnder, and J. C. Rose. cortisol up‐regulates corticotropin releasing factor gene expression in the fetal ovine brainstem at 0.70 gestation. Mol. Brain Res. 32: 75–81, 1995.
 195. Keller‐Wood, M. E., and M. F. Dallman. Corticosteroid inhibition of ACTH secretion. Endocr. Rev. 5: 1–24, 1984.
 196. Kent, S., S. D. Kernahan, and S. Levine. Effects of excitatory amino acids on the hypothalamic‐pituitary‐adrenal axis of the neonatal rat. Brain Res. 94: 1–13, 1996.
 197. Kenny, F. M., C. Preeyasombat, and C. J. Migeon. Cortisol production rate: II. Normal infants, children, and adults. Pediatrics 37: 34–42, 1966.
 198. Keyser, A. Basic aspects of development and maturation of the brain: embryological contributions to neuroendocrinology. Psychoneuroendocrinology 8: 157–181, 1983.
 199. Kim, E. K., C. E. Wood, and M. Keller‐Wood. Characterization of 11 beta‐hydroxysteroid dehydrogenase activity in fetal and adult ovine tissue. Reprod. Fertil. Dev. 7: 377–383, 1995.
 200. Kitraki, E., M. N. Alexis, M. Papalopoulou, and F. Stylianopoulou. Glucocorticoid receptor gene expression in the embryonic rat brain. Neuroendocrinology 63: 305–317, 1996.
 201. Kleinschmidt, A., F. M. Bear, and W. Singer. Blockade of “NMDA” receptors disrupts experience‐dependent plasticity of kitten shiate cortex. Science 238: 355–358, 1987.
 202. Koch, B. Fraction libre de la corticosterone plasmatique et reponse hypophyso‐surrenalienne au stress durant la periode post‐natale chez le rat. Horm. Metab. Res. 1: 301–308, 1969.
 203. Koch, B., and B. Lutz‐Bucher. The vasopressin receptor system in the neonatal pituitary gland: evidence for reduced binding capacity and signal transmission. Neuroendocrinology 51: 592–598, 1990.
 204. Koehl, M., A. Barbazanges, M. LeMoal, and S. Maccari. Prenatal stress induces a phase advance of circadian corticosterone rhythm in adult rats which is prevented by postnatal stress. Brain Res. 759: 317–320, 1997.
 205. Ladd, C. O., M. J. Owens, and C. B. Nemeroff. Persistent changes in corticotropin‐releasing factor neuronal systems induced by maternal deprivation. Endocrinology 137: 1212–1218, 1996.
 206. Lagercrantz, H., E. Nilsson, I. Redham, and P. Hjemdahl. Plasma catecholamines following nursing procedures in a neonatal ward. Early Hum. Dev 14: 61–65, 1986.
 207. Lamonerie, T., J. J. Tremblay, C. Lanctot, M. Therrien, Y. Gauthier, and J. Drouin. Ptx1, a bicoid‐related homeo box transcription factor involved in transcription of the proopiomelanocortin gene. Genes Dev. 10: 1284–1295, 1996.
 208. Lauder, J. M. Neurotransmitters as growth regulatory signals: role of receptors and second messengers. Trends Neurosci. 16: 233–240, 1993.
 209. Laurent, F. M., C. Hindelang, M. J. Klein, M. E. Stoeckel, and J. M. Felix. Expression of the oxytocin and vasopressin genes in the rat hypothalamus during development: an in situ hybridization study. Dev. Brain Res. 46: 145–154, 1989.
 210. Lay, D. C., R. D. Randel, T. H. Friend, O. C. Jenkins, D. A. Neuendorff, D. M. Bushong, E. K. Lanier, and M. K. Bjorge. Effects of prenatal stress on suckling calves. J. Anim. Sci. 75: 3143–3151, 1989.
 211. Leavitt, M. G., G. W. Aberdeen, M. G. Burch, E. D. Albrecht, and G. J. Pepe. Inhibition of fetal adrenal adrenocorticotropin receptor messenger ribonucleic acid expression by betamethasone administration to the baboon fetus in late gestation. Endocrinology 138: 2705–2712, 1997.
 212. LeDoux, J. E., Emotion and the amygdala. In: The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction, edited by J. P. Aggleton. New York: Wiley‐Liss, p 339–351, 1992.
 213. Lee, M. M., L. Rajagopalan, G. J. Berg, and T. Moshang, Jr.. Serum adrenal steroid concentrations in premature infants. J. Clin. Endocrinol. Metab. 69: 1133–1136, 1989.
 214. Lee, S. Y., T. Imaki, W. Vale, and C. L. Rivier. Effect of prenatal exposure to ethanol on the activity of the hypothalamic‐pituitary‐adrenal axis of the offspring: importance of the time of exposure to ethanol and possible modulating mechanisms. Mol. Cell. Neurosci. 1: 168–177, 1990.
 215. Lee, S. Y., and C. Rivier. Prenatal alcohol exposure alters the hypothalamic‐pituitary‐adrenal axis response of immature offspring to interleukin‐1: is nitric oxide involved? Alcohol. Clin. Exp. Res. 18: 1242–1247, 1994.
 216. Leeper, L. L., R. Schroeder, and S. J. Henning. Kinetics of circulating corticosterone in infant rats. Pediatr. Res. 24: 595–599, 1988.
 217. Leret, M. L., M. I. Gonzalez, and R.M. Arahuetes. Effect of maternal adrenal deprivation on the content of catecholamines in fetal brain. Life Sci. 52: 1609–1615, 1993.
 218. Lesage, J., M. Grino, F. Bernet, I. Dutriez‐Casteloot, V. Montel, and J. P. Dupouy. Consequences of prenatal morphine exposure on the hypothalamo‐pituitary‐adrenal axis in the newborn rat: effect of maternal adrenalectomy. J. Neuroendocrinol. 10: 331–342, 1998.
 219. Levin, N., J. Shinsako, and M. F. Dallman. Corticosterone acts on the brain to inhibit adrenalectomy‐induced adrenocorticotropin secretion. Endocrinology 122: 694–701, 1987.
 220. Levine, S. The pituitary‐adrenal system and the developing brain. Prog. Brain Res. 32: 79–85, 1970.
 221. Levine, S., D. M. Huchton, S. G. Wiener, and P. Rosenfeld. Time course of the effect of maternal deprivation on the hypothalamic‐pituitary‐adrenal axis in the infant rat. Dev. Psychobiol. 24: 547–558, 1991.
 222. Leviton, A. Preterm birth and cerebral palsy: is tumor necrosis factor the missing link? Dev. Med. Child Neurol. 35: 553–558, 1993.
 223. Liggins, C. G. The role of cortisol in preparing the fetus for birth. Reprod. Fertil. Dev. 6: 141–150, 1994.
 224. Lindsay, R. S., R. M. Lindsay, C.R.W. Edwards, and J. R. Seckl. Inhibition of 11beta‐hydroxysteroid dehydrogenase in pregnant rats and the programming of blood pressure in the offspring. Hypertension 27: 1200–1204, 1996.
 225. Liposits, Z., C. Phelix, and W. K. Pauli. Adrenergic innervation of corticotropin‐releasing factor (CRF)‐synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. Histochemistry. 84: 201–205, 1986.
 226. Liu, J. P., P. J. Robinson, and J. W. Funder. The biosynthesis and secretion of adrenocorticotropin by the ovine anterior pituitary is predominantly regulated by arginine vasopressin (AVP). Evidence that protein kinase C mediates the action of AVP. J. Biol. Chem. 265: 14136–14142, 1990.
 227. Lovenberg, T. M., C. W Liaw, D. F. Grigoriadis, W. Clevenger, D. T. Chalmers, E. B. DeSouza, and T. Olsterdorf. Cloning and characterization of functionally distinct corticotropin‐releasing factor receptor subtype from rat brain. Proc. Natl. Acad. Sci. U.S.A. 92: 836–840, 1995.
 228. Lundberg, U., and M. Frankenhaeuser. Pituitary‐adrenal and sympathetic‐adrenal correlates of distress and effort. J. Psychosom. Res. 24: 125–130, 1980.
 229. Luo, J., T. Z. Bosy, Y. Wang, R. P. Yasuda, and B. B. Wolfe. Ontogeny of NMDA R1 subunit protein expression in five regions of rat brain. Dev. Brain Res. 92: 10–17, 1996.
 230. Masciello, A. L. Anesthesia for neonatal circumcision: Local anesthesia is better than dorsal penile nerve block. Obstet. Gynecol. 75: 834–838, 1990.
 231. Matthews, S. G. Dynamic changes in glucocorticoid and mineralocorticoid receptor mRNA in the developing guinea pig brain. Dev. Brain Res. 107 (1): 123–132, 1998.
 232. Matthews, S. G., and J.R.G. Challis. Corticotropin releasing hormone and vasopressin induced changes in proopiomelanocortin synthesis and adrenocorticotropin output from ovine fetal corticotrophs in vitro [Abstract]. J. Soc. Gynecol. Investig. 2: 393, 1995.
 233. Matthews, S. G., and J.R.G. Challis. Regulation of CRH and AVP mRNA in the developing ovine hypothalamus: effects of stress and glucocorticoids. Am. J. Physiol. 268 (Endocrinol. Metab. 31): E1096–E1107, 1995.
 234. Matthews, S. G., and J.R.G. Challis. Regulation of the hypoth‐alamo‐pituitary‐adrenocortical axis in fetal sheep. Trends Endocrinol. Metab. 7: 239–246, 1996.
 235. Matthews, S. G., and J. R. Challis. CRH‐ and AVP‐induced changes in synthesis and release of ACTH from the ovine fetal pituitary in vitro: negative influences of cortisol. Endocrine 6: 293–300, 1997.
 236. Matthews, S. G., X. Han, F. Lu, and J.R.G. Challis. Developmental changes in the distribution of proopiomelanocortin and prolactin mRNA in the pituitary of the ovine fetus and lamb. J. Mol. Endocrinol. 13: 175–185, 1994.
 237. Mazer, C., J. Muneyyirci, K. Taheny, N. Rayo, A. Borella, and P. Whitaker‐Azmitia. Serotonin depletion during synaptogenesis leads to decreased synaptic density and learning deficits in the adult rat: a possible model of neurodevelopmental disorders with cognitive deficits. Brain Res. 760: 68–73, 1997.
 238. McCormick, C. M., J. W. Smythe, S. Sharma, and M. J. Meaney. Sex‐specific effects of prenatal stress on hypothalamic‐pituitary‐adrenal responses to stress and brain glucocorticoid receptor density in adult rats. Dev. Brain Res. 84: 55–61, 1995.
 239. McDonald, J. W., F. S. Silverstein, and M. V. Johnston. Neurotoxicity of N‐methyl‐d‐aspartate is markedly enhanced in developing rat central nervous system. Brain Res. 459: 200–203, 1988.
 240. McEwen, B. S. Adrenal steroid feedback on neuroendocrine tissues. Ann. N.Y. Acad. Sci. 297: 568–579, 1977.
 241. McEwen, B. S. Hormones as regulators of brain development: life‐long effects related to health and disease. Acta Paediatr. Suppl. 422: 41–44, 1997.
 242. McMillen, I. C., J. J. Merei, A. White, S. Crosby, and J. Schwartz. Increasing gestational age and cortisol alter the ratio of ACTH precursors: ACTH secreted from the anterior pituitary of the fetal sheep. J. Endocrinol. 144: 569–576, 1995.
 243. Meaney, M. J., D. H. Aitken, S. Bhatnagar, S. R. Bodnoff, V. Viau, A. Sarrieau, and J. B. Mitchell. The effects of neonatal handling on the development of the adrenocortical response to stress: implications for neuropathology and cognitive deficits in later life. Psychoneuroendocrinology 18: 197–215, 1991.
 244. Meaney, M. J., D. O'Donnell, V. Viau, S. Bhatnagar, A. Sarrieau, J. Smythe, N. Shanks, and C. D. Walker. Corticosteroid receptors in the rat brain and pituitary during development and hypothalamic‐pituitary‐adrenal function. In: Receptors in the Developing Nervous System, edited by I. S. Zagon and P. J. McLaughlin. London: Chapman & Hall, 1993, p 163–201.
 245. Meaney, M. J., R. M. Sapolsky, and B. S. McEwen. The development of the glucocorticoid receptor system in the rat limbic brain. I. Ontogeny and autoregulation. Dev. Brain Res. 18: 159–164, 1985.
 246. Menetrey, D., and A. I. Basbaum. Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J. Comp. Neurol. 255: 439–450, 1987.
 247. Merchenthaler, I. S., P. Vigh, P. Petrusz, and A. V. Schally. Immunocytochemical localization of corticotropin releasing factor (CRF) in the rat brain. Am. J. Anat. 165: 385–396, 1983.
 248. Merchenthaler, I. S., P. Vigh, P. Petrusz, and A. V. Schally. Immunocytochemical localization of corticotropin releasing factor (CRF) in the rat brain. Am. J. Anat. 165: 385–396, 1983.
 249. Mesiano, S., C. L. Coulter, and R. B. Jaffe. Localization of cytochrome P450 cholesterol side chain cleavage, cytochrome P450 17 alpha‐hydroxylase/17, 20‐lyase, and 3 beta‐hydroxysteroid dehydrogenase isomerase steroidogenic enzymes in human and rhesus monkey fetal adrenal glands: reappraisal of functional zonation. J. Clin. Endocrinol. Metab. 77: 1184–1189, 1993.
 250. Mesiano, S., and R. B. Jaffee. Development and functional biology of the primate fetal adrenal cortex. Endocr. Rev. 18: 378–399, 1997.
 251. Meyer, J. S. Biochemical effects of corticosteroids on neural tissues. Physiol. Rev. 65: 946–1021, 1985.
 252. Michelson, H. B., and E. W. Lothman. An in vivo electrophysiological study of the ontogeny of excitatory and inhibitory processes in the rat hippocampus. Dev. Brain Res. 47: 113, 1989.
 253. Mikhail, Y., and Z. Mahran. Innervation of the cortical and medullary portions of the adrenal gland of the rat during postnatal life. Anat. Rec. 152: 431–438, 1965.
 254. Milkovic, S. Responsiveness of the pituitary adrenocortical system during embryonic and early postnatal periods of life. In: Physiology and Pathology of Adaptation Mechanisms, edited by E. Bajusz. 1969, vol. 1, p 28.
 255. Milkovic, K., J. Joffe, and S. Levine. The effect of maternal and fetal corticosteroids on the development and function of the pituitary‐adrenocortical system. Endokrinologie 68: 60, 1976.
 256. Milkovic, K., and S. Milkovic. Studies of the pituitary‐adrenocortical system in the fetal rat. Endocrinology 71: 799, 1962.
 257. Milkovic, K., and S. Milkovic. Functioning of the pituitary‐adrenocortical axis in rats at and after birth. Endocrinology 73: 535, 1963.
 258. Milkovic, S., K. Milkovic, and J. Paunovic. The initiation of fetal adrenocorticotrophic activity in the rat. Endocrinology 91: 380, 1973.
 259. Milkovic, K., J. Paunovic, Z. Kniewald, and S. Milkovic. Maintenance of the plasma corticosterone concentration of adrenalectomized rat by the fetal adrenal gland. Endocrinology 93: 115, 1973.
 260. Mirmiran, M., and M. Corner. Neuronal discharge patterns in the occipital cortex of developing rats during active and quiet sleep. Brain Res. 255: 37–48, 1982.
 261. Mitani, F., H. Suzuki, J. I. Hata, T. Ogishima, H. Shimada, and Y. Ishimura. A novel cell layer without corticosteroid synthesizing enzymes in the rat adrenal cortex: histochemical detection and possible physiological role. Endocrinology 135: 431–438, 1994.
 262. Miyakawa, I., I. Ikeda, and M. Maeyama. Transport of ACTH across human placenta. Endocrinol. Metab. 39: 440, 1974.
 263. Mobley, P. L., and F. Sulser. Adrenal corticoids regulate sensitivity of noradrenaline receptor‐coupled adenylate cyclase in brain. Nature 286: 608–609, 1980.
 264. Moisan, M. P., C.R.W. Edwards, and J. R. Seckl. Ontogeny of 11beta‐hydroxysteroid dehydrogenase in rat brain and kidney. Endocrinology 130: 400–404, 1992.
 265. Moisan, M. P., J. R. Seckl, and C.R.W. Edwards. 11beta‐hydroxysteroid dehydrogenase bioactivity and messenger RNA expression in rat forebrain: localization in hypothalamus, hippocampus and cortex. Endocrinology 127: 1450–1455, 1990.
 266. Morris, M. J., J. P. Dausse, M. A. Devynck, and P. Meyer. Ontogeny of alpha‐1 and alpha‐2 adrenoceptors in rat brain. Brain Res. 190: 268–271, 1980.
 267. Muglia, L., L. Jacobson, P. Dikkes, and J. A. Majzoub. Corticotropin‐releasing hormone deficiency reveals major fetal but not adult glucocorticoid need. Nature 373: 427–432, 1995.
 268. Muller, D., M. Oliver, and G. Lynch. Developmental changes in synaptic properties in hippocampus of neonatal rats. Dev. Brain Res. 49: 105, 1989.
 269. Munck, A., P. M. Guyre, and N.O.J. Holbrook. Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr. Rev. 5: 25–44, 1984.
 270. Murotsuki, J., R. Gagnon, S. G. Matthews, and J. R. Challis. Effects of long‐term hypoxemia on pituitary adrenal function in fetal sheep. Am. J. Physiol. 271 (Endocrinol. Metab. 34): E678–685, 1996.
 271. Myers, D. A., T. R. Myers, M. S. Grober, and P. W. Nathanielsz. Levels of corticotropin‐releasing hormone messenger ribonucleic acid (mRNA) in the hypothalamic paraventricular nucleus and proopiomelanocortin mRNA in the anterior pituitary during late gestation in fetal sheep. Endocrinology 132: 2109–2116, 1993.
 272. Nagaya, M., M. Arai, and E. P. Widmaier. Ontogeny of immunoreactive and bioactive microsomol steroidogenic enzymes during adrenocortical development in rats. Mol. Cell. Endocrinol. 114: 27–34, 1995.
 273. Nagaya, M., and E. P. Widmaier. Twenty‐four hour profiles of glucose corticosterone and adrenocorticotrophic hormone during the first postnatal day in rats. Biol. Neonate 64: 261–268, 1993.
 274. Nelson, L. R., A. N. Taylor, J. W. Lewis, R. E. Poland, E. Redei, and B. J. Branch. Pituitary adrenal responses to morphine and footshock stress are enhanced following prenatal alcohol exposure. Alcohol. Clin. Exp. Res. 10: 397–402, 1986.
 275. Nemeskeri, A., B. Halasz, and M. Kurez. Ontogenesis of the rat hypothalamo‐adenohypophyseal system and inherent capacity of the fetal pituitary to differentiate into hormone synthesizing and releasing cells. In: The Anterior Pituitary Gland, edited by A. S. Bhatnagar. New York: Raven, 1983.
 276. Ng, P. C., W. K. Wong, C.W.K. Lam, C. H. Lee, M. Y. Wong, T. F. Fok, W. Wong, and D.C.F. Chan. Pituitary‐adrenal response in preterm very low birth weight infants after treatment with antenatal corticosteroids. J. Clin. Endocrinol. Metab. 82: 3548–3552, 1997.
 277. Ng, P. C., W. K. Wong, C.W.K. Lam, C. H. Lee, M. Y. Wong, T. F. Fok, W. Wong, and D.C.F. Chan. The pituitary‐adrenal response to exogenous human corticotropin‐releasing hormone in preterm very low birth weight infants. J. Clin. Endocrinol. Metab. 82: 796–799, 1997.
 278. Nogueira, C. R., G. A. Medeiros‐Neto, P. Kopp, F. R. Pimentel‐Filho, B. Liberman, E. P. Chedid, and C. C. Leite. Autosomal recessive deficiency of combined pituitary hormones (except ACTH) in a consanguineous Brazilian kindred. J. Endocrinol. Invest. 20: 629–633, 1997.
 279. Norman, L. J., and J.R.G. Challis. Synergism between systemic corticotropin releasing factor and arginine vasopressin on adrenocorticotropin release in vivo varies as a function of gestational age in the ovine fetus. Endocrinology 120: 1052, 1987.
 280. Norman, L. J., S. J. Lye, M. E. Wlodek, and J.R.G. Challis. Changes in pituitary responses to synthetic ovine corticotropin‐releasing factor in fetal sheep. Can. J. Physiol. Pharmacol. 63: 1398, 1985.
 281. Obrietan, K., and A. N. Van den Pol. GABA neurotransmission in the hypothalamus: developmental reversal from Ca2% elevating to depressing. J. Neurosci. 15: 5065–5077, 1995.
 282. O'Grady, M. P., N.R.S. Hall, and R. A. Menzies. Interleukin 1‐beta stimulates adrenocorticotropin and corticosterone release in 10 day‐old rat pups. Psychoneuroendocrinology 18: 241–247, 1993.
 283. Olpe, H. R., and B. S. McEwen. Glucocorticoid binding to receptor like proteins in the rat brain and pituitary: ontogenetic and experimentally‐induced changes. Brain Res. 105: 121–128, 1976.
 284. Ozolins, I. Z., I. R. Young, and I. C. McMillen. Surgical disconnection of the hypothalamus from the fetal pituitary abolishes the corticotrophic response to intrauterine hypoglycemia or hypoxemia in the sheep during late gestation. Endocrinology 130: 2438–2445, 1992.
 285. Paulin, C., P. M. Dubois, P. Czernichow, and M. P. Dubois. Immunocytological evidence for oxytocin neurons in the human fetal hypothalamus. Cell Tissue Res. 188: 259–264, 1978.
 286. Paulmyer‐Lacroix, O., G. Anglade, and M. Grino. Stress regulates differently the AVP‐containing and AVP‐deficient CRF synthesizing cell bodies in the hypothalamic paraventricular nucleus of the developing rat. Endocrine 2: 1037–1043, 1994.
 287. Pavlovska‐Teglia, G., G. Stodulski, L. Svendsen, K. Dalton, and J. Hau. Effect of oral corticosterone administration on locomotor development of neonatal and juvenile rats. Exp. Physiol. 80: 469–475, 1995.
 288. Pepe, G. J., W. A. Davies, and E. D. Albrecht. Activation of the baboon fetal pituitary‐adrenocortical axis at midgestation by estrogen: enhancement of fetal pituitary proopiomelanocortin messenger ribonucleic acid expression. Endocrinology 135: 2581–2587, 1994.
 289. Perez, F. M., J. Schwartz, and J. Rose. Developmental changes in ovine corticotrophs in vitro. Endocrinology 138: 916–921, 1997.
 290. Perrin, M. H., C. J. Donaldson, R. Chen, K. A. Lewis, and W. W. Vale. Cloning and functional expression of a rat brain corticotropin releasing factor (CRF) receptor. Endocrinology 133: 3058–3061, 1993.
 291. Pharoah, P. O., C. J. Stevenson, R. W. Cooke, and R. C. Stevenson. Clinical and subclinical deficits at 8 years in a geographically defined cohort of low birthweight infants. Arch. Dis. Child. 70: 264–270, 1994.
 292. Pilavdzic, D., K. Kovacs, and S. L. Asa. Pituitary morphology in anencephalic human fetuses. Neuroendocrinology 65: 164–172, 1997.
 293. Pintar, J. E., and D. I. Lugo. Proopiomelanocortin gene expression, prohormone processing, and secretion during rat pituitary development. Ann. N. Y. Acad. Sci. 512: 318–327, 1987.
 294. Plotsky, P. M., Neural coding of stimulus‐induced ACTH secretion. In: Stress: Neurobiology and Neuroendocrinology, edited by M. Brown, C. Rivier, and G. Koob. New York: Marcel Dekker, 1990, p 137–150.
 295. Plotsky, P. M. Pathways to the secretion of adrenocorticotropin: a view from the portal. J. Neuroendocrinol. 3: 1–9, 1991.
 296. Plotsky, P. M., E. T. Cunningham, and E. P. Widmaier. Catecholaminergic modulation of corticotropin‐releasing factor and adrenocorticotropin secretion. Endocr. Rev. 10: 437–458, 1989.
 297. Pokela, M. L. Pain relief can reduce hypoxemia in distressed neonates during routine treatment procedures. Pediatrics 93: 379–383, 1994.
 298. Porges, S. W. Cardiac vagal tone: a physiological index of stress. Neurosci. Biobehav. Rev. 19: 225–233, 1995.
 299. Prechtl, H. F. The behavioural states of the newborn infant. Brain Res. 76: 185–212, 1974.
 300. Ramsay, D., and M. Lewis. The effects of birth condition on infants' cortisol response to stress. Pediatrics 95: 546–549, 1995.
 301. Redei, E., I. Halasz, L. F. Li, M. B. Prystowsky, and F. Aird. Maternal adrenalectomy alters the immune and endocrine functions of fetal alcohol exposed male offsprings. Endocrinology 133: 452–460, 1993.
 302. Reis, D. J., The C1 area of rostral ventrolateral medulla: role in tonic and reflex regulation of arterial pressure. In: Central and Peripheral Mechanisms of Cardiovascular Regulation, edited by A. Magro, W. Osswald, D. Reis, and P. Vanhoutte. New York: Plenum, 1986, p 487–502.
 303. Reisert, I., R. Schuster, R. Zienecker, and C. Pilgrim. Prenatal development of mesencephalic and diencephalic dopaminergic systems in the male and female rat. Dev. Brain. Res. 53: 222–229, 1990.
 304. Resnikov, A. G., and N. D. Nosenko. Early prenatal changes in sexual dimorphism of catecholamine and indoleamine content in the brain of prenatally stressed rats. Neuroscience 70: 547–551, 1996.
 305. Reynolds, M., and M. Fitzgerald. Long‐term sensory hyperinnervation following neonatal skin wounds. J. Comp. Neurol. 358: 487–498, 1995.
 306. Rivest, S., and N. Laflamme. Neuronal activity and neuropeptide gene transcription in the brains of immune‐challenged rats. J. Neuroendocrinol. 7: 501–526, 1995.
 307. Roebuck, M. M., C. T. Jones, D. Holland, and R. Silman. In vitro effects of high molecular weight forms of ACTH on the fetal sheep adrenal. Nature 284: 616, 1980.
 308. Roffi, J., G. Cheroux, A. Cohen, and A. Jost. Evolution du taux d'adrenaline dans les surrenales chez les foetus de lapin et de rat: rapports avec la corticosurrenale. C. R. Acad. Sci. III 261: 690–691, 1966.
 309. Romijn, H. J., M. A. Hoffman, and A. Gramsbergen. At what age is developing rat cortex comparable to that of the full term human baby? Early Hum. Dev. 26: 61–67, 1991.
 310. Rosenfeld, P., J. Ekstrand, E. Olson, D. Suchecki, and S. Levine. Maternal regulation of adrenocortical activity in the infant rat: effects of feeding. Dev. Psychobiol. 26: 261–277, 1993.
 311. Rosenfeld, P., W. Sutanto, S. Levine, and E. R. DeKloet. Ontogeny of mineralocorticoid (type 1) receptors in brain and pituitary: an in vivo autoradiographical study. Dev. Brain Res. 52: 57–62, 1990.
 312. Rosenfeld, P., J.A.M. Van Eekelen, S. Levine, and E. R. DeKloet. Ontogeny of the type II glucocorticoid receptor in discrete rat brain regions: an immunocytochemical study. Dev. Brain Res 42: 119–127, 1988.
 313. Ross, J. T., I. D. Phillips, J. A. Owens, and I. C. McMillen. cortisol differentially regulates pituitary‐adrenal function in the sheep fetus after disconnection of the hypothalamus and pituitary. J. Neuroendocrinol. 9: 663–668, 1997.
 314. Ryan, A. K., and M. G. Rosenfeld. POU domain family values: flexibility, partnerships, and developmental codes. Genes Dev. 11: 1207–1225, 1997.
 315. Saigal, S., C. Robertson, K. Sankaran, W. Bingham, O. Casiro, B. MacMurray, M. Whitfield, and W. Long. One‐year outcome in 232 premature infants with birth weights of 750 to 1249 grams and respiratory distress syndrome randomized to rescue treatment with two doses of synthetic surfactant or air placebo. Canadian Exosurf Neonatal Study Group. J. Pediatr. 126: S61–S67, 1995.
 316. Saigal, S., P. Rosenbaum, B. Stoskopf, L. Hoult, W. Furlong, D. Feeny, E. Burrows, and G. Torrance. Comprehensive assessment of the health status of extremely low birth weight children at eight years of age: comparison with a reference group. J. Pediatr. 125: 411–417, 1994.
 317. Sakly, M., and B. Koch. Ontogenesis of glucocorticoid receptors in anterior pituitary gland: transient dissociation among cytoplasmic receptor density, nuclear uptake, and regulation of corticotropic activity. Endocrinology 108: 591–596, 1981.
 318. Sakly, M., and B. Koch. Ontogenetical variations of transcortin modulate glucocorticoid receptor function and corticotropic activity in the pituitary gland. Horm. Metab. Res. 15: 92–96, 1983.
 319. Saoud, C. J., and C. E. Wood. Ontogeny of proopiomelanocortin posttranslational processing in the ovine fetal pituitary. Peptides 17: 649–653, 1996.
 320. Sapolsky, R. M., M. P. Armanini, S. W. Sutton, and P. M. Plotsky. Elevation of hypophysial portal concentrations of adrenocorticotropin secretagogues after fornix transection. Endocrinology 125: 2881, 1989.
 321. Sapolsky, R. M., and M. J. Meaney. Maturation of the adrenocortical stress response: neuroendocrine control mechanisms and the stress hyporesponsive period. Brain Res. Rev. 11: 65–76, 1986.
 322. Satinder, P. K. Ontogeny and interdependence of genetically selected behaviours in rats: avoidance response and openfield. J. Comp. Physiol. Psychol. 95: 175, 1981.
 323. Sato, S. M., and R. E. Mains. Post‐translational processing of proadrenocorticotropin/endorphin‐derived peptides during postnatal development in the rat pituitary. Endocrinology 117: 773–786, 1985.
 324. Sawchenko, P., and L. Swanson. The organization of noradrenergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res. Rev. 4: 275–325, 1982.
 325. Sawchenko, P. E. Central connections of the sensory and motor nuclei of the vagus nerve. J. Auton. Nerv. Syst. 9: 13–26, 1983.
 326. Schapiro, S. Pituitary ACTH and compensatory adrenal hypertrophy in stress non responsive infant rats. Endocrinology 71: 986–989, 1962.
 327. Schlumpf, M., W. Lichtensteiger, W. J. Shoemaker, and F. E. Bloom. Fetal monoamine systems: early stages and cortical projections. In: Biogenic Amines in Development, edited by S. Parvez, and H. Parvez. Amsterdam: Elsevier, 1980.
 328. Schneider, M. L., and C. L. Coe. Repeated social stress during pregnancy impairs neuromotor development of the primate infant. Dev. Behav. Pediatr. 14: 81–87, 1993.
 329. Schneider, M. L., and S. J. Suomi. Neurobehavioral assessment in rhesus monkey neonates (Macaca mulatto): developmental changes, behavioral stability, and early experience. Infant Behav. Dev. 15: 155–177, 1992.
 330. Schonemann, M. D., A. K. Ryan, R. J. McEvilly, S. M. O'Connell, C. A. Arias, K. A. Kalla, P. Li, P. E. Sawchenko, and M. G. Rosenfeld. Development and survival of the endocrine hypothalamus and posterior pituitary gland requires the neuronal POU domain factor Brn‐2. Genes Dev. 9: 3122–3135, 1995.
 331. Schroeder, R. J., and S. J. Henning. Roles of plasma clearance and corticosteroid‐binding globulin in the developmental increase in circulating corticosterone in infant rats. Endocrinology 124: 2612–2618, 1989.
 332. Schwartz, J., and F. M. Perez. Intercellular interactions in the anterior pituitary. J. Endocrinol. Invest. 17: 459–470, 1994.
 333. Scott, R. E. M., and J. E. Pintar. Developmental regulation of proopiomelanocortin gene expression in the fetal and neonatal rat pituitary. Mol. Endocrinol. 7: 585–596, 1993.
 334. Scott, S. M., and K. L. Watterberg. Effect of gestational age, postnatal age, and illness on plasma cortisol concentrations in premature infants. Pediatr. Res. 37: 112–116, 1995.
 335. Seckl, J. R. Glucocorticoids and small babies. Q. J. Med. 87: 259–262, 1994.
 336. Seckl, J. R. 11β hydroxysteroid dehydrogenase in the brain: a novel regulator of glucocorticoid action? Front. Neuroendocrinol. 18: 49–99, 1997.
 337. Seidler, F. J., and T. A. Slotkin. Adrenomedullary function in the neonatal rat: responses to acute hypoxia. J. Physiol. Lond.) 358: 1–16, 1985.
 338. Shanks, N., and M. J. Meaney. Hypothalamic‐pituitary‐adrenal activation following endotoxin administration in the developing rat: a CRH mediated effect. J. Neuroendocrinol. 6: 375–383, 1994.
 339. Shemer, A., P. M. Whitaker‐Azmitia, and E. C. Azmitia. Effects of prenatal 5‐methoxytryptamine and parachlorophenylalanine on serotoninergic uptake and behavior in the neonatal rat. Pharmacol. Biochem. Behav. 30: 847–851, 1988.
 340. Sheng, H. Z., A. B. Zhadanov, B. Mosinger Jr., T. Fujii, S. Bertuzzi, A. Grinberg, E. J. Lee, S. P. Huang, K. A. Mahon, and H. Westphal. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272: 1004–1007, 1996.
 341. Siamopoulou‐Mavridou, A., A. K. Mavridis, A. Vizandiadis, and P. Harsoulis. Free urinary cortisol immunoreactive levels in premature and full term infants. Acta Paediatr. Scand. 75: 919–922, 1986.
 342. Silman, R. E., T. Chard, P. J. Lowry, I. Smith, and I. M. Young. Human fetal pituitary peptides and parturition. Nature 260: 716, 1976.
 343. Slotkin, T. A. Maturation of the adrenal medulla I. Uptake and storage of amines in isolated storage vesicles of the rat. Biochem. Pharmacol. 22: 2023–2032, 1973.
 344. Slotkin, T. A. Maturation of the adrenal medulla II. Content and properties of catecholamine storage vesicles of the rat. Biochem. Pharmacol. 22: 2033–2044, 1973.
 345. Slotkin, T. A., S. E. Lappi, E. C. McCook, B. A. Lorber, and F. J. Seidler. Loss of neonatal hypoxia tolerance after prenatal nicotine exposure: implications for sudden infant death syndrome. Brain Res. Bull. 38: 69–75, 1995.
 346. Slotkin, T. A., S. E. Lappi, E. C. McCook, M. I. Tayyeb, J. P. Eylers, and F. J. Seidler. Glucocorticoids and the development of neuronal function: effects of prenatal dexamethasone exposure on central noradrenergic activity. Biol. Neonate 61: 326–336, 1992.
 347. Slotkin, T. A., and F. J. Seidler. Stress in the fetus and newborn. In: Mechanisms of Physical and Emotional Stress, edited by G. P. Chrousos, D. L. Loriaux, and P. W. Gold. New York: Plenum, 1988, p 283–294.
 348. Smets, G., B. Velkeniers, P. Herregodts, L. Vanhaelst, W. Gepts, and E. L. Hooghe‐Peters. Ontogeny of hormone secreting cells of the rat pituitary gland: an immunohistochemical study on dissociated cells. Histochem. J. 21: 337–342, 1989.
 349. Smith, A. I., and J. W. Funder. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr. Rev. 9: 159–179, 1988.
 350. Smith, C. L., and G. L. Hammond. Ontogeny of corticosteroid‐binding globulin biosynthesis in the rat. Endocrinology 128: 983–988, 1991.
 351. Smith, M. A., S.‐Y. Kim, H.J.J. Van Oers, and S. Levine. Maternal deprivation and stress induce immediate early genes in the infant rat brain. Endocrinology 138: 4622–4628, 1997.
 352. Snijdewint, F.G.M., F. W. Van Leeuven, and G. J. Boer. Ontogeny of oxytocin and vasopressin binding sites in the brain of Wistar and Brattelboro rats as demonstrated by light microscopical autoradiography. J. Chem. Neuroanat. 2: 3–17, 1989.
 353. Sofroniew, M. V. Vasopressin, oxytocin and their related neurophysins. In: Handbook of Chemical Neuroanatomy, edited by A. Bjorklund and T. Hokfelt. Amsterdam: Elsevier, 1985, vol. 4, p 93–165.
 354. Spencer, R. L., P. J. Kim, B. A. Kaiman, and M. A. Cole. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor‐dependent regulation of hypothalamic‐pituitaryadrenal axis activity. Endocrinology 139: 2718–2726, 1998.
 355. Stang, H. J., M. R. Gunnar, L. Sneliman, L. M. Condon, and R. Kestenbaum. Local anesthesia for neonatal circumcision—effects on distress and cortisol response. JAMA 259: 1507–1511, 1988.
 356. Stanton, M. E., Y. R. Gutierrez, and S. Levine. Maternal deprivation potentiates pituitary‐adrenal stress responses in infant rats. Behav. Neurosci. 102: 692–700, 1988.
 357. Stanton, M. E., and S. Levine. Inhibition of infant glucocorticoid stress response: specific role of maternal cues. Dev. Psychobiol. 23: 411–426, 1990.
 358. Stifter, C., and N. A. Fox. Infant reactivity: physiolgoical correlates of newborn and 5‐month temperament. Dev. Psychol. 26: 582–588, 1990.
 359. Suchecki, D., D. Mozaffarian, G. Gross, P. Rosenfeld, and S. Levine. Effects of maternal deprivation on the ACTH stress response in the infant rat. Neuroendocrinology 57: 204–212, 1993.
 360. Suchecki, D., D. Y. Nelson, H. Van Oers, and S. Levine. Activation and inhibition of the hypothalamic‐pituitary‐adrenal axis of the neonatal rat: effects of maternal deprivation [published erratum appears in Psychoneuroendocrinology 20: 677, 1995]. Psychoneuroendocrinology 20: 169–182, 1995.
 361. Swann, J. W., R. J. Brady, and D. L. Martin. Postnatal development of GABA‐mediated synaptic inhibition in rat hippocampus. Neuroscience 28: 551, 1989.
 362. Swanson, L. W. Spatiotemporal patterns of transcription factor gene expression accompanying the development and plasticity of cell phenotypes in the neuroendocrine system. Prog. Brain Res. 92: 97–113, 1992.
 363. Swanson, L. W., and P. E. Sawchenko. Paraventricular nucleus: a site for the integration of neuroendocrine and autonomic mechanisms. Neuroendocrinology. 31: 410–417, 1980.
 364. Swanson, L. W., P. W. Sawchenko, J. Rivier, and W. Vale. Organization of ovine corticotropin releasing factor (CRF)‐immunoactive cells and fibers in the rat brain: an immunohistochemical study. Neuroendocrinology. 36: 165–186, 1983.
 365. Taddio, A, M. Goldbach, M. Ipp, B. Stevens, and G. Koren. Effect of neonatal circumcision on pain responses during vaccination in boys. Lancet 345: 291–292, 1995.
 366. Taddio, A., J. Katz, A. L. Ilersich, and G. Koren. Effect of neonatal circumcision on pain response during subsequent routine vaccination. Lancet 349: 599–603, 1997.
 367. Takahashi, L. K., and N. H. Kalin. Early developmental and temporal characteristics of stress‐induced secretion of pituitaryadrenal hormones in prenatally stressed rat pups. Brain Res. 558: 75–78, 1991.
 368. Takahashi, L. K., J. G. Turner, and N. H. Kalin. Development of stress‐induced responses in preweanling rats. Dev. Psychobiol. 24: 341–360, 1991.
 369. Talbert, L., E. N. Kraybill, and H. D. Potter. Adrenal cortical response to circumcision in the neonate. Obstet. Gynecol. 48: 208–210, 1976.
 370. Telegdy, G., and I. Vermes. Effect of adrenocortical hormones on activity of the serotoninergic system in limbic structures in rats. Neuroendocrinology 18: 16–26, 1975.
 371. Teplin, S. W., M. Burchinal, N. Johnson‐Martin, R. A. Humphry, and E. N. Kraybill. Neurodevelopmental, health, and growth status at age 6 years of children with birth weights less than 1001 grams. J. Pediatr. 118: 768–777, 1991.
 372. Therrien, M., and J. Drouin. Cell‐specific helix‐loop‐helix factor required for pituitary expression of the proopiomelanocortin gene. Mol. Cell. Biol. 13: 2342–2345, 1993.
 373. Tremblay, J. J., J. Drouin, and C. Lanctot. The pan‐pituitary activator of transcription, Ptx1 (pituitary homeobox 1), acts in synergy with SF‐1 and Pit1 and is an upstream regulator of the Lim‐homeodomain gene Lim3/Lhx3. Mol. Endocrinol. 12: 428–441, 1998.
 374. Tribollet, E., S. Charpak, S. Schmidt, M. Dubois‐Dauphin, and J. J. Dreifuss. Appearance and transient expression of oxytocin receptors in fetal infant and peripubertal rat brain studied by autoradiography and electrophysiology. J. Neurosci. 9: 1764–1773, 1989.
 375. Tribollet, E., M. Goumaz, M. Raggenbass, M. Dubois‐Dauphin, and J. J. Dreifuss. Early appearance and transient expression of vasopressin receptors in the brain of rat fetus and infant. An autoradiographical and electrophysiological study. Dev. Brain Res. 58: 13–24, 1991.
 376. Ugrumov, M. V. Developing hypothalamus in differentiation of neurosecretory neurons and in establishment of pathways neurohormone transport. Int. Rev. Cytol. 129: 207–267, 1990.
 377. Ugrumov, M. V., J. Taxi, M. S. Mitskevitch, and G. Tramu. Development of the hypothalamic serotoninergic system during ontogenesis in rats. Immunocytochemical and radioautographic study. Dev. Brain Res. 30: 75–84, 1986.
 378. Ugrumov, M. V., A. Tixier‐Vidal, J. Taxi, J. Thibault, and M. S. Mitskevich. Ontogenesis of tyrosine hydroxylase‐immunopositive structures in the rat hypothalamus, fiber pathways and terminal fields. Neuroscience 29: 157–166, 1989.
 379. Unno, N., D. A. Giussani, W.K.H.M. A. Hing, X. Y. Ding, J. H. Collins, and P. W. Nathanielsz. Changes in adrenocorticotropin and cortisol responsiveness after repeated umbilical cord occlusions in the late gestation ovine fetus. Endocrinology 138: 259–263, 1997.
 380. Vale, W., J. Vaughan, M. Smith, G. Yamamoto, J. Rivier, and C. Rivier. Effects of synthetic ovine corticotropin‐releasing factor, glucocorticoids, catecholamines, neurohypophysial peptides, and other substances on cultured corticotropic cells. Endocrinology 113: 1121–1123, 1983.
 381. VanDijk, J. P., and J.R.G. Challis. Control and ontogeny of hypothalamic‐pituitary‐adrenal function in the fetal rat. J. Dev. Physiol. 12: 1–9, 1989.
 382. Van Eekelen, J.A.M., M. C. Bohn, and E. R. DeKloet. Postnatal ontogeny of mineralocorticoid and glucocorticoid receptor gene expression in regions of the rat tel‐ and diencephalon. Dev. Brain Res. 61: 33–43, 1991.
 383. Van Oers, H.J.J., E. R. DeKloet, C. Li, and S. Levine. The ontogeny of glucocorticoid negative feedback: influence of maternal deprivation. Endocrinology 139: 2838–2846, 1998.
 384. Vazquez, D. M., M. I. Morano, L. Taylor, and H. Akil. Kinetics of radiolabeled adrenocorticotropin hormone in infant and weanling rats. J. Neuroendocrinol. 9: 529–536, 1997.
 385. Veenstra, G. J., O. H. Destree, and P. C. van der Vliet. POU domain transcription factors in embryonic development. Mol. Biol. Rep. 24: 139–155, 1997.
 386. Verhaert, P., S. Marivoet, F. Vandesande, and A. DeLoof. Localization of CRF immunoreactivity in the central nervous system of three vertebrate and one insect species. Cell Tissue Res. 238: 49–53, 1984.
 387. Viau, V., S. Sharma, and M. J. Meaney. Changes in plasma adrenocorticotropin, corticosterone, corticosterone‐binding globulin, and hippocampal glucocorticoid receptor occupancy/translocation in rat pups in response to stress. J. Neuroendocrinol. 8: 1–8, 1996.
 388. Volpe, J. J. Neurology of the Newborn (3rd ed.). Philadelphia: Saunders, 1995.
 389. Wadhwa, P. D., C. Dunkel‐Schetter, A. Chicz‐DeMet, M. Porto, and C. A. Sandman. Prenatal psychological factors and the neuroendocrine axis in human pregnancy. Psychosom. Med. 58: 432–446, 1996.
 390. Walker, C.‐D. Effects of chemical sympathectomy and maternal separation on neonatal adrenocortical stress responses and adrenal sensitivity to ACTH. Am. J. Physiol. 268 (Regulatory Integrative Comp. Physiol. 37): R1281–R1288, 1995.
 391. Walker, C.‐D., S. F. Akana, C. S. Cascio, and M. F. Dallman. Adrenalectomy in the neonate: adult‐like adrenocortical system responses to both removal and replacement of corticosterone. Endocrinology 127: 832–842, 1990.
 392. Walker, C.‐D., and M. F. Dallman. Neonatal facilitation of stress‐induced ACTH secretion by prior stress: evidence for increased central drive to the pituitary. Endocrinology 132: 1101–1107, 1993.
 393. Walker, C.‐D., R. Garcia, and H. Gagne. Developmental shift in catecholaminergic control of ACTH secretion in the rat. Dev. Brain Dysfunction 10: 405–417, 1997.
 394. Walker, C.‐D., M. J. Meaney, M. L. Aubert, and P. Driscoll. Individual differences in the activity of the hypothalamus‐pituitary‐adrenocortical system after stress: use of psychogenetically selected rat lines as a model. In: Genetically‐Defined Animal Models of Neurobehavioral Dysfunction, edited by P. Driscoll. Boston: Birkhauser, 1992, p 276.
 395. Walker, C.‐D., M. Perrin, W. Vale, and C. Rivier. Ontogeny of the stress response in the rat: role of the hypothalamus and the pituitary. Endocrinology 118: 1445–1451, 1986.
 396. Walker, C.‐D., R. W. Rivest, M. J. Meaney, and M. L. Aubert. Differential activation of the pituitary‐adrenocortical axis after stress in the rat: use of two genetically selected lines (Roman low‐ and high‐avoidance rats) as a model. J. Endocrinol. 123: 477–485, 1989.
 397. Walker, C.‐D., R. M. Sapolsky, M. J. Meaney, W. W. Vale, and C. L. Rivier. Increased pituitary sensitivity to glucocorticoid feedback during the stress non‐responsive period in the neonatal rat. Endocrinology 119: 1816–1821, 1986.
 398. Walker, C.‐D., K. A. Scribner, C. S. Cascio, and M. F. Dallman. The pituitary adrenocortical system of neonatal rats is responsive to stress throughout development in a time‐dependent and stressor‐specific fashion. Endocrinology 128: 1385–1395, 1991.
 399. Walker, C.‐D., P. Tankosic, F. J. H. Tilders, and A. Burlet. Immunotargeted lesions of paraventricular CRF and AVP neurons in developing rats reveal the pattern of maturation of these systems and their functional importance. J. Neuroendocrinol. 9: 25–41, 1997.
 400. Wang, Y. Q., M. Sato, Y. Morita, K. Nogushi, H. Kiyama, and M. Tohyama. Postnatal ontogeny of POMC gene expression in the rat pituitary: an analysis by in situ hybridization histochemistry. Brain Res. 47: 53–58, 1989.
 401. Watkins, W. B., and V. J. Choy. Maturation of the hypothal‐amo‐hypophyseal system. Cell Tissue Res. 197: 337, 1979.
 402. Watterberg, K. L., and S. M. Scott. Evidence of early adrenal insufficiency in babies who develop bronchopulmonary dysplasia. Pediatrics 95: 120–125, 1995.
 403. Weinberg, J. Prenatal alcohol exposure alters adrenocortical development of the offspring. Alcohol. Clin. Exp. Res. 13: 73–83, 1989.
 404. Weinberg, J. Prenatal alcohol exposure alters adrenocortical response to predictable and unpredictable stressors. Alcohol 9: 427–432, 1992.
 405. Weinstock, M. Does prenatal stress impair coping and regulation of hypothalamic‐pituitary‐adrenal axis? Neurosci. Biobehav. Rev. 21: 1–10, 1997.
 406. Weissman, C. The metabolic response to stress: an overview and update. Anesthesiology 73: 308–327, 1990.
 407. Whitaker‐Azmitia, P. M., The role of serotonin and serotonin receptors in development of the mammalian nervous system. In: Receptors in the Developing Nervous System, edited by I. S. Zagon and P. J. McLaughlin. London: Chapman & Hall, 1993, vol. 2. p 39–55.
 408. Whitaker‐Azmitia, P. M., M. Druse, P. Walker, and J. M. Lauder. Serotonin as a developmental signal. Behav. Brain Res. 73: 19–29, 1996.
 409. Whitaker‐Azmitia, P. M., J. M. Lauder, A. Shemmer, and E. C. Azmitia. Postnatal changes in serotonin receptors following prenatal alterations in serotonin levels: further evidence for functional fetal serotonin receptors. Brain Res. 430: 285–289, 1987.
 410. Whitnall, M. H. Regulation of the hypothalamic corticotropin‐releasing hormone neurosecretory system. Prog. Neurobiol. 40: 573–629, 1993.
 411. Whitnall, M. H., S. Key, Y. Ben‐Barak, K. Ozato, and H. Gainer. Neurophysin in the hypothalamo‐neurohypophysial system: immunochemical studies of the ontogeny of oxytocinergic and vasopressinergic neurons. J. Neurosci. 5: 98–109, 1985.
 412. Widmaier, E. P. Glucose homeostasis and hypothalamic‐pituitary‐adrenocortical axis during development in rats. Am. J. Physiol. 259 (Endocrinol. Metab. 22): E601–E613, 1990.
 413. Wilson, D. A., J. Willner, E. M. Kurz, and L. Nadel. Early handling increases hippocampal long‐term potentiation in young rats. Behav. Brain Res. 21: 223, 1986.
 414. Winter, J.S.D., The adrenal cortex in the fetus and neonate. In: Adrenal Cortex, edited by D. C. Anderson London: Butterworth, 1985, p 32–56.
 415. Witek‐Janusek, L. Pituitary‐adrenal response to bacterial endotoxin in developing rats. Am. J. Physiol. 255 (Endocrinol. Metab. 18): E525–E530, 1988.
 416. Wood, C. E., and T. A. Cudd. Development of the hypothalamus‐pituitary‐adrenal axis of the equine fetus: a comparative review. Equine Vet. J. Suppl. 24: 74–82, 1997.
 417. Yamamoto, M., Y. Eguchi, M. Asari, and Y. Kano. Developmental changes in fetal adrenal hypertrophy following maternal bilateral and fetal unilateral adrenalectomy at different stages of gestation in the rat. Biol. Neonate 43: 43, 1983.
 418. Yi, S. J., J. N. Masters, and T. Z. Baram. Effects of a specific glucocorticoid receptor antagonist on corticotropin releasing hormone gene expression in the paraventricular nucleus of the neonatal rat. Dev. Brain Res. 73: 253–259, 1993.
 419. Zarrow, M. X., V. H. Denenberg, G. C. Haltmeyer, and J. Thatcher. Plasma and adrenal corticosterone levels following exposure of the two‐day‐old rat to various stressors. Proc. Soc. Exp. Biol. Med. 125: 113–120, 1967.
 420. Zarrow, M. X., G. C. Haltmeyer, V. H. Denenberg, and J. Thatcher. Response of the infantile rat to stress. Endocrinology 79: 631–636, 1966.
 421. Zec, N., J. J. Filiano, A. Panigrahy, W. F. White, and H. C. Kinney. Developmental changes in [3H]lysergic acid diethylamide ([3]LSD) binding to serotonin receptors in the human brainstem. J. Neuropathol. Exp. Neurol. 55: 114–126, 1996.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Claire‐Dominique Walker, K.J.S. Anand, PAUL M. Plotsky. Development of the Hypothalamic‐Pituitary‐Adrenal Axis and the Stress Response. Compr Physiol 2011, Supplement 23: Handbook of Physiology, The Endocrine System, Coping with the Environment: Neural and Endocrine Mechanisms: 237-270. First published in print 2001. doi: 10.1002/cphy.cp070412