Comprehensive Physiology Wiley Online Library

Roles of Sleep‐Wake and Dark‐Light Cycles in the Control of Endocrine, Metabolic, Cardiovascular, and Cognitive Function

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Mechanisms Underlying Diurnal Rhythmicity
2 Diurnal Rhythms in Physiology and Behavior in Normal Conditions
2.1 Endocrine, Metabolic, and Cardiovascular Function
2.2 Diurnal Rhythms in Subjective Fatigue, Mood, and Cognitive Performance
3 Effects of Sleep Curtailment
4 Effects of Environmental Light
5 Conditions of Misalignment Between Circadian Rhythmicity and the Rest‐Activity Cycle
5.1 Jet Lag
5.2 Shift Work
6 Conclusions
Figure 1. Figure 1.

Schematic representation of the organization of the mammalian circadian system. SCN, suprachiasmatic nucleus; NPY, neuropeptide Y; 5‐HT, 5‐hydroxytryptamine (serotonin).

Figure 2. Figure 2.

Mean 24 h profiles of (from top to bottom) systolic blood pressure (SBP), heart rate (HR), plasma glucose, insulin secretion rate (ISR), plasma growth hormone (GH), and plasma cortisol in eight normal young men who ate three identical carbohydrate‐rich meals (M) at the times indicated by the arrows. Bedtimes are represented by black bars. At each time point, the vertical line represents the standard error of the mean.

From Biston et al. with permission
Figure 3. Figure 3.

Mean (+ standard error) profiles of plasma cortisol, growth hormone (GH) and thyroid‐stimulating hormone (TSH) in a group of eight normal young men studied over a 53 h period including 8 h of nocturnal sleep, 28 h of continuous wakefulness, and 8 h of daytime recovery sleep.

Figure 4. Figure 4.

Mean profiles of body temperature, subjective sleepiness (using the Stanford Sleepiness Score), positive affect (using the Positive and Negative Affect Scale), and performance on a vigilance task in normal young men studied during 40 h of continuous wakefulness at bed rest. Data are represented as mean (black bar) and standard error (open bar) for each 2 h interval.

Figure 5. Figure 5.

Representative profiles of plasma cortisol levels (left panels) in a subject who had a normal night of sleep (top) and in a subject who underwent total sleep deprivation (bottom). Shaded areas show the area under the curve between 18:00 and 23:00 in both conditions on day 1 (before sleep or sleep deprivation) and on day 2 (after sleep or sleep deprivation). Histograms (right) represent the mean and standard error of plasma cortisol levels between 18:00 and 23:00 in both groups of subjects on days 1 and 2.

From Leproult et al. with permission
Figure 6. Figure 6.

Mean (+ SEM) profiles of blood glucose (top panels) and serum insulin (lower panels) in 11 young men who received an intravenous injection of glucose at 09:00 when their bedtimes had been restricted to 4 hours per night for 5 nights (left; sleep debt) and after their bedtimes had been extended to 12 hours per night for 5 nights (right; sleep recovery). The shaded areas highlight the postinjection glucose response and the acute insulin response to glucose.

From Spiegel, Leproult and Van Cauter , with permission
Figure 7. Figure 7.

Mean 24 h profiles of plasma cortisol and prolactin levels observed in six normal young men studied under baseline conditions at 1, 3, and 5 days after an abrupt 8 h delay shift of the light‐dark and sleep‐wake cycles in the laboratory. The vertical bar at each sampling time represents the standard error of the mean. Scheduled sleep periods are shown as black bars.

From Van Cauter and Turek with permission
Figure 8. Figure 8.

Mean profiles of plasma cortisol, plasma prolactin (PRL) and plasma growth hormone (GH) in two groups of normal young night workers (right) and day workers (left). The black bar represents the scheduled sleep periods.

From refs. .


Figure 1.

Schematic representation of the organization of the mammalian circadian system. SCN, suprachiasmatic nucleus; NPY, neuropeptide Y; 5‐HT, 5‐hydroxytryptamine (serotonin).



Figure 2.

Mean 24 h profiles of (from top to bottom) systolic blood pressure (SBP), heart rate (HR), plasma glucose, insulin secretion rate (ISR), plasma growth hormone (GH), and plasma cortisol in eight normal young men who ate three identical carbohydrate‐rich meals (M) at the times indicated by the arrows. Bedtimes are represented by black bars. At each time point, the vertical line represents the standard error of the mean.

From Biston et al. with permission


Figure 3.

Mean (+ standard error) profiles of plasma cortisol, growth hormone (GH) and thyroid‐stimulating hormone (TSH) in a group of eight normal young men studied over a 53 h period including 8 h of nocturnal sleep, 28 h of continuous wakefulness, and 8 h of daytime recovery sleep.



Figure 4.

Mean profiles of body temperature, subjective sleepiness (using the Stanford Sleepiness Score), positive affect (using the Positive and Negative Affect Scale), and performance on a vigilance task in normal young men studied during 40 h of continuous wakefulness at bed rest. Data are represented as mean (black bar) and standard error (open bar) for each 2 h interval.



Figure 5.

Representative profiles of plasma cortisol levels (left panels) in a subject who had a normal night of sleep (top) and in a subject who underwent total sleep deprivation (bottom). Shaded areas show the area under the curve between 18:00 and 23:00 in both conditions on day 1 (before sleep or sleep deprivation) and on day 2 (after sleep or sleep deprivation). Histograms (right) represent the mean and standard error of plasma cortisol levels between 18:00 and 23:00 in both groups of subjects on days 1 and 2.

From Leproult et al. with permission


Figure 6.

Mean (+ SEM) profiles of blood glucose (top panels) and serum insulin (lower panels) in 11 young men who received an intravenous injection of glucose at 09:00 when their bedtimes had been restricted to 4 hours per night for 5 nights (left; sleep debt) and after their bedtimes had been extended to 12 hours per night for 5 nights (right; sleep recovery). The shaded areas highlight the postinjection glucose response and the acute insulin response to glucose.

From Spiegel, Leproult and Van Cauter , with permission


Figure 7.

Mean 24 h profiles of plasma cortisol and prolactin levels observed in six normal young men studied under baseline conditions at 1, 3, and 5 days after an abrupt 8 h delay shift of the light‐dark and sleep‐wake cycles in the laboratory. The vertical bar at each sampling time represents the standard error of the mean. Scheduled sleep periods are shown as black bars.

From Van Cauter and Turek with permission


Figure 8.

Mean profiles of plasma cortisol, plasma prolactin (PRL) and plasma growth hormone (GH) in two groups of normal young night workers (right) and day workers (left). The black bar represents the scheduled sleep periods.

From refs. .
References
 1. Achermann, P., and A. A. Borbely. Simulation of daytime vigilance by the additive interaction of a homeostatic and a circadian process. Biol. Cybern. 71: 115–121, 1994.
 2. Akerstedt, T., and S. Folkard. Validation of the S and C components of the three‐process model of alertness regulation. Sleep 18: 1–6, 1995.
 3. Ancoli‐Israel, S., M. R. Klauber, D. W. Jones, D. F. Kripke, J. Martin, W. Mason, R. Pat‐Horencsyk, and R. Fell. Variations in circadian rhythms of activity, sleep, and light exposure related to dementia in nursing‐home patients. Sleep 20: 18–23, 1997.
 4. Ancoli‐Israel, S., D. F. Kripke, D. W. Jones, L. Parker, and M. A. Hanger. 24‐Hour sleep and light rhythms in nursing home patients. Sleep Res. 20A: 410, 1991.
 5. Arendt, J., and S. Deacon. Treatment of circadian rhythm disorders—melatonin. Chronobiol. Int. 14: 185–204, 1997.
 6. Armstrong, S. M. Melatonin: a chronobiotic with anti‐aging properties? Med. Hypotheses 34: 300–309, 1991.
 7. Aschoff, J., U. Genecke, C. von Goetz, G. A. Groos, and F. W. Turek. Phase responses and characteristics of free‐running activity rhythms in the golden hamster: independence of the pineal gland. In: Vertebrate Circadian Systems: Structure and Physiology, edited by J. Aschoof, S. Daan, and G. A. Groos. Berlin: Springer‐Verlag, 1982, p. 129–140.
 8. Aschoff, J., K. Hoffmann, H. Pohl, and R. A. Wever. Reentrainment of circadian rhythms after phase‐shifts of the zeitgeber. Chronobiologia 28: 119–133, 1975.
 9. Badia, P., B. Myers, M. Boecker, and J. Culpepper. Bright light effects on body temperature, alertness, EEG and behavior. Physiol. Behav. 50: 583–588, 1991.
 10. Biston, P., E. Van Cauter, G. Ofek, P. Linkowski, K. S. Polonsky, and J. P. Degaute. Diurnal variations in cardiovascular function and glucose regulation in normotensive humans. Hypertension 28: 863–871, 1996.
 11. Bliwise, D. L. Normal aging. In: Principles and Practice of Sleep Medicine, edited by M. H. Kryger, T. Roth, and W. C. Dement. Philadelphia: Saunders, 1994, p. 26–39.
 12. Bliwise, D. L. Historical change in the report of daytime fatigue. Sleep 19: 462–464, 1996.
 13. Boivin, D. B., C. A. Czeisler, D. J. Dijk, J. F. Duffy, S. Folkard, D. S. Minors, P. Totterdell, and J. M. Waterhouse. Complex interaction of the sleep‐wake cycle and circadian phase modulates mood in healthy subjects. Arch. Gen. Psychiatry 54: 145–152, 1997.
 14. Boivin, D. B., J. F. Duffy, R. E. Kronauer, and C. A. Czeisler. Sensitivity of the human circadian pacemaker to moderately bright light. J. Biol. Rhythms 9: 315–331, 1994.
 15. Boivin, D. B., J. F. Duffy, R. E. Kronauer, and C. A. Czeisler. Dose‐response relationships for resetting of human circadian clock by light. Nature 379: 540–542, 1996.
 16. Bonnet, M., and D. Arand. We are chronically sleep deprived. Sleep 18: 908–911, 1995.
 17. Born, J., E. Späth‐Schwalbe, H. Schwakenhofer, W. Kern, and H. L. Fehm. Influences of corticotrophin‐releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man. J. Clin. Endocrinol. Metab. 68: 904–911, 1989.
 18. Boulos, Z., S. S. Campbell, A. J. Lewy, M. Terman, D. J. Dijk, and C. I. Eastman. Light treatment for sleep disorders: consensus report. VII. Jet lag. J. Biol. Rhythms 10: 167–176, 1995.
 19. Cagnacci, A., R. Soldani, and S. S. C. Yen. The effect of light on core body temperature is mediated by melatonin in women. J. Clin. Endocrinol. Metab. 76: 1036–1038, 1993.
 20. Cajochen, C., D. P. Brunner, K. Kräuchi, P. Graw, and A. Wirz‐Justice. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness. Sleep 18: 890–894, 1995.
 21. Campbell, S. S. Effects of timed bright light exposure on shift work adaptation in middle‐aged subjects. Sleep 18: 408–416, 1995.
 22. Campbell, S. S., and D. Dawson. Enhancement of nighttime‐alertness and performance with bright ambient light. Physiol. Behav. 48: 317–320, 1990.
 23. Campbell, S. S., D. Dawson, and M. W. Anderson. Alleviation of sleep maintenance insomnia with timed exposure to bright light. J. Am. Geriatr. Soc. 41: 829–836, 1993.
 24. Campbell, S. S., D. F. Kripke, J. C. Gillin, and J. C. Hrubovcak. Exposure to light in healthy elderly subjects and Alzheimer's patients. Physiol. Behav. 42: 141–144, 1988.
 25. Card, J. P., and R. Y. Moore. The organization of visual circuits influencing the circadian activity of suprachiasmatic nucleus. In: Suprachiasmatic Nucleus: The MinD's Clock, edited by D. C. Klein, R. Y. Moore and S. M. Reppert. New York: Oxford University Press, 1991, p. 51–76.
 26. Carrier, J., and M. Dumont. Sleep propensity and sleep architecture after bright light exposure at three different times of day. J. Sleep Res. 4: 202–211, 1995.
 27. Cassone, V. M., W. S. Warren, D. S. Brooks, and J. Lu. Melatonin. the pineal gland and circadian rhythms. J. Biol. Rhythms. 8 (Suppl.): S73–S81, 1993.
 28. Claustrat, B., J. Brun, M. David, G. Sassolas, and G. Chazot. Melatonin and jet lag confirmatory result using a simplified protocol. Biol. Psychiatry 32: 705–711, 1992.
 29. Comperatore, C. A., and G. P. Krueger. Circadian rhythm desynchronosis, jet lag, shift lag, and coping strategies. Occup. Med. 5: 323–341, 1990.
 30. Czeisler, C. A., J. S. Allan, S. H. Strogatz, J. M. Ronda, R. Sanchez, C. D. Rios, W. O. Freitag, G. S. Richardson, and R. E. Kronauer. Bright light resets the human circadian pacemaker independent of the timing of the sleep‐wake cycle. Science 233: 667–671, 1986.
 31. Czeisler, C. A., M. P. Johnson, J. F. Duffy, E. N. Brown, J. M. Ronda, and R. E. Kronauer. Exposure to bright light and darkness to treat physiologic maladaptation to night work. N. Engl. J. Med. 322: 1253–1259, 1990.
 32. Czeisler, C. A., R. E. Kronauer, J. S. Allan, J. F. Duffy, M. E. Jewett, E. N. Brown, and J. M. Ronda. Bright light induction of strong (type 0) resetting of the human circadian pacemaker. Science 244: 1328–1333, 1989.
 33. Czeisler, C. A., G. S. Richardson, J. C. Zimmerman, M. C. Moore‐Ede, and E. D. Weitzman. Entrainment of human circadian rhythms by light‐dark cycles: a reassessment. Photochem. Photobiol. 34: 239–247, 1981.
 34. Daan, S., and A. J. Lewy. Scheduled exposure to daylight: a potential strategy to reduce “jet lag” following transmeridian flight. Psychopharmacol. Bull. 20: 566–568, 1984.
 35. Dallman, M. F., A. L. Strack, S. F. Akana, M. J. Bradbury, E. S. Hanson, K. A. Scribner, and M. Smith. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front. Neuroendocrinol. 14: 303–347, 1993.
 36. Daurat, A., A. Aguirre, J. Foret, P. Gonnet, A. Keromes, and O. Benoit. Bright light affects alertness and performance rhythms during a 24‐h constant routine. Physiol. Behav. 53: 929–936, 1993.
 37. Dawson, D., N. Encel, and K. Lushington. Improving adaptation to simulated night shift: timed exposure to bright light versus daytime melatonin administration. Sleep 18: 11–21, 1995.
 38. Deacon, S. J., and J. Arendt. Phase‐shifts in melatonin, 6‐sulphatoxymelatonin and alertness rhythms after treatment with moderately bright light at night. Clin. Endocrinol. (Oxf.) 40: 413–420, 1994.
 39. Dijk, D. J., D. G. M. Beersma, S. Daan, and A. J. Lewy. Bright morning light advances the human circadian system without affecting NREM sleep homeostasis. Am. J. Physiol. 256 (Regulatory Integrative Comp. Physiol. 25): R106–R111, 1989.
 40. Dijk, D. J., C. Cajochen, and A. A. Borbely. Effects of a single 3‐hour exposure to bright light on core body temperature and sleep in humans. Neurosci. Lett. 121: 59–62, 1991.
 41. Dijk, D. J., and C. A. Czeisler. Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 15: 3526–3538, 1995.
 42. Dijk, D. J., J. F. Duffy, and C. A. Czeisler. Circadian and sleep/ wake dependent aspects of subjective alertness and cognitive performance. J. Sleep Res. 1: 112–117, 1992.
 43. Dinges, D., F. Pack, K. Williams, K. Gillen, J. Powell, G. Ott, C. Aptowicz, and A. Pack. Cumulative sleepiness, mood disturbance, and psychomotor vigilance performance decrements during a week of sleep restricted to 4–5 hours per night. Sleep 20: 267–277, 1997.
 44. Dollins, A. B., H. J. Lynch, R. J. Wurtman, M. H. Deng, and H. R. Lieberman. Effects of illumination on human nocturnal serum melatonin levels and performance. Physiol. Behav. 53: 153–160, 1993.
 45. Dollins, A. B., I. V. Zhdanova, R. J. Wurtman, H. J. Lynch, and M. H. Deng. Effects of inducing nocturnal serum melatonin concentrations in daytime on sleep, mood, body temperature, and performance. Proc. Natl. Acad. Sci. U.S.A. 91: 1824–1828, 1994.
 46. Drennan, M., D. F. Kripke, and J. C. Gillin. Bright light can delay human temperature rhythm independent of sleep. Am. J. Physiol. 257 (Regulatory Integrative Comp. Physiol. 26): R136–R141, 1989.
 47. Dunlap, J. C. Molecular bases for circadian clocks. Cell 96: 271–290, 1999.
 48. Eastman, C. I. High‐intensity light for circadian adaptation to a 12‐h shift of the sleep schedule. Am. J. Physiol. 263: (Regulatory Integrative Comp. Physiol. 32): R428–R436, 1992.
 49. Eastman, C. I., K. T. Steward, M. P. Mahoney, and L. F. Fogg. Dark goggles and bright light improve circadian rhythm adaptation to night shift work. Sleep 17: 535–543, 1994.
 50. Edgar, D. M., and W. C. Dement. Regularly scheduled voluntary exercise synchronizes the mouse circadian clock. Am. J. Physiol. 261: (Regulatory Integrative Comp. Physiol. 30): R928–R933, 1991.
 51. Ekstrand, P., P. A. Bostrom, M. Arborelius, J. A. Nilsson, and S. E. Lindell. Cardiovascular risk factors in commercial flight aircrew officers compared with those in the general population. Angiology 47: 1089–1094, 1996.
 52. Espiritu, R. C., D. F. Kripke, S. Ancoli‐Isreal, M. A. Mowen, J. J. Mason, R. L. Fell, M. R. Klauber, and O. J. Kaplan. Low illumination experienced by San Diego adults: association with atypical depressive symptoms. Biol. Psychiatry 35: 403–407, 1994.
 53. Folkard, S., J. Arendt, and M. Clark. Can melatonin improve shift workers' tolerance of the night shift? Some preliminary findings. Chronobiol. Int. 10: 315–320, 1993.
 54. Folkard, S., K. I. Hume, D. S. Minors, J. M. Waterhouse, and F. L. Watson. Independence of the circadian rhythm in alertness from the sleep‐wake cycle. Nature 313: 678–679, 1985.
 55. Folkard, S., D. S. Minors, and J. M. Waterhouse. Chronobiology and shift work: current issues and trends. Chronobiologia 12: 31–54, 1985.
 56. Glass, J. D., M. Selim, G. Sorkolovic, and M. A. Rea. Tryptophan loading modulates light‐induced responses in the mammalian circadian system. J. Biol. Rhythms 10: 80–90, 1995.
 57. Greenspan, S. L., J. W. Rowe, L. A. Maitland, M. McAloon‐Dyke, and D. Elahi. The pituitary‐adrenal glucocorticoid response is altered by gender and disease. J. Gerontol. 48: M72–M77, 1993.
 58. Hirschfeld, U., R. Moreno‐Reyes, E. Akseki, M. L'Hermite‐Balériaux, R. Leproult, G. Copinschi, and E. Van Cauter. Progressive elevation of plasma thyrotropin during adaptation to simulated jet lag: effects of treatment with bright light or Zolpidem. J. Clin. Endocrinol. Metab. 81: 3270–3277, 1996.
 59. Holsboer, F., U. von Bardelein, and A. Steiger. Effects of intravenous corticotropin‐releasing hormone upon sleep‐related growth hormone surge and sleep EEG in man. Neuroendocrinology 48: 32–38, 1988.
 60. Johnson, M. P., J. F. Duffy, D. J. Dijk, J. M. Ronda, C. M. Dyal, and C. A. Czeisler. Short‐term memory, alertness and performance: a reappraisal of their relationship to body temperature. J. Sleep Res. 1: 24–29, 1992.
 61. King, D. P., Y. Zhao, A. M. Sangoram, L. D. Wilsbacher, M. Tanaka, M. P. Antoch, T. D. L. Steeves, M. H. Vitaterna, J. M. Kornhauser, P. L. Lowrey, F. W. Turek, and J. S. Takahashi. Positional cloning of the mouse circadian Clock gene. Cell 89: 641–653, 1997.
 62. Klein, K. E., and H. M. Wegmann. The resynchronisation of human circadian rhythms after transmeridian flights as a result of flight direction and mode of activity. In: Chronobiology, edited by L. E. Scheving, F. Halberg, and J. E. Pauly. Tokyo: Igaku Shoin, 1974, p. 564–570.
 63. Knutsson, A., T. Akerstedt, K. Orth‐Gomer, and B. G. Jonsson. Increased risk of ischaemic heart disease in shift workers. Lancet 2: 89–92, 1986.
 64. Lack, L., and H. Wright. The effect of evening bright light in delaying the circadian rhythms and lengthening the sleep of early morning awakening insomniacs. Sleep 16: 436–443, 1993.
 65. Lack, L. C., H. Wright, K. Lushington, G. Zimmerman, J. Mercer, and K. Schumacher. The use of bright light therapy for insomnia. In: Biologic Effects of Light 1993, Berlin: de Gruyter, 1994, p. 228–240.
 66. Leproult, R., O. Buxton, and E. Van Cauter. Nocturnal sleep deprivation results in an elevation of Cortisol levels the next evening. Sleep 20: 865–870, 1997.
 67. Leproult, R., O. Van Reeth, M. M. Byrne, J. Sturis, and E. Van Cauter. Sleepiness, performance and neuroendocrine function during sleep deprivation: effects of exposure to bright light or exercise. J. Biol. Rhythms 12: 245–258, 1997.
 68. Lewy, A. J., R. L. Sack, M. L. Blood, V. K. Bauer, N. L. Cutler, and K. T. Thomas. Melatonin marks circadian phase position and resets the endogenous circadian pacemaker in humans. In: Circadian Clocks and Their Adjustment, edited by D. J. Chadwick and K. Ackrill. Ciba Foundation Symposium # 183. Chichester: Wiley, 1995, p. 303–321.
 69. Lewy, A. J., R. L. Sack, L. S. Miller, and T. M. Hoban. Antidepressant and circadian phase‐shifting effects of light. Science 235: 352–354, 1987.
 70. Lovell, B. B., S. Ancoli‐Israel, and R. Gevirtz. Effect of bright light treatment on agitated behavior in institutionalized elderly subjects. Psychiatry Res. 57: 7–12, 1995.
 71. Lupien, S., A. Roch Lecours, I. Lussier, G. Schwartz, N. P. V. Nair, and M. J. Meaney. Basal Cortisol levels and cognitive deficits in human aging. J. Neurosci. 14: 2893–2903, 1994.
 72. McEwen, B. S., and R. M. Sapolsky. Stress and cognitive function. Curr. Opin. Neurobiol. 5: 205–216, 1995.
 73. Middleton, B., J. Arendt, and B. M. Stone. Human circadian rhythms in constant dim light (8 lux) with knowledge of clock time. J. Sleep Res. 5: 69–76, 1996.
 74. Miller, J. D., L. P. Morin, W. J. Schwartz, and R. Y. Moore. New insights into the mammalian circadian clock. Sleep 19: 641–667, 1996.
 75. Mistlberger, R. E. Scheduled daily exercise or feeding alters the phase of photic entrainment in Syrian hamsters. Physiol. Behav. 50: 1257–1260, 1991.
 76. Monk, T. H. Subjective ratings of sleepiness—the underlying circadian mechanisms. Sleep 10: 343–353, 1987.
 77. Monk, T. H., D. J. Buysse, C. F. Reynolds, S. L. Berga, D. B. Jarrett, A. E. Begley, and D. J. Kupfer. Circadian rhythms in human performance and mood under constant conditions. J. Sleep Res. 6: 9–18, 1997.
 78. Moore, R. Y. Neural control of the pineal gland. Behav. Brain Res. 73: 125–130, 1996.
 79. Mrosovsky, N. Locomotor activity and non‐photic influences on the circadian clock. Biol. Rev. 71: 343–372, 1996.
 80. Mrosovsky, N., S. G. Reebs, G. I. Honrado, and P. A. Salmon. Behavioral entrainment of circadian rhythms. Experientia 45: 696–702, 1989.
 81. Myers, B. L., and P. Badia. Immediate effects of different light intensities on body temperature and alertness. Physiol. Behav. 54: 199–202, 1993.
 82. Okudaira, N., D. F. Kripke, and J. B. Webster. Naturalistic studies of human light exposure. Am. J. Physiol. 245: (Regulatory Integrative Comp. Physiol. 14): R613–R615, 1983.
 83. Penev, P. D., P. C. Zee, and F. W. Turek. Serotonin in the spotlight. Nature 385: 123, 1997.
 84. Petrie, K., J. V. Conaglen, L. Thompson, and K. Chamberlain. Effect of melatonin on jet lag after long haul flights. BMJ 298: 705–707, 1989.
 85. Porkka‐Heiskanen, T., R. E. Strecker, M. Thakkar, A. A. Bjorkum, R. W. Greene, and R. W. McCarley. Adenosine: a mediator of the sleep‐inducing effects of prolonged wakefulness. Science 276: 1255–1258, 1997.
 86. Roden, M., M. Koller, K. Pirich, H. Vierhapper, and F. Waldhauser. The circadian melatonin and Cortisol secretion pattern in permanent night shift workers. Am. J. Physiol. 265: (Regulatory Integrative Comp. Physiol. 34): R261–R267, 1993.
 87. Rosa, R. R. Extended workshifts and excessive fatigue. J. Sleep Res. 4: 51–56, 1995.
 88. Rosenthal, N. E., D. A. Sack, R. G. Skwerer, F. M. Jacobsen, and T. A. Wehr. Phototherapy for seasonal affective disorders. J. Biol. Rhythms 3: 101–120, 1988.
 89. Rosenthal, R. E., J. R. J. Vanderpool, A. A. Levendosky, S. H. Johnston, R. Allen, K. A. Kelly, E. Souetre, P. M. Schulz, and K. E. Starz. Phase‐shifting effects of bright morning light as treatment for delayed sleep phase syndrome. Sleep 13: 354–361, 1990.
 90. Samel, A., and H. M. Wegmann. Bright light: a countermeasure for jet lag? Chronobiol. Int. 14: 173–183, 1997.
 91. Samel, A., H.‐M. Wegmann, M. Vejvoda, H. Maab, A. Gundel, and M. Schütz. Influence of melatonin treatment on human circadian rhythmicity before and after a simulated 9‐hr time shift. J. Biol. Rhythms 6: 235–248, 1991.
 92. Seeman, T. E., and R. J. Robbins. Aging and hypothalamo‐pituitary‐adrenal response to challenge in humans. Endocr. Rev. 15: 233–260, 1994.
 93. Spiegel, K., L. Weibel, C. Gronfier, G. Brandenberger, and M. Follenius. Twenty‐four hour prolactin profiles in night workers. Chronobiol. Int. 13: 283–293, 1996.
 94. Spiegel, K., R. Leproult, and E. Van Cauter. Impact of sleep debt an metabolic and endocrine function. Lancet 354: 1435–1439, 1999.
 95. Strassman, R. J., C. R. Qualls, J. Lisansky, and G. T. Peake. Elevated rectal temperature produced by all‐night bright light is reversed by melatonin infusion in men. J. Appl. Physiol.: Respir. Environ. Exerc. Physiol. 71: 2178–2182, 1991.
 96. Tepas, D. I., and A. B. Carvalhais. Sleep patterns of shiftworkers. Occup. Med. 5: 199–208, 1990.
 97. Turek, F. W. Pharmacological probes of the mammalian circadian clock: use of the phase response curve approach. Trends Pharmacol. Sci. 8: 212–217, 1987.
 98. Turek, F. W. Effects of stimulated physical activity on the circadian pacemaker of vertebrates. J. Biol. Rhythms 4: 135–148, 1989.
 99. Turek, F. W, L. H. Pinto, M. H. Vitaterna, P. D. Penev, P. C. Zee, and J. S. Takahashi. Pharmacological and genetic approaches for the study of circadian rhythms in mammals. Front. Neuroendocrinal. 16: 191–223, 1995.
 100. Van Cauter, E. Hormones and sleep. In: The Pharmacology of Sleep, edited by A. Kales. Berlin: Springer‐Verlag, 1995, p. 279–306.
 101. Van Cauter, E., R. Leproult, and D. J. Kupfer. Effects of gender and age on the levels and circadian rhythmicity of plasma Cortisol. J. Clin. Endocrinol. Metab. 81: 2468–2473, 1996.
 102. Van Cauter, E., K. S. Polonsky, and A. J. Scheen. Roles of circadian rhythmicity and sleep in human glucose regulation. Endocr. Rev. 18: 716–738, 1997.
 103. Van Cauter, E., J. Sturis, M. M. Byrne, J. D. Blackman, R. Leproult, G. Ofek, M. L'Hermite‐Balériaux, S. Refetoff, F. W. Turek, and O. Van Reeth. Demonstration of rapid light‐induced advances and delays of the human circadian clock using hormonal phase markers. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E953–E963, 1994.
 104. Van Cauter, E., and F. W. Turek. Strategies for resetting the human circadian clock. N. Engl. J. Med. 322: 1306–1308, 1990.
 105. Van Cauter, E., and F. W. Turek. Endocrine and other biological rhythms. In: Endocrinology, edited by L. J. DeGroot. Philadelphia: Saunders, 1995, p. 2487–2548.
 106. Van Cauter, E., A. Van Onderbergen, D. Bosson, M. L'Hermite‐Balériaux, M. L'Hermite, M. Szyper, and G. Copinschi. Effect of triazolam on the adaptation of the circadian rhythms of Cortisol, melatonin and REM propensity to an 8‐hour delay of the sleep‐wake cycle in man. Program, First Meeting of the Society for Research on Biological Rhythms, Jacksonville, Florida, 1988.
 107. Van Reeth, O., D. Hinch, J. M. Tecco, and F. W. Turek. The effects of short periods of immobilization on the hamster circadian clock. Brain Res. 545: 208–214, 1991.
 108. Van Reeth, O., J. Sturis, M. M. Byrne, J. D. Blackman, M. L'Hermite‐Balériaux, R. Leproult, C. Oliner, S. Refetoff, F. W. Turek, and E. Van Cauter. Nocturnal exercise phase delays circadian rhythms of melatonin and thyrotropin in normal men. Am. J. Physiol. 266 (Endocrinol. Metab. 29): E964–E974, 1994.
 109. Van Reeth, O., and F. W. Turek. Stimulated activity mediates phase shifts in the hamster circadian clock induced by dark pulses or benzodiazepines. Nature 339: 49–51, 1989.
 110. Van Someren, E. J., A. Kessler, M. Mirmiran, and D. F. Swaab. Indirect bright light improves circadian rest‐activity rhythm disturbances in demented patients. Biol. Psychiatry 41: 955–963, 1997.
 111. Vitaterna, M. H., D. P. King, A. M. Chang, J. M. Kornhauser, P. L. Lowry, J. D. McDonald, W. F. Dove, L. H. Pinto, F. W. Turek, and J. S. Takahashi. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264: 719–725, 1994.
 112. Wehr, T., D. Moul, G. Barbato, H. Giesen, J. Seidel, C. Barker, and C. Bender. Conservation of photoperiod‐responsive mechanisms in humans. Am. J. Physiol. 265 (Regulatory Integrative Comp. Physiol. 34): R846–R857, 1993.
 113. Wehr, T. A., H. A. Giesen, D. E. Moul, E. H. Turner, and P. J. Schwartz. Suppression of men's responses to seasonal changes in day length by modern artificial lighting. Am. J. Physiol. 269 (Regulatory Integrative Comp. Physiol. 38): R173–R178, 1995.
 114. Wehr, T. A., and F. K. Goodwin. Biological rhythms in manic‐depressive illness. In: Circadian Rhythms in Psychiatry, edited by T. A. Wehr and F. K. Goodwin. Pacific Grove: Boxwood, 1983, p. 129–184.
 115. Weibel, L., G. Brandenberger, B. Goichot, K. Spiegel, J. Ehrhart, and M. Follenius. The circadian thyrotropin rhythm is delayed in regular night workers. Neurosci. Lett. 187: 83–86, 1995.
 116. Weibel, L., M. Follenius, K. Spiegel, C. Gronfier, and G. Brandenberger. Growth hormone secretion in night workers. Chronobiol. Int. 14: 49–60, 1997.
 117. Weibel, L., K. Spiegel, M. Follenius, J. Ehrhart, and G. Brandenberger. Internal dissociation of the circadian markers of the Cortisol rhythm in night workers. Am. J. Physiol. 270 (Endocrinol. Metab. 33): E608–E613, 1996.
 118. Weibel, L., K. Spiegel, C. Gronfier, M. Follenius, and G. Brandenberger. Twenty‐four‐hour melatonin and core body temperature rhythms: their adaptation in night workers. Am. J. Physiol. 272 (Regulatory Integrative Comp. Physiol. 41): R948–R954, 1997.
 119. Wever, R. A. The Circadian System of Man: Results of Experiments under Temporal Isolation. New York: Springer‐Verlag, 1979.
 120. Wever, R. A. Use of bright light to treat jet lag: differential effects of normal and bright artificial light on human circadian rhythms. Ann. N.Y. Acad. Sci. 453: 282–304, 1986.
 121. Whitmore, D., and P. Sassone‐Corsi. Cryptic clues to clock function. Nature 398: 557–558, 1999.
 122. Wisor, J. P., and J. S. Takahashi. Molecular genetic approaches to the identitity and function of circadian clock genes. In: Regulation of Sleep and Circadian Rhythms, edited by F. W. Turek and P. C. Zee. New York: Marcel Dekker, Inc., 1999, p. 369–396.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Eve Van Cauter, Fred W. Turek. Roles of Sleep‐Wake and Dark‐Light Cycles in the Control of Endocrine, Metabolic, Cardiovascular, and Cognitive Function. Compr Physiol 2011, Supplement 23: Handbook of Physiology, The Endocrine System, Coping with the Environment: Neural and Endocrine Mechanisms: 313-330. First published in print 2001. doi: 10.1002/cphy.cp070415