Comprehensive Physiology Wiley Online Library

Regional Neural Regulation of Immunity: Anatomy and Function

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 The Autonomic Nervous System
1.1 Overview
1.2 Central Control
1.3 Terminal Distribution of Fibers
1.4 Summary
2 The Neuroendocrine System
3 The Immune System
4 Acute‐Phase Response
5 Innervation of Primary, Secondary, and Tertiary Immune Tissues
5.1 Primary Immune Tissues
5.2 Thymus Innervation
5.3 Secondary Immune Tissues
5.4 Tertiary Immune Tissues
5.5 Summary
6 Summary and Conclusions
Figure 1. Figure 1.

ANS signals from nonmyelinated bundles of nerve fibers are dispersed between the stromal cells of peripheral glands. The varicosities release neurotransmitters into the interstitial space of the glands affecting many cells which express ANS transmitter receptors.

Figure 2. Figure 2.

Schematic representation of the postnatal anatomic developmental pathways of the education and migration of immunocytes. Precursor cells derived primarily from the bone marrow migrate to the thymus to be selected, or “educated,” as antigen‐presenting T cells. B cells (in the case of mammals) are selected in the bone marrow, whereas in Aves, such as chickens, B‐cell education is carried out in a specialized organ, the bursa. Educated T and B cells migrate from these primary immune tissues to the secondary and tertiary immune tissues. Accessory cells are also exposed to bone marrow factors and distributed to primary, secondary, and tertiary immune tissues. The ratio and type of immunocytes present in the different immune tissues at any given time is dependent on many events, such as the type of trauma (pathogenic, puncture wound, etc.), location and severity, as well as signal molecules derived from the immune, endocrine, and nervous systems.

Figure 3. Figure 3.

Simplistic schematic representation of the major pathway leading to and during the acute‐phase response (APR). Following trauma, a local response to the site of damage occurs. If the injury is severe enough, alarm cytokines released by activated macrophages and other local cell types precipitate a cascade of systemic molecular events comprising the APR. ICAM, intracellular adhesion molecule; IL, interleukin; TNF, tumor necrosis factor; TGF, transforming growth factor; MCP, macrophage chemotatic protein.

Figure 4. Figure 4.

The nerves that innervate the bone branch at the nutrient foramen before entering the bone. One segment of the nerve enters the marrow, divides and supplies the arterial component of the marrow's circulation and to some extent the sinusoidal parts and parenchymal elements. The release of ANS neurotransmitters into the bone marrow can influence cells which express sympathetic, parasympathetic and peptidnergic receptors.

Figure 5. Figure 5.

Schematic and photomicrographic representations of the innervation of the thymus. 1: A line drawn from level C‐2 in the spinal cord to a photomicrograph shows three cells labeled after simultaneous injection of fluorogold into the thymus and horseradish peroxidase (HRP) into adjacent tissue. The cells are not double‐labeled, indicating that the cells of the spinal cord project to independent structures in this region rather than sending collaterals of single nerve cells 234. 2: A line drawn from the nucleus retrofacial (E, NRF), to a photomicrograph of cells labeled after simultaneous injection of fluorogold into the thymus and HRP into adjacent tissue. Again, the lack of double labeling indicates a separate projection of these neurons to the thymus 234. 3: (a) Labeled neurons of the nodose ganglia following HRP injection into the thymus (55). (b) Acetylcholinesterase histochemistry of vagal nerves deep within the thymus. Note ramification of the nerve within the gland 51. (c) Neurons labeled with HRP in the superior cervical ganglia following injection of HRP into the thymus. (d) Catecholaminergic sympathetic innervation is derived from the superior cervical ganglia and other ganglia of the cervical sympathetic chain 55.

Figure 6. Figure 6.

Distribution of sympathetic nerves within a splenic lymph nodule. t, antigen‐sensitive T lymphocytes; T, activated T lymphocytes; b, antigen‐sensitive B lymphocytes; P, activated plasmacytes.

Figure 7. Figure 7.

Schematic and photomicrographic representations of the changes in calcitonin gene‐related peptide (CGRP) immunoreactivity in five damage models that target different regions of hippocampal formation. A: Photomicrograph showing the distribution of CGRP in the intermolecular layer (IML) of the dentate gyrus. Two models, adrenalectomy (B) and colchicine injection (C,D), involve neuronal death in the granule cell layer (GCL) of the dentate gyrus and in the polymorphic region of the dentate gyrus (PoMDG) 52. Note the change in CGRP immunoreactivity in the IML activity as compared to control (A) in these two models. The third model, kainic acid (E), induced seizures and caused damage to cells primarily in the region of CA3b and c 48 and temporal change in CGRP immunoreactivity in cells of the PoMDG. The fourth model, utilizing the neurotoxin trimethyltin, shows a marked change in the CA1 hilus and CA3 regions of the hippocampus and intense CGRP immunoreactivity in neurons of the PoMDG. The fifth model, ischemia, induces a marked change in CGRP immunoreactivity within neurons of the dorsal subiculum (DS) and the CA1 region 49. In all five models, expression of CGRP immunoreactivity is associated with the region of injury 56.

Figure 8. Figure 8.

Schematic representation of the autonomic nervous system efferent (parasympathetic and sympathetic) distribution to the tissues and organs of the body. NS, nervous system; g., gland; mesen., mesenteric; n., nerve; c, cervical spine; t., thoracic spine, l., lumbar spine; s., sacrum.



Figure 1.

ANS signals from nonmyelinated bundles of nerve fibers are dispersed between the stromal cells of peripheral glands. The varicosities release neurotransmitters into the interstitial space of the glands affecting many cells which express ANS transmitter receptors.



Figure 2.

Schematic representation of the postnatal anatomic developmental pathways of the education and migration of immunocytes. Precursor cells derived primarily from the bone marrow migrate to the thymus to be selected, or “educated,” as antigen‐presenting T cells. B cells (in the case of mammals) are selected in the bone marrow, whereas in Aves, such as chickens, B‐cell education is carried out in a specialized organ, the bursa. Educated T and B cells migrate from these primary immune tissues to the secondary and tertiary immune tissues. Accessory cells are also exposed to bone marrow factors and distributed to primary, secondary, and tertiary immune tissues. The ratio and type of immunocytes present in the different immune tissues at any given time is dependent on many events, such as the type of trauma (pathogenic, puncture wound, etc.), location and severity, as well as signal molecules derived from the immune, endocrine, and nervous systems.



Figure 3.

Simplistic schematic representation of the major pathway leading to and during the acute‐phase response (APR). Following trauma, a local response to the site of damage occurs. If the injury is severe enough, alarm cytokines released by activated macrophages and other local cell types precipitate a cascade of systemic molecular events comprising the APR. ICAM, intracellular adhesion molecule; IL, interleukin; TNF, tumor necrosis factor; TGF, transforming growth factor; MCP, macrophage chemotatic protein.



Figure 4.

The nerves that innervate the bone branch at the nutrient foramen before entering the bone. One segment of the nerve enters the marrow, divides and supplies the arterial component of the marrow's circulation and to some extent the sinusoidal parts and parenchymal elements. The release of ANS neurotransmitters into the bone marrow can influence cells which express sympathetic, parasympathetic and peptidnergic receptors.



Figure 5.

Schematic and photomicrographic representations of the innervation of the thymus. 1: A line drawn from level C‐2 in the spinal cord to a photomicrograph shows three cells labeled after simultaneous injection of fluorogold into the thymus and horseradish peroxidase (HRP) into adjacent tissue. The cells are not double‐labeled, indicating that the cells of the spinal cord project to independent structures in this region rather than sending collaterals of single nerve cells 234. 2: A line drawn from the nucleus retrofacial (E, NRF), to a photomicrograph of cells labeled after simultaneous injection of fluorogold into the thymus and HRP into adjacent tissue. Again, the lack of double labeling indicates a separate projection of these neurons to the thymus 234. 3: (a) Labeled neurons of the nodose ganglia following HRP injection into the thymus (55). (b) Acetylcholinesterase histochemistry of vagal nerves deep within the thymus. Note ramification of the nerve within the gland 51. (c) Neurons labeled with HRP in the superior cervical ganglia following injection of HRP into the thymus. (d) Catecholaminergic sympathetic innervation is derived from the superior cervical ganglia and other ganglia of the cervical sympathetic chain 55.



Figure 6.

Distribution of sympathetic nerves within a splenic lymph nodule. t, antigen‐sensitive T lymphocytes; T, activated T lymphocytes; b, antigen‐sensitive B lymphocytes; P, activated plasmacytes.



Figure 7.

Schematic and photomicrographic representations of the changes in calcitonin gene‐related peptide (CGRP) immunoreactivity in five damage models that target different regions of hippocampal formation. A: Photomicrograph showing the distribution of CGRP in the intermolecular layer (IML) of the dentate gyrus. Two models, adrenalectomy (B) and colchicine injection (C,D), involve neuronal death in the granule cell layer (GCL) of the dentate gyrus and in the polymorphic region of the dentate gyrus (PoMDG) 52. Note the change in CGRP immunoreactivity in the IML activity as compared to control (A) in these two models. The third model, kainic acid (E), induced seizures and caused damage to cells primarily in the region of CA3b and c 48 and temporal change in CGRP immunoreactivity in cells of the PoMDG. The fourth model, utilizing the neurotoxin trimethyltin, shows a marked change in the CA1 hilus and CA3 regions of the hippocampus and intense CGRP immunoreactivity in neurons of the PoMDG. The fifth model, ischemia, induces a marked change in CGRP immunoreactivity within neurons of the dorsal subiculum (DS) and the CA1 region 49. In all five models, expression of CGRP immunoreactivity is associated with the region of injury 56.



Figure 8.

Schematic representation of the autonomic nervous system efferent (parasympathetic and sympathetic) distribution to the tissues and organs of the body. NS, nervous system; g., gland; mesen., mesenteric; n., nerve; c, cervical spine; t., thoracic spine, l., lumbar spine; s., sacrum.

References
 1. Abello, J., D. Kaiserlian, J. C. Cuber, J. P. Revillard, and J. A. Chayvialle. Characterization of calcitonin gene‐related peptide receptors and adenylate cyclase response in the murine macrophage cell line P388 Dl. Neuropeptides 19: 43–49, 1991.
 2. Ackerman, K. D., S. Y. Feiten, D. L. Bellinger, and D. L. Felten. Noradrenergic sympathetic innervation of the spleen: III. Development of innervation in the rat spleen. J. Neurosci. Res. 18: 49–54, 1987.
 3. Aksenova, V. M. Role of the vagus nerves in regulating the activity of the pentose phosphate carbohydrate metabolic pathway in the thymus and mesenteric lymph nodes [in Russian]. Vopr. Med. Khim. 27: 637–640, 1981.
 4. Alito, A. E., H. E. Romeo, R. Baler, H. E. Chuluyan, M. Braun, and D. P. Cardinali. Autonomic nervous system regulation of murine immune responses as assessed by local surgical sympathetic and parasympathetic denervation. Acta Physiol. Pharmacol. Latinoam. 37: 305–319, 1987.
 5. Al‐Shawaf, A., M. D. Kendall, and T. Cowen. Identification of neural profiles containing vasoactive intestinal polypeptide, acetylcholinesterase and catecholamines in the rat thymus. J. Anat. 174: 131–143, 1991.
 6. Andersson, P. B., V. H. Perry, and S. Gordon. The CNS acute inflammatory response to excitotoxic neuronal cell death. Immunol. Lett. 30: 177–182, 1991.
 7. Andersson, P. B., V. H. Perry, and S. Gordon. The kinetics and morphological characteristics of the macrophage‐microglial response to kainic acid‐induced neuronal degeneration. Neurology 42: 201–214, 1991.
 8. Andres, K. H., M. von During, K. Muszynski, and R. F. Schmidt. Nerve fibres and their terminals of the dura mater encephali of the rat. Anat. Embryol. 175: 289–301, 1987.
 9. Anisman, H., M. G. Baines, I. Berczi, C. N. Bernstein, M. G. Blennerhassett, R. M. Gorczynski, A. H. Greenberg, F. T. Kisil, R. D. Mathison, E. Nagy, D. M. Nance, M. H. Perdue, D. K. Pomerantz, E. R. Sabbadini, A. Stanisz, and R. J. Warrington. Neuroimmune mechanisms in health and disease: 1. Health. CMAJ. 155: 867–874, 1996.
 10. Antonica, A., F. Magni, L. Mearini, and N. Paolocci. Vagal control of lymphocyte release from rat thymus. J. Auton. Nerv. Syst. 48: 187–197, 1994.
 11. Asahina, A., J. Hosoi, S. Grabbe, and R. D. Granstein. Modulation of Langerhans cell function by epidermal nerves. J. Allergy Clin. Immunol. 96: 1178–1182, 1995.
 12. Baciu, I. Systeme nerveux et mecanismes humoraux dans la regulation de l'erythropoiese. Rev. Rhum. 1: 149–160, 1964.
 13. Badamchian, M., J. Hausman, T. Radojcic, and K. Bulloch. The characterization of choline acetyltransferase (ChAT) activity in the mouse thymus. Prog. Neuroendocr. Immunol. 5, 222–228, 1992.
 14. Bang, B. G., and F. B. Bang. Localized lymphoid tissue and plasma cells in paraocular and paranasal organ systems in chickens. Am. J. Pathol. 53: 735–751, 1968.
 15. Bannister, R. Introduction and classification. In: Autonomic Failure: 2nd ed. A Textbook of Clinical Disorders of the Autonomic Nervous System, edited by R. Bannister. New York: Oxford University Press, 1988, p. 1–22.
 16. Bauer, J., I. Huitinga, W. Zhao, H. Lassmann, W. F. Hickey, and C. D. Dijkstra. The role of macrophages, perivascular cells, and microglial cells in the pathogenesis of experimental autoimmune encephalomyelitis. Glia 15: 437–446, 1995.
 17. Baumann, H., and J. Gauldie. The acute phase response. Immunol. Today 15: 74–80, 1994.
 18. Bayer, S. A. Hippocampal region. In: The Rat Nervous System 1985, vol. 1, p. 335–352. ed. G. Patinos Academic Press Orlando Fla.
 19. Beer, A. G. Uber die nervos‐humorale Regulation des Blutes. Folia Haematol. (Leipz.) 66: 222–298, 1942.
 20. Bellinger, D. L., S. Y. Felten, D. Lorton, and D. L. Felten. Origin of noradrenergic innervation of the spleen in rats. Brain Behav. Immun. 3: 291–311, 1989.
 21. Bellinger, D. L., D. Lorton, S. Y. Felten, and D. L. Felten. Innervation of lymphoid organs and implications in development, aging, and autoimmunity. Int. J. Immunopharmacol. 14: 329–344, 1992.
 22. Bellinger, D. L., D. Lorton, L. Horn, S. Brouxhon, S. Y. Felten, and D. L. Felten. Vasoactive intestinal polypeptide (VIP) innervation of rat spleen, thymus, and lymph nodes. Peptides 18: 1139–1149, 1997.
 23. Benestad, H. B., I. Strom‐Gundersen, P. Ole Iversen, E. Haug, and A. Nja. No neuronal regulation of murine bone marrow function. Blood 91: 1280–1287, 1998.
 24. Berczi, I., I. M. Chalmers, E. Nagy, and R. J. Warrington. The immune effects of neuropeptides. Baillieres Clin. Rheumatol. 10: 227–257, 1996.
 25. Besedovsky, H. O., and E. Sorkin. Network of immunoneuroendocrine interactions. J. Clin. Exp. Immunol. 27: 1–12, 1977.
 26. Blakely, A. G., D. P. Dearnaley, and V. Harrison. The effect of nerve stimulation on the noradrenaline content of the guinea pig vas deferens. Proc. Phys. Soc. 12: 106–107, 1968.
 27. Blalock, J. E. A molecular basis for bidirectional communication between the immune and meuroendocrine systems. Physiol. Rev. 69: 1–32, 1989.
 28. Blaschke, E., and B. Uvnas. Effect of splenic nerve stimulation on the contents of noradrenaline ATP and sulphomucopolysac‐charides in noradrenergic vesicle fractions from the cat spleen. Acta Physiol. Scand. 105: 496–507, 1979.
 29. Bockman, D. E., and M. L. Kirby. Neural crest function in thymus development. Immunology Series 45: 451–467, 1989.
 30. Bogendorfer, L. Uber den Eiwfluss des Zentralnervensystems auf Immunitatsvorgange. Arch. Exp. Pharmakol. 124: 65–72, 1927.
 31. Bradbury, W. B., H. F. Cserr, and J. Westrop. Drainage of cerebral interstitial tissue fluid into deep cervical lymph of the rabbit. Am. J. Physiol. 240 (Renal Fluid Electrolyte Physiol. 9): F329–F336, 1981.
 32. Braeucker, W. Die Nerven des Thymus. Z. Anat. Entwicklungsgesch. 69: 309–329, 1923.
 33. Brain, S., T. Williams, J. Tippins, H. Morris, and I. MacIntyre. Calcitonin gene‐related peptide is a potent vasodilator. Nature 313: 54, 1984.
 34. Brown, L., D. P. Dearnaley, and L. B. Geffen. Noradrenaline storage and release in the decentralized spleen. Proc. R. Soc. Lond. B Biol. Sci. 168: 48–56, 1967.
 35. Browse, N. L. Response of lymphatics of canine hind limb to sympathetic nerve stimulation. J. Physiol. (Lond.) 197: 25–36, 1968.
 36. Bulloch, K. Neuroendocrine‐immune circuitry: pathways involved with the induction and persistence of humoral immunity. Microfilm Int. (Ann Arbor) 447: 727–764, 1981.
 37. Bulloch, K. Neuroanatomy of lymphoid tissue: a review. In: Neural Modulation of Immunity, edited by R. E. A. Guillemin. New York: Raven, 1985, p. 111–141.
 38. Bulloch, K. A comparative study of the autonomic nervous system innervation of the thymus in the mouse and chicken. Int. J. of Neurosci. 40: 129–140, 1988.
 39. Bulloch, K. and S. Bossone. Nerve‐related 3S acetylcholinesterase in murine thymus. Ann. N Y Acad. Sci. 496: 338–345, 1988.
 40. Bulloch, K., M. R. Cullen, M. L. Davis, and R. H. Schwartz. Neuroimmunology of the thymus gland. Neurology 33 (4; Suppl. (2): 194, 1983.
 41. Bulloch, K., T. Damavandy, and M. Badamchian. Characterization of choline O‐acetyltransferase (ChAT) in the BALB/C mouse spleen. Int. J. Neurosci. 76: 141–149, 1994.
 42. Bulloch, K., A. Diwa, and B. S. McEwen. Calcitonin gene related peptide (CGRP) induced apoptosis in vitro in murine thymocytes via receptor insensitive to the antagonist CGRP 8‐27 with a potency similar to that induced by glucocorticoid. Inflammopharmacology 3: 75–76, 1995.
 43. Bulloch, K., J. Hausman, T. Radojcic, and S. Short. Calcitonin gene‐related peptide in the developing and aging thymus. An immunocytochemical study. Ann. NY Acad. Sci. 621: 218–228, 1991.
 44. Bulloch, K. and R. Lucito. The effects of cortisone on acetylcholinesterase (AChE) in the neonatal and aged thymus. Ann. NY Acad. Sci. 521: 59–71, 1988.
 45. Bulloch, K., B. McEwen, A. Diwa, T. Radojcic, J. Hausman, and S. Baird. The role of calcitonin gene related peptide (CGRP) in the mouse thymus revisited. Ann. NY Acad Sci. 741: 129–136, 1994.
 46. Bulloch, K., B. S. McEwen, A. Diwa, and S. Baird. Relationship between dehydroepiandrosterone and calcitonin gene‐related peptide in the mouse thymus. Am. J. Physiol. 268: 168–173, 1995.
 47. Bulloch, K., B. S. McEwen, J. Norberg, A. Diwa, and S. Baird. Selective regulation of T cell development and function by calcitonin gene related peptide (CGRP) in the thymus and spleen: an example of regional regulation of immunity by the neuroendocrine system. In: Neuroimmunomodulation: Molecular Aspects, Integrative Systems and Clinical Advances. Ann. NY Acad. Sci. 840: 551–562, 1998.
 48. Bulloch, K., T. A. Milner, J. Pierce, and B. S. McEwen. Kainic acid induction of CGRP‐LI in the hippocampal formation of rats: regional regulation of the CNS injury/immune response. Neurosci. Abstr. 23: 716, 1997.
 49. Bulloch, K., T. A. Milner, A. Prasad, M. Hsu, G. Buzsaki, and B. S. McEwen. Calcitonin gene related peptide‐like immunoreactivity in hippocampal neurons following ischemia: a putative regional modulator of the CNS/injury response. Exp. Neurol. 150: 195–205, 1998.
 50. Bulloch, K., and R. Y. Moore. Innervation of the thymus gland by brain stem and spinal cord in mouse and rat. Am. J. Anat. 162: 157–166, 1981.
 51. Bulloch, K., and W. Pomerantz. Autonomic nervous system innervation of thymic‐related lymphoid tissue in wild‐type and nude mice. J. Comp. Neurol. 228: 57–68, 1984.
 52. Bulloch, K., A. Prasad, C. D. Conrad, B. McEwen, and T. A. Milner. Calcitonin gene‐related peptide level in the rat dentate gyrus increases after damage. Neuroreport 7: 1036–1040, 1996.
 53. Bulloch, K., and T. Radojcic. Characterization of muscarinic acetylcholine and beta‐adrenergic receptors on fresh and cloned immunocytes. In: Interactions among CNS, Neuroendocrine, and Immune systems, edited by J. W. Hadden, K. Masek and G. Nistico. Rome: Pythagora, 1989, p. 17–34.
 54. Bulloch, K., T. Radojcic, R. Yu, J. Hausman, L. Lenhard, and S. Baird. The distribution and function of calcitonin gene‐related peptide in the mouse thymus and spleen. Progress in Neuroendocrine Immunology 4: 186–194, 1991.
 55. Bulloch, K., E. Roth, and M. R. Cullen. Nodose and superior cervical ganglia project into the rat thymus. Soc. Neurosci Abstr. 10: 725, 1984.
 56. Bulloch, K., M. Sadamatsu, A. Patel, and B. McEwen. Calcitonin gene related peptide‐immunoreactivity in the hippocampus and its relationship to cellular changes following exposure to trimethyltin. J. Neurosci. Res. 55: 441–457, 1999.
 57. Byron, J. W. Evidence for a beta‐adrenergic receptor initiating DNA synthesis in hemopoietic stem cells. Exp. Cell Res. 71: 228–232, 1972.
 58. Byron, J. W. Manipulation of the cell cycle of the hemopoietic stem cell. Exp. Hematol. 3: 44–53, 1975.
 59. Byron, J. W. Mechanism for histamine H‐receptor induced cellcycle changes in bone marrow stem cell. Agents Actions 7: 209–213, 1977.
 60. Cabanac, J. Les nerfs du thymus. Bull. Assoc. Anat., 25: 97–100, 1931.
 61. Calvo, W., and R. J. Haas. On the histogenesis of the bone marrow in the rat. Innervation, stroma and their relations to hemopoiesis. Zeitschrift Fur Zellforschung Und Mikroskopische Anatomie. 95 (3): 377–95, 1969.
 62. Calvo, W. The innervation of the bone marrow in laboratory animals. Am. J. Anat. 123: 315–328, 1968.
 63. Calvo, W., and J. Forteza‐Vila. On the development of bone marrow innervation in newborn rats as studied with silver impregnation and electron microscopy. Am. J. Anat. 126: 355–371, 1969.
 64. Calvo, W., and J. Forteza‐Vila. Schwann cells of the bone marrow. Blood 36: 180–188, 1970.
 65. Campbell, E., and M. A. Gibbson. A histological and histochemical study of the development of the pineal gland in the chick. Galleus domesticus. Can. J. Zool. 48: 1321–1328, 1970.
 66. Cannella, B., A. H. Cross, and C. S. Raine. Upregulation and co‐expression of adhesion molecules correlate with relapsing autoimmune demyelination in the central nervous system. J. Exp. Med. 172: 1521–1524, 1990.
 67. Carlson, S. L., K. M. Albers, D. J. Beiting, M. Parish, J. M. Conner, and B. M. Davis. NGF modulates sympathetic innervation of lymphoid tissues. J. Neurosci. 15: 5892–5899, 1995.
 68. Carlson, S. L., S. Johnson, M. E. Parrish, and W. A. Cass. Development of immune hyperinnervation in NGF‐transgenic mice. Exp. Neurol. 149: 209–220, 1998.
 69. Chambers, D. A., R. L. Cohen, and R. L. Perlman. Neuroimmune modulation: signal transduction and catecholamines. Neurochem. Int. 22: 95–110, 1993.
 70. Chzhao, L. K., and V. N. Shvalev. Adrenergic innervation of lymph nodes and the thoracic duct [in Russian]. Arkh. Anat. Gistol. Embriol. 96: 33–37, 1989.
 71. Coffey, R. G., E. M. Hadden, and J. W. Hadden. Norepinephrine stimulation of lymphocyte ATPase by an alpha‐adrenergic receptor mechanism. Endocr. Res. Commun. 2: 179–198, 1975.
 72. Cogburn, L. A., and B. Glick. Lymphopoiesis in the chicken pineal gland. Am. J. Anat. 162: 131–142, 1981.
 73. Cosentino, M., F. Marino, R. Bombelli, M. Ferrari, G. J. Maestroni, A. Conti, E. Rasini, S. Lecchini, and G. Frigo. Association between the circadian course of endogenous noradrenaline and the hematopoietic cell cycle in mouse bone marrow. J. Chemother. 10: 179–181, 1998.
 74. Cross, R. J., W. R. Markesbery, W. H. Brooks, and T. L. Roszman. 1980. Hypothalamic‐immune interaction I. The acute effect of anterior hypothalamic lesions on the immune response. Brain Res. 196: 79–87.
 75. de Castro, F. Technique pour la coloration du systeme nerveux quand il est pourvu de ses etuis osseux. Trav. Lab. Rech. Biol. Univ. Madrid 23: 429–446, 1925.
 76. de Castro, F. Quelques observations sur I'intervention du systeme nerveux autonome dans I'ossification, innervation du tissue osseux et de la molle osseuse. Trav. Lab. Rech. Biol. Univ. Madrid 26: 215–244, 1929.
 77. Del Zoppo, G. J. tPA, a neuronal buster too? Nat. Med. 4: 148–150, 1998.
 78. Dhabhar, F. S., and B. S. McEwen. Enhancing versus suppressive effects of stress hormones on skin immune function. Proc. Nat. Acad Sci. U.S.A. 96: 1059–1064, 1999.
 79. Dhabhar, F. S., A. H. Miller, B. S. McEwen, and R. L. Spencer. Effects of stress on immune cell distriution. J. Immunol. 154: 5511–5527, 1995.
 80. Egan, C. L., M. J. Viglione‐Schneck, L. J. Walsh, B. Green, J. Q. Trojanowski, D. Whitaker‐Menezes, and G. F. Murphy. Characterization of unmyelinated axons uniting epidermal and dermal immune cells in primate and murine skin. J. Cutan. Pathol. 25: 20–29, 1998.
 81. Eglitis, M. A., and E. Mezey. Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc. Nat. Acad. Sci. U.S.A. 94: 4080–4085, 1997.
 82. Enzmann, V., and K. Drossler. Immunohistochemical detection of substance P and vasoactive intestinal peptide fibres in the auricular lymph nodes of sensitized guinea pigs and mice. Acta Histochem. 96: 15–18, 1994.
 83. Esquifino, A. I., R. E. Rosenstein, J. Stern, and D. P. Cardinali. Effect of cyclosporine on ornithine decarboxylase activity in rat submaxillary lymph nodes: modulation by sympathetic nerves. Eur. J. Pharmacol. 197: 161–165, 1991.
 84. Esquifino, A. I., R. E. Rosenstein, J. E. Stern, and D. P. Cardinali. Cyclosporine effect on ornithine decarboxylase activity in rat submaxillary lymph nodes. Modulation by parasympathetic nerves. Eur. J. Pharmacol. 254: 1–7, 1994.
 85. Fagarasan, M. O., R. Eskay, and J. Axelrod. Interleukin 1 potentiates the secretion of B‐endorphin induced by secretagogues in a mouse pituitary cell line (AtT‐20). Neurobiology 86: 2070–2073, 1989.
 86. Feldman, S., E. A. Rachmilewitz, and G. Izak. The effect of the central nervous stimulation on erythropoiesis in rats with chronically implanted electrodes. J. Lab. Clin. Med. 67: 713–725, 1966.
 87. Felten, D. L., K. D. Ackerman, S. J. Wiegand, and S. Y. Felten. Noradrenergic sympathetic innervation of the spleen: I. Nerve fibers associate with lymphocytes and macrophages in specific compartments of the splenic white pulp. J. Neurosci. Res. 18: 28–36, 1987.
 88. Felten, D. L., S. Livnat, S. Y. Felten, S. L. Carlson, D. L. Bellinger, and P. Yeh. Sympathetic innervation of lymph nodes in mice. Brain Res. Bull. 13: 693–699, 1984.
 89. Felten, D. L., J. M. Overnage, S. Y. Felten, and J. F. Schmedtje. Noradrenergic sympathetic innervation of lymphoid tissue in the rabbit appendix: further evidence for a link between the nervous and immune systems. Brain Res. Bull. 7: 595–612, 1981.
 90. Felten, S. Y, D. L. Bellinger, T. J. Collier, P. D. Coleman, and D. L. Felten. Decreased sympathetic innervation of spleen in aged Fischer 344 rats. Neurobiol. Aging 8: 159–165, 1987.
 91. Felten, S. Y., K. S. Madden, D. L. Bellinger, B. Kruszewska, J. A. Moynihan, and D. L. Felten. The role of the sympathetic nervous system in the modulation of immune responses. Adv. Pharmacol. 42: 583–587, 1998.
 92. Fink, T, and E. Weihe. Multiple neuropeptides in nerves supplying mammalian lymph nodes: messenger candidates for sensory and autonomic neuroimmunomodulation? Neurosci. Lett. 90: 39–44, 1988.
 93. Ford, A. L., A. L. Goodsall, W. F. Hickey, and J. D. Sedgwick. Normal adult ramified microglia separated from other central nervous system macrophages by flow cytometric sorting. Phenotypic differences defined and direct ex vivo antigen presentation to myelin basic protein‐reactive CD4+ T cells compared. J. Immunol. 154: 4309–4321, 1995.
 94. Fuchs, B. A., J. W. Albright, and J. F. Albright. Beta‐adrenergic receptors on murine lymphocytes: density varies with cell maturity and lymphocyte subtype and is decreased after antigen administration. Cell. Immunol. 114: 231–245, 1988.
 95. Galindo, B., and T. Imaeda. Electron microscope study of the white pulp of the mouse spleen. Anat. Rec. 143: 399–15, 1962.
 96. Gallin, J. I. Inflammation. In: Fundamental Immunology, edited by W. E. Paul. New York: Raven, 1993, 1015–1032.
 97. Geppetti, P., E. Theodorsson‐Noeheim, G. Ballerini, M. Ales‐sandri, C. A. Maggi, P. Santicioli, E Amenta, and M. Fanciullacci. Capsaicin‐sensitive tachykinin‐like immunoreactivity in the thymus of rats and guinea‐pigs. J. Immunol. 19: 3–9, 1988.
 98. Ghali, W. M., S. Abdel‐Rahman, M. Nagib, and Z. Y. Mahran. Intrinsic innervation and vasculature of pre‐ and post‐natal human thymus. Acta Anat. (Basel) 108: 115–123, 1980.
 99. Gillespie, J. S., and S. M. Kirpekar. The histological localization of noradrenaline in the cat spleen. J. Physiol. (Lond.) 187: 69–79, 1966.
 100. Giron, L. T., K. A. Crutcher, and J. N. Davis. Lymph nodes—a possible site for sympathetic neuronal regulation of immune responses. Ann. Neurol. 8: 520–525, 1980.
 101. Glick, B. Morphological changes and humoral immunity in cyclophosphamide‐treated chicks. Transplantation 11: 433–439, 1971.
 102. Grabczewska, E., W. Maslinski, and J. Ryzewski. Cholinergic stimulation of RNA synthesis in rat lymphocytes. Arch. Immunol. Ther. Exp. 29: 789–793, 1981.
 103. Grabczewska, E., W. Maslinski, and J. Ryzewski. Muscarinic receptors of rat lymphocytes—differences in young and old animals. Acta Physiol. Pol. 36: 276–281, 1985.
 104. Gros, M. Note sur les nerfs des os. C.R. Acad. Sci. Ill 71: 1106–1108, 1846.
 105. Guarna, M., A. M. Pucci, C. Alessandrini, N. Volpi, M. Fruschelli, D. D'Antona, and C. Fruschelli. Peptidergic innervation of mesenteric lymphatics in guinea pigs: an immunocytochemical and pharmacological study. Lymphology 24: 161–167, 1991.
 106. Guillemin, R., M. Cohn, and T. Melnechuk (Eds). Neural Modulation of Immunity. New York: Raven, 1987, p. 111–141.
 107. Gushchin, G. V., E. E. Jakovleva, G. V. Kataeva, E. A. Korneva, M. Gajewski, H. Laskowska‐Bozek, W. Maslinski, and J. Ryzewski. Muscarinic cholinergic receptors of rat lymphocytes: effect of antigen stimulation and local brain lesion. Neuroim‐munomodulation 1: 259–264, 1994.
 108. Haagensen, C. D. Permeation of lymphatics. In: The Lymphatics in Cancer, edited by C. D. Haagensen, C. R. Feind, F. P. Hester, C. A. Slanetz, and J. A. Weinberg. Philadelphia: Saunders, 1972, p. 43–44.
 109. Hallion, L., and L. Morel. l'innervation vaso‐motrice du thymus J. Physiol. Pathol. Gen. 14: 1–6, 1912.
 110. Halvorsen, S. The central nervous system in regulation of erythropoiesis. Acta Haematol. 25: 65–79, 1966.
 111. Ham, A. W., and D. H. Cormack (Eds). Histology (8th ed.) Toronto: Lippincott, 1979.
 112. Hammar, J. Glasrekonstruktionen zur Beleuchtung der fruhen embryonalen entwicklung der thymus‐innervation. Vers. Verh. Anat. Ges. 41: 234, 1932.
 113. Hammar, J. Konstitutionsanatomische studien uber die neirotisierung des menschenembryos. IV. Uber die innervations‐verhaltnisse der inkretorgane un der thymus bis in den 4 fotal‐monat. Z. Mikrosk. Anat. 38: 253, 1935.
 114. Hammond, W. S. Origin of thymus in the chick embryo. J. Morphol. 95: 501–521, 1954.
 115. Hickey, W. F., B. L. Hsu, and H. Kimura. T‐lymphocyte entry into the central nervous system. J. Neurosci. Res. 28: 254–260, 1991.
 116. Hosoi, J., G. F. Murphy, C. L. Egan, E. A. Lerner, S. Grabbe, A. Asahina, and R. D. Granstein. Regulation of Langerhans cell function by nerves containing calcitonin gene‐related peptide. Nature 363: 159–163, 1993.
 117. Hukkanen, M., Y. T. Konttinen, R. G. Rees, S. J. Gibson, S. Santavirta, and J. M. Polak. Innervation of bone from healthy and arthritic rats by substance P and calcitonin gene related peptide containing sensory fibers. J. Rheumatol. 19: 1252–1259, 1992.
 118. Hukkanen, M., Y. T. Konttinen, G. Terenghi, and J. M. Polak. Peptide‐containing innervation of rat femoral lymphatic vessels. Microvasc. Res. 43: 7–19, 1992.
 119. Ichikawa, S., M. Shiozawa, T. Iwanaga, and S. Uchino. Immunohistochemical demonstration of peptidergic nerve fibers associated with the central lacteal lymphatics in the duodenal villi of dogs. Arch. Histol. Cytol. 54: 241–248, 1991.
 120. Ito, Y., S. Magari, and M. Sakanaka. Immunoelectron‐microscopic localization of peptidergic nerve fibers around lymphatic capillaries in the rat liver. Arch. Histol. Cytol. 53 (Suppl.): 199–208, 1990.
 121. Iwasaki, A., K. Inoue, and S. Hukuda. Distribution of neuropeptide‐containing nerve fibers in the synovium and adjacent bone of the rat knee joint. Clin. Exp. Rheumatol. 13: 173–178, 1995.
 122. Jacobson, M. Development of specific neuronal connections. Science 163: 543–547, 1969
 123. Jankovic, B. D., K. Isakovic, M. Micic, and Z. Knezevic. The embryonic lympho‐neuroendocrine relationship. Clin. Immunol. Immunopathol. 18: 108–120, 1981.
 124. Jones, G. V., C. A. Botham, A. G. Clarke, and M. D. Kendall. Immunoreactivity of neural crest‐derived cells in thymic tissue developing under the rat kidney capsule. Brain Behav. Immun. 12: 163–180, 1998.
 125. Jones, G. V., C. A. Botham, and M. D. Kendall. Use of cultured thymic tissue for the regeneration of the thymus. Neuroimmunomodulation 6: 6–22, 1999.
 126. Jossiflow, G. Zur Frage uber die Nerven der Gl. Thymus beim Menschen. Diss. Charkow Anat. 5: 3, 306, 1899.
 127. deleted
 128. Kawaguchi, Y, T. Okada, H. Konishi, M. Fujino, J. Asai, and M. Ito. Reduction of the DTH response is related to morphological changes of Langerhans cells in mice exposed to acute immobilization stress. Clin. Exp. Immunol. 109: 397–401, 1997.
 129. Kawashima, Y, M. Sugimura, Y. C. Hwang, and N. Kudo. The lymph system in mice. Jpn. J. Vet. Res. 12: 69–81, 1964.
 130. Kendall, M. D., and A. A. al‐Shawaf. Innervation of the rat thymus gland. Brain Behav. Immun. 5: 9–28, 1991.
 131. Kendall, M. D., A. al‐Shawaf, and S. A. Zaidi. The cholinergic and adrenergic innervation of the rat thymus. Adv. Exp. Med. Biol. 237: 255–261, 1988.
 132. Khachatryan, A., S. Guerder, F. Palluault, G. Cote, M. Solimena, K. Valentijn, I. Millet, R. A. Flavell, and A. Vignery. Targeted expression of the neuropeptide calcitonin gene‐related peptide to B cells prevents diabetes in NOD mice. J. Immunol. 158: 1409–1416, 1997.
 133. Kiss, F. Topographc relationship between the nerve plexuses and lymph nodes of the abdomen. Arch. Surg. 21: 405–411, 1930.
 134. Koelliker, A. Mikroskopische Anatomie, 11. 2:2: 333–346, 1852.
 135. Komiya, E. Die Zentralnervose Regulatiom des Blutbildes. G. Thieme Stuttgard 1956.
 136. Kovoca, J., and J. Slipka. Morphogenesis of the lymphatic system. In: Lymphology, edited by P. Malek, V. Bartos, M. Weissleder, and M. H. Witte. Stuttgard: Thieme, 1979, p. 14–16.
 137. Kranz, A., M. D. Kendall, and B. von Gaudecker. Studies on rat and human thymus to demonstrate immunoreactivity of calcitonin gene‐related peptide, tyrosine hydroxylase and neuropeptide Y. J. Anat. 191: 441–450, 1997.
 138. Kreutter, D. K., S. J. Orena, A. J. Torchia, L. G. Contillo, G. C. Andrews, and R. W. Stevenson. Amylin and CGRP induce insulin resistance via a receptor distinct from Cyclic AMP‐coupled CGRP receptor. Am. J. Physiol. 264: E606–E613, 1984.
 139. Kruszewska, B., D. L. Felten, S. Y. Stevens, and J. A. Moynihan. Sympathectomy‐induced immune changes are not abrogated by the glucocorticoid receptor blocker RU‐486. Brain Behav. Immun. 12: 181–200, 1998.
 140. Kuklina, O. I., and E. I. Malygina. Effect of gravitational stresses on morphologic changes in the lymphatic bed of the guinea pig cecum during blockade of M‐cholinoreactive systems, [in Russian] Arkh. Anat. Gistol. Embriol. 71: 50–54, 1976.
 141. Kuntz, A., and C. A. Richins. Innervation of the bone marrow. J. Comp. Neurol. 83: 213–222, 1945.
 142. Lane, M. Muscarinic cholinergic activation of mouse spleen cells cytotoxic to tumor cells in vitro. J. Natl. Cancer Inst. 61: 923–926, 1978.
 143. Langworthy, D. R. A correlated study of the development of reflex activity in fetal and young kittens and the myelinization of tracts in the nervous system. Contrib. Embryol. Carnegie Inst. 20: 127–135, 1928.
 144. Lassmann, H., and W. F. Hickey. Radiation bone marrow chimeras as a tool to study microglia turnover in normal brain and inflammation. Clin. Neuropathol. 12: 284–285, 1993.
 145. Le Douarin, N. M. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of mesenchymal derivations, using a biological cell marking technique. Dev. Biol. 41: 162–184, 1974.
 146. Leo, N. A., T. A. Callahan, and R. H. Bonneau. Peripheral sympathetic denervation alters both the primary and memory cellular immune responses to herpes simplex virus infection. Neuroimmunomodulation 5: 22–35, 1998.
 147. Lorton, D., D. Bellinger, M. Duclos, S. Y. Felten, and D. L. Felten. Application of 6‐hydroxydopamine into the fatpads surrounding the draining lymph nodes exacerbates adjuvant‐induced arthritis. J. Neuroimmunol. 64: 103–113, 1996.
 148. Lorton, D., D. L. Bellinger, S. Y. Felten, and D. L. Felten. Substance P innervation of spleen in rats: nerve fibers associate with lymphocytes and macrophages in specific compartments of the spleen. Brain Behav. Immun. 5: 29–40, 1991.
 149. Lorton, D., C. Lubahn, S. Y. Felten, and D. Bellinger. Norepinephrine content in primary and secondary lymphoid organs is altered in rats with adjuvant‐induced arthritis [published erratum appears in Mech Ageing Dev. 98: 181–183, 1997]. Mech. Ageing Dev. 94: 145–163, 1997.
 150. Lowhagen, P., B. B. Johansson, and C. Norgborg. The nasal route of cerebrospinal fluid drainage in man. A light‐microscopic study. Neuropathol. Appl. Neurobiol. 20 (6): 543–550, 1994.
 151. Madden, K. S., D. L. Bellinger, S. Y. Felten, E. Snyder, M. E. Maida, and D. L. Felten. Alterations in sympathetic innervation of thymus and spleen in aged mice. Mech. Ageing Dev. 94: 165–175, 1997.
 152. Madden, K. S., and D. L. Felten. Experimental basis for neural‐immune interactions. Physiol. Rev. 75: 77–106, 1995.
 153. Madden, K. S., S. Y. Felten, D. L. Felten, C. A. Hardy, and S. Livnat. Sympathetic nervous system modulation of the immune system. II. Induction of lymphocyte proliferation and migration in vivo by chemical sympathectomy. J. Neuroimmunol. 49: 67–75, 1994.
 154. Madden, K. S., S. Rajan, D. L. Bellinger, S. Y. Felten, and D. L. Felten. Age‐associated alterations in sympathetic neural interactions with the immune system. Dev. Comp. Immunol. 21: 479–486, 1997.
 155. Madden, K. S., V. M. Sanders, and D. L. Felten. Catecholamine influences and sympathetic neural modulation of immune responsiveness. Ann. Rev. Pharmacol. Toxicol. 35: 417–448, 1995.
 156. Maestroni, G. J. Catecholaminergic regulation of hematopoiesis in mice [letter]. Blood 92: 297–293, 1998.
 157. Maestroni, G. J. Is hematopoiesis under the influence of neural and neuroendocrine mechanisms? Histol. Histopathol. 13: 271–274, 1998.
 158. Maestroni, G. J., M. Cosentino, F. Marino, M. Togni, A. Conti, S. Lecchini, and G. Frigo. Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Exp. Hematol. 26: 1172–1177, 1998.
 159. Magni, F., F. Bruscho, and M. Kasti. The afferent innervation of the thymus gland in the rat. Brain Res. 424: 379–385, 1987.
 160. Maslinski, W. Cholinergic receptors of lymphocytes. Brain Behav. Immun. 3: 1–14, 1989.
 161. Maslinski, W., E. Grabczewska, T. Bartfai, and J. Ryzewski. Muscarinic antagonist binding to intact rat thymocytes. Acta Chem. Scand. 44: 147–151, 1990.
 162. McEwen, B. S., C. A. Biron, K. W. Brunson, K. Bulloch, W. H. Chambers, F. S. Dhabhar, R. H. Goldfarb, R. P. Kitson, A. H. Miller, R. L. Spencer, and J. M. Weiss. The role of adrenalcorticoids as modulators of immune function in health and disease: neural endocrine and immune interactions. Brain Res. Brain Res. Rev. 23: 79–133, 1997.
 163. McGillis, J. P., S. Humphreys, V. Rangnekar, and J. Ciallella. Modulation of B lymphocyte differentiation by calcitonin gene‐related peptide (CGRP). I. Characterization of high‐affinity CGRP receptors on murine 70Z/3 cells. Cell. Immunol. 150: 391–404, 1993.
 164. McGillis, J. P., S. Humphreys, V. Rangnekar, and J. Ciallella. Modulation of B lymphocyte differentiation by calcitonin gene‐related peptide (CGRP). II. Inhibition of LPS‐induced kappa light chain expression by CGRP. Cell. Immunol. 150: 405–416, 1993.
 165. McHale, N. G. Lymphatic innervation. Blood Vessels 27: 127–136, 1990.
 166. McHale, N. G., J. M. Allen, and J. G. McCarron. Transient excitatory responses to sustained stimulation of intramural nerves in isolated bovine lymphatic vessels. Q. J. Exp. Physiol. 73: 175–182, 1988.
 167. Misery, L. Skin immunity and the nervous system. Br. J. Dermatol. 137: 843–850, 1997.
 168. Mitchell, G. A. Anatomy of Autonomic Nervous System. Edinburgh: Livingstone, 1953, p. 257–302.
 169. Moore, R. Y. Nueral control of pineal function in mammals and birds. J. Neural Transm. Suppl. 13: 47–58, 1978.
 170. Morganti‐Kossmann, M. C., and T. Kossmann. The immunology of brain injury. In: Immune Responses in The Nervous System, edited by N. J. Rothwell, Manchester: BIOS, 1995, p. 159–187.
 171. Mullins, M. W., J. Ciallella, V. Rangnekar, and J. P. McGillis. Characterization of a calcitonin gene‐related peptide (CGRP) receptor on mouse bone marrow cells. Regul. Pept. 49: 65–72, 1993.
 172. Nance, D. M., and J. Burns. Innervation of the spleen in the rat: evidence for absence of afferent innervation. Brain Behav. Immun. 3: 281–290, 1989.
 173. Netter, F. H. Autonomic Nervous System. Nervous System, Part 1: Anatomy and Physiology. West Caldwell, NJ: CIBA 1986, p. 162–163.
 174. Niijima, A. An electrophysiological study on the vagal innervation of the thymus in the rat. Brain Res. Bull. 38: 319–323, 1995.
 175. Niijima, A. An electrophysiological study on the autonomic innervation of the mesenteric lymph node in the rat. Neurosci. Lett. 243: 144–146, 1998.
 176. Nilsson, G., K. Alving, S. Ahlstedt, T. Hokfelt, and J. M. Lundberg. Peptidergic innervation of rat lymphoid tissue and lung: relation to mast cells and sensitivity to capsaicin and immunization. Cell Tissue Res. 262: 125–133, 1990.
 177. Nilsson, S. Autonomic Nerve function. Springer‐Verlag Berlin Heidelberg. 141–145, 1983.
 178. Novotny, G. E., T. Heuer, A. Schottelndreier, and C. Fleisgarten. Plasticity of innervation of the medulla of axillary lymph nodes in the rat after antigenic stimulation. Anat. Rec. 238: 213–224, 1994.
 179. Novotny, G. E., and K. O. Kliche. Innervation of lymph nodes: a combined silver impregnation and electron‐microscopic study. Acta Anat. 127: 243–248, 1986.
 180. Novotny, G. E., A. Schottelndreier, and T. Heuer. A light and electron microscopic quantitative analysis of the innervation of axillary lymph nodes in juvenile and old rats. J. Anat. 183: 57–66, 1993.
 181. O'Dorisio, M. S. Neuropeptide modulation of the immune response in gut associated lymphoid tissue. Int. J. Neurosci. 38: 189–198, 1988.
 182. O'Dorisio, M. S. Neuropeptides and gastrointestinal immunity. Am. J. Med. 81: 74–82, 1986.
 183. Ohhashi, T., J. A. Olschowka, and D. M. Jacobowitz. Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. A histochemical and pharmacological study. Circ. Res. 53: 535–538, 1983.
 184. Olivier, E. Anatomie Topographique et Chirurgie du Thymus. Paris: Univ. Paris, 1911. Dissertation.
 185. Ottolenghi, D. Sur les nerfs de la moelle des os. Arch. Ital. Biol. 37: 73–80, 1902.
 186. Pasinetti, G. M., S. A. Johnson, M. Rozovsky, M. Lampert‐Etchells, D. G. Morgan, M. N. Gordon, T. E. Morgan, D. A. Willoughby, and C. E. Finch. Complement C1qB and C4 mRNAs: responses to lesioning in rat brain. Exp. Neurol. 118: 117–125, 1992.
 187. Perry, V. H., and S. Gordon. Macrophages and microglia in the nervous sytetem. Trends Neurosci. 11: 273–277, 1988.
 188. Pestereva, N. A. The interrelations of the lymphatic capillaries with the nerve structures in the wall of the small intestine, [in Russian]. Arkh. Anat. Gistol. Embriol. 100: 63–66, 1991.
 189. Pfoch, M., and K. Unsicker. Electron microscopic study on the innervation of Peyer's patches of the Syrian hamster. Z. Zell‐forsch. 123: 425–429, 1972.
 190. Picker, L. J., and M. H. Siegelman. Lymphoid tissues and organs. In: Fundamental Immunology (3rd ed.), edited by W. Paul. 1993, p. 145–197.
 191. Pierpaoli, W., and H. O. Besedovsky. The role of the thymus in programming of neuroendocrine functions. Clin. Exp. Immunol. 20: 323–338, 1975.
 192. Pighnini, G. Studi sul timo. 3. Modificazioni structurali del timo in polli incompletamente timectomizzati. Pathologica 14: 319–328, 1922.
 193. Porges, S. W. Vagal tone: a physiologic marker of stress vulnerability. Pediatrics 90: 498–504, 1992.
 194. Porges, S. W. Cardiac vagal tone: a physiological index of stress. Neurosci. Biobehav. Rev. 19: 225–233, 1995.
 195. Porges, S. W. Orienting in a defensive world: mammalian modifications of our evolutionary heritage. A polyvagal theory. Psychophysiology 32: 301–318, 1995.
 196. Porges, S. W. Emotion: an evolutionary by‐product of the neural regulation of the autonomic nervous system. Ann. NY Acad. Sci. 807: 62–77, 1997.
 197. Qiao, L., J. Braunstein, M. Golling, G. Schurmann, F. Autschback, P. Moller, and S. Meuer. Differential regulation of human T cell responsiveness by mucosal versus blood monocytes. Eur. J. Immunol. 26: 922–927, 1996.
 198. Quay, W. B. Histological structure and cytology of the pineal organ in birds and mammals. Prog. Brain Res. 10: 49–86, 1965.
 199. Radojcic, T., S. Baird, D. Darko, D. Smith, and K. Bulloch. Changes in beta‐adrenergic receptor distribution on immunocytes during differentiation: an analysis of T cells and macrophages. J. Neurosci. Res. 30: 328–335, 1991.
 200. Rameshwar, P., D. Ganea, and P. Gascon. Induction of IL‐3 and granulocyte‐macrophage colony‐stimulating factor by substance P in bone marrow cells is partially mediated through IL‐1 and IL‐6. J. Immunol. 152: 4044–4054, 1994.
 201. Rebar, R. W., I. C. Morandini, G. F. Erickson, and J. E. Petze. The hormonal basis of reproductive defects in athymic mice. I. Diminished gonadotropin secretion in prepubertal females. Endocrinology 108: 120–126, 1981.
 202. Reilly, F., P. A. McCuskey, M. Miller, R. McCuskey, and H. Meineke. Innervation of the periarteriolar lymphatic sheath of the spleen. Tissue Cell 11: 121–126, 1979.
 203. Reilly, F., R. McCuskey, and H. Meineke. Studies of the hemopoietic microenvironment VIII. Adrenergic and cholinergic innervation of the murine spleen. Anat. Rec. 185: 109–118, 1976.
 204. Rethelyi, M., C. B. Metz, and P. K. Lund. Distribution of neurons expressing calcitonin gene‐related peptide mRNAs in the brain stem, spinal cord and dorsal root ganglia of rat and guinea‐pig. Neuroscience 29: 225–239, 1989.
 205. Riegele, L. Uber die Innervation der Hals‐ und Brustorgane bei einigen Affen. Z. Anat. Entwicklungsgesch. 80: 777–858, 1926.
 206. Risdon, G., V. Kumar, and M. Bennett. Differential effects of dehydroepiandrosterone (DHEA) on murine lymphopoiesis and myelopoiesis. Exp. Hematol. 19: 128–131, 1991.
 207. Romeo, H. E., T. Fink, N. Yanaihara, and E. Weihe. Distribution and relative proportions of neuropeptide Y‐ and proenkephalin‐containing noradrenergic neurones in rat superior cervical ganglion: separate projections to submaxillary lymph nodes. Peptides 15: 1479–1487, 1994.
 208. Romieu, M., and G. Jullien. Sur l'existence D'une formation lymphoide dans l'epiphyse des gallinces. C.R. Soc. Biol. (Paris) 136: 626–628, 1942.
 209. Rothwell, N. J. Cytokines and the nervous system II: actions and mechanisms of action. Trends Neurosci. 18: 130–136, 1995.
 210. Rusznyak, I., M. Foldi, and G. Szabo. Lymphatics and Lymph Circulation: Physiology and Pathology. Oxford: Pergamon, 1967, p. 64–69.
 211. Saad, A. H., and A. Zapata. Reptilian thymus gland: an ultrastructural overview. Thymus 20: 135–152, 1992.
 212. Sacchi, G., E. Weber, M. Agliano, and L. Comparini. Subendothelial nerve fibers in bovine mesenteric lymphatics: an ultrastructural and immunohistochemical study. Lymphology 27: 90–96, 1994.
 213. Sakuta, H., K. Inaba, and S. Muramatsu. Calcitonin generelated peptidide enhances apoptosis of thymocytes. J. Neuroimmunol. 67: 103–109, 1996.
 214. Salkind, J. Contributions histologique à la biologie comparée du thymus. Arch. Zool. Exp. 55: 81–322, 1915.
 215. Sanders, V. M., and A. E. Munson. Norepinephrine and the antibody response. Pharmacol. Rev. 37: 229–248, 1985.
 216. Sanders, V. M. The role of norepinephrine and beta‐2‐adrenergic receptor stimulation in the modulation of Th1, Th2, and B lymphocyte function. Adv. Exper. Med. Biol. 437: 269–278, 1998.
 217. Saria, A., J. Marksteiner, C. Humpel, and G. Sperk. Pronounced increases in brain levels of calcitonin gene‐related peptide after kainic acid induced seizures. Regul. Pept. 26: 215–223, 1989.
 218. Screpanti, I., S. Scarpa, D. Meco, D. Bellavia, L. Struppia, L. Frati, A. Modesti, and A. Gulino. Epidermal growth factor promotes a neural phenotype in thymic epithelial cells and enhances neuropoietic cytokine expression. J. Cell Biol. 130: 183–192, 1995.
 219. Spangelo, B. L., and W. C. Gorospe. Role of cytokines in the neuroedocrine‐immune axis. Frontiers Neuroendocr. 16: 1–22, 1995
 220. Singh, U. Sympathetic innervation of fetal mouse thymus. J. Immunol. 14: 757–759, 1984.
 221. Sirinek, L. P., and M. S. O'Dorisio. Modulation of immune function by intestinal neuropeptides. Acta Oncol. 30: 509–517, 1991.
 222. Sjolander, A., and A. Strandberg. Über die zur thymusdruse tretenden Nerven. Ups. Lak. Forkh. 20: 243–266, 1915.
 223. Soloviyev, V. N. Sources of thymus innervation. Arkh. Anat. Gistol. Embriol. 51: 76–82, 1966.
 224. Sparber, S. B., C. A. Cohen, and R. B. Messing. Reversal of a trimethyltin‐induced learning deficit by desglycinamide‐8‐arginine vasopressin. Life Sci. 42: 171–177, 1988.
 225. Spiroff, B. E. N. Embryonic and post‐hatching development of the pineal body of the domestic fowl. Am. J. Anat. 103: 375–401, 1958.
 226. Steel, D., and A. S. Whitehead. The major acute phase reactants: C‐reactive protein, serum amyloid P component and serum amyloid protein. Immunol. Today 15: 81–88, 1994.
 227. Sunderland, S. Nerve and Nerve Injuries (2nd ed.), Edinburgh: Churchill and Livingston, 1978, p. 55–57, 962–963,
 228. Terni, T. Les cellules myoides du thymus des sauropsides et leur innervation. Bull. Assoc. Anat. (Paris) 3: 448–451, 1928.
 229. Terni, T. Richerche istologiche sull innervazione del timo dei Sauropsidi. Z. Zellforsch. 9: 377–424, 1929.
 230. Terni, T. l'innervazione del timo. Arch. Zool. Ital. 16: 714–716, 1931.
 231. Terni, T, and G. Muratori. Sulla innervazione del timo e del corpo ultimonbranchiale dopo estirpazione del ganglio nodoso del vago. Monit. Zool. Ital. 43: 85–87, 1933.
 232. Thornbury, K. D., N. G. McHale, and J. G. McGeown. Contribution of lymph formation in the popliteal node to efferent lymph flow following stimulation of the sympathetic chain in the sheep. Exp. Physiol. 75: 75–80, 1990.
 233. Todd, G. L., and G. R. Bernard. The sympathetic innervation of the cervical lymphatic duct of the dog. Anat. Rec. 177: 303–315, 1973.
 234. Tollefson, L., and K. Bulloch. Dual‐label retrograde transport: CNS innervation of the mouse thymus distinct from other mediastinum viscera. J. Neurosci. Res. 25: 20–28, 1990.
 235. Tomasi, T. B. Immune System of Secretion. Englewood, NJ: Prentice‐Hall, 1976.
 236. Tonkoff, W. Zur kenntnis der nerven der lymphdrusen. Anat. Anzeiger. 16: 456–465, 1899.
 237. Uddman, R., A. Luts, and F. Sundler. Occurrence and distribution of calcitonin gene‐related peptide in the mammalian respiratory tract and middle ear. Cell Tissue Res. 241: 551–555, 1985.
 238. Umeda, Y., M. Takamiya, H. Yoshizaki, and M. Arisawa. Inhibition of mitogen‐stimulated T lymphocyte proliferation by calcitonin gene‐related peptide. Biochem. Biophys. Res. Commun. 154: 227–235, 1988.
 239. Vajda, J. Innervation of lymph vessels. Acta Morphol. Acad. Sci. Hung. 14: 197–208, 1966.
 240. Villaro, A. C., M. P. Sesma, and J. J. Vazquez. Innervation of mouse lymph nodes: nerve endings on muscular vessels and reticular cells. Am. J. Anat. 179: 175–185, 1987.
 241. Walcott, B., and J. R. Mclean. Catecholamine‐containing neurons and lymphoid cells in a lacrimal gland of the pigeon. Brain. Res. 328 (1): 129–137, 1985.
 242. Wang, F. Z., C. H. Feng, and Z. P. Liu. The role of Ca in changes of membrane function and the protection of CGRP in hippocampal slice during hypoxia. Soc. Neurosci. Abstr. 16: 479, 1993.
 243. Wang, X. Y, W. C. Wong, and E. A. Ling. Studies of the lymphatic vessel‐associated neurons in the intestine of the guinea pig. J. Anat. 185: 65–74, 1994.
 244. Warwick, R., and P. L. Williams. Gray's Anatomy (35th ed.). Philadelphia: Saunders, 1973, p. 167–168.
 245. Webber, R. H., R. DeFelice, R. J. Ferguson, and J. P. Powell. Bone marrow response to stimulation of the sympathetic trunks in rats. Acta Anat. 77: 92–97, 1970.
 246. Weihe, E., S. Muller, T. Fink, and H. Zentel. Tachykinins, calcitonin gene‐related peptide and neuropeptide Y in nerves of mammalian thymus: interactions with mast cells in autonomic and sensory neuroimmodulation? Neurosci. Lett. 100: 77–82, 1989.
 247. Weihe, E., D. Nohr, S. Michel, S. Muller, H. J. Zentel, T. Fink, and J. Krekel. Molecular anatomy of the neuro‐immune connection. Int. J Neurosci. 59: 1–23, 1991.
 248. Weihe, E., D. Nohr, M. J. Millan, C. Stein, S. Muller, C. Gramsch, and A. Herz. Peptide neuroanatomy of adjuvant‐induced arthritic inflammation in rat. Agents Actions 25: 255–259, 1988.
 249. Weissman, I. L., and R. T. Rouse. Microantaomy of the thymus: its relationship to T‐cell differentiation. Ciba Found. Symp. 84: 161–177, 1981.
 250. Weiler, R. O., and J. Cervos‐Navarro. Pathology of Peripheral Nerves. London: Butterworths, 1977, p. 121–203.
 251. Weiler, R. O., B. Engelhardt, and Mi. Phillips. Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS‐immune pathways. Brain Pathol. 6: 275–288, 1996.
 252. Widner, H., G. Moller, and B. B. Johansson. Immune response in the deep cervical lymph node and the spleen in the mouse after antigen deposit in different cerebral sites. Scand. J. Immunol. 28: 563–571, 1988.
 253. Williams, J. M., and D. L. Felten. Sympathetic innervation of murine thymus and spleen: a comparative histofluorescence study. Anat. Rec. 199: 531–542, 1981.
 254. Williams, J. M., R. G. Peterson, P. A. Shea, J. F. Schmedtje, D. C. Bauer, and D. L. Felten. Sympathetic innervation of murine thymus and spleen: evidence for a functional link between the nervous and immune systems. Brain Res. Bull. 6: 83–94, 1981.
 255. Williams, K. C. and W F. Hickey. Traffic of hematogenous cells through the central nervous system. Curr. Top. Microbiol. Immunol. 202: 221–245, 1995.
 256. Wortis, H. H. Immunological responses of “nude” mice. Clin. Exp. Immunol. 8: 305–317, 1971.
 257. Yamada, K., and T. Hoshino. An examination of the close relationship between lymphatic vessels and nerve fibers containing calcitonin gene‐related peptide and substance P in rat skin. Nagoya J. Med. Sci. 59: 143–150, 1996.
 258. Yamazaki, K., and T. D. Allen. Ultrastructural morphometric study of efferent nerve terminals on murine bone marrow stromal cells, and the recognition of a novel anatomic unit: the “neuro‐reticular complex.” Am. J. Anat. 187: 261, 1990.
 259. Zetterstrom, B. E. M., T. Hokfelt, K. A. Norberg, and P. Olsson. Possibilities of a direct adrenergic influence on blood elements in the dog spleen. Acta Chir. Scand. 139: 117–122, 1973.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Karen Bulloch. Regional Neural Regulation of Immunity: Anatomy and Function. Compr Physiol 2011, Supplement 23: Handbook of Physiology, The Endocrine System, Coping with the Environment: Neural and Endocrine Mechanisms: 353-379. First published in print 2001. doi: 10.1002/cphy.cp070417