Comprehensive Physiology Wiley Online Library

Regulation of Gene Expression by Thyroid Hormones: Relation to Growth and Development

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Thyroid Hormone Response Elements
1.1 Standard Configuration and Sequences
1.2 Complex and Unusual Response Elements
1.3 Single Half‐Site Elements
1.4 Influence of Response Element Position and Orientation on Gene Regulation
1.5 Elements that Confer a Negative Response to Thyroid Hormone
1.6 Response Elements that Confer Thyroid Hormone Receptor Isoform Specificity
2 Thyroid Hormone Regulation of Growth Hormone and Growth Factor Gene Expression
2.1 Characterization of DNA Elements that Confer Thyroid Hormone Response
2.2 Species Differences in Growth Hormone Gene Regulation
2.3 Influence of Retinoic Acid and cAMP on Thyroid Hormone Regulation of Gene Expression
2.4 Interactions of Thyroid Hormone Receptor and Pit‐1 in Regulation of Growth Hormone Gene Expression
2.5 Thyroid Hormone Stimulation of Growth Hormone–Releasing Hormone Receptor Gene Expression
2.6 Thyroid Hormone Regulation of Growth Factors
3 Regulation of Gene Expression in Nervous System Development
3.1 Expression of Thyroid Hormone Receptor Isoforms in Neural Development
3.2 Effects of Hypothyroidism on Neural Development
3.3 Regulation of Neural Gene Expression
4 Regulation of Gene Expression in Bone
4.1 Clinical Effects of Thyroid Hormone on Bone
4.2 In Vitro Effects of Thyroid Hormone on Bone Cells
5 Thyroid Hormone Metabolism: Regulation of Ligand Availability
5.1 Characteristics and Tissue Distribution of Deiodinases
5.2 Regulation of Deiodinase Expression
5.3 Developmental Regulation of Deiodinase Expression
6 Thyroid Hormone Regulation of Gene Expression in Amphibian Metamorphosis
6.1 Regulation of Thyroid Hormone Receptor Gene Expression
6.2 Prolactin–Thyroid Hormone Interactions and Effects on Gene Expression
7 Growth and Developmental Abnormalities as A Consequence of Thyroid Hormone Deficiency
7.1 Congenital Hypothyroidism
7.2 Hypothyroidism of Infancy and Childhood
7.3 Iodine and Selenium Deficiency
7.4 Endemic Cretinism
8 Influence of Mutant Thyroid Receptors on Growth and Development
8.1 Genetic Basis of Resistance to Thyroid Hormone
8.2 Influence of Response Element Configuration and Thyroid Hormone Receptor Isoform on Response Inhibition by Mutant Receptors
8.3 Growth in Resistance to Thyroid Hormone as a Function of the Thyroid Hormone Receptor Mutant and Thyroid Hormone Treatment
8.4 Pituitary Resistance to Thyroid Hormone, Clinical Manifestations, and Mechanism
8.5 Animal Models of Resistance to Thyroid Hormone
9 Summary
Figure 1. Figure 1.

The thyroid hormone receptor (TR) complexes that bind to specific DNA sequences, the thyroid hormone response elements (TREs), located upstream of the transcription start site (shown by arrow), are shown. These complexes confer positive and negative gene regulation. The TR can bind as a homodimer, monomer, or a heterodimer with the 9‐cis retinoic acid (9‐cis RA) receptor (RXR). The various combinations are shown for products of the TRα and TRβ genes, as well as of the RXR α, β and γ genes. All of these complexes have been demonstrated in vitro, but there are likely to be preferential in vivo interactions. The preferential binding site configurations are shown for homodimers (inverted palindrome with a 6 bp gap), monomer (single half‐site), and TR/RXR heterodimer (direct repeat with 4 bp gap). These TRE arrangements are detailed in Figure 2.

Figure 2. Figure 2.

The three major patterns of 6 bp half‐site sequences for thyroid hormone response elements (TREs) are shown, including a direct repeat with a 4 bp gap, an inverted palindrome with a 6 bp gap, and a palindrome. Wild‐type elements show some variation in sequence and in spacing relative to the idealized element. The influence of spacing on the direct repeat element is shown for the retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D receptor (VDR), 9‐cis retinoic acid receptor (RXR), and the peroxisome proliferator–activated receptor (PPAR). Palindromic elements are shown for the estrogen response element (ERE) and the glucocorticoid response elemnet (GRE).

Figure 3. Figure 3.

The deduced amino acid structure for zinc finger domains of thyroid hormone receptor β are shown. Bold face type indicates amino acids common to estrogen, glucocorticoid, and thyroid hormone receptors. Short sequences of amino acids determine binding‐site recognition (binding‐site specificity or P box) and receptor‐receptor interactions (dimerization or D box).

Adapted from Brent 14, with permission
Figure 4. Figure 4.

The wild‐type thyroid hormone response elements for a number of genes are shown. Genes positively regulated by thyroid hormone include rat GH (rGH), rat α myosin heavy chain (r α MHC), bovine GH (bGH), rat malic enzyme, and chicken lysozyme silencer. Genes negatively regulated by thyroid hormone include rat thyrotropin β subunit (r TSH β Sub), rat α subunit (r α Sub), and human α subunit (h α Sub). The arrows show sequences matching 4 of 6 bases for the consensus sequence A/G TTCA. The line over the r TSH β Sub element is a sequence shown to bind thyroid hormone receptor and confer negative regulation on a heterologous promoter, but it does not match a known consensus sequence.

Figure 5. Figure 5.

A sequence comparison of the 5′‐flanking regions from the bovine GH (bGH, −193 to −125), rat GH (rGH, −197 to −129), and human GH (hGH, −194 to −126) genes. The sequences are aligned around a 38 bp sequence at approximately −140 with a >90% nucleotide identity among the different species of promoters. A portion of this region important for binding of the Pit‐1 transcription factor is shown to the right. A comparison of the nucleotide identity of the bGH and hGH sequences with that of the rGH seqence is shown by vertical lines. The rGH and bGH promoters are induced by T3, and the region of the bGH (‐175 to −163) and rGH (‐189 to −167) thyroid hormone response elements (TRE) are shown. The arrows indicate binding half‐sites as described in Figures 1, 2, and 4. The hGH promoter has very little sequence similarity to the other two promoters in this region, which is consistent with the absence of a thyroid hormone response.

Figure 6. Figure 6.

The levels of mRNA from Northern blot analysis (in relative optical density units) in the developing rat brain are shown for calbindin (A), myoinositol‐1,4,5‐triphosphate receptor (B), Purkinje cell protein‐2 (C), and myelin basic protein (D). The levels are compared in hypothyroid rats, with (solid circles) and without (open circles) triiodothyronine treatment.

Used by permission from 131 K. A. Strait, L. Zou, and J. H. Oppenheimer. β1 isoform‐specific regulation of a triiodothyronine‐induced gene during cerebellar development; Mol. Endocrinol. 6:1874–1880, 1992; © The Endocrine Society
Figure 7. Figure 7.

The two pathways of thyroid hormone metabolism are shown. Thyroxine is activated to triiodothyronine by removal of the 5′, outer ring, iodine atom. Thyroxine is inactivated to reverse triiodothyronine by removal of the 5, inner ring, iodine atom.

Figure 8. Figure 8.

The effect of thyroid hormone on growth (length) is shown for a patient with resistance to thyroid hormone (RTH). Thyroxine treatment [0.2–0.3 mg levothyroxine (L‐T4) per day] was started at age 3 months with a therapeutic goal of normalizing serum TSH. The child was in the third to tenth percentile prior to thyroxine treatment and increased to the tenth to twentieth percentile by the age of 2 years.

From Weiss and Refetoff 143 with permission


Figure 1.

The thyroid hormone receptor (TR) complexes that bind to specific DNA sequences, the thyroid hormone response elements (TREs), located upstream of the transcription start site (shown by arrow), are shown. These complexes confer positive and negative gene regulation. The TR can bind as a homodimer, monomer, or a heterodimer with the 9‐cis retinoic acid (9‐cis RA) receptor (RXR). The various combinations are shown for products of the TRα and TRβ genes, as well as of the RXR α, β and γ genes. All of these complexes have been demonstrated in vitro, but there are likely to be preferential in vivo interactions. The preferential binding site configurations are shown for homodimers (inverted palindrome with a 6 bp gap), monomer (single half‐site), and TR/RXR heterodimer (direct repeat with 4 bp gap). These TRE arrangements are detailed in Figure 2.



Figure 2.

The three major patterns of 6 bp half‐site sequences for thyroid hormone response elements (TREs) are shown, including a direct repeat with a 4 bp gap, an inverted palindrome with a 6 bp gap, and a palindrome. Wild‐type elements show some variation in sequence and in spacing relative to the idealized element. The influence of spacing on the direct repeat element is shown for the retinoic acid receptor (RAR), thyroid hormone receptor (TR), vitamin D receptor (VDR), 9‐cis retinoic acid receptor (RXR), and the peroxisome proliferator–activated receptor (PPAR). Palindromic elements are shown for the estrogen response element (ERE) and the glucocorticoid response elemnet (GRE).



Figure 3.

The deduced amino acid structure for zinc finger domains of thyroid hormone receptor β are shown. Bold face type indicates amino acids common to estrogen, glucocorticoid, and thyroid hormone receptors. Short sequences of amino acids determine binding‐site recognition (binding‐site specificity or P box) and receptor‐receptor interactions (dimerization or D box).

Adapted from Brent 14, with permission


Figure 4.

The wild‐type thyroid hormone response elements for a number of genes are shown. Genes positively regulated by thyroid hormone include rat GH (rGH), rat α myosin heavy chain (r α MHC), bovine GH (bGH), rat malic enzyme, and chicken lysozyme silencer. Genes negatively regulated by thyroid hormone include rat thyrotropin β subunit (r TSH β Sub), rat α subunit (r α Sub), and human α subunit (h α Sub). The arrows show sequences matching 4 of 6 bases for the consensus sequence A/G TTCA. The line over the r TSH β Sub element is a sequence shown to bind thyroid hormone receptor and confer negative regulation on a heterologous promoter, but it does not match a known consensus sequence.



Figure 5.

A sequence comparison of the 5′‐flanking regions from the bovine GH (bGH, −193 to −125), rat GH (rGH, −197 to −129), and human GH (hGH, −194 to −126) genes. The sequences are aligned around a 38 bp sequence at approximately −140 with a >90% nucleotide identity among the different species of promoters. A portion of this region important for binding of the Pit‐1 transcription factor is shown to the right. A comparison of the nucleotide identity of the bGH and hGH sequences with that of the rGH seqence is shown by vertical lines. The rGH and bGH promoters are induced by T3, and the region of the bGH (‐175 to −163) and rGH (‐189 to −167) thyroid hormone response elements (TRE) are shown. The arrows indicate binding half‐sites as described in Figures 1, 2, and 4. The hGH promoter has very little sequence similarity to the other two promoters in this region, which is consistent with the absence of a thyroid hormone response.



Figure 6.

The levels of mRNA from Northern blot analysis (in relative optical density units) in the developing rat brain are shown for calbindin (A), myoinositol‐1,4,5‐triphosphate receptor (B), Purkinje cell protein‐2 (C), and myelin basic protein (D). The levels are compared in hypothyroid rats, with (solid circles) and without (open circles) triiodothyronine treatment.

Used by permission from 131 K. A. Strait, L. Zou, and J. H. Oppenheimer. β1 isoform‐specific regulation of a triiodothyronine‐induced gene during cerebellar development; Mol. Endocrinol. 6:1874–1880, 1992; © The Endocrine Society


Figure 7.

The two pathways of thyroid hormone metabolism are shown. Thyroxine is activated to triiodothyronine by removal of the 5′, outer ring, iodine atom. Thyroxine is inactivated to reverse triiodothyronine by removal of the 5, inner ring, iodine atom.



Figure 8.

The effect of thyroid hormone on growth (length) is shown for a patient with resistance to thyroid hormone (RTH). Thyroxine treatment [0.2–0.3 mg levothyroxine (L‐T4) per day] was started at age 3 months with a therapeutic goal of normalizing serum TSH. The child was in the third to tenth percentile prior to thyroxine treatment and increased to the tenth to twentieth percentile by the age of 2 years.

From Weiss and Refetoff 143 with permission
References
 1. Baniahmad, A., A. C. Köhne, and R. Renkawitz. A transferable silencing domain is present in the thyroid hormone receptor, in the v‐erbA oncogene product and in the retinoic acid receptor. EMBO J. 11: 1015–1023, 1992.
 2. Bartalena, L. Recent achievements in studies on thyroid hormone–binding proteins. Endocr. Rev. 11: 47–64, 1990.
 3. Bedo, G., P. Santisteban, and A. Aranda. Retinoic acid regulates growth hormone gene expression. Nature 339: 231–234, 1989.
 4. Berry, M. J., L. Banu, Y. Chen, S. J. Mandel, J. D. Kieffer, J. W. Harney, and P. R. Larsen. Recognition of UGA as a selenocysteine codon in type I deiodinase requires sequences in the 3′ untranslated region. Nature 353: 273–276, 1991.
 5. Berry, M. J., L. Banu, and P. R. Larsen. Type I iodothyronine deiodinase is a selenocysteine‐containing enzyme. Nature 349: 438–440, 1991.
 6. Berry, M. J., and P. R. Larsen. The role of selenium in thyroid hormone action. Endocr. Rev. 13: 207–219, 1992.
 7. Bianco, A. C., J. D. Kieffer, and J. E. Silva. Adenosine 3′,5′‐monophosphate and thyroid hormone control of uncoupling protein messenger ribonucleic acid in freshly dispersed brown adipocytes. Endocrinology 130: 2625–2633, 1992.
 8. Blake, C.C.F., M. J. Geisow, and I.D.A. Swan. Structure of human plasma prealbumin at 2.5 A resolution. A preliminary report on the polypeptide chain conformation quaternary structure and thyroxine binding. J. Mol. Biol. 88: 1, 1974.
 9. Bodenner, D. L., M. A. Mroczynski, B. D. Weintraub, S. Radovick, and F. E. Wondisford. A detailed functional and structural analysis of a major thyroid hormone inhibitory element in the human thyrotropin β‐subunit gene. J. Biol. Chem. 266: 21666–21673, 1991.
 10. Boyages, S. C. Clinical review 49: iodine deficiency disorders. J. Clin. Endocrinol. Metab. 77: 587–591, 1993.
 11. Bradley, D. J., H. C. Towle, and W. S. Young III. Spatial and temporal expression of α‐and β‐thyroid hormone receptors mRNAs, including the β2‐subtype, in the developing mammalian central nervous system. J. Neurosci. 12: 2288–2302, 1992.
 12. Bradley, D. J., H. C. Towle, and W. S. Young, III. α and β thyroid hormone receptor (TR) gene expression during auditory neurogenesis: evidence for TR isoform‐specific transcriptional regulation in vivo. Proc. Natl. Acad. Sci. USA 91: 439–443, 1994.
 13. Breen, J. J., T. Matsuura, A. C. Ross, and J. A. Gurr. Regulation of thyroid‐stimulating hormone β‐subunit and growth hormone messenger ribonucleic acid levels in the rat: effect of vitamin A status. Endocrinology 136: 543–549, 1995.
 14. Brent, G. A. The molecular basis of thyroid hormone action. N. Engl. J. Med. 331: 847–853, 1994.
 15. Brent, G. A. Thyroid hormones (T4, T3). In: Endocrinology: Basic and Clinical Principles, edited by P. M. Conn and S. Melmed. Totowa, N.J.: Humana Press, 1996, p. 291–306.
 16. Brent, G. A., M. K. Dunn, J. W. Harney, T. Gulick, P. R. Larsen, and D. D. Moore. Thyroid hormone aporeceptor represses T3‐inducible promoters and blocks activity of the retinoic acid receptor. New Biologist 1: 329–336, 1989.
 17. Brent, G. A., J. W. Harney, Y. Chen, R. L. Warne, D. D. Moore, and P. R. Larsen. Mutations of the rat growth hormone promoter which increase and decrease response to thyroid hormone define a consensus thyroid hormone response element. Mol. Endocrinol. 3: 1996–2004, 1989.
 18. Brent, G. A., J. W. Harney, D. D. Moore, and P. R. Larsen. Multihormonal regulation of the human, rat, and bovine growth hormone promoters: differential effects of 3′, 5′‐cyclic adenosine monophosphate, thyroid hormone, and glucocorticoids. Mol. Endocrinol. 2: 792–798, 1988.
 19. Brent, G. A., P. R. Larsen, J. W. Harney, R.J. Koenig, and D. D. Moore. Functional characterization of the rat growth hormone promoter elements required for induction by thyroid hormone with and without a co‐transfected β type thyroid hormone receptor. J. Biol. Chem. 264: 178–182, 1989.
 20. Brent, G. A., D. D. Moore, and P. R. Larsen. Thyroid hormone regulation of gene expression. Annu. Rev. Physiol. 53: 17–35, 1991.
 21. Brent, G. A., G. R. Williams, J. W. Harney, B. M. Forman, H. H. Samuels, D. D. Moore, and P. R. Larsen. Effects of varying the position of thyroid hormone response elements within the rat growth hormone promoter: implications for positive and negative regulation by 3, 5, 3′‐triiodothyronine. Mol. Endocrinol. 5: 542–548, 1991.
 22. Brent, G. A., G. R. Williams, J. W. Harney, B. M. Forman, H. H. Samuels, D. D. Moore, and P. R. Larsen. Capacity for cooperative binding of thyroid hormone (T3) receptor dimers defines wild type T3 response elements. Mol. Endocrinol. 6: 502–514, 1992.
 23. Burrow, G. N., D. A. Fisher, and P. R. Larsen. Maternal and fetal thyroid function. N. Engl. J. Med. 331: 1072–1078, 1994.
 24. Calvo, R., M. J. Obregon, C. Ruiz de Ona, F. Escobar del Rey, and G. Morreale de Escobar. Congenital hypothyroidism as studied in rats: crucial role of maternal thyroxine (T4), but not of 3, 5, 3′ triiodothyronine (T3) in the protection of the fetal brain. J. Clin. Invest. 86: 889–899, 1990.
 25. Carr, F. E., J. Burnside, and W. W. Chin. Thyroid hormones regulate rat thyrotropin β gene promoter activity expressed in GH3 cells. Mol. Endocrinol. 3: 709–716, 1989.
 26. Carr, F. E., M. A. Shupnik, J. Burnside, and W. W. Chin. Thyrotropin‐releasing hormone stimulates the activity of the rat thyrotropin β‐subunit gene promoter transfected into pituitary cells. Mol. Endocrinol. 3: 717, 1989.
 27. Carr, F. E., and N.C.W. Wong. Characteristics of a negative thyroid hormone response element. J. Biol. Chem. 269: 4175–4179, 1994.
 28. Carrasco, N. Iodide transport in the thyroid gland. Biochim. Biophys. Acta 1154: 65–82, 1993.
 29. Carrascoa, A., M. A. Ferrandez, L. Audi, and A. Ballabriga. Effects of triiodothyronine (T3) and identification of specific nuclear T3‐binding sites in cultured human fetal epiphyseal chondrocytes. J. Clin. Endocrinol. Metab. 75: 140–144, 1992.
 30. Cattini, P. A., T. R. Anderson, J. D. Baxter, P. Mellon, and N. L. Eberhardt. The human growth hormone gene is negatively regulated by triiodothyronine when transfected into rat pituitary tumor cells. J. Biol. Chem. 261: 13367–13372, 1986.
 31. Chatterjee, V.K.K., J. K. Lee, A. Rentoumis, and J. L. Jameson. Negative regulation of the thyroid‐stimulating hormone a gene by thyroid hormone: receptor interaction adjacent to the TATA box. Proc. Natl. Acad. Sci. USA 86: 9114, 1989.
 32. Chatterjee, V.K.K., and J. R. Tata. Thyroid hormone receptors and their role in development. Cancer Surv. 14: 147–167, 1992.
 33. Chernausek, S. D., L. E. Underwood, and J. J. Van Wyk. Influence of hypothyroidism on growth hormone binding by rat liver. Endocrinology 111: 1534–1538, 1982.
 34. Chin, W. W., F. E. Carr, J. Burnside, and D. S. Darling. Thyroid hormone regulation of thyrotropin gene expression. Recent Prog. Horm. Res. 48: 393–414, 1993.
 35. Chomczynski, P., P. A. Soszynski, and L. A. Frohman. Stimulatory effect of thyroid hormone on growth hormone gene expression in a human pituitary cell line. J. Clin. Endocrinol. Metab. 77: 281–285, 1993.
 36. Coiro, V., L. E. Braverman, S. Fang, and H. M. Goodman. Effects of hypothyroidism and thyroxine replacement on growth hormone in the rat. Endocrinology 105: 641–646, 1979.
 37. Contempre, B., N. L. Duale, J. E. Dumont, B. Ngo, A. T. Diplock, and J. Vanderpas. Effect of selenium supplementation on thyroid hormone metabolism in an iodine and selenium deficient population. Clin. Endocrinol. (Oxf.) 36: 579–583, 1992.
 38. Contempre, B., J. E. Dumont, N. Bebe, C. H. Thilly, A. T. Diplock, and J. Vanderpas. Effect of selenium supplementation in hypothyroid subjects of an iodine and selenium deficient area: the possible danger of indiscriminate supplementation of iodine‐deficient subjects with selenium. J. Clin. Endocrinol. Metab. 73: 213–215, 1991.
 39. Contempre, B., E. Jauniaux, R. Calvo, D. Jurkovik, S. Campbell, and G. Morreale de Escobar. Detection of thyroid hormones in human embryonic cavities during the first trimester of pregnancy. J. Clin. Endocrinol. Metab. 77: 1719–1722, 1993.
 40. Croteau, W., J. C. Davey, V. A. Galton, and D. L. St. Germain. Cloning of the mammalian type II iodothyronine deiodinase: a selenoprotein differentially expressed and regulated in the human brain and other tissues. J. Clin. Invest. 98: 405–417, 1996.
 41. Cuttler, L., and A. I. Korytko. Thyroid hormone and glucocorticoid regulation of pituitary growth hormone–releasing hormone receptor gene expression. J. Endocrinol. 152: R13–R17, 1997.
 42. Dai, G., O. Levy, and N. Carrasco. Cloning and characterization of the thyroid iodide transporter. Nature 379: 458–460, 1996.
 43. Davis, P. J., and F. B. Davis. Nongenomic actions of thyroid hormone. Thyroid 6: 497–504, 1996.
 44. Desbois, C., D. Aubert, C. Legrand, B. Pain and J. Samarut. A novel mechanism of action for v‐erbA: abrogation of the inactivation of transcription factor AP‐1 by retinoic acid and thyroid hormone receptors. Cell 67: 731–740, 1991.
 45. Escobar‐Morreale, H. F., M. J. Obregon, A. Hernandez, F. Escobar del Rey, and G. Morreale de Escobar. Regularion of iodothyronine deiodinase activity as studied in thyroidectomized rats infused with thyroxine or triiodothyronine. Endocrinology 138: 2559–2568, 1997.
 46. Evans, R. M. The steroid and thyroid hormone receptor superfamily. Science 240: 889–895, 1988.
 47. Faber, J., and A. M. Gallqe. Changes in bone mass during prolonged subclinical hyperthyroidism due to L‐thyroxine treatment: a meta‐analysis. Eur. J. Endocrinol. 30: 350–356, 1994.
 48. Farsetti, A., B. Desvergne, P. Hallenbeck, J. Robbins, and V. M. Nikodem. Characterization of myelin basic protein thyroid hormone response element and its function in the context of native and heterologous promoter. J. Biol. Chem. 267: 15784–15788, 1992.
 49. Forman, B. M., J. Cassanova, B. M. Raaka, J. Ghysdael, and H. H. Samuels. Half‐site spacing and orientation determines whether thyroid hormone and retinoic acid receptors and related factors bind to DNA response elements as monomers, homodimers, or heterodimers. Mol. Endocrinol. 6: 429–442, 1992.
 50. Forrest, D., L. C. Erway, L. Ng, R. Altschuler, and T. Curran. Thyroid hormone receptor beta is essential for development of auditory function. Nat. Genet. 13: 354–357, 1996.
 51. Forrest, D., F. Hallbook, H. Persson, and B. Vennstrom. Distinct functions for thyroid hormone receptors a and (3 in brain development indicated by differential expression of receptor genes. EMBO J. 10: 269–275, 1991.
 52. Forrest, D., E. Hanebuth, R. J. Smeyne, N. Everds, C. L. Stewart, J. M. Wehner, and T. Curran. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: evidence for tissue‐specific modulation of receptor function. EMBO J. 15: 3006–3015, 1996.
 53. Freedman, L. P. Anatomy of the steroid receptor zinc finger region. Endocr. Rev. 129: 145, 1992.
 54. Galton, V. A. The role of thyroid hormone in amphibian metamorphosis. Trends Endocrinol. Metab. 3: 96–100, 1992.
 55. Geffner, M. E., F. Su, N. S. Ross, J. S. Hershman, C. Van Dop, J. B. Menke, E. Hao, R. E. Stanzak, T. Eaton, H. H. Samuels, and S. J. Usala. An arginine to histidine mutation in codon 311 of the c‐erbAβ gene results in a mutant thyroid hormone receptor that does not mediate a dominant negative phenotype. J. Clin. Invest. 91: 538–546, 1993.
 56. Glass, C. K. Differential recognition of target genes by nuclear receptor monomers, dimers, and heterodimers. Endocr. Rev. 15: 391–407, 1994.
 57. Glass, C. K. Some new twists in the regulation of gene expression by thyroid hormone and retinoic acid receptors. J. Endocrinol. 150: 349–357, 1996.
 58. Glass, C. K., R. Franco, C. Weinberger, V. Albert, R. M. Evans, and M. G. Rosenfeld. A c‐erb‐A binding site in the rat growth hormone gene mediates trans‐activation by thyroid hormone. Nature 329: 738–741, 1987.
 59. Glass, C. K., and J. M. Holloway. Regulation of gene expression by the thyroid hormone receptor. Biochim. Biophys. Acta 1032: 157–176, 1990.
 60. Graupner, G., K. N. Wills, M. Tzukerman, X. Zhang, and M. Pfahl. Dual regulatory role for thyroid‐hormone receptors allows control of retinoic‐acid receptor activity. Nature 340: 653–656, 1989.
 61. Gutierrez‐Hartmann, A. Insight: pit‐1/GHF‐1: a pituitary‐specific transcription factor linking general signaling pathways to cell‐specific gene expression. Mol. Endocrinol. 8: 1447–1449, 1994.
 62. Hartong, R., N. Wang, R. Kurokawa, M. A. Lazar, C. K. Glass, J. W. Apriletti, and W. H. Dillmann. Delineation of three different thyroid hormone‐response elements in promoter of rat sarcoplasmic reticulum Ca2+ ATPase gene. J. Biol. Chem. 269: 13021–13029, 1994.
 63. Harvey, P. D., K. C. McHardy, I. W. Reid, F. Paterson, P. D. Bewsher, A. Duncan, and S. P. Robins. Measurement of bone collagen degradation in hyperthyroidism and during thyroxine replacement therapy using pyridinium cross‐links as specific urinary markers. J. Clin. Endocrinol. Metab. 72: 1189–1194, 1991.
 64. Hauser, P. H., A. J. Zametkin, P. Martinez, B. Vitiello, J. A. Matochik, A. J. Mixson, and B. D. Weintraub. Attention deficit‐hyperactivity disorder in people with generalized resistance to thyroid hormone. N. Eng. J. Med. 328: 997–1001, 1993.
 65. Hayash, Y., A. M. DePaoli, C. F. Burant, and S. Refetoff. Expression of a thyroid hormone‐responsive recombinant gene introduced into adult mice livers by replication‐defective adenovirus can be regulated by endogenous thyroid hormoen receptor. J. Biol. Chem. 269: 23872–23875, 1994.
 66. Hayashi, Y., O. E. Janssen, R. E. Weiss, Y. Murata, H. Seo, and S. Refetoff. The relative expression of mutant and normal thyroid hormone receptor genes in patients with generalized resistance to thyroid hormone determined by estimation of their specific messenger ribonucleic acid products. J. Clin. Endocrinol. Metab. 76: 64–69, 1993.
 67. Hayashi, Y., R. E. Weiss, D. H. Sarne, P. M. Yen, T. Sunthornthepvarakul, C. Marcocci, W. W. Chin, and S. Refetoff. Do clinical manifestations of resistance to thyroid hormone correlate with the functional alteration of the corresponding mutant thyroid hormone‐beta receptors. J. Clin. Endocrinol. Metab. 80: 3246–3256, 1995.
 68. Heyman, R. A., D. J. Mangelsdorf, J. A. Dyck, R. B. Stein, G. Eichele, R. M. Evans, and C. Thaller. 9‐cis retinoic acid is a high affinity ligand for the reinoid X receptor. Cell 68: 397–406, 1992.
 69. Hollenberg, A. N., T. Monden, T. R. Flynn, M.‐ E. Boers, O. Cohen, and F. E. Wondisford. The human thyrotropin‐releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid response elements. Mol. Endocrinol. 9: 540–550, 1995.
 70. Hsu, J.‐ H., A. M. Zavacki, J. W. Harney, and G. A. Brent. Retinoid‐X‐receptor (RXR) differentially augments thyroid hormone response in cell lines as a function of the response element and endogenous RXR content. Endocrinology 136: 421–430, 1995.
 71. Iniguez, M. A., A. Rodriguez‐Pena, N. Ibarrola, G. Morreale de Escobar, and J. Bernal. Adult rat brain is sensitive to thyroid hormone. Regulation of RC3/neurogranin mRNA. J. Clin. Invest. 90: 554–558, 1992.
 72. Isaacs, R. E., P. R. Findell, P. Mellon, C. B. Wilson, and J. D. Baxter. Hormonal regulation of expression of the endogenous and transfected human growth hormone gene. Mol. Endocrinol. 1: 569–576, 1987.
 73. Jameson, J. L. Editorial thyroid hormone resistance: pathophysiology at the molecular level. J. Clin. Endocrinol. Metab. 74: 708–711, 1992.
 74. Kanamori, A., and D. D. Brown. The regulation of thyroid hormone receptor β genes by thyroid hormone in Xenopus laevis. J. Biol. Chem. 267: 739–745, 1992.
 75. Katz, D., and M. A. Lazar. Dominant negative activity of an endogenous thyroid hormone receptor variant (α2) is due to competition for binding sites on target genes. J. Biol. Chem. 268: 20904–20910, 1993.
 76. Katz, H. P., S. L. Youlton, S. L. Kaplan, and M. M. Grumbach. Growth and growth hormone. III. Growth hormone release in children with primary hypothyroidism and thyrotoxicosis. J. Clin. Endocrinol. Metab. 29: 346–351, 1969.
 77. Katz, R. W., and R. J. Koenig. Nonbiased identification of DNA sequences that bind thyroid hormone receptor α1 with high affinity. J. Biol. Chem. 268: 19392–19397, 1993.
 78. Kawahara, A., B. S. Baker, and J. R. Tata. Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development 112: 933–943, 1991.
 79. Kim, H.‐ S., D. E. Crone, C. N. Sprung, J. B. Tillman, W. R. Force, M. D. Crew, P. L. Mote, and S. R. Spindler. Positive and negative thyroid hormone response elements are composed of strong and weak half‐sites 10 nucleotides in length. Mol. Endocrinol. 6: 1489–1501, 1992.
 80. Kim, S.‐W., I.‐M. Ahn, and P. R. Larsen. In vivo genomic footprinting of thyroid hormone‐responsive genes in pituitary tumor cell lines. Mol. Cell. Biol. 16: 4465–4477, 1996.
 81. Koenig, R.J., G. A. Brent, R. L. Warne, P. R. Larsen, and D. D. Moore. Thyroid hormone receptor binds to a site in the rat growth promoter required for induction by thyroid hormone. Proc. Natl. Acad. Sci. USA 84: 5670–5674, 1987.
 82. Koenig, R. J., M. A. Lazar, R. A. Hodin, G. A. Brent, P. R. Larsen, W. W. Chin, and D. D. Moore. Inhibition of thyroid hormone action by a non‐hormone binding c‐erbA protein generated by alternative mRNA splicing. Nature 337: 659–661, 1989.
 83. Kurokawa, R., J. DiRenzo, M. Boehm, J. Sugarman, B. Gloss, M. G. Rosenfeld, R. A. Heyman, and C. K. Glass. Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding. Nature 371: 528–530, 1994.
 84. Larsen, P. R. Maternal thyroxine and congenital hypothyroidism. N. Engl. J. Med. 321: 44–46, 1989.
 85. Lazar, M. A. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr. Rev. 14: 270–279, 1993.
 86. Lee, L.‐ R., R. M. Mortensen, C. A. Larson, and G. A. Brent. Thyroid hormone receptor‐α inhibits retinoic acid‐responsive gene expression and modulates retinoic acid‐stimulated neural differentiation in mouse embryonic stem cells. Mol. Endocrinol. 8: 746–756, 1994.
 87. Lee, S. L., K. Stewart, and R. H. Goodman. Structure of the gene encoding rat thyrotropin releasing hormone. J. Biol. Chem. 263: 16604–16609, 1988.
 88. Lezoualc'h, F., A.H.S. Hassan, P. Giraud, J.‐ P. Loeffler, S. L. Lee, and B. A. Demeneix. Assignment of the β‐thyroid hormone receptor to 3, 5, 3′‐triiodothyronine‐dependent inhibition of transcription from the thyrotropin‐releasing hormone promoter in chick hypothalamus neurons. Mol. Endocrinol. 6: 1797–1804, 1992.
 89. Ma, T., Z. C. Lian, S. P. Qi, E. R. Heinz, G. R. DeLong, A. T. Diplock, and J. E. Dumont. Magnetic resonance imaging of brian and the neuromotor disorder in endemic cretinism. Annu. Neurol. 34: 91–94, 1993.
 90. Mangelsdorf, D. J., U. Borgmeyer, R. A. Heyman, J. Y. Zhou, E. S. Ong, A. S. Oro, A. Kakizuka, and R. M. Evans. Characterization of three RXR genes that mediate the action of 9‐cis retinoic acid. Genes Dev. 6: 329–344, 1992.
 91. Mayo, K. E. Molecular cloning and expression of a pituitary‐specific receptor for growth hormone–releasing hormone. Mol. Endocrinol. 6: 1734–1744, 1992.
 92. Meier, C. A., B. M. Dickstein, K. Ashizawa, J. H. McClasky, P. Muchmore, S. C. Ransom, J. B. Menke, E. H. Hao, S. J. Usala, B. B. Bercu, S. Y. Cheng, and B. D. Weintraub. Variable transcriptional activity and ligand binding of mutant β1 3, 5, 3′‐triiodothyronine receptors from four families with generalized resistance to thyroid hormone. Mol. Endocrinol. 6: 248–258, 1992.
 93. Miell, J. P., A. M. Taylor, M. Zini, H. G. Maheshwari, R.J.M. Ross, and R. Valcavi. Effects of hypothyroidism and hyperthyroidism on insulin‐like growth factors (IGFs) and growth hormone‐and IGF‐binding proteins. J. Clin. Endocrinol. Meta‐b. 76: 950–955, 1993.
 94. Mixson, A. J., P. Hauser, G. Tennyson, J. C. Renault, D. L. Bodenner, and B. D. Weintraub. Differential expression of mutant and normal beta T3 receptor alleles in kindreds with generalized resistance to thyroid hormone. J. Clin. Invest. 91: 2296–2300, 1993.
 95. Morita, S., C. Fernandez‐Mejia, and S. Melmed. Retinoic acid selectively stimulates growth hormone secretion and messenger ribonucleic acid levels in rat pituitary cells. Endocrinology 124: 2052–2056, 1989.
 96. Mundy, G. R., J. L. Shapiro, J. G. Bandelin, E. M. Canalis, and L. G. Raisz. Direct stimulation of bone resorption by thyroid hormones. J. Clin. Invest. 58: 529–534, 1976.
 97. Munoz, A., A. Rodriguez‐Pena, A. Perez‐Castillo, B. Ferreiro, J. G. Sutcliffe, and J. Bernal. Effects of neonatal hypothyroidism on rat brain gene expression. Mol. Endocrinol. 5: 273–280, 1991.
 98. Naar, A. M., J. M. Boutin, S. M. Lipkin, V. C. Yu, J. M. Holloway, C. K. Glass, and M. G. Rosenfeld. The orientation and spacing of core DNA‐binding motifs dictate selective transcriptional responses to three nuclear receptors. Cell 65: 1267–1279, 1991.
 99. New England Congenital Hypothyroid Collaborative, Correlation of cognitive test scores and adequacy of treatment in adolescents with congenital hypothyroidism. J. Pediatr. 124: 383–387, 1994.
 100. Ono, S., I. D. Schwartz, O. T. Mueller, A. W. Root, S. J. Usala, and B. B. Bercu. Homozygosity for a dominant negative thyroid hormone receptor gene responsible for generalized resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 73: 990–994, 1991.
 101. Oppenheimer, J. H., H. L. Schwartz, C. N. Mariash, W. B. Kinlaw, N.C.W. Wong, and H. C. Freake. Advances in our understanding of thyroid hormone action at the cellular level. Endocr. Rev. 8: 288–308, 1987.
 102. Ozawa, S., L. G. Sheflin, and S. W. Spaulding. Thyroxine increases epidermal growth factor levels in the mouse thyroid in vivo. Endocrinology 128: 1396–1403, 1991.
 103. Pekary, A. E., L. Berg, F. Santini, I. Chopra and J. M. Hershman. Cytokines modulate type I iodothyronine deiodinase mRNA levels and enzyme activity in FRTL‐5 rat thyroid cells. Mol. Cell. Endocrinol. 101: R31–R35, 1994.
 104. Pfaffle, R. W., G. E. DiMattia, J. S. Parks, M. R. Brown, J. M. Wit, M. Jansen, H. Van der Nat, J. L. Van den Brande, M. G. Rosenfeld, and H. A. Ingraham. Mutation of the POU‐specific domain of Pit‐1 and hypopituitarism without pituitary hypoplasia. Science 257: 1118–1121, 1992.
 105. Porterfield, S. P., and C. E. Hendrich. The role of thyroid hormones in prenatal and neonatal neurological development—current perspectives. Endocr. Rev. 14: 94–106, 1993.
 106. Radovick, S., M. Nations, Y. Du, L. A. Berg, B. D. Weintraub, and F. E. Wondisford. A mutation in the POU‐homeodomain of Pit‐1 responsible for combined pituitary hormone deficiency. Science 257: 1115–1118, 1992.
 107. Ranjan, M., J. Wong, and Y.‐ B. Shi. Transcriptional repression of Xenopus TRβ gene is medated by a thyroid hormone response element located near the start site. J. Biol. Chem. 269: 24699–24705, 1994.
 108. Rastinejad, F., T. Perlmann, R. M. Evans, and P. B. Sigler. Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375: 203–211, 1995.
 109. Refetoff, S. Inherited thyroxine‐binding globulin abnormalities in man. Endocr. Rev. 10: 275–293, 1989.
 110. Refetoff, S., L. T. DeWind, and L.J. DeGroot. Familial syndrome combining deaf‐mutism, stippled epiphyses, goiter, and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J. Clin. Endocrinol. Metab. 27: 279–294, 1967.
 111. Refetoff, S., R. E. Weiss, and S.J. Usala. The syndromes of resistance to thyroid hormone. Endocr. Rev. 14: 348–399, 1993.
 112. Rivkees, S. A., H. H. Bode, and J. D. Crawford. Long‐term growth in juvenile acquired hypothyroidism. N. Engl. J. Med. 318: 599–602, 1988.
 113. Rosen, H. N., A. C. Moses, and C. Gundber. Therapy with parenteral pamidronate prevents thyroid hormone‐induced bone turnover in humans. J. Clin. Endocrinol. Metab. 77: 664–669, 1993.
 114. Safer, J. D., M. F. Langlois, R. Cohen, T. Monden, D. John‐Hope, J. Madura, A. N. Hollenberg, and F. E. Wondisford. Isoform variable action among thyroid hormone receptor mutants provides insight into pituitary resistance to thyroid hormone. Mol. Endocrinol. 11: 16–26, 1997.
 115. Salvatore, D., B. Tibor, J. W. Harney, and P. R. Larsen. Molecular biology and biochemical characterization of the human type 2 selenodeiodinase. Endocrinology 137: 3308–3315, 1996.
 116. Samuels, H. H., B. M. Forman, Z. D. Horowitz, and Z.‐ S. Ye. Regulation of gene expression by thyroid hormone. J. Clin. Invest. 81: 957–967, 1988.
 117. Samuels, H. H., and J. S. Tsai. Thyroid hormone action in cell culture: demonstration of nuclear receptors in intact cells and isolated nuclei. Proc. Natl. Acad. Sci. USA 70: 3488–3492, 1973.
 118. Sap, J., L. de Magistris, H. Stunnenberg, and B. Vennström. A major thyroid hormone response element in the third intron of the rat growth hormone gene. EMBO J. 9: 887–896, 1990.
 119. Schaufele, F., B. L. West, and J. D. Baxter. Synergistic activation of the rat growth hormone promoter by Pit‐1 and the thyroid hormone receptor. Mol. Endocrinol. 6: 656–665, 1992.
 120. Schaufele, F., B. L. West, and T. L. Reudelhuber. Overlapping Pit‐1 and Sp1 binding sites are both essential for full rat growth hormone gene promoter activity despite mutually exclusive Pit‐1 and Sp1 binding. J. Biol. Chem. 265: 17189–17196, 1990.
 121. Schueler, P. A., H. L. Schwartz, K. A. Strait, C.N. Mariash, and J. H. Oppenheimer. Binding of 3, 5, 3′‐triiodothyronine (T3) and its analogs to the in vitro translational products of c‐erbA protooncogenes: differences in the affinity of the α‐and β‐forms for the acetic acid analog and failure of the human testis and kidney α‐2 products to bind T3. Mol. Endocrinol. 4: 227–234, 1990.
 122. Schwartz, H. L., M. A. Lazar, and J. H. Oppenheimer. Widespread distribution of immunoreactive thyroid hormone beta 2 receptor (TRbeta 2) in the nuclei of extrapituitary rat tissues. J. Biol. Chem. 269: 24777–24782, 1994.
 123. Silva, J. E., and P. Rudas. Effect of congenital hypothyroidism on microtubule‐associated protein‐2 expression in the cerebellum of the rat. Endocrinology 126: 1276–1282, 1990.
 124. Simonides, W. S., G. A. Brent, M.H.M. Thelen, C. G. van der Linden, P. R. Larsen, and C. van Hardeveld. Characterization of the promoter of the rat sarcoplasmic endoplasmic reticulum Ca2+‐ATPase 1 gene and analysis of thyroid hormone responsiveness. J. Biol. Chem. 271: 32048–32056, 1996.
 125. Sjoberg, M., B. Vennstrom, and D. Forrest. Thyroid hormone receptors in chick retinal development: differential expression of mRNAs for α and N‐terminal variant β receptors. Development 114: 39–47, 1992.
 126. Solomon, B. L., L. Wartofsky, and K. D. Burman. Prevalence of fractures in postmenopausal women with thyroid disease. Thyroid 3: 17–23, 1993.
 127. St. Germain, D. L., and V. A. Galton. The deiodinase family of selenoproteins. Thyroid 7: 655–668, 1997.
 128. St. Germain, D. L., and C. M. Morganelli. Expression of type I iodothyronine 5′‐deiodinases in Xenopus laevis oocytes. J. Biol. Chem. 264: 3054–3056, 1989.
 129. St. Germain, D. L., R. A. Schwartzman, W. Croteau, A. Kanamori, Z. Wang, D. D. Brown, and V. A. Galton. A thyroid hormone‐regulated gene in Xenopus laevis encodes a type III iodothyronine 5‐deiodinase. Proc. Natl. Acad. Sci. USA 91: 7767–7771, 1994.
 130. Strait, K. A., H. L. Schwartz, A. Perez‐Castillo, and J. H. Oppenheimer. Relationship of c‐erbA mRNA content in tissue triiodothyronine nuclear binding capacity and function in developing and adult rats. J. Biol. Chem. 265: 10514–10521, 1990.
 131. Strait, K. A., L. Zou, and J. H. Oppenheimer. β1 isoform‐specific regulation of a triiodothyronine‐induced gene during cerebellar development. Mol. Endocrinol. 6: 1874–1880, 1992.
 132. Takeda, K., A. Sakurai, L. J. DeGroot, and S. Refetoff. Recessive inheritance of thyroid hormone resistance caused by complete deletion of the protein‐coding region of the thyroid hormone receptor‐b gene. J. Clin. Endocrinol. Metab. 74: 49–55, 1992.
 133. Tata, J. R., B. S. Baker, I. Machuca, E.M.L. Rabelo, and K. Yamauchi. Autoinduction of nuclear receptor genes and its significance. J. Steroid Biochem. Molec. Biol. 46: 105–119, 1993.
 134. Tillman, J. B., D. E. Crone, H.‐ S. Kim, C. N. Sprung, and S. R. Spindler. Promoter independent down‐regualtion of the firefly luciferase gene by T3 and T3 receptor in CV‐1 cells. Mol. Cell. Endocrinol. 95: 101–109, 1993.
 135. Toyoda, N., M. Nishikawa, M. Horimoto, N. Yoshikawa, Y. Mori, M. Yoshimura, H. Masaki, K. Tanaka, and M. Inada. Graves' immunoglobulin G stimulates iodothyronine 5′‐deiodinating activity in FRTL‐5 rat thyroid cells. J. Clin. Endocrinol. Metab. 70: 1506–1511, 1990.
 136. Toyoda, N., A. M. Zavacki, A. L. Maia, J. W. Harney, and P. R. Larsen. A novel retinoid X receptor‐independent thyroid hormone response element is present in the human type 1 deiodinase gene. Mol. Cell. Biol. 15: 5100–5112, 1995.
 137. Umesono, K., V. Giguere, C. K. Glass, M. G. Rosenfeld, and R. M. Evans. Retinoic acid and thyroid hormone induce gene expression through a common responsive element. Nature 336: 262–265, 1988.
 138. Umesono, K., K. K. Murakami, C. C. Thompson, and R. M. Evans. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65: 1255–1266, 1991.
 139. Valcavi, R., M. Zini, and I. Portioli. Thyroid hormones and growth hormone secretion. J. Endocrinol. Invest. 15: 313–330, 1992.
 140. Vulsma, T., M. H. Gons, and J.M.M. DeVijlder. Maternal fetal transfer of thyroxine in congenital hypothyroidism due to a total organification defect of thyroid dysgenesis. N. Engl. J. Med. 321: 13–16, 1989.
 141. Wagner, R. L., J. W. Apriletti, M. E. McGrath, B. L. West, J. D. Baxter, and R. J. Fletterick. A structural role for hormone in the thyroid hormone receptor. Nature 378: 690–697, 1995.
 142. Walker, P., M. E. Weichsel, Jr., S. M. Guo, and D. A. Fisher. Thyroxine increases nerve growth factor concentration in adult mouse brain. Science 204: 427–431, 1979.
 143. Weiss, R. E., and S. Refetoff. Effect of thyroid hormone on growth: lessons from the syndrome of resistance to thyroid hormone. Endocrinol. Metab. Clin. North Am. 25: 719–730, 1996.
 144. Williams, G. R., R. Bland, and M. Sheppard. Retinoids modify regulation of endogenous gene expression by vitamin D3 and thyroid hormone in three osteosarcoma cell lines. Endocrinology 136: 4304–4314, 1995.
 145. Williams, G. R., R. Bland, and M. C. Sheppard. Characterization of thyroid hormone (T3) receptors in three osteosarcoma cell lines of distinct osteoblast phenotype: interactions among T3, Vitamin D3, and retinoid signaling. Endocrinology 135: 2375–2385, 1994.
 146. Williams, G. R., and G. A. Brent. Thyroid hormone response elements. In: Molecular Endocrinology: Basic Concepts and Clinical Correlations, edited by B. Weintraub. New York: Raven Press, 1995, p. 217–239.
 147. Williams, G. R., J. W. Harney, D. D. Moore, P. R. Larsen, and G. A. Brent. Differential capacity of wild type promoter elements for binding and trans‐activation by retinoic acid and thyroid hormone receptors. Mol. Endocrinol. 6: 1527–1537, 1992.
 148. Williams, G. R., A. M. Zavacki, J. W. Harney, and G. A. Brent. Thyroid hormone receptor binds with unique properties to response elements that contain hexamer domains in an inverted palindrome arrangement. Endocrinology 134: 1888–1896, 1994.
 149. Xue‐Yi, C., J. Xin‐Min, D. Zhi‐Hong, M. A. Rakeman, Z. Ming‐Li, K. O'Donnell, M. Tai, K. Amette, N. DeLong, and G. R. DeLong. Timing of vulnerability of the brain to iodine deficiency in endemic cretinism. N. Engl. J. Med. 331: 1739–1744, 1994.
 150. Yamada, M., S. Radovick, F. E. Wondisford, Y. Nakayama, B. D. Heintraub, and J. F. Wilber. Cloning and structure of human genomic DNA and hypothalamic cDNA encoding human preprothyrotropin‐releasing hormone. Mol. Endocrinol. 4: 551–556, 1990.
 151. Yen, P. M., and W. W. Chin. Molecular mechanisms of dominant negative activity by nuclear hormone receptors. Mol. Endocrinol. 8: 1450–1454, 1994.
 152. Yoh, S. M., V.K.K. Chatterjee, and M. L. Privalsky. Thyroid hormone resistance syndrome manifests as an aberrant interaction between mutant T3 receptors and transcriptional corepressors. Mol. Endocrinol. 11: 470–480, 1997.
 153. Zavacki, A. M., J. W. Harney, G. A. Brent, and P. R. Larsen. Dominant negative inhibition by mutant thyroid hormone receptors is thyroid hormone response element and receptor isoform specific. Mol. Endocrinol. 7: 1319–1330, 1993.
 154. Zou, L., S. G. Hagen, K. A. Strait, and J. H. Oppenheimer. Identification of thyroid hormone response elements in rodent Pcp‐2, a developmentally regulated gene of cerebellar Purkinje cells. J. Biol. Chem. 269: 13346–13352, 1994.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gregory A. Brent. Regulation of Gene Expression by Thyroid Hormones: Relation to Growth and Development. Compr Physiol 2011, Supplement 24: Handbook of Physiology, The Endocrine System, Hormonal Control of Growth: 757-781. First published in print 1999. doi: 10.1002/cphy.cp070524