Comprehensive Physiology Wiley Online Library

Peripheral and Central Effects of Circulating Catecholamines

Full Article on Wiley Online Library



Abstract

Physical challenges, emotional arousal, increased physical activity, or changes in the environment can evoke stress, requiring altered activity of visceral organs, glands, and smooth muscles. These alterations are necessary for the organism to function appropriately under these abnormal conditions and to restore homeostasis. These changes in activity comprise the “fight‐or‐flight” response and must occur rapidly or the organism may not survive. The rapid responses are mediated primarily via the catecholamines, epinephrine, and norepinephrine, secreted from the adrenal medulla. The catecholamine neurohormones interact with adrenergic receptors present on cell membranes of all visceral organs and smooth muscles, leading to activation of signaling pathways and consequent alterations in organ function and smooth muscle tone. During the “fight‐or‐flight response,” the rise in circulating epinephrine and norepinephrine from the adrenal medulla and norepinephrine secreted from sympathetic nerve terminals cause increased blood pressure and cardiac output, relaxation of bronchial, intestinal and many other smooth muscles, mydriasis, and metabolic changes that increase levels of blood glucose and free fatty acids. Circulating catecholamines can also alter memory via effects on afferent sensory nerves impacting central nervous system function. While these rapid responses may be necessary for survival, sustained elevation of circulating catecholamines for prolonged periods of time can also produce pathological conditions, such as cardiac hypertrophy and heart failure, hypertension, and posttraumatic stress disorder. In this review, we discuss the present knowledge of the effects of circulating catecholamines on peripheral organs and tissues, as well as on memory in the brain. © 2015 American Physiological Society. Compr Physiol 5:1‐15, 2015.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. The two efferent arms of the organism's response to mental or physical stress, exercise and/or changes in the environment.
Figure 2. Figure 2. The sources of circulating catecholamines.
Figure 3. Figure 3. Hyothetical mechanism by which circulating catecholamines affect memory in brain.


Figure 1. The two efferent arms of the organism's response to mental or physical stress, exercise and/or changes in the environment.


Figure 2. The sources of circulating catecholamines.


Figure 3. Hyothetical mechanism by which circulating catecholamines affect memory in brain.
References
 1.Adamec R, Muir C, Grimes M, Pearcey K. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav Brain Res 179: 192‐207, 2007.
 2.Adolphs R, Cahill L, Schul R, Babinsky R. Impaired declarative memory for emotional material following bilateral amygdala damage in humans. Learn Mem 4: 291‐300, 1997.
 3.Ahlquist RP. A study of the adrenotropic receptors. Am J Physiol 153: 586‐600, 1948.
 4.Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L. Abnormal regulation of the sympathetic nervous system in alpha2A‐adrenergic receptor knockout mice. Mol Pharmacol 56: 154‐161, 1999.
 5.Appert‐Collin A, Cotecchia S, Nenniger‐Tosato M, Pedrazzini T, Diviani D. The A‐kinase anchoring protein (AKAP)‐Lbc‐signaling complex mediates alpha1 adrenergic receptor‐induced cardiomyocyte hypertrophy. Proc Natl Acad Sci U S A 104: 10140‐10145, 2007.
 6.Balligand JL. Beta3‐adrenoreceptors in cardiovasular diseases: New roles for an “old” receptor. Curr Drug Deliv 10: 64‐66, 2013.
 7.Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63: 182‐217, 2011.
 8.Bjorklund A, Dunnett SB. Dopamine neuron systems in the brain: An update. Trends Neurosci 30: 194‐202, 2007.
 9.Blandini F, Martignoni E, Sances E, Bono G, Nappi G. Combined response of plasma and platelet catecholamines to different types of short‐term stress. Life Sci 56: 1113‐1120, 1995.
 10.Boyd KN, Mailman RB. Dopamine receptor signaling and current and future antipsychotic drugs. Handb Exp Pharmacol 2012(212), 53‐86.
 11.Brenner IK, Zamecnik J, Shek PN, Shephard RJ. The impact of heat exposure and repeated exercise on circulating stress hormones. Eur J Appl Physiol Occup Physiol 76: 445‐454, 1997.
 12.Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, et al. Beta 1‐ and beta 2‐adrenergic‐receptor subpopulations in nonfailing and failing human ventricular myocardium: Coupling of both receptor subtypes to muscle contraction and selective beta 1‐receptor down‐regulation in heart failure. Circ Res 59: 297‐309, 1986.
 13.Bristow MR, Hershberger RE, Port JD, Gilbert EM, Sandoval A, Rasmussen R, Cates AE, Feldman AM. Beta‐adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82: I12‐25, 1990.
 14.Bristow MR, Minobe W, Rasmussen R, Hershberger RE, Hoffman BB. Alpha‐1 adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 247: 1039‐1045, 1988.
 15.Brodde OE, Bruck H, Leineweber K. Cardiac adrenoceptors: Physiological and pathophysiological relevance. J Pharmacol Sci 100: 323‐337, 2006.
 16.Brodde OE, Michel MC. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 51: 651‐690, 1999.
 17.Buhler HU, da Prada M, Haefely W, Picotti GB. Plasma adrenaline, noradrenaline and dopamine in man and different animal species. J Physiol 276: 311‐320, 1978.
 18.Bylund DB. Subtypes of alpha 1‐ and alpha 2‐adrenergic receptors. Faseb J 6: 832‐839, 1992.
 19.Cahill L, Babinsky R, Markowitsch HJ, McGaugh JL. The amygdala and emotional memory. Nature 377: 295‐296, 1995.
 20.Cannon WB, De La Paz D. Emotional stimulation of adrenal secretion. Am J Physiol 28: 64‐70, 1911.
 21.Carey RM. The intrarenal renin‐angiotensin and dopaminergic systems: Control of renal sodium excretion and blood pressure. Hypertension 61: 673‐680, 2013.
 22.Carlsson A, Lindqvist M, Magnusson T, Waldeck B. On the presence of 3‐hydroxytyramine in brain. Science 127: 471, 1958.
 23.Chamberlain KG, Pestell RG, Best JD. Platelet catecholamine contents are cumulative indexes of sympathoadrenal activity. Am J Physiol 259: E141‐147, 1990.
 24.Chandler DJ, Waterhouse BD, Gao WJ. New perspectives on catecholaminergic regulation of executive circuits: Evidence for independent modulation of prefrontal functions by midbrain dopaminergic and noradrenergic neurons. Front Neural Circuits 8: 53, 2014.
 25.Chugh G, Pokkunuri I, Asghar M. Renal dopamine and angiotensin II receptor signaling in age‐related hypertension. Am J Physiol Renal Physiol 304: F1‐7, 2013.
 26.Civantos Calzada B, Aleixandre de Artinano A. Alpha‐adrenoceptor subtypes. Pharmacol Res 44: 195‐208, 2001.
 27.Clayton EC, Williams CL. Noradrenergic receptor blockade of the NTS attenuates the mnemonic effects of epinephrine in an appetitive light‐dark discrimination learning task. Neurobiol Learn Mem 74: 135‐145, 2000.
 28.Coghill D, Banaschewski T. The genetics of attention‐deficit/hyperactivity disorder. Expert Rev Neurother 9: 1547‐1565, 2009.
 29.Cotecchia S. The alpha1‐adrenergic receptors: Diversity of signaling networks and regulation. J Recept Signal Transduct Res 30: 410‐419, 2010.
 30.de Diego AM, Gandia L, Garcia AG. A physiological view of the central and peripheral mechanisms that regulate the release of catecholamines at the adrenal medulla. Acta Physiol (Oxf) 192: 287‐301, 2008.
 31.Delahanty DL, Nugent NR, Christopher NC, Walsh M. Initial urinary epinephrine and cortisol levels predict acute PTSD symptoms in child trauma victims. Psychoneuroendocrinology 30: 121‐128, 2005.
 32.Donovan E. Propranolol use in the prevention and treatment of posttraumatic stress disorder in military veterans: Forgetting therapy revisited. Perspect Biol Med 53: 61‐74, 2010.
 33.Edwards AV, Jones CT. Autonomic control of adrenal function. J Anat 183(Pt 2): 291‐307, 1993.
 34.Edwards SL, Anderson CR, Southwell BR, McAllen RM. Distinct preganglionic neurons innervate noradrenaline and adrenaline cells in the cat adrenal medulla. Neuroscience 70: 825‐832, 1996.
 35.Eisenhofer G, Kopin IJ, Goldstein DS. Catecholamine metabolism: A contemporary view with implications for physiology and medicine. Pharmacol Rev 56: 331‐349, 2004.
 36.Elman I, Goldstein DS, Adler CM, Shoaf SE, Breier A. Inverse relationship between plasma epinephrine and testosterone levels during acute glucoprivation in healthy men. Life Sci 68: 1889‐1898, 2001.
 37.Esbenshade TA, Hirasawa A, Tsujimoto G, Tanaka T, Yano J, Minneman KP, Murphy TJ. Cloning of the human alpha 1d‐adrenergic receptor and inducible expression of three human subtypes in SK‐N‐MC cells. Mol Pharmacol 47: 977‐985, 1995.
 38.Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: A meta‐analytic review. Hum Genet 126: 51‐90, 2009.
 39.Glannon W. Psychopharmacology and memory. J Med Ethics 32: 74‐78, 2006.
 40.Gold PE, Korol DL. Making memories matter. Front Integr Neurosci 6: 116, 2012.
 41.Gold PE, van Buskirk R. Effects of alpha‐ and beta‐adrenergic receptor antagonists on post‐trial epinephrine modulation of memory: Relationship to post‐training brain norepinephrine concentrations. Behav Biol 24: 168‐184, 1978.
 42.Goldstein DS, Eisenhofer G, Kopin IJ. Sources and significance of plasma levels of catechols and their metabolites in humans. J Pharmacol Exp Ther 305: 800‐811, 2003.
 43.Goldstein DS, Holmes C. Neuronal source of plasma dopamine. Clin Chem 54: 1864‐1871, 2008.
 44.Goldstein DS, Mezey E, Yamamoto T, Aneman A, Friberg P, Eisenhofer G. Is there a third peripheral catecholaminergic system? Endogenous dopamine as an autocrine/paracrine substance derived from plasma DOPA and inactivated by conjugation. Hypertens Res 18(Suppl 1): S93‐99, 1995.
 45.Goldstein DS, Swoboda KJ, Miles JM, Coppack SW, Aneman A, Holmes C, Lamensdorf I, Eisenhofer G. Sources and physiological significance of plasma dopamine sulfate. J Clin Endocrinol Metab 84: 2523‐2531, 1999.
 46.Graham RM, Perez DM, Hwa J, Piascik MT. alpha 1‐adrenergic receptor subtypes. Molecular structure, function, and signaling. Circ Res 78: 737‐749, 1996.
 47.Gyires K, Zadori ZS, Torok T, Matyus P. alpha(2)‐Adrenoceptor subtypes‐mediated physiological, pharmacological actions. Neurochem Int 55: 447‐453, 2009.
 48.Halbrugge T, Gerhardt T, Ludwig J, Heidbreder E, Graefe KH. Assay of catecholamines and dihydroxyphenylethyleneglycol in human plasma and its application in orthostasis and mental stress. Life Sci 43: 19‐26, 1988.
 49.Hamann SB, Ely TD, Grafton ST, Kilts CD. Amygdala activity related to enhanced memory for pleasant and aversive stimuli. Nat Neurosci 2: 289‐293, 1999.
 50.Hawk LW, Dougall AL, Ursano RJ, Baum A. Urinary catecholamines and cortisol in recent‐onset posttraumatic stress disorder after motor vehicle accidents. Psychosom Med 62: 423‐434, 2000.
 51.Hein L, Altman JD, Kobilka BK. Two functionally distinct alpha2‐adrenergic receptors regulate sympathetic neurotransmission. Nature 402: 181‐184, 1999.
 52.Hieble JP. Subclassification and nomenclature of alpha‐ and beta‐adrenoceptors. Curr Top Med Chem 7: 129‐134, 2007.
 53.Horita S, Seki G, Yamada H, Suzuki M, Koike K, Fujita T. Roles of renal proximal tubule transport in the pathogenesis of hypertension. Curr Hypertens Rev 9: 148‐155, 2013.
 54.Hu ZW, Shi XY, Lin RZ, Hoffman BB. Contrasting signaling pathways of alpha1A‐ and alpha1B‐adrenergic receptor subtype activation of phosphatidylinositol 3‐kinase and Ras in transfected NIH3T3 cells. Mol Endocrinol 13: 3‐14, 1999.
 55.Hyman SE, Malenka RC, Nestler EJ. Neural mechanisms of addiction: The role of reward‐related learning and memory. Annu Rev Neurosci 29: 565‐598, 2006.
 56.Itoi K, Sugimoto N. The brainstem noradrenergic systems in stress, anxiety and depression. J Neuroendocrinol 22: 355‐361, 2010.
 57.Johnson DG, Hayward JS, Jacobs TP, Collis ML, Eckerson JD, Williams RH. Plasma norepinephrine responses of man in cold water. J Appl Physiol 43: 216‐220, 1977.
 58.Kable JW, Murrin LC, Bylund DB. In vivo gene modification elucidates subtype‐specific functions of alpha(2)‐adrenergic receptors. J Pharmacol Exp Ther 293: 1‐7, 2000.
 59.Kessler RC, Davis CG, Kendler KS. Childhood adversity and adult psychiatric disorder in the US National Comorbidity Survey. Psychol Med 27: 1101‐1119, 1997.
 60.King SO, II Williams CL. Novelty‐induced arousal enhances memory for cued classical fear conditioning: Interactions between peripheral adrenergic and brainstem glutamatergic systems. Learn Mem 16: 625‐634, 2009.
 61.Knaus AE, Muthig V, Schickinger S, Moura E, Beetz N, Gilsbach R, Hein L. Alpha2‐adrenoceptor subtypes–unexpected functions for receptors and ligands derived from gene‐targeted mouse models. Neurochem Int 51: 277‐281, 2007.
 62.Kostrzewa RM. The blood‐brain barrier for catecholamines ‐ revisited. Neurotox Res 11: 261‐271, 2007.
 63.Kralj‐Hans I, Tibber M, Jeffery G, Mobbs P. Differential effect of dopamine on mitosis in early postnatal albino and pigmented rat retinae. J Neurobiol 66: 47‐55, 2006.
 64.Kuschel M, Zhou YY, Cheng H, Zhang SJ, Chen Y, Lakatta EG, Xiao RP. G(i) protein‐mediated functional compartmentalization of cardiac beta(2)‐adrenergic signaling. J Biol Chem 274: 22048‐22052, 1999.
 65.Kvetnansky R, Sabban EL, Palkovits M. Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiol Rev 89: 535‐606, 2009.
 66.LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA. Human amygdala activation during conditioned fear acquisition and extinction: A mixed‐trial fMRI study. Neuron 20: 937‐945, 1998.
 67.Langer SZ. 25 years since the discovery of presynaptic receptors: Present knowledge and future perspectives. Trends Pharmacol Sci 18: 95‐99, 1997.
 68.Le Foll B, Gallo A, Le Strat Y, Lu L, Gorwood P. Genetics of dopamine receptors and drug addiction: A comprehensive review. Behav Pharmacol 20: 1‐17, 2009.
 69.Liang KC, McGaugh JL, Yao HY. Involvement of amygdala pathways in the influence of post‐training intra‐amygdala norepinephrine and peripheral epinephrine on memory storage. Brain Res 508: 225‐233, 1990.
 70.Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK. Cardiovascular regulation in mice lacking alpha2‐adrenergic receptor subtypes b and c. Science 273: 803‐805, 1996.
 71.MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE. Central hypotensive effects of the alpha2a‐adrenergic receptor subtype. Science 273: 801‐803, 1996.
 72.Mannelli M, Gheri RG, Selli C, Turini D, Pampanini A, Giusti G, Serio M. A study on human adrenal secretion. Measurement of epinephrine, norepinephrine, dopamine and cortisol in peripheral and adrenal venous blood under surgical stress. J Endocrinol Invest 5: 91‐95, 1982.
 73.Maruyama Y, Nishida M, Sugimoto Y, Tanabe S, Turner JH, Kozasa T, Wada T, Nagao T, Kurose H. Galpha(12/13) mediates alpha(1)‐adrenergic receptor‐induced cardiac hypertrophy. Circ Res 91: 961‐969, 2002.
 74.McGaugh JL. Memory–a century of consolidation. Science 287: 248‐251, 2000.
 75.McGaugh JL. The amygdala modulates the consolidation of memories of emotionally arousing experiences. Annu Rev Neurosci 27: 1‐28, 2004.
 76.McGaugh JL, Roozendaal B. Drug enhancement of memory consolidation: Historical perspective and neurobiological implications. Psychopharmacology (Berl) 202: 3‐14, 2009.
 77.Michelotti GA, Price DT, Schwinn DA. Alpha 1‐adrenergic receptor regulation: Basic science and clinical implications. Pharmacol Ther 88: 281‐309, 2000.
 78.Minatoguchi S, Ito H, Ishimura K, Watanabe H, Imai Y, Koshiji M, Asano K, Hirakawa S, Fujiwara H. Modulation of noradrenaline release through presynaptic alpha 2‐adrenoceptors in congestive heart failure. Am Heart J 130: 516‐521, 1995.
 79.Mirkin BL. Factors influencing the selective secretion of adrenal medullary hormones. J Pharmacol Exp Ther 132: 218‐225, 1961.
 80.Miyashita T, Williams CL. Epinephrine administration increases neural impulses propagated along the vagus nerve: Role of peripheral beta‐adrenergic receptors. Neurobiol Learn Mem 85: 116‐124, 2006.
 81.Moens AL, Yang R, Watts VL, Barouch LA. Beta 3‐adrenoreceptor regulation of nitric oxide in the cardiovascular system. J Mol Cell Cardiol 48: 1088‐1095, 2010.
 82.Morrison SF, Cao WH. Different adrenal sympathetic preganglionic neurons regulate epinephrine and norepinephrine secretion. Am J Physiol Regul Integr Comp Physiol 279: R1763‐1775, 2000.
 83.Moura E, Afonso J, Hein L, Vieira‐Coelho MA. Alpha2‐adrenoceptor subtypes involved in the regulation of catecholamine release from the adrenal medulla of mice. Br J Pharmacol 149: 1049‐1058, 2006.
 84.Mravec B. Role of catecholamine‐induced activation of vagal afferent pathways in regulation of sympathoadrenal system activity: Negative feedback loop of stress response. Endocr Regul 45: 37‐41, 2011.
 85.Pacak K, Palkovits M, Yadid G, Kvetnansky R, Kopin IJ, Goldstein DS. Heterogeneous neurochemical responses to different stressors: A test of Selye's doctrine of nonspecificity. Am J Physiol 275: R1247‐R1255, 1998.
 86.Parfitt GM, Barbosa AK, Campos RC, Koth AP, Barros DM. Moderate stress enhances memory persistence: Are adrenergic mechanisms involved? Behav Neurosci 126: 729‐734, 2012.
 87.Parfitt GM, Barbosa AK, Campos RC, Koth AP, Barros DM. Moderate stress enhances memory persistence: Are adrenergic mechanisms involved? Behav Neurosci 126: 729‐734, 2012.
 88.Parker JD, Newton GE, Landzberg JS, Floras JS, Colucci WS. Functional significance of presynaptic alpha‐adrenergic receptors in failing and nonfailing human left ventricle. Circulation 92: 1793‐1800, 1995.
 89.Parsons MJ, Mata I, Beperet M, Iribarren‐Iriso F, Arroyo B, Sainz R, Arranz MJ, Kerwin R. A dopamine D2 receptor gene‐related polymorphism is associated with schizophrenia in a Spanish population isolate. Psychiatr Genet 17: 159‐163, 2007.
 90.Perez DM, DeYoung MB, Graham RM. Coupling of expressed alpha 1B‐ and alpha 1D‐adrenergic receptor to multiple signaling pathways is both G protein and cell type specific. Mol Pharmacol 44: 784‐795, 1993.
 91.Perez‐Schindler J, Philp A, Hernandez‐Cascales J. Pathophysiological relevance of the cardiac beta2‐adrenergic receptor and its potential as a therapeutic target to improve cardiac function. Eur J Pharmacol 698: 39‐47, 2013.
 92.Philipp M, Hein L. Adrenergic receptor knockout mice: Distinct functions of 9 receptor subtypes. Pharmacol Ther 101: 65‐74, 2004.
 93.Pitman RK, Milad MR, Igoe SA, Vangel MG, Orr SP, Tsareva A, Gamache K, Nader K. Systemic mifepristone blocks reconsolidation of cue‐conditioned fear; propranolol prevents this effect. Behav Neurosci 125: 632‐638, 2011.
 94.Price DT, Chari RS, Berkowitz DE, Meyers WC, Schwinn DA. Expression of alpha 1‐adrenergic receptor subtype mRNA in rat tissues and human SK‐N‐MC neuronal cells: Implications for alpha 1‐adrenergic receptor subtype classification. Mol Pharmacol 46: 221‐226, 1994.
 95.Price DT, Lefkowitz RJ, Caron MG, Berkowitz D, Schwinn DA. Localization of mRNA for three distinct alpha 1‐adrenergic receptor subtypes in human tissues: Implications for human alpha‐adrenergic physiology. Mol Pharmacol 45: 171‐175, 1994.
 96.Quirarte GL, Roozendaal B, McGaugh JL. Glucocorticoid enhancement of memory storage involves noradrenergic activation in the basolateral amygdala. Proc Natl Acad Sci U S A 94: 14048‐14053, 1997.
 97.Ramirez MT, Sah VP, Zhao XL, Hunter JJ, Chien KR, Brown JH. The MEKK‐JNK pathway is stimulated by alpha1‐adrenergic receptor and ras activation and is associated with in vitro and in vivo cardiac hypertrophy. J Biol Chem 272: 14057‐14061, 1997.
 98.Rodriguez‐Romaguera J, Sotres‐Bayon F, Mueller D, Quirk GJ. Systemic propranolol acts centrally to reduce conditioned fear in rats without impairing extinction. Biol Psychiatry 65: 887‐892, 2009.
 99.Rondou P, Haegeman G, Van Craenenbroeck K. The dopamine D4 receptor: Biochemical and signalling properties. Cell Mol Life Sci 67: 1971‐1986, 2010.
 100.Roozendaal B. 1999 Curt P. Richter award. Glucocorticoids and the regulation of memory consolidation. Psychoneuroendocrinology 25: 213‐238, 2000.
 101.Roozendaal B, Barsegyan A, Lee S. Adrenal stress hormones, amygdala activation, and memory for emotionally arousing experiences. Prog Brain Res 167: 79‐97, 2008.
 102.Roozendaal B, Castello NA, Vedana G, Barsegyan A, McGaugh JL. Noradrenergic activation of the basolateral amygdala modulates consolidation of object recognition memory. Neurobiol Learn Mem 90: 576‐579, 2008.
 103.Roozendaal B, Hui GK, Hui IR, Berlau DJ, McGaugh JL, Weinberger NM. Basolateral amygdala noradrenergic activity mediates corticosterone‐induced enhancement of auditory fear conditioning. Neurobiol Learn Mem 86: 249‐255, 2006.
 104.Roozendaal B, McEwen BS, Chattarji S. Stress, memory and the amygdala. Nat Rev Neurosci 10: 423‐433, 2009.
 105.Rubi B, Maechler P. Minireview: New roles for peripheral dopamine on metabolic control and tumor growth: Let's seek the balance. Endocrinology 151: 5570‐5581, 2010.
 106.Rump LC, Bohmann C, Schaible U, Schollhorn J, Limberger N. Alpha 2C‐adrenoceptor‐modulated release of noradrenaline in human right atrium. Br J Pharmacol 116: 2617‐2624, 1995.
 107.Sallinen J, Link RE, Haapalinna A, Viitamaa T, Kulatunga M, Sjoholm B, Macdonald E, Pelto‐Huikko M, Leino T, Barsh GS, Kobilka BK, Scheinin M. Genetic alteration of alpha 2C‐adrenoceptor expression in mice: Influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype‐nonselective alpha 2‐adrenoceptor agonist. Mol Pharmacol 51: 36‐46, 1997.
 108.Sara SJ, Bouret S. Orienting and reorienting: The locus coeruleus mediates cognition through arousal. Neuron 76: 130‐141, 2012.
 109.Schutsky K, Ouyang M, Thomas SA. Xamoterol impairs hippocampus‐dependent emotional memory retrieval via Gi/o‐coupled beta2‐adrenergic signaling. Learn Mem 18: 598‐604, 2011.
 110.Selye H. The Stress of Life. New York: McGraw Hill, 1975.
 111.Selye H. Thymus and adrenals in the response of the organism to injuries and intoxications. Br J Exp Pathol 17: 234‐248, 1936.
 112.Sherin JE, Nemeroff CB. Post‐traumatic stress disorder: The neurobiological impact of psychological trauma. Dialogues Clin Neurosci 13: 263‐278, 2011.
 113.Southwick SM, Paige S, Morgan CA, III, Bremner JD, Krystal JH, Charney DS. Neurotransmitter alterations in PTSD: Catecholamines and serotonin. Semin Clin Neuropsychiatry 4: 242‐248, 1999.
 114.Spiegel A, Shivtiel S, Kalinkovich A, Ludin A, Netzer N, Goichberg P, Azaria Y, Resnick I, Hardan I, Ben‐Hur H, Nagler A, Rubinstein M, Lapidot T. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34 +cells through Wnt signaling. Nat Immunol 8: 1123‐1131, 2007.
 115.Starke K. Presynaptic autoreceptors in the third decade: Focus on alpha2‐adrenoceptors. J Neurochem 78: 685‐693, 2001.
 116.Szabadi E. Functional neuroanatomy of the central noradrenergic system. J Psychopharmacol 27: 659‐693, 2013.
 117.Telegdy G, Adamik A. The action of kisspeptin‐13 on passive avoidance learning in mice. Involvement of transmitters. Behav Brain Res 243: 300‐305, 2013.
 118.Tosti‐Croce C, Lucarelli C, Betto P, Floridi A, Rinaldi R, Salvati A, Taggi F, Sciarra F. Plasma catecholamine responses during a personalized physical stress as a dynamic characterization of essential hypertension. Physiol Behav 49: 685‐690, 1991.
 119.Tremellen KP, Williamson JA, Frewin DB, Russell WJ. Plasma catecholamine levels during exposure to an environment of hyperbaric oxygen. Clin Auton Res 3: 91‐93, 1993.
 120.Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K. All three alpha2‐adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn Schmiedebergs Arch Pharmacol 368: 504‐512, 2003.
 121.Ulrich‐Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10: 397‐409, 2009.
 122.Vaz LJ, Pradella‐Hallinan M, Bueno OF, Pompeia S. Acute glucocorticoid effects on the multicomponent model of working memory. Hum Psychopharmacol 26: 477‐487, 2011.
 123.Vidovic A, Grubisic‐Ilic M, Kozaric‐Kovacic D, Gotovac K, Rakos I, Markotic A, Rabatic S, Dekaris D, Sabioncello A. Exaggerated platelet reactivity to physiological agonists in war veterans with posttraumatic stress disorder. Psychoneuroendocrinology 36: 161‐172, 2011.
 124.Wachter SB, Gilbert EM. Beta‐adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 122: 104‐112, 2012.
 125.Walker DL, Davis M. Light‐enhanced startle: Further pharmacological and behavioral characterization. Psychopharmacology (Berl) 159: 304‐310, 2002.
 126.Westfall TC, Westfall DP. Neurotransmission: The autonomic and somatic motor nervous systems. In: Brunton LL, editor. Goodman & Gilman's The Pharmacological Basis of Therapeutics (12th ed). McGraw Hill Medical, 2011, pp. 171‐218.
 127.Wichmann R, Fornari RV, Roozendaal B. Glucocorticoids interact with the noradrenergic arousal system in the nucleus accumbens shell to enhance memory consolidation of both appetitive and aversive taste learning. Neurobiol Learn Mem 98: 197‐205, 2012.
 128.Williams CL, Men D, Clayton EC. The effects of noradrenergic activation of the nucleus tractus solitarius on memory and in potentiating norepinephrine release in the amygdala. Behav Neurosci 114: 1131‐1144, 2000.
 129.Williams CL, Men D, Clayton EC, Gold PE. Norepinephrine release in the amygdala after systemic injection of epinephrine or escapable footshock: Contribution of the nucleus of the solitary tract. Behav Neurosci 112: 1414‐1422, 1998.
 130.Xiao RP, Avdonin P, Zhou YY, Cheng H, Akhter SA, Eschenhagen T, Lefkowitz RJ, Koch WJ, Lakatta EG. Coupling of beta2‐adrenoceptor to Gi proteins and its physiological relevance in murine cardiac myocytes. Circ Res 84: 43‐52, 1999.
 131.Xiao RP, Ji X, Lakatta EG. Functional coupling of the beta 2‐adrenoceptor to a pertussis toxin‐sensitive G protein in cardiac myocytes. Mol Pharmacol 47: 322‐329, 1995.
 132.Xiao RP, Zhu W, Zheng M, Cao C, Zhang Y, Lakatta EG, Han Q. Subtype‐specific alpha1‐ and beta‐adrenoceptor signaling in the heart. Trends Pharmacol Sci 27: 330‐337, 2006.
 133.Yang D, Song LS, Zhu WZ, Chakir K, Wang W, Wu C, Wang Y, Xiao RP, Chen SR, Cheng H. Calmodulin regulation of excitation‐contraction coupling in cardiac myocytes. Circ Res 92: 659‐667, 2003.
 134.Yetnikoff L, Lavezzi HN, Reichard RA, Zahm DS. An update on the connections of the ventral mesencephalic dopaminergic complex. Neuroscience, 2014.
 135.Young EA, Breslau N. Cortisol and catecholamines in posttraumatic stress disorder: An epidemiologic community study. Arch Gen Psychiatry 61: 394‐401, 2004.
 136.Zhu WZ, Wang SQ, Chakir K, Yang D, Zhang T, Brown JH, Devic E, Kobilka BK, Cheng H, Xiao RP. Linkage of beta1‐adrenergic stimulation to apoptotic heart cell death through protein kinase A‐independent activation of Ca2+/calmodulin kinase II. J Clin Invest 111: 617‐625, 2003.

Related Articles:

Sympathetic Neural Activity to the Cardiovascular System: Integrator of Systemic Physiology and Interindividual Characteristics
Brain Monoamines, Homeostasis, and Adaptive Behavior
Cellular Aspects of Catecholaminergic Neurons
Regulation of G Protein–Coupled Receptors
Dopamine and Renal Function and Blood Pressure Regulation
Pulmonary Vascular Disease
Systemic Hypertension

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

A. William Tank, Dona Lee Wong. Peripheral and Central Effects of Circulating Catecholamines. Compr Physiol 2014, 5: 1-15. doi: 10.1002/cphy.c140007