References |

1. | Belchetz PE, Plant TM, Nakai Y, Keogh EJ, Knobil E. Hypophysial responses to continuous and intermittent delivery of hypothalamic gonadotropin‐releasing hormone. Science 202: 631‐633, 1978. |

2. | Bertram R, Egli M, Toporikova N, Freeman ME. A mathematical model for the mating‐induced prolactin rhythm of female rats. Am J Physiol 290: E573‐E582, 2006. |

3. | Bertram R, Previte J, Sherman A, Kinard TA, Satin LS. The phantom burster model for pancreatic β‐cells. Biophys J 79: 2880‐2892, 2000. |

4. | Bertram R, Sherman A, Satin LS. Metabolic and electrical oscillations: Partners in controlling pulsatile insulin secretion. Am J Physiol 293: E890‐E900, 2007. |

5. | Chen X, Iremonger K, Herbison AE, Kirk V, Sneyd J. Regulation of electrical bursting in a spatiotemporal model of a GnRH neuron. Bull Math Biol 75: 1941‐1960, 2013. |

6. | Clarke IJ, Schlosser PM, Selgrade JF. Multiple stable periodic solutions in a model for hormonal control of the menstrual cycle. Bull Math Biol 65: 157‐173, 2003. |

7. | Clayton TF, Murray AF, Leng G. Modelling the in vivo spike activity of phasically‐firing vasopressin cells. J Neuroendocrinol 22: 1290‐1300, 2010. |

8. | Clement F, Monniaux D. Multiscale modelling of ovarian follicular selection. Prog Biophys Mol Biol 113: 398‐408, 2013. |

9. | Coombes S, Bressloff PC. Bursting: The Genesis of Rhythm in the Nervous System. Singapore: World Scientific, 2005. |

10. | Desroches M, Guckenheimer J, Krauskopf B, Kuehn C, Osinga HM, Wechselberger M. Mixed‐mode oscillations with multiple time scales. SIAM Rev 54: 211‐288, 2012. |

11. | Doedel EJ, Oldeman B. AUTO 07: Continuation and Bifurcation Software for Ordinary Differential Equations. Montreal, Canada: Concordia University, 2009. |

12. | Duan W, Lee K, Herbison AE, Sneyd J. A mathematical model of adult GnRH neurons in mouse brain and its bifurcation analysis. J theor Biol 276: 22‐34, 2011. |

13. | Ermentrout B. Simulating, Analyzing, and Animating Dynamical Systems: A Guide to xppaut for Researchers and Students. Society for Industrial and Applied Mathematics, 2002. |

14. | Ermentrout GB, Terman DH. Mathematical Foundations of Neuroscience. Springer, 2010. |

15. | Erneux T. Applied Delay Differential Equations. Springer, 2009. |

16. | Fall CP, Marland ES, Wagner JM, Tyson JJ. Computational cell biology. In: Interdisciplinary Applied Mathematics. New York: Springer, 2002. |

17. | Fletcher PA, Li Y‐X. An integrated model of electrical spiking, bursting, and calcium oscillations in GnRH neurons. Biophys J 96: 4514‐4524, 2009. |

18. | Freeman ME, Kanyicska B, Lerant A, Nagy GM. Prolactin: Structure, function, and regulation of secretion. Physiol Rev 80: 1523‐1631, 2000. |

19. | Gardner TS, Cantor CR, Collins JJ. Construction of a genetic toggle switch in Escherichia coli. Nature 403: 339‐342, 2000. |

20. | Grattan DR. Behavioural significance of prolactin signalling in the central nervous system during pregnancy and lactation. Reproduction 123: 497‐506, 2002. |

21. | Hille B. Ion Channels of Excitable Membranes. Sunderland, MA: Sinauer Associates, 2001. |

22. | Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117: 500‐544, 1952. |

23. | Izhikevich EM. Dynamical Systems in Neuroscience; The Geometry of Excitability and Bursting. Cambridge, MA: MIT Press, 2010. |

24. | Keener J, Sneyd J. Mathematical Physiology 1: Cellular Physiology. New York, NY: Springer, 2009. |

25. | Keener J, Sneyd J. Mathematical Physiology II: Systems Physiology. New York, NY: Springer, 2009. |

26. | Khadra A, Li Y‐X. A model for the pulsatile secretion of gonadotropin‐releasing hormone from synchronized hypothalamic neurons. Biophys J 91: 74‐83, 2006. |

27. | Knobil E, Plant TM, Wildt L, Belchetz PE, Marshall G. Control of the rhesus monkey menstrual cycle: Permissive role of hypothalamic gonadotropin‐releasing hormone. Science 207: 1371‐1373, 1980. |

28. | Komendantov AO, Trayanova NA, Tasker JG. Somato‐dendritic mechanisms underlying the electrophysiological properties of hypothalamic magnocellular neuroendocrine cells: A multicompartmental model study. J Comput Neurosci 23: 143‐168, 2007. |

29. | LeBeau AP, van Goor F, Stojilkovic SS, Sherman A. Modeling of membrane excitability in gonadotropin‐releasing hormone‐secreting hypothalamic neurons regulated by Ca2+‐mobilizing and adenylyl cyclase‐coupled receptors. J Neurosci 20: 9290‐9297, 2000. |

30. | Lee K, Duan W, Sneyd J, Herbison AE. Two slow calcium‐activated afterhyperpolarization currents control burst firing dynamics in gonadotropin‐releasing hormone neurons. J Neurosci 30: 6214‐6224, 2010. |

31. | Leng G, Brown CH, Russell JA. Physiological pathways regulating the activity of magnocellular neurosecretory cells. Prog Neurobiol 57: 625‐655, 1999. |

32. | Leng G, MacGregor DJ. Mathematical modeling in neuroendocrinology. J Neuroendocrinol 20: 713‐718, 2008. |

33. | Li Y‐X, Keizer J, Stojilkovic SS, Rinzel J. Ca2+ excitability of the ER membrane: An explanation for IP3‐induced Ca2+ oscillations. Am J Physiol 269: C1079‐C1092, 1995. |

34. | Li Y‐X, Khadra A. Robust synchroniy and rhythmogenesis in endocrine neurons via autocrine regulations in vitro and in vivo. Bull Math Biol 70: 2103‐2125, 2008. |

35. | Li Y‐X, Rinzel J, Keizer J, Stojilkovic SS. Calcium oscillations in pituitary gonadotrophs: Comparison of experiment and theory. Proc Natl Acad Sci U S A 91: 58‐62, 1994. |

36. | Li Y‐X, Rinzel J, Vergara L, Stojilkovic SS. Spontaneous electrical and calcium oscillations in unstimulated pituitary gonadotrophs. Biophys J 69: 58‐62, 1995. |

37. | Li Y‐X, Stojilkovic SS, Keizer J, Rinzel J. Sensing and refilling calcium stores in an excitable cell. Biophys J 72: 1080‐1091, 1997. |

38. | Liang Z, Chen L, McClafferty H, Lukowski R, MacGregor D, King JT, Rizzi S, Sausbier M, McCobb DP, Knaus H‐G, Ruth P, Shipston MJ. Control of hypothalamic‐pituitary‐adrenal stress axis activity by the intermediate conductance calcium‐activated potassium channel, SK4. J Physiol 589: 5965‐5986, 2011. |

39. | Lightman SL, Conway‐Campbell BL. The critical role of pulsatile activity of the HPA axis for continuous dynamic equilibration. Nat Rev Neurosci 11: 710‐718, 2010. |

40. | Lisman JE. Bursts as a unit of neural information: Making unreliable synapses reliable. Trends Neurosci 20: 38‐43, 1997. |

41. | Lyons DJ, Horjales‐Araujo E, Broberger C. Synchronized network oscillations in rat tuberoinfundibular dopamine neurons: Switch to tonic discharge by thyrotropin‐releasing hormone. Neuron 65: 217‐229, 2010. |

42. | Ma FY, Grattan DR, Goffin V, Bunn SJ. Prolactin‐regulated tyrosine hydroxylase activity and messenger ribonucleic actid expression in mediobasal hypothalamic cultures: The differential role of specific protein kinases. Endocrinology 146: 93‐102, 2005. |

43. | MacGregor DJ, Leng G. Modelling the hypothalamic control of growth hormone secretion. J Neuroendocrinol 17: 788‐803, 2005. |

44. | MacGregor DJ, Leng G. Phasic firing in vasopressin cells: Understanding its functional significance through computational models. PLoS Comput Biol 8(10): e1002740, 2012. |

45. | MacGregor DJ, Leng G. Spike triggered hormone secretion in vasopressin cells; a model investigation of mechanism and heterogeneous population function. PLoS Comput Biol 9(8): e1003187, 2013. |

46. | Nowacki J, Mazlan S, Osinga HM, Tsaneva‐Atanasova K. The role of large‐conductance calcium‐activated K+ (BK) channels in shaping bursting oscillations of a somatotroph cell model. Physica D 239: 485‐493, 2010. |

47. | Nunemaker CS, Straume M, DeFazio RA, Moenter SM. Gonadotropin‐releasing hormone neurons generate interacting rhythms in multiple time domains. Endocrinology 144: 823‐831, 2003. |

48. | Osinga HM, Sherman A, Tsaneva‐Atanasova K. Cross‐currents between biology and mathematics: The codimension of pseudo‐plateau bursting. Discret Contin Dyn S 32: 2853‐2877, 2012. |

49. | Osinga HM, Tsaneva‐Atanasova K. Dynamics of plateau bursting depending on the location of its equilibrium. J Neuroendocrinol 22: 1301‐1314, 2010. |

50. | Press WH, Teukolsky SA, Vetterling WT, Flannery BP. Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge University Press, 2007. |

51. | Rinzel J, Ermentrout B. Analysis of neural excitability and oscillations. In: Koch C, Segev I, editors. Methods in Neuronal Modeling: From Ions to Networks. Cambridge, MA: MIT Press, 1998, pp. 251‐292. |

52. | Rinzel J, Lee YS. Dissection of a model for neuronal parabolic bursting. J Math Biol 25: 653‐675, 1987. |

53. | Roper P, Callaway J, Armstrong W. Burst initiation and termination in the phasic vasopressin cells of the rat supraoptic nucleus: A combined mathematical, electrical, and calcium fluorescence study. J Neurosci 24: 4818‐4831, 2004. |

54. | Roper P, Callaway J, Shevchenko T, Teruyama R, Armstrong W. AHP's, HAP's and DAP's: How potassium currents regulate the excitability of rat supraoptic neurones. J Comput Neurosci 15: 367‐389, 2003. |

55. | Rossoni E, Feng J, Tirozzi G, Brown D, Leng G, Moos F. Emergent synchronous bursting of oxytocin neuronal network. PLoS Comput Biol 4: e1000123, 2008. |

56. | Scullion S, Brown D, Leng G. Modelling the pituitary response to luteinizing hormone‐releasing hormone. J Neuroendocrinol 16: 265‐271, 2004. |

57. | Selgrade JF. Bifurcation analysis of a model for hormonal regulation of the menstrual cycle. Math Biosci 225: 108‐114, 2010. |

58. | Selgrade JF, Harriss LA, Pasteur RD. A model for hormonal control of the menstrual cycle: Structural consistency but sensitivity with regard to data. J theor Biol 260: 572‐580, 2009. |

59. | Sherman A. Contributions of modeling to understanding stimulus‐secretion coupling in pancreatic β cells. Am J Physiol 271: E362‐E372, 1996. |

60. | Sherman A. Dynamical systems theory in physiology. J Gen Physiol 138: 13‐19, 2011. |

61. | Sherman A, Rinzel J, Keizer J. Emergence of organized bursting in clusters of pancreatic β‐cells by channel sharing. Biophys J 54: 411‐425, 1988. |

62. | Shorten PR, Robson AB, McKinnon AE, Wall DJN. CRH‐induced electrical activity and calcium signaling in pituitary corticotrophs. J theor Biol 206: 395‐405, 2000. |

63. | Stern JV, Osinga HM, LeBeau A, Sherman A. Resetting behavior in a model of bursting in secretory pituitary cells: Distinguishing plateaus from pseudo‐plateaus. Bull Math Biol 70: 68‐88, 2008. |

64. | Stojilkovic SS, Tabak J, Bertram R. Ion channels and signaling in the pituitary gland. Endocr Rev 31: 845‐915, 2010. |

65. | Strogatz SH. Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Boulder, CO: Westview Press, 2001. |

66. | Tabak J, Tomaiuolo M, Gonzalez‐Iglesias AE, Milescue LS, Bertram R. Fast‐activating voltage‐ and calcium‐dependent potassium (BK) conductance promotes bursting in pituitary cells: A dynamic clamp study. J Neurosci 31: 16855‐16863, 2011. |

67. | Tabak J, Toporikova N, Freeman ME, Bertram R. Low dose of dopamine may stimulate prolactin secretion by increasing fast potassium currents. J Comput Neurosci 22: 211‐222, 2007. |

68. | Teka W, Tabak J, Bertram R. The relationship between two fast/slow analysis techniques for bursting oscillations. Chaos 22: e043117, 2012. |

69. | Teka W, Tabak J, Vo T, Wechselberger M, Bertram R. The dynamics underlying pseudo‐plateau bursting in a pituitary cell model. J Math Neurosci 1: 12, 2011. |

70. | Teka W, Tsaneva‐Atanasova K, Bertram R, Tabak J. From plateau to pseudo‐plateau bursting: Making the transition. Bull Math Biol 73: 1292‐1311, 2010. |

71. | Tien JH, Lyles D, Zeeman ML. A potential role of modulating inositol 1,4,5‐trisphosphate receptor desensitization and recovery rates in regulating ovulation. J theor Biol 232: 105‐117, 2005. |

72. | Tsaneva‐Atanasova K, Sherman A, Van Goor F, Stojilkovic SS. Mechanism of spontaneous and receptor‐controlled electrical activity in pituitary somatotrophs: Experiments and theory. J Neurophysiol 98: 131‐144, 2007. |

73. | Tsaneva‐Atanasova K, Zimliki CL, Bertram R, Sherman A. Diffusion of calcium and metabolites in pancreatic islets: Killing oscillations with a pitchfork. Biophys J 90: 3434‐3446, 2006. |

74. | van der Pol B, van der Mark J. The heartbeat considered as a relaxation oscillation, and an electrical model of the heart. Phil Mag 6: 763‐775, 1928. |

75. | Van Goor F, Li Y‐X, Stojilkovic SS. Paradoxical role of large‐conductance calcium‐activated K+ (BK) channels in controlling action potential‐driven Ca2+ entry in anterior pituitary cells. J Neurosci 21: 5902‐5915, 2001. |

76. | Vidal A, Clement F. A dynamical model for the control of the gonadotropin‐releasing hormone neuroscretory system. J Neuroendocrinol 22: 1251‐1266, 2010. |

77. | Vo T, Bertram R, Tabak J, Wechselberger M. Mixed mode oscillations as a mechanism for pseudo‐plateau bursting. J Comput Neurosci 28: 443‐458, 2010. |

78. | Vo T, Bertram R, Wechselberger M. Bifurcations of canard‐induced mixed mode oscillations in a pituitary lactotroph model. Discret Contin Dyn S 32: 2879‐2912, 2012. |

79. | Vo T, Bertram R, Wechselberger M. Multiple geometric viewpoints of mixed mode dynamics associated with pseudo‐plateau bursting. SIAM J Appl Dyn Syst 12: 789‐830, 2013. |

80. | Vo T, Tabak J, Bertram R, Wechselberger M. A geometric understanding of how fast activating potassium channels promote bursting in pituitary cells. J Comput Neurosci 36: 259‐278, 2014. |

81. | Walker JJ, Spiga F, Waite E, Zhao Z, Kershaw Y, Terry JR, Lightman SL. The origin of glucocorticoid hormone oscillations. PLoS Biol 10(6): e1001341, 2012. |

82. | Walker JJ, Terry JR, Lightman SL. Origin of ultradian pulsatility in the hypothalamic‐pituitary‐adrenal axis. Proc R Soc B 277: 1627‐1633, 2010. |

83. | Wildt L, Hausler A, Marshall G, Hutchison JS, Plant TM, Belchetz PE, Knobil E. Frequency and amplitude of gonadotropin‐releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology 109: 376‐385, 1981. |

84. | Zeeman ML. Resonance in the menstrual cycle: A new model of the LH surge. Reprod Biomed Online 7: 295‐300, 2003. |

85. | Zhabodinsky AM. Bistability in the Ca2+/calmodulin‐dependent protein kinase‐phosphatase system. Biophys J 79: 2211‐2221, 2000. |