Comprehensive Physiology Wiley Online Library

Hypothalamus‐Pituitary‐Thyroid Axis

Full Article on Wiley Online Library



ABSTRACT

The hypothalamus‐pituitary‐thyroid (HPT) axis determines the set point of thyroid hormone (TH) production. Hypothalamic thyrotropin‐releasing hormone (TRH) stimulates the synthesis and secretion of pituitary thyrotropin (thyroid‐stimulating hormone, TSH), which acts at the thyroid to stimulate all steps of TH biosynthesis and secretion. The THs thyroxine (T4) and triiodothyronine (T3) control the secretion of TRH and TSH by negative feedback to maintain physiological levels of the main hormones of the HPT axis. Reduction of circulating TH levels due to primary thyroid failure results in increased TRH and TSH production, whereas the opposite occurs when circulating THs are in excess. Other neural, humoral, and local factors modulate the HPT axis and, in specific situations, determine alterations in the physiological function of the axis. The roles of THs are vital to nervous system development, linear growth, energetic metabolism, and thermogenesis. THs also regulate the hepatic metabolism of nutrients, fluid balance and the cardiovascular system. In cells, TH actions are mediated mainly by nuclear TH receptors (210), which modify gene expression. T3 is the preferred ligand of THR, whereas T4, the serum concentration of which is 100‐fold higher than that of T3, undergoes extra‐thyroidal conversion to T3. This conversion is catalyzed by 5′‐deiodinases (D1 and D2), which are TH‐activating enzymes. T4 can also be inactivated by conversion to reverse T3, which has very low affinity for THR, by 5‐deiodinase (D3). The regulation of deiodinases, particularly D2, and TH transporters at the cell membrane control T3 availability, which is fundamental for TH action. © 2016 American Physiological Society. Compr Physiol 6:1387‐1428, 2016.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Schematic representation of TRH neuron distribution and axonal projections in the median eminence. TRH neurons in the PVN of the mediobasal hypothalamus receive regulatory inputs from other neurons, shown here in the ARC neurons. PVN neurons send axonal projections to the median eminence, where TRH is released and enters into the capillaries of the pituitary‐portal circulation to reach the pituitary. Tanycytes, specialized glial cells that play a role in HPT axis regulation, are shown in the floor of the third ventricle. Tanycytes are part of the ependymal layer (ependimary cells can also be seen in the compound image), and as can be seen in the figure, they have long processes that extend to the median eminence. ARC, arcuate nucleus; PVN, paraventricular nucleus; 3V, third ventricle.
Figure 2. Figure 2. Organization of the mouse TRH gene promoter and translated regions, and a schematic of the posttranslational processing of pre‐pro‐TRH. The TRH gene is represented in the first part of the figure with three regulatory elements in the promoter region (GRE, CRE2, and TRE/Site 4) and three exons (E1, E2, and E3). The pre‐pro‐TRH mRNA is synthetized in the rough endoplasmatic reticulum, and then pre‐pro‐TRH is cleaved to form pro‐TRH in the endoplasmatic reticulum. In the Golgi, pro‐TRH is processed by PC 1/3 to generate smaller intermediate forms, which are then processed in the secretory granules where basic residues (lysine and arginine) are cleaved by PC and removed by carboxy‐peptidases E and D, and the glycine is converted to amide by peptidylglycine alpha‐amidating monooxygenase enzyme, resulting in biologically active TRH. TRH can be inactivated by PPII. GRE, glucocorticoid response element; CRE2, cAMP response element 2; TRE, thyroid hormone response element; PC1/3 and 2, prohormone convertases 1/3 and 2, CPE and CPD, carboxy‐peptidases E and D; PAM, peptidylglycine alpha‐amidating monooxygenase enzyme; PPII, pyroglutamyl peptidase II.
Figure 3. Figure 3. Schematic figure showing the main inputs to TRH neurons from the ARC, the DMN, and the medulla, as well as integration with leptin signaling from adipose tissue. TRH neurons in the PVN receive stimulatory and inhibitory inputs from several different neuron types in the ARC, the DMN, and medulla as it is represented in the figure by black arrows and red lines, respectively. Adipose tissue secretes leptin and other regulatory signals to both the ARC and DMN, as well as directly to TRH neurons in the PVN. PVN, paraventricular nucleus; ARC, arcuate nucleus; DMN, dorsomedial nucleus; 3V, third ventricle; AgRP, agouti‐related protein; NPY, neuropeptide Y; αMSH, melanocortin stimulating hormone; CART, cocaine and amphetamine‐regulated transcript.
Figure 4. Figure 4. Adeno‐pituitary development. Temporal and spatial activation of pituitary transcription factors. Solid arrows indicate the activation of expression, dotted arrows indicate an unknown role in the activation of expression, dashed arrows indicate an undefined role and dashdot arrows indicate an action of an important factor in the maintenance of long‐term cell function. BMP2, bone morphogenic protein 2; EGR1, early growth response 1; ER, oestrogen receptor; FGF8, fibroblast growth factor 8; GATA2, GATA‐binding protein 2; HESX1, HESX homeobox 1; ISL1, ISL LIM homeobox 1; LHX3, LIM homeobox 3; LHX4, LIM homeobox 4; LIF, leukaemia inhibitory factor; MSX1, msh homeobox 1; NeuroD1, neurogenic differentiation 1; PIT1, POU class 1 homeobox 1; PITX1, paired‐like homeodomain 1; PITX2, paired‐like homeodomain 2; POMC, pro‐opiomelanocortin; PROP1, prophet of Pit‐1; RAR, retinoic acid receptor; SF1, steroidogenic factor 1; T3r, thyroid hormone nuclear receptor; TEF, thyrotrope embryonic factor; TPIT, T‐box 19; Zn15, zinc finger protein Zn15. Used with permission, from figure 2 of 123.
Figure 5. Figure 5. N‐linked oligosacharides of thyrotrophin. The sulfated biantennary structure (A) representes that of bovine TSH and bovine luteinizing hormone (LH). The sulfated and sialylated oligosaccharide is typical of human TSH (hTSH) and human LH. The sialylated nonsulfated structure (C) representes that of recombinant hTSH expressed in Chinese hamster ovary cells. Mannose (o), N‐acetyl‐glucosamine (quadrado preto), N‐acetyl‐galactosamine (circulo preto), fucose (triangulo preto), galactose (Δ), and sialic acid (NeuAc). Used with permission, from figure 4 of 516.
Figure 6. Figure 6. Regulation of the HPT axis. The PVN in the hypothalamus releases TRH, which acts on pituitary thyrotropes to stimulate TSH synthesis. TSH acts on thyrocytes to stimulate all steps of thyroid hormone synthesis. The thyroid hormones T4 and T3 act on PVN neurons and on the thyrotropes to inhibit TRH and TSH synthesis and release and this feedback regulation is the main regulatory mechanism of thyroid function. The pituitary thyrotropes are also regulated by local factors in through autocrine and paracrine pathways. Green arrows represent stimulation, and red arrows represent inhibition.
Figure 7. Figure 7. TSH Circadian Rhythm in normal men and women. Twenty‐four‐hour serum TSH concentration time series in 24 healthy men and 22 healthy women. Blood samples were taken every 10 min for 24 h. Blood sampling started at 09:00h. Lights were off between 23:00 h until 07:30 h next morning. Data are shown as the group mean and SEM. Republished with permission of Endocrine Society, from figure 1 of 454.
Figure 8. Figure 8. Thyroid differentiation factors. Factors are represented by ovals; gene promoters are represented by retangles. Binding of a regulator to a promoter is indicated by a solid arrow. Genes encoding regulators are linked to their respective regulators by dashed arrows. Physical interaction between factors is indicated by a thick line arrow. Republished with permission of Endocrine Society, from figure 2 of 121.
Figure 9. Figure 9. Representation of a follicular thyroid cell showing the main steps of thyroid hormone synthesis. A follicular thyroid cell is shown. In the basal membrane, circulating iodine actively enters the cell using the sodium gradient through NIS; the transport of iodide from the cytosol to the colloid occurs via another protein, PDS. In the colloid, iodide oxidation, organification of thyroglobulin forming MIT and DIT, and coupling of MIT and DIT resulting in T3 and T4 are mediated by TPO, an enzyme located in the apical membrane that utilizes H2O2 generated by DUOX2 (also located in the apical membrane) to mediate its enzymatic effects. Colloid containing thyroglobulin, thyroid hormones, MIT and DIT are incorporated by the cell into vesicles containing proteolytic enzymes, which cleave thyroglobulin to generate the free thyroid hormones T3 and T4 as well as MIT and DIT; the remaining iodide is recycled and used again by the cell. Free T3 and T4 are then released into circulation by MCT8. NIS, sodium‐iodide symporter; PDS, Pendrin; DUOX, dual oxidase type 2; TPO, thyroperoxidase; MIT, monoiodothyrosine; DIT, diiodotyrosine; MCT8, monocarboxylate transporter 8.
Figure 10. Figure 10. Thyroid hormone metabolism. Schematic representation of the deiodinase‐mediated activation or inactivation of thyroxine and triiodothyronine. Used with permission of Springer Science+Business Media, figure 1 from 336.
Figure 11. Figure 11. Origin of THR‐bound T3. Created using data from 50, 104, and 496. Total THR occupancy for each rat tissue is represented by percentage of THR saturation. (L)T3 refers to T3 generated from T4. (P)T3 refers to plasma T3.
Figure 12. Figure 12. Subtypes of THRs and tissue distributions. THRα1, THRβ1, THRβ2, and THRβ1 are able to bind T3 and form dimers. The DBD of all THRs subtypes are highly conserved; however, the subtypes THRα2, THRΔα1‐2, and THRΔβ3 are unable to bind T3 due to important changes in the LBD. AF2, activation function 2. See details in the text.
Figure 13. Figure 13. Schematic representation of TRE arrangements. The arrows represent sequences of consensus nucleotides half‐sites: (A) direct repeat orientation, (B) palindrome, and (C) inverted palindrome. TRE, thyroid hormone response element.
Figure 14. Figure 14. Pattern of THR and RXR interactions with corepressors and coactivators. In the absence of T3, a co‐repressor is bound to the RXR‐THR heterodimer at the positive TRE, thereby actively repressing target gene expression. When T3 binds to the THR dimer, the co‐repressor is released and co‐activators are recruited, which results in activation of gene transcription. CoA, co‐activator; CoR, co‐repressor; RXR, retinoid X receptor; THR, thyroid hormone receptor; TER, thyroid‐hormone responsive elemento. Used with permission, from figure 3 of 406.
Figure 15. Figure 15. Thyroid hormone regulation of metabolic pathways. TRH and TSH respond primarily to circulating serum T4, converted in the hypothalamus and pituitary to T3 by the 5′‐deiodinase type 2 (D2). The monocarboxylate transporter 8 (MCT8) is required for T3 transport into the pituitary and hypothalamus. A, parvalbuminergic neurons (PBN): PBN are directly linked to the regulation of cardiovascular function, blood pressure, and body temperature. B, paraventricular nucleus of the hypothlamus (PVN): leptin provides feedback at the PVN, stimulates signal transducer and activator of transcription (STAT)3 phosphorylation (STAT3‐P*), which directly stimulates TRH expression. C, ventromedial nucleus of the hypothalamus (VMH): hyperthyroidism or T3 treatment stimulates de novo fatty acid synthesis in the VMH, which inhibits AMPK phosphorylation and increases fatty acid synthase (FAS) activity. Increased hypothalamic lipid synthesis is associated with activation of the sympathetic nervous system (SNS) which stimulates brown adipose tissue (BAT). D, BAT: adrenergic signaling through the β3‐adrenergic receptor (AR) stimulates UCP1 gene expression, stimulates D2 activity by deubiquitination, and promotes thermogenesis and weight loss. The metabolic signal from bile acid via the G protein‐coupled membrane bile acid receptor (TGR5) has been shown in one model to stimulate D2 activity and local T3 production, which further stimulates BAT lipolysis, UCP1 expression, and thermogenesis. E, white adipose tissue (WAT): T3 stimulates local production of norepinephrine (NE), increasing lipolysis and reducing body fat. F, liver: T3 is involved in both cholesterol and fatty acid metabolism. HOMGCR, 3‐hydroxy‐3‐methylglutaryl‐CoA reductase; ACC1, acetyl‐CoA carboxylase 1; CYP7a1, cytochrome P‐450 7A1; CPT‐1α, carnitine palmitoyltransferase 1α; LDL‐R, low‐density lipoprotein receptor. G, muscle: Forkhead box O3 (FoxO3) induces D2 expression, increases local T3 in skeletal muscle, and promotes T3‐target gene expression; myoD, myosin heavy chain (MHC) and sarcoplasmic reticulum Ca2+‐ATPase (SERCA). Local T3 also determines the relative expression level of MHC and SERCA isoforms. T3 stimulates SERCA, which hydrolyzes ATP and increases energy expenditure. H, pancreas: T3 and THR are required for normal pancreatic development and function. In rat pancreatic β cells, expression of THR and D2 are activated during normal development. T3 treatment enhances Mafa (v‐maf musculoaponeurotic fibrosarcoma oncogene homolog A), the key factor for maturation of β cells to secrete insulin in response to glucose. T3 stimulates cyclin D1 (CD1) and promotes proliferation. Used with permission, from figure 1 of 378.
Figure 16. Figure 16. Oxygen consumption (QO2) in hepatocytes from hypo‐, eu‐ and hyperthyroid rats. Non‐Mit, non mitocondrial. Used with permission, from figure 7 of 496.


Figure 1. Schematic representation of TRH neuron distribution and axonal projections in the median eminence. TRH neurons in the PVN of the mediobasal hypothalamus receive regulatory inputs from other neurons, shown here in the ARC neurons. PVN neurons send axonal projections to the median eminence, where TRH is released and enters into the capillaries of the pituitary‐portal circulation to reach the pituitary. Tanycytes, specialized glial cells that play a role in HPT axis regulation, are shown in the floor of the third ventricle. Tanycytes are part of the ependymal layer (ependimary cells can also be seen in the compound image), and as can be seen in the figure, they have long processes that extend to the median eminence. ARC, arcuate nucleus; PVN, paraventricular nucleus; 3V, third ventricle.


Figure 2. Organization of the mouse TRH gene promoter and translated regions, and a schematic of the posttranslational processing of pre‐pro‐TRH. The TRH gene is represented in the first part of the figure with three regulatory elements in the promoter region (GRE, CRE2, and TRE/Site 4) and three exons (E1, E2, and E3). The pre‐pro‐TRH mRNA is synthetized in the rough endoplasmatic reticulum, and then pre‐pro‐TRH is cleaved to form pro‐TRH in the endoplasmatic reticulum. In the Golgi, pro‐TRH is processed by PC 1/3 to generate smaller intermediate forms, which are then processed in the secretory granules where basic residues (lysine and arginine) are cleaved by PC and removed by carboxy‐peptidases E and D, and the glycine is converted to amide by peptidylglycine alpha‐amidating monooxygenase enzyme, resulting in biologically active TRH. TRH can be inactivated by PPII. GRE, glucocorticoid response element; CRE2, cAMP response element 2; TRE, thyroid hormone response element; PC1/3 and 2, prohormone convertases 1/3 and 2, CPE and CPD, carboxy‐peptidases E and D; PAM, peptidylglycine alpha‐amidating monooxygenase enzyme; PPII, pyroglutamyl peptidase II.


Figure 3. Schematic figure showing the main inputs to TRH neurons from the ARC, the DMN, and the medulla, as well as integration with leptin signaling from adipose tissue. TRH neurons in the PVN receive stimulatory and inhibitory inputs from several different neuron types in the ARC, the DMN, and medulla as it is represented in the figure by black arrows and red lines, respectively. Adipose tissue secretes leptin and other regulatory signals to both the ARC and DMN, as well as directly to TRH neurons in the PVN. PVN, paraventricular nucleus; ARC, arcuate nucleus; DMN, dorsomedial nucleus; 3V, third ventricle; AgRP, agouti‐related protein; NPY, neuropeptide Y; αMSH, melanocortin stimulating hormone; CART, cocaine and amphetamine‐regulated transcript.


Figure 4. Adeno‐pituitary development. Temporal and spatial activation of pituitary transcription factors. Solid arrows indicate the activation of expression, dotted arrows indicate an unknown role in the activation of expression, dashed arrows indicate an undefined role and dashdot arrows indicate an action of an important factor in the maintenance of long‐term cell function. BMP2, bone morphogenic protein 2; EGR1, early growth response 1; ER, oestrogen receptor; FGF8, fibroblast growth factor 8; GATA2, GATA‐binding protein 2; HESX1, HESX homeobox 1; ISL1, ISL LIM homeobox 1; LHX3, LIM homeobox 3; LHX4, LIM homeobox 4; LIF, leukaemia inhibitory factor; MSX1, msh homeobox 1; NeuroD1, neurogenic differentiation 1; PIT1, POU class 1 homeobox 1; PITX1, paired‐like homeodomain 1; PITX2, paired‐like homeodomain 2; POMC, pro‐opiomelanocortin; PROP1, prophet of Pit‐1; RAR, retinoic acid receptor; SF1, steroidogenic factor 1; T3r, thyroid hormone nuclear receptor; TEF, thyrotrope embryonic factor; TPIT, T‐box 19; Zn15, zinc finger protein Zn15. Used with permission, from figure 2 of 123.


Figure 5. N‐linked oligosacharides of thyrotrophin. The sulfated biantennary structure (A) representes that of bovine TSH and bovine luteinizing hormone (LH). The sulfated and sialylated oligosaccharide is typical of human TSH (hTSH) and human LH. The sialylated nonsulfated structure (C) representes that of recombinant hTSH expressed in Chinese hamster ovary cells. Mannose (o), N‐acetyl‐glucosamine (quadrado preto), N‐acetyl‐galactosamine (circulo preto), fucose (triangulo preto), galactose (Δ), and sialic acid (NeuAc). Used with permission, from figure 4 of 516.


Figure 6. Regulation of the HPT axis. The PVN in the hypothalamus releases TRH, which acts on pituitary thyrotropes to stimulate TSH synthesis. TSH acts on thyrocytes to stimulate all steps of thyroid hormone synthesis. The thyroid hormones T4 and T3 act on PVN neurons and on the thyrotropes to inhibit TRH and TSH synthesis and release and this feedback regulation is the main regulatory mechanism of thyroid function. The pituitary thyrotropes are also regulated by local factors in through autocrine and paracrine pathways. Green arrows represent stimulation, and red arrows represent inhibition.


Figure 7. TSH Circadian Rhythm in normal men and women. Twenty‐four‐hour serum TSH concentration time series in 24 healthy men and 22 healthy women. Blood samples were taken every 10 min for 24 h. Blood sampling started at 09:00h. Lights were off between 23:00 h until 07:30 h next morning. Data are shown as the group mean and SEM. Republished with permission of Endocrine Society, from figure 1 of 454.


Figure 8. Thyroid differentiation factors. Factors are represented by ovals; gene promoters are represented by retangles. Binding of a regulator to a promoter is indicated by a solid arrow. Genes encoding regulators are linked to their respective regulators by dashed arrows. Physical interaction between factors is indicated by a thick line arrow. Republished with permission of Endocrine Society, from figure 2 of 121.


Figure 9. Representation of a follicular thyroid cell showing the main steps of thyroid hormone synthesis. A follicular thyroid cell is shown. In the basal membrane, circulating iodine actively enters the cell using the sodium gradient through NIS; the transport of iodide from the cytosol to the colloid occurs via another protein, PDS. In the colloid, iodide oxidation, organification of thyroglobulin forming MIT and DIT, and coupling of MIT and DIT resulting in T3 and T4 are mediated by TPO, an enzyme located in the apical membrane that utilizes H2O2 generated by DUOX2 (also located in the apical membrane) to mediate its enzymatic effects. Colloid containing thyroglobulin, thyroid hormones, MIT and DIT are incorporated by the cell into vesicles containing proteolytic enzymes, which cleave thyroglobulin to generate the free thyroid hormones T3 and T4 as well as MIT and DIT; the remaining iodide is recycled and used again by the cell. Free T3 and T4 are then released into circulation by MCT8. NIS, sodium‐iodide symporter; PDS, Pendrin; DUOX, dual oxidase type 2; TPO, thyroperoxidase; MIT, monoiodothyrosine; DIT, diiodotyrosine; MCT8, monocarboxylate transporter 8.


Figure 10. Thyroid hormone metabolism. Schematic representation of the deiodinase‐mediated activation or inactivation of thyroxine and triiodothyronine. Used with permission of Springer Science+Business Media, figure 1 from 336.


Figure 11. Origin of THR‐bound T3. Created using data from 50, 104, and 496. Total THR occupancy for each rat tissue is represented by percentage of THR saturation. (L)T3 refers to T3 generated from T4. (P)T3 refers to plasma T3.


Figure 12. Subtypes of THRs and tissue distributions. THRα1, THRβ1, THRβ2, and THRβ1 are able to bind T3 and form dimers. The DBD of all THRs subtypes are highly conserved; however, the subtypes THRα2, THRΔα1‐2, and THRΔβ3 are unable to bind T3 due to important changes in the LBD. AF2, activation function 2. See details in the text.


Figure 13. Schematic representation of TRE arrangements. The arrows represent sequences of consensus nucleotides half‐sites: (A) direct repeat orientation, (B) palindrome, and (C) inverted palindrome. TRE, thyroid hormone response element.


Figure 14. Pattern of THR and RXR interactions with corepressors and coactivators. In the absence of T3, a co‐repressor is bound to the RXR‐THR heterodimer at the positive TRE, thereby actively repressing target gene expression. When T3 binds to the THR dimer, the co‐repressor is released and co‐activators are recruited, which results in activation of gene transcription. CoA, co‐activator; CoR, co‐repressor; RXR, retinoid X receptor; THR, thyroid hormone receptor; TER, thyroid‐hormone responsive elemento. Used with permission, from figure 3 of 406.


Figure 15. Thyroid hormone regulation of metabolic pathways. TRH and TSH respond primarily to circulating serum T4, converted in the hypothalamus and pituitary to T3 by the 5′‐deiodinase type 2 (D2). The monocarboxylate transporter 8 (MCT8) is required for T3 transport into the pituitary and hypothalamus. A, parvalbuminergic neurons (PBN): PBN are directly linked to the regulation of cardiovascular function, blood pressure, and body temperature. B, paraventricular nucleus of the hypothlamus (PVN): leptin provides feedback at the PVN, stimulates signal transducer and activator of transcription (STAT)3 phosphorylation (STAT3‐P*), which directly stimulates TRH expression. C, ventromedial nucleus of the hypothalamus (VMH): hyperthyroidism or T3 treatment stimulates de novo fatty acid synthesis in the VMH, which inhibits AMPK phosphorylation and increases fatty acid synthase (FAS) activity. Increased hypothalamic lipid synthesis is associated with activation of the sympathetic nervous system (SNS) which stimulates brown adipose tissue (BAT). D, BAT: adrenergic signaling through the β3‐adrenergic receptor (AR) stimulates UCP1 gene expression, stimulates D2 activity by deubiquitination, and promotes thermogenesis and weight loss. The metabolic signal from bile acid via the G protein‐coupled membrane bile acid receptor (TGR5) has been shown in one model to stimulate D2 activity and local T3 production, which further stimulates BAT lipolysis, UCP1 expression, and thermogenesis. E, white adipose tissue (WAT): T3 stimulates local production of norepinephrine (NE), increasing lipolysis and reducing body fat. F, liver: T3 is involved in both cholesterol and fatty acid metabolism. HOMGCR, 3‐hydroxy‐3‐methylglutaryl‐CoA reductase; ACC1, acetyl‐CoA carboxylase 1; CYP7a1, cytochrome P‐450 7A1; CPT‐1α, carnitine palmitoyltransferase 1α; LDL‐R, low‐density lipoprotein receptor. G, muscle: Forkhead box O3 (FoxO3) induces D2 expression, increases local T3 in skeletal muscle, and promotes T3‐target gene expression; myoD, myosin heavy chain (MHC) and sarcoplasmic reticulum Ca2+‐ATPase (SERCA). Local T3 also determines the relative expression level of MHC and SERCA isoforms. T3 stimulates SERCA, which hydrolyzes ATP and increases energy expenditure. H, pancreas: T3 and THR are required for normal pancreatic development and function. In rat pancreatic β cells, expression of THR and D2 are activated during normal development. T3 treatment enhances Mafa (v‐maf musculoaponeurotic fibrosarcoma oncogene homolog A), the key factor for maturation of β cells to secrete insulin in response to glucose. T3 stimulates cyclin D1 (CD1) and promotes proliferation. Used with permission, from figure 1 of 378.


Figure 16. Oxygen consumption (QO2) in hepatocytes from hypo‐, eu‐ and hyperthyroid rats. Non‐Mit, non mitocondrial. Used with permission, from figure 7 of 496.
References
 1.Abel ED, Ahima RS, Boers ME, Elmquist JK, Wondisford FE. Critical role for thyroid hormone receptor beta2 in the regulation of paraventricular thyrotropin‐releasing hormone neurons. J Clin Invest 107: 1017‐1023, 2001.
 2.Abel ED, Boers ME, Pazos‐Moura C, Moura E, Kaulbach H, Zakaria M, Lowell B, Radovick S, Liberman MC, Wondisford F. Divergent roles for thyroid hormone receptor beta isoforms in the endocrine axis and auditory system. J Clin Invest 104: 291‐300, 1999.
 3.Abel ED, Kaulbach HC, Campos‐Barros A, Ahima RS, Boers ME, Hashimoto K, Forrest D, Wondisford FE. Novel insight from transgenic mice into thyroid hormone resistance and the regulation of thyrotropin. J Clin Invest 103: 271‐279, 1999.
 4.Abel ED, Moura EG, Ahima RS, Campos‐Barros A, Pazos‐Moura CC, Boers ME, Kaulbach HC, Forrest D, Wondisford FE. Dominant inhibition of thyroid hormone action selectively in the pituitary of thyroid hormone receptor‐beta null mice abolishes the regulation of thyrotropin by thyroid hormone. Mol Endocrinol 17: 1767‐1776, 2003.
 5.Agnati LF, Fuxe K, Benfenati F, Battistini N, Harfstrand A, Tatemoto K, Hokfelt T, Mutt V. Neuropeptide Y in vitro selectivity increases the number of alpha 2‐adrenergic binding sites in membranes of the medulla oblongata of the rat. Acta Physiol Scand 118: 293‐295, 1983.
 6.al‐Adsani H, Hoffer LJ, Silva JE. Resting energy expenditure is sensitive to small dose changes in patients on chronic thyroid hormone replacement. J Clin Endocrinol Metab 82: 1118‐1125, 1997.
 7.Alkemade A, Friesema EC, Unmehopa UA, Fabriek BO, Kuiper GG, Leonard JL, Wiersinga WM, Swaab DF, Visser TJ, Fliers E. Neuroanatomical pathways for thyroid hormone feedback in the human hypothalamus. J Clin Endocrinol Metab 90: 4322‐4334, 2005.
 8.Almeida NA, Cordeiro A, Machado DS, Souza LL, Ortiga‐Carvalho TM, Campos‐de‐Carvalho AC, Wondisford FE, Pazos‐Moura CC. Connexin40 messenger ribonucleic acid is positively regulated by thyroid hormone (TH) acting in cardiac atria via the TH receptor. Endocrinology 150: 546‐554, 2009.
 9.Alonso M, Goodwin C, Liao X, Ortiga‐Carvalho T, Machado DS, Wondisford FE, Refetoff S, Weiss RE. In vivo interaction of steroid receptor coactivator (SRC)‐1 and the activation function‐2 domain of the thyroid hormone receptor (TR) beta in TRbeta E457A knock‐in and SRC‐1 knockout mice. Endocrinology 150: 3927‐3934, 2009.
 10.Alonso M, Goodwin C, Liao X, Page D, Refetoff S, Weiss RE. Effects of maternal levels of thyroid hormone (TH) on the hypothalamus‐pituitary‐thyroid set point: Studies in TH receptor beta knockout mice. Endocrinology 148: 5305‐5312, 2007.
 11.Alquier C, Ruf J, Athouel‐Haon AM, Carayon P. Immunocytochemical study of localization and traffic of thyroid peroxidase/microsomal antigen. Autoimmunity 3: 113‐123, 1989.
 12.Ambach G, Palkovits M. Blood supply of the rat hypothalamus. II. Nucleus paraventricularis. Acta Morphol Acad Sci Hung 22: 311‐320, 1974.
 13.Ambach G, Palkovits M, Szentagothai J. Blood supply of the rat hypothalamus. IV. Retrochiasmatic area, median eminence, arcuate nucleus. Acta Morphol Acad Sci Hung 24: 93‐119, 1976.
 14.Amendola E, De Luca P, Macchia PE, Terracciano D, Rosica A, Chiappetta G, Kimura S, Mansouri A, Affuso A, Arra C, Macchia V, Di Lauro R, De Felice M. A mouse model demonstrates a multigenic origin of congenital hypothyroidism. Endocrinology 146: 5038‐5047, 2005.
 15.Ameziane‐El‐Hassani R, Morand S, Boucher JL, Frapart YM, Apostolou D, Agnandji D, Gnidehou S, Ohayon R, Noel‐Hudson MS, Francon J, Lalaoui K, Virion A, Dupuy C. Dual oxidase‐2 has an intrinsic Ca2+‐dependent H2O2‐generating activity. J Biol Chem 280: 30046‐30054, 2005.
 16.Amma LL, Campos‐Barros A, Wang Z, Vennstrom B, Forrest D. Distinct tissue‐specific roles for thyroid hormone receptors beta and alpha1 in regulation of type 1 deiodinase expression. Mol Endocrinol 15: 467‐475, 2001.
 17.Andersen B, Rosenfeld MG. Pit‐1 determines cell types during development of the anterior pituitary gland. A model for transcriptional regulation of cell phenotypes in mammalian organogenesis. J Biol Chem 269: 29335‐29338, 1994.
 18.Anderson GM, Hardy SL, Valent M, Valent M, Billings HJ, Connors JM, Goodman RL. Evidence that thyroid hormones act in the ventromedial preoptic area and the premammillary region of the brain to allow the termination of the breeding season in the ewe. Endocrinology 144: 2892‐2901, 2003.
 19.Andros G, Wollman SH. Autoradiographic localization of radioiodide in the thyroid gland of the mouse. Am J Physiol 213: 198‐208, 1967.
 20.Aninye IO, Matsumoto S, Sidhaye AR, Wondisford FE. Circadian regulation of Tshb gene expression by Rev‐Erbalpha (NR1D1) and nuclear corepressor 1 (NCOR1). J Biol Chem 289: 17070‐17077, 2014.
 21.Anniko M, Rosenkvist U. Tectorial and basal membranes in experimental hypothyroidism. Arch Otolaryngol 108: 218‐220, 1982.
 22.Arancibia S, Rage F, Astier H, Tapia‐Arancibia L. Neuroendocrine and autonomous mechanisms underlying thermoregulation in cold environment. Neuroendocrinology 64: 257‐267, 1996.
 23.Arancibia S, Tapia‐Arancibia L, Astier H, Assenmacher I. Physiological evidence for alpha 1‐adrenergic facilitatory control of the cold‐induced TRH release in the rat, obtained by push‐pull cannulation of the median eminence. Neurosci Lett 100: 169‐174, 1989.
 24.Arima T, Spiro MJ, Spiro RG. Studies on the carbohydrate units of thyroglobulin. Evaluation of their microheterogeneity in the human and calf proteins. J Biol Chem 247: 1825‐1835, 1972.
 25.Arrojo EDR, Fonseca TL, Werneck‐de‐Castro JP, Bianco AC. Role of the type 2 iodothyronine deiodinase (D2) in the control of thyroid hormone signaling. Biochim Biophys Acta 1830: 3956‐3964, 2013.
 26.Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves‐Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D. Disruption of the uncoupling protein‐2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 26: 435‐439, 2000.
 27.Astapova I, Lee LJ, Morales C, Tauber S, Bilban M, Hollenberg AN. The nuclear corepressor, NCoR, regulates thyroid hormone action in vivo. Proc Natl Acad Sci U S A 105: 19544‐19549, 2008.
 28.Ayers S, Switnicki MP, Angajala A, Lammel J, Arumanayagam AS, Webb P. Genome‐wide binding patterns of thyroid hormone receptor beta. PLoS One 9, 2014.
 29.Barbakadze T, Natsvlishvili N, Mikeladze D. Thyroid hormones differentially regulate phosphorylation of ERK and Akt via integrin alphavbeta3 receptor in undifferentiated and differentiated PC‐12 cells. Cell Biochem Funct 32: 282‐286, 2014.
 30.Barbe P, Larrouy D, Boulanger C, Chevillotte E, Viguerie N, Thalamas C, Oliva Trastoy M, Roques M, Vidal H, Langin D. Triiodothyronine‐mediated up‐regulation of UCP2 and UCP3 mRNA expression in human skeletal muscle without coordinated induction of mitochondrial respiratory chain genes. FASEB J 15: 13‐15, 2001.
 31.Bargi‐Souza P, Kucka M, Bjelobaba I, Tomic M, Janjic MM, Nunes MT, Stojilkovic SS. Loss of basal and TRH‐stimulated Tshb expression in dispersed pituitary cells. Endocrinology 156: 242‐254, 2015.
 32.Barreiro Arcos M, Sterle H, Paulazo M, Valli E, Klecha A, Isse B, Pellizas C, Farias R, Cremaschi G. Cooperative nongenomic and genomic actions on thyroid hormone mediated‐modulation of t cell proliferation involve up‐regulation of thyroid hormone receptor and inducible nitric oxide synthase expression. J Cell Physiol 226: 3208‐3218, 2011.
 33.Barrett P, Ebling FJ, Schuhler S, Wilson D, Ross AW, Warner A, Jethwa P, Boelen A, Visser TJ, Ozanne DM, Archer ZA, Mercer JG, Morgan PJ. Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the seasonal control of body weight and reproduction. Endocrinology 148: 3608‐3617, 2007.
 34.Bartalena L. Recent achievements in studies on thyroid hormone‐binding proteins. Endocr Rev 11: 47‐64, 1990.
 35.Bassett JH, Boyde A, Howell PG, Bassett RH, Galliford TM, Archanco M, Evans H, Lawson MA, Croucher P, St Germain DL, Galton VA, Williams GR. Optimal bone strength and mineralization requires the type 2 iodothyronine deiodinase in osteoblasts. Proc Natl Acad Sci U S A 107: 7604‐7609, 2010.
 36.Bassett JH, Harvey CB, Williams GR. Mechanisms of thyroid hormone receptor‐specific nuclear and extra nuclear actions. Mol Cell Endocrinol 213: 1‐11, 2003.
 37.Bassett JH, Nordstrom K, Boyde A, Howell PG, Kelly S, Vennstrom B, Williams GR. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol 21: 1893‐1904, 2007.
 38.Bassett JH, Williams GR. The skeletal phenotypes of TRalpha and TRbeta mutant mice. J Mol Endocrinol 42: 269‐282, 2009.
 39.Beck‐Peccoz P, Amr S, Menezes‐Ferreira MM, Faglia G, Weintraub BD. Decreased receptor binding of biologically inactive thyrotropin in central hypothyroidism. Effect of treatment with thyrotropin‐releasing hormone. N Engl J Med 312: 1085‐1090, 1985.
 40.Belforte FS, Miras MB, Olcese MC, Sobrero G, Testa G, Munoz L, Gruneiro‐Papendieck L, Chiesa A, Gonzalez‐Sarmiento R, Targovnik HM, Rivolta CM. Congenital goitrous hypothyroidism: Mutation analysis in the thyroid peroxidase gene. Clin Endocrinol (Oxf) 76: 568‐576, 2012.
 41.Belforte FS, Targovnik AM, Gonzalez‐Lebrero RM, Osorio Larroche C, Citterio CE, Gonzalez‐Sarmiento R, Miranda MV, Targovnik HM, Rivolta CM. Kinetic characterization of human thyroperoxidase. Normal and pathological enzyme expression in Baculovirus system: A molecular model of functional expression. Mol Cell Endocrinol 404: 9‐15, 2015.
 42.Bergh JJ, Lin HY, Lansing L, Mohamed SN, Davis FB, Mousa S, Davis PJ. Integrin alphaVbeta3 contains a cell surface receptor site for thyroid hormone that is linked to activation of mitogen‐activated protein kinase and induction of angiogenesis. Endocrinology 146: 2864‐2871, 2005.
 43.Bernal J. Thyroid hormone receptors in brain development and function. Nat Clin Pract Endocrinol Metab 3: 249‐259, 2007.
 44.Bernal J, Guadano‐Ferraz A, Morte B. Perspectives in the study of thyroid hormone action on brain development and function. Thyroid 13: 1005‐1012, 2003.
 45.Bernardis LL, Bellinger LL. The dorsomedial hypothalamic nucleus revisited: 1998 update. Proc Soc Exp Biol Med 218: 284‐306, 1998.
 46.Bernier‐Valentin F, Kostrouch Z, Rabilloud R, Rousset B. Analysis of the thyroglobulin internalization process using in vitro reconstituted thyroid follicles: Evidence for a coated vesicle‐dependent endocytic pathway. Endocrinology 129: 2194‐2201, 1991.
 47.Biag J, Huang Y, Gou L, Hintiryan H, Askarinam A, Hahn JD, Toga AW, Dong HW. Cyto‐ and chemoarchitecture of the hypothalamic paraventricular nucleus in the C57BL/6J male mouse: A study of immunostaining and multiple fluorescent tract tracing. J Comp Neurol 520: 6‐33, 2012.
 48.Bianco AC, Kim BW. Deiodinases: Implications of the local control of thyroid hormone action. J Clin Invest 116: 2571‐2579, 2006.
 49.Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev 23: 38‐89, 2002.
 50.Bianco AC, Silva JE. Nuclear 3,5,3′‐triiodothyronine (T3) in brown adipose tissue: Receptor occupancy and sources of T3 as determined by in vivo techniques. Endocrinology 120: 55‐62, 1987.
 51.Bizhanova A, Kopp P. Controversies concerning the role of pendrin as an apical iodide transporter in thyroid follicular cells. Cell Physiol Biochem 28: 485‐490, 2011.
 52.Bizhanova A, Kopp P. Minireview: The sodium‐iodide symporter NIS and pendrin in iodide homeostasis of the thyroid. Endocrinology 150: 1084‐1090, 2009.
 53.Bochukova E, Schoenmakers N, Agostini M, Schoenmakers E, Rajanayagam O, Keogh JM, Henning E, Reinemund J, Gevers E, Sarri M, Downes K, Offiah A, Albanese A, Halsall D, Schwabe JW, Bain M, Lindley K, Muntoni F, Vargha‐Khadem F, Dattani M, Farooqi IS, Gurnell M, Chatterjee K. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med 366: 243‐249, 2012.
 54.Boivin M, Camirand A, Carli F, Hoffer LJ, Silva JE. Uncoupling protein‐2 and ‐3 messenger ribonucleic acids in adipose tissue and skeletal muscle of healthy males: Variability, factors affecting expression, and relation to measures of metabolic rate. J Clin Endocrinol Metab 85: 1975‐1983, 2000.
 55.Boler J, Enzmann F, Folkers K, Bowers CY, Schally AV. The identity of chemical and hormonal properties of the thyrotropin releasing hormone and pyroglutamyl‐histidyl‐proline amide. Biochem Biophys Res Commun 37: 705‐710, 1969.
 56.Bonomi M, Busnelli M, Beck‐Peccoz P, Costanzo D, Antonica F, Dolci C, Pilotta A, Buzi F, Persani L. A family with complete resistance to thyrotropin‐releasing hormone. N Engl J Med 360: 731‐734, 2009.
 57.Bradley DJ, Towle HC, Young WS, III. Alpha and beta thyroid hormone receptor (TR) gene expression during auditory neurogenesis: Evidence for TR isoform‐specific transcriptional regulation in vivo. Proc Natl Acad Sci U S A 91: 439‐443, 1994.
 58.Bradley DJ, Towle HC, Young WS, III. Spatial and temporal expression of alpha‐ and beta‐thyroid hormone receptor mRNAs, including the beta 2‐subtype, in the developing mammalian nervous system. J Neurosci 12: 2288‐2302, 1992.
 59.Bradley DJ, Young WS, III, Weinberger C. Differential expression of alpha and beta thyroid hormone receptor genes in rat brain and pituitary. Proc Natl Acad Sci U S A 86: 7250‐7254, 1989.
 60.Braun D, Wirth EK, Wohlgemuth F, Reix N, Klein MO, Gruters A, Kohrle J, Schweizer U. Aminoaciduria, but normal thyroid hormone levels and signalling, in mice lacking the amino acid and thyroid hormone transporter Slc7a8. Biochem J 439: 249‐255, 2011.
 61.Brent GA. Regulation of gene expression by thyroid hormones: Relation to growth and development. Compr Physiol 2011, Supplement 24: Handbook of Physiology, The Endocrine System, Hormonal Control of Growth: 757‐781. First published in print 1999. doi: 10.1002/cphy.cp070524.
 62.Brent GA. Mechanisms of thyroid hormone action. J Clin Invest 122: 3035‐3043, 2012.
 63.Brickman JM, Clements M, Tyrell R, McNay D, Woods K, Warner J, Stewart A, Beddington RS, Dattani M. Molecular effects of novel mutations in Hesx1/HESX1 associated with human pituitary disorders. Development 128: 5189‐5199, 2001.
 64.Brockmann K, Dumitrescu AM, Best TT, Hanefeld F, Refetoff S. X‐linked paroxysmal dyskinesia and severe global retardation caused by defective MCT8 gene. J Neurol 252: 663‐666, 2005.
 65.Brunetto EL, Teixeira Sda S, Giannocco G, Machado UF, Nunes MT. T3 rapidly increases SLC2A4 gene expression and GLUT4 trafficking to the plasma membrane in skeletal muscle of rat and improves glucose homeostasis. Thyroid 22: 70‐79, 2012.
 66.Burgus R, Dunn TF, Desiderio D, Guillemin R. Molecular structure of the hypothalamic hypophysiotropic TRF factor of ovine origin: Mass spectrometry demonstration of the PCA‐His‐Pro‐NH2 sequence. C R Acad Sci Hebd Seances Acad Sci D 269: 1870‐1873, 1969.
 67.Burmeister LA, Pachucki J, St Germain DL. Thyroid hormones inhibit type 2 iodothyronine deiodinase in the rat cerebral cortex by both pre‐ and posttranslational mechanisms. Endocrinology 138: 5231‐5237, 1997.
 68.Cahnmann HJ, Pommier J, Nunez J. Spatial requirement for coupling of iodotyrosine residues to form thyroid hormones. Proc Natl Acad Sci U S A 74: 5333‐5335, 1977.
 69.Caillou B, Dupuy C, Lacroix L, Nocera M, Talbot M, Ohayon R, Deme D, Bidart JM, Schlumberger M, Virion A. Expression of reduced nicotinamide adenine dinucleotide phosphate oxidase (ThoX, LNOX, Duox) genes and proteins in human thyroid tissues. J Clin Endocrinol Metab 86: 3351‐3358, 2001.
 70.Calof AL, Campanero MR, O'Rear JJ, Yurchenco PD, Lander AD. Domain‐specific activation of neuronal migration and neurite outgrowth‐promoting activities of laminin. Neuron 13: 117‐130, 1994.
 71.Campbell RK, Satoh N, Degnan BM. Piecing together evolution of the vertebrate endocrine system. Trends in Genetics: TIG 20: 359‐366, 2004.
 72.Cao X, Kambe F, Ohmori S, Seo H. Oxidoreductive modification of two cysteine residues in paired domain by Ref‐1 regulates DNA‐binding activity of Pax‐8. Biochem Biophys Res Commun 297: 288‐293, 2002.
 73.Capelo LP, Beber EH, Fonseca TL, Gouveia CH. The monocarboxylate transporter 8 and L‐type amino acid transporters 1 and 2 are expressed in mouse skeletons and in osteoblastic MC3T3‐E1 cells. Thyroid 19: 171‐180, 2009.
 74.Capelo LP, Beber EH, Huang SA, Zorn TM, Bianco AC, Gouveia CH. Deiodinase‐mediated thyroid hormone inactivation minimizes thyroid hormone signaling in the early development of fetal skeleton. Bone 43: 921‐930, 2008.
 75.Carr FE, Burnside J, Chin WW. Thyroid hormones regulate rat thyrotropin beta gene promoter activity expressed in GH3 cells. Mol Endocrinol 3: 709‐716, 1989.
 76.Carr FE, Fisher CU, Fein HG, Smallridge RC. Thyrotropin‐releasing hormone stimulates c‐jun and c‐fos messenger ribonucleic acid levels: Implications for calcium mobilization and protein kinase‐C activation. Endocrinology 133: 1700‐1707, 1993.
 77.Carr FE, Shupnik MA, Burnside J, Chin WW. Thyrotropin‐releasing hormone stimulates the activity of the rat thyrotropin beta‐subunit gene promoter transfected into pituitary cells. Mol Endocrinol 3: 717‐724, 1989.
 78.Carreon‐Rodriguez A, Charli JL, Perez‐Martinez L. T3 differentially regulates TRH expression in developing hypothalamic neurons in vitro. Brain Res 1305: 20‐30, 2009.
 79.Carvalho DP, Dupuy C. Role of the NADPH oxidases DUOX and NOX4 in thyroid oxidative stress. Eur Thyroid J 2: 160‐167, 2013.
 80.Carvalho DP, Dupuy C, Gorin Y, Legue O, Pommier J, Haye B, Virion A. The Ca2+‐ and reduced nicotinamide adenine dinucleotide phosphate‐dependent hydrogen peroxide generating system is induced by thyrotropin in porcine thyroid cells. Endocrinology 137: 1007‐1012, 1996.
 81.Charles MA, Saunders TL, Wood WM, Owens K, Parlow AF, Camper SA, Ridgway EC, Gordon DF. Pituitary‐specific Gata2 knockout: Effects on gonadotrope and thyrotrope function. Mol Endocrinol 20: 1366‐1377, 2006.
 82.Charli JL, Vargas MA, Cisneros M, de Gortari P, Baeza MA, Jasso P, Bourdais J, Perez L, Uribe RM, Joseph‐Bravo P. TRH inactivation in the extracellular compartment: Role of pyroglutamyl peptidase II. Neurobiology 6: 45‐57, 1998.
 83.Chassande O, Fraichard A, Gauthier K, Flamant F, Legrand C, Savatier P, Laudet V, Samarut J. Identification of transcripts initiated from an internal promoter in the c‐erbA alpha locus that encode inhibitors of retinoic acid receptor‐alpha and triiodothyronine receptor activities. Mol Endocrinol 11: 1278‐1290, 1997.
 84.Chatonnet F, Fauquier T, Picou F, Guyot R, Flamant F. Thyroid hormone and cerebellum development: Direct and indirect effects?. Ann Endocrinol (Paris) 72: 99‐102, 2011.
 85.Chatonnet F, Guyot R, Benoit G, Flamant F. Genome‐wide analysis of thyroid hormone receptors shared and specific functions in neural cells. Proc Natl Acad Sci U S A 110: E766‐775, 2013.
 86.Chatterjee VK, Tata JR. Thyroid hormone receptors and their role in development. Cancer Surv 14: 147‐167, 1992.
 87.Chavez‐Gutierrez L, Matta‐Camacho E, Osuna J, Horjales E, Joseph‐Bravo P, Maigret B, Charli JL. Homology modeling and site‐directed mutagenesis of pyroglutamyl peptidase II. Insights into omega‐versus aminopeptidase specificity in the M1 family. J Biol Chem 281: 18581‐18590, 2006.
 88.Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormone actions. Endocr Rev 31: 139‐170, 2010.
 89.Chiamolera MI, Sidhaye AR, Matsumoto S, He Q, Hashimoto K, Ortiga‐Carvalho TM, Wondisford FE. Fundamentally distinct roles of thyroid hormone receptor isoforms in a thyrotroph cell line are due to differential DNA binding. Mol Endocrinol 26: 926‐939, 2012.
 90.Chiamolera MI, Wondisford FE. Minireview: Thyrotropin‐releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 150: 1091‐1096, 2009.
 91.Choi BY, Stewart AK, Madeo AC, Pryor SP, Lenhard S, Kittles R, Eisenman D, Kim HJ, Niparko J, Thomsen J, Arnos KS, Nance WE, King KA, Zalewski CK, Brewer CC, Shawker T, Reynolds JC, Butman JA, Karniski LP, Alper SL, Griffith AJ. Hypo‐functional SLC26A4 variants associated with nonsyndromic hearing loss and enlargement of the vestibular aqueduct: Genotype‐phenotype correlation or coincidental polymorphisms? Hum Mutat 30: 599‐608, 2009.
 92.Ciavardelli D, Bellomo M, Crescimanno C, Vella V. Type 3 deiodinase: Role in cancer growth, stemness, and metabolism. Front Endocrinol 5: 215, 2014.
 93.Cohen LE, Radovick S. Molecular basis of combined pituitary hormone deficiencies. Endocr Rev 23: 431‐442, 2002.
 94.Cohen RN, Brzostek S, Kim B, Chorev M, Wondisford FE, Hollenberg AN. The specificity of interactions between nuclear hormone receptors and corepressors is mediated by distinct amino acid sequences within the interacting domains. Mol Endocrinol 15: 1049‐1061, 2001.
 95.Cohen RN, Wondisford FE. Chemistry and biosynthesis of thyrotropin. In: Braverman LE, editor. The Thyroid. Cooper D: Wolters Kluwer, 2012, p. 912.
 96.Collu R, Tang J, Castagne J, Lagace G, Masson N, Huot C, Deal C, Delvin E, Faccenda E, Eidne KA, Van Vliet G. A novel mechanism for isolated central hypothyroidism: Inactivating mutations in the thyrotropin‐releasing hormone receptor gene. J Clin Endocrinol Metab 82: 1561‐1565, 1997.
 97.Cook CB, Koenig RJ. Expression of erbA alpha and beta mRNAs in regions of adult rat brain. Mol Cell Endocrinol 70: 13‐20, 1990.
 98.Cooper E, Burke CW. Thyroxine, 3,5,3′ ‐triiodothyronine and 3,3′, 5′ ‐triiodothyronine in human amniotic fluid: Relationships between concentrations and turnover. Med Hypotheses 12: 113‐124, 1983.
 99.Copeland PR. Regulation of gene expression by stop codon recoding: Selenocysteine. Gene 312: 17‐25, 2003.
 100.Cordas EA, Ng L, Hernandez A, Kaneshige M, Cheng SY, Forrest D. Thyroid hormone receptors control developmental maturation of the middle ear and the size of the ossicular bones. Endocrinology 153: 1548‐1560, 2012.
 101.Costa‐e‐Sousa RH, Astapova I, Ye F, Wondisford FE, Hollenberg AN. The thyroid axis is regulated by NCoR1 via its actions in the pituitary. Endocrinology 153: 5049‐5057, 2012.
 102.Cote‐Velez A, Perez‐Maldonado A, Osuna J, Barrera B, Charli JL, Joseph‐Bravo P. Creb and Sp/Kruppel response elements cooperate to control rat TRH gene transcription in response to cAMP. Biochim Biophys Acta 1809: 191‐199, 2011.
 103.Cote‐Velez A, Perez‐Martinez L, Diaz‐Gallardo MY, Perez‐Monter C, Carreon‐Rodriguez A, Charli JL, Joseph‐Bravo P. Dexamethasone represses cAMP rapid upregulation of TRH gene transcription: Identification of a composite glucocorticoid response element and a cAMP response element in TRH promoter. J Mol Endocrinol 34: 177‐197, 2005.
 104.Crantz FR, Silva JE, Larsen PR. An analysis of the sources and quantity of 3,5,3′‐triiodothyronine specifically bound to nuclear receptors in rat cerebral cortex and cerebellum. Endocrinology 110: 367‐375, 1982.
 105.Cunningham ET, Jr, Bohn MC, Sawchenko PE. Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 292: 651‐667, 1990.
 106.Cyr NE, Stuart RC, Zhu X, Steiner DF, Nillni EA. Biosynthesis of proTRH‐derived peptides in prohormone convertase 1 and 2 knockout mice. Peptides 35: 42‐48, 2012.
 107.Cyr NE, Toorie AM, Steger JS, Sochat MM, Hyner S, Perello M, Stuart R, Nillni EA. Mechanisms by which the orexigen NPY regulates anorexigenic alpha‐MSH and TRH. Am J Physiol Endocrinol Metab 304: E640‐650, 2013.
 108.D'Angelo SA, Wall NR, Bowers CY. Maternal‐fetal endocrine interrelations: Demonstration of TSH release from the fetal hypophysis in pregnant rats administered synthetic TRH. Proc Soc Exp Biol Med 137: 175‐178, 1971.
 109.da‐Silva WS, Harney JW, Kim BW, Li J, Bianco SD, Crescenzi A, Christoffolete MA, Huang SA, Bianco AC. The small polyphenolic molecule kaempferol increases cellular energy expenditure and thyroid hormone activation. Diabetes 56: 767‐776, 2007.
 110.Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 379: 458‐460, 1996.
 111.Damante G, Di Lauro R. Thyroid‐specific gene expression. Biochim Biophys Acta 1218: 255‐266, 1994.
 112.Darimont BD, Wagner RL, Apriletti JW, Stallcup MR, Kushner PJ, Baxter JD, Fletterick RJ, Yamamoto KR. Structure and specificity of nuclear receptor‐coactivator interactions. Genes Dev 12: 3343‐3356, 1998.
 113.Dasen JS, O'Connell SM, Flynn SE, Treier M, Gleiberman AS, Szeto DP, Hooshmand F, Aggarwal AK, Rosenfeld MG. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient‐induced determination of pituitary cell types. Cell 97: 587‐598, 1999.
 114.Dasen JS, Rosenfeld MG. Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci 24: 327‐355, 2001.
 115.Davis PJ, Davis FB. Nongenomic actions of thyroid hormone on the heart. Thyroid 12: 459‐466, 2002.
 116.Davis PJ, Davis FB, Mousa SA, Luidens MK, Lin HY. Membrane receptor for thyroid hormone: Physiologic and pharmacologic implications. Annu Rev Pharmacol Toxicol 51: 99‐115, 2011.
 117.Davis PJ, Lin HY, Mousa SA, Luidens MK, Hercbergs AA, Wehling M, Davis FB. Overlapping nongenomic and genomic actions of thyroid hormone and steroids. Steroids 76: 829‐833, 2011.
 118.Davis PJ, Tillmann HC, Davis FB, Wehling M. Comparison of the mechanisms of nongenomic actions of thyroid hormone and steroid hormones. J Endocrinol Invest 25: 377‐388, 2002.
 119.de Araujo AS, Martinez L, de Paula Nicoluci R, Skaf MS, Polikarpov I. Structural modeling of high‐affinity thyroid receptor‐ligand complexes. Eur Biophys J 39: 1523‐1536, 2010.
 120.De Deken X, Wang D, Many MC, Costagliola S, Libert F, Vassart G, Dumont JE, Miot F. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275: 23227‐23233, 2000.
 121.De Felice M, Di Lauro R. Minireview: Intrinsic and extrinsic factors in thyroid gland development: An update. Endocrinology 152: 2948‐2956, 2011.
 122.de Jesus LA, Carvalho SD, Ribeiro MO, Schneider M, Kim SW, Harney JW, Larsen PR, Bianco AC. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest 108: 1379‐1385, 2001.
 123.de Moraes DC, Vaisman M, Conceicao FL, Ortiga‐Carvalho TM. Pituitary development: A complex, temporal regulated process dependent on specific transcriptional factors. J Endocrinol 215: 239‐245, 2012.
 124.Decherf S, Seugnet I, Kouidhi S, Lopez‐Juarez A, Clerget‐Froidevaux MS, Demeneix BA. Thyroid hormone exerts negative feedback on hypothalamic type 4 melanocortin receptor expression. Proc Natl Acad Sci U S A 107: 4471‐4476, 2010.
 125.DeGroot LJ. Kinetic analysis of iodine metabolism. J Clin Endocrinol Metab 26: 149‐173, 1966.
 126.Deme D, Pommier J, Nunez J. Specificity of thyroid hormone synthesis. The role of thyroid peroxidase. Biochim Biophys Acta 540: 73‐82, 1978.
 127.Dentice M, Cordeddu V, Rosica A, Ferrara AM, Santarpia L, Salvatore D, Chiovato L, Perri A, Moschini L, Fazzini C, Olivieri A, Costa P, Stoppioni V, Baserga M, De Felice M, Sorcini M, Fenzi G, Di Lauro R, Tartaglia M, Macchia PE. Missense mutation in the transcription factor NKX2‐5: A novel molecular event in the pathogenesis of thyroid dysgenesis. J Clin Endocrinol Metab 91: 1428‐1433, 2006.
 128.Dentice M, Luongo C, Elefante A, Ambrosio R, Salzano S, Zannini M, Nitsch R, Di Lauro R, Rossi G, Fenzi G, Salvatore D. Pendrin is a novel in vivo downstream target gene of the TTF‐1/Nkx‐2.1 homeodomain transcription factor in differentiated thyroid cells. Mol Cell Biol 25: 10171‐10182, 2005.
 129.Desjardin C, Charles C, Benoist‐Lasselin C, Riviere J, Gilles M, Chassande O, Morgenthaler C, Laloe D, Lecardonnel J, Flamant F, Legeai‐Mallet L, Schibler L. Chondrocytes play a major role in the stimulation of bone growth by thyroid hormone. Endocrinology 155: 3123‐3135, 2014.
 130.Dettling J, Franz C, Zimmermann U, Lee SC, Bress A, Brandt N, Feil R, Pfister M, Engel J, Flamant F, Ruttiger L, Knipper M. Autonomous functions of murine thyroid hormone receptor TRalpha and TRbeta in cochlear hair cells. Mol Cell Endocrinol 382: 26‐37, 2013.
 131.Dezonne RS, Stipursky J, Gomes FC. Effect of thyroid hormone depletion on cultured murine cerebral cortex astrocytes. Neurosci Lett 467: 58‐62, 2009.
 132.Di Cosmo C, Liao XH, Dumitrescu AM, Philp NJ, Weiss RE, Refetoff S. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest 120: 3377‐3388, 2010.
 133.Diano S, Leonard JL, Meli R, Esposito E, Schiavo L. Hypothalamic type II iodothyronine deiodinase: A light and electron microscopic study. Brain Res 976: 130‐134, 2003.
 134.Diano S, Naftolin F, Goglia F, Horvath TL. Fasting‐induced increase in type II iodothyronine deiodinase activity and messenger ribonucleic acid levels is not reversed by thyroxine in the rat hypothalamus. Endocrinology 139: 2879‐2884, 1998.
 135.Diaz‐Gallardo MY, Cote‐Velez A, Carreon‐Rodriguez A, Charli JL, Joseph‐Bravo P. Phosphorylated cyclic‐AMP‐response element‐binding protein and thyroid hormone receptor have independent response elements in the rat thyrotropin‐releasing hormone promoter: An analysis in hypothalamic cells. Neuroendocrinology 91: 64‐76, 2010.
 136.Dillmann W. Cardiac hypertrophy and thyroid hormone signaling. Heart Fail Rev 15: 125‐132, 2010.
 137.Dohan O, De la Vieja A, Paroder V, Riedel C, Artani M, Reed M, Ginter CS, Carrasco N. The sodium/iodide Symporter (NIS): Characterization, regulation, and medical significance. Endocr Rev 24: 48‐77, 2003.
 138.Dow‐Edwards D, Crane AM, Rosloff B, Kennedy C, Sokoloff L. Local cerebral glucose utilization in the adult cretinous rat. Brain Res 373: 139‐145, 1986.
 139.Drouin J, Lamolet B, Lamonerie T, Lanctot C, Tremblay JJ. The PTX family of homeodomain transcription factors during pituitary developments. Mol Cell Endocrinol 140: 31‐36, 1998.
 140.Dumitrescu AM, Liao XH, Abdullah MS, Lado‐Abeal J, Majed FA, Moeller LC, Boran G, Schomburg L, Weiss RE, Refetoff S. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet 37: 1247‐1252, 2005.
 141.Dumitrescu AM, Liao XH, Weiss RE, Millen K, Refetoff S. Tissue‐specific thyroid hormone deprivation and excess in monocarboxylate transporter (mct) 8‐deficient mice. Endocrinology 147: 4036‐4043, 2006.
 142.Dumitrescu AM, Refetoff S. Novel biological and clinical aspects of thyroid hormone metabolism. Endocr Dev 10: 127‐139, 2007.
 143.Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta 1830: 3987‐4003, 2013.
 144.Duntas LH, Nguyen TT, Keck FS, Nelson DK, DiStefano JJ, III. Changes in metabolism of TRH in euthyroid sick syndrome. Eur J Endocrinol 141: 337‐341, 1999.
 145.Dupre SM, Guissouma H, Flamant F, Seugnet I, Scanlan TS, Baxter JD, Samarut J, Demeneix BA, Becker N. Both thyroid hormone receptor (TR)beta 1 and TR beta 2 isoforms contribute to the regulation of hypothalamic thyrotropin‐releasing hormone. Endocrinology 145: 2337‐2345, 2004.
 146.Durand B, Raff M. A cell‐intrinsic timer that operates during oligodendrocyte development. BioEssays 22: 64‐71, 2000.
 147.Dussault JH, Coulombe P, Walker P. Effects of neonatal hyperthyroidism on the development of the hypothalamic‐pituitary‐thyroid axis in the rat. Endocrinology 110: 1037‐1042, 1982.
 148.Dyess EM, Segerson TP, Liposits Z, Paull WK, Kaplan MM, Wu P, Jackson IM, Lechan RM. Triiodothyronine exerts direct cell‐specific regulation of thyrotropin‐releasing hormone gene expression in the hypothalamic paraventricular nucleus. Endocrinology 123: 2291‐2297, 1988.
 149.El Hassani RA, Benfares N, Caillou B, Talbot M, Sabourin JC, Belotte V, Morand S, Gnidehou S, Agnandji D, Ohayon R, Kaniewski J, Noel‐Hudson MS, Bidart JM, Schlumberger M, Virion A, Dupuy C. Dual oxidase2 is expressed all along the digestive tract. Am J Physiol Gastrointest Liver Physiol 288: G933‐942, 2005.
 150.Eng PH, Cardona GR, Fang SL, Previti M, Alex S, Carrasco N, Chin WW, Braverman LE. Escape from the acute Wolff‐Chaikoff effect is associated with a decrease in thyroid sodium/iodide symporter messenger ribonucleic acid and protein. Endocrinology 140: 3404‐3410, 1999.
 151.Eng PH, Cardona GR, Previti MC, Chin WW, Braverman LE. Regulation of the sodium iodide symporter by iodide in FRTL‐5 cells. Eur J Endocrinol 144: 139‐144, 2001.
 152.Engel S, Gershengorn MC. Thyrotropin‐releasing hormone and its receptors–a hypothesis for binding and receptor activation. Pharmacology & therapeutics 113: 410‐419, 2007.
 153.Ericson J, Norlin S, Jessell TM, Edlund T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125: 1005‐1015, 1998.
 154.Ericson LE. Exocytosis and endocytosis in the thyroid follicle cell. Mol Cell Endocrinol 22: 1‐24, 1981.
 155.Ericson LE, Nilsson M. Structural and functional aspects of the thyroid follicular epithelium. Toxicol Lett 64‐65: 365‐373, 1992.
 156.Eriksen EF, Mosekilde L, Melsen F. Kinetics of trabecular bone resorption and formation in hypothyroidism: Evidence for a positive balance per remodeling cycle. Bone 7: 101‐108, 1986.
 157.Escobar‐Morreale HF, del Rey FE, Obregon MJ, de Escobar GM. Only the combined treatment with thyroxine and triiodothyronine ensures euthyroidism in all tissues of the thyroidectomized rat. Endocrinology 137: 2490‐2502, 1996.
 158.Eskandari S, Loo DD, Dai G, Levy O, Wright EM, Carrasco N. Thyroid Na+/I‐ symporter. Mechanism, stoichiometry, and specificity. J Biol Chem 272: 27230‐27238, 1997.
 159.Espinosa VP, Ferrini M, Shen X, Lutfy K, Nillni EA, Friedman TC. Cellular colocalization and coregulation between hypothalamic pro‐TRH and prohormone convertases in hypothyroidism. Am J Physiol Endocrinol Metab 292: E175‐186, 2007.
 160.Everett LA, Belyantseva IA, Noben‐Trauth K, Cantos R, Chen A, Thakkar SI, Hoogstraten‐Miller SL, Kachar B, Wu DK, Green ED. Targeted disruption of mouse Pds provides insight about the inner‐ear defects encountered in Pendred syndrome. Hum Mol Genet 10: 153‐161, 2001.
 161.Faglia G, Bitensky L, Pinchera A, Ferrari C, Paracchi A, Beck‐Peccoz P, Ambrosi B, Spada A. Thyrotropin secretion in patients with central hypothyroidism: Evidence for reduced biological activity of immunoreactive thyrotropin. J Clin Endocrinol Metab 48: 989‐998, 1979.
 162.Faivre‐Sarrailh C, Rabie A. A lower proportion of filamentous to monomeric actin in the developing cerebellum of thyroid‐deficient rats. Brain Res 469: 293‐297, 1988.
 163.Farwell AP, Dubord‐Tomasetti SA, Pietrzykowski AZ, Stachelek SJ, Leonard JL. Regulation of cerebellar neuronal migration and neurite outgrowth by thyroxine and 3,3′,5′‐triiodothyronine. Brain Res Dev Brain Res 154: 121‐135, 2005.
 164.Farwell AP, Tranter MP, Leonard JL. Thyroxine‐dependent regulation of integrin‐laminin interactions in astrocytes. Endocrinology 136: 3909‐3915, 1995.
 165.Faustino LC, Ortiga‐Carvalho TM. Thyroid hormone role on cerebellar development and maintenance: A perspective based on transgenic mouse models. Front Endocrinol 5: 75, 2014.
 166.Fayadat L, Niccoli‐Sire P, Lanet J, Franc JL. Human thyroperoxidase is largely retained and rapidly degraded in the endoplasmic reticulum. Its N‐glycans are required for folding and intracellular trafficking. Endocrinology 139: 4277‐4285, 1998.
 167.Fekete C, Kelly J, Mihaly E, Sarkar S, Rand WM, Legradi G, Emerson CH, Lechan RM. Neuropeptide Y has a central inhibitory action on the hypothalamic‐pituitary‐thyroid axis. Endocrinology 142: 2606‐2613, 2001.
 168.Fekete C, Lechan RM. Central regulation of hypothalamic‐pituitary‐thyroid axis under physiological and pathophysiological conditions. Endocr Rev 35: 159‐194, 2014.
 169.Fekete C, Lechan RM. Negative feedback regulation of hypophysiotropic thyrotropin‐releasing hormone (TRH) synthesizing neurons: Role of neuronal afferents and type 2 deiodinase. Front Neuroendocrinol 28: 97‐114, 2007.
 170.Fekete C, Legradi G, Mihaly E, Huang QH, Tatro JB, Rand WM, Emerson CH, Lechan RM. alpha‐Melanocyte‐stimulating hormone is contained in nerve terminals innervating thyrotropin‐releasing hormone‐synthesizing neurons in the hypothalamic paraventricular nucleus and prevents fasting‐induced suppression of prothyrotropin‐releasing hormone gene expression. J Neurosci 20: 1550‐1558, 2000.
 171.Fekete C, Mihaly E, Luo LG, Kelly J, Clausen JT, Mao Q, Rand WM, Moss LG, Kuhar M, Emerson CH, Jackson IM, Lechan RM. Association of cocaine‐ and amphetamine‐regulated transcript‐immunoreactive elements with thyrotropin‐releasing hormone‐synthesizing neurons in the hypothalamic paraventricular nucleus and its role in the regulation of the hypothalamic‐pituitary‐thyroid axis during fasting. J Neurosci 20: 9224‐9234, 2000.
 172.Fekete C, Sarkar S, Rand WM, Harney JW, Emerson CH, Bianco AC, Beck‐Sickinger A, Lechan RM. Neuropeptide Y1 and Y5 receptors mediate the effects of neuropeptide Y on the hypothalamic‐pituitary‐thyroid axis. Endocrinology 143: 4513‐4519, 2002.
 173.Feng W, Ribeiro RC, Wagner RL, Nguyen H, Apriletti JW, Fletterick RJ, Baxter JD, Kushner PJ, West BL. Hormone‐dependent coactivator binding to a hydrophobic cleft on nuclear receptors. Science 280: 1747‐1749, 1998.
 174.Feng X, Jiang Y, Meltzer P, Yen PM. Thyroid hormone regulation of hepatic genes in vivo detected by complementary DNA microarray. Mol Endocrinol 14: 947‐955, 2000.
 175.Fernandez PM, Brunel F, Jimenez MA, Saez JM, Cereghini S, Zakin MM. Nuclear receptors Nor1 and NGFI‐B/Nur77 play similar, albeit distinct, roles in the hypothalamo‐pituitary‐adrenal axis. Endocrinology 141: 2392‐2400, 2000.
 176.Ferrand M, Le Fourn V, Franc JL. Increasing diversity of human thyroperoxidase generated by alternative splicing. Characterized by molecular cloning of new transcripts with single‐ and multispliced mRNAs. J Biol Chem 278: 3793‐3800, 2003.
 177.Figueira AC, Lima LM, Lima LH, Ranzani AT, Mule Gdos S, Polikarpov I. Recognition by the thyroid hormone receptor of canonical DNA response elements. Biochemistry 49: 893‐904, 2010.
 178.Figueira AC, Saidemberg DM, Souza PC, Martinez L, Scanlan TS, Baxter JD, Skaf MS, Palma MS, Webb P, Polikarpov I. Analysis of agonist and antagonist effects on thyroid hormone receptor conformation by hydrogen/deuterium exchange. Mol Endocrinol 25: 15‐31, 2011.
 179.Fischer H, Gonzales LK, Kolla V, Schwarzer C, Miot F, Illek B, Ballard PL. Developmental regulation of DUOX1 expression and function in human fetal lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 292: L1506‐1514, 2007.
 180.Fisher DA, Oddie TH, Thompson CS. Thyroidal thyronine and non‐thyronine iodine secretion in euthyroid subjects. J Clin Endocrinol Metab 33: 647‐652, 1971.
 181.Flamant F, Gauthier K, Samarut J. Thyroid hormones signaling is getting more complex: STORMs are coming. Mol Endocrinol 21: 321‐333, 2007.
 182.Flamant F, Quignodon L. Use of a new model of transgenic mice to clarify the respective functions of thyroid hormone receptors in vivo. Heart Fail Rev 15: 117‐120, 2010.
 183.Flamant F, Samarut J. Thyroid hormone receptors: Lessons from knockout and knock‐in mutant mice. Trends Endocrinol Metab 14: 85‐90, 2003.
 184.Fliers E, Boelen A, van Trotsenburg AS. Central regulation of the hypothalamo‐pituitary‐thyroid (HPT) axis: Focus on clinical aspects. Handb Clin Neurol 124: 127‐138, 2014.
 185.Fliers E, Noppen NW, Wiersinga WM, Visser TJ, Swaab DF. Distribution of thyrotropin‐releasing hormone (TRH)‐containing cells and fibers in the human hypothalamus. J Comp Neurol 350: 311‐323, 1994.
 186.Fliers E, Unmehopa UA, Alkemade A. Functional neuroanatomy of thyroid hormone feedback in the human hypothalamus and pituitary gland. Mol Cell Endocrinol 251: 1‐8, 2006.
 187.Flores‐Morales A, Gullberg H, Fernandez L, Stahlberg N, Lee NH, Vennstrom B, Norstedt G. Patterns of liver gene expression governed by TRbeta. Mol Endocrinol 16: 1257‐1268, 2002.
 188.Fonseca TL, Correa‐Medina M, Campos MP, Wittmann G, Werneck‐de‐Castro JP, Arrojo e Drigo R, Mora‐Garzon M, Ueta CB, Caicedo A, Fekete C, Gereben B, Lechan RM, Bianco AC. Coordination of hypothalamic and pituitary T3 production regulates TSH expression. J Clin Invest 123: 1492‐1500, 2013.
 189.Fonseca TL, Werneck‐De‐Castro JP, Castillo M, Bocco BM, Fernandes GW, McAninch EA, Ignacio DL, Moises CC, Ferreira AR, Gereben B, Bianco AC. Tissue‐specific inactivation of type 2 deiodinase reveals multilevel control of fatty acid oxidation by thyroid hormone in the mouse. Diabetes 63: 1594‐1604, 2014.
 190.Forrest D, Erway LC, Ng L, Altschuler R, Curran T. Thyroid hormone receptor beta is essential for development of auditory function. Nat Genet 13: 354‐357, 1996.
 191.Forrest D, Hanebuth E, Smeyne RJ, Everds N, Stewart CL, Wehner JM, Curran T. Recessive resistance to thyroid hormone in mice lacking thyroid hormone receptor beta: Evidence for tissue‐specific modulation of receptor function. EMBO J 15: 3006‐3015, 1996.
 192.Forrest D, Vennstrom B. Functions of thyroid hormone receptors in mice. Thyroid 10: 41‐52, 2000.
 193.Forteza R, Salathe M, Miot F, Forteza R, Conner GE. Regulated hydrogen peroxide production by Duox in human airway epithelial cells. Am J Respir Cell Mol Biol 32: 462‐469, 2005.
 194.Fortunato RS, Braga WM, Ortenzi VH, Rodrigues DC, Andrade BM, Miranda‐Alves L, Rondinelli E, Dupuy C, Ferreira AC, Carvalho DP. Sexual dimorphism of thyroid reactive oxygen species production due to higher NADPH oxidase 4 expression in female thyroid glands. Thyroid 23: 111‐119, 2013.
 195.Fortunato RS, Lima de Souza EC, Ameziane‐el Hassani R, Boufraqech M, Weyemi U, Talbot M, Lagente‐Chevallier O, de Carvalho DP, Bidart JM, Schlumberger M, Dupuy C. Functional consequences of dual oxidase‐thyroperoxidase interaction at the plasma membrane. J Clin Endocrinol Metab 95: 5403‐5411, 2010.
 196.Fraichard A, Chassande O, Plateroti M, Roux JP, Trouillas J, Dehay C, Legrand C, Gauthier K, Kedinger M, Malaval L, Rousset B, Samarut J. The T3R alpha gene encoding a thyroid hormone receptor is essential for post‐natal development and thyroid hormone production. EMBO J 16: 4412‐4420, 1997.
 197.Freeman DA, Teubner Bj Fau ‐ Smith CD, Smith Cd Fau ‐ Prendergast BJ, Prendergast BJ. Exogenous T3 mimics long day lengths in Siberian hamsters. Am J Physiol REgul Integr Com Physiol 292: R2368‐2372, 2007.
 198.Friauf E, Wenz M, Oberhofer M, Nothwang HG, Balakrishnan V, Knipper M, Lohrke S. Hypothyroidism impairs chloride homeostasis and onset of inhibitory neurotransmission in developing auditory brainstem and hippocampal neurons. Eur J Neurosci 28: 2371‐2380, 2008.
 199.Friedrichsen S, Christ S, Heuer H, Schafer MK, Mansouri A, Bauer K, Visser TJ. Regulation of iodothyronine deiodinases in the Pax8‐/‐ mouse model of congenital hypothyroidism. Endocrinology 144: 777‐784, 2003.
 200.Friesema EC, Docter R, Moerings EP, Stieger B, Hagenbuch B, Meier PJ, Krenning EP, Hennemann G, Visser TJ. Identification of thyroid hormone transporters. Biochem Biophys Res Commun 254: 497‐501, 1999.
 201.Friesema EC, Ganguly S, Abdalla A, Manning Fox JE, Halestrap AP, Visser TJ. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem 278: 40128‐40135, 2003.
 202.Friesema EC, Jansen J, Jachtenberg JW, Visser WE, Kester MH, Visser TJ. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol 22: 1357‐1369, 2008.
 203.Friesema EC, Kuiper GG, Jansen J, Visser TJ, Kester MH. Thyroid hormone transport by the human monocarboxylate transporter 8 and its rate‐limiting role in intracellular metabolism. Mol Endocrinol 20: 2761‐2772, 2006.
 204.Friesema EC, Visser WE, Visser TJ. Genetics and phenomics of thyroid hormone transport by MCT8. Mol Cell Endocrinol 322: 107‐113, 2010.
 205.Frohlich H, Boini KM, Seebohm G, Strutz‐Seebohm N, Ureche ON, Foller M, Eichenmuller M, Shumilina E, Pathare G, Singh AK, Seidler U, Pfeifer KE, Lang F. Hypothyroidism of gene‐targeted mice lacking Kcnq1. Pflugers Arch 461: 45‐52, 2011.
 206.Fu J, Refetoff S, Dumitrescu AM. Inherited defects of thyroid hormone‐cell‐membrane transport: Review of recent findings. Curr Opin Endocrinol Diabetes Obes 20: 434‐440, 2013.
 207.Fukuchi M, Shimabukuro M, Shimajiri Y, Oshiro Y, Higa M, Akamine H, Komiya I, Takasu N. Evidence for a deficient pancreatic beta‐cell response in a rat model of hyperthyroidism. Life Sci 71: 1059‐1070, 2002.
 208.Fuller CA, Sulzman FM, Moore‐Ede MC. Role of heat loss and heat production in generation of the circadian temperature rhythm of the squirrel monkey. Physiol Behav 34: 543‐546, 1985.
 209.Fuzesi T, Wittmann G, Lechan RM, Liposits Z, Fekete C. Noradrenergic innervation of hypophysiotropic thyrotropin‐releasing hormone‐synthesizing neurons in rats. Brain Res 1294: 38‐44, 2009.
 210.Galton VA, Wood ET, St Germain EA, Withrow CA, Aldrich G, St Germain GM, Clark AS, St Germain DL. Thyroid hormone homeostasis and action in the type 2 deiodinase‐deficient rodent brain during development. Endocrinology 148: 3080‐3088, 2007.
 211.Garcia‐Villalba P, Au‐Fliegner M, Samuels HH, Aranda A. Interaction of thyroid hormone and retinoic acid receptors on the regulation of the rat growth hormone gene promoter. Biochem Biophys Res Commun 191: 580‐586, 1993.
 212.Gauthier K, Chassande O, Plateroti M, Roux JP, Legrand C, Pain B, Rousset B, Weiss R, Trouillas J, Samarut J. Different functions for the thyroid hormone receptors TRalpha and TRbeta in the control of thyroid hormone production and post‐natal development. Embo J 18: 623‐631, 1999.
 213.Gauthier K, Plateroti M, Harvey CB, Williams GR, Weiss RE, Refetoff S, Willott JF, Sundin V, Roux JP, Malaval L, Hara M, Samarut J, Chassande O. Genetic analysis reveals different functions for the products of the thyroid hormone receptor alpha locus. Mol Cell Biol 21: 4748‐4760, 2001.
 214.Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL. Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17: 1502‐1504, 2003.
 215.Geiszt M, Leto TL. The NOX family of NAD(P)H oxidases: host defense and beyond. J Biol Chem 1279: 51715‐8, 2004.
 216.Gerard CM, Lefort A, Libert F, Christophe D, Dumont JE, Vassart G. Transcriptional regulation of the thyroperoxydase gene by thyrotropin and forskolin. Mol Cell Endocrinol 60: 239‐242, 1988.
 217.Gereben B, Zavacki AM, Ribich S, Kim BW, Huang SA, Simonides WS, Zeold A, Bianco AC. Cellular and molecular basis of deiodinase‐regulated thyroid hormone signaling. Endocr Rev 29: 898‐938, 2008.
 218.Gereben B, Zeold A, Dentice M, Salvatore D, Bianco AC. Activation and inactivation of thyroid hormone by deiodinases: Local action with general consequences. Cell Mol Life Sci 65: 570‐590, 2008.
 219.Gershengorn MC. Bihormonal regulation of the thyrotropin‐releasing hormone receptor in mouse pituitary thyrotropic tumor cells in culture. J Clin Invest 62: 937‐943, 1978.
 220.Gershengorn MC. Mechanism of signal transduction by TRH. Ann N Y Acad Sci 553: 191‐196, 1989.
 221.Ghaddab‐Zroud R, Seugnet I, Steffensen KR, Demeneix BA, Clerget‐Froidevaux MS. Liver X receptor regulation of thyrotropin‐releasing hormone transcription in mouse hypothalamus is dependent on thyroid status. PLoS One 9: e106983, 2014.
 222.Glass CK, Franco R, Weinberger C, Albert VR, Evans RM, Rosenfeld MG. A c‐erb‐A binding site in rat growth hormone gene mediates trans‐activation by thyroid hormone. Nature 329: 738‐741, 1987.
 223.Gloss B, Sayen MR, Trost SU, Bluhm WF, Meyer M, Swanson EA, Usala SJ, Dillmann WH. Altered cardiac phenotype in transgenic mice carrying the delta337 threonine thyroid hormone receptor beta mutant derived from the S family. Endocrinology 140: 897‐902, 1999.
 224.Gloss B, Trost S, Bluhm W, Swanson E, Clark R, Winkfein R, Janzen K, Giles W, Chassande O, Samarut J, Dillmann W. Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. Endocrinology 142: 544‐550, 2001.
 225.Gnidehou S, Caillou B, Talbot M, Ohayon R, Kaniewski J, Noel‐Hudson MS, Morand S, Agnangji D, Sezan A, Courtin F, Virion A, Dupuy C. Iodotyrosine dehalogenase 1 (DEHAL1) is a transmembrane protein involved in the recycling of iodide close to the thyroglobulin iodination site. FASEB J 18: 1574‐1576, 2004.
 226.Gnidehou S, Lacroix L, Sezan A, Ohayon R, Noel‐Hudson MS, Morand S, Francon J, Courtin F, Virion A, Dupuy C. Cloning and characterization of a novel isoform of iodotyrosine dehalogenase 1 (DEHAL1) DEHAL1C from human thyroid: Comparisons with DEHAL1 and DEHAL1B. Thyroid 16: 715‐724, 2006.
 227.Gomes FC, Maia CG, de Menezes JR, Neto VM. Cerebellar astrocytes treated by thyroid hormone modulate neuronal proliferation. Glia 25: 247‐255, 1999.
 228.Gordon DF, Haugen BR, Sarapura VD, Nelson AR, Wood WM, Ridgway EC. Analysis of Pit‐1 in regulating mouse TSH beta promoter activity in thyrotropes. Mol Cell Endocrinol 96: 75‐84, 1993.
 229.Gothe S, Wang Z, Ng L, Kindblom JM, Barros AC, Ohlsson C, Vennstrom B, Forrest D. Mice devoid of all known thyroid hormone receptors are viable but exhibit disorders of the pituitary‐thyroid axis, growth, and bone maturation. Genes Dev 13: 1329‐1341, 1999.
 230.Grasberger H. Defects of thyroidal hydrogen peroxide generation in congenital hypothyroidism. Mol Cell Endocrinol 322: 99‐106, 2010.
 231.Grasberger H, De Deken X, Mayo OB, Raad H, Weiss M, Liao XH, Refetoff S. Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol Endocrinol 26: 481‐492, 2012.
 232.Grasberger H, Refetoff S. Identification of the maturation factor for dual oxidase. Evolution of an eukaryotic operon equivalent. J Biol Chem 281: 18269‐18272, 2006.
 233.Gravel C, Sasseville R, Hawkes R. Maturation of the corpus callosum of the rat: II. Influence of thyroid hormones on the number and maturation of axons. J Comp Neurol 291: 147‐161, 1990.
 234.Grontved L, Waterfall JJ, Kim DW, Baek S, Sung MH, Zhao L, Park JW, Nielsen R, Walker RL, Zhu YJ, Meltzer PS, Hager GL, Cheng SY. Transcriptional activation by the thyroid hormone receptor through ligand‐dependent receptor recruitment and chromatin remodelling. Nat Commun 6: 7048, 2015.
 235.Guadano‐Ferraz A, Obregon MJ, St Germain DL, Bernal J. The type 2 iodothyronine deiodinase is expressed primarily in glial cells in the neonatal rat brain. Proc Natl Acad Sci U S A 94: 10391‐10396, 1997.
 236.Guissouma H, Froidevaux MS, Hassani Z, Demeneix BA. In vivo siRNA delivery to the mouse hypothalamus confirms distinct roles of TR beta isoforms in regulating TRH transcription. Neurosci Lett 406: 240‐243, 2006.
 237.Guissouma H, Ghaddab‐Zroud R, Seugnet I, Decherf S, Demeneix B, Clerget‐Froidevaux MS. TR alpha 2 exerts dominant negative effects on hypothalamic Trh transcription in vivo. PLoS One 9: e95064, 2014.
 238.Guldenaar SE, Veldkamp B, Bakker O, Wiersinga WM, Swaab DF, Fliers E. Thyrotropin‐releasing hormone gene expression in the human hypothalamus. Brain Res 743: 93‐101, 1996.
 239.Gullberg H, Rudling M, Forrest D, Angelin B, Vennstrom B. Thyroid hormone receptor beta‐deficient mice show complete loss of the normal cholesterol 7alpha‐hydroxylase (CYP7A) response to thyroid hormone but display enhanced resistance to dietary cholesterol. Mol Endocrinol 14: 1739‐1749, 2000.
 240.Hafner RP, Nobes CD, McGown AD, Brand MD. Altered relationship between protonmotive force and respiration rate in non‐phosphorylating liver mitochondria isolated from rats of different thyroid hormone status. Eur J Biochem 178: 511‐518, 1988.
 241.Hanon EA, Lincoln GA, Fustin J‐M, Fustin JM, Dardente H, Masson‐Pevet M, Morgan PJ, Hazlerigg DG. Ancestral TSH mechanism signals summer in a photoperiodic mammal. Curr Biol 18: 1147‐1152, 2008.
 242.Harris AR, Christianson D, Smith MS, Fang SL, Braverman LE, Vagenakis AG. The physiological role of thyrotropin‐releasing hormone in the regulation of thyroid‐stimulating hormone and prolactin secretion in the rat. J Clin Invest 61: 441‐448, 1978.
 243.Harris M, Aschkenasi C, Elias CF, Chandrankunnel A, Nillni EA, Bjoorbaek C, Elmquist JK, Flier JS, Hollenberg AN. Transcriptional regulation of the thyrotropin‐releasing hormone gene by leptin and melanocortin signaling. J Clin Invest 107: 111‐120, 2001.
 244.Hashimoto K, Zanger K, Hollenberg AN, Cohen LE, Radovick S, Wondisford FE. cAMP response element‐binding protein‐binding protein mediates thyrotropin‐releasing hormone signaling on thyrotropin subunit genes. J Biol Chem 275: 33365‐33372, 2000.
 245.Heemstra KA, Hoftijzer HC, van der Deure WM, Peeters RP, Fliers E, Appelhof BC, Wiersinga WM, Corssmit EP, Visser TJ, Smit JW. Thr92Ala polymorphism in the type 2 deiodinase is not associated with T4 dose in athyroid patients or patients with Hashimoto thyroiditis. Clin Endocrinol (Oxf) 71: 279‐283, 2009.
 246.Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest 116: 476‐484, 2006.
 247.Hernandez A, Morte B, Belinchon MM, Ceballos A, Bernal J. Critical role of types 2 and 3 deiodinases in the negative regulation of gene expression by T(3)in the mouse cerebral cortex. Endocrinology 153: 2919‐2928, 2012.
 248.Herwig A, Wilson D, Logie TJ, Boelen A, Morgan PJ, Mercer JG, Barrett P. Photoperiod and acute energy deficits interact on components of the thyroid hormone system in hypothalamic tanycytes of the Siberian hamster. Am J Physiol Regul Integr Physiol 296: R1307‐R1315, 2009.
 249.Herzog T, Schlote W. Pituitary adenomas: Tumor cell growth by cluster formation. Pattern analysis based on immunohistochemistry. Acta Neuropathol (Berl) 84: 509‐515, 1992.
 250.Herzog V. Transcytosis in thyroid follicle cells. J Cell Biol 97: 607‐617, 1983.
 251.Heuer H, Mason CA. Thyroid hormone induces cerebellar Purkinje cell dendritic development via the thyroid hormone receptor alpha1. J Neurosci 23: 10604‐10612, 2003.
 252.Heuer H, Schafer MK, Bauer K. The thyrotropin‐releasing hormone‐degrading ectoenzyme: The third element of the thyrotropin‐releasing hormone‐signaling system. Thyroid 8: 915‐920, 1998.
 253.Heuer H, Visser TJ. Minireview: Pathophysiological importance of thyroid hormone transporters. Endocrinology 150: 1078‐1083, 2009.
 254.Hinkle PM, Gehret AU, Jones BW. Desensitization, trafficking, and resensitization of the pituitary thyrotropin‐releasing hormone receptor. Frontiers Neurosci 6: 180, 2012.
 255.Hinkle PM, Goh KB. Regulation of thyrotropin‐releasing hormone receptors and responses by L‐triiodothyronine in dispersed rat pituitary cell cultures. Endocrinology 110: 1725‐1731, 1982.
 256.Hollenberg AN, Monden T, Flynn TR, Boers ME, Cohen O, Wondisford FE. The human thyrotropin‐releasing hormone gene is regulated by thyroid hormone through two distinct classes of negative thyroid hormone response elements. Mol Endocrinol 9: 540‐550, 1995.
 257.Hollenberg AN, Monden T, Madura JP, Lee K, Wondisford FE. Function of nuclear co‐repressor protein on thyroid hormone response elements is regulated by the receptor A/B domain. J Biol Chem 271: 28516‐28520, 1996.
 258.Hollenberg AN, Monden T, Wondisford FE. Ligand‐independent and ‐dependent functions of thyroid hormone receptor isoforms depend upon their distinct amino termini. J Biol Chem 270: 14274‐14280, 1995.
 259.Horn S, Heuer H. Thyroid hormone action during brain development: More questions than answers. Mol Cell Endocrinol 315: 19‐26, 2010.
 260.Horn S, Kersseboom S, Mayerl S, Muller J, Groba C, Trajkovic‐Arsic M, Ackermann T, Visser TJ, Heuer H. Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 154: 968‐979, 2013.
 261.Hoste C, Dumont JE, Miot F, De Deken X. The type of DUOX‐dependent ROS production is dictated by defined sequences in DUOXA. Exp Cell Res 318: 2353‐2364, 2012.
 262.Hsieh KP, Martin TF. Thyrotropin‐releasing hormone and gonadotropin‐releasing hormone receptors activate phospholipase C by coupling to the guanosine triphosphate‐binding proteins Gq and G11. Mol Endocrinol 6: 1673‐1681, 1992.
 263.Hu X, Li Y, Lazar MA. Determinants of CoRNR‐dependent repression complex assembly on nuclear hormone receptors. Mol Cell Biol 21: 1747‐1758, 2001.
 264.Hulur I, Hermanns P, Nestoris C, Heger S, Refetoff S, Pohlenz J, Grasberger H. A single copy of the recently identified dual oxidase maturation factor (DUOXA) 1 gene produces only mild transient hypothyroidism in a patient with a novel biallelic DUOXA2 mutation and monoallelic DUOXA1 deletion. J Clin Endocrinol Metab 96: E841‐E845, 2011.
 265.Ibhazehiebo K, Iwasaki T, Kimura‐Kuroda J, Miyazaki W, Shimokawa N, Koibuchi N. Disruption of thyroid hormone receptor‐mediated transcription and thyroid hormone‐induced Purkinje cell dendrite arborization by polybrominated diphenyl ethers. Environ Health Perspect 119: 168‐175, 2011.
 266.Imperio GE, Ramos IP, Santiago LA, Pereira GF, Dos Santos Almeida NA, Fuziwara CS, Pazos‐Moura CC, Kimura ET, Olivares EL, Ortiga‐Carvalho TM. The impact of a non‐functional thyroid receptor beta upon triiodotironine‐induced cardiac hypertrophy in mice. Cell Physiol Biochem 37: 477‐490, 2015.
 267.Inaoka Y, Yazawa T, Uesaka M, Mizutani T, Yamada K, Miyamoto K. Regulation of NGFI‐B/Nur77 gene expression in the rat ovary and in leydig tumor cells MA‐10. Mol Reprod Dev 75: 931‐939, 2008.
 268.Iordanidou A, Hadzopoulou‐Cladaras M, Lazou A. Non‐genomic effects of thyroid hormone in adult cardiac myocytes: Relevance to gene expression and cell growth. Mol Cell Biochem 340: 291‐300, 2010.
 269.Ishikawa K, Taniguchi Y, Inoue K, Kurosumi K, Suzuki M. Immunocytochemical delineation of thyrotrophic area: Origin of thyrotropin‐releasing hormone in the median eminence. Neuroendocrinology 47: 384‐388, 1988.
 270.Ismail‐Beigi F. Thyroid hormone regulation of Na,K‐ATPase expression. Trends Endocrinol Metab 4: 152‐155, 1993.
 271.Iwasaki T, Yamada M, Satoh T, Konaka S, Ren Y, Hashimoto K, Kohga H, Kato Y, Mori M. Genomic organization and promoter function of the human thyrotropin‐releasing hormone receptor gene. J Biol Chem 271: 22183‐22188, 1996.
 272.Izumo S, Mahdavi V. Thyroid hormone receptor alpha isoforms generated by alternative splicing differentially activate myosin HC gene transcription. Nature 334: 539‐542, 1988.
 273.Jameson JL, Jaffe RC, Deutsch PJ, Albanese C, Habener JF. The gonadotropin alpha‐gene contains multiple protein binding domains that interact to modulate basal and cAMP‐responsive transcription. J Biol Chem 263: 9879‐9886, 1988.
 274.Janssen R, Zuidwijk MJ, Kuster DW, Muller A, Simonides WS. Thyroid hormone‐regulated cardiac microRNAs are predicted to suppress pathological hypertrophic signaling. Front Endocrinol 5: 171, 2014.
 275.Kadar A, Sanchez E, Wittmann G, Singru PS, Fuzesi T, Marsili A, Larsen PR, Liposits Z, Lechan RM, Fekete C. Distribution of hypophysiotropic thyrotropin‐releasing hormone (TRH)‐synthesizing neurons in the hypothalamic paraventricular nucleus of the mouse. J Comp Neurol 518: 3948‐3961, 2010.
 276.Kallo I, Mohacsik P, Vida B, Zeold A, Bardoczi Z, Zavacki AM, Farkas E, Kadar A, Hrabovszky E, Arrojo EDR, Dong L, Barna L, Palkovits M, Borsay BA, Herczeg L, Lechan RM, Bianco AC, Liposits Z, Fekete C, Gereben B. A novel pathway regulates thyroid hormone availability in rat and human hypothalamic neurosecretory neurons. PLoS One 7: e37860, 2012.
 277.Kalyanaraman H, Schwappacher R, Joshua J, Zhuang S, Scott BT, Klos M, Casteel DE, Frangos JA, Dillmann W, Boss GR, Pilz RB. Nongenomic thyroid hormone signaling occurs through a plasma membrane‐localized receptor. Sci Signal 7: ra48, 2014.
 278.Kambe F, Nomura Y, Okamoto T, Seo H. Redox regulation of thyroid‐transcription factors, Pax‐8 and TTF‐1, is involved in their increased DNA‐binding activities by thyrotropin in rat thyroid FRTL‐5 cells. Mol Endocrinol 10: 801‐812, 1996.
 279.Kambe F, Seo H. Thyroid‐specific transcription factors. Endocr J 44: 775‐784, 1997.
 280.Kamei Y, Xu L, Heinzel T, Torchia J, Kurokawa R, Gloss B, Lin SC, Heyman RA, Rose DW, Glass CK, Rosenfeld MG. A CBP integrator complex mediates transcriptional activation and AP‐1 inhibition by nuclear receptors. Cell 85: 403‐414, 1996.
 281.Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273: 23629‐23632, 1998.
 282.Kanda Y, Koike K, Ohmichi M, Sawada T, Hirota K, Miyake A. A possible involvement of tyrosine kinase in TRH‐induced prolactin secretion in GH3 cells. Biochem Biophys Res Commun 199: 1447‐1452, 1994.
 283.Keay J, Thornton JW. Hormone‐activated estrogen receptors in annelid invertebrates: Implications for evolution and endocrine disruption. Endocrinology 150: 1731‐1738, 2009.
 284.Kelley MW, Turner JK, Reh TA. Ligands of steroid/thyroid receptors induce cone photoreceptors in vertebrate retina. Development 121: 3777‐3785, 1995.
 285.Kiley SC, Parker PJ, Fabbro D, Jaken S. Differential regulation of protein kinase C isozymes by thyrotropin‐releasing hormone in GH4C1 cells. J Biol Chem 266: 23761‐23768, 1991.
 286.Kim DW, Zhao L, Hanover J, Willingham M, Cheng SY. Thyroid hormone receptor beta suppresses SV40‐mediated tumorigenesis via novel nongenomic actions. Am J Cancer Res 2: 606‐619, 2012.
 287.Kim HM, Wangemann P. Failure of fluid absorption in the endolymphatic sac initiates cochlear enlargement that leads to deafness in mice lacking pendrin expression. PLoS One 5: e14041, 2010.
 288.Kim KK, Song SB, Kang KI, Rhee M, Kim KE. Activation of the thyroid‐stimulating hormone beta‐subunit gene by LIM homeodomain transcription factor Lhx2. Endocrinology 148: 3468‐3476, 2007.
 289.Kim PS, Arvan P. Calnexin and BiP act as sequential molecular chaperones during thyroglobulin folding in the endoplasmic reticulum. J Cell Biol 128: 29‐38, 1995.
 290.Kimura S, Kotani T, McBride OW, Umeki K, Hirai K, Nakayama T, Ohtaki S. Human thyroid peroxidase: Complete cDNA and protein sequence, chromosome mapping, and identification of two alternately spliced mRNAs. Proc Natl Acad Sci U S A 84: 5555‐5559, 1987.
 291.Klein I, Ojamaa K. Thyroid hormone and the cardiovascular system. N Engl J Med 344: 501‐509, 2001.
 292.Klieverik LP, Janssen SF, van Riel A, Foppen E, Bisschop PH, Serlie MJ, Boelen A, Ackermans MT, Sauerwein HP, Fliers E, Kalsbeek A. Thyroid hormone modulates glucose production via a sympathetic pathway from the hypothalamic paraventricular nucleus to the liver. Proc Natl Acad Sci U S A 106: 5966‐5971, 2009.
 293.Knipper M, Zinn C, Maier H, Praetorius M, Rohbock K, Kopschall I, Zimmermann U. Thyroid hormone deficiency before the onset of hearing causes irreversible damage to peripheral and central auditory systems. J Neurophysiol 83: 3101‐3112, 2000.
 294.Koenig RJ, Lazar MA, Hodin RA, Brent GA, Larsen PR, Chin WW, Moore DD. Inhibition of thyroid hormone action by a non‐hormone binding c‐erbA protein generated by alternative mRNA splicing. Nature 337: 659‐661, 1989.
 295.Kojima A. Action of synthetic TRH on the rat thyroid gland during pregnancy and fetal newborn stages. Horumon To Rinsho 22: 961‐965, 1974.
 296.Kojima A, Hershman JM. Effects of thyrotropin‐releasing hormone (TRH) in maternal, fetal and newborn rats. Endocrinology 94: 1133‐1138, 1974.
 297.Konaka S, Yamada M, Satoh T, Ozawa H, Watanabe E, Takata K, Mori M. Expression of thyrotropin‐releasing hormone (TRH) receptor mRNA in somatotrophs in the rat anterior pituitary. Endocrinology 138: 827‐830, 1997.
 298.Kong WM, Martin NM, Smith KL, Gardiner JV, Connoley IP, Stephens DA, Dhillo WS, Ghatei MA, Small CJ, Bloom SR. Triiodothyronine stimulates food intake via the hypothalamic ventromedial nucleus independent of changes in energy expenditure. Endocrinology 145: 5252‐5258, 2004.
 299.Kopp P. Mutations in the Pendred Syndrome (PDS/SLC26A) gene: An increasingly complex phenotypic spectrum from goiter to thyroid hypoplasia. J Clin Endocrinol Metab 99: 67‐69, 2014.
 300.LaFranchi S. Congenital hypothyroidism: Etiologies, diagnosis, and management. Thyroid 9: 735‐740, 1999.
 301.Laglia G, Zeiger MA, Leipricht A, Caturegli P, Levine MA, Kohn LD, Saji M. Increased cyclic adenosine 3′,5′‐monophosphate inhibits G protein‐coupled activation of phospholipase C in rat FRTL‐5 thyroid cells. Endocrinology 137: 3170‐3176, 1996.
 302.Laurberg P. T4 and T3 release from the perfused canine thyroid isolated in situ. Acta Endocrinol (Copenh) 83: 105‐113, 1976.
 303.Lavery DN, McEwan IJ. Structure and function of steroid receptor AF1 transactivation domains: Induction of active conformations. Biochem J 391: 449‐464, 2005.
 304.Lazar MA. Thyroid hormone receptors: Multiple forms, multiple possibilities. Endocr Rev 14: 184‐193, 1993.
 305.Lazar MA, Berrodin TJ, Harding HP. Differential DNA binding by monomeric, homodimeric, and potentially heteromeric forms of the thyroid hormone receptor. Mol Cell Biol 11: 5005‐5015, 1991.
 306.Lechan RM, Fekete C. Infundibular tanycytes as modulators of neuroendocrine function: Hypothetical role in the regulation of the thyroid and gonadal axis. Acta Biomed 78(Suppl 1): 84‐98, 2007.
 307.Lechan RM, Fekete C. The TRH neuron: A hypothalamic integrator of energy metabolism. Prog Brain Res 153: 209‐235, 2006.
 308.Lechan RM, Qi Y, Berrodin TJ, Davis KD, Schwartz HL, Strait KA, Oppenheimer JH, Lazar MA. Immunocytochemical delineation of thyroid hormone receptor beta 2‐like immunoreactivity in the rat central nervous system. Endocrinology 132: 2461‐2469, 1993.
 309.Lechan RM, Qi Y, Jackson IM, Mahdavi V. Identification of thyroid hormone receptor isoforms in thyrotropin‐releasing hormone neurons of the hypothalamic paraventricular nucleus. Endocrinology 135: 92‐100, 1994.
 310.Lechan RM, Segerson TP. Pro‐TRH gene expression and precursor peptides in rat brain. Observations by hybridization analysis and immunocytochemistry. Ann N Y Acad Sci 553: 29‐59, 1989.
 311.Lechan RM, Wu P, Jackson IM. Immunolocalization of the thyrotropin‐releasing hormone prohormone in the rat central nervous system. Endocrinology 119: 1210‐1216, 1986.
 312.Lechan RM, Wu P, Jackson IM, Wolf H, Cooperman S, Mandel G, Goodman RH. Thyrotropin‐releasing hormone precursor: Characterization in rat brain. Science 231: 159‐161, 1986.
 313.Lee SL, Stewart K, Goodman RH. Structure of the gene encoding rat thyrotropin releasing hormone. J Biol Chem 263: 16604‐16609, 1988.
 314.Legradi G, Emerson CH, Ahima RS, Flier JS, Lechan RM. Leptin prevents fasting‐induced suppression of prothyrotropin‐releasing hormone messenger ribonucleic acid in neurons of the hypothalamic paraventricular nucleus. Endocrinology 138: 2569‐2576, 1997.
 315.Legradi G, Lechan RM. Agouti‐related protein containing nerve terminals innervate thyrotropin‐releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology 140: 3643‐3652, 1999.
 316.Leonard JL, Siegrist‐Kaiser CA, Zuckerman CJ. Regulation of type II iodothyronine 5′‐deiodinase by thyroid hormone. Inhibition of actin polymerization blocks enzyme inactivation in cAMP‐stimulated glial cells. J Biol Chem 265: 940‐946, 1990.
 317.Levy O, Dai G, Riedel C, Ginter CS, Paul EM, Lebowitz AN, Carrasco N. Characterization of the thyroid Na+/I‐ symporter with an anti‐COOH terminus antibody. Proc Natl Acad Sci U S A 94: 5568‐5573, 1997.
 318.Liesi P, Seppala I, Trenkner E. Neuronal migration in cerebellar microcultures is inhibited by antibodies against a neurite outgrowth domain of laminin. J Neurosci Res 33: 170‐176, 1992.
 319.Lin HY, Cody V, Davis FB, Hercbergs AA, Luidens MK, Mousa SA, Davis PJ. Identification and functions of the plasma membrane receptor for thyroid hormone analogues. Discov Med 11: 337‐347, 2011.
 320.Lin HY, Davis FB, Luidens MK, Mousa SA, Cao JH, Zhou M, Davis PJ. Molecular basis for certain neuroprotective effects of thyroid hormone. Front Mol Neurosci 4: 29, 2011.
 321.Lin HY, Tang HY, Davis FB, Mousa SA, Incerpi S, Luidens MK, Meng R, Davis PJ. Nongenomic regulation by thyroid hormone of plasma membrane ion and small molecule pumps. Discov Med 14: 199‐206, 2012.
 322.Lin SC, Li S, Drolet DW, Rosenfeld MG. Pituitary ontogeny of the Snell dwarf mouse reveals Pit‐1‐independent and Pit‐1‐dependent origins of the thyrotrope. Development 120: 515‐522, 1994.
 323.Liposits Z, Paull WK, Wu P, Jackson IM, Lechan RM. Hypophysiotrophic thyrotropin releasing hormone (TRH) synthesizing neurons. Ultrastructure, adrenergic innervation and putative transmitter action. Histochemistry 88: 1‐10, 1987.
 324.Lisboa PC, Oliveira KJ, Cabanelas A, Ortiga‐Carvalho TM, Pazos‐Moura CC. Acute cold exposure, leptin, and somatostatin analog (octreotide) modulate thyroid 5′‐deiodinase activity. Am J Physiol Endocrinol Metab 284: E1172‐1176, 2003.
 325.Liu Y, Takeshita A, Nagaya T, Baniahmad A, Chin WW, Yen PM. An inhibitory region of the DNA‐binding domain of thyroid hormone receptor blocks hormone‐dependent transactivation. Mol Endocrinol 12: 34‐44, 1998.
 326.Lopez M, Varela L, Vazquez MJ, Rodriguez‐Cuenca S, Gonzalez CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R, Martinez de Morentin PB, Tovar S, Nogueiras R, Carling D, Lelliott C, Gallego R, Oresic M, Chatterjee K, Saha AK, Rahmouni K, Dieguez C, Vidal‐Puig A. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med 16: 1001‐1008, 2010.
 327.Ma H, Thapa A, Morris L, Redmond TM, Baehr W, Ding XQ. Suppressing thyroid hormone signaling preserves cone photoreceptors in mouse models of retinal degeneration. Proc Natl Acad Sci U S A 111: 3602‐3607, 2014.
 328.Macchia PE, Takeuchi Y, Kawai T, Cua K, Gauthier K, Chassande O, Seo H, Hayashi Y, Samarut J, Murata Y, Weiss RE, Refetoff S. Increased sensitivity to thyroid hormone in mice with complete deficiency of thyroid hormone receptor alpha. Proc Natl Acad Sci U S A 98: 349‐354, 2001.
 329.Machinis K, Amselem S. Functional relationship between LHX4 and POU1F1 in light of the LHX4 mutation identified in patients with pituitary defects. J Clin Endocrinol Metab 90: 5456‐5462, 2005.
 330.Malcolm LJ. Neuroendocrinology. In: Melmed S, Polonsky K, Larsen PR, Kronenberg H, editors. Williams Textbook of Endocrinology (12th ed). Philadelphia: Elsevier Sauders, 2011.
 331.Manzano J, Bernal J, Morte B. Influence of thyroid hormones on maturation of rat cerebellar astrocytes. Int J Dev Neurosci 25: 171‐179, 2007.
 332.Manzano J, Cuadrado M, Morte B, Bernal J. Influence of thyroid hormone and thyroid hormone receptors in the generation of cerebellar gamma‐aminobutyric acid‐ergic interneurons from precursor cells. Endocrinology 148: 5746‐5751, 2007.
 333.Marino M, McCluskey RT. Role of thyroglobulin endocytic pathways in the control of thyroid hormone release. Am J Physiol Cell Physiol 279: C1295‐1306, 2000.
 334.Marotta P, Amendola E, Scarfo M, De Luca P, Zoppoli P, Amoresano A, De Felice M, Di Lauro R. The paired box transcription factor Pax8 is essential for function and survival of adult thyroid cells. Mol Cell Endocrinol 396: 26‐36, 2014.
 335.Marovitz WF, Berryhill BH, Peterson RR. Disruptions of bony labyrinth, ossicular chain and tympanic bullae in dwarf mice. Laryngoscope 78: 863‐872, 1968.
 336.Marsili A, Zavacki AM, Harney JW, Larsen PR. Physiological role and regulation of iodothyronine deiodinases: A 2011 update. J Endocrinol Invest 34: 395‐407, 2011.
 337.Martagon AJ, Philips KJ, Webb P. Opening the black box: Revealing the molecular basis of thyroid hormone transport. Endocrinology 154: 2266‐2269, 2013.
 338.Martin NP, Marron Fernandez de Velasco E, Mizuno F, Scappini EL, Gloss B, Erxleben C, Williams JG, Stapleton HM, Gentile S, Armstrong DL. A rapid cytoplasmic mechanism for PI3 kinase regulation by the nuclear thyroid hormone receptor, TRbeta, and genetic evidence for its role in the maturation of mouse hippocampal synapses in vivo. Endocrinology 155: 3713‐3724, 2014.
 339.Martinez R, Eller C, Viana NB, Gomes FC. Thyroid hormone induces cerebellar neuronal migration and Bergmann glia differentiation through epidermal growth factor/mitogen‐activated protein kinase pathway. Eur J Neurosci 33: 26‐35, 2011.
 340.Martinez R, Gomes FC. Neuritogenesis induced by thyroid hormone‐treated astrocytes is mediated by epidermal growth factor/mitogen‐activated protein kinase‐phosphatidylinositol 3‐kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 277: 49311‐49318, 2002.
 341.Martinez R, Gomes FC. Proliferation of cerebellar neurons induced by astrocytes treated with thyroid hormone is mediated by a cooperation between cell contact and soluble factors and involves the epidermal growth factor‐protein kinase a pathway. J Neurosci Res 80: 341‐349, 2005.
 342.Martinez‐Galan JR, Escobar del Rey F, Morreale de Escobar G, Santacana M, Ruiz‐Marcos A. Hypothyroidism alters the development of radial glial cells in the term fetal and postnatal neocortex of the rat. Brain Res Dev Brain Res 153: 109‐114, 2004.
 343.Martinez‐Galan JR, Pedraza P, Santacana M, Escobar del Ray F, Morreale de Escobar G, Ruiz‐Marcos A. Early effects of iodine deficiency on radial glial cells of the hippocampus of the rat fetus. A model of neurological cretinism. J Clin Invest 99: 2701‐2709, 1997.
 344.Massart C, Hoste C, Virion A, Ruf J, Dumont JE, Van Sande J. Cell biology of H2O2 generation in the thyroid: Investigation of the control of dual oxidases (DUOX) activity in intact ex vivo thyroid tissue and cell lines. Mol Cell Endocrinol 343: 32‐44, 2011.
 345.Mayerhofer A, Amador AG, Beamer WG, Bartke A. Ultrastructural aspects of the goiter in cog/cog mice. J Hered 79: 200‐203, 1988.
 346.Mayerl S, Muller J, Bauer R, Richert S, Kassmann CM, Darras VM, Buder K, Boelen A, Visser TJ, Heuer H. Transporters MCT8 and OATP1C1 maintain murine brain thyroid hormone homeostasis. J Clin Invest 124: 1987‐1999, 2014.
 347.Mayerl S, Visser TJ, Darras VM, Horn S, Heuer H. Impact of Oatp1c1 deficiency on thyroid hormone metabolism and action in the mouse brain. Endocrinology 153: 1528‐1537, 2012.
 348.McAninch EA, Bianco AC. Thyroid hormone signaling in energy homeostasis and energy metabolism. Ann N Y Acad Sci 1311: 77‐87, 2014.
 349.McEwan IJ. Nuclear receptors: One big family. Methods Mol Biol 505: 3‐18, 2009.
 350.McKenna NJ, O'Malley BW. Minireview: Nuclear receptor coactivators–an update. Endocrinology 143: 2461‐2465, 2002.
 351.McKenna NJ, Xu J, Nawaz Z, Tsai SY, Tsai MJ, O'Malley BW. Nuclear receptor coactivators: Multiple enzymes, multiple complexes, multiple functions. J Steroid Biochem Mol Biol 69: 3‐12, 1999.
 352.McNay DE, Turton JP, Kelberman D, Woods KS, Brauner R, Papadimitriou A, Keller E, Keller A, Haufs N, Krude H, Shalet SM, Dattani MT. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab 92: 691‐697, 2007.
 353.Mellstrom B, Naranjo JR, Santos A, Gonzalez AM, Bernal J. Independent expression of the alpha and beta c‐erbA genes in developing rat brain. Mol Endocrinol 5: 1339‐1350, 1991.
 354.Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol 7: 257‐266, 2011.
 355.Mendel CM. The free hormone hypothesis: A physiologically based mathematical model. Endocr Rev 10: 232‐274, 1989.
 356.Mengeling BJ, Lee S, Privalsky ML. Coactivator recruitment is enhanced by thyroid hormone receptor trimers. Mol Cell Endocrinol 280: 47‐62, 2008.
 357.Menyhert J, Wittmann G, Lechan RM, Keller E, Liposits Z, Fekete C. Cocaine‐ and amphetamine‐regulated transcript (CART) is colocalized with the orexigenic neuropeptide Y and agouti‐related protein and absent from the anorexigenic alpha‐melanocyte‐stimulating hormone neurons in the infundibular nucleus of the human hypothalamus. Endocrinology 148: 4276‐4281, 2007.
 358.Merchenthaler I, Liposits Z. Mapping of thyrotropin‐releasing hormone (TRH) neuronal systems of rat forebrain projecting to the median eminence and the OVLT. Immunocytochemistry combined with retrograde labeling at the light and electron microscopic levels. Acta Biol Hung 45: 361‐374, 1994.
 359.Meza G, Acuna D, Escobar C. Development of vestibular and auditory function: Effects of hypothyroidism and thyroxine replacement therapy on nystagmus and auditory evoked potentials in the pigmented rat. Int J Dev Neurosci 14: 515‐522, 1996.
 360.Mihaly E, Fekete C, Tatro JB, Liposits Z, Stopa EG, Lechan RM. Hypophysiotropic thyrotropin‐releasing hormone‐synthesizing neurons in the human hypothalamus are innervated by neuropeptide Y, agouti‐related protein, and alpha‐melanocyte‐stimulating hormone. J Clin Endocrinol Metab 85: 2596‐2603, 2000.
 361.Milenkovic M, De Deken X, Jin L, De Felice M, Di Lauro R, Dumont JE, Corvilain B, Miot F. Duox expression and related H2O2 measurement in mouse thyroid: Onset in embryonic development and regulation by TSH in adult. J Endocrinol 192: 615‐626, 2007.
 362.Miquelis R, Courageot J, Jacq A, Blanck O, Perrin C, Bastiani P. Intracellular routing of GLcNAc‐bearing molecules in thyrocytes: Selective recycling through the Golgi apparatus. J Cell Biol 123: 1695‐1706, 1993.
 363.Mittag J, Davis B, Vujovic M, Arner A, Vennstrom B. Adaptations of the autonomous nervous system controlling heart rate are impaired by a mutant thyroid hormone receptor‐alpha1. Endocrinology 151: 2388‐2395, 2010.
 364.Mittag J, Lyons DJ, Sallstrom J, Vujovic M, Dudazy‐Gralla S, Warner A, Wallis K, Alkemade A, Nordstrom K, Monyer H, Broberger C, Arner A, Vennstrom B. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions. J Clin Invest 123: 509‐516, 2013.
 365.Miyamoto T, Suzuki S, DeGroot LJ. High affinity and specificity of dimeric binding of thyroid hormone receptors to DNA and their ligand‐dependent dissociation. Mol Endocrinol 7: 224‐231, 1993.
 366.Moran C, Agostini M, Visser WE, Schoenmakers E, Schoenmakers N, Offiah AC, Poole K, Rajanayagam O, Lyons G, Halsall D, Gurnell M, Chrysis D, Efthymiadou A, Buchanan C, Aylwin S, Chatterjee KK. Resistance to thyroid hormone caused by a mutation in thyroid hormone receptor (TR)alpha1 and TRalpha2: Clinical, biochemical, and genetic analyses of three related patients. Lancet Diabetes Endocrinol 2014.
 367.Moran C, Schoenmakers N, Agostini M, Schoenmakers E, Offiah A, Kydd A, Kahaly G, Mohr‐Kahaly S, Rajanayagam O, Lyons G, Wareham N, Halsall D, Dattani M, Hughes S, Gurnell M, Park SM, Chatterjee K. An adult female with resistance to thyroid hormone mediated by defective thyroid hormone receptor alpha. J Clin Endocrinol Metab 98: 4254‐4261, 2013.
 368.Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, Leto TL. Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J 23: 1205‐1218, 2009.
 369.Moreno JC. Identification of novel genes involved in congenital hypothyroidism using serial analysis of gene expression. Horm Res 60(Suppl 3): 96‐102, 2003.
 370.Moreno JC, Bikker H, Kempers MJ, van Trotsenburg AS, Baas F, de Vijlder JJ, Vulsma T, Ris‐Stalpers C. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 347: 95‐102, 2002.
 371.Moreno JC, Visser TJ. New phenotypes in thyroid dyshormonogenesis: Hypothyroidism due to DUOX2 mutations. Endocr Dev 10: 99‐117, 2007.
 372.Morris ME, Felmlee MA. Overview of the proton‐coupled MCT (SLC16A) family of transporters: Characterization, function and role in the transport of the drug of abuse gamma‐hydroxybutyric acid. AAPS J 10: 311‐321, 2008.
 373.Morte B, Bernal J. Thyroid hormone action: Astrocyte‐neuron communication. Front Endocrinol 5: 82, 2014.
 374.Morte B, Manzano J, Scanlan T, Vennstrom B, Bernal J. Deletion of the thyroid hormone receptor alpha 1 prevents the structural alterations of the cerebellum induced by hypothyroidism. Proc Natl Acad Sci U S A 99: 3985‐3989, 2002.
 375.Mullen RD, Colvin SC, Hunter CS, Savage JJ, Walvoord EC, Bhangoo AP, Ten S, Weigel J, Pfaffle RW, Rhodes SJ. Roles of the LHX3 and LHX4 LIM‐homeodomain factors in pituitary development. Mol Cell Endocrinol 265‐266: 190‐195, 2007.
 376.Muller J, Heuer H. Expression pattern of thyroid hormone transporters in the postnatal mouse brain. Front Endocrinol 5: 92, 2014.
 377.Muller J, Mayerl S, Visser TJ, Darras VM, Boelen A, Frappart L, Mariotta L, Verrey F, Heuer H. Tissue‐specific alterations in thyroid hormone homeostasis in combined Mct10 and Mct8 deficiency. Endocrinology 155: 315‐325, 2014.
 378.Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev 94: 355‐382, 2014.
 379.Murphy E, Gluer CC, Reid DM, Felsenberg D, Roux C, Eastell R, Williams GR. Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J Clin Endocrinol Metab 95: 3173‐3181, 2010.
 380.Muscella A, Marsigliante S, Verri T, Urso L, Dimitri C, Botta G, Paulmichl M, Beck‐Peccoz P, Fugazzola L, Storelli C. PKC‐epsilon‐dependent cytosol‐to‐membrane translocation of pendrin in rat thyroid PC Cl3 cells. J Cell Physiol 217: 103‐112, 2008.
 381.Nakajima Y, Yamada M, Taguchi R, Shibusawa N, Ozawa A, Tomaru T, Hashimoto K, Saito T, Tsuchiya T, Okada S, Satoh T, Mori M. NR4A1 (Nur77) mediates thyrotropin‐releasing hormone‐induced stimulation of transcription of the thyrotropin beta gene: Analysis of TRH knockout mice. PLoS One 7: e40437, 2012.
 382.Nanni L, Ming JE, Bocian M, Steinhaus K, Bianchi DW, Die‐Smulders C, Giannotti A, Imaizumi K, Jones KL, Campo MD, Martin RA, Meinecke P, Pierpont ME, Robin NH, Young ID, Roessler E, Muenke M. The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. Hum Mol Genet 8: 2479‐2488, 1999.
 383.Navegantes LC, Silveira LC, Santos GL. Effect of congenital hypothyroidism on cell density in the ganglion cell layer of the rat retina. Braz J Med Biol Res 29: 665‐668, 1996.
 384.Ness GC, Lopez D. Transcriptional regulation of rat hepatic low‐density lipoprotein receptor and cholesterol 7 alpha hydroxylase by thyroid hormone. Arch Biochem Biophys 323: 404‐408, 1995.
 385.Newman CB, Melmed S, Snyder PJ, Young WF, Boyajy LD, Levy R, Stewart WN, Klibanski A, Molitch ME, Gagel RF. Safety and efficacy of long‐term octreotide therapy of acromegaly: Results of a multicenter trial in 103 patients–a clinical research center study. J Clin Endocrinol Metab 80: 2768‐2775, 1995.
 386.Ng L, Goodyear RJ, Woods CA, Schneider MJ, Diamond E, Richardson GP, Kelley MW, Germain DL, Galton VA, Forrest D. Hearing loss and retarded cochlear development in mice lacking type 2 iodothyronine deiodinase. Proc Natl Acad Sci U S A 101: 3474‐3479, 2004.
 387.Ng L, Hurley JB, Dierks B, Srinivas M, Salto C, Vennstrom B, Reh TA, Forrest D. A thyroid hormone receptor that is required for the development of green cone photoreceptors. Nat Genet 27: 94‐98, 2001.
 388.Ng L, Kelley MW, Forrest D. Making sense with thyroid hormone–the role of T(3) in auditory development. Nat Rev Endocrinol 9: 296‐307, 2013.
 389.Ng L, Rusch A, Amma LL, Nordstrom K, Erway LC, Vennstrom B, Forrest D. Suppression of the deafness and thyroid dysfunction in Thrb‐null mice by an independent mutation in the Thra thyroid hormone receptor alpha gene. Hum Mol Genet 10: 2701‐2708, 2001.
 390.Niccoli P, Fayadat L, Panneels V, Lanet J, Franc JL. Human thyroperoxidase in its alternatively spliced form (TPO2) is enzymatically inactive and exhibits changes in intracellular processing and trafficking. J Biol Chem 272: 29487‐29492, 1997.
 391.Nicola JP, Basquin C, Portulano C, Reyna‐Neyra A, Paroder M, Carrasco N. The Na+/I‐ symporter mediates active iodide uptake in the intestine. Am J Physiol Cell Physiol 296: C654‐662, 2009.
 392.Nicola JP, Reyna‐Neyra A, Carrasco N, Masini‐Repiso AM. Dietary iodide controls its own absorption through post‐transcriptional regulation of the intestinal Na+/I‐ symporter. J Physiol 590: 6013‐6026, 2012.
 393.Nikrodhanond AA, Ortiga‐Carvalho TM, Shibusawa N, Hashimoto K, Liao XH, Refetoff S, Yamada M, Mori M, Wondisford FE. Dominant role of thyrotropin‐releasing hormone in the hypothalamic‐pituitary‐thyroid axis. J Biol Chem 281: 5000‐5007, 2006.
 394.Nillni EA. Regulation of the hypothalamic thyrotropin releasing hormone (TRH) neuron by neuronal and peripheral inputs. Front Neuroendocrinol 31: 134‐156, 2010.
 395.Nillni EA, Sevarino KA. The biology of pro‐thyrotropin‐releasing hormone‐derived peptides. Endocr Rev 20: 599‐648, 1999.
 396.Nillni EA, Vaslet C, Harris M, Hollenberg A, Bjorbak C, Flier JS. Leptin regulates prothyrotropin‐releasing hormone biosynthesis. Evidence for direct and indirect pathways. J Biol Chem 275: 36124‐36133, 2000.
 397.Oetting A, Yen PM. New insights into thyroid hormone action. Best Pract Res Clin Endocrinol Metab 21: 193‐208, 2007.
 398.Ohba K, Sasaki S, Matsushita A, Iwaki H, Matsunaga H, Suzuki S, Ishizuka K, Misawa H, Oki Y, Nakamura H. GATA2 mediates thyrotropin‐releasing hormone‐induced transcriptional activation of the thyrotropin beta gene. PLoS One 6: e18667, 2011.
 399.Ohmichi M, Sawada T, Kanda Y, Koike K, Hirota K, Miyake A, Saltiel AR. Thyrotropin‐releasing hormone stimulates MAP kinase activity in GH3 cells by divergent pathways. Evidence of a role for early tyrosine phosphorylation. J Biol Chem 269: 3783‐3788, 1994.
 400.Ojamaa K. Signaling mechanisms in thyroid hormone‐induced cardiac hypertrophy. Vascul Pharmacol 52: 113‐119, 2010.
 401.Oliveira KJ, Ortiga‐Carvalho TM, Cabanelas A, Veiga MA, Aoki K, Ohki‐Hamazaki H, Wada K, Wada E, Pazos‐Moura CC. Disruption of neuromedin B receptor gene results in dysregulation of the pituitary‐thyroid axis. J Mol Endocrinol 36: 73‐80, 2006.
 402.Oppenheimer JH, Koerner D, Schwartz HL, Surks MI. Specific nuclear triiodothyronine binding sites in rat liver and kidney. J Clin Endocrinol Metab 35: 330‐333, 1972.
 403.Ortiga‐Carvalho TM, Hashimoto K, Pazos‐Moura CC, Geenen D, Cohen R, Lang RM, Wondisford FE. Thyroid hormone resistance in the heart: Role of the thyroid hormone receptor beta isoform. Endocrinology 145: 1625‐1633, 2004.
 404.Ortiga‐Carvalho TM, Oliveira KJ, Soares BA, Pazos‐Moura CC. The role of leptin in the regulation of TSH secretion in the fed state: In vivo and in vitro studies. J Endocrinol 174: 121‐125, 2002.
 405.Ortiga‐Carvalho TM, Shibusawa N, Nikrodhanond A, Oliveira KJ, Machado DS, Liao XH, Cohen RN, Refetoff S, Wondisford FE. Negative regulation by thyroid hormone receptor requires an intact coactivator‐binding surface. J Clin Invest 115: 2517‐2523, 2005.
 406.Ortiga‐Carvalho TM, Sidhaye AR, Wondisford FE. Thyroid hormone receptors and resistance to thyroid hormone disorders. Nat Rev Endocrinol 10: 582‐591, 2014.
 407.Pachucki J, Wang D, Christophe D, Miot F. Structural and functional characterization of the two human ThOX/Duox genes and their 5′‐flanking regions. Mol Cell Endocrinol 214: 53‐62, 2004.
 408.Park SM, Chatterjee VK. Genetics of congenital hypothyroidism. J Med Genet 42: 379‐389, 2005.
 409.Pazos‐Moura C, Abel ED, Boers ME, Moura E, Hampton TG, Wang J, Morgan JP, Wondisford FE. Cardiac dysfunction caused by myocardium‐specific expression of a mutant thyroid hormone receptor. Circ Res 86: 700‐706, 2000.
 410.Pearce EN, Wilson PW, Yang Q, Vasan RS, Braverman LE. Thyroid function and lipid subparticle sizes in patients with short‐term hypothyroidism and a population‐based cohort. J Clin Endocrinol Metab 93: 888‐894, 2008.
 411.Peeters RP, Hernandez A, Ng L, Ma M, Sharlin DS, Pandey M, Simonds WF, St Germain DL, Forrest D. Cerebellar abnormalities in mice lacking type 3 deiodinase and partial reversal of phenotype by deletion of thyroid hormone receptor alpha1. Endocrinology 154: 550‐561, 2013.
 412.Pekary AE, Berg L, Santini F, Chopra I, Hershman JM. Cytokines modulate type I iodothyronine deiodinase mRNA levels and enzyme activity in FRTL‐5 rat thyroid cells. Mol Cell Endocrinol 101: R31‐35, 1994.
 413.Pekonen F, Carayon P, Amr S, Weintraub BD. Heterogeneous forms of thyroid‐stimulating hormone in mouse thyrotropic tumor and serum: Differences in receptor‐binding and adenylate cyclase‐stimulating activity. Horm Metab Res 13: 617‐620, 1981.
 414.Perello M, Friedman T, Paez‐Espinosa V, Shen X, Stuart RC, Nillni EA. Thyroid hormones selectively regulate the posttranslational processing of prothyrotropin‐releasing hormone in the paraventricular nucleus of the hypothalamus. Endocrinology 147: 2705‐2716, 2006.
 415.Perello M, Nillni EA. The biosynthesis and processing of neuropeptides: Lessons from prothyrotropin releasing hormone (proTRH). Front Biosci 12: 3554‐3565, 2007.
 416.Perello M, Stuart RC, Nillni EA. The role of intracerebroventricular administration of leptin in the stimulation of prothyrotropin releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology 147: 3296‐3306, 2006.
 417.Perez‐Monter C, Martinez‐Armenta M, Miquelajauregui A, Furlan‐Magaril M, Varela‐Echavarria A, Recillas‐Targa F, May V, Charli JL, Perez‐Martinez L. The Kruppel‐like factor 4 controls biosynthesis of thyrotropin‐releasing hormone during hypothalamus development. Mol Cell Endocrinol 333: 127‐133, 2011.
 418.Perissi V, Rosenfeld MG. Controlling nuclear receptors: The circular logic of cofactor cycles. Nat Rev Mol Cell Biol 6: 542‐554, 2005.
 419.Persani L. Hypothalamic thyrotropin‐releasing hormone and thyrotropin biological activity. Thyroid 8: 941‐946, 1998.
 420.Persani L, Ferretti E, Borgato S, Faglia G, Beck‐Peccoz P. Circulating thyrotropin bioactivity in sporadic central hypothyroidism. J Clin Endocrinol Metab 85: 3631‐3635, 2000.
 421.Pesce L, Bizhanova A, Caraballo JC, Westphal W, Butti ML, Comellas A, Kopp P. TSH regulates pendrin membrane abundance and enhances iodide efflux in thyroid cells. Endocrinology 153: 512‐521, 2012.
 422.Pesce L, Kopp P. Iodide transport: Implications for health and disease. Int J Pediatr Endocrinol 2014: 8, 2014.
 423.Pessoa CN, Santiago LA, Santiago DA, Machado DS, Rocha FA, Ventura DF, Hokoc JN, Pazos‐Moura CC, Wondisford FE, Gardino PF, Ortiga‐Carvalho TM. Thyroid hormone action is required for normal cone opsin expression during mouse retinal development. Invest Ophthalmol Vis Sci 49: 2039‐2045, 2008.
 424.Philips A, Lesage S, Gingras R, Maira MH, Gauthier Y, Hugo P, Drouin J. Novel dimeric Nur77 signaling mechanism in endocrine and lymphoid cells. Mol Cell Biol 17: 5946‐5951, 1997.
 425.Picou F, Fauquier T, Chatonnet F, Richard S, Flamant F. Deciphering direct and indirect influence of thyroid hormone with mouse genetics. Mol Endocrinol 28: 429‐441, 2014.
 426.Piedrafita FJ, Bendik I, Ortiz MA, Pfahl M. Thyroid hormone receptor homodimers can function as ligand‐sensitive repressors. Mol Endocrinol 9: 563‐578, 1995.
 427.Pinazo‐Duran MD, Iborra FJ, Pons S, Sevilla‐Romero E, Gallego‐Pinazo R, Munoz A. Postnatal thyroid hormone supplementation rescues developmental abnormalities induced by congenital‐neonatal hypothyroidism in the rat retina. Ophthalmic Res 37: 225‐234, 2005.
 428.Poguet AL, Legrand C, Feng X, Yen PM, Meltzer P, Samarut J, Flamant F. Microarray analysis of knockout mice identifies cyclin D2 as a possible mediator for the action of thyroid hormone during the postnatal development of the cerebellum. Dev Biol 254: 188‐199, 2003.
 429.Privalsky ML. The role of corepressors in transcriptional regulation by nuclear hormone receptors. Annu Rev Physiol 66: 315‐360, 2004.
 430.Pryor SP, Madeo AC, Reynolds JC, Sarlis NJ, Arnos KS, Nance WE, Yang Y, Zalewski CK, Brewer CC, Butman JA, Griffith AJ. SLC26A4/PDS genotype‐phenotype correlation in hearing loss with enlargement of the vestibular aqueduct (EVA): Evidence that Pendred syndrome and non‐syndromic EVA are distinct clinical and genetic entities. J Med Genet 42: 159‐165, 2005.
 431.Purtell K, Paroder‐Belenitsky M, Reyna‐Neyra A, Nicola JP, Koba W, Fine E, Carrasco N, Abbott GW. The KCNQ1‐KCNE2 K(+) channel is required for adequate thyroid I(−) uptake. FASEB J 26: 3252‐3259, 2012.
 432.Quintanar‐Stephano A, Valverde C. Mitogenic effects of thyroxine and TRH on thyrotrophs and somatotrophs of the anterior pituitary gland in thyroidectomized rats. J Endocrinol 154: 149‐153, 1997.
 433.Rabeler R, Mittag J, Geffers L, Ruther U, Leitges M, Parlow AF, Visser TJ, Bauer K. Generation of thyrotropin‐releasing hormone receptor 1‐deficient mice as an animal model of central hypothyroidism. Mol Endocrinol 18: 1450‐1460, 2004.
 434.Ramadoss P, Abraham BJ, Tsai L, Zhou Y, Costa‐e‐Sousa RH, Ye F, Bilban M, Zhao K, Hollenberg AN. Novel mechanism of positive versus negative regulation by thyroid hormone receptor beta1 (TRbeta1) identified by genome‐wide profiling of binding sites in mouse liver. J Biol Chem 289: 1313‐1328, 2014.
 435.Raspe E, Dumont JE. Tonic modulation of dog thyrocyte H2O2 generation and I‐ uptake by thyrotropin through the cyclic adenosine 3′,5′‐monophosphate cascade. Endocrinology 136: 965‐973, 1995.
 436.Refetoff S, Bassett JH, Beck‐Peccoz P, Bernal J, Brent G, Chatterjee K, De Groot LJ, Dumitrescu AM, Jameson JL, Kopp PA, Murata Y, Persani L, Samarut J, Weiss RE, Williams GR, Yen PM. Classification and proposed nomenclature for inherited defects of thyroid hormone action, cell transport, and metabolism. Thyroid 24: 407‐409, 2014.
 437.Refetoff S, Dumitrescu AM. Syndromes of reduced sensitivity to thyroid hormone: Genetic defects in hormone receptors, cell transporters and deiodination. Best Pract Res Clin Endocrinol Metab 21: 277‐305, 2007.
 438.Reizer J, Reizer A, Saier MH, Jr. A functional superfamily of sodium/solute symporters. Biochim Biophys Acta 1197: 133‐166, 1994.
 439.Ren Y, Satoh T, Yamada M, Hashimoto K, Konaka S, Iwasaki T, Mori M. Stimulation of the preprothyrotropin‐releasing hormone gene by epidermal growth factor. Endocrinology 139: 195‐203, 1998.
 440.Repa JJ, Turley SD, Lobaccaro JA, Medina J, Li L, Lustig K, Shan B, Heyman RA, Dietschy JM, Mangelsdorf DJ. Regulation of absorption and ABC1‐mediated efflux of cholesterol by RXR heterodimers. Science 289: 1524‐1529, 2000.
 441.Ribeiro MO, Carvalho SD, Schultz JJ, Chiellini G, Scanlan TS, Bianco AC, Brent GA. Thyroid hormone–sympathetic interaction and adaptive thermogenesis are thyroid hormone receptor isoform–specific. J Clin Invest 108: 97‐105, 2001.
 442.Ribeiro RC, Kushner PJ, Apriletti JW, West BL, Baxter JD. Thyroid hormone alters in vitro DNA binding of monomers and dimers of thyroid hormone receptors. Mol Endocrinol 6: 1142‐1152, 1992.
 443.Ribeiro SM, Campello AP, Chagas GM, Kluppel ML. Mechanism of citrinin‐induced dysfunction of mitochondria. VI. Effect on iron‐induced lipid peroxidation of rat liver mitochondria and microsomes. Cell Biochem Funct 16: 15‐20, 1998.
 444.Richter CP, Munscher A, Machado DS, Wondisford FE, Ortiga‐Carvalho TM. Complete activation of thyroid hormone receptor beta by T3 is essential for normal cochlear function and morphology in mice. Cell Physiol Biochem 28: 997‐1008, 2011.
 445.Riedel C, Levy O, Carrasco N. Post‐transcriptional regulation of the sodium/iodide symporter by thyrotropin. J Biol Chem 276: 21458‐21463, 2001.
 446.Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont JE, Corvilain B, Miot F, De Deken X. Activation of dual oxidases Duox1 and Duox2: Differential regulation mediated by camp‐dependent protein kinase and protein kinase C‐dependent phosphorylation. J Biol Chem 284: 6725‐6734, 2009.
 447.Riskind PN, Kolodny JM, Larsen PR. The regional hypothalamic distribution of type II 5′‐monodeiodinase in euthyroid and hypothyroid rats. Brain Res 420: 194‐198, 1987.
 448.Rivolta CM, Esperante SA, Gruneiro‐Papendieck L, Chiesa A, Moya CM, Domene S, Varela V, Targovnik HM. Five novel inactivating mutations in the thyroid peroxidase gene responsible for congenital goiter and iodide organification defect. Hum Mutat 22: 259, 2003.
 449.Roberts LM, Woodford K, Zhou M, Black DS, Haggerty JE, Tate EH, Grindstaff KK, Mengesha W, Raman C, Zerangue N. Expression of the thyroid hormone transporters monocarboxylate transporter‐8 (SLC16A2) and organic ion transporter‐14 (SLCO1C1) at the blood‐brain barrier. Endocrinology 149: 6251‐6261, 2008.
 450.Roberts MR, Srinivas M, Forrest D, Morreale de Escobar G, Reh TA. Making the gradient: Thyroid hormone regulates cone opsin expression in the developing mouse retina. Proc Natl Acad Sci U S A 103: 6218‐6223, 2006.
 451.Robson H, Siebler T, Stevens DA, Shalet SM, Williams GR. Thyroid hormone acts directly on growth plate chondrocytes to promote hypertrophic differentiation and inhibit clonal expansion and cell proliferation. Endocrinology 141: 3887‐3897, 2000.
 452.Rocmans PA, Ketelbant‐Balasse P, Dumont JE, Neve P. Hormonal secretion by hyperactive thyroid cells is not secondary to apical phagocytosis. Endocrinology 103: 1834‐1848, 1978.
 453.Rodriguez AM, Perron B, Lacroix L, Caillou B, Leblanc G, Schlumberger M, Bidart JM, Pourcher T. Identification and characterization of a putative human iodide transporter located at the apical membrane of thyrocytes. J Clin Endocrinol Metab 87: 3500‐3503, 2002.
 454.Roelfsema F, Pereira AM, Veldhuis JD, Adriaanse R, Endert E, Fliers E, Romijn JA. Thyrotropin secretion profiles are not different in men and women. J Clin Endocrinol Metab 94: 3964‐3967, 2009.
 455.Roepke TK, King EC, Reyna‐Neyra A, Paroder M, Purtell K, Koba W, Fine E, Lerner DJ, Carrasco N, Abbott GW. Kcne2 deletion uncovers its crucial role in thyroid hormone biosynthesis. Nat Med 15: 1186‐1194, 2009.
 456.Roessler E, Belloni E, Gaudenz K, Vargas F, Scherer SW, Tsui LC, Muenke M. Mutations in the C‐terminal domain of Sonic Hedgehog cause holoprosencephaly. Hum Mol Genet 6: 1847‐1853, 1997.
 457.Roessler E, Du YZ, Mullor JL, Casas E, Allen WP, Gillessen‐Kaesbach G, Roeder ER, Ming JE, Ruiz i Altaba A, Muenke M. Loss‐of‐function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly‐like features. Proc Natl Acad Sci U S A 100: 13424‐13429, 2003.
 458.Roller ML, Camper SA. Localization of the thyrotropin‐releasing hormone gene, Trh, on mouse chromosome 6. Mamm Genome 6: 443‐444, 1995.
 459.Rosenberg IN, Goswami A. Purification and characterization of a flavoprotein from bovine thyroid with iodotyrosine deiodinase activity. J Biol Chem 254: 12318‐12325, 1979.
 460.Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED. Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL‐5 cells. Endocrinology 141: 839‐845, 2000.
 461.Royaux IE, Wall SM, Karniski LP, Everett LA, Suzuki K, Knepper MA, Green ED. Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 98: 4221‐4226, 2001.
 462.Ruf J, Carayon P. Structural and functional aspects of thyroid peroxidase. Arch Biochem Biophys 445: 269‐277, 2006.
 463.Ruiz‐Marcos A, Sanchez‐Toscano F, Escobar del Rey F, Morreale de Escobar G. Severe hypothyroidism and the maturation of the rat cerebral cortex. Brain Res 162: 315‐329, 1979.
 464.Rusch A, Ng L, Goodyear R, Oliver D, Lisoukov I, Vennstrom B, Richardson G, Kelley MW, Forrest D. Retardation of cochlear maturation and impaired hair cell function caused by deletion of all known thyroid hormone receptors. J Neurosci 21: 9792‐9800, 2001.
 465.Salvatore D, Davies TF, Schlumberger M‐J, Hay I, Larsen PR. Thyroid Physiology and Diagnostic Evaluation of Patients with Thyroid Disorders. In: Melmed S, Polonsky K, Larsen PR, Kronenberg H, editors. Williams Textbook of Endocrinology (12th ed). Philadelphia: Elsevier Saunders, 2011, p. 327.
 466.Salvatore D, Simonides WS, Dentice M, Zavacki AM, Larsen PR. Thyroid hormones and skeletal muscle–new insights and potential implications. Nat Rev Endocrinol 10: 206‐214, 2014.
 467.Samuels HH, Tsai JS, Cintron R. Thyroid hormone action: A cell‐culture system responsive to physiological concentrations of thyroid hormones. Science 181: 1253‐1256, 1973.
 468.Sanchez E, Vargas MA, Singru PS, Pascual I, Romero F, Fekete C, Charli JL, Lechan RM. Tanycyte pyroglutamyl peptidase II contributes to regulation of the hypothalamic‐pituitary‐thyroid axis through glial‐axonal associations in the median eminence. Endocrinology 150: 2283‐2291, 2009.
 469.Santiago LA, Santiago DA, Faustino LC, Cordeiro A, Lisboa PC, Wondisford FE, Pazos‐Moura CC, Ortiga‐Carvalho TM. The {Delta}337T mutation on the TR{beta} causes alterations in growth, adiposity and hepatic glucose homeostasis in mice. J Endocrinol 211: 39‐46, 2011.
 470.Santini F, Chiovato L, Ghirri P, Lapi P, Mammoli C, Montanelli L, Scartabelli G, Ceccarini G, Coccoli L, Chopra IJ, Boldrini A, Pinchera A. Serum iodothyronines in the human fetus and the newborn: Evidence for an important role of placenta in fetal thyroid hormone homeostasis. J Clin Endocrinol Metab 84: 493‐498, 1999.
 471.Santos MC, Louzada RA, Souza EC, Fortunato RS, Vasconcelos AL, Souza KL, Castro JP, Carvalho DP, Ferreira AC. Diabetes mellitus increases reactive oxygen species production in the thyroid of male rats. Endocrinology 154: 1361‐1372, 2013.
 472.Sap J, Munoz A, Damm K, Goldberg Y, Ghysdael J, Leutz A, Beug H, Vennstrom B. The c‐erb‐A protein is a high‐affinity receptor for thyroid hormone. Nature 324: 635‐640, 1986.
 473.Sarkar S, Lechan RM. Central administration of neuropeptide Y reduces alpha‐melanocyte‐stimulating hormone‐induced cyclic adenosine 5′‐monophosphate response element binding protein (CREB) phosphorylation in pro‐thyrotropin‐releasing hormone neurons and increases CREB phosphorylation in corticotropin‐releasing hormone neurons in the hypothalamic paraventricular nucleus. Endocrinology 144: 281‐291, 2003.
 474.Sarkar S, Legradi G, Lechan RM. Intracerebroventricular administration of alpha‐melanocyte stimulating hormone increases phosphorylation of CREB in TRH‐ and CRH‐producing neurons of the hypothalamic paraventricular nucleus. Brain Res 945: 50‐59, 2002.
 475.Satoh T, Yamada M, Iwasaki T, Mori M. Negative regulation of the gene for the preprothyrotropin‐releasing hormone from the mouse by thyroid hormone requires additional factors in conjunction with thyroid hormone receptors. J Biol Chem 271: 27919‐27926, 1996.
 476.Scanlan TS. Minireview: 3‐Iodothyronamine (T1AM): A new player on the thyroid endocrine team? Endocrinology 150: 1108‐1111, 2009.
 477.Schilling S, Kohlmann S, Bauscher C, Sedlmeier R, Koch B, Eichentopf R, Becker A, Cynis H, Hoffmann T, Berg S, Freyse EJ, von Horsten S, Rossner S, Graubner S, Demuth HU. Glutaminyl cyclase knock‐out mice exhibit slight hypothyroidism but no hypogonadism: Implications for enzyme function and drug development. J Biol Chem 286: 14199‐14208, 2011.
 478.Schmitmeier S, Thole H, Bader A, Bauer K. Purification and characterization of the thyrotropin‐releasing hormone (TRH)‐degrading serum enzyme and its identification as a product of liver origin. Eur J Biochem 269: 1278‐1286, 2002.
 479.Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL, Galton VA. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol 15: 2137‐2148, 2001.
 480.Schomburg L, Bauer K. Regulation of the adenohypophyseal thyrotropin‐releasing hormone‐degrading ectoenzyme by estradiol. Endocrinology 138: 3587‐3593, 1997.
 481.Schroeder AC, Privalsky ML. Thyroid hormones, t3 and t4, in the brain. Front Endocrinol 5: 40, 2014.
 482.Schueler PA, Schwartz HL, Strait KA, Mariash CN, Oppenheimer JH. Binding of 3,5,3′‐triiodothyronine (T3) and its analogs to the in vitro translational products of c‐erbA protooncogenes: Differences in the affinity of the alpha‐ and beta‐forms for the acetic acid analog and failure of the human testis and kidney alpha‐2 products to bind T3. Mol Endocrinol 4: 227‐234, 1990.
 483.Schwartz MW, Woods SC, Porte D, Jr, Seeley RJ, Baskin DG. Central nervous system control of food intake. Nature 404: 661‐671, 2000.
 484.Schweizer U, Johannes J, Bayer D, Braun D. Structure and function of thyroid hormone plasma membrane transporters. Eur Thyroid J 3: 143‐153, 2014.
 485.Schweizer U, Kohrle J. Function of thyroid hormone transporters in the central nervous system. Biochim Biophys Acta 1830: 3965‐3973, 2013.
 486.Segerson TP, Kauer J, Wolfe HC, Mobtaker H, Wu P, Jackson IM, Lechan RM. Thyroid hormone regulates TRH biosynthesis in the paraventricular nucleus of the rat hypothalamus. Science 238: 78‐80, 1987.
 487.Selmi‐Ruby S, Bouazza L, Obregon MJ, Conscience A, Flamant F, Samarut J, Borson‐Chazot F, Rousset B. The targeted inactivation of TRbeta gene in thyroid follicular cells suggests a new mechanism of regulation of thyroid hormone production. Endocrinology 155: 635‐646, 2014.
 488.Shibusawa N, Hashimoto K, Nikrodhanond AA, Liberman MC, Applebury ML, Liao XH, Robbins JT, Refetoff S, Cohen RN, Wondisford FE. Thyroid hormone action in the absence of thyroid hormone receptor DNA‐binding in vivo. J Clin Invest 112: 588‐597, 2003.
 489.Shibusawa N, Hollenberg AN, Wondisford FE. Thyroid hormone receptor DNA binding is required for both positive and negative gene regulation. J Biol Chem 278: 732‐738, 2003.
 490.Shibusawa N, Yamada M, Hirato J, Monden T, Satoh T, Mori M. Requirement of thyrotropin‐releasing hormone for the postnatal functions of pituitary thyrotrophs: Ontogeny study of congenital tertiary hypothyroidism in mice. Mol Endocrinol 14: 137‐146, 2000.
 491.Shintani M, Tamura Y, Monden M, Shiomi H. Thyrotropin‐releasing hormone induced thermogenesis in Syrian hamsters: Site of action and receptor subtype. Brain Res 1039: 22‐29, 2005.
 492.Shupnik MA, Chin WW, Habener JF, Ridgway EC. Transcriptional regulation of the thyrotropin subunit genes by thyroid hormone. J Biol Chem 260: 2900‐2903, 1985.
 493.Siegrist‐Kaiser CA, Juge‐Aubry C, Tranter MP, Ekenbarger DM, Leonard JL. Thyroxine‐dependent modulation of actin polymerization in cultured astrocytes. A novel, extranuclear action of thyroid hormone. J Biol Chem 265: 5296‐5302, 1990.
 494.Silva JE. The thermogenic effect of thyroid hormone and its clinical implications. Ann Intern Med 139: 205‐213, 2003.
 495.Silva JE. Thermogenic mechanisms and their hormonal regulation. Physiol Rev 86: 435‐464, 2006.
 496.Silva JE, Dick TE, Larsen PR. The contribution of local tissue thyroxine monodeiodination to the nuclear 3,5,3′‐triiodothyronine in pituitary, liver, and kidney of euthyroid rats. Endocrinology 103: 1196‐1207, 1978.
 497.Simonides WS, Thelen MH, van der Linden CG, Muller A, van Hardeveld C. Mechanism of thyroid‐hormone regulated expression of the SERCA genes in skeletal muscle: Implications for thermogenesis. Biosci Rep 21: 139‐154, 2001.
 498.Sloop KW, Walvoord EC, Showalter AD, Pescovitz OH, Rhodes SJ. Molecular analysis of LHX3 and PROP‐1 in pituitary hormone deficiency patients with posterior pituitary ectopia. J Clin Endocrinol Metab 85: 2701‐2708, 2000.
 499.Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, Maenhaut C, Miot F, Van Sande J, Many MC, Dumont JE. Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab 92: 3764‐3773, 2007.
 500.Song Y, Ruf J, Lothaire P, Dequanter D, Andry G, Willemse E, Dumont JE, Van Sande J, De Deken X. Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J Clin Endocrinol Metab 95: 375‐382, 2010.
 501.Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary lineage determination by the Prophet of Pit‐1 homeodomain factor defective in Ames dwarfism. Nature 384: 327‐333, 1996.
 502.Souza PC, Barra GB, Velasco LF, Ribeiro IC, Simeoni LA, Togashi M, Webb P, Neves FA, Skaf MS, Martinez L, Polikarpov I. Helix 12 dynamics and thyroid hormone receptor activity: Experimental and molecular dynamics studies of Ile280 mutants. J Mol Biol 412: 882‐893, 2011.
 503.Spiro MJ. Presence of a glucuronic acid‐containing carbohydrate unit in human thyroglobulin. J Biol Chem 252: 5424‐5430, 1977.
 504.Sprenkle PM, McGee J, Bertoni JM, Walsh EJ. Consequences of hypothyroidism on auditory system function in Tshr mutant (hyt) mice. J Assoc Res Otolaryngol 2: 312‐329, 2001.
 505.Stanya KJ, Kao HY. New insights into the functions and regulation of the transcriptional corepressors SMRT and N‐CoR. Cell Div 4: 7, 2009.
 506.Steinfelder HJ, Hauser P, Nakayama Y, Radovick S, McClaskey JH, Taylor T, Weintraub BD, Wondisford FE. Thyrotropin‐releasing hormone regulation of human TSHB expression: Role of a pituitary‐specific transcription factor (Pit‐1/GHF‐1) and potential interaction with a thyroid hormone‐inhibitory element. Proc Natl Acad Sci U S A 88: 3130‐3134, 1991.
 507.Steinfelder HJ, Radovick S, Mroczynski MA, Hauser P, McClaskey JH, Weintraub BD, Wondisford FE. Role of a pituitary‐specific transcription factor (pit‐1/GHF‐1) or a closely related protein in cAMP regulation of human thyrotropin‐beta subunit gene expression. J Clin Invest 89: 409‐419, 1992.
 508.Steinfelder HJ, Wondisford FE. Thyrotropin (TSH) beta‐subunit gene expression–an example for the complex regulation of pituitary hormone genes. Exp Clin Endocrinol Diabetes 105: 196‐203, 1997.
 509.Stenzel D, Wilsch‐Brauninger M, Wong FK, Heuer H, Huttner WB. Integrin alphavbeta3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 141: 795‐806, 2014.
 510.Strait KA, Schwartz HL, Seybold VS, Ling NC, Oppenheimer JH. Immunofluorescence localization of thyroid hormone receptor protein beta 1 and variant alpha 2 in selected tissues: Cerebellar Purkinje cells as a model for beta 1 receptor‐mediated developmental effects of thyroid hormone in brain. Proc Natl Acad Sci U S A 88: 3887‐3891, 1991.
 511.Sugrue ML, Vella KR, Morales C, Lopez ME, Hollenberg AN. The thyrotropin‐releasing hormone gene is regulated by thyroid hormone at the level of transcription in vivo. Endocrinology 151: 793‐801, 2010.
 512.Sun Y, Lu X, Gershengorn MC. Thyrotropin‐releasing hormone receptors – similarities and differences. J Mol Endocrinol 30: 87‐97, 2003.
 513.Suzuki K, Kohn LD. Differential regulation of apical and basal iodide transporters in the thyroid by thyroglobulin. J Endocrinol 189: 247‐255, 2006.
 514.Swanson EA, Gloss B, Belke DD, Kaneshige M, Cheng SY, Dillmann WH. Cardiac expression and function of thyroid hormone receptor beta and its PV mutant. Endocrinology 144: 4820‐4825, 2003.
 515.Swanson LW, Sawchenko PE. Hypothalamic integration: Organization of the paraventricular and supraoptic nuclei. Annu Rev Neurosci 6: 269‐324, 1983.
 516.Szkudlinski MW, Fremont V, Ronin C, Weintraub BD. Thyroid‐stimulating hormone and thyroid‐stimulating hormone receptor structure‐function relationships. Physiol Rev 82: 473‐502, 2002.
 517.Tagami T, Kopp P, Johnson W, Arseven OK, Jameson JL. The thyroid hormone receptor variant alpha2 is a weak antagonist because it is deficient in interactions with nuclear receptor corepressors. Endocrinology 139: 2535‐2544, 1998.
 518.Takeshita A, Yen PM, Ikeda M, Cardona GR, Liu Y, Koibuchi N, Norwitz ER, Chin WW. Thyroid hormone response elements differentially modulate the interactions of thyroid hormone receptors with two receptor binding domains in the steroid receptor coactivator‐1. J Biol Chem 273: 21554‐21562, 1998.
 519.Tata JR, Ernster L, Lindberg O, Arrhenius E, Pedersen S, Hedman R. The action of thyroid hormones at the cell level. Biochem J 86: 408‐428, 1963.
 520.Tatsumi K, Miyai K, Notomi T, Kaibe K, Amino N, Mizuno Y, Kohno H. Cretinism with combined hormone deficiency caused by a mutation in the PIT1 gene. Nat Genet 1: 56‐58, 1992.
 521.Taylor T, Weintraub BD. Thyrotropin (TSH)‐releasing hormone regulation of TSH subunit biosynthesis and glycosylation in normal and hypothyroid rat pituitaries. Endocrinology 116: 1968‐1976, 1985.
 522.Taylor T, Wondisford FE, Blaine T, Weintraub BD. The paraventricular nucleus of the hypothalamus has a major role in thyroid hormone feedback regulation of thyrotropin synthesis and secretion. Endocrinology 126: 317‐324, 1990.
 523.Tell G, Pines A, Paron I, D'Elia A, Bisca A, Kelley MR, Manzini G, Damante G. Redox effector factor‐1 regulates the activity of thyroid transcription factor 1 by controlling the redox state of the N transcriptional activation domain. J Biol Chem 277: 14564‐14574, 2002.
 524.Tell G, Scaloni A, Pellizzari L, Formisano S, Pucillo C, Damante G. Redox potential controls the structure and DNA binding activity of the paired domain. J Biol Chem 273: 25062‐25072, 1998.
 525.Thonberg H, Fredriksson JM, Nedergaard J, Cannon B. A novel pathway for adrenergic stimulation of cAMP‐response‐element‐binding protein (CREB) phosphorylation: Mediation via alpha1‐adrenoceptors and protein kinase C activation. Biochem J 364: 73‐79, 2002.
 526.Toni R, Jackson IM, Lechan RM. Neuropeptide‐Y‐immunoreactive innervation of thyrotropin‐releasing hormone‐synthesizing neurons in the rat hypothalamic paraventricular nucleus. Endocrinology 126: 2444‐2453, 1990.
 527.Torrens JI, Burch HB. Serum thyroglobulin measurement. Utility in clinical practice. Endocrinol Metab Clin North Am 30: 429‐467, 2001.
 528.Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, Raivich G, Bauer K, Heuer H. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest 117: 627‐635, 2007.
 529.Trentin AG, Gomes FC, Lima FR, Neto VM. Thyroid hormone acting on astrocytes in culture. In Vitro Cell Dev Biol Anim 34: 280‐282, 1998.
 530.Tsai CC, Fondell JD. Nuclear receptor recruitment of histone‐modifying enzymes to target gene promoters. Vitam Horm 68: 93‐122, 2004.
 531.Tu HM, Kim SW, Salvatore D, Bartha T, Legradi G, Larsen PR, Lechan RM. Regional distribution of type 2 thyroxine deiodinase messenger ribonucleic acid in rat hypothalamus and pituitary and its regulation by thyroid hormone. Endocrinology 138: 3359‐3368, 1997.
 532.Turton JP, Strom M, Langham S, Dattani MT, Le Tissier P. Two novel mutations in the POU1F1 gene generate null alleles through different mechanisms leading to combined pituitary hormone deficiency. Clin Endocrinol (Oxf) 76: 387‐393, 2012.
 533.Tylki‐Szymanska A, Acuna‐Hidalgo R, Krajewska‐Walasek M, Lecka‐Ambroziak A, Steehouwer M, Gilissen C, Brunner HG, Jurecka A, Rozdzynska‐Swiatkowska A, Hoischen A, Chrzanowska KH. Thyroid hormone resistance syndrome due to mutations in the thyroid hormone receptor alpha gene (THRA). J Med Genet 52: 312‐316, 2015.
 534.Umesono K, Murakami KK, Thompson CC, Evans RM. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65: 1255‐1266, 1991.
 535.Unger J, Boeynaems JM, Ketelbant‐Balasse P, Dumont JE, Mockel J. Kinetics of dog thyroid secretion in vitro. Endocrinology 103: 1597‐1604, 1978.
 536.Uziel A. Periods of sensitivity to thyroid hormone during the development of the organ of Corti. Acta Otolaryngol Suppl (Stockh) 429: 23‐27, 1986.
 537.Valadares NF, Polikarpov I, Garratt RC. Ligand induced interaction of thyroid hormone receptor beta with its coregulators. J Steroid Biochem Mol Biol 112: 205‐212, 2008.
 538.van de Graaf SA, Ris‐Stalpers C, Pauws E, Mendive FM, Targovnik HM, de Vijlder JJ. Up to date with human thyroglobulin. J Endocrinol 170: 307‐321, 2001.
 539.van den Hove MF, Croizet‐Berger K, Jouret F, Guggino SE, Guggino WB, Devuyst O, Courtoy PJ. The loss of the chloride channel, ClC‐5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 147: 1287‐1296, 2006.
 540.van der Deure WM, Peeters RP, Visser TJ. Molecular aspects of thyroid hormone transporters, including MCT8, MCT10, and OATPs, and the effects of genetic variation in these transporters. J Mol Endocrinol 44: 1‐11, 2010.
 541.van Mullem A, van Heerebeek R, Chrysis D, Visser E, Medici M, Andrikoula M, Tsatsoulis A, Peeters R, Visser TJ. Clinical phenotype and mutant TRalpha1. N Engl J Med 366: 1451‐1453, 2012.
 542.van Mullem AA, Chrysis D, Eythimiadou A, Chroni E, Tsatsoulis A, de Rijke YB, Visser WE, Visser TJ, Peeters RP. Clinical phenotype of a new type of thyroid hormone resistance caused by a mutation of the TRalpha1 receptor: Consequences of LT4 treatment. J Clin Endocrinol Metab 98: 3029‐3038, 2013.
 543.Varela L, Martinez‐Sanchez N, Gallego R, Vazquez MJ, Roa J, Gandara M, Schoenmakers E, Nogueiras R, Chatterjee K, Tena‐Sempere M, Dieguez C, Lopez M. Hypothalamic mTOR pathway mediates thyroid hormone‐induced hyperphagia in hyperthyroidism. J Pathol 227: 209‐222, 2012.
 544.Varga F, Spitzer S, Klaushofer K. Triiodothyronine (T3) and 1,25‐dihydroxyvitamin D3 (1,25D3) inversely regulate OPG gene expression in dependence of the osteoblastic phenotype. Calcif Tissue Int 74: 382‐387, 2004.
 545.Vella KR, Ramadoss P, Lam FS, Harris JC, Ye FD, Same PD, O'Neill NF, Maratos‐Flier E, Hollenberg AN. NPY and MC4R signaling regulate thyroid hormone levels during fasting through both central and peripheral pathways. Cell Metab 14: 780‐790, 2011.
 546.Vennstrom B, Mittag J, Wallis K. Severe psychomotor and metabolic damages caused by a mutant thyroid hormone receptor alpha 1 in mice: Can patients with a similar mutation be found and treated? Acta Paediatr 97: 1605‐1610, 2008.
 547.Verga Falzacappa C, Mangialardo C, Madaro L, Ranieri D, Lupoi L, Stigliano A, Torrisi MR, Bouche M, Toscano V, Misiti S. Thyroid hormone T3 counteracts STZ induced diabetes in mouse. PLoS One 6: e19839, 2011.
 548.Vestergaard P, Mosekilde L. Fractures in patients with hyperthyroidism and hypothyroidism: A nationwide follow‐up study in 16,249 patients. Thyroid 12: 411‐419, 2002.
 549.Vestergaard P, Mosekilde L. Hyperthyroidism, bone mineral, and fracture risk–a meta‐analysis. Thyroid 13: 585‐593, 2003.
 550.Vidal‐Puig AJ, Grujic D, Zhang CY, Hagen T, Boss O, Ido Y, Szczepanik A, Wade J, Mootha V, Cortright R, Muoio DM, Lowell BB. Energy metabolism in uncoupling protein 3 gene knockout mice. J Biol Chem 275: 16258‐16266, 2000.
 551.Virion A, Courtin F, Deme D, Michot JL, Kaniewski J, Pommier J. Spectral characteristics and catalytic properties of thyroid peroxidase‐H2O2 compounds in the iodination and coupling reactions. Arch Biochem Biophys 242: 41‐47, 1985.
 552.Virion A, Pommier J, Deme D, Nunez J. Kinetics of thyroglobulin iodination and thyroid hormone synthesis catalyzed by peroxidases: The role of H2O2. Eur J Biochem 117: 103‐109, 1981.
 553.Visser WE, Friesema EC, Visser TJ. Minireview: Thyroid hormone transporters: The knowns and the unknowns. Mol Endocrinol 25: 1‐14, 2011.
 554.Wallis K, Dudazy S, van Hogerlinden M, Nordstrom K, Mittag J, Vennstrom B. The thyroid hormone receptor alpha1 protein is expressed in embryonic postmitotic neurons and persists in most adult neurons. Mol Endocrinol 24: 1904‐1916, 2010.
 555.Warnmark A, Treuter E, Wright AP, Gustafsson JA. Activation functions 1 and 2 of nuclear receptors: Molecular strategies for transcriptional activation. Mol Endocrinol 17: 1901‐1909, 2003.
 556.Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, Schoonjans K, Bianco AC, Auwerx J. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439: 484‐489, 2006.
 557.Watanabe YG. Effects of brain and mesenchyme upon the cytogenesis of rat adenohypophysis in vitro. I. Differentiation of adrenocorticotropes. Cell Tissue Res 227: 257‐266, 1982.
 558.Waung JA, Bassett JH, Williams GR. Thyroid hormone metabolism in skeletal development and adult bone maintenance. Trends Endocrinol Metab 23: 155‐162, 2012.
 559.Webb P, Anderson CM, Valentine C, Nguyen P, Marimuthu A, West BL, Baxter JD, Kushner PJ. The nuclear receptor corepressor (N‐CoR) contains three isoleucine motifs (I/LXXII) that serve as receptor interaction domains (IDs). Mol Endocrinol 14: 1976‐1985, 2000.
 560.Weinberger C, Thompson CC, Ong ES, Lebo R, Gruol DJ, Evans RM. The c‐erb‐A gene encodes a thyroid hormone receptor. Nature 324: 641‐646, 1986.
 561.Weintraub BD, Stannard BS, Meyers L. Glycosylation of thyroid‐stimulating hormone in pituitary tumor cells: Influence of high mannose oligosaccharide units on subunit aggregation, combination, and intracellular degradation. Endocrinology 112: 1331‐1345, 1983.
 562.Weiss AH, Kelly JP, Bisset D, Deeb SS. Reduced L‐ and M‐ and increased S‐cone functions in an infant with thyroid hormone resistance due to mutations in the THRbeta2 gene. Ophthalmic Genet 33: 187‐195, 2012.
 563.Weiss RE, Hayashi Y, Nagaya T, Petty KJ, Murata Y, Tunca H, Seo H, Refetoff S. Dominant inheritance of resistance to thyroid hormone not linked to defects in the thyroid hormone receptor alpha or beta genes may be due to a defective cofactor. J Clin Endocrinol Metab 81: 4196‐4203, 1996.
 564.Weiss RE, Refetoff S. Effect of thyroid hormone on growth. Lessons from the syndrome of resistance to thyroid hormone. Endocrinol Metab Clin North Am 25: 719‐730, 1996.
 565.Weiss RE, Xu J, Ning G, Pohlenz J, O'Malley BW, Refetoff S. Mice deficient in the steroid receptor co‐activator 1 (SRC‐1) are resistant to thyroid hormone. Embo J 18: 1900‐1904, 1999.
 566.Weiss SJ, Philp NJ, Ambesi‐Impiombato FS, Grollman EF. Thyrotropin‐stimulated iodide transport mediated by adenosine 3′,5′‐monophosphate and dependent on protein synthesis. Endocrinology 114: 1099‐1107, 1984.
 567.West BE, Parker GE, Savage JJ, Kiratipranon P, Toomey KS, Beach LR, Colvin SC, Sloop KW, Rhodes SJ. Regulation of the follicle‐stimulating hormone beta gene by the LHX3 LIM‐homeodomain transcription factor. Endocrinology 145: 4866‐4879, 2004.
 568.Wexler JA, Sharretts J. Thyroid and bone. Endocrinol Metab Clin North Am 36: 673‐705, vi, 2007.
 569.Weyemi U, Caillou B, Talbot M, Ameziane‐El‐Hassani R, Lacroix L, Lagent‐Chevallier O, Al Ghuzlan A, Roos D, Bidart JM, Virion A, Schlumberger M, Dupuy C. Intracellular expression of reactive oxygen species‐generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr Relat Cancer 17: 27‐37, 2010.
 570.Wiesner P, Choi SH, Almazan F, Benner C, Huang W, Diehl CJ, Gonen A, Butler S, Witztum JL, Glass CK, Miller YI. Low doses of lipopolysaccharide and minimally oxidized low‐density lipoprotein cooperatively activate macrophages via nuclear factor kappa B and activator protein‐1. Possible mechanism for acceleration of atherosclerosis by subclinical endotoxemia. Circ Res 107: 56‐65, 2010.
 571.Wikstrom L, Johansson C, Salto C, Barlow C, Campos Barros A, Baas F, Forrest D, Thoren P, Vennstrom B. Abnormal heart rate and body temperature in mice lacking thyroid hormone receptor alpha 1. Embo J 17: 455‐461, 1998.
 572.Wilkinson JR, Towle HC. Identification and characterization of the AF‐1 transactivation domain of thyroid hormone receptor beta1. J Biol Chem 272: 23824‐23832, 1997.
 573.Williams GR. Cloning and characterization of two novel thyroid hormone receptor beta isoforms. Mol Cell Biol 20: 8329‐8342, 2000.
 574.Williams GR. Neurodevelopmental and neurophysiological actions of thyroid hormone. J Neuroendocrinol 20: 784‐794, 2008.
 575.Wintergerst KA, Rogers ES, Foster MB. Hyperthyroidism presenting with hyperglycemia in an adolescent female. J Pediatr Endocrinol Metab 24: 385‐387, 2011.
 576.Wirth EK, Schweizer U, Kohrle J. Transport of thyroid hormone in brain. Front Endocrinol 5: 98, 2014.
 577.Wittmann G, Fuzesi T, Singru PS, Liposits Z, Lechan RM, Fekete C. Efferent projections of thyrotropin‐releasing hormone‐synthesizing neurons residing in the anterior parvocellular subdivision of the hypothalamic paraventricular nucleus. J Comp Neurol 515: 313‐330, 2009.
 578.Wittmann G, Liposits Z, Lechan RM, Fekete C. Medullary adrenergic neurons contribute to the cocaine‐ and amphetamine‐regulated transcript‐immunoreactive innervation of thyrotropin‐releasing hormone synthesizing neurons in the hypothalamic paraventricular nucleus. Brain Res 1006: 1‐7, 2004.
 579.Wittmann G, Liposits Z, Lechan RM, Fekete C. Medullary adrenergic neurons contribute to the neuropeptide Y‐ergic innervation of hypophysiotropic thyrotropin‐releasing hormone‐synthesizing neurons in the rat. Neurosci Lett 324: 69‐73, 2002.
 580.Wolff J. What is the role of pendrin? Thyroid 15: 346‐348, 2005.
 581.Wolff J, Chaikoff IL. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J Biol Chem 174: 555‐564, 1948.
 582.Wong JL, Creton R, Wessel GM. The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 7: 801‐814, 2004.
 583.Wu Y, Xu B, Koenig RJ. Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness. J Biol Chem 276: 3929‐3936, 2001.
 584.Yamada M, Monden T, Satoh T, Iizuka M, Murakami M, Iriuchijima T, Mori M. Differential regulation of thyrotropin‐releasing hormone receptor mRNA levels by thyroid hormone in vivo and in vitro (GH3 cells). Biochem Biophys Res Commun 184: 367‐372, 1992.
 585.Yamada M, Saga Y, Shibusawa N, Hirato J, Murakami M, Iwasaki T, Hashimoto K, Satoh T, Wakabayashi K, Taketo MM, Mori M. Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin‐releasing hormone gene. Proc Natl Acad Sci U S A 94: 10862‐10867, 1997.
 586.Yamada M, Satoh T, Monden T, Mori M. Assignment of the thyrotropin‐releasing hormone gene (TRH) to human chromosome 3q13.3–>q21 by in situ hybridization. Cytogenet Cell Genet 87: 275, 1999.
 587.Yamada M, Wondisford FE, Radovick S, Nakayama Y, Weintraub BD, Wilber JF. Assignment of human preprothyrotropin‐releasing hormone (TRH) gene to chromosome 3. Somat Cell Mol Genet 17: 97‐100, 1991.
 588.Yamamura T, Yasuo S, Hirunagi K, Ebihara S, Yoshimura T. T(3) implantation mimics photoperiodically reduced encasement of nerve terminals by glial processes in the median eminence of Japanese quail. Cell Tissue Res 324: 175‐179, 2006.
 589.Yang SX, Pollock HG, Rawitch AB. Glycosylation in human thyroglobulin: Location of the N‐linked oligosaccharide units and comparison with bovine thyroglobulin. Arch Biochem Biophys 327: 61‐70, 1996.
 590.Yen PM. Physiological and molecular basis of thyroid hormone action. Physiol Rev 81: 1097‐1142, 2001.
 591.Yen PM, Ando S, Feng X, Liu Y, Maruvada P, Xia X. Thyroid hormone action at the cellular, genomic and target gene levels. Mol Cell Endocrinol 246: 121‐127, 2006.
 592.Yokoyama N, Taurog A. Porcine thyroid peroxidase: Relationship between the native enzyme and an active, highly purified tryptic fragment. Mol Endocrinol 2: 838‐844, 1988.
 593.Yoshihara A, Hara T, Kawashima A, Akama T, Tanigawa K, Wu H, Sue M, Ishido Y, Hiroi N, Ishii N, Yoshino G, Suzuki K. Regulation of dual oxidase expression and H2O2 production by thyroglobulin. Thyroid 22: 1054‐1062, 2012.
 594.Yoshimura T. Thyroid hormone and seasonal regulation of reproduction. Front Neuroendocrinol 34: 157‐166, 2013.
 595.Yusta B, Alarid ET, Gordon DF, Ridgway EC, Mellon PL. The thyrotropin beta‐subunit gene is repressed by thyroid hormone in a novel thyrotrope cell line, mouse T alphaT1 cells. Endocrinology 139: 4476‐4482, 1998.
 596.Zamproni I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, Onigata K, Fugazzola L, Refetoff S, Persani L, Weber G. Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab 93: 605‐610, 2008.

Related Articles:

Hypothalamus as an Endocrine Organ
Thyroid Hormone Receptors
Autocrine/Paracrine Intermediates in Hormonal Action and Modulation of Cellular Responses to Hormones
Thyroid Hormone, Hormone Analogs, and Angiogenesis
Neural and Hormonal Responses to Prolonged Cold Exposure

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Tania M. Ortiga‐Carvalho, Maria I. Chiamolera, Carmen C. Pazos‐Moura, Fredric E. Wondisford. Hypothalamus‐Pituitary‐Thyroid Axis. Compr Physiol 2016, 6: 1387-1428. doi: 10.1002/cphy.c150027