Comprehensive Physiology Wiley Online Library

Membrane Proteins Structure and Dynamics by Nuclear Magnetic Resonance

Full Article on Wiley Online Library



Abstract

Membrane proteins represent a challenging class of biological systems to study. They are extremely difficult to crystallize and in most cases they retain their structure and functions only in membrane environments. Therefore, commonly used diffraction methods fail to give detailed molecular structure and other approaches have to be utilized to obtain biologically relevant information. Nuclear magnetic resonance (NMR) spectroscopy, however, can provide powerful structural and dynamical constraints on these complicated systems. Solution‐ and solid‐state NMR are powerful methods for investigating membrane proteins studies. In this work, we briefly review both solution and solid‐state NMR techniques for membrane protein studies and illustrate the applications of these methods to elucidate proteins structure, conformation, topology, dynamics, and function. Recent advances in electronics, biological sample preparation, and spectral processing provided opportunities for complex biological systems, such as membrane proteins inside lipid vesicles, to be studied faster and with outstanding quality. New analysis methods therefore have emerged, that benefit from the combination of sample preparation and corresponding specific high‐end NMR techniques, which give access to more structural and dynamic information. © 2011 American Physiological Society. Compr Physiol 1:2175‐2187, 2011.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Different types and organizations of proteins in lipid bilayer.

Figure 2. Figure 2.

Micelle, bicelle, and bilayer models.

Figure 3. Figure 3.

SDS, DPC, and DHPC structures.

Figure 4. Figure 4.

(A) A MAS rotor in a magnetic field. (B) Typical line shapes for static sample (left) and rotated fast around the magic angle (right).

Figure 5. Figure 5.

(A) A MAS rotor in a magnetic field. (B) Typical line shapes for static sample (left) and rotated fast around the magic angle (right).

Figure 6. Figure 6.

A schematic representation of a PISA wheel pattern. The circles correspond to 15N signals from different residues of the α‐helix.

Figure 7. Figure 7.

DAGK trimer.



Figure 1.

Different types and organizations of proteins in lipid bilayer.



Figure 2.

Micelle, bicelle, and bilayer models.



Figure 3.

SDS, DPC, and DHPC structures.



Figure 4.

(A) A MAS rotor in a magnetic field. (B) Typical line shapes for static sample (left) and rotated fast around the magic angle (right).



Figure 5.

(A) A MAS rotor in a magnetic field. (B) Typical line shapes for static sample (left) and rotated fast around the magic angle (right).



Figure 6.

A schematic representation of a PISA wheel pattern. The circles correspond to 15N signals from different residues of the α‐helix.



Figure 7.

DAGK trimer.

References
 1. Abu‐Baker S, Lu JX, Chu SD, Brinn CC, Makaroff CA, Lorigan GA. Side chain and backbone dynamics of phospholamban in phospholipid bilayers utilizing H‐2 and N‐15 solid‐state NMR spectroscopy. Biochemistry 46(42): 11695‐11706, 2007.
 2. Abu‐Baker S, Qi XY, Lorigan GA. Investigating the interaction of saposin c with POPS and POPC phospholipids: A solid‐state NMR spectroscopic study. Biophys J 93(10): 3480‐3490, 2007.
 3. Agrawal P, Kiihne S, Hollander J, Hofmann M, Langosch D, de Groot H. A solid‐state NMR study of changes in lipid phase induced by membrane‐fusogenic LV‐peptides. Biochim Biophys Acta 1798(2): 202‐209, 2010.
 4. Andreas LB, Eddy MT, Pielak RM, Chou J, Griffin RG. Magic angle spinning NMR investigation of influenza A M2(18‐60): Support for an allosteric mechanism of inhibition. J Am Chem Soc 132(32): 10958‐10960, 2010.
 5. Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M. Determination of membrane protein structure and dynamics by magic‐angle‐spinning solid‐state NMR spectroscopy. J Am Chem Soc 127(37): 12965‐12974, 2005.
 6. Arora A, Abildgaard F, Bushweller JH, Tamm LK. Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8(4): 334‐338, 2001.
 7. Arora A, Tamm LK. Biophysical approaches to membrane protein structure determination. Curr Opin Struct Biol 11(5): 540‐547, 2001.
 8. Bellot G, Granier S, Bourguet W, Seyer R, Rahmeh R, Mouillac B, Pascal R, Mendre C, Demene H. Structure of the third intracellular loop of the vasopressin V2 receptor and conformational changes upon binding to gC1qR. J Mol Biol 388(3): 491‐507, 2009.
 9. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. The protein data bank. Nucleic Acids Res 28(1): 235‐242, 2000.
 10. Bocharov EV, Mayzel ML, Volynsky PE, Goncharuk MV, Ermolyuk YS, Schulga AA, Artemenko EO, Efremov RG, Arseniev AS. Spatial structure and pH‐dependent conformational diversity of dimeric transmembrane domain of the receptor tyrosine kinase EphA1. J Biol Chem 283(43): 29385‐29395, 2008.
 11. Bocharov EV, Mineev KS, Volynsky PE, Ermolyuk YS, Tkach EN, Sobol AG, Chupin VV, Kirpichnikov MP, Efremov RG, Arseniev AS. Spatial structure of the dimeric transmembrane domain of the growth factor receptor ErbB2 presumably corresponding to the receptor active state. J Biol Chem 283(11): 6950‐6956, 2008.
 12. Brender JR, Durr UHN, Heyl D, Budarapu MB, Ramamoorthy A. Membrane fragmentation by an amyloidogenic fragment of human islet amyloid polypeptide detected by solid‐state NMR spectroscopy of membrane nanotubes. Biochim Biophys Acta 1768(9): 2026‐2029, 2007.
 13. Brinkmann A, Kentgens APM, Anupold T, Samoson A. Symmetry‐based recoupling in double‐rotation NMR spectroscopy. J Chem Phys 129(17): 2008.
 14. Cady SD, Schmidt‐Rohr K, Wang J, Soto CS, Degrado WF, Hong M. Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers. Nature 463(7281): 689‐692, 2010.
 15. Cardon TB, Tiburu EK, Lorigan GA. Magnetically aligned phospholipid bilayers in weak magnetic fields: Optimization, mechanism, and advantages for X‐band EPR studies. J Magn Reson 161(1): 77‐90, 2003.
 16. Cho G, Fung BM, Reddy VB. Phospholipid bicelles with positive anisotropy of the magnetic susceptibility. J Am Chem Soc 123(7): 1537‐1538, 2001.
 17. Chu S, Maltsev S, Emwas AH, Lorigan GA. Solid‐state NMR paramagnetic relaxation enhancement immersion depth studies in phospholipid bilayers. J Magn Reson 207(1): 89‐94, 2010.
 18. Cullis PR, Fenske BD, Hope MJ. Physical Properties and Functional Roles of Lipids in Membranes. New Comprehensive Biochemistry 31. 1‐33, 1996.
 19. Damberg P, Jarvet J, Graslund A. Micellar systems as solvents in peptide and protein structure determination. Methods Enzymol, 339(Pt B): 271‐285, 2001.
 20. Dave PC, Tiburu EK, Nusair NA, Lorigan GA. Calculating order parameter profiles utilizing magnetically aligned phospholipid bilayers for H‐2 solid‐state NMR studies. Solid State Nucl Magn Reson 24(2‐3): 137‐149, 2003.
 21. de Alba E, Tjandra N. Residual dipolar couplings in protein structure determination. Methods Mol Biol 278: 89‐106, 2004.
 22. De Angelis AA, Opella SJ. Bicelle samples for solid‐state NMR of membrane proteins. Nature Protocols 2(10): 2332‐2338, 2007.
 23. de Medeiros LN, Angeli R, Sarzedas CG, Barreto‐Bergter E, Valente AP, Kurtenbach E, Almeida FCL. Backbone dynamics of the antifungal Psd1 pea defensin and its correlation with membrane interaction by NMR spectroscopy. Biochim Biophys Acta 1798(2): 105‐113, 2010.
 24. Diller A, Loudet C, Aussenac F, Raffard G, Fournier S, Laguerre M, Grelard A, Opella SJ, Marassi FM, Dufourc EJ. Bicelles: A natural ‘molecular goniometer’ for structural, dynamical and topological studies of molecules in membranes. Biochimie 91(6): 744‐751, 2009.
 25. Durr UHN, Waskell L, Ramamoorthy A. The cytochromes P450 and b(5) and their reductases ‐ Promising targets for structural studies by advanced solid‐state NMR spectroscopy. Biochim Biophys Acta 1768(12): 3235‐3259, 2007.
 26. Dvinskikh SV, Yamamoto K, Ramamoorthy A. Heteronuclear isotropic mixing separated local field NMR spectroscopy. J Chem Phys 125(3): 34507, 2006.
 27. Ellena JF, Burnitz MC, Cafiso DS. Location of the myristoylated alanine‐rich C‐kinase substrate (MARCKS) effector domain in negatively charged phospholipid bicelles. Biophys J 85(4): 2442‐2448, 2003.
 28. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Formankay JD, Kay LE. Backbone dynamics of a free and a phosphopeptide‐complexed Src homology‐2 domain studied by N‐15 Nmr relaxation. Biochemistry 33(19): 5984‐6003, 1994.
 29. Fernandez C, Wider G. TROSY in NMR studies of the structure and function of large biological macromolecules. Curr Opin Struct Biol 13(5): 570‐580, 2003.
 30. Franks WT, Wylie BJ, Schmidt HLF, Nieuwkoop AJ, Mayrhofer RM, Shah GJ, Graesser DT, Rienstra CM. Dipole tensor‐based atomic‐resolution structure determination of a nanocrystalline protein by solid‐state NMR. Proc Natl Acad Sci U S A 105(12): 4621‐4626, 2008.
 31. Franzin CM, Teriete P, Marassi FM. Structural similarity of a membrane protein in micelles and membranes. J Am Chem Soc 129(26): 8078‐8079, 2007.
 32. Gabriel NE, Roberts MF. Spontaneous formation of stable unilamellar vesicles. Biophys J 45(2): A41‐A41, 1984.
 33. Gabrys CM, Yang R, Wasniewski CM, Yang J, Canlas CG, Qiang W, Sun Y, Weliky DP. Nuclear magnetic resonance evidence for retention of a lamellar membrane phase with curvature in the presence of large quantities of the HIV fusion peptide. Biochim Biophys Acta 1798(2): 194‐201, 2010.
 34. Gardner KH, Kay LE. The use of H‐2, C‐13, N‐15 multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27: 357‐406, 1998.
 35. Gaspari ZPA. Protein Dynamics as Reported by NMR. Ann Rep NMR Spect 71: 35‐75, 2010.
 36. Gautier A, Mott HR, Bostock MJ, Kirkpatrick JP, Nietlispach D. Structure determination of the seven‐helix transmembrane receptor sensory rhodopsin II by solution NMR spectroscopy. Nat Struct Mol Biol 17(6): 768‐774, 2010.
 37. Glover KJ, Whiles JA, Vold RR, Melacini G. Position of residues in transmembrane peptides with respect to the lipid bilayer: A combined lipid NOEs and water chemical exchange approach in phospholipid bicelles. J Biomol NMR 22(1): 57‐64, 2002.
 38. Grobner G, Glaubitz C, Watts A. Probing membrane surfaces and the location of membrane‐embedded peptides by C‐13 MAS NMR using lanthanide ions. J Magn Reson 141(2): 335‐339, 1999.
 39. Gullion T, Schaefer J. Rotational‐echo double‐resonance Nmr. J Magn Reson 81(1): 196‐200, 1989.
 40. Haney FE, Hans VJ. NMR of antimicrobial peptides. Ann Rep NMR Spect 65: 1‐51, 2009.
 41. Hauser H. Phospholipid Vesicles. Phospholipids Handbook, New York, Marcel Dekker, 603‐637, 1993.
 42. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G. Solution structure of the integral human membrane protein VDAC‐1 in detergent micelles. Science 321(5893): 1206‐1210, 2008.
 43. Hu FH, Luo WB, Hong M. Mechanisms of proton conduction and gating in influenza M2 proton channels from solid‐state NMR. Science 330(6003): 505‐508, 2010.
 44. Hu J, Asbury T, Achuthan S, Li CG, Bertram R, Quine JR, Fu RQ, Cross TA. Backbone structure of the amantadine‐blocked trans‐membrane domain M2 proton channel from influenza A virus. Biophys J 92(12): 4335‐4343, 2007.
 45. Hu KN, Tycko R. Zero‐quantum frequency‐selective recoupling of homonuclear dipole‐dipole interactions in solid state nuclear magnetic resonance. J Chem Phys 131(4): 2009.
 46. Hwang PM, Choy WY, Lo EI, Chen L, Forman‐Kay JD, Raetz CRH, Prive GG, Bishop RE, Kay LE. Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 99(21): 13560‐13565, 2002.
 47. Inbaraj JJ, Nusair NA, Lorigan GA. Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at Q‐band (35 GHz): Optimization and comparison with X‐band (9 GHz). J Magn Reson 171(1): 71‐79, 2004.
 48. Jarymowycz VA, Stone MJ. Fast time scale dynamics of protein backbones: NMR relaxation methods, applications, and functional consequences. Chem Rev 106(5): 1624‐1671, 2006.
 49. Jeener J, Meier BH, Bachmann P, Ernst RR. Investigation of exchange processes by 2‐dimensional NMR‐spectroscopy. J Chem Phys 71(11): 4546‐4553, 1979.
 50. Kang CB, Tian CL, Sonnichsen FD, Smith JA, Meiler J, George AL, Vanoye CG, Kim HJ, Sanders CR. Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry 47(31): 7999‐8006, 2008.
 51. Karp ES, Tiburu EK, Abu‐Baker S, Lorigan GA. The structural properties of the transmembrane segment of the integral membrane protein phospholamban utilizing C‐13 CPMAS, H‐2, and REDOR solid‐state NMR spectroscopy. Biochim Biophys Acta 1758(6): 772‐780, 2006.
 52. Killian JA, Trouard TP, Greathouse DV, Chupin V, Lindblom G. A general‐method for the preparation of mixed micelles of hydrophobic peptides and sodium dodecyl‐sulfate. FEBS Lett 348(2): 161‐165, 1994.
 53. Kim S, Szyperski T. GFT NMR, a new approach to rapidly obtain precise high‐dimensional NMR spectral information. J Am Chem Soc 125(5): 1385‐1393, 2003.
 54. Kleinschmidt JH, Wiener MC, Tamm LK. Outer membrane protein A of E‐coli folds into detergent micelles, but not in the presence of monomeric detergent. Protein Sci 8(10): 2065‐2071, 1999.
 55. Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE. A transient and low‐populated protein‐folding intermediate at atomic resolution. Science 329(5997): 1312‐1316, 2010.
 56. Krizova H, Zidek L, Stone MJ, Novotny MV, Sklenar V. Temperature‐dependent spectral density analysis applied to monitoring backbone dynamics of major urinary protein‐I complexed with the pheromone 2‐sec‐butyl‐4,5‐dihydrothiazole. J Biomol NMR 28(4): 369‐384, 2004.
 57. Kusumi A, Nakada C, Ritchie K, Murase K, Suzuki K, Murakoshi H, Kasai RS, Kondo J, Fujiwara T. Paradigm shift of the plasma membrane concept from the two‐dimensional continuum fluid to the partitioned fluid: High‐speed single‐molecule tracking of membrane molecules. Annu Rev Biophys Biomol Struct 34: 351‐378, 2005.
 58. Lau TL, Kim C, Ginsberg MH, Ulmer TS. The structure of the integrin alpha IIb beta 3 transmembrane complex explains integrin transmembrane signalling. EMBO J 28(9): 1351‐1361, 2009.
 59. Lauterwein J, Bosch C, Brown LR, Wuthrich K. Physicochemical studies of the protein‐lipid interactions in melittin‐containing micelles. Biochim Biophys Acta 556(2): 244‐264, 1979.
 60. Lefevre JF, Dayie KT, Peng JW, Wagner G. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N‐H spectral density functions. Biochemistry 35(8): 2674‐2686, 1996.
 61. Liang B, Arora A, Tamm LK. Fast‐time scale dynamics of outer membrane protein A by extended model‐free analysis of NMR relaxation data. Biochim Biophys Acta 1798(2): 68‐76, 2010.
 62. Loria JP, Berlow RB, Watt ED. Characterization of enzyme motions by solution NMR relaxation dispersion. Acc Chem Res 41(2): 214‐221, 2008.
 63. Lu JX, Caporini MA, Lorigan GA. The effects of cholesterol on magnetically aligned phospholipid bilayers: A solid‐state NMR and EPR spectroscopy study. J Magn Reson 168(1): 18‐30, 2004.
 64. Lu JX, Damodaran K, Lorigan GA. Probing membrane topology by high‐resolution H‐1‐C‐13 heteronuclear dipolar solid‐state NMR spectroscopy. J Magn Reson 178(2): 283‐287, 2006.
 65. Mandel AM, Akke M, Palmer AG. Backbone dynamics of Escherichia‐coli ribonuclease HI ‐ correlations with structure and function in an active enzyme. J Mol Biol 246(1): 144‐163, 1995.
 66. Mangels ML, Harper AC, Smirnov AI, Howard KP, Lorigan GA. Investigating magnetically aligned phospholipid bilayers with EPR spectroscopy at 94 GHz. J Magn Reson 151(2): 253‐259, 2001.
 67. Marassi FM, Opella SJ. A solid‐state NMR index of helical membrane protein structure and topology. J Magn Reson 144(1): 150‐155, 2000.
 68. Marcotte I, Auger M. Bicelles as model membranes for solid‐ and solution‐state NMR studies of membrane peptides and proteins. Concepts Magn Reson Part A 24A(1): 17‐37, 2005.
 69. Marion D. Combining methods for speeding up multi‐dimensional acquisition. Sparse sampling and fast pulsing methods for unfolded proteins. J Magn Reson 206(1): 81‐87, 2010.
 70. Mascioni A, Moy FJ, McNeil LK, Murphy E, Bentley BE, Camarda R, Dilts DA, Fink PS, Gusarova V, Hoiseth SK, Malakian K, Mininni T, Novikova E, Lin S, Sigethy S, Zlotnick GW, Tsao DHH. NMR dynamics and antibody recognition of the meningococcal lipidated outer membrane protein LP2086 in micellar solution. Biochim Biophys Acta 1798(2): 87‐93, 2010.
 71. Mouritsen OG, Jorgensen K. A new look at lipid‐membrane structure in relation to drug research. Pharm Res 15(10): 1507‐1519, 1998.
 72. Neal S, Nip AM, Zhang HY, Wishart DS. Rapid and accurate calculation of protein H‐1, C‐13 and N‐15 chemical shifts. J Biomol NMR 26(3): 215‐240, 2003.
 73. Nielsen AB, Bjerring M, Nielsen JT, Nielsen NC. Symmetry‐based dipolar recoupling by optimal control: Band‐selective experiments for assignment of solid‐state NMR spectra of proteins. J Chem Phys 131(2): 2009.
 74. Opella S. Membrane protein NMR studies. Methods Mol Biol 227: 307‐320, 2003.
 75. Overhauser A. Polarization of nuclei in metals. Phys Rev 92: 411‐415, 1953.
 76. Page RC, Lee S, Moore JD, Opella SJ, Cross TA. Backbone structure of a small helical integral membrane protein: A unique structural characterization. Protein Sci 18(1): 134‐146, 2009.
 77. Park SH, Casagrande F, Das BB, Albrecht L, Chu M, Opella SJ. Local and global dynamics of the G protein‐coupled receptor CXCR1. Biochemistry 50(12): 2371‐2380, 2011.
 78. Park SH, Loudet C, Marassi FM, Dufourc EJ, Opella SJ. Solid‐state NMR spectroscopy of a membrane protein in biphenyl phospholipid bicelles with the bilayer normal parallel to the magnetic field. J Magn Reson 193(1): 133‐138, 2008.
 79. Park SH, Marassi FM, Black D, Opella SJ. Structure and dynamics of the membrane‐bound form of Pf1 coat protein: Implications of structural rearrangement for virus assembly. Biophys J 99(5): 1465‐1474, 2010.
 80. Park SH, Opella SJ. Tilt angle of a trans‐membrane helix is determined by hydrophobic mismatch. J Mol Biol 350(2): 310‐318, 2005.
 81. Pervushin K, Riek R, Wider G, Wuthrich K. Attenuated T‐2 relaxation by mutual cancellation of dipole‐dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci U S A 94(23): 12366‐12371, 1997.
 82. Porcelli F, Buck B, Lee DK, Hallock KJ, Ramamoorthy A, Veglia G. Structure and orientation of pardaxin determined by NMR experiments in model membranes. J Biol Chem 279(44): 45815‐45823, 2004.
 83. Prenner EJ, Lewis R, Neuman KC, Gruner SM, Kondejewski LH, Hodges RS, McElhaney RN. Nonlamellar phases induced by the interaction of gramicidin S with lipid bilayers. A possible relationship to membrane‐disrupting activity. Biochemistry 36(25): 7906‐7916, 1997.
 84. Ram P, Prestegard JH. Magnetic‐field induced ordering of bile‐salt phospholipid micelles ‐ new media for NMR structural investigations. Biochim Biophys Acta 940(2): 289‐294, 1988.
 85. Reddy T, Li XJ, Fliegel L, Sykes BD, Rainey JK. Correlating structure, dynamics, and function in transmembrane segment VII of the Na+/H+ exchanger isoform 1. Biochim Biophys Acta 1798(2): 94‐104, 2010.
 86. Renault M, Saurel O, Czaplicki J, Demange P, Gervais V, Lohr F, Reat V, Piotto M, Milon A. Solution state NMR structure and dynamics of KpOmpA, a 210 residue transmembrane domain possessing a high potential for immunological applications. J Mol Biol 385(1): 117‐130, 2009.
 87. Rosay M, Zeri AC, Astrof NS, Opella SJ, Herzfeld J, Griffin RG. Sensitivity‐enhanced NMR of biological solids: Dynamic nuclear polarization of Y21M fd bacteriophage and purple membrane. J Am Chem Soc 123(5): 1010‐1011, 2001.
 88. Saka I, Gumus S, Gencten A. Spectral editing with 2D E‐HMQC NMR spectroscopy for CDn groups: A theoretical study. Indian JPure Appl Phys 48(9): 626‐631, 2010.
 89. Sakurai I, Kawamura Y, Ikegami A, Iwayanagi S. Magneto‐orientation of lecithin crystals. Proc Natl Acad Sci U S A 77(12): 7232‐7236, 1980.
 90. Sanders CR, Landis GC. Reconstitution of membrane‐proteins into lipid‐rich bilayered mixed micelles for NMR‐studies. Biochemistry 34(12): 4030‐4040, 1995.
 91. Sanders CR, Schaff JE, Prestegard JH. Orientational behavior of phosphatidylcholine bilayers in the presence of aromatic amphiphiles and a magnetic‐field. Biophys J 64(4): 1069‐1080, 1993.
 92. Sanders CR, Schwonek JP. Characterization of magnetically orientable bilayers in mixtures of dihexanoylphosphatidylcholine and dimyristoylphosphatidylcholine by solid‐state NMR. Biochemistry 31(37): 8898‐8905, 1992.
 93. Saupe A. Recent results in field of liquid crystals. Angew Chem‐Int Ed 7(2): 97‐118, 1968.
 94. Schnell JR, Chou JJ. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451(7178): 591‐595, 2008.
 95. Seelig J. P‐31 Nuclear magnetic‐resonance and head group structure of phospholipids in membranes. Biochim Biophys Acta 515(2): 105‐140, 1978.
 96. Sharma M, Yi MG, Dong H, Qin HJ, Peterson E, Busath DD, Zhou HX, Cross TA. Insight into the mechanism of the influenza a proton channel from a structure in a lipid bilayer. Science 330(6003): 509‐512, 2010.
 97. Soong R, Smith PES, Xu JD, Yamamoto K, Im SC, Waskell L, Ramamoorthy A. Proton‐evolved local‐field solid‐state NMR studies of cytochrome b(5) embedded in bicelles, revealing both structural and dynamical information. J Am Chem Soc 132(16): 5779‐5788, 2010.
 98. Teriete P, Yao Y, Kolodzik A, Yu JH, Song HH, Niederweis M, Marassi FM. Mycobacterium tuberculosis Rv0899 adopts a mixed alpha/beta‐structure and does not form a transmembrane beta‐barrel. Biochemistry 49(13): 2768‐2777, 2010.
 99. Traaseth NJ, Shi L, Verardi R, Mullen DG, Barany G, Veglia G. Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid‐state NMR approach. Proc Natl Acad Sci U S A 106(25): 10165‐10170, 2009.
 100. Traaseth NJ, Veglia G. Probing excited states and activation energy for the integral membrane protein phospholamban by NMR CPMG relaxation dispersion experiments. Biochim Biophys Acta 1798(2): 77‐81, 2010.
 101. Traaseth NJ, Verardi R, Torgersen KD, Karim CB, Thomas DD, Veglia G. Spectroscopic validation of the pentameric structure of phospholarnban. Proc Natl Acad Sci U S A 104(37): 14676‐14681, 2007.
 102. Van Horn WD, Kim HJ, Ellis CD, Hadziselimovic A, Sulistijo ES, Karra MD, Tian CL, Sonnichsen FD, Sanders CR. Solution nuclear magnetic resonance structure of membrane‐integral diacylglycerol kinase. Science 324(5935): 1726‐1729, 2009.
 103. Waugh JS. Uncoupling of local field spectra in nuclear magnetic‐resonance ‐ determination of atomic positions in solids. Proc Natl Acad Sci U S A 73(5): 1394‐1397, 1976.
 104. White S. Membrane proteins of known 3D structure. 2009. http://blanco.biomol.uci.edu/mpstruc, Access date: 07.12.2011.
 105. Wittlich M, Thiagarajan P, Koenig BW, Hartmann R, Willbold D. NMR structure of the transmembrane and cytoplasmic domains of human CD4 in micelles. Biochim Biophys Acta 1798(2): 122‐127, 2010.
 106. Wu CH, Ramamoorthy A, Opella SJ. High‐resolution heteronuclear dipolar solid‐state NMR‐spectroscopy. J Magn Reson Ser A 109(2): 270‐272, 1994.
 107. Xu JD, Durr UHN, Im SC, Gan ZH, Waskell L, Ramamoorthy A. Bicelle‐enabled structural studies on a membrane‐associated cytochrome b(5) by solid‐state MAS NMR spectroscopy. Angew Chem‐Int Ed 47(41): 7864‐7867, 2008.
 108. Yamamoto K, Dvinskikh SV, Ramamoorthy A. Measurement of heteronuclear dipolar couplings using a rotating frame solid‐state NMR experiment. Chem Phys Lett 419(4‐6): 533‐536, 2006.
 109. Yamamoto K, Soong R, Ramamoorthy A. Comprehensive analysis of lipid dynamics variation with lipid composition and hydration of bicelles using nuclear magnetic resonance (NMR) spectroscopy. Langmuir 25(12): 7010‐7018, 2009.
 110. Yamamoto K, Xu JD, Kawulka KE, Vederas JC, Ramamoorthy A. Use of a copper‐chelated lipid speeds up NMR measurements from membrane proteins. J Am Chem Soc 132(20): 6929‐6931, 2010.
 111. Zagorski MG, Barrow CJ. NMR‐studies of amyloid beta‐peptides ‐ proton assignments, secondary structure, and mechanism of an alpha‐helix‐] beta‐sheet conversion for a homologous, 28‐residue, N‐terminal fragment. Biochemistry 31(24): 5621‐5631, 1992.
 112. Zhou YP, Cierpicki T, Jimenez RHF, Lukasik SM, Ellena JF, Cafiso DS, Kadokura H, Beckwith J, Bushweller JH. NMR solution structure of the integral membrane enzyme DsbB: Functional insights into DsbB‐catalyzed disulfide bond formation. Mol Cell 31(6): 896‐908, 2008.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Sergey Maltsev, Gary A. Lorigan. Membrane Proteins Structure and Dynamics by Nuclear Magnetic Resonance. Compr Physiol 2011, 1: 2175-2187. doi: 10.1002/cphy.c110022