Comprehensive Physiology Wiley Online Library

Hepatocyte Polarity

Full Article on Wiley Online Library



Abstract

Hepatocytes, like other epithelia, are situated at the interface between the organism's exterior and the underlying internal milieu and organize the vectorial exchange of macromolecules between these two spaces. To mediate this function, epithelial cells, including hepatocytes, are polarized with distinct luminal domains that are separated by tight junctions from lateral domains engaged in cell‐cell adhesion and from basal domains that interact with the underlying extracellular matrix. Despite these universal principles, hepatocytes distinguish themselves from other nonstriated epithelia by their multipolar organization. Each hepatocyte participates in multiple, narrow lumina, the bile canaliculi, and has multiple basal surfaces that face the endothelial lining. Hepatocytes also differ in the mechanism of luminal protein trafficking from other epithelia studied. They lack polarized protein secretion to the luminal domain and target single‐spanning and glycosylphosphatidylinositol‐anchored bile canalicular membrane proteins via transcytosis from the basolateral domain. We compare this unique hepatic polarity phenotype with that of the more common columnar epithelial organization and review our current knowledge of the signaling mechanisms and the organization of polarized protein trafficking that govern the establishment and maintenance of hepatic polarity. The serine/threonine kinase LKB1, which is activated by the bile acid taurocholate and, in turn, activates adenosine monophosphate kinase‐related kinases including AMPK1/2 and Par1 paralogues has emerged as a key determinant of hepatic polarity. We propose that the absence of a hepatocyte basal lamina and differences in cell‐cell adhesion signaling that determine the positioning of tight junctions are two crucial determinants for the distinct hepatic and columnar polarity phenotypes. © 2013 American Physiological Society. Compr Physiol 3:243‐287, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

The two epithelial cell types in the liver. (A) The mammalian biliary tree is characterized by a network of bile canaliculi, the luminal domains of adjacent hepatocytes, which are organized in one or two‐cell‐thick cords. The bile canaliculi connect to the bile ducts located in the portal triad that also encompasses the hepatic artery and portal vein. Ducts are composed of biliary epithelial cells that exhibit columnar polarity. (B) The domain organization of hepatocytes and cholangiocytes. Red: luminal domains, dark blue: lateral domains engaged in cell‐cell adhesion, gray: basal domain in contact with a basal lamina (cholagiocytes) or facing the space of Disse (hepatocytes). Adapted, with permission, from Color Textbook of Histology by Leslie Gartner and James Hiatt, 2nd Edition, Chapter 18: Digestive System III. Glands (140), Copyright Elsevier (2001).

Figure 2. Figure 2.

The organization of hepatocytes in the injured liver: Scanning electron micrographs of left: normal hepatic plate. Note the continuous, linear and lateral canaliculi (BC); Sinusoids (S) are separated by single‐cell thick plates of hexagonal hepatocytes. Right: hyperplastic acinus. Notice a prominent central lumen (BC with arrows) shared by several neighboring hepatocytes; other canaliculi are short and discontinuous; sinusoids (S) are separated by multiple cells. K, Kupffer cell; RBC, red blood cell; x1530. Adapted by permission from Macmillan Publishers Ltd. on behalf of Cancer Research UK: [Br J Cancer] (Ogawa et al., Vol. 40: 782‐90) (343), copyright (1979).

Figure 3. Figure 3.

The hepatic and columnar polarity phenotypes: columnar epithelia, for example, kidney‐derived Mardin Darby Canine kidney (MDCK) cells establish their luminal domains at the apex. When cultured in three‐dimensional (3D) collagen matrices, they organize a luminal domain (labeled by the apical marker gp135) between two layers of cells. Phalloidin, an actin filament label, outlines all cell surfaces. Hepatocyte luminal domains are grooves interrupting the lateral surfaces of neighboring cells. When cultured in collagen sandwiches, primary rat hepatocytes remain monolayered and form an elaborate network of bile canaliculi labeled by the luminal protein DPPIV. MDCK cells overexpressing the kinase Par1b organize with hepatic polarity, they form their gp135‐positive luminal surface between neighboring cells and remain monolayered in 3D collagen matrices. Unlike in hepatocytes, however, MDCK‐Par1b lumina do not align to form interconnected bile canaliculi but remain cyst‐like extracellular spheres between two cells. MDCK, MDCK‐Par1b images are, with permission, from Cohen D et al., originally published in J Cell Biol. 164(5):717‐27 (81).

Figure 4. Figure 4.

Examples of hepatic cell culture models (A) In two‐dimensional (2D) cultures, WIFB cells initially acquire columnar polarity (day 5 after plating) with apical DPPIV and with a “chickenwire” tight junction belt (ZO1). The lateral protein CE9 lines the sites of cell‐cell contacts. Cells subsequently repolarize with hepatic lumen organization over a time course of 10 days. The spherical luminal domains between neighboring cells appear as translucent holes in phase images and are surrounded by the tight junction marker ZO1. Note also that CE9 remains present at the cell‐contacting surfaces but is absent where they are interrupted by the lumina. Adapted, with permission, from Cohen D et al. 2004; originally published in J Cell Biol. 164(5): 717‐27 (81). (B) In 2D cultures of Can10, the luminal domains of adjacent cells align to form elaborate canalicular networks that label for the bile acid transporter MRP2 and the tight junction marker ZO1. Adapted, with permission, from Peng X et al. Cell Tissue Res 2006; 323:233‐243 (357); reproduced, with permission, from Springer Verlag.

Figure 5. Figure 5.

Signaling Pathways that determine hepatocyte polarization: Bile acids, the transcription factor HNF‐4α and the cytokine Oncostatin M (OSM) have all been linked to two main aspects of hepatocyte polarization, the formation of tight (TJ) and adherens (AJ) junctions and the generation of an apical domain. The kinase LKB1 and its downstream target adenosine monophosphate kinase (AMPK) have evolved as key effecters of taurocholic acid signaling to promote both polarity features. LKB1 can also act as activating kinase for Par1 paralogues but has not yet been shown to do so in hepatocytes. Par1b regulates cell‐cell adhesion and promotes a hepatic polarity phenotype in MDCK cells, in part by inhibiting the rho‐GTPase adaptor protein IRSp53 in its role in cell‐matrix signaling. For details, see text.

Figure 6. Figure 6.

Models for the role of cell adhesion and E‐cadherin‐mediated junction formation in epithelial polarization. (A) In cultured columnar epithelial cells, the basal lamina provides a polarity cue to establish the apical (AP) domain on the free surface. In cultured hepatic cells, strong asymmetric integrin signaling on collagen or matrigel causes a nonpolarized, spread phenotype; on adhesive nonextracellular matrix (ECM) substrates and even more so in spheroid culture without any substrate contact, hepatic cells acquire a cuboidal cell shape and might develop luminal domains; best lumen polarity is achieved in ECM sandwich cultures. (B) In the absence of E‐cadherin‐mediated adhesion, cultured nonpolarized columnar and hepatic cells maintain luminal proteins in an intracellular organelle. In polarizing cells, adhesion (brown) and tight junction (blue) proteins are not yet separated (1). Strong E‐cadherin clustering, induced by myosin II, promotes tight junction maturation with a chickenwire phenotype, parallel to the basal domain (columnar). Weak E‐cadherin clustering results in a tight junction belt parallel to the cell‐cell contacting surface (hepatic) (2). Apical surface formation follows the established tight junction pattern (3). AP, apical; BL, basolateral.

Figure 7. Figure 7.

Experimental access to the apical and basolateral domain and secretory compartments in columnar and hepatic cells. Columnar: when grown on polycarbonate filter inserts that are suspended in clusterwell culture dishes, the tight junctions of Mardin Darby Canine kidney cells provide a diffusion barrier for small molecules that generate separate apical and basal chambers. These culture conditions allow for the quantitative study of apical (AP) and basolateral membrane and secretory proteins. Hepatic: filter cultures allow experimental access to the entire basolateral but not apical domain, but the luminal/apical domain is sequestered from experimental access.

Figure 8. Figure 8.

Studying protein targeting by live cell imaging. Microinjection of cDNAs encoding interfering cDNAs and proteins into individual cells to study their effect on cargo protein transport has proven an extremely effective strategy for the discovery of the apical and basolateral protein targeting machinery in Mardin Darby Canine kidney cells. To set a pulse of newly synthesized apical and/or basolateral proteins, cDNAs encoding fluorescent cargo proteins are comicroinjected with the interfering cDNAs into the nucleus [(1) for columnar or (2) for hepatic cells]. Upon protein expression from the cDNAs 1 to 3 h postmicroinjection (3), the cargo protein (an apical marker is shown here in green) is chased to the trans‐Golgi network (TGN) in the presence of cyclohexamide to prevent further protein synthesis (4). At this point, toxins or function‐blocking antibodies can be injected into the cytosol of cells. Protein exit from the TGN and arrival at the cell surface are determined after release of the TGN block (4). Cargo exit from the TGN is measured as decrease of Golgi‐associated cargo (5). A fluorescent Golgi marker serves to define the Golgi area. Arrival at the cell surface is assessed with antibodies to the extracellular domain of the apical protein, added to unpermeabilized cells (5).

Figure 9. Figure 9.

Example of a domain‐selective targeting experiment in filter‐grown columnar Mardin Darby Canine kidney cells. (A) Monovalent antibodies (Fab) to the extracellular domain of a membrane protein are bound to its basolateral population at 4°C (1). The fate of the labeled membrane protein after a chase period at 37°C (2) is determined by the addition of anti‐Fab antibodies to either the apical (3) or basolateral (4) domain. (B) In hepatic cells, a similar quantitative assessment cannot be performed. Basolateral‐to‐apical transcytosis has only been documented in a qualitative manner by the appearance of basolaterally added antibodies in the luminal domain.

Figure 10. Figure 10.

Targeting pathways from the trans‐Golgi network (TGN) to the apical/canalicular and basolateral surfaces in Mardin Darby Canine kidney (MDCK) and hepatic cells. (A) Known pathways in MDCK cells. Apical (AP) pathways (green arrows): Depending on their presence in detergent‐insoluble microdomains, raft‐dependent and independent apical routes have been distinguished. Membrane and secretory proteins have been shown to traverse the apical recycling endosome (ARE) (in a MyoVb and Rab11‐dependent manner) or the apical early endosome (AEE) before reaching the apical domain. Basolateral (BL) pathways (blue arrows): basolateral protein exit from the TGN is clathrin and AP‐1A mediated. Multiple pathways have been distinguished: some basolateral proteins reach the basolateral domain without intermediate, others traversing either the basolateral early endosome (BEE) or the common recycling endosome (CRE) (in an AP‐1B‐dependent manner) prior to arriving at the basolateral domain. (B) Known and hypothetical pathways in hepatic cells. Two classes of apical proteins have been distinguished: those traveling from the TGN to the apical domain directly and those that first reach the basolateral domain. It is likely that, as in MDCK cells additional distinctions apply. Thus, some proteins might pass the ARE en route to the apical domain and there is evidence for raft and nonraft association in the TGN of apical proteins that take the transcytotic route. It is not resolved whether (A) apical and basolateral proteins are sorted into distinct transport carriers in the TGN and if so, whether basolateral proteins follow the same pathways as in MDCK cells, or (B) whether apical and basolateral proteins travel in common carriers to the basolateral domain.

Figure 11. Figure 11.

Proposed targeting pathways from the apical proteins (AP) and basolateral (BL) plasma membrane in hepatocytes. Model 1: upon endocytosis from the canalicular domain APs are sorted in the apical early endosome (AEE) into either the late endosomal/lysosomal pathway or for recycling to the apical recycling endosome (ARE). Apical proteins that have reached the basolateral surface from the trans‐Golgi network are internalized via clathrin‐coated vesicles (nonraft) or in a clathrin‐independent, flotillin‐dependent manner (raft), and reach the (subapical endosome) SAC via basolateral early endosomes (BEE). From the SAC they are targeted to the apical surface via the ARE (green arrows). BL resident proteins (blue arrows) undergo fast recycling from the BEE directly or via the SAC where they are sorted from apical proteins that reach the SAC in the transcytotic pathway. As the AEE, the BEE also sorts proteins for degradation to the lysosome (LYS). Pathways similar to model 1 have been described in MDCK cells. Model 2: differs from model 1 in the definition of the SAC and in the itinerary of apical proteins undergoing basolateral‐to‐apical transcytosis. Apical proteins reach the bile canalicular membrane via the SAC after being sorted from basolateral proteins in the CRE. The SAC is also involved in the targeting of some lysosomal proteins such as endolyn‐78. It is distinct from the ARE, which handles apical protein recycling.



Figure 1.

The two epithelial cell types in the liver. (A) The mammalian biliary tree is characterized by a network of bile canaliculi, the luminal domains of adjacent hepatocytes, which are organized in one or two‐cell‐thick cords. The bile canaliculi connect to the bile ducts located in the portal triad that also encompasses the hepatic artery and portal vein. Ducts are composed of biliary epithelial cells that exhibit columnar polarity. (B) The domain organization of hepatocytes and cholangiocytes. Red: luminal domains, dark blue: lateral domains engaged in cell‐cell adhesion, gray: basal domain in contact with a basal lamina (cholagiocytes) or facing the space of Disse (hepatocytes). Adapted, with permission, from Color Textbook of Histology by Leslie Gartner and James Hiatt, 2nd Edition, Chapter 18: Digestive System III. Glands (140), Copyright Elsevier (2001).



Figure 2.

The organization of hepatocytes in the injured liver: Scanning electron micrographs of left: normal hepatic plate. Note the continuous, linear and lateral canaliculi (BC); Sinusoids (S) are separated by single‐cell thick plates of hexagonal hepatocytes. Right: hyperplastic acinus. Notice a prominent central lumen (BC with arrows) shared by several neighboring hepatocytes; other canaliculi are short and discontinuous; sinusoids (S) are separated by multiple cells. K, Kupffer cell; RBC, red blood cell; x1530. Adapted by permission from Macmillan Publishers Ltd. on behalf of Cancer Research UK: [Br J Cancer] (Ogawa et al., Vol. 40: 782‐90) (343), copyright (1979).



Figure 3.

The hepatic and columnar polarity phenotypes: columnar epithelia, for example, kidney‐derived Mardin Darby Canine kidney (MDCK) cells establish their luminal domains at the apex. When cultured in three‐dimensional (3D) collagen matrices, they organize a luminal domain (labeled by the apical marker gp135) between two layers of cells. Phalloidin, an actin filament label, outlines all cell surfaces. Hepatocyte luminal domains are grooves interrupting the lateral surfaces of neighboring cells. When cultured in collagen sandwiches, primary rat hepatocytes remain monolayered and form an elaborate network of bile canaliculi labeled by the luminal protein DPPIV. MDCK cells overexpressing the kinase Par1b organize with hepatic polarity, they form their gp135‐positive luminal surface between neighboring cells and remain monolayered in 3D collagen matrices. Unlike in hepatocytes, however, MDCK‐Par1b lumina do not align to form interconnected bile canaliculi but remain cyst‐like extracellular spheres between two cells. MDCK, MDCK‐Par1b images are, with permission, from Cohen D et al., originally published in J Cell Biol. 164(5):717‐27 (81).



Figure 4.

Examples of hepatic cell culture models (A) In two‐dimensional (2D) cultures, WIFB cells initially acquire columnar polarity (day 5 after plating) with apical DPPIV and with a “chickenwire” tight junction belt (ZO1). The lateral protein CE9 lines the sites of cell‐cell contacts. Cells subsequently repolarize with hepatic lumen organization over a time course of 10 days. The spherical luminal domains between neighboring cells appear as translucent holes in phase images and are surrounded by the tight junction marker ZO1. Note also that CE9 remains present at the cell‐contacting surfaces but is absent where they are interrupted by the lumina. Adapted, with permission, from Cohen D et al. 2004; originally published in J Cell Biol. 164(5): 717‐27 (81). (B) In 2D cultures of Can10, the luminal domains of adjacent cells align to form elaborate canalicular networks that label for the bile acid transporter MRP2 and the tight junction marker ZO1. Adapted, with permission, from Peng X et al. Cell Tissue Res 2006; 323:233‐243 (357); reproduced, with permission, from Springer Verlag.



Figure 5.

Signaling Pathways that determine hepatocyte polarization: Bile acids, the transcription factor HNF‐4α and the cytokine Oncostatin M (OSM) have all been linked to two main aspects of hepatocyte polarization, the formation of tight (TJ) and adherens (AJ) junctions and the generation of an apical domain. The kinase LKB1 and its downstream target adenosine monophosphate kinase (AMPK) have evolved as key effecters of taurocholic acid signaling to promote both polarity features. LKB1 can also act as activating kinase for Par1 paralogues but has not yet been shown to do so in hepatocytes. Par1b regulates cell‐cell adhesion and promotes a hepatic polarity phenotype in MDCK cells, in part by inhibiting the rho‐GTPase adaptor protein IRSp53 in its role in cell‐matrix signaling. For details, see text.



Figure 6.

Models for the role of cell adhesion and E‐cadherin‐mediated junction formation in epithelial polarization. (A) In cultured columnar epithelial cells, the basal lamina provides a polarity cue to establish the apical (AP) domain on the free surface. In cultured hepatic cells, strong asymmetric integrin signaling on collagen or matrigel causes a nonpolarized, spread phenotype; on adhesive nonextracellular matrix (ECM) substrates and even more so in spheroid culture without any substrate contact, hepatic cells acquire a cuboidal cell shape and might develop luminal domains; best lumen polarity is achieved in ECM sandwich cultures. (B) In the absence of E‐cadherin‐mediated adhesion, cultured nonpolarized columnar and hepatic cells maintain luminal proteins in an intracellular organelle. In polarizing cells, adhesion (brown) and tight junction (blue) proteins are not yet separated (1). Strong E‐cadherin clustering, induced by myosin II, promotes tight junction maturation with a chickenwire phenotype, parallel to the basal domain (columnar). Weak E‐cadherin clustering results in a tight junction belt parallel to the cell‐cell contacting surface (hepatic) (2). Apical surface formation follows the established tight junction pattern (3). AP, apical; BL, basolateral.



Figure 7.

Experimental access to the apical and basolateral domain and secretory compartments in columnar and hepatic cells. Columnar: when grown on polycarbonate filter inserts that are suspended in clusterwell culture dishes, the tight junctions of Mardin Darby Canine kidney cells provide a diffusion barrier for small molecules that generate separate apical and basal chambers. These culture conditions allow for the quantitative study of apical (AP) and basolateral membrane and secretory proteins. Hepatic: filter cultures allow experimental access to the entire basolateral but not apical domain, but the luminal/apical domain is sequestered from experimental access.



Figure 8.

Studying protein targeting by live cell imaging. Microinjection of cDNAs encoding interfering cDNAs and proteins into individual cells to study their effect on cargo protein transport has proven an extremely effective strategy for the discovery of the apical and basolateral protein targeting machinery in Mardin Darby Canine kidney cells. To set a pulse of newly synthesized apical and/or basolateral proteins, cDNAs encoding fluorescent cargo proteins are comicroinjected with the interfering cDNAs into the nucleus [(1) for columnar or (2) for hepatic cells]. Upon protein expression from the cDNAs 1 to 3 h postmicroinjection (3), the cargo protein (an apical marker is shown here in green) is chased to the trans‐Golgi network (TGN) in the presence of cyclohexamide to prevent further protein synthesis (4). At this point, toxins or function‐blocking antibodies can be injected into the cytosol of cells. Protein exit from the TGN and arrival at the cell surface are determined after release of the TGN block (4). Cargo exit from the TGN is measured as decrease of Golgi‐associated cargo (5). A fluorescent Golgi marker serves to define the Golgi area. Arrival at the cell surface is assessed with antibodies to the extracellular domain of the apical protein, added to unpermeabilized cells (5).



Figure 9.

Example of a domain‐selective targeting experiment in filter‐grown columnar Mardin Darby Canine kidney cells. (A) Monovalent antibodies (Fab) to the extracellular domain of a membrane protein are bound to its basolateral population at 4°C (1). The fate of the labeled membrane protein after a chase period at 37°C (2) is determined by the addition of anti‐Fab antibodies to either the apical (3) or basolateral (4) domain. (B) In hepatic cells, a similar quantitative assessment cannot be performed. Basolateral‐to‐apical transcytosis has only been documented in a qualitative manner by the appearance of basolaterally added antibodies in the luminal domain.



Figure 10.

Targeting pathways from the trans‐Golgi network (TGN) to the apical/canalicular and basolateral surfaces in Mardin Darby Canine kidney (MDCK) and hepatic cells. (A) Known pathways in MDCK cells. Apical (AP) pathways (green arrows): Depending on their presence in detergent‐insoluble microdomains, raft‐dependent and independent apical routes have been distinguished. Membrane and secretory proteins have been shown to traverse the apical recycling endosome (ARE) (in a MyoVb and Rab11‐dependent manner) or the apical early endosome (AEE) before reaching the apical domain. Basolateral (BL) pathways (blue arrows): basolateral protein exit from the TGN is clathrin and AP‐1A mediated. Multiple pathways have been distinguished: some basolateral proteins reach the basolateral domain without intermediate, others traversing either the basolateral early endosome (BEE) or the common recycling endosome (CRE) (in an AP‐1B‐dependent manner) prior to arriving at the basolateral domain. (B) Known and hypothetical pathways in hepatic cells. Two classes of apical proteins have been distinguished: those traveling from the TGN to the apical domain directly and those that first reach the basolateral domain. It is likely that, as in MDCK cells additional distinctions apply. Thus, some proteins might pass the ARE en route to the apical domain and there is evidence for raft and nonraft association in the TGN of apical proteins that take the transcytotic route. It is not resolved whether (A) apical and basolateral proteins are sorted into distinct transport carriers in the TGN and if so, whether basolateral proteins follow the same pathways as in MDCK cells, or (B) whether apical and basolateral proteins travel in common carriers to the basolateral domain.



Figure 11.

Proposed targeting pathways from the apical proteins (AP) and basolateral (BL) plasma membrane in hepatocytes. Model 1: upon endocytosis from the canalicular domain APs are sorted in the apical early endosome (AEE) into either the late endosomal/lysosomal pathway or for recycling to the apical recycling endosome (ARE). Apical proteins that have reached the basolateral surface from the trans‐Golgi network are internalized via clathrin‐coated vesicles (nonraft) or in a clathrin‐independent, flotillin‐dependent manner (raft), and reach the (subapical endosome) SAC via basolateral early endosomes (BEE). From the SAC they are targeted to the apical surface via the ARE (green arrows). BL resident proteins (blue arrows) undergo fast recycling from the BEE directly or via the SAC where they are sorted from apical proteins that reach the SAC in the transcytotic pathway. As the AEE, the BEE also sorts proteins for degradation to the lysosome (LYS). Pathways similar to model 1 have been described in MDCK cells. Model 2: differs from model 1 in the definition of the SAC and in the itinerary of apical proteins undergoing basolateral‐to‐apical transcytosis. Apical proteins reach the bile canalicular membrane via the SAC after being sorted from basolateral proteins in the CRE. The SAC is also involved in the targeting of some lysosomal proteins such as endolyn‐78. It is distinct from the ARE, which handles apical protein recycling.

References
 1. Agnello V, Abel G, Elfahal M, Knight GB, Zhang QX. Hepatitis C virus and other flaviviridae viruses enter cells via low density lipoprotein receptor. Proc Natl Acad Sci U S A 96: 12766‐12771, 1999.
 2. Ait‐Slimane T, Galmes R, Trugnan G, Maurice M. Basolateral internalization of GPI‐anchored proteins occurs via a clathrin‐independent flotillin‐dependent pathway in polarized hepatic cells. Mol Biol Cell 20: 3792‐3800, 2009.
 3. Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML. Wilson's disease. Lancet 369: 397‐408, 2007.
 4. Alessi DR, Sakamoto K, Bayascas JR. LKB1‐dependent signaling pathways. Annu Rev Biochem 75: 137‐163, 2006.
 5. Almeida CG, Yamada A, Tenza D, Louvard D, Raposo G, Coudrier E. Myosin 1b promotes the formation of post‐Golgi carriers by regulating actin assembly and membrane remodelling at the trans‐Golgi network. Nat Cell Biol 13: 779‐789, 2011.
 6. Ameen NA, Salas PJ. Microvillus inclusion disease: A genetic defect affecting apical membrane protein traffic in intestinal epithelium. Traffic 1: 76‐83, 2000.
 7. Ang AL, Taguchi T, Francis S, Folsch H, Murrells LJ, Pypaert M, Warren G, Mellman I. Recycling endosomes can serve as intermediates during transport from the Golgi to the plasma membrane of MDCK cells. J Cell Biol 167: 531‐543, 2004.
 8. Apodaca G. Endocytic traffic in polarized epithelial cells: Role of the actin and microtubule cytoskeleton. Traffic 2: 149‐159, 2001.
 9. Apodaca G, Katz LA, Mostov KE. Receptor‐mediated transcytosis of IgA in MDCK cells is via apical recycling endosomes. J Cell Biol 125: 67‐86, 1994.
 10. Appel D, Koch‐Brandt C. Sorting of a secretory protein (gp80) to the apical surface of Caco‐2 cells. J Cell Sci 107(Pt 2): 553‐559, 1994.
 11. Aroeti B, Kosen PA, Kuntz ID, Cohen FE, Mostov KE. Mutational and secondary structural analysis of the basolateral sorting signal of the polymeric immunoglobulin receptor. J Cell Biol 123: 1149‐1160, 1993.
 12. Aroeti B, Okhrimenko H, Reich V, Orzech E. Polarized trafficking of plasma membrane proteins: Emerging roles for coats, SNAREs, GTPases and their link to the cytoskeleton. Biochim Biophys Acta 1376: 57‐90, 1998.
 13. Arzumanyan A, Friedman T, Kotei E, Ng IO, Lian Z, Feitelson MA. Epigenetic repression of E‐cadherin expression by hepatitis B virus x antigen in liver cancer. Oncogene 231: 563‐572, 2011.
 14. Astanina K, Delebinski CI, Delacour D, Jacob R. Annexin XIIIb guides raft‐dependent and ‐independent apical traffic in MDCK cells. Eur J Cell Biol 89: 799‐806, 2010.
 15. Astanina K, Jacob R. KIF5C, a kinesin motor involved in apical trafficking of MDCK cells. Cell Mol Life Sci 67: 1331‐1342, 2010.
 16. Au JS, Puri C, Ihrke G, Kendrick‐Jones J, Buss F. Myosin VI is required for sorting of AP‐1B‐dependent cargo to the basolateral domain in polarized MDCK cells. J Cell Biol 177: 103‐114, 2007.
 17. Baloch Z, Klapper J, Buchanan L, Schwartz M, Amenta PS. Ontogenesis of the murine hepatic extracellular matrix: An immunohistochemical study. Differentiation 51: 209‐218, 1992.
 18. Bananis E, Murray JW, Stockert RJ, Satir P, Wolkoff AW. Regulation of early endocytic vesicle motility and fission in a reconstituted system. J Cell Sci 116: 2749‐2761, 2003.
 19. Banko MR, Allen JJ, Schaffer BE, Wilker EW, Tsou P, White JL, Villen J, Wang B, Kim SR, Sakamoto K, Gygi SP, Cantley LC, Yaffe MB, Shokat KM, Brunet A. Chemical genetic screen for AMPKalpha2 substrates uncovers a network of proteins involved in mitosis. Mol Cell 44: 878‐892, 2011.
 20. Barr VA, Scott LJ, Hubbard AL. Immunoadsorption of hepatic vesicles carrying newly synthesized dipeptidyl peptidase IV and polymeric IgA receptor. J Biol Chem 270: 27834‐27844, 1995.
 21. Barroso M, Sztul ES. Basolateral to apical transcytosis in polarized cells is indirect and involves BFA and trimeric G protein sensitive passage through the apical endosome. J Cell Biol 124: 83‐100, 1994.
 22. Barth H, Schafer C, Adah MI, Zhang F, Linhardt RJ, Toyoda H, Kinoshita‐Toyoda A, Toida T, Van Kuppevelt TH, Depla E, Von Weizsacker F, Blum HE, Baumert TF. Cellular binding of hepatitis C virus envelope glycoprotein E2 requires cell surface heparan sulfate. J Biol Chem 278: 41003‐41012, 2003.
 23. Bartles JR, Braiterman LT, Hubbard AL. Endogenous and exogenous domain markers of the rat hepatocyte plasma membrane. J Cell Biol 100: 1126‐1138, 1985.
 24. Bartles JR, Feracci HM, Stieger B, Hubbard AL. Biogenesis of the rat hepatocyte plasma membrane in vivo: Comparison of the pathways taken by apical and basolateral proteins using subcellular fractionation. J Cell Biol 105: 1241‐1251, 1987.
 25. Bartles JR, Hubbard AL. Preservation of hepatocyte plasma membrane domains during cell division in situ in regenerating rat liver. Dev Biol 118: 286‐295, 1986.
 26. Bartles JR, Hubbard AL. Plasma membrane protein sorting in epithelial cells: Do secretory pathways hold the key? Trends Biochem Sci 13: 181‐184, 1988.
 27. Bastaki M, Braiterman LT, Johns DC, Chen YH, Hubbard AL. Absence of direct delivery for single transmembrane apical proteins or their “Secretory” forms in polarized hepatic cells. Mol Biol Cell 13: 225‐237, 2002.
 28. Battle MA, Konopka G, Parviz F, Gaggl AL, Yang C, Sladek FM, Duncan SA. Hepatocyte nuclear factor 4alpha orchestrates expression of cell adhesion proteins during the epithelial transformation of the developing liver. Proc Natl Acad Sci U S A 103: 8419‐8424, 2006.
 29. Baum B, Georgiou M. Dynamics of adherens junctions in epithelial establishment, maintenance, and remodeling. J Cell Biol 192: 907‐917, 2011.
 30. Bayraktar J, Zygmunt D, Carthew RW. Par‐1 kinase establishes cell polarity and functions in Notch signaling in the Drosophila embryo. J Cell Sci 119: 711‐721, 2006.
 31. Benting J, Rietveld A, Ansorge I, Simons K. Acyl and alkyl chain length of GPI‐anchors is critical for raft association in vitro. FEBS Lett 462: 47‐50, 1999.
 32. Benyon RC, Iredale JP, Goddard S, Winwood PJ, Arthur MJ. Expression of tissue inhibitor of metalloproteinases 1 and 2 is increased in fibrotic human liver. Gastroenterology 110: 821‐831, 1996.
 33. Berthiaume F, Moghe PV, Toner M, Yarmush ML. Effect of extracellular matrix topology on cell structure, function, and physiological responsiveness: Hepatocytes cultured in a sandwich configuration. FASEB J 10: 1471‐1484, 1996.
 34. Bertinato J, L'Abbe MR. Maintaining copper homeostasis: Regulation of copper‐trafficking proteins in response to copper deficiency or overload. J Nutr Biochem 15: 316‐322, 2004.
 35. Bhat P, Snooks MJ, Anderson DA. Hepatocytes traffic and export hepatitis B virus basolaterally by polarity‐dependent mechanisms. J Virol 85: 12474‐12481, 2011.
 36. Blethrow JD, Glavy JS, Morgan DO, Shokat KM. Covalent capture of kinase‐specific phosphopeptides reveals Cdk1‐cyclin B substrates. Proc Natl Acad Sci U S A 105: 1442‐1447, 2008.
 37. Block GD, Locker J, Bowen WC, Petersen BE, Katyal S, Strom SC, Riley T, Howard TA, Michalopoulos GK. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol 132: 1133‐1149, 1996.
 38. Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Godel M, Muller K, Herbst M, Hornung M, Doerken M, Kottgen M, Nitschke R, Igarashi P, Walz G, Kuehn EW. Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol 12: 1115‐1122, 2010.
 39. Bomsel M, Parton R, Kuznetsov SA, Schroer TA, Gruenberg J. Microtubule‐ and motor‐dependent fusion in vitro between apical and basolateral endocytic vesicles from MDCK cells. Cell 62: 719‐731, 1990.
 40. Bonifacino JS, Glick BS. The mechanisms of vesicle budding and fusion. Cell 116: 153‐166, 2004.
 41. Bonifacino JS, Lippincott‐Schwartz J. Coat proteins: Shaping membrane transport. Nat Rev Mol Cell Biol 4: 409‐414, 2003.
 42. Bort R, Martinez‐Barbera JP, Beddington RS, Zaret KS. Hex homeobox gene‐dependent tissue positioning is required for organogenesis of the ventral pancreas. Development 131: 797‐806, 2004.
 43. Bossard P, Zaret KS. GATA transcription factors as potentiators of gut endoderm differentiation. Development 125: 4909‐4917, 1998.
 44. Bossard P, Zaret KS. Repressive and restrictive mesodermal interactions with gut endoderm: Possible relation to Meckel's Diverticulum. Development 127: 4915‐4923, 2000.
 45. Boudreau NJ, Jones PL. Extracellular matrix and integrin signalling: The shape of things to come. Biochem J 339(Pt 3): 481‐488, 1999.
 46. Braiterman L, Nyasae L, Guo Y, Bustos R, Lutsenko S, Hubbard A. Apical targeting and Golgi retention signals reside within a 9‐amino acid sequence in the copper‐ATPase, ATP7B. Am J Physiol Gastrointest Liver Physiol 296: G433‐G444, 2009.
 47. Braiterman L, Nyasae L, Leves F, Hubbard AL. Critical roles for the COOH terminus of the Cu‐ATPase ATP7B in protein stability, trans‐Golgi network retention, copper sensing, and retrograde trafficking. Am J Physiol Gastrointest Liver Physiol 301: G69‐G81, 2011.
 48. Braiterman LT, Heffernan S, Nyasae L, Johns D, See AP, Yutzy R, McNickle A, Herman M, Sharma A, Naik UP, Hubbard AL. JAM‐A is both essential and inhibitory to development of hepatic polarity in WIF‐B cells. Am J Physiol Gastrointest Liver Physiol 294: G576‐G588, 2008.
 49. Braiterman LT, Hubbard AH. Hepatocyte surface polarity: Its dynamic maintenance and establishment. In: Arias IM, Alter HJ, Boyer JL, Cohen DE, Fausto N, Shafritz DA, Wolkoff AW, editors. The Liver, Biology and Pathobiology (5th ed.), Chistester, West Sussex, UK: Wiley‐Blackwell, 2009, pp. 73‐105.
 50. Bravo P, Bender V, Cassio D. Efficient in vitro vectorial transport of a fluorescent conjugated bile acid analogue by polarized hepatic hybrid WIF‐B and WIF‐B9 cells. Hepatology 27: 576‐583, 1998.
 51. Breitfeld PP, McKinnon WC, Mostov KE. Effect of nocodazole on vesicular traffic to the apical and basolateral surfaces of polarized MDCK cells. J Cell Biol 111: 2365‐2373, 1990.
 52. Breuza L, Fransen J, Le Bivic A. Transport and function of syntaxin 3 in human epithelial intestinal cells. Am J Physiol Cell Physiol 279: C1239‐C1248, 2000.
 53. Brooling JT, Campbell JS, Mitchell C, Yeoh GC, Fausto N. Differential regulation of rodent hepatocyte and oval cell proliferation by interferon gamma. Hepatology 41: 906‐915, 2005.
 54. Brown DA, Crise B, Rose JK. Mechanism of membrane anchoring affects polarized expression of two proteins in MDCK cells. Science 245: 1499‐1501, 1989.
 55. Brown FC, Pfeffer SR. An update on transport vesicle tethering. Mol Membr Biol 27: 457‐461, 2010.
 56. Bryant DM, Mostov KE. From cells to organs: Building polarized tissue. Nat Rev Mol Cell Biol 9: 887‐901, 2008.
 57. Bultot L, Horman S, Neumann D, Walsh MP, Hue L, Rider MH. Myosin light chains are not a physiological substrate of AMPK in the control of cell structure changes. FEBS Lett 583: 25‐28, 2009.
 58. Burlone ME, Budkowska A. Hepatitis C virus cell entry: Role of lipoproteins and cellular receptors. J Gen Virol 90: 1055‐1070, 2009.
 59. Burra S, Jiang JX. Regulation of cellular function by connexin hemichannels. Int J Biochem Mol Biol 2: 119‐128, 2011.
 60. Caballero T, Aneiros J, Lopez‐Caballero J, Gomez‐Morales M, Nogales F. Fibrolamellar hepatocellular carcinoma. An immunohistochemical and ultrastructural study. Histopathology 9: 445‐456, 1985.
 61. Calmont A, Wandzioch E, Tremblay KD, Minowada G, Kaestner KH, Martin GR, Zaret KS. An FGF response pathway that mediates hepatic gene induction in embryonic endoderm cells. Dev Cell 11: 339‐348, 2006.
 62. Calvo M, Pol A, Lu A, Ortega D, Pons M, Blasi J, Enrich C. Cellubrevin is present in the basolateral endocytic compartment of hepatocytes and follows the transcytotic pathway after IgA internalization. J Biol Chem 275: 7910‐7917, 2000.
 63. Camakaris J, Voskoboinik I, Mercer JF. Molecular mechanisms of copper homeostasis. Biochem Biophys Res Commun 261: 225‐232, 1999.
 64. Cancino J, Torrealba C, Soza A, Yuseff MI, Gravotta D, Henklein P, Rodriguez‐Boulan E, Gonzalez A. Antibody to AP1B adaptor blocks biosynthetic and recycling routes of basolateral proteins at recycling endosomes. Mol Biol Cell 18: 4872‐4884, 2007.
 65. Carmosino M, Valenti G, Caplan M, Svelto M. Polarized traffic towards the cell surface: How to find the route. Biol Cell 102: 75‐91, 2010.
 66. Casanova JE, Apodaca G, Mostov KE. An autonomous signal for basolateral sorting in the cytoplasmic domain of the polymeric immunoglobulin receptor. Cell 66: 65‐75, 1991.
 67. Casanova JE, Mishumi Y, Ikehara Y, Hubbard AL, Mostov KE. Direct apical sorting of rat liver dipeptidylpeptidase IV expressed in Madin‐Darby canine kidney cells. J Biol Chem 266: 24428‐24432, 1991.
 68. Cassio D, Hamon‐Benais C, Guerin M, Lecoq O. Hybrid cell lines constitute a potential reservoir of polarized cells: Isolation and study of highly differentiated hepatoma‐derived hybrid cells able to form functional bile canaliculi in vitro. J Cell Biol 115: 1397‐1408, 1991.
 69. Cereijido M, Gonzalez‐Mariscal L, Contreras RG, Gallardo JM, Garcia‐Villegas R, Valdes J. The making of a tight junction. J Cell Sci Suppl 17: 127‐132, 1993.
 70. Cereijido M, Robbins ES, Dolan WJ, Rotunno CA, Sabatini DD. Polarized monolayers formed by epithelial cells on a permeable and translucent support. J Cell Biol 77: 853‐880, 1978.
 71. Chan W, Calderon G, Swift AL, Moseley J, Li S, Hosoya H, Arias IM, Ortiz DF. Myosin II regulatory light chain is required for trafficking of bile salt export protein to the apical membrane in Madin‐Darby canine kidney cells. J Biol Chem 280: 23741‐23747, 2005.
 72. Chaumontet C, Mazzoleni G, Decaens C, Bex V, Cassio D, Martel P. The polarized hepatic human/rat hybrid WIF 12‐1 and WIF‐B cells communicate efficiently in vitro via connexin 32‐constituted gap junctions. Hepatology 28: 164‐172, 1998.
 73. Cheong KH, Zacchetti D, Schneeberger EE, Simons K. VIP17/MAL, a lipid raft‐associated protein, is involved in apical transport in MDCK cells. Proc Natl Acad Sci U S A 96: 6241‐6248, 1999.
 74. Cheung ID, Bagnat M, Ma TP, Datta A, Evason K, Moore JC, Lawson ND, Mostov KE, Moens CB, Stainier DY. Regulation of intrahepatic biliary duct morphogenesis by Claudin 15‐like b. Dev Biol 361: 68‐78, 2012.
 75. Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T. Galactose‐carrying polymers as extracellular matrices for liver tissue engineering. Biomaterials 27: 576‐585, 2006.
 76. Choi JH, Murray JW, Wolkoff AW. PDZK1 binding and serine phosphorylation regulate subcellular trafficking of organic anion transport protein 1a1. Am J Physiol Gastrointest Liver Physiol 300: G384‐G393, 2011.
 77. Choi SS, Sicklick JK, Ma Q, Yang L, Huang J, Qi Y, Chen W, Li YX, Goldschmidt‐Clermont PJ, Diehl AM. Sustained activation of Rac1 in hepatic stellate cells promotes liver injury and fibrosis in mice. Hepatology 44: 1267‐1277, 2006.
 78. Chu J, Sadler KC. New school in liver development: Lessons from zebrafish. Hepatology 50: 1656‐1663, 2009.
 79. Citi S, Spadaro D, Schneider Y, Stutz J, Pulimeno P. Regulation of small GTPases at epithelial cell‐cell junctions. Mol Membr Biol 28: 427‐444, 2011.
 80. Clotman F, Jacquemin P, Plumb‐Rudewiez N, Pierreux CE, Van der Smissen P, Dietz HC, Courtoy PJ, Rousseau GG, Lemaigre FP. Control of liver cell fate decision by a gradient of TGF beta signaling modulated by Onecut transcription factors. Genes Dev 19: 1849‐1854, 2005.
 81. Cohen D, Brennwald PJ, Rodriguez‐Boulan E, Musch A. Mammalian PAR‐1 determines epithelial lumen polarity by organizing the microtubule cytoskeleton. J Cell Biol 164: 717‐727, 2004.
 82. Cohen D, Fernandez D, Lazaro‐Dieguez F, Musch A. The serine/threonine kinase Par1b regulates epithelial lumen polarity via IRSp53‐mediated cell‐ECM signaling. J Cell Biol 192: 525‐540, 2011.
 83. Cohen D, Musch A. Apical surface formation in MDCK cells: Regulation by the serine/threonine kinase EMK1. Methods 30: 269‐276, 2003.
 84. Cohen D, Rodriguez‐Boulan E, Musch A. Par‐1 promotes a hepatic mode of apical protein trafficking in MDCK cells. Proc Natl Acad Sci U S A 101: 13792‐13797, 2004.
 85. Cohen D, Tian Y, Musch A. Par1b promotes hepatic‐type lumen polarity in Madin Darby canine kidney cells via myosin II‐ and E‐cadherin‐dependent signaling. Mol Biol Cell 18: 2203‐2215, 2007.
 86. Cox DN, Lu B, Sun TQ, Williams LT, Jan YN. Drosophila par‐1 is required for oocyte differentiation and microtubule organization. Curr Biol 11: 75‐87, 2001.
 87. Crawford JM. Role of vesicle‐mediated transport pathways in hepatocellular bile secretion. Semin Liver Dis 16: 169‐189, 1996.
 88. Cresawn KO, Potter BA, Oztan A, Guerriero CJ, Ihrke G, Goldenring JR, Apodaca G, Weisz OA. Differential involvement of endocytic compartments in the biosynthetic traffic of apical proteins. Embo J 26: 3737‐3748, 2007.
 89. Dado D, Sagi M, Levenberg S, Zemel A. Mechanical control of stem cell differentiation. Regen Med 7: 101‐116, 2012.
 90. Darlington GJ, Kelly JH, Buffone GJ. Growth and hepatospecific gene expression of human hepatoma cells in a defined medium. In Vitro Cell Dev Biol 23: 349‐354, 1987.
 91. Davis C, Harris HJ, McKeating JA, Alan SLY, Chapter 12 – The involvement of tight junction protein claudin‐1 in hepatitis C virus entry. In: Current Topics in Membranes: Academic Press, Waltham, MA, 2010, pp. 273‐292.
 92. De Bartolo L, Morelli S, Lopez LC, Giorno L, Campana C, Salerno S, Rende M, Favia P, Detomaso L, Gristina R, d'Agostino R, Drioli E. Biotransformation and liver‐specific functions of human hepatocytes in culture on RGD‐immobilized plasma‐processed membranes. Biomaterials 26: 4432‐4441, 2005.
 93. de Marco MC, Martin‐Belmonte F, Kremer L, Albar JP, Correas I, Vaerman JP, Marazuela M, Byrne JA, Alonso MA. MAL2, a novel raft protein of the MAL family, is an essential component of the machinery for transcytosis in hepatoma HepG2 cells. J Cell Biol 159: 37‐44, 2002.
 94. de Marco MC, Puertollano R, Martinez‐Menarguez JA, Alonso MA. Dynamics of MAL2 during glycosylphosphatidylinositol‐anchored protein transcytotic transport to the apical surface of hepatoma HepG2 cells. Traffic 7: 61‐73, 2006.
 95. Deborde S, Perret E, Gravotta D, Deora A, Salvarezza S, Schreiner R, Rodriguez‐Boulan E. Clathrin is a key regulator of basolateral polarity. Nature 452: 719‐723, 2008.
 96. Decaens C, Durand M, Grosse B, Cassio D. Which in vitro models could be best used to study hepatocyte polarity? Biol Cell 100: 387‐398, 2008.
 97. Decaens C, Rodriguez P, Bouchaud C, Cassio D. Establishment of hepatic cell polarity in the rat hepatoma‐human fibroblast hybrid WIF‐B9. A biphasic phenomenon going from a simple epithelial polarized phenotype to an hepatic polarized one. J Cell Sci 109(Pt 6): 1623‐1635, 1996.
 98. Delacour D, Cramm‐Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R. Requirement for galectin‐3 in apical protein sorting. Curr Biol 16: 408‐414, 2006.
 99. Delacour D, Gouyer V, Zanetta JP, Drobecq H, Leteurtre E, Grard G, Moreau‐Hannedouche O, Maes E, Pons A, Andre S, Le Bivic A, Gabius HJ, Manninen A, Simons K, Huet G. Galectin‐4 and sulfatides in apical membrane trafficking in enterocyte‐like cells. J Cell Biol 169: 491‐501, 2005.
 100. Delacour D, Greb C, Koch A, Salomonsson E, Leffler H, Le Bivic A, Jacob R. Apical sorting by galectin‐3‐dependent glycoprotein clustering. Traffic 8: 379‐388, 2007.
 101. Deschatrette J, Weiss MC. Characterization of differentiated and dedifferentiated clones from a rat hepatoma. Biochimie 56: 1603‐1611, 1974.
 102. Desmet VJ. Current problems in diagnosis of biliary disease and cholestasis. Semin Liver Dis 6: 233‐245, 1986.
 103. Ding Y, Chen B, Wang S, Zhao L, Chen J, Chen L, Luo R. Overexpression of Tiam1 in hepatocellular carcinomas predicts poor prognosis of HCC patients. Int J Cancer 124: 653‐658, 2009.
 104. Doerflinger H, Benton R, Shulman JM, St Johnston D. The role of PAR‐1 in regulating the polarised microtubule cytoskeleton in the Drosophila follicular epithelium. Development 130: 3965‐3975, 2003.
 105. Doherty GJ, McMahon HT. Mechanisms of endocytosis. Annu Rev Biochem 78: 857‐902, 2009.
 106. Dorner M, Horwitz JA, Robbins JB, Barry WT, Feng Q, Mu K, Jones CT, Schoggins JW, Catanese MT, Burton DR, Law M, Rice CM, Ploss A. A genetically humanized mouse model for hepatitis C virus infection. Nature 474: 208‐211, 2011.
 107. Doyon Y, McCammon JM, Miller JC, Faraji F, Ngo C, Katibah GE, Amora R, Hocking TD, Zhang L, Rebar EJ, Gregory PD, Urnov FD, Amacher SL. Heritable targeted gene disruption in zebrafish using designed zinc‐finger nucleases. Nat Biotechnol 26: 702‐708, 2008.
 108. Du Y, Han R, Ng S, Ni J, Sun W, Wohland T, Ong SH, Kuleshova L, Yu H. Identification and characterization of a novel prespheroid 3‐dimensional hepatocyte monolayer on galactosylated substratum. Tissue Eng 13: 1455‐1468, 2007.
 109. Duffield A, Caplan MJ, Muth TR. Protein trafficking in polarized cells. Int Rev Cell Mol Biol 270: 145‐179, 2008.
 110. Duncan SA. Mechanisms controlling early development of the liver. Mech Dev 120: 19‐33, 2003.
 111. Dunn JC, Tompkins RG, Yarmush ML. Long‐term in vitro function of adult hepatocytes in a collagen sandwich configuration. Biotechnol Prog 7: 237‐245, 1991.
 112. Dunn JC, Yarmush ML, Koebe HG, Tompkins RG. Hepatocyte function and extracellular matrix geometry: Long‐term culture in a sandwich configuration. FASEB J 3: 174‐177, 1989.
 113. Edmondson HA, Steiner PE. Primary carcinoma of the liver: A study of 100 cases among 48,900 necropsies. Cancer 7: 462‐503, 1954.
 114. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR, III, Maiato H, Khodjakov A, Akhmanova A, Kaverina I. Asymmetric CLASP‐dependent nucleation of noncentrosomal microtubules at the trans‐Golgi network. Dev Cell 12: 917‐930, 2007.
 115. Elola MT, Chiesa ME, Alberti AF, Mordoh J, Fink NE. Galectin‐1 receptors in different cell types. J Biomed Sci 12: 13‐29, 2005.
 116. Espelt MV, Croci DO, Bacigalupo ML, Carabias P, Manzi M, Elola MT, Munoz MC, Dominici FP, Wolfenstein‐Todel C, Rabinovich GA, Troncoso MF. Novel roles of galectin‐1 in hepatocellular carcinoma cell adhesion, polarization, and in vivo tumor growth. Hepatology 53: 2097‐2106, 2011.
 117. Esteve‐Puig R, Canals F, Colome N, Merlino G, Recio JA. Uncoupling of the LKB1‐AMPKalpha energy sensor pathway by growth factors and oncogenic BRAF. PLoS One 4: e4771, 2009.
 118. Evans MJ, von Hahn T, Tscherne DM, Syder AJ, Panis M, Wolk B, Hatziioannou T, McKeating JA, Bieniasz PD, Rice CM. Claudin‐1 is a hepatitis C virus co‐receptor required for a late step in entry. Nature 446: 801‐805, 2007.
 119. Ezzell RM, Toner M, Hendricks K, Dunn JC, Tompkins RG, Yarmush ML. Effect of collagen gel configuration on the cytoskeleton in cultured rat hepatocytes. Exp Cell Res 208: 442‐452, 1993.
 120. Farquhar MJ, Harris HJ, Diskar M, Jones S, Mee CJ, Nielsen SU, Brimacombe CL, Molina S, Toms GL, Maurel P, Howl J, Herberg FW, van Ijzendoorn SC, Balfe P, McKeating JA. Protein kinase A‐dependent step(s) in hepatitis C virus entry and infectivity. J Virol 82: 8797‐8811, 2008.
 121. Farquhar MJ, Hu K, Harris HJ, Davis C, Brimacombe CL, Fletcher SJ, Baumert TF, Rappoport JZ, Balfe P, McKeating JA. Hepatitis C virus induces CD81 and claudin‐1 endocytosis. J Virol 86: 4305‐4316, 2012.
 122. Fausto N, Campbell JS, Riehle KJ. Liver regeneration. Hepatology 43: S45‐S53, 2006.
 123. Feracci H, Connolly TP, Margolis RN, Hubbard AL. The establishment of hepatocyte cell surface polarity during fetal liver development. Dev Biol 123: 73‐84, 1987.
 124. Fiedler K, Lafont F, Parton RG, Simons K. Annexin XIIIb: A novel epithelial specific annexin is implicated in vesicular traffic to the apical plasma membrane. J Cell Biol 128: 1043‐1053, 1995.
 125. Fields IC, Shteyn E, Pypaert M, Proux‐Gillardeaux V, Kang RS, Galli T, Folsch H. v‐SNARE cellubrevin is required for basolateral sorting of AP‐1B‐dependent cargo in polarized epithelial cells. J Cell Biol 177: 477‐488, 2007.
 126. Fogarty S, Hardie DG. C‐terminal phosphorylation of LKB1 is not required for regulation of AMP‐activated protein kinase, BRSK1, BRSK2, or cell cycle arrest. J Biol Chem 284: 77‐84, 2009.
 127. Foley JE, Yeh JR, Maeder ML, Reyon D, Sander JD, Peterson RT, Joung JK. Rapid mutation of endogenous zebrafish genes using zinc finger nucleases made by Oligomerized Pool ENgineering (OPEN). PLoS One 4: e4348, 2009.
 128. Folsch H, Ohno H, Bonifacino JS, Mellman I. A novel clathrin adaptor complex mediates basolateral targeting in polarized epithelial cells. Cell 99: 189‐198, 1999.
 129. Folsch H, Pypaert M, Schu P, Mellman I. Distribution and function of AP‐1 clathrin adaptor complexes in polarized epithelial cells. J Cell Biol 152: 595‐606, 2001.
 130. Frevert U, Engelmann S, Zougbede S, Stange J, Ng B, Matuschewski K, Liebes L, Yee H. Intravital observation of plasmodium berghei sporozoite infection of the liver. PLoS Biol 3: e192, 2005.
 131. Frevert U, Moreno A, Calvo‐Calle JM, Klotz C, Nardin E. Imaging effector functions of human cytotoxic CD4+ T cells specific for Plasmodium falciparum circumsporozoite protein. Int J Parasitol 39: 119‐132, 2009.
 132. Fricker G, Landmann L, Meier PJ. Extrahepatic obstructive cholestasis reverses the bile salt secretory polarity of rat hepatocytes. J Clin Invest 84: 876‐885, 1989.
 133. Friedman SL. Mechanisms of disease: Mechanisms of hepatic fibrosis and therapeutic implications. Nat Clin Pract Gastroenterol Hepatol 1: 98‐105, 2004.
 134. Fu D, Wakabayashi Y, Ido Y, Lippincott‐Schwartz J, Arias IM. Regulation of bile canalicular network formation and maintenance by AMP‐activated protein kinase and LKB1. J Cell Sci 123: 3294‐3302, 2010.
 135. Fu D, Wakabayashi Y, Lippincott‐Schwartz J, Arias IM. Bile acid stimulates hepatocyte polarization through a cAMP‐Epac‐MEK‐LKB1‐AMPK pathway. Proc Natl Acad Sci U S A 108: 1403‐1408, 2011.
 136. Fujita H, Tuma PL, Finnegan CM, Locco L, Hubbard AL. Endogenous syntaxins 2, 3 and 4 exhibit distinct but overlapping patterns of expression at the hepatocyte plasma membrane. Biochem J 329(Pt 3): 527‐538, 1998.
 137. Futter CE, Gibson A, Allchin EH, Maxwell S, Ruddock LJ, Odorizzi G, Domingo D, Trowbridge IS, Hopkins CR. In polarized MDCK cells basolateral vesicles arise from clathrin‐gamma‐adaptin‐coated domains on endosomal tubules. J Cell Biol 141: 611‐623, 1998.
 138. Galletta BJ, Cooper JA. Actin and endocytosis: Mechanisms and phylogeny. Curr Opin Cell Biol 21: 20‐27, 2009.
 139. Galli T, Zahraoui A, Vaidyanathan VV, Raposo G, Tian JM, Karin M, Niemann H, Louvard D. A novel tetanus neurotoxin‐insensitive vesicle‐associated membrane protein in SNARE complexes of the apical plasma membrane of epithelial cells. Mol Biol Cell 9: 1437‐1448, 1998.
 140. Gartner LP, Hiatt JL. Color Textbook of Histology, (2nd ed.). Philadelphia: W.B. Saunders, 2001, pp. 416‐434.
 141. Gassama‐Diagne A, Yu W, ter Beest M, Martin‐Belmonte F, Kierbel A, Engel J, Mostov K. Phosphatidylinositol‐3,4,5‐trisphosphate regulates the formation of the basolateral plasma membrane in epithelial cells. Nat Cell Biol 8: 963‐970, 2006.
 142. Gatmaitan ZC, Nies AT, Arias IM. Regulation and translocation of ATP‐dependent apical membrane proteins in rat liver. Am J Physiol 272: G1041‐G1049, 1997.
 143. Gautam A, Ng OC, Strazzabosco M, Boyer JL. Quantitative assessment of canalicular bile formation in isolated hepatocyte couplets using microscopic optical planimetry. J Clin Invest 83: 565‐573, 1989.
 144. Geisler F, Nagl F, Mazur PK, Lee M, Zimber‐Strobl U, Strobl LJ, Radtke F, Schmid RM, Siveke JT. Liver‐specific inactivation of Notch2, but not Notch1, compromises intrahepatic bile duct development in mice. Hepatology 48: 607‐616, 2008.
 145. Georges PC, Hui JJ, Gombos Z, McCormick ME, Wang AY, Uemura M, Mick R, Janmey PA, Furth EE, Wells RG. Increased stiffness of the rat liver precedes matrix deposition: Implications for fibrosis. Am J Physiol Gastrointest Liver Physiol 293: G1147‐G1154, 2007.
 146. Georgescu MM. PTEN tumor suppressor network in PI3K‐Akt pathway control. Genes Cancer 1: 1170‐1177, 2010.
 147. Gibson A, Futter CE, Maxwell S, Allchin EH, Shipman M, Kraehenbuhl JP, Domingo D, Odorizzi G, Trowbridge IS, Hopkins CR. Sorting mechanisms regulating membrane protein traffic in the apical transcytotic pathway of polarized MDCK cells. J Cell Biol 143: 81‐94, 1998.
 148. Girard C, Tinel N, Terrenoire C, Romey G, Lazdunski M, Borsotto M. p11, an annexin II subunit, an auxiliary protein associated with the background K+ channel, TASK‐1. EMBO J 21: 4439‐4448, 2002.
 149. Godlewski G, Gaubert‐Cristol R, Rouy S, Prudhomme M. Liver development in the rat during the embryonic period (Carnegie stages 15‐23). Acta Anat (Basel) 160: 172‐178, 1997.
 150. Gonzalez‐Mariscal L, Chavez de Ramirez B, Cereijido M. Tight junction formation in cultured epithelial cells (MDCK). J Membr Biol 86: 113‐125, 1985.
 151. Gonzalez A, Nicovani S, Juica F. Apical secretion of hepatitis B surface antigen from transfected Madin‐Darby canine kidney cells. J Biol Chem 268: 6662‐6667, 1993.
 152. Gonzalez A, Rodriguez‐Boulan E. Clathrin and AP1B: Key roles in basolateral trafficking through trans‐endosomal routes. FEBS Lett 583: 3784‐3795, 2009.
 153. Goodenough DA, Paul DL. Gap junctions. Cold Spring Harb Perspect Biol 1: a002576, 2009.
 154. Graf J, Boyer JL. The use of isolated rat hepatocyte couplets in hepatobiliary physiology. J Hepatol 10: 387‐394, 1990.
 155. Graf J, Gautam A, Boyer JL. Isolated rat hepatocyte couplets: A primary secretory unit for electrophysiologic studies of bile secretory function. Proc Natl Acad Sci U S A 81: 6516‐6520, 1984.
 156. Gravotta D, Carvajal‐Gonzalez JM, Mattera R, Deborde S, Banfelder JR, Bonifacino JS, Rodriguez‐Boulan E. Novel role of the clathrin adaptor AP‐1A in basolateral polarity. Dev Cell 22(4): 811‐823, 2012.
 157. Gravotta D, Deora A, Perret E, Oyanadel C, Soza A, Schreiner R, Gonzalez A, Rodriguez‐Boulan E. AP1B sorts basolateral proteins in recycling and biosynthetic routes of MDCK cells. Proc Natl Acad Sci U S A 104: 1564‐1569, 2007.
 158. Green KJ, Getsios S, Troyanovsky S, Godsel LM. Intercellular junction assembly, dynamics, and homeostasis. Cold Spring Harb Perspect Biol 2: a000125, 2010.
 159. Griffiths G, Fuller SD, Back R, Hollinshead M, Pfeiffer S, Simons K. The dynamic nature of the Golgi complex. J Cell Biol 108: 277‐297, 1989.
 160. Gripon P, Rumin S, Urban S, Le Seyec J, Glaise D, Cannie I, Guyomard C, Lucas J, Trepo C, Guguen‐Guillouzo C. Infection of a human hepatoma cell line by hepatitis B virus. Proc Natl Acad Sci U S A 99: 15655‐15660, 2002.
 161. Gualdi R, Bossard P, Zheng M, Hamada Y, Coleman JR, Zaret KS. Hepatic specification of the gut endoderm in vitro: Cell signaling and transcriptional control. Genes Dev 10: 1670‐1682, 1996.
 162. Guillouzo A, Corlu A, Aninat C, Glaise D, Morel F, Guguen‐Guillouzo C. The human hepatoma HepaRG cells: A highly differentiated model for studies of liver metabolism and toxicity of xenobiotics. Chem Biol Interact 168: 66‐73, 2007.
 163. Gumbiner B, Stevenson B, Grimaldi A. The role of the cell adhesion molecule uvomorulin in the formation and maintenance of the epithelial junctional complex. J Cell Biol 107: 1575‐1587, 1988.
 164. Guo Y, Nyasae L, Braiterman LT, Hubbard AL. NH2‐terminal signals in ATP7B Cu‐ATPase mediate its Cu‐dependent anterograde traffic in polarized hepatic cells. Am J Physiol Gastrointest Liver Physiol 289: G904‐G916, 2005.
 165. Guttman JA, Finlay BB. Tight junctions as targets of infectious agents. Biochim Biophys Acta 1788: 832‐841, 2009.
 166. Hales CM, Griner R, Hobdy‐Henderson KC, Dorn MC, Hardy D, Kumar R, Navarre J, Chan EK, Lapierre LA, Goldenring JR. Identification and characterization of a family of Rab11‐interacting proteins. J Biol Chem 276: 39067‐39075, 2001.
 167. Hales CM, Vaerman JP, Goldenring JR. Rab11 family interacting protein 2 associates with Myosin Vb and regulates plasma membrane recycling. J Biol Chem 277: 50415‐50421, 2002.
 168. Hall HG, Farson DA, Bissell MJ. Lumen formation by epithelial cell lines in response to collagen overlay: A morphogenetic model in culture. Proc Natl Acad Sci U S A 79: 4672‐4676, 1982.
 169. Hampton JA, Lantz RC, Goldblatt PJ, Lauren DJ, Hinton DE. Functional units in rainbow trout (Salmo gairdneri, Richardson) liver: II. The biliary system. Anat Rec 221: 619‐634, 1988.
 170. Hardie DG. AMP‐activated protein kinase: An energy sensor that regulates all aspects of cell function. Genes Dev 25: 1895‐1908, 2011.
 171. Hardman RC, Volz DC, Kullman SW, Hinton DE. An in vivo look at vertebrate liver architecture: Three‐dimensional reconstructions from medaka (Oryzias latipes). Anat Rec (Hoboken) 290: 770‐782, 2007.
 172. Harris HJ, Davis C, Mullins JG, Hu K, Goodall M, Farquhar MJ, Mee CJ, McCaffrey K, Young S, Drummer H, Balfe P, McKeating JA. Claudin association with CD81 defines hepatitis C virus entry. J Biol Chem 285: 21092‐21102, 2010.
 173. Harris HJ, Farquhar MJ, Mee CJ, Davis C, Reynolds GM, Jennings A, Hu K, Yuan F, Deng H, Hubscher SG, Han JH, Balfe P, McKeating JA. CD81 and claudin 1 coreceptor association: Role in hepatitis C virus entry. J Virol 82: 5007‐5020, 2008.
 174. Harris TJ, Tepass U. Adherens junctions: From molecules to morphogenesis. Nat Rev Mol Cell Biol 11: 502‐514, 2010.
 175. Hata S, Namae M, Nishina H. Liver development and regeneration: From laboratory study to clinical therapy. Dev Growth Differ 49: 163‐170, 2007.
 176. Haussinger D, Kurz AK, Wettstein M, Graf D, Vom Dahl S, Schliess F. Involvement of integrins and Src in tauroursodeoxycholate‐induced and swelling‐induced choleresis. Gastroenterology 124: 1476‐1487, 2003.
 177. Hayhurst GP, Strick‐Marchand H, Mulet C, Richard AF, Morosan S, Kremsdorf D, Weiss MC. Morphogenetic competence of HNF4 alpha‐deficient mouse hepatic cells. J Hepatol 49: 384‐395, 2008.
 178. Heilker R, Manning‐Krieg U, Zuber JF, Spiess M. In vitro binding of clathrin adaptors to sorting signals correlates with endocytosis and basolateral sorting. Embo J 15: 2893‐2899, 1996.
 179. Hellman NE, Gitlin JD. Ceruloplasmin metabolism and function. Annu Rev Nutr 22: 439‐458, 2002.
 180. Hemery I, Durand‐Schneider AM, Feldmann G, Vaerman JP, Maurice M. The transcytotic pathway of an apical plasma membrane protein (B10) in hepatocytes is similar to that of IgA and occurs via a tubular pericentriolar compartment. J Cell Sci 109(Pt 6): 1215‐1227, 1996.
 181. Henry L, Sheff DR. Rab8 regulates basolateral secretory, but not recycling, traffic at the recycling endosome. Mol Biol Cell 19: 2059‐2068, 2008.
 182. Herrema H, Czajkowska D, Theard D, van der Wouden JM, Kalicharan D, Zolghadr B, Hoekstra D, van Ijzendoorn SC. Rho kinase, myosin‐II, and p42/44 MAPK control extracellular matrix‐mediated apical bile canalicular lumen morphogenesis in HepG2 cells. Mol Biol Cell 17: 3291‐3303, 2006.
 183. Herrmann J, Abriss B, van de Leur E, Weiskirchen S, Gressner AM, Weiskirchen R. Comparative analysis of adenoviral transgene delivery via tail or portal vein into rat liver. Arch Virol 149: 1611‐1617, 2004.
 184. Hirano T, Nakajima K, Hibi M. Signaling mechanisms through gp130: A model of the cytokine system. Cytokine Growth Factor Rev 8: 241‐252, 1997.
 185. Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum Mutat 1: 445‐466, 1992.
 186. Hoefs JC, Renner IG, Askhcavai M, Redeker AG. Hepatitis B surface antigen in pancreatic and biliary secretions. Gastroenterology 79: 191‐194, 1980.
 187. Hoehme S, Brulport M, Bauer A, Bedawy E, Schormann W, Hermes M, Puppe V, Gebhardt R, Zellmer S, Schwarz M, Bockamp E, Timmel T, Hengstler JG, Drasdo D. Prediction and validation of cell alignment along microvessels as order principle to restore tissue architecture in liver regeneration. Proc Natl Acad Sci U S A 107: 10371‐10376, 2010.
 188. Hoekstra D, Tyteca D, van ISC. The subapical compartment: A traffic center in membrane polarity development. J Cell Sci 117: 2183‐2192, 2004.
 189. Hua W, Sheff D, Toomre D, Mellman I. Vectorial insertion of apical and basolateral membrane proteins in polarized epithelial cells revealed by quantitative 3D live cell imaging. J Cell Biol 172: 1035‐1044, 2006.
 190. Huber LA, Pimplikar S, Parton RG, Virta H, Zerial M, Simons K. Rab8, a small GTPase involved in vesicular traffic between the TGN and the basolateral plasma membrane. J Cell Biol 123: 35‐45, 1993.
 191. Huber O. Structure and function of desmosomal proteins and their role in development and disease. Cell Mol Life Sci 60: 1872‐1890, 2003.
 192. Hughes RC. Galectins in kidney development. Glycoconj J 19: 621‐629, 2004.
 193. Hughes RC, Stamatoglou SC. Adhesive interactions and the metabolic activity of hepatocytes. J Cell Sci Suppl 8: 273‐291, 1987.
 194. Hunter MP, Wilson CM, Jiang X, Cong R, Vasavada H, Kaestner KH, Bogue CW. The homeobox gene Hhex is essential for proper hepatoblast differentiation and bile duct morphogenesis. Dev Biol 308: 355‐367, 2007.
 195. Hunziker W, Male P, Mellman I. Differential microtubule requirements for transcytosis in MDCK cells. EMBO J 9: 3515‐3525, 1990.
 196. Hurd DD, Kemphues KJ. PAR‐1 is required for morphogenesis of the Caenorhabditis elegans vulva. Dev Biol 253: 54‐65, 2003.
 197. Hurley RL, Anderson KA, Franzone JM, Kemp BE, Means AR, Witters LA. The Ca2+/calmodulin‐dependent protein kinase kinases are AMP‐activated protein kinase kinases. J Biol Chem 280: 29060‐29066, 2005.
 198. Hutagalung AH, Novick PJ. Role of Rab GTPases in membrane traffic and cell physiology. Physiol Rev 91: 119‐149, 2011.
 199. Ihrke G, Martin GV, Shanks MR, Schrader M, Schroer TA, Hubbard AL. Apical plasma membrane proteins and endolyn‐78 travel through a subapical compartment in polarized WIF‐B hepatocytes. J Cell Biol 141: 115‐133, 1998.
 200. Ihrke G, Neufeld EB, Meads T, Shanks MR, Cassio D, Laurent M, Schroer TA, Pagano RE, Hubbard AL. WIF‐B cells: An in vitro model for studies of hepatocyte polarity. J Cell Biol 123: 1761‐1775, 1993.
 201. Ikonen E, Tagaya M, Ullrich O, Montecucco C, Simons K. Different requirements for NSF, SNAP, and Rab proteins in apical and basolateral transport in MDCK cells. Cell 81: 571‐580, 1995.
 202. Imhof BA, Vollmers HP, Goodman SL, Birchmeier W. Cell‐cell interaction and polarity of epithelial cells: Specific perturbation using a monoclonal antibody. Cell 35: 667‐675, 1983.
 203. In JG, Ihrke G, Tuma PL. Analysis of polarized membrane traffic in hepatocytes and hepatic cell lines. Curr Protoc Cell Biol 15: 15‐17, 2012.
 204. In JG, Tuma PL. MAL2 selectively regulates polymeric IgA receptor delivery from the Golgi to the plasma membrane in WIF‐B cells. Traffic 11: 1056‐1066, 2010.
 205. Ito Y, Matsui T, Kamiya A, Kinoshita T, Miyajima A. Retroviral gene transfer of signaling molecules into murine fetal hepatocytes defines distinct roles for the STAT3 and ras pathways during hepatic development. Hepatology 32: 1370‐1376, 2000.
 206. Iverson HA, Fox D, III, Nadler LS, Klevit RE, Nathanson NM. Identification and structural determination of the M(3) muscarinic acetylcholine receptor basolateral sorting signal. J Biol Chem 280: 24568‐24575, 2005.
 207. Jaichandran S, Yap ST, Khoo AB, Ho LP, Tien SL, Kon OL. In vivo liver electroporation: Optimization and demonstration of therapeutic efficacy. Hum Gene Ther 17: 362‐375, 2006.
 208. Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H. LKB1 and AMPK family signaling: The intimate link between cell polarity and energy metabolism. Physiol Rev 89: 777‐798, 2009.
 209. Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM. Expression of variant fibronectins in wound healing: Cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol 127: 2037‐2048, 1994.
 210. Jaulin F, Xue X, Rodriguez‐Boulan E, Kreitzer G. Polarization‐dependent selective transport to the apical membrane by KIF5B in MDCK cells. Dev Cell 13: 511‐522, 2007.
 211. Jenne DE, Tschopp J. Clusterin: The intriguing guises of a widely expressed glycoprotein. Trends Biochem Sci 17: 154‐159, 1992.
 212. Johnson C, Tinti M, Wood NT, Campbell DG, Toth R, Dubois F, Geraghty KM, Wong BH, Brown LJ, Tyler J, Gernez A, Chen S, Synowsky S, MacKintosh C. Visualization and biochemical analyses of the emerging mammalian 14‐3‐3‐phosphoproteome. Mol Cell Proteomics 10: M110.005751 1‐15, 2011.
 213. Jones AL, Hradek GT, Schmucker DL, Underdown BJ. The fate of polymeric and secretory immunoglobulin A after retrograde infusion into the common bile duct in rats. Hepatology 4: 1173‐1183, 1984.
 214. Jung J, Zheng M, Goldfarb M, Zaret KS. Initiation of mammalian liver development from endoderm by fibroblast growth factors. Science 284: 1998‐2003, 1999.
 215. Kallay LM, McNickle A, Brennwald PJ, Hubbard AL, Braiterman LT. Scribble associates with two polarity proteins, Lgl2 and Vangl2, via distinct molecular domains. J Cell Biochem 99: 647‐664, 2006.
 216. Kamiya A, Gonzalez FJ. TNF‐alpha regulates mouse fetal hepatic maturation induced by oncostatin M and extracellular matrices. Hepatology 40: 527‐536, 2004.
 217. Kamiya A, Inoue Y, Gonzalez FJ. Role of the hepatocyte nuclear factor 4alpha in control of the pregnane X receptor during fetal liver development. Hepatology 37: 1375‐1384, 2003.
 218. Kamiya A, Kinoshita T, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. FEBS Lett 492: 90‐94, 2001.
 219. Kamiya A, Kojima N, Kinoshita T, Sakai Y, Miyaijma A. Maturation of fetal hepatocytes in vitro by extracellular matrices and oncostatin M: Induction of tryptophan oxygenase. Hepatology 35: 1351‐1359, 2002.
 220. Karasaki S. Subcellular localization of surface adenosine triphosphatase activity in preneoplastic liver parenchyma. Cancer Res 32: 1703‐1712, 1972.
 221. Karasaki S. Cell proliferation and subcellular localization of alkaline phosphatase activity in rat liver parenchyma during azo dye carcinogenesis. Cancer Res 35: 482‐491, 1975.
 222. Karlsson R, Pedersen ED, Wang Z, Brakebusch C. Rho GTPase function in tumorigenesis. Biochim Biophys Acta 1796: 91‐98, 2009.
 223. Kawahara H, French SW. Role of cytoskeleton in canalicular contraction in cultured differentiated hepatocytes. Am J Pathol 136: 521‐532, 1990.
 224. Keller P, Simons K. Cholesterol is required for surface transport of influenza virus hemagglutinin. J Cell Biol 140: 1357‐1367, 1998.
 225. Keller P, Toomre D, Diaz E, White J, Simons K. Multicolour imaging of post‐Golgi sorting and trafficking in live cells. Nat Cell Biol 3: 140‐149, 2001.
 226. Kelly JH, Darlington GJ. Modulation of the liver specific phenotype in the human hepatoblastoma line Hep G2. In Vitro Cell Dev Biol 25: 217‐222, 1989.
 227. Kemphues KJ, Priess JR, Morton DG, Cheng NS. Identification of genes required for cytoplasmic localization in early C. elegans embryos. Cell 52: 311‐320, 1988.
 228. Kenney SM, Cox DW. Sequence variation database for the Wilson disease copper transporter, ATP7B. Hum Mutat 28: 1171‐1177, 2007.
 229. Kikuchi S, Hata M, Fukumoto K, Yamane Y, Matsui T, Tamura A, Yonemura S, Yamagishi H, Keppler D, Tsukita S. Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet 31: 320‐325, 2002.
 230. Kipp H, Arias IM. Newly synthesized canalicular ABC transporters are directly targeted from the Golgi to the hepatocyte apical domain in rat liver. J Biol Chem 275: 15917‐15925, 2000.
 231. Kipp H, Pichetshote N, Arias IM. Transporters on demand: Intrahepatic pools of canalicular ATP binding cassette transporters in rat liver. J Biol Chem 276: 7218‐7224, 2001.
 232. Knittel T, Schuppan D, Meyer zum Buschenfelde KH, Ramadori G. Differential expression of collagen types I, III, and IV by fat‐storing (Ito) cells in vitro. Gastroenterology 102: 1724‐1735, 1992.
 233. Kocher O, Krieger M. Role of the adaptor protein PDZK1 in controlling the HDL receptor SR‐BI. Curr Opin Lipidol 20: 236‐241, 2009.
 234. Kodama Y, Hijikata M, Kageyama R, Shimotohno K, Chiba T. The role of notch signaling in the development of intrahepatic bile ducts. Gastroenterology 127: 1775‐1786, 2004.
 235. Koivisto UM, Hubbard AL, Mellman I. A novel cellular phenotype for familial hypercholesterolemia due to a defect in polarized targeting of LDL receptor. Cell 105: 575‐585, 2001.
 236. Koivisto UM, Viikari JS, Kontula K. Molecular characterization of minor gene rearrangements in Finnish patients with heterozygous familial hypercholesterolemia: Identification of two common missense mutations (Gly823–>Asp and Leu380–>His) and eight rare mutations of the LDL receptor gene. Am J Hum Genet 57: 789‐797, 1995.
 237. Kojima T, Murata M, Go M, Spray DC, Sawada N. Connexins induce and maintain tight junctions in epithelial cells. J Membr Biol 217: 13‐19, 2007.
 238. Kojima T, Yamamoto T, Murata M, Chiba H, Kokai Y, Sawada N. Regulation of the blood‐biliary barrier: Interaction between gap and tight junctions in hepatocytes. Med Electron Microsc 36: 157‐164, 2003.
 239. Kondo Y, Nakajima T. Pseudoglandular hepatocellular carcinoma. A morphogenetic study. Cancer 60: 1032‐1037, 1987.
 240. Kondoh N, Hada A, Ryo A, Shuda M, Arai M, Matsubara O, Kimura F, Wakatsuki T, Yamamoto M. Activation of Galectin‐1 gene in human hepatocellular carcinoma involves methylation‐sensitive complex formations at the transcriptional upstream and downstream elements. Int J Oncol 23: 1575‐1583, 2003.
 241. Konopka G, Tekiela J, Iverson M, Wells C, Duncan SA. Junctional adhesion molecule‐A is critical for the formation of pseudocanaliculi and modulates E‐cadherin expression in hepatic cells. J Biol Chem 282: 28137‐28148, 2007.
 242. Kreitzer G, Marmorstein A, Okamoto P, Vallee R, Rodriguez‐Boulan E. Kinesin and dynamin are required for post‐Golgi transport of a plasma‐membrane protein. Nat Cell Biol 2: 125‐127, 2000.
 243. Kreitzer G, Schmoranzer J, Low SH, Li X, Gan Y, Weimbs T, Simon SM, Rodriguez‐Boulan E. Three‐dimensional analysis of post‐Golgi carrier exocytosis in epithelial cells. Nat Cell Biol 5: 126‐136, 2003.
 244. Kroschewski R, Hall A, Mellman I. Cdc42 controls secretory and endocytic transport to the basolateral plasma membrane of MDCK cells. Nat Cell Biol 1: 8‐13, 1999.
 245. Kurz AK, Graf D, Schmitt M, Vom Dahl S, Haussinger D. Tauroursodesoxycholate‐induced choleresis involves p38(MAPK) activation and translocation of the bile salt export pump in rats. Gastroenterology 121: 407‐419, 2001.
 246. Kusakabe M, Nishida E. The polarity‐inducing kinase Par‐1 controls Xenopus gastrulation in cooperation with 14‐3‐3 and aPKC. Embo J 23: 4190‐4201, 2004.
 247. La Fontaine S, Mercer JF. Trafficking of the copper‐ATPases, ATP7A and ATP7B: Role in copper homeostasis. Arch Biochem Biophys 463: 149‐167, 2007.
 248. Lafont F, Lecat S, Verkade P, Simons K. Annexin XIIIb associates with lipid microdomains to function in apical delivery. J Cell Biol 142: 1413‐1427, 1998.
 249. Lafont F, Verkade P, Galli T, Wimmer C, Louvard D, Simons K. Raft association of SNAP receptors acting in apical trafficking in Madin‐Darby canine kidney cells. Proc Natl Acad Sci U S A 96: 3734‐3738, 1999.
 250. Lam P, Pearson CL, Soroka CJ, Xu S, Mennone A, Boyer JL. Levels of plasma membrane expression in progressive and benign mutations of the bile salt export pump (Bsep/Abcb11) correlate with severity of cholestatic diseases. Am J Physiol Cell Physiol 293: C1709‐C1716, 2007.
 251. Lam SH, Wu YL, Vega VB, Miller LD, Spitsbergen J, Tong Y, Zhan H, Govindarajan KR, Lee S, Mathavan S, Murthy KR, Buhler DR, Liu ET, Gong Z. Conservation of gene expression signatures between zebrafish and human liver tumors and tumor progression. Nat Biotechnol 24: 73‐75, 2006.
 252. Landmann L, Meier PJ, Bianchi L. Bile duct ligation‐induced redistribution of canalicular antigen in rat hepatocyte plasma membranes demonstrated by immunogold quantitation. Histochemistry 94: 373‐379, 1990.
 253. Larkin JM, Coleman H, Espinosa A, Levenson A, Park MS, Woo B, Zervoudakis A, Tinh V. Intracellular accumulation of pIgA‐R and regulators of transcytotic trafficking in cholestatic rat hepatocytes. Hepatology 38: 1199‐1209, 2003.
 254. Larkin JM, Woo B, Balan V, Marks DL, Oswald BJ, LaRusso NF, McNiven MA. Rab3D, a small GTP‐binding protein implicated in regulated secretion, is associated with the transcytotic pathway in rat hepatocytes. Hepatology 32: 348‐356, 2000.
 255. Larue L, Ohsugi M, Hirchenhain J, Kemler R. E‐cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci U S A 91: 8263‐8267, 1994.
 256. Laurent T, Murase D, Tsukioka S, Matsuura T, Nagamori S, Oda H. A novel human hepatoma cell line, FLC‐4, exhibits highly enhanced liver differentiation functions through the 3‐dimensional cell shape. J Cell Physiol 227: 2898‐2906, 2011.
 257. Lazarevich NL, Al'pern DV. [Hepatocyte nuclear factor 4 (HNF4) in epithelial development and carcinogenesis]. Mol Biol (Mosk) 42: 786‐797, 2008.
 258. Lazarevich NL, Cheremnova OA, Varga EV, Ovchinnikov DA, Kudrjavtseva EI, Morozova OV, Fleishman DI, Engelhardt NV, Duncan SA. Progression of HCC in mice is associated with a downregulation in the expression of hepatocyte nuclear factors. Hepatology 39: 1038‐1047, 2004.
 259. Lazaro CA, Croager EJ, Mitchell C, Campbell JS, Yu C, Foraker J, Rhim JA, Yeoh GC, Fausto N. Establishment, characterization, and long‐term maintenance of cultures of human fetal hepatocytes. Hepatology 38: 1095‐1106, 2003.
 260. Le Borgne R, Griffiths G, Hoflack B. Mannose 6‐phosphate receptors and ADP‐ribosylation factors cooperate for high affinity interaction of the AP‐1 Golgi assembly proteins with membranes. J Biol Chem 271: 2162‐2170, 1996.
 261. LeCluyse EL, Audus KL, Hochman JH. Formation of extensive canalicular networks by rat hepatocytes cultured in collagen‐sandwich configuration. Am J Physiol 266: C1764‐C1774, 1994.
 262. Lee TK, Poon RT, Yuen AP, Ling MT, Kwok WK, Wang XH, Wong YC, Guan XY, Man K, Chau KL, Fan ST. Twist overexpression correlates with hepatocellular carcinoma metastasis through induction of epithelial‐mesenchymal transition. Clin Cancer Res 12: 5369‐5376, 2006.
 263. Lemaigre FP. Development of the biliary tract. Mech Dev 120: 81‐87, 2003.
 264. Lewis DL, Wolff JA. Systemic siRNA delivery via hydrodynamic intravascular injection. Adv Drug Deliv Rev 59: 115‐123, 2007.
 265. Li J, Ning G, Duncan SA. Mammalian hepatocyte differentiation requires the transcription factor HNF‐4alpha. Genes Dev 14: 464‐474, 2000.
 266. Li X, Low SH, Miura M, Weimbs T. SNARE expression and localization in renal epithelial cells suggest mechanism for variability of trafficking phenotypes. Am J Physiol Renal Physiol 283: F1111‐F1122, 2002.
 267. Limaye PB, Bowen WC, Orr AV, Luo J, Tseng GC, Michalopoulos GK. Mechanisms of hepatocyte growth factor‐mediated and epidermal growth factor‐mediated signaling in transdifferentiation of rat hepatocytes to biliary epithelium. Hepatology 47: 1702‐1713, 2008.
 268. Linder MC, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N. Copper transport. Am J Clin Nutr 67: 965S‐971S, 1998.
 269. Lisanti MP, Caras IW, Davitz MA, Rodriguez‐Boulan E. A glycophospholipid membrane anchor acts as an apical targeting signal in polarized epithelial cells. J Cell Biol 109: 2145‐2156, 1989.
 270. Lisanti MP, Le Bivic A, Sargiacomo M, Rodriguez‐Boulan E. Steady‐state distribution and biogenesis of endogenous Madin‐Darby canine kidney glycoproteins: Evidence for intracellular sorting and polarized cell surface delivery. J Cell Biol 109: 2117‐2127, 1989.
 271. Little JM, Richey JE, Van Thiel DH, Lester R. Taurocholate pool size and distribution in the fetal rat. J Clin Invest 63: 1042‐1049, 1979.
 272. Little JM, Smallwood RA, Lester R, Piasecki GJ, Jackson BT. Bile‐salt metabolism in the primate fetus. Gastroenterology 69: 1315‐1320, 1975.
 273. Liu J, Guo W. The exocyst complex in exocytosis and cell migration. Protoplasma 249: 587‐597, 2011.
 274. Liu X, LeCluyse EL, Brouwer KR, Gan LS, Lemasters JJ, Stieger B, Meier PJ, Brouwer KL. Biliary excretion in primary rat hepatocytes cultured in a collagen‐sandwich configuration. Am J Physiol 277: G12‐G21, 1999.
 275. Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J, Hawley SA, Udd L, Makela TP, Hardie DG, Alessi DR. LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR‐1. Embo J 23: 833‐843, 2004.
 276. Low SH, Chapin SJ, Weimbs T, Komuves LG, Bennett MK, Mostov KE. Differential localization of syntaxin isoforms in polarized Madin‐Darby canine kidney cells. Mol Biol Cell 7: 2007‐2018, 1996.
 277. Low SH, Chapin SJ, Wimmer C, Whiteheart SW, Komuves LG, Mostov KE, Weimbs T. The SNARE machinery is involved in apical plasma membrane trafficking in MDCK cells. J Cell Biol 141: 1503‐1513, 1998.
 278. Low SH, Li X, Miura M, Kudo N, Quinones B, Weimbs T. Syntaxin 2 and endobrevin are required for the terminal step of cytokinesis in mammalian cells. Dev Cell 4: 753‐759, 2003.
 279. Low SH, Roche PA, Anderson HA, van Ijzendoorn SC, Zhang M, Mostov KE, Weimbs T. Targeting of SNAP‐23 and SNAP‐25 in polarized epithelial cells. J Biol Chem 273: 3422‐3430, 1998.
 280. Low SH, Wong SH, Tang BL, Subramaniam VN, Hong WJ. Apical cell surface expression of rat dipeptidyl peptidase IV in transfected Madin‐Darby canine kidney cells. J Biol Chem 266: 13391‐13396, 1991.
 281. Lozach PY, Lortat‐Jacob H, de Lacroix de Lavalette A, Staropoli I, Foung S, Amara A, Houles C, Fieschi F, Schwartz O, Virelizier JL, Arenzana‐Seisdedos F, Altmeyer R. DC‐SIGN and L‐SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J Biol Chem 278: 20358‐20366, 2003.
 282. Lozier J, McCright B, Gridley T. Notch signaling regulates bile duct morphogenesis in mice. PLoS One 3: e1851, 2008.
 283. Lozoya OA, Wauthier E, Turner RA, Barbier C, Prestwich GD, Guilak F, Superfine R, Lubkin SR, Reid LM. Regulation of hepatic stem/progenitor phenotype by microenvironment stiffness in hydrogel models of the human liver stem cell niche. Biomaterials 32: 7389‐7402, 2011.
 284. Lutsenko S, Gupta A, Burkhead JL, Zuzel V. Cellular multitasking: The dual role of human Cu‐ATPases in cofactor delivery and intracellular copper balance. Arch Biochem Biophys 476: 22‐32, 2008.
 285. Madrid R, Aranda JF, Rodriguez‐Fraticelli AE, Ventimiglia L, Andres‐Delgado L, Shehata M, Fanayan S, Shahheydari H, Gomez S, Jimenez A, Martin‐Belmonte F, Byrne JA, Alonso MA. The formin INF2 regulates basolateral‐to‐apical transcytosis and lumen formation in association with Cdc42 and MAL2. Dev Cell 18: 814‐827, 2010.
 286. Madrid R, Le Maout S, Barrault MB, Janvier K, Benichou S, Merot J. Polarized trafficking and surface expression of the AQP4 water channel are coordinated by serial and regulated interactions with different clathrin‐adaptor complexes. Embo J 20: 7008‐7021, 2001.
 287. Magal LG, Yaffe Y, Shepshelovich J, Aranda JF, de Marco Mdel C, Gaus K, Alonso MA, Hirschberg K. Clustering and lateral concentration of raft lipids by the MAL protein. Mol Biol Cell 20: 3751‐3762, 2009.
 288. Maheshwari A, Ray S, Thuluvath PJ. Acute hepatitis C. Lancet 372: 321‐332, 2008.
 289. Manns MP, Wedemeyer H, Cornberg M. Treating viral hepatitis C: Efficacy, side effects, and complications. Gut 55: 1350‐1359, 2006.
 290. Marbet P, Rahner C, Stieger B, Landmann L. Quantitative microscopy reveals 3D organization and kinetics of endocytosis in rat hepatocytes. Microsc Res Tech 69: 693‐707, 2006.
 291. Martin‐Belmonte F, Gassama A, Datta A, Yu W, Rescher U, Gerke V, Mostov K. PTEN‐mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128: 383‐397, 2007.
 292. Martinez‐Hernandez A. The hepatic extracellular matrix. II. Electron immunohistochemical studies in rats with CCl4‐induced cirrhosis. Lab Invest 53: 166‐186, 1985.
 293. Martinez‐Hernandez A, Amenta PS. The hepatic extracellular matrix. I. Components and distribution in normal liver. Virchows Arch A Pathol Anat Histopathol 423: 1‐11, 1993.
 294. Martinez‐Hernandez A, Amenta PS. The hepatic extracellular matrix. II. Ontogenesis, regeneration and cirrhosis. Virchows Arch A Pathol Anat Histopathol 423: 77‐84, 1993.
 295. Martinez‐Hernandez A, Amenta PS. The extracellular matrix in hepatic regeneration. FASEB J 9: 1401‐1410, 1995.
 296. Martinez‐Hernandez A, Delgado FM, Amenta PS. The extracellular matrix in hepatic regeneration. Localization of collagen types I, III, IV, laminin, and fibronectin. Lab Invest 64: 157‐166, 1991.
 297. Matsui T, Kinoshita T, Morikawa Y, Tohya K, Katsuki M, Ito Y, Kamiya A, Miyajima A. K‐Ras mediates cytokine‐induced formation of E‐cadherin‐based adherens junctions during liver development. Embo J 21: 1021‐1030, 2002.
 298. Matter A, Orci L, Rouiller C. A study on the permeability barriers between Disse's space and the bile canaliculus. J Ultrastruct Res 11: 1‐71, 1969.
 299. Matter K, Hunziker W, Mellman I. Basolateral sorting of LDL receptor in MDCK cells: The cytoplasmic domain contains two tyrosine‐dependent targeting determinants. Cell 71: 741‐753, 1992.
 300. Matter K, Yamamoto EM, Mellman I. Structural requirements and sequence motifs for polarized sorting and endocytosis of LDL and Fc receptors in MDCK cells. J Cell Biol 126: 991‐1004, 1994.
 301. Maxfield FR, McGraw TE. Endocytic recycling. Nat Rev Mol Cell Biol 5: 121‐132, 2004.
 302. McCaffrey LM, Macara IG. Widely conserved signaling pathways in the establishment of cell polarity. Cold Spring Harb Perspect Biol 1: a001370, 2009.
 303. McClelland R, Wauthier E, Uronis J, Reid L. Gradients in the liver's extracellular matrix chemistry from periportal to pericentral zones: Influence on human hepatic progenitors. Tissue Eng Part A 14: 59‐70, 2008.
 304. McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K, Paumet F, Sollner TH, Rothman JE. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407: 153‐159, 2000.
 305. McNiven MA, Wolkoff AW, Hubbard A. A stimulus needed for the study of membrane traffic in hepatocytes. Hepatology 50: 345‐348, 2009.
 306. Mee CJ, Farquhar MJ, Harris HJ, Hu K, Ramma W, Ahmed A, Maurel P, Bicknell R, Balfe P, McKeating JA. Hepatitis C virus infection reduces hepatocellular polarity in a vascular endothelial growth factor‐dependent manner. Gastroenterology 138: 1134‐1142, 2010.
 307. Mee CJ, Harris HJ, Farquhar MJ, Wilson G, Reynolds G, Davis C, van ISC, Balfe P, McKeating JA. Polarization restricts hepatitis C virus entry into HepG2 hepatoma cells. J Virol 83: 6211‐6221, 2009.
 308. Meertens L, Bertaux C, Dragic T. Hepatitis C virus entry requires a critical postinternalization step and delivery to early endosomes via clathrin‐coated vesicles. J Virol 80: 11571‐11578, 2006.
 309. Mellman I, Nelson WJ. Coordinated protein sorting, targeting and distribution in polarized cells. Nat Rev Mol Cell Biol 9: 833‐845, 2008.
 310. Michalopoulos G, Pitot HC. Primary culture of parenchymal liver cells on collagen membranes. Morphological and biochemical observations. Exp Cell Res 94: 70‐78, 1975.
 311. Michalopoulos GK, Barua L, Bowen WC. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41: 535‐544, 2005.
 312. Michalopoulos GK, Bowen W, Nussler AK, Becich MJ, Howard TA. Comparative analysis of mitogenic and morphogenic effects of HGF and EGF on rat and human hepatocytes maintained in collagen gels. J Cell Physiol 156: 443‐452, 1993.
 313. Michalopoulos GK, Bowen WC, Mule K, Lopez‐Talavera JC, Mars W. Hepatocytes undergo phenotypic transformation to biliary epithelium in organoid cultures. Hepatology 36: 278‐283, 2002.
 314. Michalopoulos GK, Bowen WC, Mule K, Stolz DB. Histological organization in hepatocyte organoid cultures. Am J Pathol 159: 1877‐1887, 2001.
 315. Michalopoulos GK, Bowen WC, Zajac VF, Beer‐Stolz D, Watkins S, Kostrubsky V, Strom SC. Morphogenetic events in mixed cultures of rat hepatocytes and nonparenchymal cells maintained in biological matrices in the presence of hepatocyte growth factor and epidermal growth factor. Hepatology 29: 90‐100, 1999.
 316. Michalopoulos GK, DeFrances MC. Liver regeneration. Science 276: 60‐66, 1997.
 317. Misfeldt DS, Hamamoto ST, Pitelka DR. Transepithelial transport in cell culture. Proc Natl Acad Sci U S A 73: 1212‐1216, 1976.
 318. Misra S, Ujhazy P, Gatmaitan Z, Varticovski L, Arias IM. The role of phosphoinositide 3‐kinase in taurocholate‐induced trafficking of ATP‐dependent canalicular transporters in rat liver. J Biol Chem 273: 26638‐26644, 1998.
 319. Misra S, Ujhazy P, Varticovski L, Arias IM. Phosphoinositide 3‐kinase lipid products regulate ATP‐dependent transport by sister of P‐glycoprotein and multidrug resistance associated protein 2 in bile canalicular membrane vesicles. Proc Natl Acad Sci U S A 96: 5814‐5819, 1999.
 320. Misra S, Varticovski L, Arias IM. Mechanisms by which cAMP increases bile acid secretion in rat liver and canalicular membrane vesicles. Am J Physiol Gastrointest Liver Physiol 285: G316‐G324, 2003.
 321. Miyajima A, Kinoshita T, Tanaka M, Kamiya A, Mukouyama Y, Hara T. Role of Oncostatin M in hematopoiesis and liver development. Cytokine Growth Factor Rev 11: 177‐183, 2000.
 322. Mochizuki K, Kagawa T, Numari A, Harris MJ, Itoh J, Watanabe N, Mine T, Arias IM. Two N‐linked glycans are required to maintain the transport activity of the bile salt export pump (ABCB11) in MDCK II cells. Am J Physiol Gastrointest Liver Physiol 292: G818‐G828, 2007.
 323. Moens CB, Donn TM, Wolf‐Saxon ER, Ma TP. Reverse genetics in zebrafish by TILLING. Brief Funct Genomic Proteomic 7: 454‐459, 2008.
 324. Montesano R, Friend DS, Perrelet A, Orci L. In vivo assembly of tight junctions in fetal rat liver. J Cell Biol 67: 310‐319, 1975.
 325. Mostov KE. Transepithelial transport of immunoglobulins. Annu Rev Immunol 12: 63‐84, 1994.
 326. Motta A, Amodeo P, Fucile P, Castiglione Morelli MA, Bremnes B, Bakke O. A new triple‐stranded alpha‐helical bundle in solution: The assembling of the cytosolic tail of MHC‐associated invariant chain. Structure 5: 1453‐1464, 1997.
 327. Mukhopadhyay A, Nieves E, Che FY, Wang J, Jin L, Murray JW, Gordon K, Angeletti RH, Wolkoff AW. Proteomic analysis of endocytic vesicles: Rab1a regulates motility of early endocytic vesicles. J Cell Sci 124: 765‐775, 2011.
 328. Musch A. Microtubule organization and function in epithelial cells. Traffic 5: 1‐9, 2004.
 329. Musch A, Cohen D, Kreitzer G, Rodriguez‐Boulan E. cdc42 regulates the exit of apical and basolateral proteins from the trans‐Golgi network. Embo J 20: 2171‐2179, 2001.
 330. Musch A, Cohen D, Rodriguez‐Boulan E. Myosin II is involved in the production of constitutive transport vesicles from the TGN. J Cell Biol 138: 291‐306, 1997.
 331. Musch A, Xu H, Shields D, Rodriguez‐Boulan E. Transport of vesicular stomatitis virus G protein to the cell surface is signal mediated in polarized and nonpolarized cells. J Cell Biol 133: 543‐558, 1996.
 332. Nahmias Y, Berthiaume F, Yarmush ML. Integration of technologies for hepatic tissue engineering. Adv Biochem Eng Biotechnol 103: 309‐329, 2007.
 333. Nakamoto Y, Kaneko S. Mechanisms of viral hepatitis induced liver injury. Curr Mol Med 3: 537‐544, 2003.
 334. Nelson CM, Bissell MJ. Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer. Annu Rev Cell Dev Biol 22: 287‐309, 2006.
 335. Ng KH, Le Goascogne C, Amborade E, Stieger B, Deschatrette J. Reversible induction of rat hepatoma cell polarity with bile acids. J Cell Sci 113(Pt 23): 4241‐4251, 2000.
 336. Nickel W, Huber LA, Kahn RA, Kipper N, Barthel A, Fasshauer D, Soling HD. ADP ribosylation factor and a 14‐kD polypeptide are associated with heparan sulfate‐carrying post‐trans‐Golgi network secretory vesicles in rat hepatocytes. J Cell Biol 125: 721‐732, 1994.
 337. Ning BF, Ding J, Yin C, Zhong W, Wu K, Zeng X, Yang W, Chen YX, Zhang JP, Zhang X, Wang HY, Xie WF. Hepatocyte nuclear factor 4 alpha suppresses the development of hepatocellular carcinoma. Cancer Res 70: 7640‐7651, 2010.
 338. Nitou M, Ishikawa K, Shiojiri N. Immunohistochemical analysis of development of desmin‐positive hepatic stellate cells in mouse liver. J Anat 197(Pt 4): 635‐646, 2000.
 339. Nyasae LK, Hubbard AL, Tuma PL. Transcytotic efflux from early endosomes is dependent on cholesterol and glycosphingolipids in polarized hepatic cells. Mol Biol Cell 14: 2689‐2705, 2003.
 340. Odin P, Obrink B. Dynamic expression of the cell adhesion molecule cell‐CAM 105 in fetal and regenerating rat liver. Exp Cell Res 164: 103‐114, 1986.
 341. Odin P, Obrink B. The cell‐surface expression of the cell adhesion molecule cellCAM 105 in rat fetal tissues and regenerating liver. Exp Cell Res 179: 89‐103, 1988.
 342. Odorizzi G, Pearse A, Domingo D, Trowbridge IS, Hopkins CR. Apical and basolateral endosomes of MDCK cells are interconnected and contain a polarized sorting mechanism. J Cell Biol 135: 139‐152, 1996.
 343. Ogawa K, Medline A, Farber E. Sequential analysis of hepatic carcinogenesis: The comparative architecture of preneoplastic, malignant, prenatal, postnatal and regenerating liver. Br J Cancer 40: 782‐790, 1979.
 344. Ogawa K, Suzuki J, Mukai H, Mori M. Sequential changes of extracellular matrix and proliferation of Ito cells with enhanced expression of desmin and actin in focal hepatic injury. Am J Pathol 125: 611‐619, 1986.
 345. Ohno H, Stewart J, Fournier MC, Bosshart H, Rhee I, Miyatake S, Saito T, Gallusser A, Kirchhausen T, Bonifacino JS. Interaction of tyrosine‐based sorting signals with clathrin‐associated proteins. Science 269: 1872‐1875, 1995.
 346. Ohsugi M, Larue L, Schwarz H, Kemler R. Cell‐junctional and cytoskeletal organization in mouse blastocysts lacking E‐cadherin. Dev Biol 185: 261‐271, 1997.
 347. Ossipova O, Dhawan S, Sokol S, Green JB. Distinct PAR‐1 proteins function in different branches of Wnt signaling during vertebrate development. Dev Cell 8: 829‐841, 2005.
 348. Ossipova O, Ezan J, Sokol SY. PAR‐1 phosphorylates Mind bomb to promote vertebrate neurogenesis. Dev Cell 17: 222‐233, 2009.
 349. Owen DJ, Evans PR. A structural explanation for the recognition of tyrosine‐based endocytotic signals. Science 282: 1327‐1332, 1998.
 350. Oyamada T, Hirata T, Hara M, Kudo M, Yoshikawa H, Yoshikawa T, Suzuki N. Spontaneous larval Gnathostoma nipponicum infection in frogs. J Vet Med Sci 60: 1029‐1031, 1998.
 351. Oztan A, Rondanino C, Apodaca G. Transcytosis of polymeric immunoglobulin a in polarized Madin‐Darby canine kidney cells. Methods Mol Biol 440: 157‐170, 2008.
 352. Paladino S, Pocard T, Catino MA, Zurzolo C. GPI‐anchored proteins are directly targeted to the apical surface in fully polarized MDCK cells. J Cell Biol 172: 1023‐1034, 2006.
 353. Paladino S, Sarnataro D, Pillich R, Tivodar S, Nitsch L, Zurzolo C. Protein oligomerization modulates raft partitioning and apical sorting of GPI‐anchored proteins. J Cell Biol 167: 699‐709, 2004.
 354. Parlati F, McNew JA, Fukuda R, Miller R, Sollner TH, Rothman JE. Topological restriction of SNARE‐dependent membrane fusion. Nature 407: 194‐198, 2000.
 355. Parviz F, Matullo C, Garrison WD, Savatski L, Adamson JW, Ning G, Kaestner KH, Rossi JM, Zaret KS, Duncan SA. Hepatocyte nuclear factor 4alpha controls the development of a hepatic epithelium and liver morphogenesis. Nat Genet 34: 292‐296, 2003.
 356. Paulusma CC, Kool M, Bosma PJ, Scheffer GL, ter Borg F, Scheper RJ, Tytgat GN, Borst P, Baas F, Oude Elferink RP. A mutation in the human canalicular multispecific organic anion transporter gene causes the Dubin‐Johnson syndrome. Hepatology 25: 1539‐1542, 1997.
 357. Peng X, Grosse B, Le Tiec B, Nicolas V, Delagebeaudeuf C, Bedda T, Decaens C, Cassio D. How to induce non‐polarized cells of hepatic origin to express typical hepatocyte polarity: Generation of new highly polarized cell models with developed and functional bile canaliculi. Cell Tissue Res 323: 233‐243, 2006.
 358. Petersen BE, Zajac VF, Michalopoulos GK. Bile ductular damage induced by methylene dianiline inhibits oval cell activation. Am J Pathol 151: 905‐909, 1997.
 359. Petersen BE, Zajac VF, Michalopoulos GK. Hepatic oval cell activation in response to injury following chemically induced periportal or pericentral damage in rats. Hepatology 27: 1030‐1038, 1998.
 360. Phillips MJ, Poucell S, Oda M. Mechanisms of cholestasis. Lab Invest 54: 593‐608, 1986.
 361. Pinto MA, Marchevsky RS, Baptista ML, de Lima MA, Pelajo‐Machado M, Vitral CL, Kubelka CF, Pissurno JW, Franca MS, Schatzmayr HG, Gaspar AM. Experimental hepatitis A virus (HAV) infection in Callithrix jacchus: Early detection of HAV antigen and viral fate. Exp Toxicol Pathol 53: 413‐420, 2002.
 362. Pinzani M. Epithelial‐mesenchymal transition in chronic liver disease: Fibrogenesis or escape from death? J Hepatol 55: 459‐465, 2011.
 363. Ploss A, Evans MJ, Gaysinskaya VA, Panis M, You H, de Jong YP, Rice CM. Human occludin is a hepatitis C virus entry factor required for infection of mouse cells. Nature 457: 882‐886, 2009.
 364. Pocard T, Le Bivic A, Galli T, Zurzolo C. Distinct v‐SNAREs regulate direct and indirect apical delivery in polarized epithelial cells. J Cell Sci 120: 3309‐3320, 2007.
 365. Polishchuk RS, Polishchuk EV, Marra P, Alberti S, Buccione R, Luini A, Mironov AA. Correlative light‐electron microscopy reveals the tubular‐saccular ultrastructure of carriers operating between Golgi apparatus and plasma membrane. J Cell Biol 148: 45‐58, 2000.
 366. Pous C, Chabin K, Drechou A, Barbot L, Phung‐Koskas T, Settegrana C, Bourguet‐Kondracki ML, Maurice M, Cassio D, Guyot M, Durand G. Functional specialization of stable and dynamic microtubules in protein traffic in WIF‐B cells. J Cell Biol 142: 153‐165, 1998.
 367. Puertollano R, Martin‐Belmonte F, Millan J, de Marco MC, Albar JP, Kremer L, Alonso MA. The MAL proteolipid is necessary for normal apical transport and accurate sorting of the influenza virus hemagglutinin in Madin‐Darby canine kidney cells. J Cell Biol 145: 141‐151, 1999.
 368. Puertollano R, Martinez‐Menarguez JA, Batista A, Ballesta J, Alonso MA. An intact dilysine‐like motif in the carboxyl terminus of MAL is required for normal apical transport of the influenza virus hemagglutinin cargo protein in epithelial Madin‐Darby canine kidney cells. Mol Biol Cell 12: 1869‐1883, 2001.
 369. Rahner C, Stieger B, Landmann L. Structure‐function correlation of tight junctional impairment after intrahepatic and extrahepatic cholestasis in rat liver. Gastroenterology 110: 1564‐1578, 1996.
 370. Rahner C, Stieger B, Landmann L. Apical endocytosis in rat hepatocytes In situ involves clathrin, traverses a subapical compartment, and leads to lysosomes. Gastroenterology 119: 1692‐1707, 2000.
 371. Ramadori G, Saile B. Inflammation, damage repair, immune cells, and liver fibrosis: Specific or nonspecific, this is the question. Gastroenterology 127: 997‐1000, 2004.
 372. Ramnarayanan SP, Cheng CA, Bastaki M, Tuma PL. Exogenous MAL reroutes selected hepatic apical proteins into the direct pathway in WIF‐B cells. Mol Biol Cell 18: 2707‐2715, 2007.
 373. Reales E, Sharma N, Low SH, Folsch H, Weimbs T. Basolateral sorting of syntaxin 4 is dependent on its N‐terminal domain and the AP1B clathrin adaptor, and required for the epithelial cell polarity. PLoS One 6: e21181, 2011.
 374. Reinsch S, Karsenti E. Orientation of spindle axis and distribution of plasma membrane proteins during cell division in polarized MDCKII cells. J Cell Biol 126: 1509‐1526, 1994.
 375. Reyes CD, Garcia AJ. Engineering integrin‐specific surfaces with a triple‐helical collagen‐mimetic peptide. J Biomed Mater Res A 65: 511‐523, 2003.
 376. Reynolds GM, Harris HJ, Jennings A, Hu K, Grove J, Lalor PF, Adams DH, Balfe P, Hubscher SG, McKeating JA. Hepatitis C virus receptor expression in normal and diseased liver tissue. Hepatology 47: 418‐427, 2008.
 377. Robinson MS. Cloning and expression of gamma‐adaptin, a component of clathrin‐coated vesicles associated with the Golgi apparatus. J Cell Biol 111: 2319‐2326, 1990.
 378. Rodriguez‐Boulan E, Kreitzer G, Musch A. Organization of vesicular trafficking in epithelia. Nat Rev Mol Cell Biol 6: 233‐247, 2005.
 379. Rodriguez‐Boulan E, Nelson WJ. Morphogenesis of the polarized epithelial cell phenotype. Science 245: 718‐725, 1989.
 380. Rodriguez‐Boulan E, Salas PJ. External and internal signals for epithelial cell surface polarization. Annu Rev Physiol 51: 741‐754, 1989.
 381. Rossi JM, Dunn NR, Hogan BL, Zaret KS. Distinct mesodermal signals, including BMPs from the septum transversum mesenchyme, are required in combination for hepatogenesis from the endoderm. Genes Dev 15: 1998‐2009, 2001.
 382. Rowan A, Churchman M, Jefferey R, Hanby A, Poulsom R, Tomlinson I. In situ analysis of LKB1/STK11 mRNA expression in human normal tissues and tumours. J Pathol 192: 203‐206, 2000.
 383. Ryan MJ, Bales C, Nelson A, Gonzalez DM, Underkoffler L, Segalov M, Wilson‐Rawls J, Cole SE, Moran JL, Russo P, Spinner NB, Kusumi K, Loomes KM. Bile duct proliferation in Jag1/fringe heterozygous mice identifies candidate modifiers of the Alagille syndrome hepatic phenotype. Hepatology 48: 1989‐1997, 2008.
 384. Sadler KC, Krahn KN, Gaur NA, Ukomadu C. Liver growth in the embryo and during liver regeneration in zebrafish requires the cell cycle regulator, uhrf1. Proc Natl Acad Sci U S A 104: 1570‐1575, 2007.
 385. Sakaguchi TF, Sadler KC, Crosnier C, Stainier DY. Endothelial signals modulate hepatocyte apicobasal polarization in zebrafish. Curr Biol 18: 1565‐1571, 2008.
 386. Salas PJ, Vega‐Salas DE, Rodriguez‐Boulan E. Collagen receptors mediate early events in the attachment of epithelial (MDCK) cells. J Membr Biol 98: 223‐236, 1987.
 387. Salvarezza SB, Deborde S, Schreiner R, Campagne F, Kessels MM, Qualmann B, Caceres A, Kreitzer G, Rodriguez‐Boulan E. LIM kinase 1 and cofilin regulate actin filament population required for dynamin‐dependent apical carrier fission from the trans‐Golgi network. Mol Biol Cell 20: 438‐451, 2009.
 388. Sapkota GP, Kieloch A, Lizcano JM, Lain S, Arthur JS, Williams MR, Morrice N, Deak M, Alessi DR. Phosphorylation of the protein kinase mutated in Peutz‐Jeghers cancer syndrome, LKB1/STK11, at Ser431 by p90(RSK) and cAMP‐dependent protein kinase, but not its farnesylation at Cys(433), is essential for LKB1 to suppress cell vrowth. J Biol Chem 276: 19469‐19482, 2001.
 389. Sargiacomo M, Lisanti M, Graeve L, Le Bivic A, Rodriguez‐Boulan E. Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. J Membr Biol 107: 277‐286, 1989.
 390. Sato T, Mushiake S, Kato Y, Sato K, Sato M, Takeda N, Ozono K, Miki K, Kubo Y, Tsuji A, Harada R, Harada A. The Rab8 GTPase regulates apical protein localization in intestinal cells. Nature 448: 366‐369, 2007.
 391. Saucan L, Palade GE. Differential colchicine effects on the transport of membrane and secretory proteins in rat hepatocytes in vivo: Bipolar secretion of albumin. Hepatology 15: 714‐721, 1992.
 392. Saucan L, Palade GE. Membrane and secretory proteins are transported from the Golgi complex to the sinusoidal plasmalemma of hepatocytes by distinct vesicular carriers. J Cell Biol 125: 733‐741, 1994.
 393. Schmitz AA, Govek EE, Bottner B, Van Aelst L. Rho GTPases: Signaling, migration, and invasion. Exp Cell Res 261: 1‐12, 2000.
 394. Schneider D, Greb C, Koch A, Straube T, Elli A, Delacour D, Jacob R. Trafficking of galectin‐3 through endosomal organelles of polarized and non‐polarized cells. Eur J Cell Biol 89: 788‐798, 2010.
 395. Schohl A, Fagotto F. A role for maternal beta‐catenin in early mesoderm induction in Xenopus. EMBO J 22: 3303‐3313, 2003.
 396. Schuck S, Gerl MJ, Ang A, Manninen A, Keller P, Mellman I, Simons K. Rab10 is involved in basolateral transport in polarized Madin‐Darby canine kidney cells. Traffic 8: 47‐60, 2007.
 397. Schulman AN, Dienstag JL, Jackson DR, Hoofnagle JH, Gerety RJ, Purcell RH, Barker LF. Hepatitis A antigen particles in liver, bile, and stool of chimpanzees. J Infect Dis 134: 80‐84, 1976.
 398. Schuppan D. Structure of the extracellular matrix in normal and fibrotic liver: Collagens and glycoproteins. Semin Liver Dis 10: 1‐10, 1990.
 399. Schwimmer R, Ojakian GK. The alpha 2 beta 1 integrin regulates collagen‐mediated MDCK epithelial membrane remodeling and tubule formation. J Cell Sci 108(Pt 6): 2487‐2498, 1995.
 400. Scoazec JY, Maurice M, Moreau A, Feldmann G. Analysis of hepatocyte plasma membrane polarity during rat azo dye hepatocarcinogenesis using monoclonal antibodies directed against domain‐associated antigens. Cancer Res 48: 6882‐6890, 1988.
 401. Sebbagh M, Santoni MJ, Hall B, Borg JP, Schwartz MA. Regulation of LKB1/STRAD localization and function by E‐cadherin. Curr Biol 19: 37‐42, 2009.
 402. Shanks MR, Cassio D, Lecoq O, Hubbard AL. An improved polarized rat hepatoma hybrid cell line. Generation and comparison with its hepatoma relatives and hepatocytes in vivo. J Cell Sci 107(Pt 4): 813‐825, 1994.
 403. Sharma N, Low SH, Misra S, Pallavi B, Weimbs T. Apical targeting of syntaxin 3 is essential for epithelial cell polarity. J Cell Biol 173: 937‐948, 2006.
 404. Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA, Montminy M, Cantley LC. The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310: 1642‐1646, 2005.
 405. Sheff DR, Daro EA, Hull M, Mellman I. The receptor recycling pathway contains two distinct populations of early endosomes with different sorting functions. J Cell Biol 145: 123‐139, 1999.
 406. Shen L, Weber CR, Raleigh DR, Yu D, Turner JR. Tight junction pore and leak pathways: A dynamic duo. Annu Rev Physiol 73: 283‐309, 2011.
 407. Shepard CW, Finelli L, Alter MJ. Global epidemiology of hepatitis C virus infection. Lancet Infect Dis 5: 558‐567, 2005.
 408. Shiba M, Shimizu I, Yasuda M, Ii K, Ito S. Expression of type I and type III collagens during the course of dimethylnitrosamine‐induced hepatic fibrosis in rats. Liver 18: 196‐204, 1998.
 409. Simmen T, Honing S, Icking A, Tikkanen R, Hunziker W. AP‐4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat Cell Biol 4: 154‐159, 2002.
 410. Simon JP, Ivanov IE, Shopsin B, Hersh D, Adesnik M, Sabatini DD. The in vitro generation of post‐Golgi vesicles carrying viral envelope glycoproteins requires an ARF‐like GTP‐binding protein and a protein kinase C associated with the Golgi apparatus. J Biol Chem 271: 16952‐16961, 1996.
 411. Simons K, Ikonen E. Functional rafts in cell membranes. Nature 387: 569‐572, 1997.
 412. Simons K, Wandinger‐Ness A. Polarized sorting in epithelia. Cell 62: 207‐210, 1990.
 413. Slimane TA, Trugnan G, Van ISC, Hoekstra D. Raft‐mediated trafficking of apical resident proteins occurs in both direct and transcytotic pathways in polarized hepatic cells: Role of distinct lipid microdomains. Mol Biol Cell 14: 611‐624, 2003.
 414. Snooks MJ, Bhat P, Mackenzie J, Counihan NA, Vaughan N, Anderson DA. Vectorial entry and release of hepatitis A virus in polarized human hepatocytes. J Virol 82: 8733‐8742, 2008.
 415. Snykers S, De Kock J, Rogiers V, Vanhaecke T. In vitro differentiation of embryonic and adult stem cells into hepatocytes: State of the art. Stem Cells 27: 577‐605, 2009.
 416. Soldati T, Schliwa M. Powering membrane traffic in endocytosis and recycling. Nat Rev Mol Cell Biol 7: 897‐908, 2006.
 417. Sollner TH, Rothman JE. Molecular machinery mediating vesicle budding, docking and fusion. Experientia 52: 1021‐1025, 1996.
 418. Son S, Kojima T, Decaens C, Yamaguchi H, Ito T, Imamura M, Murata M, Tanaka S, Chiba H, Hirata K, Sawada N. Knockdown of tight junction protein claudin‐2 prevents bile canalicular formation in WIF‐B9 cells. Histochem Cell Biol 131: 411‐424, 2009.
 419. Spano D, Russo R, Di Maso V, Rosso N, Terracciano LM, Roncalli M, Tornillo L, Capasso M, Tiribelli C, Iolascon A. Galectin‐1 and its involvement in hepatocellular carcinoma aggressiveness. Mol Med 16: 102‐115, 2010.
 420. Spath GF, Weiss MC. Hepatocyte nuclear factor 4 provokes expression of epithelial marker genes, acting as a morphogen in dedifferentiated hepatoma cells. J Cell Biol 140: 935‐946, 1998.
 421. St Johnston D, Sanson B. Epithelial polarity and morphogenesis. Curr Opin Cell Biol 23: 540‐546, 2011.
 422. Stamatoglou SC, Enrich C, Manson MM, Hughes RC. Temporal changes in the expression and distribution of adhesion molecules during liver development and regeneration. J Cell Biol 116: 1507‐1515, 1992.
 423. Stamatoglou SC, Manson MM, Green JA, Mayol X, Hughes RC. Distribution of fibronectin and fibronectin‐binding proteins, AGp110 and integrin alpha 5 beta 1, during chemically induced hepatocarcinogenesis in adult rats. J Cell Sci 100(Pt 3): 599‐604, 1991.
 424. Stechly L, Morelle W, Dessein AF, Andre S, Grard G, Trinel D, Dejonghe MJ, Leteurtre E, Drobecq H, Trugnan G, Gabius HJ, Huet G. Galectin‐4‐regulated delivery of glycoproteins to the brush border membrane of enterocyte‐like cells. Traffic 10: 438‐450, 2009.
 425. Steinman RM, Mellman IS, Muller WA, Cohn ZA. Endocytosis and the recycling of plasma membrane. J Cell Biol 96: 1‐27, 1983.
 426. Stepanenko OV, Shcherbakova DM, Kuznetsova IM, Turoverov KK, Verkhusha VV. Modern fluorescent proteins: From chromophore formation to novel intracellular applications. Biotechniques 51: 313‐314, 316, 318 passim, 2011.
 427. Stieger B, Meier PJ, Landmann L. Effect of obstructive cholestasis on membrane traffic and domain‐specific expression of plasma membrane proteins in rat liver parenchymal cells. Hepatology 20: 201‐212, 1994.
 428. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlowska J, Baker A, Mieli‐Vergani G, Freimer NB, Gardiner RM, Thompson RJ. A gene encoding a liver‐specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20: 233‐238, 1998.
 429. Suzuki A, Hirata M, Kamimura K, Maniwa R, Yamanaka T, Mizuno K, Kishikawa M, Hirose H, Amano Y, Izumi N, Miwa Y, Ohno S. aPKC acts upstream of PAR‐1b in both the establishment and maintenance of mammalian epithelial polarity. Curr Biol 14: 1425‐1435, 2004.
 430. Tai AW, Chuang JZ, Bode C, Wolfrum U, Sung CH. Rhodopsin's carboxy‐terminal cytoplasmic tail acts as a membrane receptor for cytoplasmic dynein by binding to the dynein light chain Tctex‐1. Cell 97: 877‐887, 1999.
 431. Taipale J, Keski‐Oja J. Growth factors in the extracellular matrix. FASEB J 11: 51‐59, 1997.
 432. Takahara T, Furui K, Yata Y, Jin B, Zhang LP, Nambu S, Sato H, Seiki M, Watanabe A. Dual expression of matrix metalloproteinase‐2 and membrane‐type 1‐matrix metalloproteinase in fibrotic human livers. Hepatology 26: 1521‐1529, 1997.
 433. Takaki Y, Hirai S, Manabe N, Izumi Y, Hirose T, Nakaya M, Suzuki A, Mizuno K, Akimoto K, Tsukita S, Shuin T, Ohno S. Dynamic changes in protein components of the tight junction during liver regeneration. Cell Tissue Res 305: 399‐409, 2001.
 434. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451‐1455, 1991.
 435. Tanos B, Rodriguez‐Boulan E. The epithelial polarity program: Machineries involved and their hijacking by cancer. Oncogene 27: 6939‐6957, 2008.
 436. Taub R. Liver regeneration: From myth to mechanism. Nat Rev Mol Cell Biol 5: 836‐847, 2004.
 437. Taura K, Miura K, Iwaisako K, Osterreicher CH, Kodama Y, Penz‐Osterreicher M, Brenner DA. Hepatocytes do not undergo epithelial‐mesenchymal transition in liver fibrosis in mice. Hepatology 51: 1027‐1036, 2010.
 438. Tee AR, Blenis J. mTOR, translational control and human disease. Semin Cell Dev Biol 16: 29‐37, 2005.
 439. ter Beest MB, Chapin SJ, Avrahami D, Mostov KE. The role of syntaxins in the specificity of vesicle targeting in polarized epithelial cells. Mol Biol Cell 16: 5784‐5792, 2005.
 440. Terada K, Nakako T, Yang XL, Iida M, Aiba N, Minamiya Y, Nakai M, Sakaki T, Miura N, Sugiyama T. Restoration of holoceruloplasmin synthesis in LEC rat after infusion of recombinant adenovirus bearing WND cDNA. J Biol Chem 273: 1815‐1820, 1998.
 441. Theard D, Steiner M, Kalicharan D, Hoekstra D, van Ijzendoorn SC. Cell polarity development and protein trafficking in hepatocytes lacking E‐cadherin/beta‐catenin‐based adherens junctions. Mol Biol Cell 18: 2313‐2321, 2007.
 442. Thiberge S, Blazquez S, Baldacci P, Renaud O, Shorte S, Menard R, Amino R. In vivo imaging of malaria parasites in the murine liver. Nat Protoc 2: 1811‐1818, 2007.
 443. Thompson A, Nessler R, Wisco D, Anderson E, Winckler B, Sheff D. Recycling endosomes of polarized epithelial cells actively sort apical and basolateral cargos into separate subdomains. Mol Biol Cell 18: 2687‐2697, 2007.
 444. Timm T, Li XY, Biernat J, Jiao J, Mandelkow E, Vandekerckhove J, Mandelkow EM. MARKK, a Ste20‐like kinase, activates the polarity‐inducing kinase MARK/PAR‐1. Embo J 22: 5090‐5101, 2003.
 445. Tiollais P, Pourcel C, Dejean A. The hepatitis B virus. Nature 317: 489‐495, 1985.
 446. Tolleshaug H, Hobgood KK, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: Multiple mutations disrupt transport and processing of a membrane receptor. Cell 32: 941‐951, 1983.
 447. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA. Myofibroblasts and mechano‐regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3: 349‐363, 2002.
 448. Tomoyori T, Ogawa K, Mori M, Onoe T. Ultrastructural changes in the bile canaliculi and the lateral surfaces of rat hepatocytes during restorative proliferation. Virchows Arch B Cell Pathol Incl Mol Pathol 42: 201‐211, 1983.
 449. Tooze SA, Huttner WB. Cell‐free protein sorting to the regulated and constitutive secretory pathways. Cell 60: 837‐847, 1990.
 450. Torok NJ, Larusso EM, McNiven MA. Alterations in vesicle transport and cell polarity in rat hepatocytes subjected to mechanical or chemical cholestasis. Gastroenterology 121: 1176‐1184, 2001.
 451. Trauner M, Meier PJ, Boyer JL. Molecular pathogenesis of cholestasis. N Engl J Med 339: 1217‐1227, 1998.
 452. Treichel U, Meyer zum Buschenfelde KH, Dienes HP, Gerken G. Receptor‐mediated entry of hepatitis B virus particles into liver cells. Arch Virol 142: 493‐498, 1997.
 453. Troxell ML, Gopalakrishnan S, McCormack J, Poteat BA, Pennington J, Garringer SM, Schneeberger EE, Nelson WJ, Marrs JA. Inhibiting cadherin function by dominant mutant E‐cadherin expression increases the extent of tight junction assembly. J Cell Sci 113(Pt 6): 985‐996, 2000.
 454. Tuma PL, Nyasae LK, Hubbard AL. Nonpolarized cells selectively sort apical proteins from cell surface to a novel compartment, but lack apical retention mechanisms. Mol Biol Cell 13: 3400‐3415, 2002.
 455. Urban J, Parczyk K, Leutz A, Kayne M, Kondor‐Koch C. Constitutive apical secretion of an 80‐kD sulfated glycoprotein complex in the polarized epithelial Madin‐Darby canine kidney cell line. J Cell Biol 105: 2735‐2743, 1987.
 456. Van Aken E, De Wever O, Correia da Rocha AS, Mareel M. Defective E‐cadherin/catenin complexes in human cancer. Virchows Arch 439: 725‐751, 2001.
 457. van de Graaf SF, Hoenderop JG, Gkika D, Lamers D, Prenen J, Rescher U, Gerke V, Staub O, Nilius B, Bindels RJ. Functional expression of the epithelial Ca(2+) channels (TRPV5 and TRPV6) requires association of the S100A10‐annexin 2 complex. EMBO J 22: 1478‐1487, 2003.
 458. van der Wouden JM, van ISC, Hoekstra D. Oncostatin M regulates membrane traffic and stimulates bile canalicular membrane biogenesis in HepG2 cells. Embo J 21: 6409‐6418, 2002.
 459. Van Eyken P, Sciot R, Callea F, van der Steen K, Moerman P, Desmet VJ. The development of the intrahepatic bile ducts in man: A keratin‐immunohistochemical study. Hepatology 8: 1586‐1595, 1988.
 460. van Hengel J, D'Hooge P, Hooghe B, Wu X, Libbrecht L, De Vos R, Quondamatteo F, Klempt M, Brakebusch C, van Roy F. Continuous cell injury promotes hepatic tumorigenesis in cdc42‐deficient mouse liver. Gastroenterology 134: 781‐792, 2008.
 461. van ISC, Hoekstra D. (Glyco)sphingolipids are sorted in sub‐apical compartments in HepG2 cells: A role for non‐Golgi‐related intracellular sites in the polarized distribution of (glyco)sphingolipids. J Cell Biol 142: 683‐696, 1998.
 462. Van ISC, Theard D, Van Der Wouden JM, Visser W, Wojtal KA, Hoekstra D. Oncostatin M‐stimulated apical plasma membrane biogenesis requires p27(Kip1)‐regulated cell cycle dynamics. Mol Biol Cell 15: 4105‐4114, 2004.
 463. van ISC, Zegers MM, Kok JW, Hoekstra D. Segregation of glucosylceramide and sphingomyelin occurs in the apical to basolateral transcytotic route in HepG2 cells. J Cell Biol 137: 347‐357, 1997.
 464. van Meer G, Simons K. Lipid polarity and sorting in epithelial cells. J Cell Biochem 36: 51‐58, 1988.
 465. Vega‐Salas DE, Salas PJ, Gundersen D, Rodriguez‐Boulan E. Formation of the apical pole of epithelial (Madin‐Darby canine kidney) cells: Polarity of an apical protein is independent of tight junctions while segregation of a basolateral marker requires cell‐cell interactions. J Cell Biol 104: 905‐916, 1987.
 466. Vega‐Salas DE, Salas PJ, Rodriguez‐Boulan E. Modulation of the expression of an apical plasma membrane protein of Madin‐Darby canine kidney epithelial cells: Cell‐cell interactions control the appearance of a novel intracellular storage compartment. J Cell Biol 104: 1249‐1259, 1987.
 467. Vega‐Salas DE, Salas PJ, Rodriguez‐Boulan E. Exocytosis of vacuolar apical compartment (VAC): A cell‐cell contact controlled mechanism for the establishment of the apical plasma membrane domain in epithelial cells. J Cell Biol 107: 1717‐1728, 1988.
 468. Vieira OV, Verkade P, Manninen A, Simons K. FAPP2 is involved in the transport of apical cargo in polarized MDCK cells. J Cell Biol 170: 521‐526, 2005.
 469. Wagner M, Halilbasic E, Marschall HU, Zollner G, Fickert P, Langner C, Zatloukal K, Denk H, Trauner M. CAR and PXR agonists stimulate hepatic bile acid and bilirubin detoxification and elimination pathways in mice. Hepatology 42: 420‐430, 2005.
 470. Wakabayashi Y, Dutt P, Lippincott‐Schwartz J, Arias IM. Rab11a and myosin Vb are required for bile canalicular formation in WIF‐B9 cells. Proc Natl Acad Sci U S A 102: 15087‐15092, 2005.
 471. Wakabayashi Y, Kipp H, Arias IM. Transporters on demand: Intracellular reservoirs and cycling of bile canalicular ABC transporters. J Biol Chem 281: 27669‐27673, 2006.
 472. Walker JM, Tsivkovskii R, Lutsenko S. Metallochaperone Atox1 transfers copper to the NH2‐terminal domain of the Wilson's disease protein and regulates its catalytic activity. J Biol Chem 277: 27953‐27959, 2002.
 473. Wandinger‐Ness A, Bennett MK, Antony C, Simons K. Distinct transport vesicles mediate the delivery of plasma membrane proteins to the apical and basolateral domains of MDCK cells. J Cell Biol 111: 987‐1000, 1990.
 474. Wang AZ, Ojakian GK, Nelson WJ. Steps in the morphogenesis of a polarized epithelium. I. Uncoupling the roles of cell‐cell and cell‐substratum contact in establishing plasma membrane polarity in multicellular epithelial (MDCK) cysts. J Cell Sci 95(Pt 1): 137‐151, 1990.
 475. Wang D, Dou K, Xiang H, Song Z, Zhao Q, Chen Y, Li Y. Involvement of RhoA in progression of human hepatocellular carcinoma. J Gastroenterol Hepatol 22: 1916‐1920, 2007.
 476. Wang E, Brown PS, Aroeti B, Chapin SJ, Mostov KE, Dunn KW. Apical and basolateral endocytic pathways of MDCK cells meet in acidic common endosomes distinct from a nearly‐neutral apical recycling endosome. Traffic 1: 480‐493, 2000.
 477. Wang P, Wang JJ, Xiao Y, Murray JW, Novikoff PM, Angeletti RH, Orr GA, Lan D, Silver DL, Wolkoff AW. Interaction with PDZK1 is required for expression of organic anion transporting protein 1A1 on the hepatocyte surface. J Biol Chem 280: 30143‐30149, 2005.
 478. Wang Q, Margolis B. Apical junctional complexes and cell polarity. Kidney Int 72: 1448‐1458, 2007.
 479. Wang X, Kumar R, Navarre J, Casanova JE, Goldenring JR. Regulation of vesicle trafficking in madin‐darby canine kidney cells by Rab11a and Rab25. J Biol Chem 275: 29138‐29146, 2000.
 480. Watabe M, Nagafuchi A, Tsukita S, Takeichi M. Induction of polarized cell‐cell association and retardation of growth by activation of the E‐cadherin‐catenin adhesion system in a dispersed carcinoma line. J Cell Biol 127: 247‐256, 1994.
 481. Watanabe S, Horie Y, Suzuki A. Hepatocyte‐specific Pten‐deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatol Res 33: 161‐166, 2005.
 482. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M, Parlati F, Sollner TH, Rothman JE. SNAREpins: Minimal machinery for membrane fusion. Cell 92: 759‐772, 1998.
 483. Webster CR, Anwer MS. Role of the PI3K/PKB signaling pathway in cAMP‐mediated translocation of rat liver Ntcp. Am J Physiol 277: G1165‐G1172, 1999.
 484. Weibel ER, Staubli W, Gnagi HR, Hess FA. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol 42: 68‐91, 1969.
 485. Weisz OA, Machamer CE, Hubbard AL. Rat liver dipeptidylpeptidase IV contains competing apical and basolateral targeting information. J Biol Chem 267: 22282‐22288, 1992.
 486. Weisz OA, Rodriguez‐Boulan E. Apical trafficking in epithelial cells: Signals, clusters and motors. J Cell Sci 122: 4253‐4266, 2009.
 487. Wells RG. The role of matrix stiffness in regulating cell behavior. Hepatology 47: 1394‐1400, 2008.
 488. Wells RG. The epithelial‐to‐mesenchymal transition in liver fibrosis: Here today, gone tomorrow? Hepatology 51: 737‐740, 2010.
 489. Wewer UM, Engvall E, Paulsson M, Yamada Y, Albrechtsen R. Laminin A, B1, B2, S and M subunits in the postnatal rat liver development and after partial hepatectomy. Lab Invest 66: 378‐389, 1992.
 490. Wilkins T, Malcolm JK, Raina D, Schade RR. Hepatitis C: Diagnosis and treatment. Am Fam Physician 81: 1351‐1357, 2010.
 491. Wisse E, De Zanger RB, Charels K, Van Der Smissen P, McCuskey RS. The liver sieve: Considerations concerning the structure and function of endothelial fenestrae, the sinusoidal wall and the space of Disse. Hepatology 5: 683‐692, 1985.
 492. Wojtal KA, de Vries E, Hoekstra D, van Ijzendoorn SC. Efficient trafficking of MDR1/P‐glycoprotein to apical canalicular plasma membranes in HepG2 cells requires PKA‐RIIalpha anchoring and glucosylceramide. Mol Biol Cell 17: 3638‐3650, 2006.
 493. Wojtal KA, Diskar M, Herberg FW, Hoekstra D, van Ijzendoorn SC. Regulatory subunit I‐controlled protein kinase A activity is required for apical bile canalicular lumen development in hepatocytes. J Biol Chem 284: 20773‐20780, 2009.
 494. Wood RL. An electron microscope study of developing bile canaliculi in the rat. Anat Rec 151: 507‐529, 1965.
 495. Woods A, Heslegrave AJ, Muckett PJ, Levene AP, Clements M, Mobberley M, Ryder TA, Abu‐Hayyeh S, Williamson C, Goldin RD, Ashworth A, Withers DJ, Carling D. LKB1 is required for hepatic bile acid transport and canalicular membrane integrity in mice. Biochem J 434: 49‐60, 2011.
 496. Wu H, Chen P, Liao R, Li YW, Yi Y, Wang JX, Sun TW, Zhou J, Shi YH, Yang XR, Jin JJ, Cheng YF, Fan J, Qiu SJ. Overexpression of galectin‐1 associates with poor prognosis in human hepatocellular carcinoma following resection. J Gastroenterol Hepatol, 27(8): 1312‐1319, 2012. doi: 10.1111/j.1440‐1746.2012.07130.x.
 497. Wu JC, Merlino G, Fausto N. Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. Proc Natl Acad Sci U S A 91: 674‐678, 1994.
 498. Xie M, Zhang D, Dyck JR, Li Y, Zhang H, Morishima M, Mann DL, Taffet GE, Baldini A, Khoury DS, Schneider MD. A pivotal role for endogenous TGF‐beta‐activated kinase‐1 in the LKB1/AMP‐activated protein kinase energy‐sensor pathway. Proc Natl Acad Sci U S A 103: 17378‐17383, 2006.
 499. Yang Y, Pan X, Lei W, Wang J, Song J. Transforming growth factor‐beta1 induces epithelial‐to‐mesenchymal transition and apoptosis via a cell cycle‐dependent mechanism. Oncogene 25: 7235‐7244, 2006.
 500. Yee HF, Jr. Rho directs activation‐associated changes in rat hepatic stellate cell morphology via regulation of the actin cytoskeleton. Hepatology 28: 843‐850, 1998.
 501. Yin L, Lynch D, Ilic Z, Sell S. Proliferation and differentiation of ductular progenitor cells and littoral cells during the regeneration of the rat liver to CCl4/2‐AAF injury. Histol Histopathol 17: 65‐81, 2002.
 502. Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M, Makela TP. Vascular abnormalities and deregulation of VEGF in Lkb1‐deficient mice. Science 293: 1323‐1326, 2001.
 503. Yuan H, Zhang H, Wu X, Zhang Z, Du D, Zhou W, Zhou S, Brakebusch C, Chen Z. Hepatocyte‐specific deletion of Cdc42 results in delayed liver regeneration after partial hepatectomy in mice. Hepatology 49: 240‐249, 2009.
 504. Zaal KJ, Kok JW, Sormunen R, Eskelinen S, Hoekstra D. Intracellular sites involved in the biogenesis of bile canaliculi in hepatic cells. Eur J Cell Biol 63: 10‐19, 1994.
 505. Zegers MM, Hoekstra D. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: A correlation with cell polarity in HepG2 cells. J Cell Biol 138: 307‐321, 1997.
 506. Zegers MM, Zaal KJ, van ISC, Klappe K, Hoekstra D. Actin filaments and microtubules are involved in different membrane traffic pathways that transport sphingolipids to the apical surface of polarized HepG2 cells. Mol Biol Cell 9: 1939‐1949, 1998.
 507. Zeisberg M, Yang C, Martino M, Duncan MB, Rieder F, Tanjore H, Kalluri R. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282: 23337‐23347, 2007.
 508. Zhang L, Li J, Young LH, Caplan MJ. AMP‐activated protein kinase regulates the assembly of epithelial tight junctions. Proc Natl Acad Sci U S A 103: 17272‐17277, 2006.
 509. Zheng B, Cantley LC. Regulation of epithelial tight junction assembly and disassembly by AMP‐activated protein kinase. Proc Natl Acad Sci U S A 104: 819‐822, 2007.
 510. Zorn AM. Liver development. In: Schier AF, editor. StemBook The Stem Cell Research Community, StemBook, in collaboration with the Harvard Stem Cell Institute, Cambridge, MA, http://www.hsci.harvard.edu/doi/10.3824/stembook.1.25.1, http://www.stembook.org, 2008.
 511. Zurzolo C, Lisanti MP, Caras IW, Nitsch L, Rodriguez‐Boulan E. Glycosylphosphatidylinositol‐anchored proteins are preferentially targeted to the basolateral surface in Fischer rat thyroid epithelial cells. J Cell Biol 121: 1031‐1039, 1993.
 512. Zurzolo C, van't Hof W, van Meer G, Rodriguez‐Boulan E. VIP21/caveolin, glycosphingolipid clusters and the sorting of glycosylphosphatidylinositol‐anchored proteins in epithelial cells. Embo J 13: 42‐53, 1994.

Related Articles:

Principles of Liver Regeneration and Growth Homeostasis
Extracellular Matrix: A Solid‐State Regulator of Cell form, Function, and Tissue Development
Cell Biology of Secretion
Cellular and Molecular Basis of Liver Development

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Aleksandr Treyer, Anne Müsch. Hepatocyte Polarity. Compr Physiol 2013, 3: 243-287. doi: 10.1002/cphy.c120009