Comprehensive Physiology Wiley Online Library

Apoptosis and Necrosis in the Liver

Full Article on Wiley Online Library



Abstract

Because of its unique function and anatomical location, the liver is exposed to a multitude of toxins and xenobiotics, including medications and alcohol, as well as to infection by hepatotropic viruses, and therefore, is highly susceptible to tissue injury. Cell death in the liver occurs mainly by apoptosis or necrosis, with apoptosis also being the physiologic route to eliminate damaged or infected cells and to maintain tissue homeostasis. Liver cells, especially hepatocytes and cholangiocytes, are particularly susceptible to death receptor‐mediated apoptosis, given the ubiquitous expression of the death receptors in the organ. In a quite unique way, death receptor‐induced apoptosis in these cells is mediated by both mitochondrial and lysosomal permeabilization. Signaling between the endoplasmic reticulum and the mitochondria promotes hepatocyte apoptosis in response to excessive free fatty acid generation during the metabolic syndrome. These cell death pathways are partially regulated by microRNAs. Necrosis in the liver is generally associated with acute injury (i.e., ischemia/reperfusion injury) and has been long considered an unregulated process. Recently, a new form of “programmed” necrosis (named necroptosis) has been described: the role of necroptosis in the liver has yet to be explored. However, the minimal expression of a key player in this process in the liver suggests this form of cell death may be uncommon in liver diseases. Because apoptosis is a key feature of so many diseases of the liver, therapeutic modulation of liver cell death holds promise. An updated overview of these concepts is given in this article. © 2013 American Physiological Society. Compr Physiol 3:977‐1010, 2013.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1.

Bile acid (BA)‐induced apoptotic and prosurvival signaling. Internalized toxic (more hydrophobic) bile acids, such as glycine‐conjugated form of chenodeoxycholic acid (GCDC), trigger death‐receptor‐mediated apoptosis. BA stimulate microtubule‐dependent trafficking of Fas from the Golgi compartment to the plasma membrane, increasing Fas density on the cell surface and promoting spontaneous Fas oligomerization independent of FasL. This results in activation of caspase 8, which, in turn, cleaves Bid, whose truncated form translocates to mitochondria and cooperates with Bax to induce mitochondrial outer membrane permeabilization (MOMP). Following MOMP, several apoptogenic factors, such as cytochrome c, apoptosis‐inducing factor and second mitochondrial activator of caspases, are released into the cytosol, which ultimately promote the activation of effector caspases‐3, 6, and 7, and cell death. Moreover, BA activate c‐jun N‐terminal kinase, resulting in activation of the transcription factor Sp1 (specificity protein 1), which, in turn, upregulates death receptor 5 sensitizing the hepatocytes also to TRAIL‐induced apoptosis. Nontoxic BA, such as tauro‐conjugate of chenodeoxycholic acid and ursodeoxycholic acid, can also trigger plasma membrane trafficking and activation of Fas. However, the simultaneous activation of cytoprotective pathways which prevent activation of key players such as caspase 8, Bid, or Bax, blocks the apoptotic cascade and inhibits cell death.

Figure 2. Figure 2.

Apoptosis‐inflammation‐fibrosis in the liver. This cartoon depicts the circular relationship between apoptosis, inflammation, and fibrosis in the liver. Hepatocyte apoptosis is the central event in the model shown. In the setting of an apoptotic stimulus, for example, toxic bile salts or palmitic acid, a vulnerable hepatocyte undergoes cell death. Apoptotic bodies are formed. These can be engulfed both by hepatic macrophages, also known as Kupffer cells and hepatic stellate cells (54,57). Macrophages, upon activation, in turn release death ligands, such as Fas ligand and TRAIL, both of which can induce hepatocyte apoptosis. Inflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 are also released by activated macrophages (54). These result in liver inflammation and injury. Engulfment of apoptotic bodies in a permissive milieu (inflamed liver with increased fibrogenic signals, such as Transforming growth factor (TGF)‐β) results in activation of hepatic stellate cells to myofibroblasts (57). These cells remodel the extracellular matrix resulting in fibrosis and cirrhosis.

Figure 3. Figure 3.

Sterile inflammation in liver diseases. A model is presented for sterile inflammation in liver diseases. Palmitic acid, a toxic free fatty acid, which can activate the NLRP3 inflammasome and high mobility group box 1 (HMGB‐1), a nuclear protein released from dead cells, are shown as activating damage associated molecular patterns (DAMPs). Activation of cell surface toll like receptors (TLRs)‐1, 2, 4, 6, 5, or endosomal TLRs (9,7) leads to recruitment of adaptor proteins, activation of kinase cascades that result in activation of nuclear factor κ B, c‐jun N‐terminal kinase, and interferon (IFN) regulatory factors. These result in transcriptional activation of several proinflammatory mediators including interleukin (IL)‐6, TNF‐α and Type I IFNs. The inflammasome can also be activated by many endogenous DAMPs. The mechanism for this activation is not fully elucidated. Shown here is the NLRP3 (nucleotide oligomerization domain [NOD]‐like receptor, pyrin domain containing 3) inflammasome. The NLRP3 gene product is the intracellular protein, Nalp3 (NACHT, LRR, and pyrin domain‐containing 3). Nalp3, upon activation, recruits ASC (apoptosis‐associated speck‐like protein containing a CARD, also known as PYCARD), and procaspase‐1, leading to the activation of caspase‐1. Caspase‐1 cleaves and activates the precursor forms on IL‐1β and IL‐18; both are subsequently secreted, and activate their receptors on target cells, resulting in the activation of proinflammatory pathways.

Figure 4. Figure 4.

The death receptors and the extrinsic pathway of apoptosis. Binding of a death ligand to its cognate receptor results in the recruitment of adaptor proteins, such as Fas‐associated protein with death domain and Tumor necrosis factor receptor 1‐associated death domain protein (TRADD), and procaspases 8 and/or 10, to form a multiprotein receptor complex named death inducing signaling complex (DISC). This complex provides a platform for caspase 8 and 10 to undergo autoactivation. In type I cells, active caspase 8/10 directly activate caspase 3, an effector caspase, whereas in type II cells, caspase 8 (and, perhaps, caspase 10) cleaves the BH3‐only protein Bid to generate truncated Bid (tBid). tBid, in turn, cooperates with Bax or Bak to induce mitochondrial outer membrane permeabilization and to initiate the mitochondrial pathway of apoptosis (see Figure 5 for details).

Figure 5. Figure 5.

The intrinsic pathway of apoptosis. Various stimuli, including UV and gamma‐irradiation, endoplasmic reticulum (ER) stress, growth factor deprivation, and oxidative stress trigger the intrinsic pathway of apoptosis. This pathway requires the oligomerization of the proapoptotic members of the Bcl‐2 family of protein Bax and/or Bak on the outer mitochondrial membrane, resulting in mitochondrial outer membrane permeabilization (MOMP) and release of apoptogenic factors. The oligomerization of Bax and Bak can be directly stimulated by the BH3‐only proteins Bid, Bim, or PUMA (activators). Bax and Bak, as well as Bid, Bim and PUMA, are bound to and inhibited by the prosurvival Bcl‐2 proteins, Bcl‐2, Bcl‐xL, and Mcl‐1. The prosurvival function of these proteins can be repressed by the BH3‐only proteins Bad, Bik, Hrk, Bmf, and NOXA (sensitizers), which displace Bid, Bim, and PUMA by binding to the prosurvival proteins. Release of Bid, Bim, and PUMA then allows activation of Bax and/or Bak. MOMP can also be achieved by the so‐called mitochondrial permeability transition (MPT) initiated at the inner mitochondrial membrane through the opening of a multiprotein complex known as permeability transition pore (PTP). Several apoptogenic factors, including cytochrome c and SMAC/DIABLO, are released from the mitochondrial intermembrane space into the cytosol as a consequence of MOMP. Cytochrome c binds to the adaptor Apaf‐1, and recruits procaspase‐9 in a complex named apoptosome, which promotes the activation of caspase‐9. Caspase‐9, in turn, activates the effector caspases (caspase‐3, 6, and 7). SMAC/DIABLO contributes to caspase activation by binding and inactivating the endogenous inhibitor of caspases X‐chromosome linked inhibitor of apoptosis protein.

Figure 6. Figure 6.

The lysosomal pathway of apoptosis. In some cells, including hepatocytes and cholangiocytes, the binding of a death ligand to its cognate receptor results in early lysosomal membrane permeabilization associated with release of lysosomal enzymes into the cytosol. These lysosomal enzymes, and in particular the highly abundant lysosomal cathepsins, then trigger mitochondrial outer membrane permeabilization and mitochondrial dysfunction likely by cleaving and/or activating members of the Bcl‐2 family. This apoptotic cascade as been referred to as the lysosomal pathway.

Figure 7. Figure 7.

Model of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL)‐induced lysosomal membrane permeabilization mediated by members of the Bcl‐2 family of proteins. Binding of TRAIL to death receptor 5 results in c‐jun N‐terminal kinase‐mediated phosphorylation of Bim and its release from the cytoskeleton. At the same time, phosphofurin acidic cluster sorting protein‐2 (PACS‐2) associates with the internalized receptor complex in the endosomal/lysosomal compartment and then binds the cytosolic Bim, promoting Bax association to the Bim:PACS‐2 complex and subsequent Bax activation. This complex has been named the PIXosome (PACS‐2:BIM:BAX). After translocating to the lysosomes, Bax inserts into the membrane, homo‐oligomerizes and induces lysosomal membrane permeabilization. Cathepsins are released into the cytosol where they contribute to cell death.

Figure 8. Figure 8.

Endoplasmic reticulum (ER) stress and apoptosis. ER stress activates, in parallel, three distinct ER‐to‐nucleus signaling pathways that are aimed at attenuating ER stress via activation of unfolded protein response (UPR) target genes with restoration of ER homeostasis. However, ER stress of increasing duration and intensity results in failure of restoration of homeostasis and apoptosis. The three canonical UPR mediators are ER transmembrane proteins; they are inositol‐requiring protein 1α (IRE1α), activating transcription factor (ATF) 6α, and protein kinase RNA‐like ER kinase (PERK). Active PERK phosphorylates eukaryotic translation initiation factor 2α (eIF2α) leading to an attenuation of translation. This reduces the load of nascent proteins entering the ER. Selective translation of activating ATF4 also occurs. ATF4 promotes adaptation, but also transcriptionally activates C/EBP homologous protein (CHOP). CHOP promotes ER stress‐induced apoptosis via several pathways, including increasing the proapoptotic proteins Bim and death receptor 5 (DR5) and decreasing the antiapoptotic protein Bcl‐2. IRE1α splices X box‐binding protein 1 (XBP‐1) mRNA to generate a transcription factor which leads to ER adaptation by activating a large number of UPR genes. The stress kinase, c‐jun N‐terminal kinase (JNK) is activated by IRE1α via the adaptor protein TNF receptor‐associated factor 2 (TRAF2). Activating transcription factor 6α (ATF6α) is proteolytically cleaved in the Golgi to generate a transcription factor which also drives expression of UPR target genes. Failure of restoration of ER homeostasis due to increasing intensity and duration of ER stress results in apoptosis. Some of the recognized mediators of ER stress‐induced apoptosis are the transcription factor CHOP which can repress Bcl‐2 expression, and increase expression of the proapoptotic proteins Bim and DR5. ER stress‐induced apoptosis can also me mediated by ER calcium release, which can be regulated by Bax, Bak, and Bcl‐2. The stress kinase JNK can also activate the intrinsic apoptosis machinery.

Figure 9. Figure 9.

TNF‐α triggers both apoptotic and necrotic pathways. In conditions where activation of the transcription factor NF‐κB is impaired, binding of TNF‐α to TNF‐R1 results in activation of caspase 8, which triggers an apoptotic signaling cascade mediated by the BH3‐only proteins Bid and Bim. Active caspase 8 also cleaves and inactivates the kinase RIP‐1. When caspase 8 is inhibited and RIP‐1 is not ubiquitinated, TNF‐α stimulation induces RIP‐1 association with RIP‐3, promoting RIP‐3 phosphorylation and activation. RIP‐3, in turn, phosphorylates and activates the mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5), which promotes mitochondrial permeability transition and necroptosis. Necrostatin, a pharmacologic RIP‐1 inhibitor, effectively prevents activation of the necroptotic signaling cascade.

Figure 10. Figure 10.

Stabilization of microRNAs, like mRNAs, by adenylation. It is well known that mRNAs are stabilized by polyadenylation, a posttranscriptional modification that is dependent on multiple protein factors. For p53, cytoplasmic polyadenylation element binding protein (CPEB) is necessary for polyadenylation. Similarly, microRNAs can be stabilized by modification at the 3′ terminus by monoadenylation; shown is the Gld‐2‐dependent adenylation of miR‐122. Gld‐2 mediated miR‐122 stabilization results in increased miR‐122, decreased CPEB, and less stabilization of p53. Conversely, decreased Gld‐2 (or decreased miR‐122) results in increased CPEB protein levels and activity, thus increasing p53 mRNA stability and promoting senescence.

Figure 11. Figure 11.

Repression of microRNAs influences survival and function of liver cells, especially hepatic stellate cells. Among microRNAs altered in HSC activation or liver fibrogenesis are members of the miR‐15 family and the miR‐29 family. Upper: the miR‐15 family contains three microRNAs which have identical seed sequences and scattered base differences in the 3′ end of the microRNA (indicated by colored blocks on the diagram). These microRNAs are decreased in culture‐activated stellate cells, which permits derepression of Bcl‐2, promoting cell survival. Lower: the miR‐29 family also contains three family members with seed identity and a few base differences in the 3'end. Several studies have demonstrated molecular signals that either inhibit [Hedgehog, transforming growth factor (TGF)‐β, nuclear factor kappa B (NF‐κB), and lipopolysaccharide (LPS)] or activate [hepatocyte growth factor (HGF) and estrogen] miR‐29 expression. Decreased miR‐29 allows excess collagen expression, promoting fibrosis, and excess Mcl‐1, promoting cell survival.

Figure 12. Figure 12.

Model of liver disease progression. In pathologic conditions, persistent hepatocyte apoptosis promotes chronic liver inflammation and associated compensatory cellular proliferation, increasing the risk of carcinogenesis in the liver. Inhibition of apoptosis in these conditions should protect against the development of liver cancer.



Figure 1.

Bile acid (BA)‐induced apoptotic and prosurvival signaling. Internalized toxic (more hydrophobic) bile acids, such as glycine‐conjugated form of chenodeoxycholic acid (GCDC), trigger death‐receptor‐mediated apoptosis. BA stimulate microtubule‐dependent trafficking of Fas from the Golgi compartment to the plasma membrane, increasing Fas density on the cell surface and promoting spontaneous Fas oligomerization independent of FasL. This results in activation of caspase 8, which, in turn, cleaves Bid, whose truncated form translocates to mitochondria and cooperates with Bax to induce mitochondrial outer membrane permeabilization (MOMP). Following MOMP, several apoptogenic factors, such as cytochrome c, apoptosis‐inducing factor and second mitochondrial activator of caspases, are released into the cytosol, which ultimately promote the activation of effector caspases‐3, 6, and 7, and cell death. Moreover, BA activate c‐jun N‐terminal kinase, resulting in activation of the transcription factor Sp1 (specificity protein 1), which, in turn, upregulates death receptor 5 sensitizing the hepatocytes also to TRAIL‐induced apoptosis. Nontoxic BA, such as tauro‐conjugate of chenodeoxycholic acid and ursodeoxycholic acid, can also trigger plasma membrane trafficking and activation of Fas. However, the simultaneous activation of cytoprotective pathways which prevent activation of key players such as caspase 8, Bid, or Bax, blocks the apoptotic cascade and inhibits cell death.



Figure 2.

Apoptosis‐inflammation‐fibrosis in the liver. This cartoon depicts the circular relationship between apoptosis, inflammation, and fibrosis in the liver. Hepatocyte apoptosis is the central event in the model shown. In the setting of an apoptotic stimulus, for example, toxic bile salts or palmitic acid, a vulnerable hepatocyte undergoes cell death. Apoptotic bodies are formed. These can be engulfed both by hepatic macrophages, also known as Kupffer cells and hepatic stellate cells (54,57). Macrophages, upon activation, in turn release death ligands, such as Fas ligand and TRAIL, both of which can induce hepatocyte apoptosis. Inflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6 are also released by activated macrophages (54). These result in liver inflammation and injury. Engulfment of apoptotic bodies in a permissive milieu (inflamed liver with increased fibrogenic signals, such as Transforming growth factor (TGF)‐β) results in activation of hepatic stellate cells to myofibroblasts (57). These cells remodel the extracellular matrix resulting in fibrosis and cirrhosis.



Figure 3.

Sterile inflammation in liver diseases. A model is presented for sterile inflammation in liver diseases. Palmitic acid, a toxic free fatty acid, which can activate the NLRP3 inflammasome and high mobility group box 1 (HMGB‐1), a nuclear protein released from dead cells, are shown as activating damage associated molecular patterns (DAMPs). Activation of cell surface toll like receptors (TLRs)‐1, 2, 4, 6, 5, or endosomal TLRs (9,7) leads to recruitment of adaptor proteins, activation of kinase cascades that result in activation of nuclear factor κ B, c‐jun N‐terminal kinase, and interferon (IFN) regulatory factors. These result in transcriptional activation of several proinflammatory mediators including interleukin (IL)‐6, TNF‐α and Type I IFNs. The inflammasome can also be activated by many endogenous DAMPs. The mechanism for this activation is not fully elucidated. Shown here is the NLRP3 (nucleotide oligomerization domain [NOD]‐like receptor, pyrin domain containing 3) inflammasome. The NLRP3 gene product is the intracellular protein, Nalp3 (NACHT, LRR, and pyrin domain‐containing 3). Nalp3, upon activation, recruits ASC (apoptosis‐associated speck‐like protein containing a CARD, also known as PYCARD), and procaspase‐1, leading to the activation of caspase‐1. Caspase‐1 cleaves and activates the precursor forms on IL‐1β and IL‐18; both are subsequently secreted, and activate their receptors on target cells, resulting in the activation of proinflammatory pathways.



Figure 4.

The death receptors and the extrinsic pathway of apoptosis. Binding of a death ligand to its cognate receptor results in the recruitment of adaptor proteins, such as Fas‐associated protein with death domain and Tumor necrosis factor receptor 1‐associated death domain protein (TRADD), and procaspases 8 and/or 10, to form a multiprotein receptor complex named death inducing signaling complex (DISC). This complex provides a platform for caspase 8 and 10 to undergo autoactivation. In type I cells, active caspase 8/10 directly activate caspase 3, an effector caspase, whereas in type II cells, caspase 8 (and, perhaps, caspase 10) cleaves the BH3‐only protein Bid to generate truncated Bid (tBid). tBid, in turn, cooperates with Bax or Bak to induce mitochondrial outer membrane permeabilization and to initiate the mitochondrial pathway of apoptosis (see Figure 5 for details).



Figure 5.

The intrinsic pathway of apoptosis. Various stimuli, including UV and gamma‐irradiation, endoplasmic reticulum (ER) stress, growth factor deprivation, and oxidative stress trigger the intrinsic pathway of apoptosis. This pathway requires the oligomerization of the proapoptotic members of the Bcl‐2 family of protein Bax and/or Bak on the outer mitochondrial membrane, resulting in mitochondrial outer membrane permeabilization (MOMP) and release of apoptogenic factors. The oligomerization of Bax and Bak can be directly stimulated by the BH3‐only proteins Bid, Bim, or PUMA (activators). Bax and Bak, as well as Bid, Bim and PUMA, are bound to and inhibited by the prosurvival Bcl‐2 proteins, Bcl‐2, Bcl‐xL, and Mcl‐1. The prosurvival function of these proteins can be repressed by the BH3‐only proteins Bad, Bik, Hrk, Bmf, and NOXA (sensitizers), which displace Bid, Bim, and PUMA by binding to the prosurvival proteins. Release of Bid, Bim, and PUMA then allows activation of Bax and/or Bak. MOMP can also be achieved by the so‐called mitochondrial permeability transition (MPT) initiated at the inner mitochondrial membrane through the opening of a multiprotein complex known as permeability transition pore (PTP). Several apoptogenic factors, including cytochrome c and SMAC/DIABLO, are released from the mitochondrial intermembrane space into the cytosol as a consequence of MOMP. Cytochrome c binds to the adaptor Apaf‐1, and recruits procaspase‐9 in a complex named apoptosome, which promotes the activation of caspase‐9. Caspase‐9, in turn, activates the effector caspases (caspase‐3, 6, and 7). SMAC/DIABLO contributes to caspase activation by binding and inactivating the endogenous inhibitor of caspases X‐chromosome linked inhibitor of apoptosis protein.



Figure 6.

The lysosomal pathway of apoptosis. In some cells, including hepatocytes and cholangiocytes, the binding of a death ligand to its cognate receptor results in early lysosomal membrane permeabilization associated with release of lysosomal enzymes into the cytosol. These lysosomal enzymes, and in particular the highly abundant lysosomal cathepsins, then trigger mitochondrial outer membrane permeabilization and mitochondrial dysfunction likely by cleaving and/or activating members of the Bcl‐2 family. This apoptotic cascade as been referred to as the lysosomal pathway.



Figure 7.

Model of tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL)‐induced lysosomal membrane permeabilization mediated by members of the Bcl‐2 family of proteins. Binding of TRAIL to death receptor 5 results in c‐jun N‐terminal kinase‐mediated phosphorylation of Bim and its release from the cytoskeleton. At the same time, phosphofurin acidic cluster sorting protein‐2 (PACS‐2) associates with the internalized receptor complex in the endosomal/lysosomal compartment and then binds the cytosolic Bim, promoting Bax association to the Bim:PACS‐2 complex and subsequent Bax activation. This complex has been named the PIXosome (PACS‐2:BIM:BAX). After translocating to the lysosomes, Bax inserts into the membrane, homo‐oligomerizes and induces lysosomal membrane permeabilization. Cathepsins are released into the cytosol where they contribute to cell death.



Figure 8.

Endoplasmic reticulum (ER) stress and apoptosis. ER stress activates, in parallel, three distinct ER‐to‐nucleus signaling pathways that are aimed at attenuating ER stress via activation of unfolded protein response (UPR) target genes with restoration of ER homeostasis. However, ER stress of increasing duration and intensity results in failure of restoration of homeostasis and apoptosis. The three canonical UPR mediators are ER transmembrane proteins; they are inositol‐requiring protein 1α (IRE1α), activating transcription factor (ATF) 6α, and protein kinase RNA‐like ER kinase (PERK). Active PERK phosphorylates eukaryotic translation initiation factor 2α (eIF2α) leading to an attenuation of translation. This reduces the load of nascent proteins entering the ER. Selective translation of activating ATF4 also occurs. ATF4 promotes adaptation, but also transcriptionally activates C/EBP homologous protein (CHOP). CHOP promotes ER stress‐induced apoptosis via several pathways, including increasing the proapoptotic proteins Bim and death receptor 5 (DR5) and decreasing the antiapoptotic protein Bcl‐2. IRE1α splices X box‐binding protein 1 (XBP‐1) mRNA to generate a transcription factor which leads to ER adaptation by activating a large number of UPR genes. The stress kinase, c‐jun N‐terminal kinase (JNK) is activated by IRE1α via the adaptor protein TNF receptor‐associated factor 2 (TRAF2). Activating transcription factor 6α (ATF6α) is proteolytically cleaved in the Golgi to generate a transcription factor which also drives expression of UPR target genes. Failure of restoration of ER homeostasis due to increasing intensity and duration of ER stress results in apoptosis. Some of the recognized mediators of ER stress‐induced apoptosis are the transcription factor CHOP which can repress Bcl‐2 expression, and increase expression of the proapoptotic proteins Bim and DR5. ER stress‐induced apoptosis can also me mediated by ER calcium release, which can be regulated by Bax, Bak, and Bcl‐2. The stress kinase JNK can also activate the intrinsic apoptosis machinery.



Figure 9.

TNF‐α triggers both apoptotic and necrotic pathways. In conditions where activation of the transcription factor NF‐κB is impaired, binding of TNF‐α to TNF‐R1 results in activation of caspase 8, which triggers an apoptotic signaling cascade mediated by the BH3‐only proteins Bid and Bim. Active caspase 8 also cleaves and inactivates the kinase RIP‐1. When caspase 8 is inhibited and RIP‐1 is not ubiquitinated, TNF‐α stimulation induces RIP‐1 association with RIP‐3, promoting RIP‐3 phosphorylation and activation. RIP‐3, in turn, phosphorylates and activates the mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5), which promotes mitochondrial permeability transition and necroptosis. Necrostatin, a pharmacologic RIP‐1 inhibitor, effectively prevents activation of the necroptotic signaling cascade.



Figure 10.

Stabilization of microRNAs, like mRNAs, by adenylation. It is well known that mRNAs are stabilized by polyadenylation, a posttranscriptional modification that is dependent on multiple protein factors. For p53, cytoplasmic polyadenylation element binding protein (CPEB) is necessary for polyadenylation. Similarly, microRNAs can be stabilized by modification at the 3′ terminus by monoadenylation; shown is the Gld‐2‐dependent adenylation of miR‐122. Gld‐2 mediated miR‐122 stabilization results in increased miR‐122, decreased CPEB, and less stabilization of p53. Conversely, decreased Gld‐2 (or decreased miR‐122) results in increased CPEB protein levels and activity, thus increasing p53 mRNA stability and promoting senescence.



Figure 11.

Repression of microRNAs influences survival and function of liver cells, especially hepatic stellate cells. Among microRNAs altered in HSC activation or liver fibrogenesis are members of the miR‐15 family and the miR‐29 family. Upper: the miR‐15 family contains three microRNAs which have identical seed sequences and scattered base differences in the 3′ end of the microRNA (indicated by colored blocks on the diagram). These microRNAs are decreased in culture‐activated stellate cells, which permits derepression of Bcl‐2, promoting cell survival. Lower: the miR‐29 family also contains three family members with seed identity and a few base differences in the 3'end. Several studies have demonstrated molecular signals that either inhibit [Hedgehog, transforming growth factor (TGF)‐β, nuclear factor kappa B (NF‐κB), and lipopolysaccharide (LPS)] or activate [hepatocyte growth factor (HGF) and estrogen] miR‐29 expression. Decreased miR‐29 allows excess collagen expression, promoting fibrosis, and excess Mcl‐1, promoting cell survival.



Figure 12.

Model of liver disease progression. In pathologic conditions, persistent hepatocyte apoptosis promotes chronic liver inflammation and associated compensatory cellular proliferation, increasing the risk of carcinogenesis in the liver. Inhibition of apoptosis in these conditions should protect against the development of liver cancer.

References
 1. Abu‐Amara M, Yang SY, Tapuria N, Fuller B, Davidson B, Seifalian A. Liver ischemia/reperfusion injury: Processes in inflammatory networks—a review. Liver Transplant 16: 1016‐1032, 2010.
 2. Adachi M, Suematsu S, Kondo T, Ogasawara J, Tanaka T, Yoshida N, Nagata S. Targeted mutation in the Fas gene causes hyperplasia in peripheral lymphoid organs and liver. Nat Genet 11: 294‐300, 1995.
 3. Afford SC, Ahmed‐Choudhury J, Randhawa S, Russell C, Youster J, Crosby HA, Eliopoulos A, Hubscher SG, Young LS, Adams DH. CD40 activation‐induced, Fas‐dependent apoptosis and NF‐kappaB/AP‐1 signaling in human intrahepatic biliary epithelial cells. FASEB J 15: 2345‐2354, 2001.
 4. Agarwal R, Hennings L, Rafferty TM, Letzig LG, McCullough S, James LP, MacMillan‐Crow LA, Hinson JA. Acetaminophen‐induced hepatotoxicity and protein nitration in neuronal nitric‐oxide synthase knockout mice. J Pharmacol Exp Ther 340: 134‐142, 2012.
 5. Akazawa Y, Gores GJ. Death receptor‐mediated liver injury. Semin Liver Dis 27: 327‐338, 2007.
 6. Alabraba EB, Lai V, Boon L, Wigmore SJ, Adams DH, Afford SC. Coculture of human liver macrophages and cholangiocytes leads to CD40‐dependent apoptosis and cytokine secretion. Hepatology 47: 552‐562, 2008.
 7. Alisi A, Da Sacco L, Bruscalupi G, Piemonte F, Panera N, De Vito R, Leoni S, Bottazzo GF, Masotti A, Nobili V. Mirnome analysis reveals novel molecular determinants in the pathogenesis of diet‐induced nonalcoholic fatty liver disease. Lab Invest 91: 283‐293, 2011.
 8. Altomare E, Leo MA, Lieber CS. Interaction of acute ethanol administration with acetaminophen metabolism and toxicity in rats fed alcohol chronically. Alcohol Clin Exp Res 8: 405‐408, 1984.
 9. Amaral JD, Viana RJ, Ramalho RM, Steer CJ, Rodrigues CM. Bile acids: Regulation of apoptosis by ursodeoxycholic acid. J Lipid Res 50: 1721‐1734, 2009.
 10. Argo CK, Northup PG, Al‐Osaimi AM, Caldwell SH. Systematic review of risk factors for fibrosis progression in non‐alcoholic steatohepatitis. J Hepatol 51: 371‐379, 2009.
 11. Aslan JE, You H, Williamson DM, Endig J, Youker RT, Thomas L, Shu H, Du Y, Milewski RL, Brush MH, Possemato A, Sprott K, Fu H, Greis KD, Runckel DN, Vogel A, Thomas G. Akt and 14‐3‐3 control a PACS‐2 homeostatic switch that integrates membrane traffic with TRAIL‐induced apoptosis. Mol Cell 34: 497‐509, 2009.
 12. Badmann A, Keough A, Kaufmann T, Bouillet P, Brunner T, Corazza N. Role of TRAIL and the pro‐apoptotic Bcl‐2 homolog Bim in acetaminophen‐induced liver damage. Cell Death Dis 2: e171, 2011.
 13. Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, Huss S, Klussmann S, Eulberg D, Luedde T, Trautwein C, Tacke F. Pharmacological inhibition of the chemokine CCL2 (MCP‐1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 61: 416‐426, 2012.
 14. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP. The impact of microRNAs on protein output. Nature 455: 64‐71, 2008.
 15. Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434: 658‐662, 2005.
 16. Bajt ML, Knight TR, Lemasters JJ, Jaeschke H. Acetaminophen‐induced oxidant stress and cell injury in cultured mouse hepatocytes: Protection by N‐acetyl cysteine. Toxicol Sci 80: 343‐349, 2004.
 17. Bamboat ZM, Balachandran VP, Ocuin LM, Obaid H, Plitas G, DeMatteo RP. Toll‐like receptor 9 inhibition confers protection from liver ischemia‐reperfusion injury. Hepatology 51: 621‐632, 2010.
 18. Bandyopadhyay S, Friedman RC, Marquez RT, Keck K, Kong B, Icardi MS, Brown KE, Burge CB, Schmidt WN, Wang Y, McCaffrey AP. Hepatitis C virus infection and hepatic stellate cell activation downregulate miR‐29: miR‐29 overexpression reduces hepatitis C viral abundance in culture. J Infect Dis 203: 1753‐1762, 2011.
 19. Barton GM, Kagan JC. A cell biological view of Toll‐like receptor function: Regulation through compartmentalization. Nat Rev Immunol 9: 535‐542, 2009.
 20. Baskin‐Bey ES, Canbay A, Bronk SF, Werneburg N, Guicciardi ME, Nyberg SL, Gores GJ. Cathepsin B inactivation attenuates hepatocyte apoptosis and liver damage in steatotic livers after cold ischemia‐warm reperfusion injury. Am J Physiol Gastrointest Liver Physiol 288: G396‐G402, 2005.
 21. Baskin‐Bey ES, Washburn K, Feng S, Oltersdorf T, Shapiro D, Huyghe M, Burgart L, Garrity‐Park M, van Vilsteren FG, Oliver LK, Rosen CB, Gores GJ. Clinical trial of the pan‐caspase inhibitor, IDN‐6556, in human liver preservation injury. Am J Transplant 7: 218‐225, 2007.
 22. Baumgartner F, Villunger A. Apoptosis: A barrier against cancer no more? Hepatology 54: 1121‐1124, 2011.
 23. Bendtzen K, Mandrup‐Poulsen T, Nerup J, Nielsen JH, Dinarello CA, Svenson M. Cytotoxicity of human pI 7 interleukin‐1 for pancreatic islets of Langerhans. Science 232: 1545‐1547, 1986.
 24. Benedetti A, Jezequel AM, Orlandi F. Preferential distribution of apoptotic bodies in acinar zone 3 of normal human and rat liver. J Hepatol 7: 319‐324, 1988.
 25. Benedetti A, Jezequel AM, Orlandi F. A quantitative evaluation of apoptotic bodies in rat liver. Liver 8: 172‐177, 1988.
 26. Benz C, Angermuller S, Tox U, Kloters‐Plachky P, Riedel HD, Sauer P, Stremmel W, Stiehl A. Effect of tauroursodeoxycholic acid on bile‐acid‐induced apoptosis and cytolysis in rat hepatocytes. J Hepatol 28: 99‐106, 1998.
 27. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, Barretina J, Boehm JS, Dobson J, Urashima M, Mc Henry KT, Pinchback RM, Ligon AH, Cho YJ, Haery L, Greulich H, Reich M, Winckler W, Lawrence MS, Weir BA, Tanaka KE, Chiang DY, Bass AJ, Loo A, Hoffman C, Prensner J, Liefeld T, Gao Q, Yecies D, Signoretti S, Maher E, Kaye FJ, Sasaki H, Tepper JE, Fletcher JA, Tabernero J, Baselga J, Tsao MS, Demichelis F, Rubin MA, Janne PA, Daly MJ, Nucera C, Levine RL, Ebert BL, Gabriel S, Rustgi AK, Antonescu CR, Ladanyi M, Letai A, Garraway LA, Loda M, Beer DG, True LD, Okamoto A, Pomeroy SL, Singer S, Golub TR, Lander ES, Getz G, Sellers WR, Meyerson M. The landscape of somatic copy‐number alteration across human cancers. Nature 463: 899‐905, 2010.
 28. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded‐protein response. Nat Cell Biol 2: 326‐332, 2000.
 29. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J, Gillard JW, Jaquith JB, Morris SJ, Barker PA. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 30: 689‐700, 2008.
 30. Beutler B. Microbe sensing, positive feedback loops, and the pathogenesis of inflammatory diseases. Immunol Rev 227: 248‐263, 2009.
 31. Bhathal PS, Gall JA. Deletion of hyperplastic biliary epithelial cells by apoptosis following removal of the proliferative stimulus. Liver 5: 311‐325, 1985.
 32. Bhogal RH, Curbishley SM, Weston CJ, Adams DH, Afford SC. Reactive oxygen species mediate human hepatocyte injury during hypoxia/reoxygenation. Liver Transpl 16: 1303‐1313, 2010.
 33. Bidere N, Lorenzo HK, Carmona S, Laforge M, Harper F, Dumont C, Senik A. Cathepsin D triggers Bax activation, resulting in selective apoptosis‐inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278: 31401‐31411, 2003.
 34. Bieghs V, Verheyen F, van Gorp PJ, Hendrikx T, Wouters K, Lutjohann D, Gijbels MJ, Febbraio M, Binder CJ, Hofker MH, Shiri‐Sverdlov R. Internalization of modified lipids by CD36 and SR‐A leads to hepatic inflammation and lysosomal cholesterol storage in Kupffer cells. PLoS One 7: e34378, 2012.
 35. Bilbao G, Contreras JL, Eckhoff DE, Mikheeva G, Krasnykh V, Douglas JT, Thomas FT, Thomas JM, Curiel DT. Reduction of ischemia‐reperfusion injury of the liver by in vivo adenovirus‐mediated gene transfer of the antiapoptotic Bcl‐2 gene. Ann Surg 230: 185‐193, 1999.
 36. Bilzer M, Roggel F, Gerbes AL. Role of Kupffer cells in host defense and liver disease. Liver Int 26: 1175‐1186, 2006.
 37. Blazka ME, Wilmer JL, Holladay SD, Wilson RE, Luster MI. Role of proinflammatory cytokines in acetaminophen hepatotoxicity. Toxicol Appl Pharmacol 133: 43‐52, 1995.
 38. Blomgran R, Zheng L, Stendahl O. Cathepsin‐cleaved Bid promotes apoptosis in human neutrophils via oxidative stress‐induced lysosomal membrane permeabilization. J Leukoc Biol 81: 1213‐1223, 2007.
 39. Boatright KM, Deis C, Denault JB, Sutherlin DP, Salvesen GS. Activation of caspases‐8 and ‐10 by FLIP(L). Biochem J 382: 651‐657, 2004.
 40. Bochkis IM, Rubins NE, White P, Furth EE, Friedman JR, Kaestner KH. Hepatocyte‐specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nat Med 14: 828‐836, 2008.
 41. Borghi‐Scoazec G, Scoazec JY, Durand F, Bernuau J, Belghiti J, Feldmann G, Henin D, Degott C. Apoptosis after ischemia‐reperfusion in human liver allografts. Liver Transpl Surg 3: 407‐415, 1997.
 42. Boya P, Andreau K, Poncet D, Zamzami N, Perfettini JL, Metivier D, Ojcius DM, Jaattela M, Kroemer G. Lysosomal membrane permeabilization induces cell death in a mitochondrion‐dependent fashion. J Exp Med 197: 1323‐1334, 2003.
 43. Boya P, Gonzalez‐Polo RA, Poncet D, Andreau K, Vieira HL, Roumier T, Perfettini JL, Kroemer G. Mitochondrial membrane permeabilization is a critical step of lysosome‐initiated apoptosis induced by hydroxychloroquine. Oncogene 22: 3927‐3936, 2003.
 44. Boya P, Kroemer G. Lysosomal membrane permeabilization in cell death. Oncogene 27: 6434‐6451, 2008.
 45. Braconi C, Kogure T, Valeri N, Huang N, Nuovo G, Costinean S, Negrini M, Miotto E, Croce CM, Patel T. microRNA‐29 can regulate expression of the long non‐coding RNA gene MEG3 in hepatocellular cancer. Oncogene 30: 4750‐4756, 2011.
 46. Bradford BU, Marotto M, Lemasters JJ, Thurman RG. New, simple models to evaluate zone‐specific damage due to hypoxia in the perfused rat liver: Time course and effect of nutritional state. J Pharmacol Exp Ther 236: 263‐268, 1986.
 47. Bralet MP, Branchereau S, Brechot C, Ferry N. Cell lineage study in the liver using retroviral mediated gene transfer. Evidence against the streaming of hepatocytes in normal liver. Am J Pathol 144: 896‐905, 1994.
 48. Brenner C, Grimm S. The permeability transition pore complex in cancer cell death. Oncogene 25: 4744‐4756, 2006.
 49. Burns DM, D'Ambrogio A, Nottrott S, Richter JD. CPEB and two poly(A) polymerases control miR‐122 stability and p53 mRNA translation. Nature 473: 105‐108, 2011.
 50. Bursch W, Dusterberg B, Schulte‐Hermann R. Growth, regression and cell death in rat liver as related to tissue levels of the hepatomitogen cyproterone acetate. Arch Toxicol 59: 221‐227, 1986.
 51. Caban A, Oczkowicz G, Abdel‐Samad O, Cierpka L. Influence of Kupffer cells on the early phase of liver reperfusion. Transpl Proc 34: 694‐697, 2002.
 52. Caldwell‐Kenkel JC, Currin RT, Tanaka Y, Thurman RG, Lemasters JJ. Kupffer cell activation and endothelial cell damage after storage of rat livers: Effects of reperfusion. Hepatology 13: 83‐95, 1991.
 53. Canbay A, Feldstein A, Baskin‐Bey E, Bronk SF, Gores GJ. The caspase inhibitor IDN‐6556 attenuates hepatic injury and fibrosis in the bile duct ligated mouse. J Pharmacol Exp Ther 308: 1191‐1196, 2004.
 54. Canbay A, Feldstein AE, Higuchi H, Werneburg N, Grambihler A, Bronk SF, Gores GJ. Kupffer cell engulfment of apoptotic bodies stimulates death ligand and cytokine expression. Hepatology 38: 1188‐1198, 2003.
 55. Canbay A, Friedman S, Gores GJ. Apoptosis: The nexus of liver injury and fibrosis. Hepatology 39: 273‐278, 2004.
 56. Canbay A, Guicciardi ME, Higuchi H, Feldstein A, Bronk SF, Rydzewski R, Taniai M, Gores GJ. Cathepsin B inactivation attenuates hepatic injury and fibrosis during cholestasis. J Clin Invest 112: 152‐159, 2003.
 57. Canbay A, Taimr P, Torok N, Higuchi H, Friedman S, Gores GJ. Apoptotic body engulfment by a human stellate cell line is profibrogenic. Lab Invest 83: 655‐663, 2003.
 58. Cazanave SC, Elmi NA, Akazawa Y, Bronk SF, Mott JL, Gores GJ. CHOP and AP‐1 cooperatively mediate PUMA expression during lipoapoptosis. Am J Physiol Gastrointest Liver Physiol 299: G236‐G243, 2010.
 59. Cazanave SC, Mott JL, Bronk SF, Werneburg NW, Fingas CD, Meng XW, Finnberg N, El‐Deiry WS, Kaufmann SH, Gores GJ. Death receptor 5 signaling promotes hepatocyte lipoapoptosis. J Biol Chem 286: 39336‐39348, 2011.
 60. Cazanave SC, Mott JL, Elmi NA, Bronk SF, Masuoka HC, Charlton MR, Gores GJ. A role for miR‐296 in the regulation of lipoapoptosis by targeting PUMA. J Lipid Res 52: 1517‐1525, 2011.
 61. Chai J, Du C, Wu JW, Kyin S, Wang X, Shi Y. Structural and biochemical basis of apoptotic activation by Smac/DIABLO. Nature 406: 855‐862, 2000.
 62. Chan FK, Baehrecke EH. RIP3 finds partners in crime. Cell 148: 17‐18, 2012.
 63. Chang J, Nicolas E, Marks D, Sander C, Lerro A, Buendia MA, Xu C, Mason WS, Moloshok T, Bort R, Zaret KS, Taylor JM. miR‐122, a mammalian liver‐specific microRNA, is processed from hcr mRNA and may downregulate the high affinity cationic amino acid transporter CAT‐1. RNA Biol 1: 106‐113, 2004.
 64. Chang TC, Yu D, Lee YS, Wentzel EA, Arking DE, West KM, Dang CV, Thomas‐Tikhonenko A, Mendell JT. Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40: 43‐50, 2008.
 65. Charlotte F, L'Hermine A, Martin N, Geleyn Y, Nollet M, Gaulard P, Zafrani ES. Immunohistochemical detection of bcl‐2 protein in normal and pathological human liver. Am J Pathol 144: 460‐465, 1994.
 66. Chen GY, Nunez G. Sterile inflammation: Sensing and reacting to damage. Nat Rev Immunol 10: 826‐837, 2010.
 67. Chen GY, Tang J, Zheng P, Liu Y. CD24 and Siglec‐10 selectively repress tissue damage‐induced immune responses. Science 323: 1722‐1725, 2009.
 68. Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E, Peter ME. CD95 promotes tumour growth. Nature 465: 492‐496, 2010.
 69. Chen XM, Gores GJ, Paya CV, LaRusso NF. Cryptosporidium parvum induces apoptosis in biliary epithelia by a Fas/Fas ligand‐dependent mechanism. Am J Physiol Gastrointest Liver Physiol 277: G599‐G608, 1999.
 70. Chen ZJ. Ubiquitination in signaling to and activation of IKK. Immunol Rev 246: 95‐106, 2012.
 71. Cheung O, Puri P, Eicken C, Contos MJ, Mirshahi F, Maher JW, Kellum JM, Min H, Luketic VA, Sanyal AJ. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology 48: 1810‐1820, 2008.
 72. Cirman T, Oresic K, Mazovec GD, Turk V, Reed JC, Myers RM, Salvesen GS, Turk B. Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain‐like lysosomal cathepsins. J Biol Chem 279: 3578‐3587, 2004.
 73. Cohen JI, Roychowdhury S, McMullen MR, Stavitsky AB, Nagy LE. Complement and alcoholic liver disease: Role of C1q in the pathogenesis of ethanol‐induced liver injury in mice. Gastroenterology 139: 664‐674.e661, 2010.
 74. Columbano A, Ledda‐Columbano GM, Coni PP, Faa G, Liguori C, Santa Cruz G, Pani P. Occurrence of cell death (apoptosis) during the involution of liver hyperplasia. Lab Invest 52: 670‐675, 1985.
 75. Cory S, Adams JM. The Bcl2 family: Regulators of the cellular life‐or‐death switch. Nat Rev Cancer 2: 647‐656, 2002.
 76. Cursio R, Gugenheim J, Ricci JE, Crenesse D, Rostagno P, Maulon L, Saint‐Paul MC, Ferrua B, Auberger AP. A caspase inhibitor fully protects rats against lethal normothermic liver ischemia by inhibition of liver apoptosis. FASEB J 13: 253‐261, 1999.
 77. De Vito R, Alisi A, Masotti A, Ceccarelli S, Panera N, Citti A, Salata M, Valenti L, Feldstein AE, Nobili V. Markers of activated inflammatory cells correlate with severity of liver damage in children with nonalcoholic fatty liver disease. Int J Mol Med, 30: 49‐56, 2012.
 78. de Vree JM, Jacquemin E, Sturm E, Cresteil D, Bosma PJ, Aten J, Deleuze JF, Desrochers M, Burdelski M, Bernard O, Oude Elferink RP, Hadchouel M. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci U S A 95: 282‐287, 1998.
 79. De Vree JM, Ottenhoff R, Bosma PJ, Smith AJ, Aten J, Oude Elferink RP. Correction of liver disease by hepatocyte transplantation in a mouse model of progressive familial intrahepatic cholestasis. Gastroenterology 119: 1720‐1730, 2000.
 80. Declercq W, Vanden Berghe T, Vandenabeele P. RIP kinases at the crossroads of cell death and survival. Cell 138: 229‐232, 2009.
 81. Degterev A, Hitomi J, Germscheid M, Ch'en IL, Korkina O, Teng X, Abbott D, Cuny GD, Yuan C, Wagner G, Hedrick SM, Gerber SA, Lugovskoy A, Yuan J. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4: 313‐321, 2008.
 82. DeLeve LD. Hepatic microvasculature in liver injury. Semin Liver Dis 27: 390‐400, 2007.
 83. Diehl L, Schurich A, Grochtmann R, Hegenbarth S, Chen L, Knolle PA. Tolerogenic maturation of liver sinusoidal endothelial cells promotes B7‐homolog 1‐dependent CD8+ T cell tolerance. Hepatology 47: 296‐305, 2008.
 84. Dixon LJ, Berk M, Thapaliya S, Papouchado BG, Feldstein AE. Caspase‐1‐mediated regulation of fibrogenesis in diet‐induced steatohepatitis. Lab Invest 92: 713‐723, 2012.
 85. Dolganiuc A, Szabo G. Dendritic cells in hepatitis C infection: Can they (help) win the battle? J Gastroenterol 46: 432‐447, 2011.
 86. Droga‐Mazovec G, Bojic L, Petelin A, Ivanova S, Romih R, Repnik U, Salvesen GS, Stoka V, Turk V, Turk B. Cysteine cathepsins trigger caspase‐dependent cell death through cleavage of bid and antiapoptotic Bcl‐2 homologues. J Biol Chem 283: 19140‐19150, 2008.
 87. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: Why XIAP is the black sheep of the family. EMBO Rep 7: 988‐994, 2006.
 88. Eguchi K, Manabe I, Oishi‐Tanaka Y, Ohsugi M, Kono N, Ogata F, Yagi N, Ohto U, Kimoto M, Miyake K, Tobe K, Arai H, Kadowaki T, Nagai R. Saturated fatty acid and TLR signaling link beta cell dysfunction and islet inflammation. Cell Metab, 15: 518‐533, 2012.
 89. Eichhorst ST. Modulation of apoptosis as a target for liver disease. Expert Opin Ther Tar 9: 83‐99, 2005.
 90. Elferink RP, Tytgat GN, Groen AK. Hepatic canalicular membrane 1: The role of mdr2 P‐glycoprotein in hepatobiliary lipid transport. FASEB J 11: 19‐28, 1997.
 91. Elliott MR, Chekeni FB, Trampont PC, Lazarowski ER, Kadl A, Walk SF, Park D, Woodson RI, Ostankovich M, Sharma P, Lysiak JJ, Harden TK, Leitinger N, Ravichandran KS. Nucleotides released by apoptotic cells act as a find‐me signal to promote phagocytic clearance. Nature 461: 282‐286, 2009.
 92. Faouzi S, Burckhardt BE, Hanson JC, Campe CB, Schrum LW, Rippe RA, Maher JJ. Anti‐Fas induces hepatic chemokines and promotes inflammation by an NF‐kappa B‐independent, caspase‐3‐dependent pathway. J Biol Chem 276: 49077‐49082, 2001.
 93. Faubion WA, Gores GJ. Death receptors in liver biology and pathobiology. Hepatology 29: 1‐4, 1999.
 94. Faubion WA, Guicciardi ME, Miyoshi H, Bronk SF, Roberts PJ, Svingen PA, Kaufmann SH, Gores GJ. Toxic bile salts induce rodent hepatocyte apoptosis via direct activation of Fas. J Clin Invest 103: 137‐145, 1999.
 95. Fava G, Glaser S, Francis H, Alpini G. The immunophysiology of biliary epithelium. Semin Liver Dis 25: 251‐264, 2005.
 96. Fehrenbacher N, Bastholm L, Kirkegaard‐Sorensen T, Rafn B, Bottzauw T, Nielsen C, Weber E, Shirasawa S, Kallunki T, Jaattela M. Sensitization to the lysosomal cell death pathway by oncogene‐induced down‐regulation of lysosome‐associated membrane proteins 1 and 2. Cancer Res 68: 6623‐6633, 2008.
 97. Fehrenbacher N, Gyrd‐Hansen M, Poulsen B, Felbor U, Kallunki T, Boes M, Weber E, Leist M, Jaattela M. Sensitization to the lysosomal cell death pathway upon immortalization and transformation. Cancer Res 64: 5301‐5310, 2004.
 98. Fehrenbacher N, Jaattela M. Lysosomes as targets for cancer therapy. Cancer Res 65: 2993‐2995, 2005.
 99. Feldstein AE, Gores GJ. An apoptosis biomarker goes to the HCV clinic. Hepatology 40: 1044‐1046, 2004.
 100. Feldstein AE, Werneburg NW, Canbay A, Guicciardi ME, Bronk SF, Rydzewski R, Burgart LJ, Gores GJ. Free fatty acids promote hepatic lipotoxicity by stimulating TNF‐alpha expression via a lysosomal pathway. Hepatology 40: 185‐194, 2004.
 101. Feng GS. Conflicting roles of molecules in hepatocarcinogenesis: Paradigm or paradox. Cancer cell 21: 150‐154, 2012.
 102. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M, Cain K, MacFarlane M, Hacker G, Leverkus M. cIAPs block Ripoptosome formation, a RIP1/caspase‐8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 43: 449‐463, 2011.
 103. Festi D, Montagnani M, Azzaroli F, Lodato F, Mazzella G, Roda A, Di Biase AR, Roda E, Simoni P, Colecchia A. Clinical efficacy and effectiveness of ursodeoxycholic acid in cholestatic liver diseases. Curr Clin Pharmacol 2: 155‐177, 2007.
 104. Fickert P, Trauner M, Fuchsbichler A, Zollner G, Wagner M, Marschall HU, Zatloukal K, Denk H. Oncosis represents the main type of cell death in mouse models of cholestasis. J Hepatol 42: 378‐385, 2005.
 105. Filipowicz W, Grosshans H. The liver‐specific microRNA miR‐122: Biology and therapeutic potential. Prog Drug Res 67: 221‐238, 2011.
 106. Fiorucci S, Cipriani S, Mencarelli A, Baldelli F, Bifulco G, Zampella A. Farnesoid X receptor agonist for the treatment of liver and metabolic disorders: Focus on 6‐ethyl‐CDCA. Mini Rev Med Chem 11: 753‐762, 2011.
 107. Foghsgaard L, Wissing D, Mauch D, Lademann U, Bastholm L, Boes M, Elling F, Leist M, Jaattela M. Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153: 999‐1010, 2001.
 108. Galluzzi L, Kroemer G. Necroptosis: A specialized pathway of programmed necrosis. Cell 135: 1161‐1163, 2008.
 109. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El‐Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. Molecular definitions of cell death subroutines: Recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 19: 107‐120, 2012.
 110. Ganten TM, Haas TL, Sykora J, Stahl H, Sprick MR, Fas SC, Krueger A, Weigand MA, Grosse‐Wilde A, Stremmel W, Krammer PH, Walczak H. Enhanced caspase‐8 recruitment to and activation at the DISC is critical for sensitisation of human hepatocellular carcinoma cells to TRAIL‐induced apoptosis by chemotherapeutic drugs. Cell Death Differ 11(Suppl 1): S86‐S96, 2004.
 111. Gao B, Jeong WI, Tian Z. Liver: An organ with predominant innate immunity. Hepatology 47: 729‐736, 2008.
 112. Gao B, Seki E, Brenner DA, Friedman S, Cohen JI, Nagy L, Szabo G, Zakhari S. Innate immunity in alcoholic liver disease. Am J Physiol Gastrointest Liver Physiol 300: G516‐G525, 2011.
 113. Gardner BM, Walter P. Unfolded proteins are Ire1‐activating ligands that directly induce the unfolded protein response. Science 333: 1891‐1894, 2011.
 114. Gonzalez FJ, Yu AM. Cytochrome P450 and xenobiotic receptor humanized mice. Ann Rev Pharmacol 46: 41‐64, 2006.
 115. Gores GJ, Herman B, Lemasters JJ. Plasma membrane bleb formation and rupture: A common feature of hepatocellular injury. Hepatology 11: 690‐698, 1990.
 116. Gores GJ, Kaufmann SH. Selectively targeting Mcl‐1 for the treatment of acute myelogenous leukemia and solid tumors. Gene Dev 26: 305‐311, 2012.
 117. Gores GJ, Nieminen AL, Fleishman KE, Dawson TL, Herman B, Lemasters JJ. Extracellular acidosis delays onset of cell death in ATP‐depleted hepatocytes. Am J Physiol 255: C315‐C322, 1988.
 118. Graf D, Kurz AK, Reinehr R, Fischer R, Kircheis G, Haussinger D. Prevention of bile acid‐induced apoptosis by betaine in rat liver. Hepatology 36: 829‐839, 2002.
 119. Grasl‐Kraupp B, Rossmanith W, Ruttkay‐Nedecky B, Mullauer L, Kammerer B, Bursch W, Schulte‐Hermann R. Levels of transforming growth factor beta and transforming growth factor beta receptors in rat liver during growth, regression by apoptosis and neoplasia. Hepatology 28: 717‐726, 1998.
 120. Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, Klein S. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 58: 693‐700, 2009.
 121. Gregory C. Cell biology: Sent by the scent of death. Nature 461: 181‐182, 2009.
 122. Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: An integrated view. Immunol Rev 243: 136‐151, 2011.
 123. Guebre‐Xabier M, Yang S, Lin HZ, Schwenk R, Krzych U, Diehl AM. Altered hepatic lymphocyte subpopulations in obesity‐related murine fatty livers: Potential mechanism for sensitization to liver damage. Hepatology 31: 633‐640, 2000.
 124. Guicciardi ME, Bronk SF, Werneburg NW, Gores GJ. cFLIPL prevents TRAIL‐induced apoptosis of hepatocellular carcinoma cells by inhibiting the lysosomal pathway of apoptosis. Am J Physiol Gastrointest Liver Physiol 292: G1337‐G1346, 2007.
 125. Guicciardi ME, Bronk SF, Werneburg NW, Yin XM, Gores GJ. Bid is upstream of lysosome‐mediated caspase 2 activation in tumor necrosis factor alpha‐induced hepatocyte apoptosis. Gastroenterology 129: 269‐284, 2005.
 126. Guicciardi ME, Deussing J, Miyoshi H, Bronk SF, Svingen PA, Peters C, Kaufmann SH, Gores GJ. Cathepsin B contributes to TNF‐alpha‐mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106: 1127‐1137, 2000.
 127. Guicciardi ME, Faubion WA, Bronk SF, Roberts PJ, Gores GJ. Mechanisms of bile acid‐induced cell death. In: Andus GR, Schlottmann K, Frick E, Scholmerich J, Adler G, Schmiegel W, Zeitz M. editors Cytokines and Cell Homeostasis in the Gastrointestinal Tract, Kluwer Acad. Dordrecht, Boston, London, 2000, pp. 284‐289.
 128. Guicciardi ME, Gores GJ. Bile acid‐mediated hepatocyte apoptosis and cholestatic liver disease. Dig Liver Dis 34: 387‐392, 2002.
 129. Guicciardi ME, Gores GJ. Apoptosis: A mechanism of acute and chronic liver injury. Gut 54: 1024‐1033, 2005.
 130. Guicciardi ME, Gores GJ. Life and death by death receptors. FASEB J 23: 1625‐1637, 2009.
 131. Guicciardi ME, Leist M, Gores GJ. Lysosomes in cell death. Oncogene 23: 2881‐2890, 2004.
 132. Guicciardi ME, Miyoshi H, Bronk SF, Gores GJ. Cathepsin B knockout mice are resistant to tumor necrosis factor‐alpha‐mediated hepatocyte apoptosis and liver injury: Implications for therapeutic applications. Am J Pathol 159: 2045‐2054, 2001.
 133. Guicciardi ME, Mott JL, Bronk SF, Kurita S, Fingas CD, Gores GJ. Cellular inhibitor of apoptosis 1 (cIAP‐1) degradation by caspase 8 during TNF‐related apoptosis‐inducing ligand (TRAIL)‐induced apoptosis. Exp Cell Res 317: 107‐116, 2011.
 134. Gujral JS, Liu J, Farhood A, Jaeschke H. Reduced oncotic necrosis in Fas receptor‐deficient C57BL/6J‐lpr mice after bile duct ligation. Hepatology 40: 998‐1007, 2004.
 135. Gunawan BK, Liu ZX, Han D, Hanawa N, Gaarde WA, Kaplowitz N. c‐Jun N‐terminal kinase plays a major role in murine acetaminophen hepatotoxicity. Gastroenterology 131: 165‐178, 2006.
 136. Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B, Neumann H, Waldner MJ, Hedrick SM, Tenzer S, Neurath MF, Becker C. Caspase‐8 regulates TNF‐alpha‐induced epithelial necroptosis and terminal ileitis. Nature 477: 335‐339, 2011.
 137. Guo CJ, Pan Q, Cheng T, Jiang B, Chen GY, Li DG. Changes in microRNAs associated with hepatic stellate cell activation status identify signaling pathways. FEBS J 276: 5163‐5176, 2009.
 138. Guo CJ, Pan Q, Li DG, Sun H, Liu BW. miR‐15b and miR‐16 are implicated in activation of the rat hepatic stellate cell: An essential role for apoptosis. J Hepatol 50: 766‐778, 2009.
 139. Gyrd‐Hansen M, Meier P. IAPs: From caspase inhibitors to modulators of NF‐kappaB, inflammation and cancer. Nat Rev Cancer 10: 561‐574, 2010.
 140. Hanahan D, Weinberg RA. Hallmarks of cancer: The next generation. Cell 144: 646‐674, 2011.
 141. Hanawa N, Shinohara M, Saberi B, Gaarde WA, Han D, Kaplowitz N. Role of JNK translocation to mitochondria leading to inhibition of mitochondria bioenergetics in acetaminophen‐induced liver injury. J Biol Chem 283: 13565‐13577, 2008.
 142. Hand NJ, Horner AM, Master ZR, Boateng LA, LeGuen C, Uvaydova M, Friedman JR. MicroRNA profiling identifies miR‐29 as a regulator of disease‐associated pathways in experimental biliary atresia. J Pediatr Gastroenterol Nutr 54: 186‐192, 2012.
 143. Hand NJ, Master ZR, Le Lay J, Friedman JR. Hepatic function is preserved in the absence of mature microRNAs. Hepatology 49: 618‐626, 2009.
 144. Hanschen M, Zahler S, Krombach F, Khandoga A. Reciprocal activation between CD4+ T cells and Kupffer cells during hepatic ischemia‐reperfusion. Transplantation 86: 710‐718, 2008.
 145. Harada K, Ozaki S, Gershwin ME, Nakanuma Y. Enhanced apoptosis relates to bile duct loss in primary biliary cirrhosis. Hepatology 26: 1399‐1405, 1997.
 146. Hatano E. Tumor necrosis factor signaling in hepatocyte apoptosis. J Gastroenterol Hepatol 22(Suppl 1): S43‐S44, 2007.
 147. Heinrich M, Neumeyer J, Jakob M, Hallas C, Tchikov V, Winoto‐Morbach S, Wickel M, Schneider‐Brachert W, Trauzold A, Hethke A, Schutze S. Cathepsin D links TNF‐induced acid sphingomyelinase to Bid‐mediated caspase‐9 and ‐3 activation. Cell Death Differ 11: 550‐563, 2004.
 148. Heinrich M, Wickel M, Schneider‐Brachert W, Sandberg C, Gahr J, Schwandner R, Weber T, Saftig P, Peters C, Brunner J, Kronke M, Schutze S. Cathepsin D targeted by acid sphingomyelinase‐derived ceramide. EMBO J 18: 5252‐5263, 1999.
 149. Henao‐Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA. Inflammasome‐mediated dysbiosis regulates progression of NAFLD and obesity. Nature 482: 179‐185, 2012.
 150. Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: Integrating stress signals through the stress sensor IRE1alpha. Physiol Rev 91: 1219‐1243, 2011.
 151. Higuchi H, Bronk SF, Taniai M, Canbay A, Gores GJ. Cholestasis increases tumor necrosis factor‐related apoptotis‐inducing ligand (TRAIL)‐R2/DR5 expression and sensitizes the liver to TRAIL‐mediated cytotoxicity. J Pharmacol Exp Ther 303: 461‐467, 2002.
 152. Higuchi H, Grambihler A, Canbay A, Bronk SF, Gores GJ. Bile acids up‐regulate death receptor 5/TRAIL‐receptor 2 expression via a c‐Jun N‐terminal kinase‐dependent pathway involving Sp1. J Biol Chem 279: 51‐60, 2004.
 153. Higuchi H, Yoon JH, Grambihler A, Werneburg N, Bronk SF, Gores GJ. Bile acids stimulate cFLIP phosphorylation enhancing TRAIL‐mediated apoptosis. J Biol Chem 278: 454‐461, 2003.
 154. Hikita H, Kodama T, Shimizu S, Li W, Shigekawa M, Tanaka S, Hosui A, Miyagi T, Tatsumi T, Kanto T, Hiramatsu N, Morii E, Hayashi N, Takehara T. Bak deficiency inhibits liver carcinogenesis: A causal link between apoptosis and carcinogenesis. J Hepatol 57: 92‐100, 2012.
 155. Hikita H, Takehara T, Kodama T, Shimizu S, Hosui A, Miyagi T, Tatsumi T, Ishida H, Ohkawa K, Li W, Kanto T, Hiramatsu N, Hennighausen L, Yin XM, Hayashi N. BH3‐only protein bid participates in the Bcl‐2 network in healthy liver cells. Hepatology 50: 1972‐1980, 2009.
 156. Hikita H, Takehara T, Shimizu S, Kodama T, Li W, Miyagi T, Hosui A, Ishida H, Ohkawa K, Kanto T, Hiramatsu N, Yin XM, Hennighausen L, Tatsumi T, Hayashi N. Mcl‐1 and Bcl‐xL cooperatively maintain integrity of hepatocytes in developing and adult murine liver. Hepatology 50: 1217‐1226, 2009.
 157. Hikita H, Takehara T, Shimizu S, Kodama T, Shigekawa M, Iwase K, Hosui A, Miyagi T, Tatsumi T, Ishida H, Li W, Kanto T, Hiramatsu N, Hayashi N. The Bcl‐xL inhibitor, ABT‐737, efficiently induces apoptosis and suppresses growth of hepatoma cells in combination with sorafenib. Hepatology 52: 1310‐1321, 2010.
 158. Hines IN, Wheeler MD. Recent advances in alcoholic liver disease III. Role of the innate immune response in alcoholic hepatitis. Am J Physiol Gastrointest Liver Physiol 287: G310‐G314, 2004.
 159. Hoglen NC, Anselmo DM, Katori M, Kaldas M, Shen XD, Valentino KL, Lassman C, Busuttil RW, Kupiec‐Weglinski JW, Farmer DG. A caspase inhibitor, IDN‐6556, ameliorates early hepatic injury in an ex vivo rat model of warm and cold ischemia. Liver Transpl 13: 361‐366, 2007.
 160. Hoglen NC, Hirakawa BP, Fisher CD, Weeks S, Srinivasan A, Wong AM, Valentino KL, Tomaselli KJ, Bai X, Karanewsky DS, Contreras PC. Characterization of the caspase inhibitor IDN‐1965 in a model of apoptosis‐associated liver injury. J Pharmacol Exp Ther 297: 811‐818, 2001.
 161. Horvath B, Magid L, Mukhopadhyay P, Batkai S, Rajesh M, Park O, Tanchian G, Gao RY, Goodfellow CE, Glass M, Mechoulam R, Pacher P. A new cannabinoid CB2 receptor agonist HU‐910 attenuates oxidative stress, inflammation and cell death associated with hepatic ischaemia/reperfusion injury. Br J Pharmacol 165: 2462‐2478, 2012.
 162. Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med 361: 1570‐1583, 2009.
 163. Hughes MA, Harper N, Butterworth M, Cain K, Cohen GM, MacFarlane M. Reconstitution of the death‐inducing signaling complex reveals a substrate switch that determines CD95‐mediated death or survival. Mol Cell 35: 265‐279, 2009.
 164. Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12: 1543‐1568, 2007.
 165. Hur KY, So JS, Ruda V, Frank‐Kamenetsky M, Fitzgerald K, Koteliansky V, Iwawaki T, Glimcher LH, Lee AH. IRE1alpha activation protects mice against acetaminophen‐induced hepatotoxicity. J Exp Med 209: 307‐318, 2012.
 166. Ikner A, Ashkenazi A. TWEAK induces apoptosis through a death‐signaling complex comprising receptor‐interacting protein 1 (RIP1), Fas‐associated death domain (FADD), and caspase‐8. J Biol Chem 286: 21546‐21554, 2011.
 167. Imaeda AB, Watanabe A, Sohail MA, Mahmood S, Mohamadnejad M, Sutterwala FS, Flavell RA, Mehal WZ. Acetaminophen‐induced hepatotoxicity in mice is dependent on Tlr9 and the Nalp3 inflammasome. J Clin Invest 119: 305‐314, 2009.
 168. Ishida Y, Kondo T, Ohshima T, Fujiwara H, Iwakura Y, Mukaida N. A pivotal involvement of IFN‐gamma in the pathogenesis of acetaminophen‐induced acute liver injury. FASEB J 16: 1227‐1236, 2002.
 169. Jaeschke H, Lemasters JJ. Apoptosis versus oncotic necrosis in hepatic ischemia/reperfusion injury. Gastroenterology 125: 1246‐1257, 2003.
 170. Jaeschke H, Woolbright BL. Current strategies to minimize hepatic ischemia‐reperfusion injury by targeting reactive oxygen species. Transplant Rev 26: 103‐114, 2012.
 171. Jancova P, Anzenbacher P, Anzenbacherova E. Phase II drug metabolizing enzymes. Biomed Pap 154: 103‐116, 2010.
 172. Ji C, Mehrian‐Shai R, Chan C, Hsu YH, Kaplowitz N. Role of CHOP in hepatic apoptosis in the murine model of intragastric ethanol feeding. Alcohol Clin Exp Res 29: 1496‐1503, 2005.
 173. Jiang X, Tsitsiou E, Herrick SE, Lindsay MA. MicroRNAs and the regulation of fibrosis. FEBS J 277: 2015‐2021, 2010.
 174. Jin X, Chen YP, Kong M, Zheng L, Yang YD, Li YM. Transition from hepatic steatosis to steatohepatitis: Unique microRNA patterns and potential downstream functions and pathways. J Gastroenterol Hepatol 27: 331‐340, 2012.
 175. Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver‐specific MicroRNA. Science 309: 1577‐1581, 2005.
 176. Jost PJ, Grabow S, Gray D, McKenzie MD, Nachbur U, Huang DC, Bouillet P, Thomas HE, Borner C, Silke J, Strasser A, Kaufmann T. XIAP discriminates between type I and type II FAS‐induced apoptosis. Nature 460: 1035‐1039, 2009.
 177. Joza N, Susin SA, Daugas E, Stanford WL, Cho SK, Li CY, Sasaki T, Elia AJ, Cheng HY, Ravagnan L, Ferri KF, Zamzami N, Wakeham A, Hakem R, Yoshida H, Kong YY, Mak TW, Zuniga‐Pflucker JC, Kroemer G, Penninger JM. Essential role of the mitochondrial apoptosis‐inducing factor in programmed cell death. Nature 410: 549‐554, 2001.
 178. Kagedal K, Zhao M, Svensson I, Brunk UT. Sphingosine‐induced apoptosis is dependent on lysosomal proteases. Biochem J 359: 335‐343, 2001.
 179. Kahraman A, Mott JL, Bronk SF, Werneburg NW, Barreyro FJ, Guicciardi ME, Akazawa Y, Braley K, Craig RW, Gores GJ. Overexpression of mcl‐1 attenuates liver injury and fibrosis in the bile duct‐ligated mouse. Digest Dis Sci 54: 1908‐1917, 2009.
 180. Kaiser WJ, Upton JW, Long AB, Livingston‐Rosanoff D, Daley‐Bauer LP, Hakem R, Caspary T, Mocarski ES. RIP3 mediates the embryonic lethality of caspase‐8‐deficient mice. Nature 471: 368‐372, 2011.
 181. Kaplowitz N. Cell death at the millennium. Implications for liver diseases. Clin Liver Dis 4: 1‐23, v, 2000.
 182. Kaplowitz N. Mechanisms of liver cell injury. J Hepatol 32: 39‐47, 2000.
 183. Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD‐2. Genes Dev 23: 433‐438, 2009.
 184. Kaufmann T, Jost PJ, Pellegrini M, Puthalakath H, Gugasyan R, Gerondakis S, Cretney E, Smyth MJ, Silke J, Hakem R, Bouillet P, Mak TW, Dixit VM, Strasser A. Fatal hepatitis mediated by tumor necrosis factor TNFalpha requires caspase‐8 and involves the BH3‐only proteins Bid and Bim. Immunity 30: 56‐66, 2009.
 185. Kennedy S, Rettinger S, Flye MW, Ponder KP. Experiments in transgenic mice show that hepatocytes are the source for postnatal liver growth and do not stream. Hepatology 22: 160‐168, 1995.
 186. Kim H, Tu HC, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH. Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36: 487‐499, 2009.
 187. Kim JS, He L, Qian T, Lemasters JJ. Role of the mitochondrial permeability transition in apoptotic and necrotic death after ischemia/reperfusion injury to hepatocytes. Curr Mol Med 3: 527‐535, 2003.
 188. Kim JS, Qian T, Lemasters JJ. Mitochondrial permeability transition in the switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. Gastroenterology 124: 494‐503, 2003.
 189. Kim JS, Wang JH, Lemasters JJ. Mitochondrial permeability transition in rat hepatocytes after anoxia/reoxygenation: Role of Ca2+‐dependent mitochondrial formation of reactive oxygen species. Am J Physiol Gastrointest Liver Physiol 302: G723‐G731, 2012.
 190. Kirkegaard T, Jaattela M. Lysosomal involvement in cell death and cancer. Biochim Biophys Acta 1793: 746‐754, 2009.
 191. Klaassen CD, Aleksunes LM. Xenobiotic, bile acid, and cholesterol transporters: Function and regulation. Pharmacol Rev 62: 1‐96, 2010.
 192. Knight TR, Jaeschke H. Acetaminophen‐induced inhibition of Fas receptor‐mediated liver cell apoptosis: Mitochondrial dysfunction versus glutathione depletion. Toxicol Appl Pharm 181: 133‐141, 2002.
 193. Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ. Bax‐deficient mice with lymphoid hyperplasia and male germ cell death. Science 270: 96‐99, 1995.
 194. Kobayashi S, Werneburg NW, Bronk SF, Kaufmann SH, Gores GJ. Interleukin‐6 contributes to Mcl‐1 up‐regulation and TRAIL resistance via an Akt‐signaling pathway in cholangiocarcinoma cells. Gastroenterology 128: 2054‐2065, 2005.
 195. Kogure T, Costinean S, Yan I, Braconi C, Croce C, Patel T. Hepatic miR‐29ab1 expression modulates chronic hepatic injury. J Cell Mol Med, 16: 2647‐2654, 2012.
 196. Kohli V, Selzner M, Madden JF, Bentley RC, Clavien PA. Endothelial cell and hepatocyte deaths occur by apoptosis after ischemia‐reperfusion injury in the rat liver. Transplantation 67: 1099‐1105, 1999.
 197. Kon K, Kim JS, Jaeschke H, Lemasters JJ. Mitochondrial permeability transition in acetaminophen‐induced necrosis and apoptosis of cultured mouse hepatocytes. Hepatology 40: 1170‐1179, 2004.
 198. Kono H, Fujii H, Ogiku M, Hosomura N, Amemiya H, Tsuchiya M, Hara M. Role of IL‐17A in neutrophil recruitment and hepatic injury after warm ischemia‐reperfusion mice. J Immunol 187: 4818‐4825, 2011.
 199. Kota J, Chivukula RR, O'Donnell KA, Wentzel EA, Montgomery CL, Hwang HW, Chang TC, Vivekanandan P, Torbenson M, Clark KR, Mendell JR, Mendell JT. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137: 1005‐1017, 2009.
 200. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose‐regulated proteins. Nature 332: 462‐464, 1988.
 201. Krammer PH, Arnold R, Lavrik IN. Life and death in peripheral T cells. Nat Rev Immunol 7: 532‐542, 2007.
 202. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev 87: 99‐163, 2007.
 203. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs'. Nature 438: 685‐689, 2005.
 204. Krysko DV, Vanden Berghe T, D'Herde K, Vandenabeele P. Apoptosis and necrosis: Detection, discrimination and phagocytosis. Methods 44: 205‐221, 2008.
 205. Kuo PC, Drachenberg CI, de la Torre A, Bartlett ST, Lim JW, Plotkin JS, Johnson LB. Apoptosis and hepatic allograft reperfusion injury. Clin Transplant 12: 219‐223, 1998.
 206. Kurita S, Mott JL, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Roberts LR, Fernandez‐Zapico ME, Gores GJ. Hedgehog inhibition promotes a switch from Type II to Type I cell death receptor signaling in cancer cells. PLoS One 6: e18330, 2011.
 207. Kuwana T, Bouchier‐Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD. BH3 domains of BH3‐only proteins differentially regulate Bax‐mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17: 525‐535, 2005.
 208. Kwiecinski M, Elfimova N, Noetel A, Tox U, Steffen HM, Hacker U, Nischt R, Dienes HP, Odenthal M. Expression of platelet‐derived growth factor‐C and insulin‐like growth factor I in hepatic stellate cells is inhibited by miR‐29. Lab Invest, 2012.
 209. LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG. IAP‐targeted therapies for cancer. Oncogene 27: 6252‐6275, 2008.
 210. Lacronique V, Mignon A, Fabre M, Viollet B, Rouquet N, Molina T, Porteu A, Henrion A, Bouscary D, Varlet P, Joulin V, Kahn A. Bcl‐2 protects from lethal hepatic apoptosis induced by an anti‐Fas antibody in mice. Nat Med 2: 80‐86, 1996.
 211. Lagos‐Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue‐specific microRNAs from mouse. Curr Biol 12: 735‐739, 2002.
 212. Lajoie P, Moir RD, Willis IM, Snapp EL. Kar2p availability defines distinct forms of endoplasmic reticulum stress in living cells. Mol Biol Cell 23: 955‐964, 2012.
 213. Lau AH, Szabo G, Thomson AW. Antigen‐presenting cells under the influence of alcohol. Trends Immunol 30: 13‐22, 2009.
 214. Lee AH, Scapa EF, Cohen DE, Glimcher LH. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320: 1492‐1496, 2008.
 215. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J 21: 4663‐4670, 2002.
 216. Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B. The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys acta 1366: 177‐196, 1998.
 217. Lesage G, Glaser S, Ueno Y, Alvaro D, Baiocchi L, Kanno N, Phinizy JL, Francis H, Alpini G. Regression of cholangiocyte proliferation after cessation of ANIT feeding is coupled with increased apoptosis. Am J Physiol Gastrointest Liver Physiol 281: G182‐G190, 2001.
 218. Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2: 183‐192, 2002.
 219. Li F, Huang Q, Chen J, Peng Y, Roop DR, Bedford JS, Li CY. Apoptotic cells activate the “phoenix rising” pathway to promote wound healing and tissue regeneration. Sci Signal 3: ra13, 2010.
 220. Li G, Mongillo M, Chin KT, Harding H, Ron D, Marks AR, Tabas I. Role of ERO1‐alpha‐mediated stimulation of inositol 1,4,5‐triphosphate receptor activity in endoplasmic reticulum stress‐induced apoptosis. J Cell Biol 186: 783‐792, 2009.
 221. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94: 491‐501, 1998.
 222. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412: 95‐99, 2001.
 223. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X. Cytochrome c and dATP‐dependent formation of Apaf‐1/caspase‐9 complex initiates an apoptotic protease cascade. Cell 91: 479‐489, 1997.
 224. Li Y, Xu X, Liang Y, Liu S, Xiao H, Li F, Cheng H, Fu Z. miR‐375 enhances palmitate‐induced lipoapoptosis in insulin‐secreting NIT‐1 cells by repressing myotrophin (V1) protein expression. Int J Clin Exp Pathol 3: 254‐264, 2010.
 225. Lian ZX, Okada T, He XS, Kita H, Liu YJ, Ansari AA, Kikuchi K, Ikehara S, Gershwin ME. Heterogeneity of dendritic cells in the mouse liver: Identification and characterization of four distinct populations. J Immunol 170: 2323‐2330, 2003.
 226. Liedtke C, Bangen JM, Freimuth J, Beraza N, Lambertz D, Cubero FJ, Hatting M, Karlmark KR, Streetz KL, Krombach GA, Tacke F, Gassler N, Riethmacher D, Trautwein C. Loss of caspase‐8 protects mice against inflammation‐related hepatocarcinogenesis but induces non‐apoptotic liver injury. Gastroenterology 141: 2176‐2187, 2011.
 227. Lima RT, Busacca S, Almeida GM, Gaudino G, Fennell DA, Vasconcelos MH. MicroRNA regulation of core apoptosis pathways in cancer. Eur J Cancer 47: 163‐174, 2011.
 228. Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR‐122 targets an anti‐apoptotic gene, Bcl‐w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 375: 315‐320, 2008.
 229. Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K, Chen Y, Wei M, Eng VM, Adelman DM, Simon MC, Ma A, Golden JA, Evan G, Korsmeyer SJ, MacGregor GR, Thompson CB. The combined functions of proapoptotic Bcl‐2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6: 1389‐1399, 2000.
 230. Linton SD, Aja T, Armstrong RA, Bai X, Chen LS, Chen N, Ching B, Contreras P, Diaz JL, Fisher CD, Fritz LC, Gladstone P, Groessl T, Gu X, Herrmann J, Hirakawa BP, Hoglen NC, Jahangiri KG, Kalish VJ, Karanewsky DS, Kodandapani L, Krebs J, McQuiston J, Meduna SP, Nalley K, Robinson ED, Sayers RO, Sebring K, Spada AP, Ternansky RJ, Tomaselli KJ, Ullman BR, Valentino KL, Weeks S, Winn D, Wu JC, Yeo P, Zhang CZ. First‐in‐class pan caspase inhibitor developed for the treatment of liver disease. J Medic Chem 48: 6779‐6782, 2005.
 231. Liu Y, Binz J, Numerick MJ, Dennis S, Luo G, Desai B, MacKenzie KI, Mansfield TA, Kliewer SA, Goodwin B, Jones SA. Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra‐ and extrahepatic cholestasis. J Clin Invest 112: 1678‐1687, 2003.
 232. Liu ZX, Govindarajan S, Kaplowitz N. Innate immune system plays a critical role in determining the progression and severity of acetaminophen hepatotoxicity. Gastroenterology 127: 1760‐1774, 2004.
 233. Llacuna L, Mari M, Lluis JM, Garcia‐Ruiz C, Fernandez‐Checa JC, Morales A. Reactive oxygen species mediate liver injury through parenchymal nuclear factor‐kappaB inactivation in prolonged ischemia/reperfusion. Am J Pathol 174: 1776‐1785, 2009.
 234. Lotze MT, Zeh HJ, Rubartelli A, Sparvero LJ, Amoscato AA, Washburn NR, Devera ME, Liang X, Tor M, Billiar T. The grateful dead: Damage‐associated molecular pattern molecules and reduction/oxidation regulate immunity. Immunol Rev 220: 60‐81, 2007.
 235. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94: 481‐490, 1998.
 236. Maillette de Buy Wenniger L, Beuers U. Bile salts and cholestasis. Digest Liver Dis 42: 409‐418, 2010.
 237. Makishima M, Okamoto AY, Repa JJ, Tu H, Learned RM, Luk A, Hull MV, Lustig KD, Mangelsdorf DJ, Shan B. Identification of a nuclear receptor for bile acids. Science 284: 1362‐1365, 1999.
 238. Malhi H, Gores GJ, Lemasters JJ. Apoptosis and necrosis in the liver: A tale of two deaths? Hepatology 43: S31‐S44, 2006.
 239. Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: A clear and present danger. Physiol Rev 90: 1165‐1194, 2010.
 240. Malhi H, Kaufman RJ. Endoplasmic reticulum stress in liver disease. J Hepatol 54: 795‐809, 2011.
 241. Marciniak SJ, Yun CY, Oyadomari S, Novoa I, Zhang Y, Jungreis R, Nagata K, Harding HP, Ron D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Gene Dev 18: 3066‐3077, 2004.
 242. Martin‐Murphy BV, Holt MP, Ju C. The role of damage associated molecular pattern molecules in acetaminophen‐induced liver injury in mice. Toxicol Lett 192: 387‐394, 2010.
 243. Martin SJ, Henry CM, Cullen SP. A perspective on mammalian caspases as positive and negative regulators of inflammation. Mol Cell 46: 387‐397, 2012.
 244. Masson MJ, Carpenter LD, Graf ML, Pohl LR. Pathogenic role of natural killer T and natural killer cells in acetaminophen‐induced liver injury in mice is dependent on the presence of dimethyl sulfoxide. Hepatology 48: 889‐897, 2008.
 245. Masuoka HC, Guicciardi ME, Gores GJ. Caspase inhibitors for the treatment of hepatitis C. Clin Liver Dis 13: 467‐475, 2009.
 246. McClain CJ, Cohen DA, Dinarello CA, Cannon JG, Shedlofsky SI, Kaplan AM. Serum interleukin‐1 (IL‐1) activity in alcoholic hepatitis. Life Sci 39: 1479‐1485, 1986.
 247. McCullough KD, Martindale JL, Klotz LO, Aw TY, Holbrook NJ. Gadd153 sensitizes cells to endoplasmic reticulum stress by down‐regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol 21: 1249‐1259, 2001.
 248. Mehal W, Imaeda A. Cell death and fibrogenesis. Semin Liver Dis 30: 226‐231, 2010.
 249. Menu P, Mayor A, Zhou R, Tardivel A, Ichijo H, Mori K, Tschopp J. ER stress activates the NLRP3 inflammasome via an UPR‐independent pathway. Cell Death Dis 3: e261, 2012.
 250. Merquiol E, Uzi D, Mueller T, Goldenberg D, Nahmias Y, Xavier RJ, Tirosh B, Shibolet O. HCV causes chronic endoplasmic reticulum stress leading to adaptation and interference with the unfolded protein response. PLoS One 6: e24660, 2011.
 251. Miao EA, Rajan JV, Aderem A. Caspase‐1‐induced pyroptotic cell death. Immunol Rev 243: 206‐214, 2011.
 252. Micheau O, Thome M, Schneider P, Holler N, Tschopp J, Nicholson DW, Briand C, Grutter MG. The long form of FLIP is an activator of caspase‐8 at the Fas death‐inducing signaling complex. J Biol Chem 277: 45162‐45171, 2002.
 253. Mitchell C, Mahrouf‐Yorgov M, Mayeuf A, Robin MA, Mansouri A, Fromenty B, Gilgenkrantz H. Overexpression of Bcl‐2 in hepatocytes protects against injury but does not attenuate fibrosis in a mouse model of chronic cholestatic liver disease. Lab Invest 91: 273‐282, 2011.
 254. Miyoshi H, Rust C, Roberts PJ, Burgart LJ, Gores GJ. Hepatocyte apoptosis after bile duct ligation in the mouse involves Fas. Gastroenterology 117: 669‐677, 1999.
 255. Mott JL, Kobayashi S, Bronk SF, Gores GJ. mir‐29 regulates Mcl‐1 protein expression and apoptosis. Oncogene 26: 6133‐6140, 2007.
 256. Mott JL, Kurita S, Cazanave SC, Bronk SF, Werneburg NW, Fernandez‐Zapico ME. Transcriptional suppression of mir‐29b‐1/mir‐29a promoter by c‐Myc, hedgehog, and NF‐kappaB. J Cell Biochem 110: 1155‐1164, 2010.
 257. Mukhopadhyay P, Rajesh M, Horvath B, Batkai S, Park O, Tanchian G, Gao RY, Patel V, Wink DA, Liaudet L, Hasko G, Mechoulam R, Pacher P. Cannabidiol protects against hepatic ischemia/reperfusion injury by attenuating inflammatory signaling and response, oxidative/ nitrative stress, and cell death. Free Radical Bio Med 50: 1368‐1381, 2011.
 258. Nagata S, Hanayama R, Kawane K. Autoimmunity and the clearance of dead cells. Cell 140: 619‐630, 2010.
 259. Naik E, Dixit VM. Modulation of inflammasome activity for the treatment of auto‐inflammatory disorders. J Clin Immunol 30: 485‐490, 2010.
 260. Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y. Cyclophilin D‐dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434: 652‐658, 2005.
 261. Nakamoto Y, Kaneko S, Fan H, Momoi T, Tsutsui H, Nakanishi K, Kobayashi K, Suda T. Prevention of hepatocellular carcinoma development associated with chronic hepatitis by anti‐fas ligand antibody therapy. J Exp Med 196: 1105‐1111, 2002.
 262. Nakano Y, Kondo T, Matsuo R, Hashimoto I, Kawasaki T, Kohno K, Myronovych A, Tadano S, Hisakura K, Ikeda O, Watanabe M, Murata S, Fukunaga K, Ohkohchi N. Platelet dynamics in the early phase of postischemic liver in vivo. J Surg Res 149: 192‐198, 2008.
 263. Nalapareddy P, Schungel S, Hong JY, Manns MP, Jaeschke H, Vogel A. The BH3‐only protein bid does not mediate death‐receptor‐induced liver injury in obstructive cholestasis. Am J Pathol 175: 1077‐1085, 2009.
 264. Natori S, Higuchi H, Contreras P, Gores GJ. The caspase inhibitor IDN‐6556 prevents caspase activation and apoptosis in sinusoidal endothelial cells during liver preservation injury. Liver Transpl 9: 278‐284, 2003.
 265. Natori S, Rust C, Stadheim LM, Srinivasan A, Burgart LJ, Gores GJ. Hepatocyte apoptosis is a pathologic feature of human alcoholic hepatitis. J Hepatol 34: 248‐253, 2001.
 266. Natori S, Selzner M, Valentino KL, Fritz LC, Srinivasan A, Clavien PA, Gores GJ. Apoptosis of sinusoidal endothelial cells occurs during liver preservation injury by a caspase‐dependent mechanism. Transplantation 68: 89‐96, 1999.
 267. Nechushtan A, Smith CL, Lamensdorf I, Yoon SH, Youle RJ. Bax and Bak coalesce into novel mitochondria‐associated clusters during apoptosis. J Cell Biol 153: 1265‐1276, 2001.
 268. Noack K, Bronk SF, Kato A, Gores GJ. The greater vulnerability of bile duct cells to reoxygenation injury than to anoxia. Implications for the pathogenesis of biliary strictures after liver transplantation. Transplantation 56: 495‐500, 1993.
 269. Noetel A, Kwiecinski M, Elfimova N, Huang J, Odenthal M. microRNA are central players in anti‐ and profibrotic gene regulation during liver fibrosis. Front Physiol 3: 49, 2012.
 270. O'Donnell MA, Perez‐Jimenez E, Oberst A, Ng A, Massoumi R, Xavier R, Green DR, Ting AT. Caspase 8 inhibits programmed necrosis by processing CYLD. Nat Cell Biol 13: 1437‐1442, 2011.
 271. Oberhammer F, Bursch W, Tiefenbacher R, Froschl G, Pavelka M, Purchio T, Schulte‐Hermann R. Apoptosis is induced by transforming growth factor‐beta 1 within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatology 18: 1238‐1246, 1993.
 272. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR. Catalytic activity of the caspase‐8‐FLIP(L) complex inhibits RIPK3‐dependent necrosis. Nature 471: 363‐367, 2011.
 273. Oberst A, Green DR. It cuts both ways: Reconciling the dual roles of caspase 8 in cell death and survival. Nat Rev Mol Cell Biol 12: 757‐763, 2011.
 274. Ogiku M, Kono H, Hara M, Tsuchiya M, Fujii H. Glycyrrhizin prevents liver injury by inhibition of high‐mobility group box 1 production by Kupffer cells after ischemia‐reperfusion in rats. J Pharmacol Exp Ther 339: 93‐98, 2011.
 275. Okano H, Shiraki K, Inoue H, Kawakita T, Yamanaka T, Deguchi M, Sugimoto K, Sakai T, Ohmori S, Fujikawa K, Murata K, Nakano T. Cellular FLICE/caspase‐8‐inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma. Lab Invest 83: 1033‐1043, 2003.
 276. Omenetti A, Porrello A, Jung Y, Yang L, Popov Y, Choi SS, Witek RP, Alpini G, Venter J, Vandongen HM, Syn WK, Baroni GS, Benedetti A, Schuppan D, Diehl AM. Hedgehog signaling regulates epithelial‐mesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest 118: 3331‐3342, 2008.
 277. Pellicciari R, Fiorucci S, Camaioni E, Clerici C, Costantino G, Maloney PR, Morelli A, Parks DJ, Willson TM. 6alpha‐ethyl‐chenodeoxycholic acid (6‐ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J Med Chem 45: 3569‐3572, 2002.
 278. Pertoft H, Smedsrod B. Separation and Characterization of Liver Cells. In: Cell Separation: Methods and Selected Applications, New York: Academic Press, 1987, vol. 4, pp. 1‐24.
 279. Pierce RH, Vail ME, Ralph L, Campbell JS, Fausto N. Bcl‐2 expression inhibits liver carcinogenesis and delays the development of proliferating foci. Am J Pathol 160: 1555‐1560, 2002.
 280. Pockros PJ, Schiff ER, Shiffman ML, McHutchison JG, Gish RG, Afdhal NH, Makhviladze M, Huyghe M, Hecht D, Oltersdorf T, Shapiro DA. Oral IDN‐6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology 46: 324‐329, 2007.
 281. Protzer U, Maini MK, Knolle PA. Living in the liver: Hepatic infections. Nat Rev Immunol 12: 201‐213, 2012.
 282. Puthalakath H, O'Reilly LA, Gunn P, Lee L, Kelly PN, Huntington ND, Hughes PD, Michalak EM, McKimm‐Breschkin J, Motoyama N, Gotoh T, Akira S, Bouillet P, Strasser A. ER stress triggers apoptosis by activating BH3‐only protein Bim. Cell 129: 1337‐1349, 2007.
 283. Qiu W, Wang X, Leibowitz B, Yang W, Zhang L, Yu J. PUMA‐mediated apoptosis drives chemical hepatocarcinogenesis in mice. Hepatology 54: 1249‐1258, 2011.
 284. Ramachandran A, Lebofsky M, Baines CP, Lemasters JJ, Jaeschke H. Cyclophilin D deficiency protects against acetaminophen‐induced oxidant stress and liver injury. Free Radical Res 45: 156‐164, 2011.
 285. Rasola A, Bernardi P. The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis. Apoptosis 12: 815‐833, 2007.
 286. Rathinam VA, Vanaja SK, Fitzgerald KA. Regulation of inflammasome signaling. Nat Immunol 13: 333‐332, 2012.
 287. Ren D, Tu HC, Kim H, Wang GX, Bean GR, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ, Cheng EH. BID, BIM, and PUMA are essential for activation of the BAX‐ and BAK‐dependent cell death program. Science 330: 1390‐1393, 2010.
 288. Repnik U, Stoka V, Turk V, Turk B. Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta 1824: 22‐33, 2012.
 289. Repnik U, Turk B. Lysosomal‐mitochondrial cross‐talk during cell death. Mitochondrion 10: 662‐669, 2010.
 290. Ricchelli F, Sileikyte J, Bernardi P. Shedding light on the mitochondrial permeability transition. Biochim Biophys Acta 1807: 482‐490, 2011.
 291. Roberg K, Kagedal K, Ollinger K. Microinjection of cathepsin d induces caspase‐dependent apoptosis in fibroblasts. Am J Pathol 161: 89‐96, 2002.
 292. Roderburg C, Urban GW, Bettermann K, Vucur M, Zimmermann H, Schmidt S, Janssen J, Koppe C, Knolle P, Castoldi M, Tacke F, Trautwein C, Luedde T. Micro‐RNA profiling reveals a role for miR‐29 in human and murine liver fibrosis. Hepatology 53: 209‐218, 2011.
 293. Rodrigues CM, Fan G, Ma X, Kren BT, Steer CJ. A novel role for ursodeoxycholic acid in inhibiting apoptosis by modulating mitochondrial membrane perturbation. J Clin Invest 101: 2790‐2799, 1998.
 294. Rodrigues CM, Ma X, Linehan‐Stieers C, Fan G, Kren BT, Steer CJ. Ursodeoxycholic acid prevents cytochrome c release in apoptosis by inhibiting mitochondrial membrane depolarization and channel formation. Cell Death Differ 6: 842‐854, 1999.
 295. Roma MG, Toledo FD, Boaglio AC, Basiglio CL, Crocenzi FA, Sanchez Pozzi EJ. Ursodeoxycholic acid in cholestasis: Linking action mechanisms to therapeutic applications. Clin Sci 121: 523‐544, 2011.
 296. Roychowdhury S, Chiang DJ, Mandal P, McMullen MR, Liu X, Cohen JI, Pollard J, Feldstein AE, Nagy LE. Inhibition of apoptosis protects mice from ethanol‐mediated acceleration of early markers of CCl(4)‐induced fibrosis but not steatosis or inflammation. Alcohol Clin Exp Res, 36: 1139‐1147, 2012.
 297. Rust C, Karnitz LM, Paya CV, Moscat J, Simari RD, Gores GJ. The bile acid taurochenodeoxycholate activates a phosphatidylinositol 3‐kinase‐dependent survival signaling cascade. J Biol Chem 275: 20210‐20216, 2000.
 298. Rust C, Wild N, Bernt C, Vennegeerts T, Wimmer R, Beuers U. Bile acid‐induced apoptosis in hepatocytes is caspase‐6‐dependent. J Biol Chem 284: 2908‐2916, 2009.
 299. Saelens X, Festjens N, Vande Walle L, van Gurp M, van Loo G, Vandenabeele P. Toxic proteins released from mitochondria in cell death. Oncogene 23: 2861‐2874, 2004.
 300. Sandgren EP, Palmiter RD, Heckel JL, Daugherty CC, Brinster RL, Degen JL. Complete hepatic regeneration after somatic deletion of an albumin‐plasminogen activator transgene. Cell 66: 245‐256, 1991.
 301. Santodomingo‐Garzon T, Swain MG. Role of NKT cells in autoimmune liver disease. Autoimmun Rev 10: 793‐800, 2011.
 302. Schattenberg JM, Galle PR, Schuchmann M. Apoptosis in liver disease. Liver Int 26: 904‐911, 2006.
 303. Schattenberg JM, Schuchmann M, Galle PR. Cell death and hepatocarcinogenesis: Dysregulation of apoptosis signaling pathways. J Gastroenterol Hepatol 26(Suppl 1): 213‐219, 2011.
 304. Schoemaker MH, Gommans WM, Conde de la Rosa L, Homan M, Klok P, Trautwein C, van Goor H, Poelstra K, Haisma HJ, Jansen PL, Moshage H. Resistance of rat hepatocytes against bile acid‐induced apoptosis in cholestatic liver injury is due to nuclear factor‐kappa B activation. J Hepatol 39: 153‐161, 2003.
 305. Schuchmann M, Galle PR. Apoptosis in liver disease. Eur J Gastroen Hepat 13: 785‐790, 2001.
 306. Schungel S, Buitrago‐Molina LE, Nalapareddy P, Lebofsky M, Manns MP, Jaeschke H, Gross A, Vogel A. The strength of the Fas ligand signal determines whether hepatocytes act as type 1 or type 2 cells in murine livers. Hepatology 50: 1558‐1566, 2009.
 307. Segui B, Cuvillier O, Adam‐Klages S, Garcia V, Malagarie‐Cazenave S, Leveque S, Caspar‐Bauguil S, Coudert J, Salvayre R, Kronke M, Levade T. Involvement of FAN in TNF‐induced apoptosis. J Clin Invest 108: 143‐151, 2001.
 308. Seki S, Nakashima H, Nakashima M, Kinoshita M. Antitumor immunity produced by the liver Kupffer cells, NK cells, NKT cells, and CD8 CD122 T cells. Clin Dev Immunol 2011: 868345, 2011.
 309. Sekine S, Ogawa R, Ito R, Hiraoka N, McManus MT, Kanai Y, Hebrok M. Disruption of Dicer1 induces dysregulated fetal gene expression and promotes hepatocarcinogenesis. Gastroenterology 136: 2304‐2315, 2009.
 310. Sekiya Y, Ogawa T, Yoshizato K, Ikeda K, Kawada N. Suppression of hepatic stellate cell activation by microRNA‐29b. Biochem Biophys Res Commun 412: 74‐79, 2011.
 311. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature 455: 58‐63, 2008.
 312. Selzner M, Rudiger HA, Selzner N, Thomas DW, Sindram D, Clavien PA. Transgenic mice overexpressing human Bcl‐2 are resistant to hepatic ischemia and reperfusion. J Hepatol 36: 218‐225, 2002.
 313. Selzner M, Rudiger HA, Sindram D, Madden J, Clavien PA. Mechanisms of ischemic injury are different in the steatotic and normal rat liver. Hepatology 32: 1280‐1288, 2000.
 314. Shi FD, Ljunggren HG, La Cava A, Van Kaer L. Organ‐specific features of natural killer cells. Nat Rev Immunol 11: 658‐671, 2011.
 315. Shimada T. Xenobiotic‐metabolizing enzymes involved in activation and detoxification of carcinogenic polycyclic aromatic hydrocarbons. Drug Metab Pharmacok 21: 257‐276, 2006.
 316. Shimbo K, Hsu GW, Nguyen H, Mahrus S, Trinidad JC, Burlingame AL, Wells JA. Quantitative profiling of caspase‐cleaved substrates reveals different drug‐induced and cell‐type patterns in apoptosis. Proc Natl Acad Sci U S A 109: 12432‐12437, 2012.
 317. Shito M, Wakabayashi G, Ueda M, Shimazu M, Shirasugi N, Endo M, Mukai M, Kitajima M. Interleukin 1 receptor blockade reduces tumor necrosis factor production, tissue injury, and mortality after hepatic ischemia‐reperfusion in the rat. Transplantation 63: 143‐148, 1997.
 318. Sieghart W, Losert D, Strommer S, Cejka D, Schmid K, Rasoul‐Rockenschaub S, Bodingbauer M, Crevenna R, Monia BP, Peck‐Radosavljevic M, Wacheck V. Mcl‐1 overexpression in hepatocellular carcinoma: A potential target for antisense therapy. J Hepatol 44: 151‐157, 2006.
 319. Silva MT. Secondary necrosis: The natural outcome of the complete apoptotic program. FEBS Lett 584: 4491‐4499, 2010.
 320. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102: 731‐744, 2000.
 321. Sindram D, Porte RJ, Hoffman MR, Bentley RC, Clavien PA. Platelets induce sinusoidal endothelial cell apoptosis upon reperfusion of the cold ischemic rat liver. Gastroenterology 118: 183‐191, 2000.
 322. Sodeman T, Bronk SF, Roberts PJ, Miyoshi H, Gores GJ. Bile salts mediate hepatocyte apoptosis by increasing cell surface trafficking of Fas. Am J Physiol Gastrointest Liver Physiol 278: G992‐G999, 2000.
 323. Starkey Lewis PJ, Dear J, Platt V, Simpson KJ, Craig DG, Antoine DJ, French NS, Dhaun N, Webb DJ, Costello EM, Neoptolemos JP, Moggs J, Goldring CE, Park BK. Circulating microRNAs as potential markers of human drug‐induced liver injury. Hepatology 54: 1767‐1776, 2011.
 324. Steele R, Mott JL, Ray RB. MBP‐1 upregulates miR‐29b that represses Mcl‐1, collagens, and matrix‐metalloproteinase‐2 in prostate cancer cells. Genes Cancer 1: 381‐387, 2010.
 325. Stoka V, Turk B, Schendel SL, Kim TH, Cirman T, Snipas SJ, Ellerby LM, Bredesen D, Freeze H, Abrahamson M, Bromme D, Krajewski S, Reed JC, Yin XM, Turk V, Salvesen GS. Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro‐caspases, is the most likely route. J Biol Chem 276: 3149‐3157, 2001.
 326. Strautnieks SS, Bull LN, Knisely AS, Kocoshis SA, Dahl N, Arnell H, Sokal E, Dahan K, Childs S, Ling V, Tanner MS, Kagalwalla AF, Nemeth A, Pawlowska J, Baker A, Mieli‐Vergani G, Freimer NB, Gardiner RM, Thompson RJ. A gene encoding a liver‐specific ABC transporter is mutated in progressive familial intrahepatic cholestasis. Nat Genet 20: 233‐238, 1998.
 327. Strautnieks SS, Byrne JA, Pawlikowska L, Cebecauerova D, Rayner A, Dutton L, Meier Y, Antoniou A, Stieger B, Arnell H, Ozcay F, Al‐Hussaini HF, Bassas AF, Verkade HJ, Fischler B, Nemeth A, Kotalova R, Shneider BL, Cielecka‐Kuszyk J, McClean P, Whitington PF, Sokal E, Jirsa M, Wali SH, Jankowska I, Pawlowska J, Mieli‐Vergani G, Knisely AS, Bull LN, Thompson RJ. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology 134: 1203‐1214, 2008.
 328. Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X, Wang X. Mixed lineage kinase domain‐like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148: 213‐227, 2012.
 329. Sun X, Lee J, Navas T, Baldwin DT, Stewart TA, Dixit VM. RIP3, a novel apoptosis‐inducing kinase. J Biol Chem 274: 16871‐16875, 1999.
 330. Szabo G, Mandrekar P. A recent perspective on alcohol, immunity, and host defense. Alcohol Clin Exp Res 33: 220‐232, 2009.
 331. Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol 13: 184‐190, 2011.
 332. Tacke F, Luedde T, Trautwein C. Inflammatory pathways in liver homeostasis and liver injury. Clin Rev Allerg Immu 36: 4‐12, 2009.
 333. Takeda K, Kojima Y, Ikejima K, Harada K, Yamashina S, Okumura K, Aoyama T, Frese S, Ikeda H, Haynes NM, Cretney E, Yagita H, Sueyoshi N, Sato N, Nakanuma Y, Smyth MJ. Death receptor 5 mediated‐apoptosis contributes to cholestatic liver disease. Proc Natl Acad Sci U S A 105: 10895‐10900, 2008.
 334. Takehara T, Liu X, Fujimoto J, Friedman SL, Takahashi H. Expression and role of Bcl‐xL in human hepatocellular carcinomas. Hepatology 34: 55‐61, 2001.
 335. Takehara T, Takahashi H. Suppression of Bcl‐xL deamidation in human hepatocellular carcinomas. Cancer Res 63: 3054‐3057, 2003.
 336. Takehara T, Tatsumi T, Suzuki T, Rucker EB, III, Hennighausen L, Jinushi M, Miyagi T, Kanazawa Y, Hayashi N. Hepatocyte‐specific disruption of Bcl‐xL leads to continuous hepatocyte apoptosis and liver fibrotic responses. Gastroenterology 127: 1189‐1197, 2004.
 337. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell 140: 805‐820, 2010.
 338. Takikawa Y, Miyoshi H, Rust C, Roberts P, Siegel R, Mandal PK, Millikan RE, Gores GJ. The bile acid‐activated phosphatidylinositol 3‐kinase pathway inhibits Fas apoptosis upstream of bid in rodent hepatocytes. Gastroenterology 120: 1810‐1817, 2001.
 339. Tamimi TI, Elgouhari HM, Alkhouri N, Yerian LM, Berk MP, Lopez R, Schauer PR, Zein NN, Feldstein AE. An apoptosis panel for nonalcoholic steatohepatitis diagnosis. J Hepatol 54: 1224‐1229, 2011.
 340. Taniai H, Hines IN, Bharwani S, Maloney RE, Nimura Y, Gao B, Flores SC, McCord JM, Grisham MB, Aw TY. Susceptibility of murine periportal hepatocytes to hypoxia‐reoxygenation: Role for NO and Kupffer cell‐derived oxidants. Hepatology 39: 1544‐1552, 2004.
 341. Taniai M, Grambihler A, Higuchi H, Werneburg N, Bronk SF, Farrugia DJ, Kaufmann SH, Gores GJ. Mcl‐1 mediates tumor necrosis factor‐related apoptosis‐inducing ligand resistance in human cholangiocarcinoma cells. Cancer Res 64: 3517‐3524, 2004.
 342. Taylor RC, Cullen SP, Martin SJ. Apoptosis: Controlled demolition at the cellular level. Nat Rev Mol Cell Biol 9: 231‐241, 2008.
 343. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F, Zachariou A, Lopez J, MacFarlane M, Cain K, Meier P. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 43: 432‐448, 2011.
 344. Tiegs G, Lohse AW. Immune tolerance: What is unique about the liver. J Autoimmun 34: 1‐6, 2010.
 345. Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs J, Backs T, Bassel‐Duby R, Olson EN, Anderson ME, Tabas I. Calcium/calmodulin‐dependent protein kinase II links ER stress with Fas and mitochondrial apoptosis pathways. J Clin Invest 119: 2925‐2941, 2009.
 346. Torchia EC, Stolz A, Agellon LB. Differential modulation of cellular death and survival pathways by conjugated bile acids. BMC Biochem 2: 11, 2001.
 347. Trauner M, Boyer JL. Bile salt transporters: Molecular characterization, function, and regulation. Physiol Rev 83: 633‐671, 2003.
 348. Tryndyak VP, Latendresse JR, Montgomery B, Ross SA, Beland FA, Rusyn I, Pogribny IP. Plasma microRNAs are sensitive indicators of inter‐strain differences in the severity of liver injury induced in mice by a choline‐ and folate‐deficient diet. Toxicol Appl Pharmacol, 262: 52‐9, 2012.
 349. Tsung A, Hoffman RA, Izuishi K, Critchlow ND, Nakao A, Chan MH, Lotze MT, Geller DA, Billiar TR. Hepatic ischemia/reperfusion injury involves functional TLR4 signaling in nonparenchymal cells. J Immunol 175: 7661‐7668, 2005.
 350. Tzung SP, Fausto N, Hockenbery DM. Expression of Bcl‐2 family during liver regeneration and identification of Bcl‐x as a delayed early response gene. Am J Pathol 150: 1985‐1995, 1997.
 351. Uchimoto T, Nohara H, Kamehara R, Iwamura M, Watanabe N, Kobayashi Y. Mechanism of apoptosis induced by a lysosomotropic agent, L‐Leucyl‐L‐Leucine methyl ester. Apoptosis 4: 357‐362, 1999.
 352. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287: 664‐666, 2000.
 353. Valles SL, Blanco AM, Azorin I, Guasch R, Pascual M, Gomez‐Lechon MJ, Renau‐Piqueras J, Guerri C. Chronic ethanol consumption enhances interleukin‐1‐mediated signal transduction in rat liver and in cultured hepatocytes. Alcohol Clin Exp Res 27: 1979‐1986, 2003.
 354. Van Vre EA, Ait‐Oufella H, Tedgui A, Mallat Z. Apoptotic cell death and efferocytosis in atherosclerosis. Arterioscler Thromb Vasc Biol 32: 887‐893, 2012.
 355. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM, Dixit VD. The NLRP3 inflammasome instigates obesity‐induced inflammation and insulin resistance. Nat Med 17: 179‐188, 2011.
 356. Vanden Berghe T, Vanlangenakker N, Parthoens E, Deckers W, Devos M, Festjens N, Guerin CJ, Brunk UT, Declercq W, Vandenabeele P. Necroptosis, necrosis and secondary necrosis converge on similar cellular disintegration features. Cell Death Differ 17: 922‐930, 2010.
 357. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G. Molecular mechanisms of necroptosis: An ordered cellular explosion. Nat Rev Mol Cell Biol 11: 700‐714, 2010.
 358. Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ, Vucic D. c‐IAP1 and c‐IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)‐induced NF‐kappaB activation. J Biol Chem 283: 24295‐24299, 2008.
 359. Varfolomeev EE, Schuchmann M, Luria V, Chiannilkulchai N, Beckmann JS, Mett IL, Rebrikov D, Brodianski VM, Kemper OC, Kollet O, Lapidot T, Soffer D, Sobe T, Avraham KB, Goncharov T, Holtmann H, Lonai P, Wallach D. Targeted disruption of the mouse Caspase 8 gene ablates cell death induction by the TNF receptors, Fas/Apo1, and DR3 and is lethal prenatally. Immunity 9: 267‐276, 1998.
 360. Verma S, Kaplowitz N. Diagnosis, management and prevention of drug‐induced liver injury. Gut 58: 1555‐1564, 2009.
 361. Vick B, Weber A, Urbanik T, Maass T, Teufel A, Krammer PH, Opferman JT, Schuchmann M, Galle PR, Schulze‐Bergkamen H. Knockout of myeloid cell leukemia‐1 induces liver damage and increases apoptosis susceptibility of murine hepatocytes. Hepatology 49: 627‐636, 2009.
 362. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, Visone R, Iorio M, Roldo C, Ferracin M, Prueitt RL, Yanaihara N, Lanza G, Scarpa A, Vecchione A, Negrini M, Harris CC, Croce CM. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci U S A 103: 2257‐2261, 2006.
 363. von Oppen N, Schurich A, Hegenbarth S, Stabenow D, Tolba R, Weiskirchen R, Geerts A, Kolanus W, Knolle P, Diehl L. Systemic antigen cross‐presented by liver sinusoidal endothelial cells induces liver‐specific CD8 T‐cell retention and tolerization. Hepatology 49: 1664‐1672, 2009.
 364. Vucic D. Targeting IAP (inhibitor of apoptosis) proteins for therapeutic intervention in tumors. Curr Cancer Drug Targets 8: 110‐117, 2008.
 365. Walensky LD. From mitochondrial biology to magic bullet: Navitoclax disarms BCL‐2 in chronic lymphocytic leukemia. J Clin Oncol 30: 554‐557, 2012.
 366. Wallace DC, Fan W. The pathophysiology of mitochondrial disease as modeled in the mouse. Gene Dev 23: 1714‐1736, 2009.
 367. Walter D, Schmich K, Vogel S, Pick R, Kaufmann T, Hochmuth FC, Haber A, Neubert K, McNelly S, von Weizsacker F, Merfort I, Maurer U, Strasser A, Borner C. Switch from type II to I Fas/CD95 death signaling on in vitro culturing of primary hepatocytes. Hepatology 48: 1942‐1953, 2008.
 368. Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology 147: 943‐951, 2006.
 369. Wang Y, Lu Y, Toh ST, Sung WK, Tan P, Chow P, Chung AY, Jooi LL, Lee CG. Lethal‐7 is down‐regulated by the hepatitis B virus x protein and targets signal transducer and activator of transcription 3. J Hepatol 53: 57‐66, 2010.
 370. Wang Y, Vera L, Fischer WH, Montminy M. The CREB coactivator CRTC2 links hepatic ER stress and fasting gluconeogenesis. Nature 460: 534‐537, 2009.
 371. Weber A, Boger R, Vick B, Urbanik T, Haybaeck J, Zoller S, Teufel A, Krammer PH, Opferman JT, Galle PR, Schuchmann M, Heikenwalder M, Schulze‐Bergkamen H. Hepatocyte‐specific deletion of the antiapoptotic protein myeloid cell leukemia‐1 triggers proliferation and hepatocarcinogenesis in mice. Hepatology 51: 1226‐1236, 2010.
 372. Wei G, Margolin AA, Haery L, Brown E, Cucolo L, Julian B, Shehata S, Kung AL, Beroukhim R, Golub TR. Chemical genomics identifies small‐molecule MCL1 repressors and BCL‐xL as a predictor of MCL1 dependency. Cancer Cell 21: 547‐562, 2012.
 373. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ. Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292: 727‐730, 2001.
 374. Wen H, Gris D, Lei Y, Jha S, Zhang L, Huang MT, Brickey WJ, Ting JP. Fatty acid‐induced NLRP3‐ASC inflammasome activation interferes with insulin signaling. Nat Immunol 12: 408‐415, 2011.
 375. Weng SY, Yang CY, Li CC, Sun TP, Tung SY, Yen JJ, Tsai TF, Chen CM, Chen SH, Hsiao M, Huang PH, Yang‐Yen HF. Synergism between p53 and Mcl‐1 in protecting from hepatic injury, fibrosis and cancer. J Hepatol 54: 685‐694, 2011.
 376. Werneburg N, Guicciardi ME, Yin XM, Gores GJ. TNF‐alpha‐mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physiol 287: G436‐G443, 2004.
 377. Werneburg NW, Bronk SF, Guicciardi ME, Thomas L, Dikeakos JD, Thomas G, Gores GJ. Tumor necrosis factor‐related apoptosis inducing ligand (TRAIL) induced lysosomal translocation of proapoptotic effectors is mediated by phosphofurin acidic cluster sorting protein‐2 (PACS‐2). J Biol Chem 287: 24427‐24437, 2012.
 378. Werneburg NW, Guicciardi ME, Bronk SF, Kaufmann SH, Gores GJ. Tumor necrosis factor‐related apoptosis‐inducing ligand activates a lysosomal pathway of apoptosis that is regulated by Bcl‐2 proteins. J Biol Chem 282: 28960‐28970, 2007.
 379. Williams CD, Antoine DJ, Shaw PJ, Benson C, Farhood A, Williams DP, Kanneganti TD, Park BK, Jaeschke H. Role of the Nalp3 inflammasome in acetaminophen‐induced sterile inflammation and liver injury. Toxicol Appl Pharmacol 252: 289‐297, 2011.
 380. Williams CD, Farhood A, Jaeschke H. Role of caspase‐1 and interleukin‐1beta in acetaminophen‐induced hepatic inflammation and liver injury. Toxicol Appl Pharmacol 247: 169‐178, 2010.
 381. Willis SN, Fletcher JI, Kaufmann T, van Delft MF, Chen L, Czabotar PE, Ierino H, Lee EF, Fairlie WD, Bouillet P, Strasser A, Kluck RM, Adams JM, Huang DC. Apoptosis initiated when BH3 ligands engage multiple Bcl‐2 homologs, not Bax or Bak. Science 315: 856‐859, 2007.
 382. Winau F, Hegasy G, Weiskirchen R, Weber S, Cassan C, Sieling PA, Modlin RL, Liblau RS, Gressner AM, Kaufmann SH. Ito cells are liver‐resident antigen‐presenting cells for activating T cell responses. Immunity 26: 117‐129, 2007.
 383. Witek RP, Stone WC, Karaca FG, Syn WK, Pereira TA, Agboola KM, Omenetti A, Jung Y, Teaberry V, Choi SS, Guy CD, Pollard J, Charlton P, Diehl AM. Pan‐caspase inhibitor VX‐166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50: 1421‐1430, 2009.
 384. Wong LT, Whitehouse LW, Solomonraj G, Paul CJ. Effect of a concomitant single dose of ethanol on the hepatotoxicity and metabolism of acetaminophen in mice. Toxicology 17: 297‐309, 1980.
 385. Wyllie AH, Kerr JF, Currie AR. Cell death: The significance of apoptosis. Int Rev Cytol 68: 251‐306, 1980.
 386. Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME. Opposing effects of ERK and JNK‐p38 MAP kinases on apoptosis. Science 270: 1326‐1331, 1995.
 387. Xiong Y, Fang JH, Yun JP, Yang J, Zhang Y, Jia WH, Zhuang SM. Effects of microRNA‐29 on apoptosis, tumorigenicity, and prognosis of hepatocellular carcinoma. Hepatology 51: 836‐845, 2010.
 388. Xu J, Zhu X, Wu L, Yang R, Yang Z, Wang Q, Wu F. MicroRNA‐122 suppresses cell proliferation and induces cell apoptosis in hepatocellular carcinoma by directly targeting Wnt/beta‐catenin pathway. Liver Int 32: 752‐760, 2012.
 389. Yamaguchi H, Wang HG. CHOP is involved in endoplasmic reticulum stress‐induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279: 45495‐45502, 2004.
 390. Yeh WC, Itie A, Elia AJ, Ng M, Shu HB, Wakeham A, Mirtsos C, Suzuki N, Bonnard M, Goeddel DV, Mak TW. Requirement for Casper (c‐FLIP) in regulation of death receptor‐induced apoptosis and embryonic development. Immunity 12: 633‐642, 2000.
 391. Yerushalmi B, Dahl R, Devereaux MW, Gumpricht E, Sokol RJ. Bile acid‐induced rat hepatocyte apoptosis is inhibited by antioxidants and blockers of the mitochondrial permeability transition. Hepatology 33: 616‐626, 2001.
 392. Yin XM. Bid, a critical mediator for apoptosis induced by the activation of Fas/TNF‐R1 death receptors in hepatocytes. J Mol Med (Berl) 78: 203‐211, 2000.
 393. Yin XM, Ding WX. Death receptor activation‐induced hepatocyte apoptosis and liver injury. Curr Mol Med 3: 491‐508, 2003.
 394. Yin XM, Wang K, Gross A, Zhao Y, Zinkel S, Klocke B, Roth KA, Korsmeyer SJ. Bid‐deficient mice are resistant to Fas‐induced hepatocellular apoptosis. Nature 400: 886‐891, 1999.
 395. Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T. The RNA helicase RIG‐I has an essential function in double‐stranded RNA‐induced innate antiviral responses. Nat Immunol 5: 730‐737, 2004.
 396. Yoon JH, Gores GJ. Death receptor‐mediated apoptosis and the liver.llll J Hepatol 37: 400‐410, 2002.
 397. Youle RJ, Strasser A. The BCL‐2 protein family: Opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9: 47‐59, 2008.
 398. Yu C, Bruzek LM, Meng XW, Gores GJ, Carter CA, Kaufmann SH, Adjei AA. The role of Mcl‐1 downregulation in the proapoptotic activity of the multikinase inhibitor BAY 43‐9006. Oncogene 24: 6861‐6869, 2005.
 399. Zajicek G, Oren R, Weinreb M, Jr. The streaming liver. Liver 5: 293‐300, 1985.
 400. Zender L, Hutker S, Liedtke C, Tillmann HL, Zender S, Mundt B, Waltemathe M, Gosling T, Flemming P, Malek NP, Trautwein C, Manns MP, Kuhnel F, Kubicka S. Caspase 8 small interfering RNA prevents acute liver failure in mice. Proc Natl Acad Sci U S A 100: 7797‐7802, 2003.
 401. Zhang H, Cook J, Nickel J, Yu R, Stecker K, Myers K, Dean NM. Reduction of liver Fas expression by an antisense oligonucleotide protects mice from fulminant hepatitis. Nat Biotechnol 18: 862‐867, 2000.
 402. Zhang N, Hopkins K, He YW. c‐FLIP protects mature T lymphocytes from TCR‐mediated killing. J Immunol 181: 5368‐5373, 2008.
 403. Zhang Y, Jia Y, Zheng R, Guo Y, Wang Y, Guo H, Fei M, Sun S. Plasma microRNA‐122 as a biomarker for viral‐, alcohol‐, and chemical‐related hepatic diseases. Clin Chem 56: 1830‐1838, 2010.
 404. Zhang Y, Wu L, Wang Y, Zhang M, Li L, Zhu D, Li X, Gu H, Zhang CY, Zen K. Protective Role of Estrogen‐induced miRNA‐29 Expression in Carbon Tetrachloride‐induced Mouse Liver Injury. J Biol Chem 287: 14851‐14862, 2012.
 405. Zhu P, Duan L, Chen J, Xiong A, Xu Q, Zhang H, Zheng F, Tan Z, Gong F, Fang M. Gene silencing of NALP3 protects against liver ischemia‐reperfusion injury in mice. Hum Gene Ther 22: 853‐864, 2011.
 406. Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Gene Dev 12: 982‐995, 1998.

Related Articles:

Kupffer Cells in the Liver
Steatosis in the Liver
Hepatic Stellate Cells and Liver Fibrosis

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Maria Eugenia Guicciardi, Harmeet Malhi, Justin L. Mott, Gregory J. Gores. Apoptosis and Necrosis in the Liver. Compr Physiol 2013, 3: 977-1010. doi: 10.1002/cphy.c120020