References |
1. |
Adorini L,
Pruzanski M,
Shapiro D.
Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis.
Drug Discov Today
17:
988‐997,
2012.
|
2. |
Agellon LB,
Cheema SK.
The 3′‐untranslated region of the mouse cholesterol 7α‐hydroxylase mRNA contains elements responsive to post‐transcriptional regulation by bile acids.
Biochem J
328:
393‐399,
1997.
|
3. |
Aldridge MA,
Ito MK.
Colesevelam hydrochloride: A novel bile acid‐binding resin.
Ann Pharmacother
35:
898‐907,
2001.
|
4. |
Alvarez L,
Jara P,
Sanchez‐Sabate E,
Hierro L,
Larrauri J,
Diaz MC,
Camarena C,
De La Vega A,
Frauca E,
Lopez‐Collazo E,
Lapunzina P.
Reduced hepatic expression of Farnesoid X Receptor in hereditary cholestasis associated to mutation in ATP8B1.
Hum Mol Genet
13:
2451‐2460,
2004.
|
5. |
Amaral JD,
Viana RJ,
Ramalho RM,
Steer CJ,
Rodrigues CM.
Bile acids: Regulation of apoptosis by ursodeoxycholic ccid.
J Lipid Res
50:
1721‐1734,
2009.
|
6. |
Angelin B,
Einarsson K,
Hellstrom K,
Leijd B.
Bile acid kinetics in relation to endogenous triglyceride metabolism in various types of hyperlipoproteinemia.
J Lipid Res
19:
1004‐1016,
1978.
|
7. |
Angelin B,
Einarsson K,
Hellstrom K,
Leijd B.
Effects of cholestyramine and chenodeoxycholic acid on the metabolism of endogenous triglyceride in hyperlipoproteinemia.
J Lipid Res
19:
1017‐1024,
1978.
|
8. |
Baker DM,
Wang SL,
Bell DJ,
Drevon CA,
Davis RA.
One or more labile proteins regulate the stability of chimeric mRNAs containing the 3′‐untranslated region of cholesterol‐7alpha ‐ hydroxylase mRNA.
J Biol Chem
275:
19985‐19991,
2000.
|
9. |
Ballatori N,
Christian WV,
Lee JY,
Dawson PA,
Soroka CJ,
Boyer JL,
Madejczyk MS,
Li N.
OSTalpha‐OSTbeta: A major basolateral bile acid and steroid transporter in human intestinal, renal, and biliary epithelia.
Hepatology
42:
1270‐1279,
2005.
|
10. |
Ballatori N,
Fang F,
Christian WV,
Li N,
Hammond CL.
Ostalpha‐Ostbeta is required for bile acid and conjugated steroid disposition in the intestine, kidney, and liver.
Am J Physiol Gastrointest Liver Physiol
295:
G179‐G186,
2008.
|
11. |
Bays HE,
Goldberg RB,
Truitt KE,
Jones MR.
Colesevelam hydrochloride therapy in patients with type 2 diabetes mellitus treated with metformin: Glucose and lipid effects.
Arch Intern Med
168:
1975‐1983,
2008.
|
12. |
Bennion LJ,
Grundy SM.
Effects of diabetes mellitus on cholesterol metabolism in man.
N Engl J Med
296:
1365‐1371,
1977.
|
13. |
Bertolotti M,
Carulli L,
Concari M,
Martella P,
Loria P,
Tagliafico E,
Ferrari S,
Del Puppo M,
Amati B,
De Fabiani E,
Crestani M,
Amorotti C,
Manenti A,
Carubbi F,
Pinetti A,
Carulli N.
Suppression of bile acid synthesis, but not of hepatic cholesterol 7alpha‐hydroxylase expression, by obstructive cholestasis in humans.
Hepatology
34:
234‐242.,
2001.
|
14. |
Beysen C,
Murphy EJ,
Deines K,
Chan M,
Tsang E,
Glass A,
Turner SM,
Protasio J,
Riiff T,
Hellerstein MK.
Effect of bile acid sequestrants on glucose metabolism, hepatic de novo lipogenesis, and cholesterol and bile acid kinetics in type 2 diabetes: A randomised controlled study.
Diabetologia
55:
432‐442,
2012.
|
15. |
Bhalla S,
Ozalp C,
Fang S,
Xiang L,
Kemper JK.
Ligand‐activated PXR interferes with HNF‐4 signaling by targeting a common coactivator PGC‐1alpha : Functional implications in hepatic cholesterol and glucose metabolism.
J Biol Chem
279:
45139‐45147,
2004.
|
16. |
Bhatnagar S,
Damron HA,
Hillgartner FB.
Fibroblast growth factor‐19, a novel factor that inhibits hepatic fatty acid synthesis.
J Biol Chem
284:
10023‐10033,
2009.
|
17. |
Bjorkhem I.
Inborn errors of metabolism with consequences for bile acid biosynthesis. A minireview.
Scand J Gastroenterol Suppl
204:
68‐72,
1994.
|
18. |
Bjorkhem I,
Leitersdorf I.
Sterol 27‐hydroxylase deficiency: A rare cause of xanthomas in normocholesterolemic humans.
Trends Endocrinol Metab
11:
180‐183,
2000.
|
19. |
Bove KE,
Daugherty CC,
Tyson W,
Mierau G,
Heubi JE,
Balistreri WF,
Setchell KD.
Bile acid synthetic defects and liver disease.
Pediatr Dev Pathol
3:
1‐16,
2000.
|
20. |
Brown MS,
Goldstein JL.
The SREBP pathway: Regulation of cholesterol metabolism by proteolysis of a membrane‐bound transcription factor.
Cell
89:
331‐340,
1997.
|
21. |
Brufau G,
Groen AK,
Kuipers F.
Reverse cholesterol transport revisited: Contribution of biliary versus intestinal cholesterol excretion.
Arterioscler Thromb Vasc Biol
31:
1726‐1733,
2011.
|
22. |
Brufau G,
Stellaard F,
Prado K,
Bloks VW,
Jonkers E,
Boverhof R,
Kuipers F,
Murphy EJ.
Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism.
Hepatology
52:
1455‐1464,
2010.
|
23. |
Cai SY,
Gautam S,
Nguyen T,
Soroka CJ,
Rahner C,
Boyer JL.
ATP8B1 deficiency disrupts the bile canalicular membrane bilayer structure in hepatocytes, but FXR expression and activity are maintained.
Gastroenterology
136:
1060‐1069,
2009.
|
24. |
Calkin AC,
Tontonoz P.
Transcriptional integration of metabolism by the nuclear sterol‐activated receptors LXR and FXR.
Nat Rev Mol Cell Biol
13:
213‐224,
2012.
|
25. |
Cariou B,
Bouchaert E,
Abdelkarim M,
Dumont J,
Caron S,
Fruchart JC,
Burcelin R,
Kuipers F,
Staels B.
FXR‐deficiency confers increased susceptibility to torpor.
FEBS Lett
581:
5191‐5198,
2007.
|
26. |
Cariou B,
van Harmelen K,
Duran‐Sandoval D,
van Dijk TH,
Grefhorst A,
Abdelkarim M,
Caron S,
Torpier G,
Fruchart JC,
Gonzalez FJ,
Kuipers F,
Staels B.
The farnesoid X receptor modulates adiposity and peripheral insulin sensitivity in mice.
J Biol Chem
281:
11039‐11049,
2006.
|
27. |
Carlton VE,
Harris BZ,
Puffenberger EG,
Batta AK,
Knisely AS,
Robinson DL,
Strauss KA,
Shneider BL,
Lim WA,
Salen G,
Morton DH,
Bull LN.
Complex inheritance of familial hypercholanemia with associated mutations in TJP2 and BAAT.
Nat Genet
34:
91‐96,
2003.
|
28. |
Chawla A,
Repa JJ,
Evans RM,
Mangelsdorf DJ.
Nuclear receptors and lipid physiology: Opening the X‐files.
Science
294:
1866‐1870.,
2001.
|
29. |
Chen F,
Ananthanarayanan M,
Emre S,
Neimark E,
Bull LN,
Knisely AS,
Strautnieks SS,
Thompson RJ,
Magid MS,
Gordon R,
Balasubramanian N,
Suchy FJ,
Shneider BL.
Progressive familial intrahepatic cholestasis, type 1, is associated with decreased farnesoid X receptor activity.
Gastroenterology
126:
756‐764,
2004.
|
30. |
Chen G,
Liang G,
Ou J,
Goldstein JL,
Brown MS.
Central role for liver X receptor in insulin‐mediated activation of Srebp‐1c transcription and stimulation of fatty acid synthesis in liver.
Proc Natl Acad Sci U S A
101:
11245‐11250,
2004.
|
31. |
Chiang JY.
Bile Acid regulation of gene expression: Roles of nuclear hormone receptors.
Endocr Rev
23:
443‐463,
2002.
|
32. |
Chiang JY.
Regulation of bile acid synthesis: Pathways, nuclear receptors, and mechanisms.
J Hepatol
40:
539‐551,
2004.
|
33. |
Chiang JY.
Bile acids: Regulation of synthesis.
J Lipid Res
50:
1955‐1966,
2009.
|
34. |
Chiang JYL.
Regulation of bile acid synthesis.
Front Biosci
3:
D176‐D193,
1998.
|
35. |
Chong CP,
Mills PB,
McClean P,
Gissen P,
Bruce C,
Stahlschmidt J,
Knisely AS,
Clayton PT.
Bile acid‐CoA ligase deficiency–a new inborn error of bile acid metabolism.
J Inherit Metab Dis
35:
521‐530,
2012.
|
36. |
Cipriani S,
Mencarelli A,
Chini MG,
Distrutti E,
Renga B,
Bifulco G,
Baldelli F,
Donini A,
Fiorucci S.
The bile acid receptor GPBAR‐1 (TGR5) modulates integrity of intestinal barrier and immune response to experimental colitis.
PLoS One
6:
e25637,
2011.
|
37. |
Cipriani S,
Mencarelli A,
Palladino G,
Fiorucci S.
FXR activation reverses insulin resistance and lipid abnormalities and protects against liver steatosis in Zucker (fa/fa) obese rats.
J Lipid Res
51:
771‐784,
2010.
|
38. |
Claudel T,
Staels B,
Kuipers F.
The Farnesoid X receptor: A molecular link between bile acid and lipid and glucose metabolism.
Arterioscler Thromb Vasc Biol
25:
2020‐2030,
2005.
|
39. |
Clayton PT.
Disorders of bile acid synthesis.
J Inherit Metab Dis
34:
593‐604,
2011.
|
40. |
Clayton PT,
Leonard JV,
Lawson AM,
Setchell KD,
Andersson S,
Egestad B,
Sjovall J.
Familial giant cell hepatitis associated with synthesis of 3 beta, 7 alpha‐dihydroxy‐and 3 beta,7 alpha, 12 alpha‐trihydroxy‐5‐cholenoic acids.
J Clin Invest
79:
1031‐1038,
1987.
|
41. |
Cohen JC,
Horton JD,
Hobbs HH.
Human fatty liver disease: Old questions and new insights.
Science
332:
1519‐1523,
2011.
|
42. |
Cordenonsi M,
Montagner M,
Adorno M,
Zacchigna L,
Martello G,
Mamidi A,
Soligo S,
Dupont S,
Piccolo S.
Integration of TGF‐beta and Ras/MAPK signaling through p53 phosphorylation.
Science
315:
840‐843,
2007.
|
43. |
Davidson MH,
Dillon MA,
Gordon B,
Jones P,
Samuels J,
Weiss S,
Isaacsohn J,
Toth P,
Burke SK.
Colesevelam hydrochloride (cholestagel): A new, potent bile acid sequestrant associated with a low incidence of gastrointestinal side effects.
Arch Intern Med
159:
1893‐1900,
1999.
|
44. |
Dawson PA,
Hubbert M,
Haywood J,
Craddock AL,
Zerangue N,
Christian WV,
Ballatori N.
The heteromeric organic solute transporter alpha‐beta, Ostalpha‐Ostbeta, is an ileal basolateral bile acid transporter.
J Biol Chem
280:
6960‐6968,
2005.
|
45. |
Day CP,
James OF.
Steatohepatitis: A tale of two “hits”?
Gastroenterology
114:
842‐845,
1998.
|
46. |
De Fabiani E,
Mitro N,
Gilardi F,
Caruso D,
Galli G,
Crestani M.
Coordinated control of cholesterol catabolism to bile acids and of gluconeogenesis via a novel mechanism of transcription regulation linked to the fasted‐to‐fed cycle.
J Biol Chem
278:
39124‐39132,
2003.
|
47. |
DeBose‐Boyd RA,
Ou J,
Goldstein JL,
Brown MS.
Expression of sterol regulatory element‐binding protein 1c (SREBP‐1c) mRNA in rat hepatoma cells requires endogenous LXR ligands.
Proc Natl Acad Sci U S A
98:
1477‐1482.,
2001.
|
48. |
Del Castillo‐Olivares A,
Campos JA,
Pandak WM,
Gil G.
Role of FTF/LRH‐1 on bile acid biosynthesis. A known nuclear receptor activator that can Act as a suppressor of bile acid biosynthesis.
J Biol Chem
279:
16813‐16821,
2004.
|
49. |
Denson LA,
Sturm E,
Echevarria W,
Zimmerman TL,
Makishima M,
Mangelsdorf DJ,
Karpen SJ.
The orphan nuclear receptor, shp, mediates bile acid‐induced inhibition of the rat bile acid transporter, ntcp.
Gastroenterology
121:
140‐147,
2001.
|
50. |
Dent P,
Fang Y,
Gupta S,
Studer E,
Mitchell C,
Spiegel S,
Hylemon PB.
Conjugated bile acids promote ERK1/2 and AKT activation via a pertussis toxin‐sensitive mechanism in murine and human hepatocytes.
Hepatology
42:
1291‐1299,
2005.
|
51. |
Drury JE,
Mindnich R,
Penning TM.
Characterization of disease‐related 5beta‐reductase (AKR1D1) mutations reveals their potential to cause bile acid deficiency.
J Biol Chem
285:
24529‐24537,
2010.
|
52. |
Duane WC,
Javitt NB.
27‐hydroxycholesterol. Production rates in normal human subjects.
J Lipid Res
40:
1194‐1199,
1999.
|
53. |
Duran‐Sandoval D,
Mautino G,
Martin G,
Percevault F,
Barbier O,
Fruchart JC,
Kuipers F,
Staels B.
Glucose regulates the expression of the farnesoid X receptor in liver.
Diabetes
53:
890‐898,
2004.
|
54. |
Edwards PA,
Tabor D,
Kast HR,
Venkateswaran A.
Regulation of gene expression by SREBP and SCAP.
Biochim Biophys Acta
1529:
103‐113,
2000.
|
55. |
Eloranta JJ,
Kullak‐Ublick GA.
The role of FXR in disorders of bile acid homeostasis.
Physiology (Bethesda)
23:
286‐295,
2008.
|
56. |
Engelking LJ,
Kuriyama H,
Hammer RE,
Horton JD,
Brown MS,
Goldstein JL,
Liang G.
Overexpression of Insig‐1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin‐stimulated lipogenesis.
J Clin Invest
113:
1168‐1175,
2004.
|
57. |
Fang Y,
Han SI,
Mitchell C,
Gupta S,
Studer E,
Grant S,
Hylemon PB,
Dent P.
Bile acids induce mitochondrial ROS, which promote activation of receptor tyrosine kinases and signaling pathways in rat hepatocytes.
Hepatology
40:
961‐971,
2004.
|
58. |
Fang Y,
Studer E,
Mitchell C,
Grant S,
Pandak WM,
Hylemon PB,
Dent P.
Conjugated bile acids regulate hepatocyte glycogen synthase activity in vitro and in vivo via Galphai signaling.
Mol Pharmacol
71:
1122‐1128,
2007.
|
59. |
Farrell GC,
Larter CZ.
Nonalcoholic fatty liver disease: From steatosis to cirrhosis.
Hepatology
43:
S99‐S112,
2006.
|
60. |
Ferdinandusse S,
Denis S,
Faust PL,
Wanders RJ.
Bile acids: Role of peroxisomes.
J Lipid Res 50: 2139‐2147, 2009.
|
61. |
Ferdinandusse S,
Overmars H,
Denis S,
Waterham HR,
Wanders RJ,
Vreken P.
Plasma analysis of di‐ and trihydroxycholestanoic acid diastereoisomers in peroxisomal alpha‐methylacyl‐CoA racemase deficiency.
J Lipid Res
42:
137‐141,
2001.
|
62. |
Fiorucci S,
Baldelli F.
Farnesoid X receptor agonists in biliary tract disease.
Curr Opin Gastroenterol
25:
252‐259,
2009.
|
63. |
Fiorucci S,
Cipriani S,
Mencarelli A,
Renga B,
Distrutti E,
Baldelli F.
Counter‐regulatory role of bile acid activated receptors in immunity and inflammation.
Curr Mol Med
10:
579‐595,
2010.
|
64. |
Foretz M,
Pacot C,
Dugail I,
Lemarchand P,
Guichard C,
Le Liepvre X,
Berthelier‐Lubrano C,
Spiegelman B,
Kim JB,
Ferre P,
Foufelle F.
ADD1/SREBP‐1c is required in the activation of hepatic lipogenic gene expression by glucose.
Mol Cell Biol
19:
3760‐3768,
1999.
|
65. |
Francis GA,
Fayard E,
Picard F,
Auwerx J.
Nuclear receptors and the control of metabolism.
Annu Rev Physiol
65:
261‐311,
2003.
|
66. |
Frankenberg T,
Rao A,
Chen F,
Haywood J,
Shneider BL,
Dawson PA.
Regulation of the mouse organic solute transporter alpha‐beta, Ostalpha‐Ostbeta, by bile acids.
Am J Physiol Gastrointest Liver Physiol
290:
G912‐G922,
2006.
|
67. |
Fu L,
John LM,
Adams SH,
Yu XX,
Tomlinson E,
Renz M,
Williams PM,
Soriano R,
Corpuz R,
Moffat B,
Vandlen R,
Simmons L,
Foster J,
Stephan JP,
Tsai SP,
Stewart TA.
Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin‐deficient diabetes.
Endocrinology
145:
2594‐2603,
2004.
|
68. |
Gadaleta RM,
Oldenburg B,
Willemsen EC,
Spit M,
Murzilli S,
Salvatore L,
Klomp LW,
Siersema PD,
van Erpecum KJ,
van Mil SW.
Activation of bile salt nuclear receptor FXR is repressed by pro‐inflammatory cytokines activating NF‐kappa B signaling in the intestine.
Biochim Biophys Acta
1812:
851‐858,
2011.
|
69. |
Gadaleta RM,
van Erpecum KJ,
Oldenburg B,
Willemsen EC,
Renooij W,
Murzilli S,
Klomp LW,
Siersema PD,
Schipper ME,
Danese S,
Penna G,
Laverny G,
Adorini L,
Moschetta A,
van Mil SW.
Farnesoid X receptor activation inhibits inflammation and preserves the intestinal barrier in inflammatory bowel disease.
Gut
60:
463‐472,
2011.
|
70. |
Ginsberg HN,
Zhang YL,
Hernandez‐Ono A.
Metabolic syndrome: Focus on dyslipidemia.
Obesity (Silver Spring)
14(Suppl 1):
41S‐49S,
2006.
|
71. |
Goldberg RB,
Fonseca VA,
Truitt KE,
Jones MR.
Efficacy and safety of colesevelam in patients with type 2 diabetes mellitus and inadequate glycemic control receiving insulin‐based therapy.
Arch Intern Med
168:
1531‐1540,
2008.
|
72. |
Goldfisher S,
Moore CL,
Johnson AB,
Spiro AI,
Valsamis MP,
Wisniewski HK,
Ritch RH,
Norton WT,
Rapin I,
Gartner M.
Peroxisomal and mitochondrial defects in the cerebro‐hepato‐renal syndrome.
Science
182:
62‐64,
1997.
|
73. |
Gonzales E,
Cresteil D,
Baussan C,
Dabadie A,
Gerhardt MF,
Jacquemin E.
SRD5B1 (AKR1D1) gene analysis in delta(4)‐3‐oxosteroid 5beta‐reductase deficiency: Evidence for primary genetic defect.
J Hepatol
40:
716‐718,
2004.
|
74. |
Goodwin B,
Jones SA,
Price RR,
Watson MA,
McKee DD,
Moore LB,
Galardi C,
Wilson JG,
Lewis MC,
Roth ME,
Maloney PR,
Willson TM,
Kliewer SA.
A regulatory cascade of the nuclear receptors FXR, SHP‐1, and LRH‐1 represses bile acid biosynthesis.
Mol Cell
6:
517‐526,
2000.
|
75. |
Groen AK,
Oude Elferink RP,
Verkade HJ,
Kuipers F.
The ins and outs of reverse cholesterol transport.
Ann Med
36:
135‐145,
2004.
|
76. |
Guo GL,
Lambert G,
Negishi M,
Ward JM,
Brewer HB, Jr.,
Kliewer SA,
Gonzalez FJ,
Sinal CJ.
Complementary roles of farnesoid X receptor, pregnane X receptor, and constitutive androstane receptor in protection against bile acid toxicity.
J Biol Chem
278:
45062‐45071,
2003.
|
77. |
Hageman J,
Herrema H,
Groen AK,
Kuipers F.
A role of the bile salt receptor FXR in atherosclerosis.
Arterioscler Thromb Vasc Biol
30:
1519‐1528,
2010.
|
78. |
Han S,
Chiang JY.
Mechanism of vitamin D receptor inhibition of cholesterol 7alpha‐hydroxylase gene transcription in human hepatocytes.
Drug Metab Dispos
37:
469‐478,
2009.
|
79. |
Hansen M,
Sonne DP,
Mikkelsen KH,
Gluud LL,
Vilsboll T,
Knop FK.
Effect of bile acid sequestrants on glycaemic control: Protocol for a systematic review with meta‐analysis of randomised controlled trials.
BMJ open
2:
2012.
|
80. |
Hanson RF,
Szczepanik‐Van Leeuwen P,
Williams GC,
Grabowski G,
Sharp HL.
Defects of bile acid synthesis in Zellweger's syndrome.
Science
203:
1107‐1108,
1979.
|
81. |
He J,
Nishida S,
Xu M,
Makishima M,
Xie W.
PXR prevents cholesterol gallstone disease by regulating biosynthesis and transport of bile salts.
Gastroenterology
140:
2095‐2106,
2011.
|
82. |
Hofmann AF.
Detoxification of lithocholic acid, a toxic bile acid: Relevance to drug hepatotoxicity.
Drug Metab Rev
36:
703‐722,
2004.
|
83. |
Holt JA,
Luo G,
Billin AN,
Bisi J,
McNeill YY,
Kozarsky KF,
Donahee M,
Wang da Y,
Mansfield TA,
Kliewer SA,
Goodwin B,
Jones SA.
Definition of a novel growth factor‐dependent signal cascade for the suppression of bile acid biosynthesis.
Genes Dev
17:
1581‐1591,
2003.
|
84. |
Hong C,
Bradley MN,
Rong X,
Wang X,
Wagner A,
Grijalva V,
Castellani LW,
Salazar J,
Realegeno S,
Boyadjian R,
Fogelman AM,
Van Lenten BJ,
Reddy ST,
Lusis AJ,
Tangirala RK,
Tontonoz P.
LXRalpha is uniquely required for maximal reverse cholesterol transport and atheroprotection in ApoE‐deficient mice.
J Lipid Res
53:
1126‐1133,
2012.
|
85. |
Horton JD,
Goldstein JL,
Brown MS.
SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver.
J Clin Invest
109:
1125‐1131,
2002.
|
86. |
Houten SM,
Watanabe M,
Auwerx J.
Endocrine functions of bile acids.
Embo J
25:
1419‐1425,
2006.
|
87. |
Hylemon PB,
Zhou H,
Pandak WM,
Ren S,
Gil G,
Dent P.
Bile acids as regulatory molecules.
J Lipid Res
50:
1509‐1520,
2009.
|
88. |
Inagaki T,
Choi M,
Moschetta A,
Peng L,
Cummins CL,
McDonald JG,
Luo G,
Jones SA,
Goodwin B,
Richardson JA,
Gerard RD,
Repa JJ,
Mangelsdorf DJ,
Kliewer SA.
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis.
Cell Metab
2:
217‐225,
2005.
|
89. |
Inagaki T,
Moschetta A,
Lee YK,
Peng L,
Zhao G,
Downes M,
Yu RT,
Shelton JM,
Richardson JA,
Repa JJ,
Mangelsdorf DJ,
Kliewer SA.
Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor.
Proc Natl Acad Sci U S A
103:
3920‐3925,
2006.
|
90. |
Ito S,
Fujimori T,
Furuya A,
Satoh J,
Nabeshima Y.
Impaired negative feedback suppression of bile acid synthesis in mice lacking betaKlotho.
J Clin Invest
115:
2202‐2208,
2005.
|
91. |
Jacquemin E.
Role of multidrug resistance 3 deficiency in pediatric and adult liver disease: one gene for three diseases.
Semin Liver Dis
21:
551‐562,
2001.
|
92. |
Jahan A,
Chiang JY.
Cytokine regulation of human sterol 12{alpha}‐hydroxylase (CYP8B1) gene.
Am J Physiol Gastrointest Liver Physiol
288:
G685‐G695,
2005.
|
93. |
Jansen PL,
Sturm E.
Genetic cholestasis, causes and consequences for hepatobiliary transport.
Liver Int
23:
315‐322,
2003.
|
94. |
Kast HR,
Nguyen CM,
Sinal CJ,
Jones SA,
Laffitte BA,
Reue K,
Gonzalez FJ,
Willson TM,
Edwards PA.
Farnesoid x‐activated receptor induces apolipoprotein c‐ii transcription: A molecular mechanism linking plasma triglyceride levels to bile acids.
Mol Endocrinol
15:
1720‐1728.,
2001.
|
95. |
Katsuma S,
Hirasawa A,
Tsujimoto G.
Bile acids promote glucagon‐like peptide‐1 secretion through TGR5 in a murine enteroendocrine cell line STC‐1.
Biochem Biophys Res Commun
329:
386‐390,
2005.
|
96. |
Kawamata Y,
Fujii R,
Hosoya M,
Harada M,
Yoshida H,
Miwa M,
Fukusumi S,
Habata Y,
Itoh T,
Shintani Y,
Hinuma S,
Fujisawa Y,
Fujino M.
A G protein‐coupled receptor responsive to bile acids.
J Biol Chem
278:
9435‐9440,
2003.
|
97. |
Keitel V,
Cupisti K,
Ullmer C,
Knoefel WT,
Kubitz R,
Haussinger D.
The membrane‐bound bile acid receptor TGR5 is localized in the epithelium of human gallbladders.
Hepatology 50: 861‐870, 2009.
|
98. |
Keitel V,
Donner M,
Winandy S,
Kubitz R,
Haussinger D.
Expression and function of the bile acid receptor TGR5 in Kupffer cells.
Biochem Biophys Res Commun
372:
78‐84,
2008.
|
99. |
Keitel V,
Nies AT,
Brom M,
Hummel‐Eisenbeiss J,
Spring H,
Keppler D.
A common Dubin‐Johnson syndrome mutation impairs protein maturation and transport activity of MRP2 (ABCC2).
Am J Physiol Gastrointest Liver Physiol
284:
G165‐G174,
2003.
|
100. |
Keitel V,
Reinehr R,
Gatsios P,
Rupprecht C,
Gorg B,
Selbach O,
Haussinger D,
Kubitz R.
The G‐protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells.
Hepatology
45:
695‐704,
2007.
|
101. |
Kerr TA,
Saeki S,
Schneider M,
Schaefer K,
Berdy S,
Redder T,
Shan B,
Russell DW,
Schwarz M.
Loss of nbuclear receptor SHP impairs but does not eliminate negative feedback regulation of bile acid synthesis.
Dev Cell
2:
713‐720,
2002.
|
102. |
Kim I,
Ahn SH,
Inagaki T,
Choi M,
Ito S,
Guo GL,
Kliewer SA,
Gonzalez FJ.
Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine.
J Lipid Res
48:
2664‐2672,
2007.
|
103. |
Kullak‐Ublick GA,
Meier PJ.
Mechanisms of cholestasis.
Clin Liver Dis
4:
357‐385,
2000.
|
104. |
Lang C,
Meier Y,
Stieger B,
Beuers U,
Lang T,
Kerb R,
Kullak‐Ublick GA,
Meier PJ,
Pauli‐Magnus C.
Mutations and polymorphisms in the bile salt export pump and the multidrug resistance protein 3 associated with drug‐induced liver injury.
Pharmacogenet Genomics
17:
47‐60,
2007.
|
105. |
Lang T,
Haberl M,
Jung D,
Drescher A,
Schlagenhaufer R,
Keil A,
Mornhinweg E,
Stieger B,
Kullak‐Ublick GA,
Kerb R.
Genetic variability, haplotype structures, and ethnic diversity of hepatic transporters MDR3 (ABCB4) and bile salt export pump (ABCB11).
Drug Metab Dispos
34:
1582‐1599,
2006.
|
106. |
Lefebvre P,
Cariou B,
Lien F,
Kuipers F,
Staels B.
Role of bile acids and bile acid receptors in metabolic regulation.
Physiol Rev
89:
147‐191,
2009.
|
107. |
Lemonde HA,
Custard EJ,
Bouquet J,
Duran M,
Overmars H,
Scambler PJ,
Clayton PT.
Mutations in SRD5B1 (AKR1D1), the gene encoding delta(4)‐3‐oxosteroid 5beta‐reductase, in hepatitis and liver failure in infancy.
Gut
52:
1494‐1499,
2003.
|
108. |
Lewis GF,
Rader DJ.
New insights into the regulation of HDL metabolism and reverse cholesterol transport.
Circ Res
96:
1221‐1232,
2005.
|
109. |
Li T,
Chanda D,
Zhang Y,
Choi HS,
Chiang JYL.
Glucose stimulates cholesterol 7alpha‐hydroxylase gene transcription in human hepatocytes.
J Lipid Res
51:
832‐842,
2010.
|
110. |
Li T,
Chiang JY.
Mechanism of rifampicin and pregnane X receptor (PXR) inhibition of human cholesterol 7{alpha}‐hydroxylase gene (CYP7A1) transcription.
Am J Physiol Gastrointest Liver Physiol
288:
G74‐G84,
2005.
|
111. |
Li T,
Chiang JY.
A novel role of transforming growth factor beta1 in transcriptional repression of human cholesterol 7alpha‐hydroxylase gene.
Gastroenterology
133:
1660‐1669,
2007.
|
112. |
Li T,
Francl JM,
Boehme S,
Ochoa A,
Zhang Y,
Klaassen CD,
Erickson SK,
Chiang JY.
Glucose and insulin induction of bile acid synthesis: Mechanisms and implication in diabetes and obesity.
J Biol Chem
287:
1861‐1873,
2012.
|
113. |
Li T,
Holmstrom SR,
Kir S,
Umetani M,
Schmidt DR,
Kliewer SA,
Mangelsdorf DJ.
The G protein‐coupled bile acid receptor, TGR5, stimulates gallbladder filling.
Mol Endocrinol
25:
1066‐1071,
2011.
|
114. |
Li T,
Jahan A,
Chiang JY.
Bile acids and cytokines inhibit the human cholesterol 7alpha‐hydroxylase gene via the JNK/c‐jun pathway in human liver cells.
Hepatology
43:
1202‐1210,
2006.
|
115. |
Li T,
Kong X,
Owsley E,
Ellis E,
Strom S,
Chiang JY.
Insulin regulation of cholesterol 7{alpha}‐hydroxylase expression in human hepatocytes: Roles of forkhead box o1 and sterol regulatory element‐binding protein 1c.
J Biol Chem
281:
28745‐28754,
2006.
|
116. |
Li T,
Matozel M,
Boehme S,
Kong B,
Nilsson LM,
Guo G,
Ellis E,
Chiang JY.
Overexpression of cholesterol 7alpha‐hydroxylase promotes hepatic bile acid synthesis and secretion and maintains cholesterol homeostasis.
Hepatology
53:
996‐1006,
2011.
|
117. |
Li T,
Owsley E,
Matozel M,
Hsu P,
Novak CM,
Chiang JY.
Transgenic expression of cholesterol 7alpha‐hydroxylase in the liver prevents high‐fat diet‐induced obesity and insulin resistance in mice.
Hepatology
52:
678‐690,
2010.
|
118. |
Li YC,
Wang DP,
Chiang JY.
Regulation of cholesterol 7 alpha‐hydroxylase in the liver. Cloning, sequencing, and regulation of cholesterol 7 alpha‐hydroxylase mRNA.
J Biol Chem
265:
12012‐12019,
1990.
|
119. |
Li YT,
Swales KE,
Thomas GJ,
Warner TD,
Bishop‐Bailey D.
Farnesoid x receptor ligands inhibit vascular smooth muscle cell inflammation and migration.
Arterioscler Thromb Vasc Biol
27:
2606‐2611,
2007.
|
120. |
Lin BC,
Wang M,
Blackmore C,
Desnoyers LR.
Liver specific activities of FGF19 require KLOTHO beta.
J Biol Chem
282:
27277‐27284,
2007.
|
121. |
Lu TT,
Makishima M,
Repa JJ,
Schoonjans K,
Kerr TA,
Auwerx J,
Mangelsdorf DJ.
Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors.
Mol Cell
6:
507‐515,
2000.
|
122. |
Lundasen T,
Galman C,
Angelin B,
Rudling M.
Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man.
J Intern Med
260:
530‐536,
2006.
|
123. |
Lundasen T,
Liao W,
Angelin B,
Rudling M.
Leptin induces the hepatic high density lipoprotein receptor scavenger receptor B type I (SR‐BI) but not cholesterol 7alpha‐hydroxylase (Cyp7a1) in leptin‐deficient (ob/ob) mice.
J Biol Chem
278:
43224‐43228,
2003.
|
124. |
Ma K,
Saha PK,
Chan L,
Moore DD.
Farnesoid X receptor is essential for normal glucose homeostasis.
J Clin Invest
116:
1102‐1109,
2006.
|
125. |
Maeda Y,
Seidel SD,
Wei G,
Liu X,
Sladek FM.
Repression of hepatocyte nuclear factor 4alpha tumor suppressor p53: Involvement of the ligand‐binding domain and histone deacetylase activity.
Mol Endocrinol
16:
402‐410,
2002.
|
126. |
Makishima M,
Lu TT,
Xie W,
Whitfield GK,
Domoto H,
Evans RM,
Haussler MR,
Mangelsdorf DJ.
Vitamin D receptor as an intestinal bile acid sensor.
Science
296:
1313‐1316.,
2002.
|
127. |
Makishima M,
Okamoto AY,
Repa JJ,
Tu H,
Learned RM,
Luk A,
Hull MV,
Lustig KD,
Mangelsdorf DJ,
Shan B.
Identification of a nuclear receptor for bile acids.
Science
284:
1362‐1365,
1999.
|
128. |
Maruyama T,
Miyamoto Y,
Nakamura T,
Tamai Y,
Okada H,
Sugiyama E,
Itadani H,
Tanaka K.
Identification of membrane‐type receptor for bile acids (M‐BAR).
Biochem Biophys Res Commun
298:
714‐719,
2002.
|
129. |
Maruyama T,
Tanaka K,
Suzuki J,
Miyoshi H,
Harada N,
Nakamura T,
Miyamoto Y,
Kanatani A,
Tamai Y.
Targeted disruption of G protein‐coupled bile acid receptor 1 (Gpbar1/M‐Bar) in mice.
J Endocrinol
191:
197‐205,
2006.
|
130. |
Miao J,
Xiao Z,
Kanamaluru D,
Min G,
Yau PM,
Veenstra TD,
Ellis E,
Strom S,
Suino‐Powell K,
Xu HE,
Kemper JK.
Bile acid signaling pathways increase stability of small heterodimer partner (SHP) by inhibiting ubiquitin‐proteasomal degradation.
Genes Dev
23:
986‐996,
2009.
|
131. |
Miyake JH,
Duong‐Polk XT,
Taylor JM,
Du EZ,
Castellani LW,
Lusis AJ,
Davis RA.
Transgenic expression of cholesterol‐7‐alpha‐hydroxylase prevents atherosclerosis in C57BL/6J mice.
Arterioscler Thromb Vasc Biol
22:
121‐126,
2002.
|
132. |
Miyake JH,
Wang SL,
Davis RA.
Bile acid induction of cytokine expression by macrophages correlates with repression of hepatic cholesterol 7alpha‐hydroxylase.
J Biol Chem
275:
21805‐21808,
2000.
|
133. |
Modica S,
Gadaleta RM,
Moschetta A.
Deciphering the nuclear bile acid receptor FXR paradigm.
Nuclear receptor signaling
8:
e005,
2010.
|
134. |
Moustafa T,
Fickert P,
Magnes C,
Guelly C,
Thueringer A,
Frank S,
Kratky D,
Sattler W,
Reicher H,
Sinner F,
Gumhold J,
Silbert D,
Fauler G,
Hofler G,
Lass A,
Zechner R,
Trauner M.
Alterations in lipid metabolism mediate inflammation, fibrosis, and proliferation in a mouse model of chronic cholestatic liver injury.
Gastroenterology
142:
140‐151 e112,
2012.
|
135. |
Mullenbach R,
Bennett A,
Tetlow N,
Patel N,
Hamilton G,
Cheng F,
Chambers J,
Howard R,
Taylor‐Robinson SD,
Williamson C.
ATP8B1 mutations in British cases with intrahepatic cholestasis of pregnancy.
Gut
54:
829‐834,
2005.
|
136. |
Myant NB,
Mitropoulos KA.
Cholesterol 7a‐hydroxylase.
J Lipid Res
18:
135‐153,
1977.
|
137. |
Noe J,
Kullak‐Ublick GA,
Jochum W,
Stieger B,
Kerb R,
Haberl M,
Mullhaupt B,
Meier PJ,
Pauli‐Magnus C.
Impaired expression and function of the bile salt export pump due to three novel ABCB11 mutations in intrahepatic cholestasis.
J Hepatol
43:
536‐543,
2005.
|
138. |
Painter JN,
Savander M,
Ropponen A,
Nupponen N,
Riikonen S,
Ylikorkala O,
Lehesjoki AE,
Aittomaki K.
Sequence variation in the ATP8B1 gene and intrahepatic cholestasis of pregnancy.
Eur J Hum Genet
13:
435‐439,
2005.
|
139. |
Pandak WM,
Stravitz RT,
Lucas V,
Heuman DM,
Chiang JY.
Hep G2 cells: A model for studies on regulation of human cholesterol 7alpha‐hydroxylase at the molecular level.
Am J Physiol
270:
G401‐G410,
1996.
|
140. |
Parks DJ,
Blanchard SG,
Bledsoe RK,
Chandra G,
Consler TG,
Kliewer SA,
Stimmel JB,
Willson TM,
Zavacki AM,
Moore DD,
Lehmann JM.
Bile acids: Natural ligands for an orphan nuclear receptor.
Science
284:
1365‐1368,
1999.
|
141. |
Patti ME,
Houten SM,
Bianco AC,
Bernier R,
Larsen PR,
Holst JJ,
Badman MK,
Maratos‐Flier E,
Mun EC,
Pihlajamaki J,
Auwerx J,
Goldfine AB.
Serum bile acids are higher in humans with prior gastric bypass: Potential contribution to improved glucose and lipid metabolism.
Obesity (Silver Spring)
17:
1671‐1677,
2009.
|
142. |
Pauli‐Magnus C,
Lang T,
Meier Y,
Zodan‐Marin T,
Jung D,
Breymann C,
Zimmermann R,
Kenngott S,
Beuers U,
Reichel C,
Kerb R,
Penger A,
Meier PJ,
Kullak‐Ublick GA.
Sequence analysis of bile salt export pump (ABCB11) and multidrug resistance p‐glycoprotein 3 (ABCB4, MDR3) in patients with intrahepatic cholestasis of pregnancy.
Pharmacogenetics
14:
91‐102,
2004.
|
143. |
Pellicciari R,
Costantino G,
Camaioni E,
Sadeghpour BM,
Entrena A,
Willson TM,
Fiorucci S,
Clerici C,
Gioiello A.
Bile acid derivatives as ligands of the farnesoid X receptor. Synthesis, evaluation, and structure‐activity relationship of a series of body and side chain modified analogues of chenodeoxycholic acid.
J Med Chem
47:
4559‐4569,
2004.
|
144. |
Pellicciari R,
Gioiello A,
Macchiarulo A,
Thomas C,
Rosatelli E,
Natalini B,
Sardella R,
Pruzanski M,
Roda A,
Pastorini E,
Schoonjans K,
Auwerx J.
Discovery of 6alpha‐ethyl‐23(S)‐methylcholic acid (S‐EMCA, INT‐777) as a potent and selective agonist for the TGR5 receptor, a novel target for diabesity.
J Med Chem
52:
7958‐7961,
2009.
|
145. |
Pellicciari R,
Sato H,
Gioiello A,
Costantino G,
Macchiarulo A,
Sadeghpour BM,
Giorgi G,
Schoonjans K,
Auwerx J.
Nongenomic actions of bile acids. Synthesis and preliminary characterization of 23‐ and 6,23‐alkyl‐substituted bile acid derivatives as selective modulators for the G‐protein coupled receptor TGR5.
J Med Chem
50:
4265‐4268,
2007.
|
146. |
Pols TW,
Nomura M,
Harach T,
Lo Sasso G,
Oosterveer MH,
Thomas C,
Rizzo G,
Gioiello A,
Adorini L,
Pellicciari R,
Auwerx J,
Schoonjans K.
TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading.
Cell Metab
14:
747‐757,
2011.
|
147. |
Pols TW,
Noriega LG,
Nomura M,
Auwerx J,
Schoonjans K.
The bile acid membrane receptor TGR5 as an emerging target in metabolism and inflammation.
J Hepatol
54:
1263‐1272,
2011.
|
148. |
Porez G,
Prawitt J,
Gross B,
Staels B.
Bile acid receptors as targets for the treatment of dyslipidemia and cardiovascular disease: Thematic review series: New lipid and lipoprotein targets for the treatment of cardiometabolic diseases.
J Lipid Res
53:
1723‐1737,
2012.
|
149. |
Pournaras DJ,
Glicksman C,
Vincent RP,
Kuganolipava S,
Alaghband‐Zadeh J,
Mahon D,
Bekker JH,
Ghatei MA,
Bloom SR,
Walters JR,
Welbourn R,
le Roux CW.
The Role of Bile After Roux‐en‐Y Gastric Bypass in Promoting Weight Loss and Improving Glycaemic Control.
Endocrinology
153:
3613‐3619,
2012.
|
150. |
Prawitt J,
Abdelkarim M,
Stroeve JH,
Popescu I,
Duez H,
Velagapudi VR,
Dumont J,
Bouchaert E,
van Dijk TH,
Lucas A,
Dorchies E,
Daoudi M,
Lestavel S,
Gonzalez FJ,
Oresic M,
Cariou B,
Kuipers F,
Caron S,
Staels B.
Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity.
Diabetes
60:
1861‐1871,
2011.
|
151. |
Puigserver P,
Rhee J,
Donovan J,
Walkey CJ,
Yoon JC,
Oriente F,
Kitamura Y,
Altomonte J,
Dong H,
Accili D,
Spiegelman BM.
Insulin‐regulated hepatic gluconeogenesis through FOXO1‐PGC‐1alpha interaction.
Nature
423:
550‐555,
2003.
|
152. |
Pullinger CR,
Eng C,
Salen G,
Shefer S,
Batta AK,
Erickson SK,
Verhagen A,
Rivera CR,
Mulvihill SJ,
Malloy MJ,
Kane JP.
Human cholesterol 7alpha‐hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype.
J Clin Invest
110:
109‐117.,
2002.
|
153. |
Qiao L,
McKinstry R,
Gupta S,
Gilfor D,
Windle JJ,
Hylemon PB,
Grant S,
Fisher PB,
Dent P.
Cyclin kinase inhibitor p21 potentiates bile acid‐induced apoptosis in hepatocytes that is dependent on p53.
Hepatology
36:
39‐48,
2002.
|
154. |
Ratliff EP,
Gutierrez A,
Davis RA.
Transgenic expression of CYP7A1 in LDL receptor‐deficient mice blocks diet‐induced hypercholesterolemia.
J Lipid Res
47:
1513‐1520,
2006.
|
155. |
Reaven G,
Abbasi F,
McLaughlin T.
Obesity, insulin resistance, and cardiovascular disease.
Recent Prog Horm Res
59:
207‐223,
2004.
|
156. |
Reaven GM.
Banting lecture 1988. Role of insulin resistance in human disease.
Diabetes
37:
1595‐1607,
1988.
|
157. |
Reinehr R,
Becker S,
Keitel V,
Eberle A,
Grether‐Beck S,
Haussinger D.
Bile salt‐induced apoptosis involves NADPH oxidase isoform activation.
Gastroenterology
129:
2009‐2031,
2005.
|
158. |
Renga B,
Mencarelli A,
Vavassori P,
Brancaleone V,
Fiorucci S.
The bile acid sensor FXR regulates insulin transcription and secretion.
Biochim Biophys Acta
1802:
363‐372,
2010.
|
159. |
Russell DW.
The enzymes, regulation, and genetics of bile acid synthesis.
Annu Rev Biochem
72:
1370174,
2003.
|
160. |
Schaap FG,
van der Gaag NA,
Gouma DJ,
Jansen PL.
High expression of the bile salt‐homeostatic hormone fibroblast growth factor 19 in the liver of patients with extrahepatic cholestasis.
Hepatology
49:
1228‐1235,
2009.
|
161. |
Schwarz M,
Wright AC,
Davis DL,
Nazer H,
Bjorkhem I,
Russell DW.
The bile acid synthetic gene 3beta‐hydroxy‐Delta(5)‐C(27)‐steroid oxidoreductase is mutated in progressive intrahepatic cholestasis.
J Clin Invest
106:
1175‐1184.,
2000.
|
162. |
Setchell KD,
Heubi JE,
Bove KE,
O'Connell NC,
Brewsaugh T,
Steinberg SJ,
Moser A,
Squires RH, Jr.
Liver disease caused by failure to racemize trihydroxycholestanoic acid: Gene mutation and effect of bile acid therapy.
Gastroenterology
124:
217‐232,
2003.
|
163. |
Setchell KD,
Street JM.
Inborn errors of bile acid synthesis.
Semin Liver Dis
7:
85‐99,
1987.
|
164. |
Setchell KD,
Suchy FJ,
Welsh MB,
Zimmer‐Nechemias L,
Heubi J,
Balistreri WF.
Delta 4‐3‐oxosteroid 5 beta‐reductase deficiency described in identical twins with neonatal hepatitis. A new inborn error in bile acid synthesis.
J Clin Invest
82:
2148‐2157,
1988.
|
165. |
Setchell KDR,
Schwarz M,
O'Connell NC,
Lund EG,
Davis DL,
Lathe R,
Thompson HR,
Weslie Tyson R,
Sokol RJ,
Russell DW.
Identification of a new inborn error in bile acid synthesis: Mutation of the oxysterol 7α‐hydroxylase gene causes severe neonatal liver disease.
J Clin Invest
102:
1690‐1703,
1998.
|
166. |
Shaham O,
Wei R,
Wang TJ,
Ricciardi C,
Lewis GD,
Vasan RS,
Carr SA,
Thadhani R,
Gerszten RE,
Mootha VK.
Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity.
Mol Syst Biol
4:
214,
2008.
|
167. |
Shang Q,
Saumoy M,
Holst JJ,
Salen G,
Xu G.
Colesevelam improves insulin resistance in a diet‐induced obesity (F‐DIO) rat model by increasing the release of GLP‐1.
Am J Physiol Gastrointest Liver Physiol
298:
G419‐424,
2010.
|
168. |
Shimomura I,
Bashmakov Y,
Horton JD.
Increased levels of nuclear SREBP‐1c associated with fatty livers in two mouse models of diabetes mellitus.
J Biol Chem
274:
30028‐30032,
1999.
|
169. |
Shimomura I,
Bashmakov Y,
Ikemoto S,
Horton JD,
Brown MS,
Goldstein JL.
Insulin selectively increases SREBP‐1c mRNA in the livers of rats with streptozotocin‐induced diabetes.
Proc Natl Acad Sci U S A
96:
13656‐13661.,
1999.
|
170. |
Shin DJ,
Campos JA,
Gil G,
Osborne TF.
PGC‐1a activates CYP7A1 and bile acid biosynthesis.
J Biol Chem
278:
50047‐50052,
2003.
|
171. |
Shneider BL,
Setchell KD,
Whitington PF,
Neilson KA,
Suchy FJ.
Delta 4‐3‐oxosteroid 5 beta‐reductase deficiency causing neonatal liver failure and hemochromatosis [see comments].
J Pediatr
124:
234‐238,
1994.
|
172. |
Sinal CJ,
Tohkin M,
Miyata M,
Ward JM,
Lambert G,
Gonzalez FJ.
Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis.
Cell
102:
731‐744,
2000.
|
173. |
Sola S,
Amaral JD,
Aranha MM,
Steer CJ,
Rodrigues CM.
Modulation of hepatocyte apoptosis: cross‐talk between bile acids and nuclear steroid receptors.
Curr Med Chem
13:
3039‐3051,
2006.
|
174. |
Song KH,
Chiang JY.
Glucagon and cAMP inhibit cholesterol 7alpha‐hydroxylase (CYP7a1) gene expression in human hepatocytes: Discordant regulation of bile acid synthesis and gluconeogenesis.
Hepatology
43:
117‐125,
2006.
|
175. |
Song KH,
Ellis E,
Strom S,
Chiang JY.
Hepatocyte growth factor signaling pathway inhibits cholesterol 7alpha‐hydroxylase and bile acid synthesis in human hepatocytes.
Hepatology
46:
1993‐2002,
2007.
|
176. |
Song KH,
Li T,
Owsley E,
Strom S,
Chiang JY.
Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7alpha‐hydroxylase gene expression.
Hepatology
49:
297‐305,
2009.
|
177. |
Song MB,
Yu XJ,
Zhu GX,
Chen JF,
Zhao G,
Huang L.
Transfection of HGF gene enhances endothelial progenitor cell (EPC) function and improves EPC transplant efficiency for balloon‐induced arterial injury in hypercholesterolemic rats.
Vascul Pharmacol
51:
205‐213,
2009.
|
178. |
Sonoda J,
Xie W,
Rosenfeld JM,
Barwick JL,
Guzelian PS,
Evans RM.
Regulation of a xenobiotic sulfonation cascade by nuclear pregnane X receptor (PXR).
Proc Natl Acad Sci U S A
99:
13801‐13806,
2002.
|
179. |
Staels B.
A review of bile acid sequestrants: Potential mechanism(s) for glucose‐lowering effects in type 2 diabetes mellitus.
Postgrad Med
121:
25‐30,
2009.
|
180. |
Staels B,
Kuipers F.
Bile acid sequestrants and the treatment of type 2 diabetes mellitus.
Drugs
67:
1383‐1392,
2007.
|
181. |
Stayrook KR,
Bramlett KS,
Savkur RS,
Ficorilli J,
Cook T,
Christe ME,
Michael LF,
Burris TP.
Regulation of carbohydrate metabolism by the farnesoid x receptor.
Endocrinology
146:
984‐991,
2005.
|
182. |
Strautnieks SS,
Bull LN,
Knisely AS,
Kocoshis SA,
Dahl N,
Arnell H,
Sokal E,
Dahan K,
Childs S,
Ling V,
Tanner MS,
Kagalwalla AF,
Nemeth A,
Pawlowska J,
Baker A,
Mieli‐Vergani G,
Freimer NB,
Gardiner RM,
Thompson RJ.
A gene encoding a liver‐specific ABC transporter is mutated in progressive familial intrahepatic cholestasis.
Nat Genet
20:
233‐238,
1998.
|
183. |
Studer E,
Zhou X,
Zhao R,
Wang Y,
Takabe K,
Nagahashi M,
Pandak WM,
Dent P,
Spiegel S,
Shi R,
Xu W,
Liu X,
Bohdan P,
Zhang L,
Zhou H,
Hylemon PB.
Conjugated bile acids activate the sphingosine‐1‐phosphate receptor 2 in primary rodent hepatocytes.
Hepatology
55:
267‐276,
2012.
|
184. |
Subbiah MTR,
Yunker RL.
Cholesterol 7a‐hydroxylase of rat liver: an insulin sensitive enzyme.
Biochem Biophys Res Commun
124:
896‐902,
1984.
|
185. |
Subramaniam P,
Clayton PT,
Portmann BC,
Mieli‐Vergani G,
Hadzic N.
Variable clinical spectrum of the most common inborn error of bile acid metabolism–3beta‐hydroxy‐Delta 5‐C27‐steroid dehydrogenase deficiency.
J Pediatr Gastroenterol Nutr
50:
61‐66,
2010.
|
186. |
Temel RE,
Brown JM.
Biliary and nonbiliary contributions to reverse cholesterol transport.
Curr Opin Lipidol
23:
85‐90,
2012.
|
187. |
Thomas C,
Auwerx J,
Schoonjans K.
Bile acids and the membrane bile acid receptor TGR5–connecting nutrition and metabolism.
Thyroid
18:
167‐174,
2008.
|
188. |
Thomas C,
Gioiello A,
Noriega L,
Strehle A,
Oury J,
Rizzo G,
Macchiarulo A,
Yamamoto H,
Mataki C,
Pruzanski M,
Pellicciari R,
Auwerx J,
Schoonjans K.
TGR5‐mediated bile acid sensing controls glucose homeostasis.
Cell Metab
10:
167‐177,
2009.
|
189. |
Thomas C,
Pellicciari R,
Pruzanski M,
Auwerx J,
Schoonjans K.
Targeting bile‐acid signalling for metabolic diseases.
Nat Rev Drug Discov
7:
678‐693,
2008.
|
190. |
Tiniakos DG,
Vos MB,
Brunt EM.
Nonalcoholic fatty liver disease: Pathology and pathogenesis.
Annu Rev Pathol
5:
145‐171,
2010.
|
191. |
Tomlinson E,
Fu L,
John L,
Hultgren B,
Huang X,
Renz M,
Stephan JP,
Tsai SP,
Powell‐Braxton L,
French D,
Stewart TA.
Transgenic mice expressing human fibroblast growth factor‐19 display increased metabolic rate and decreased adiposity.
Endocrinology
143:
1741‐1747,
2002.
|
192. |
Trauner M,
Meier PJ,
Boyer JL.
Molecular pathogenesis of cholestasis.
N Engl J Med
339:
1217‐1227,
1998.
|
193. |
Tu H,
Okamoto AY,
Shan B.
FXR, a bile acid receptor and biological sensor.
Trends Cardiovasc Med
10:
30‐35,
2000.
|
194. |
Uppal H,
Toma D,
Saini SP,
Ren S,
Jones TJ,
Xie W.
Combined loss of orphan receptors PXR and CAR heightens sensitivity to toxic bile acids in mice.
Hepatology
41:
168‐176,
2005.
|
195. |
Van Mil SW,
Milona A,
Dixon PH,
Mullenbach R,
Geenes VL,
Chambers J,
Shevchuk V,
Moore GE,
Lammert F,
Glantz AG,
Mattsson LA,
Whittaker J,
Parker MG,
White R,
Williamson C.
Functional variants of the central bile acid sensor FXR identified in intrahepatic cholestasis of pregnancy.
Gastroenterology
133:
507‐516,
2007.
|
196. |
Vassileva G,
Golovko A,
Markowitz L,
Abbondanzo SJ,
Zeng M,
Yang S,
Hoos L,
Tetzloff G,
Levitan D,
Murgolo NJ,
Keane K,
Davis HR, Jr.,
Hedrick J,
Gustafson EL.
Targeted deletion of Gpbar1 protects mice from cholesterol gallstone formation.
Biochem J
398:
423‐430,
2006.
|
197. |
Vavassori P,
Mencarelli A,
Renga B,
Distrutti E,
Fiorucci S.
The bile acid receptor FXR is a modulator of intestinal innate immunity.
J. Immunol
183:
6251‐6261,
2009.
|
198. |
Wagner M,
Zollner G,
Trauner M.
New molecular insights into the mechanisms of cholestasis.
J Hepatol
51:
565‐580,
2009.
|
199. |
Wang H,
Chen J,
Hollister K,
Sowers LC,
Forman BM.
Endogenous bile acids are ligands for the nuclear receptor FXR/BAR.
Mol Cell
3:
543‐553,
1999.
|
200. |
Wang J,
Gafvels M,
Rudling M,
Murphy C,
Bjorkhem I,
Einarsson C,
Eggertsen G.
Critical role of cholic acid for development of hypercholesterolemia and gallstones in diabetic mice.
Biochem Biophys Res Commun
342:
1382‐1388,
2006.
|
201. |
Wang L,
Lee YK,
Bundman D,
Han Y,
Thevananther S,
Kim CS,
Chua SS,
Wei P,
Heyman RA,
Karin M,
Moore DD.
Redundant pathways for negative feedback regulation of bile Acid production.
Dev Cell
2:
721‐731.,
2002.
|
202. |
Wang L,
Liu J,
Saha P,
Huang J,
Chan L,
Spiegelman B,
Moore DD.
The orphan nuclear receptor SHP regulates PGC‐1alpha expression and energy production in brown adipocytes.
Cell Metab
2:
227‐238,
2005.
|
203. |
Wang YD,
Chen WD,
Wang M,
Yu D,
Forman BM,
Huang W.
Farnesoid X receptor antagonizes nuclear factor kappaB in hepatic inflammatory response.
Hepatology
48:
1632‐1643,
2008.
|
204. |
Wang YD,
Chen WD,
Yu D,
Forman BM,
Huang W.
The G‐Protein‐coupled bile acid receptor, Gpbar1 (TGR5), negatively regulates hepatic inflammatory response through antagonizing nuclear factor kappa light‐chain enhancer of activated B cells (NF‐kappaB) in mice.
Hepatology
54:
1421‐1432,
2011.
|
205. |
Wasmuth HE,
Glantz A,
Keppeler H,
Simon E,
Bartz C,
Rath W,
Mattsson LA,
Marschall HU,
Lammert F.
Intrahepatic cholestasis of pregnancy: The severe form is associated with common variants of the hepatobiliary phospholipid transporter ABCB4 gene.
Gut
56:
265‐270,
2007.
|
206. |
Watanabe M,
Horai Y,
Houten SM,
Morimoto K,
Sugizaki T,
Arita E,
Mataki C,
Sato H,
Tanigawara Y,
Schoonjans K,
Itoh H,
Auwerx J.
Lowering bile acid pool size with a synthetic farnesoid X receptor (FXR) agonist induces obesity and diabetes through reduced energy expenditure.
J Biol Chem
286:
26913‐26920,
2011.
|
207. |
Watanabe M,
Houten SM,
Mataki C,
Christoffolete MA,
Kim BW,
Sato H,
Messaddeq N,
Harney JW,
Ezaki O,
Kodama T,
Schoonjans K,
Bianco AC,
Auwerx J.
Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation.
Nature
439:
484‐489,
2006.
|
208. |
Watanabe M,
Houten SM,
Wang L,
Moschetta A,
Mangelsdorf DJ,
Heyman RA,
Moore DD,
Auwerx J.
Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP‐1c.
J Clin Invest
113:
1408‐1418,
2004.
|
209. |
Weingartner O,
Laufs U,
Bohm M,
Lutjohann D.
An alternative pathway of reverse cholesterol transport: The oxysterol 27‐hydroxycholesterol.
Atherosclerosis
209:
39‐41,
2010.
|
210. |
Wilkinson DS,
Ogden SK,
Stratton SA,
Piechan JL,
Nguyen TT,
Smulian GA,
Barton MC.
A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha‐fetoprotein gene.
Mol Cell Biol
25:
1200‐1212,
2005.
|
211. |
Wittenburg H,
Lyons MA,
Li R,
Churchill GA,
Carey MC,
Paigen B.
FXR and ABCG5/ABCG8 as determinants of cholesterol gallstone formation from quantitative trait locus mapping in mice.
Gastroenterology
125:
868‐881,
2003.
|
212. |
Xie W,
Radominska‐Pandya A,
Shi Y,
Simon CM,
Nelson MC,
Ong ES,
Waxman DJ,
Evans RM.
An essential role for nuclear receptors SXR/PXR in detoxification of cholestatic bile acids.
Proc Natl Acad Sci U S A
98:
3375‐3380.,
2001.
|
213. |
Xie Y,
Blanc V,
Kerr TA,
Kennedy S,
Luo J,
Newberry EP,
Davidson NO.
Decreased expression of cholesterol 7{alpha}‐hydroxylase and altered bile acid metabolism in apobec‐1‐/‐ mice lead to increased gallstone susceptibility.
J Biol Chem
284:
16860‐16871,
2009.
|
214. |
Yabe D,
Brown MS,
Goldstein JL.
Insig‐2, a second endoplasmic reticulum protein that binds SCAP and blocks export of sterol regulatory element‐binding proteins.
Proc Natl Acad Sci U S A
99:
12753‐12758,
2002.
|
215. |
Yamagata K,
Daitoku H,
Shimamoto Y,
Matsuzaki H,
Hirota K,
Ishida J,
Fukamizu A.
Bile acids regulate gluconeogenic gene expression via small heterodimer partner‐mediated repression of hepatocyte nuclear factor 4 and Foxo1.
J Biol Chem
279:
23158‐23165,
2004.
|
216. |
Yeh MM,
Brunt EM.
Pathology of nonalcoholic fatty liver disease.
Am J Clin Pathol
128:
837‐847,
2007.
|
217. |
Yu C,
Wang F,
Jin C,
Huang X,
McKeehan WL.
Independent repression of bile acid synthesis and activation of c‐Jun N‐terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids.
J Biol Chem
280:
17707‐17714,
2005.
|
218. |
Yu C,
Wang F,
Kan M,
Jin C,
Jones RB,
Weinstein M,
Deng CX,
McKeehan WL.
Elevated cholesterol metabolism and bile acid synthesis in mice lacking membrane tyrosine kinase receptor FGFR4.
J Biol Chem
275:
15482‐15489,
2000.
|
219. |
Zhang M,
Chiang JY.
Transcriptional regulation of the human sterol 12α‐hydroxylase gene (CYP8B1): Roles of hepatocyte nuclear factor 4α (HNF4α) in mediating bile acid repression.
J Biol Chem
276:
41690‐41699,
2001.
|
220. |
Zhang Y,
Breevoort SR,
Angdisen J,
Fu M,
Schmidt DR,
Holmstrom SR,
Kliewer SA,
Mangelsdorf DJ,
Schulman IG.
Liver LXRalpha expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice.
J Clin Invest
122:
1688‐1699,
2012.
|
221. |
Zhang Y,
Edwards PA.
FXR signaling in metabolic disease.
FEBS Lett
582:
10‐18,
2008.
|
222. |
Zhang Y,
Lee FY,
Barrera G,
Lee H,
Vales C,
Gonzalez FJ,
Willson TM,
Edwards PA.
Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice.
Proc Natl Acad Sci U S A
103:
1006‐1011,
2006.
|
223. |
Zollner G,
Marschall HU,
Wagner M,
Trauner M.
Role of nuclear receptors in the adaptive response to bile acids and cholestasis: Pathogenetic and therapeutic considerations.
Mol Pharm
3:
231‐251,
2006.
|
224. |
Zollner G,
Trauner M.
Nuclear receptors as therapeutic targets in cholestatic liver diseases.
Br J Pharmacol
156:
7‐27,
2009.
|