Comprehensive Physiology Wiley Online Library

Development of the Pituitary Gland

Full Article on Wiley Online Library



Abstract

The development of the anterior pituitary gland occurs in distinct sequential developmental steps, leading to the formation of a complex organ containing five different cell types secreting six different hormones. During this process, the temporal and spatial expression of a cascade of signaling molecules and transcription factors plays a crucial role in organ commitment, cell proliferation, patterning, and terminal differentiation. The morphogenesis of the gland and the emergence of distinct cell types from a common primordium are governed by complex regulatory networks involving transcription factors and signaling molecules that may be either intrinsic to the developing pituitary or extrinsic, originating from the ventral diencephalon, the oral ectoderm, and the surrounding mesenchyme. Endocrine cells of the pituitary gland are organized into structural and functional networks that contribute to the coordinated response of endocrine cells to stimuli; these cellular networks are formed during embryonic development and are maintained or may be modified in adulthood, contributing to the plasticity of the gland. Abnormalities in any of the steps of pituitary development may lead to congenital hypopituitarism that includes a spectrum of disorders from isolated to combined hormone deficiencies including syndromic disorders such as septo‐optic dysplasia. Over the past decade, the acceleration of next‐generation sequencing has allowed for rapid analysis of the patient genome to identify novel mutations and novel candidate genes associated with hypothalmo‐pituitary development. Subsequent functional analysis using patient fibroblast cells, and the generation of stem cells derived from patient cells, is fast replacing the need for animal models while providing a more physiologically relevant characterization of novel mutations. Furthermore, CRISPR‐Cas9 as the method for gene editing is replacing previous laborious and time‐consuming gene editing methods that were commonly used, thus yielding knockout cell lines in a fraction of the time. © 2020 American Physiological Society. Compr Physiol 10:389‐413, 2020.

Keywords: pituitary; endocrinology and metabolism; anterior pituitary; neurophysiology

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Schematic presentation of the stages of pituitary development in rodents: (A) Oral ectoderm; (B) Rudimentary pouch; (C) Definitive pouch; (D) Adult pituitary gland. The close contact between the developing Rathke's pouch (red) and the infundibulum (yellow) is maintained throughout and is important for the normal morphogenesis of the gland. I, Infundibulum; NP, neural plate; N, notochord; PP, pituitary placode; OM, oral membrane; H, heart; F, forebrain; MB, midbrain; HB, hindbrain; RP, Rathke's pouch; AN, anterior neural pore; O, oral cavity; PL, posterior lobe; OC, optic chiasm; P, pontine flexure; PO, pons; IL, intermediate lobe; AL, anterior lobe; DI, diencephalon; SC, sphenoid cartilage. Reused, with permission, from Kelberman D, et al., 2009 114.
Figure 2. Figure 2. Pituitary organogenesis during human embryonic development. (A) Midline sagittal hematoxylin and eosin‐stained section of a Carnegie stage (CS) 13 embryo, at approximately 5 weeks of development, showing the invagination of the oral ectoderm to form Rathke's pouch (arrow). (B) Sagittal section of CS14 embryo showing the developing Rathke's pouch coming into contact with the overlying neuroectoderm. (C) Sagittal section of CS15 embryo showing the definitive Rathke's pouch becoming separated from the oral ectoderm. Panel (D) at CS 17, the definitive Rathke's pouch is fully separated from the oral ectoderm and maintains contact with the neural ectoderm of the diencephalon. Rp, Rathke's pouch; oe, oral ectoderm; Di, diencephalon. Scale bars: (A) and (D), 300 μm; (B) and (C), 100 μm. Reused, with permission, from Kelberman D, et al., 2009 114.
Figure 3. Figure 3. Schematic cascade of transcription factors and signaling molecules during pituitary development. The terminal differentiation of the anterior pituitary cell types is the result of complex interactions between extrinsic signaling molecules and transcription factors (HESX1, SOX2, SOX3, OTX2, LHX3, LHX4, GATA2, ISL1, PROP1, and POU1F1). Mutations in the early developmental transcription factors result in pituitary hormone deficiencies in association with structural pituitary abnormalities and/or extrapituitary defects (i.e., ocular or skeletal abnormalities, midline and other central nervous system defects, sensorineural deafness, and developmental delay). Mutations in the later transcription factors result in combined or isolated pituitary hormone deficiencies, depending on the factor affected. Reused, with permission, from Kelberman D, et al., 2009 114.
Figure 4. Figure 4. Sox2 expression and abnormal morphogenesis of the pituitary gland in Sox2 heterozygote mice. (A) Sagittal section of an 11.5‐dpc wild‐type embryo hybridized to Sox2, shows expression in both the CNS and Rathke's pouch. (B,C) Sagittal sections of 12.5‐dpc wild‐type (B) and Sox2 heterozygous (C) embryos demonstrate bifurcation of the pouch in the mutant embryo. (D,E) Pituitary transverse sections of 5‐week‐old wild‐type (D) and Sox2 heterozygous mice (E). There is presence of an extra cleft in the Sox2 heterozygous pituitary (arrow). The bifurcated Rathke's pouch is reminiscent of the abnormal shape in mouse mutants with disruption of Hesx1 63, Sox3, Wnt5a 39, or Shh 241. HYP, Presumptive hypothalamus; RP, Rathke's pouch. Scale bars: 0.1 mm. Reused, with permission, from Kelberman D, et al., 2006 113.
Figure 5. Figure 5. Pituitary MRI of patients with congenital hypopituitarism (B–F) compared to normal MRI appearance (A). (A) Midsagittal MRI scan of a normal child, showing a well‐formed corpus callosum (CC), normal optic chiasm (OC), and the posterior pituitary (PP), which appears as a bright spot within the sella turcica. (B) Sagittal MRI scan of two siblings with a homozygous p.R160C mutation in HESX1. In the first sibling (i), the splenium of the corpus callosum is more hypoplastic than the rest of the structure, and the posterior pituitary is partially descended as compared with the other sibling (ii) who has a severely hypoplastic corpus callosum, ectopic posterior pituitary, and lack of visible pituitary stalk (PS). (C) Coronal and sagittal MRI scans from one patient [panels (i) and (ii)] and sagittal scan from a second patient (iii) with SOX3 duplication showing anterior pituitary (AP) hypoplasia, partial hypoplasia of the infundibulum (I) in the first patient and complete absence in the second, and an ectopic posterior pituitary which is more severe in the second patient. (D) MRI scans from patient with SOX2 mutations. Sagittal section from patient with c60insG mutation showing anterior pituitary (ap) hypoplasia with normal posterior pituitary (pp) and infundibulum (i) and a hypothalamic hamartoma (h). (E) Sagittal MRI scan in patient with compound heterozygosity for p.E230K and p.R172Q mutations in POU1F1, showing hypoplasia of the anterior pituitary gland with a normal posterior pituitary and infundibulum. (F) Sequential MRI scanning of a patient with a 13‐bp deletion (c.112_124del13) in PROP1 reveals waxing and waning of a pituitary mass (arrow): (i) on initial presentation, (ii) after 4 months, (iii) after 12 months, and (iv) 21 months after initial MRI. Reused, with permission, from Kelberman D, et al., 2009 114.


Figure 1. Schematic presentation of the stages of pituitary development in rodents: (A) Oral ectoderm; (B) Rudimentary pouch; (C) Definitive pouch; (D) Adult pituitary gland. The close contact between the developing Rathke's pouch (red) and the infundibulum (yellow) is maintained throughout and is important for the normal morphogenesis of the gland. I, Infundibulum; NP, neural plate; N, notochord; PP, pituitary placode; OM, oral membrane; H, heart; F, forebrain; MB, midbrain; HB, hindbrain; RP, Rathke's pouch; AN, anterior neural pore; O, oral cavity; PL, posterior lobe; OC, optic chiasm; P, pontine flexure; PO, pons; IL, intermediate lobe; AL, anterior lobe; DI, diencephalon; SC, sphenoid cartilage. Reused, with permission, from Kelberman D, et al., 2009 114.


Figure 2. Pituitary organogenesis during human embryonic development. (A) Midline sagittal hematoxylin and eosin‐stained section of a Carnegie stage (CS) 13 embryo, at approximately 5 weeks of development, showing the invagination of the oral ectoderm to form Rathke's pouch (arrow). (B) Sagittal section of CS14 embryo showing the developing Rathke's pouch coming into contact with the overlying neuroectoderm. (C) Sagittal section of CS15 embryo showing the definitive Rathke's pouch becoming separated from the oral ectoderm. Panel (D) at CS 17, the definitive Rathke's pouch is fully separated from the oral ectoderm and maintains contact with the neural ectoderm of the diencephalon. Rp, Rathke's pouch; oe, oral ectoderm; Di, diencephalon. Scale bars: (A) and (D), 300 μm; (B) and (C), 100 μm. Reused, with permission, from Kelberman D, et al., 2009 114.


Figure 3. Schematic cascade of transcription factors and signaling molecules during pituitary development. The terminal differentiation of the anterior pituitary cell types is the result of complex interactions between extrinsic signaling molecules and transcription factors (HESX1, SOX2, SOX3, OTX2, LHX3, LHX4, GATA2, ISL1, PROP1, and POU1F1). Mutations in the early developmental transcription factors result in pituitary hormone deficiencies in association with structural pituitary abnormalities and/or extrapituitary defects (i.e., ocular or skeletal abnormalities, midline and other central nervous system defects, sensorineural deafness, and developmental delay). Mutations in the later transcription factors result in combined or isolated pituitary hormone deficiencies, depending on the factor affected. Reused, with permission, from Kelberman D, et al., 2009 114.


Figure 4. Sox2 expression and abnormal morphogenesis of the pituitary gland in Sox2 heterozygote mice. (A) Sagittal section of an 11.5‐dpc wild‐type embryo hybridized to Sox2, shows expression in both the CNS and Rathke's pouch. (B,C) Sagittal sections of 12.5‐dpc wild‐type (B) and Sox2 heterozygous (C) embryos demonstrate bifurcation of the pouch in the mutant embryo. (D,E) Pituitary transverse sections of 5‐week‐old wild‐type (D) and Sox2 heterozygous mice (E). There is presence of an extra cleft in the Sox2 heterozygous pituitary (arrow). The bifurcated Rathke's pouch is reminiscent of the abnormal shape in mouse mutants with disruption of Hesx1 63, Sox3, Wnt5a 39, or Shh 241. HYP, Presumptive hypothalamus; RP, Rathke's pouch. Scale bars: 0.1 mm. Reused, with permission, from Kelberman D, et al., 2006 113.


Figure 5. Pituitary MRI of patients with congenital hypopituitarism (B–F) compared to normal MRI appearance (A). (A) Midsagittal MRI scan of a normal child, showing a well‐formed corpus callosum (CC), normal optic chiasm (OC), and the posterior pituitary (PP), which appears as a bright spot within the sella turcica. (B) Sagittal MRI scan of two siblings with a homozygous p.R160C mutation in HESX1. In the first sibling (i), the splenium of the corpus callosum is more hypoplastic than the rest of the structure, and the posterior pituitary is partially descended as compared with the other sibling (ii) who has a severely hypoplastic corpus callosum, ectopic posterior pituitary, and lack of visible pituitary stalk (PS). (C) Coronal and sagittal MRI scans from one patient [panels (i) and (ii)] and sagittal scan from a second patient (iii) with SOX3 duplication showing anterior pituitary (AP) hypoplasia, partial hypoplasia of the infundibulum (I) in the first patient and complete absence in the second, and an ectopic posterior pituitary which is more severe in the second patient. (D) MRI scans from patient with SOX2 mutations. Sagittal section from patient with c60insG mutation showing anterior pituitary (ap) hypoplasia with normal posterior pituitary (pp) and infundibulum (i) and a hypothalamic hamartoma (h). (E) Sagittal MRI scan in patient with compound heterozygosity for p.E230K and p.R172Q mutations in POU1F1, showing hypoplasia of the anterior pituitary gland with a normal posterior pituitary and infundibulum. (F) Sequential MRI scanning of a patient with a 13‐bp deletion (c.112_124del13) in PROP1 reveals waxing and waning of a pituitary mass (arrow): (i) on initial presentation, (ii) after 4 months, (iii) after 12 months, and (iv) 21 months after initial MRI. Reused, with permission, from Kelberman D, et al., 2009 114.
References
 1.Acampora D, Mazan S, Lallemand Y, Avantaggiato V, Maury M, Simeone A, Brulet P. Forebrain and midbrain regions are deleted in Otx2−/− mutants due to a defective anterior neuroectoderm specification during gastrulation. Development 121: 3279‐3290, 1995.
 2.Achermann JC, Ito M, Ito M, Hindmarsh PC, Jameson JL. A mutation in the gene encoding steroidogenic factor‐1 causes XY sex reversal and adrenal failure in humans. Nat Genet 22: 125‐126, 1999.
 3.Achermann JC, Weiss J, Lee EJ, Jameson JL. Inherited disorders of the gonadotropin hormones. Mol Cell Endocrinol 179: 89‐96, 2001.
 4.Ai D, Wang J, Amen M, Lu MF, Amendt BA, Martin JF. Nuclear factor 1 and T‐cell factor/LEF recognition elements regulate Pitx2 transcription in pituitary development. Mol Cell Biol 27: 5765‐5775, 2007.
 5.Akcan N, Serakıncı N, Turkgenc B, Bundak R, Bahceciler N, Temel SG. A novel TBX19 gene mutation in a case of congenital isolated adrenocorticotropic hormone deficiency presenting with recurrent respiratory tract infections. Front Endocrinol (Lausanne) 18 (8): 64, 2017.
 6.Alatzoglou KS, Andoniadou CL, Kelberman D, Buchanan CR, Crolla J, Arriazu MC, Roubicek M, Moncet D, Martinez‐Barbera JP, Dattani MT. SOX2 haploinsufficiency is associated with slow progressing hypothalamo‐pituitary tumours. Hum Mutat 32: 376‐380, 2011.
 7.Alatzoglou KS, Azriyanti A, Rogers N, Ryan F, Curry N, Noakes C, Bignell P, Hall GW, Littooij AS, Saunders D, Thomas P, Stewart H, Dattani MT. SOX3 deletion in mouse and human is associated with persistence of the craniopharyngeal canal. J Clin Endocrinol Metab 99: E2702‐E2708, 2014.
 8.Alatzoglou KS, Kelberman D, Cowell CT, Palmer R, Arnhold IJ, Melo ME, Schnabel D, Grueters A, Dattani MT. Increased transactivation associated with SOX3 polyalanine tract deletion in a patient with hypopituitarism. J Clin Endocrinol Metab 96: E685‐E690, 2011.
 9.Andersen B, Rosenfeld MG. Pit‐1 determines cell types during development of the anterior pituitary gland. A model for transcriptional regulation of cell phenotypes in mammalian organogenesis. J Biol Chem 269: 29335‐29338, 1994.
 10.Andoniadou CL, Matsushima D, Mousavy Gharavy SN, Signore M, Mackintosh AI, Schaeffer M, Gaston‐Massuet C, Mollard P, Jacques TS, Le TP, Dattani MT, Pevny LH, Martinez‐Barbera JP. Sox2(+) stem/progenitor cells in the adult mouse pituitary support organ homeostasis and have tumor‐inducing potential. Cell Stem Cell 13: 433‐445, 2013.
 11.Andoniadou CL, Signore M, Sajedi E, Gaston‐Massuet C, Kelberman D, Burns AJ, Itasaki N, Dattani M, Martinez‐Barbera JP. Lack of the murine homeobox gene Hesx1 leads to a posterior transformation of the anterior forebrain. Development 134: 1499‐1508, 2007.
 12.Ansell PJ, Zhou Y, Schjeide BM, Kerner A, Zhao J, Zhang X, Klibanski A. Regulation of growth hormone expression by Delta‐like protein 1 (Dlk1). Mol Cell Endocrinol 271: 55‐63, 2007.
 13.Arnhold IJ, França MM, Carvalho LR, Mendonca BB, Jorge AA. Role of GLI2 in hypopituitarism phenotype. J Mol Endocrinol 54 (3): R141‐R150, 2015.
 14.Ashkenazi‐Hoffnung L, Lebenthal Y, Wyatt AW, Ragge NK, Dateki S, Fukami M, Ogata T, Phillip M, Gat‐Yablonski G. A novel loss‐of‐function mutation in OTX2 in a patient with anophthalmia and isolated growth hormone deficiency. Hum Genet 127: 721‐729, 2010.
 15.Avilion AA, Nicolis SK, Pevny LH, Perez L, Vivian N, Lovell‐Badge R. Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17: 126‐140, 2003.
 16.Bakrania P, Robinson DO, Bunyan DJ, Salt A, Martin A, Crolla JA, Wyatt A, Fielder A, Ainsworth J, Moore A, Read S, Uddin J, Laws D, Pascuel‐Salcedo D, Ayuso C, Allen L, Collin JR, Ragge NK. SOX2 anophthalmia syndrome: 12 new cases demonstrating broader phenotype and high frequency of large gene deletions. Br J Ophthalmol 91: 1471‐1476, 2007.
 17.Bas F, Uyguner ZO, Darendeliler F, Aycan Z, Cetinkaya E, Berberoglu M, Siklar Z, Ocal G, Darcan S, Goksen D, Topaloglu AK, Yuksel B, Ozbek MN, Ercan O, Evliyaoglu O, Cetinkaya S, Sen Y, Atabek E, Toksoy G, Aydin BK, Bundak R. Molecular analysis of PROP1, POU1F1, LHX3, and HESX1 in Turkish patients with combined pituitary hormone deficiency: A multicenter study. Endocrine 49: 479‐491, 2015.
 18.Bechtold‐Dalla Pozza S, Hiedl S, Roeb J, Lohse P, Malik RE, Park S, Durán‐Prado M, Rhodes SJ. A recessive mutation resulting in a disabling amino acid substitution (T194R) in the LHX3 homeodomain causes combined pituitary hormone deficiency. Horm Res Paediatr 77 (1): 41‐51, 2012.
 19.Bergsland M, Ramskold D, Zaouter C, Klum S, Sandberg R, Muhr J. Sequentially acting Sox transcription factors in neural lineage development. Genes Dev 25: 2453‐2464, 2011.
 20.Bhangoo AP, Hunter CS, Savage JJ, Anhalt H, Pavlakis S, Walvoord EC, Ten S, Rhodes SJ. Clinical case seminar: A novel LHX3 mutation presenting as combined pituitary hormonal deficiency. J Clin Endocrinol Metab 91: 747‐753, 2006.
 21.Bienz M. beta‐Catenin: A pivot between cell adhesion and Wnt signalling. Curr Biol 15: R64‐R67, 2005.
 22.Bilodeau S, Roussel‐Gervais A, Drouin J. Distinct developmental roles of cell cycle inhibitors p57Kip2 and p27Kip1 distinguish pituitary progenitor cell cycle exit from cell cycle reentry of differentiated cells. Mol Cell Biol 29: 1895‐1908, 2009.
 23.Blackshaw S, Scholpp S, Placzek M, Ingraham H, Simerly R, Shimogori T. Molecular pathways controlling development of thalamus and hypothalamus: From neural specification to circuit formation. J Neurosci 30: 14925‐14930, 2010.
 24.Bonnefont X, Lacampagne A, Sanchez‐Hormigo A, Fino E, Creff A, Mathieu MN, Smallwood S, Carmignac D, Fontanaud P, Travo P, Alonso G, Courtois‐Coutry N, Pincus SM, Robinson IC, Mollard P. Revealing the large‐scale network organization of growth hormone‐secreting cells. Proc Natl Acad Sci U S A 102: 16880‐16885, 2005.
 25.Bottner A, Keller E, Kratzsch J, Stobbe H, Weigel JF, Keller A, Hirsch W, Kiess W, Blum WF, Pfaffle RW. PROP1 mutations cause progressive deterioration of anterior pituitary function including adrenal insufficiency: A longitudinal analysis. J Clin Endocrinol Metab 89: 5256‐5265, 2004.
 26.Brinkmeier ML, Davis SW, Carninci P, MacDonald JW, Kawai J, Ghosh D, Hayashizaki Y, Lyons RH, Camper SA. Discovery of transcriptional regulators and signaling pathways in the developing pituitary gland by bioinformatic and genomic approaches. Genomics 93: 449‐460, 2009.
 27.Brinkmeier ML, Potok MA, Davis SW, Camper SA. TCF4 deficiency expands ventral diencephalon signaling and increases induction of pituitary progenitors. Dev Biol 311: 396‐407, 2007.
 28.Budry L, Balsalobre A, Gauthier Y, Khetchoumian K, L'honore A, Vallette S, Brue T, Figarella‐Branger D, Meij B, Drouin J. The selector gene Pax7 dictates alternate pituitary cell fates through its pioneer action on chromatin remodeling. Genes Dev 26: 2299‐2310, 2012.
 29.Budry L, Lafont C, El YT, Chauvet N, Conejero G, Drouin J, Mollard P. Related pituitary cell lineages develop into interdigitated 3D cell networks. Proc Natl Acad Sci U S A 108: 12515‐12520, 2011.
 30.Burkitt Wright EM, Perveen R, Clayton PE, Hall CM, Costa T, Procter AM, Giblin CA, Donnai D, Black GC. X‐linked isolated growth hormone deficiency: Expanding the phenotypic spectrum of SOX3 polyalanine tract expansions. Clin Dysmorphol 18: 218‐221, 2009.
 31.Bylund M, Andersson E, Novitch BG, Muhr J. Vertebrate neurogenesis is counteracted by Sox1‐3 activity. Nat Neurosci 6: 1162‐1168, 2003.
 32.Cadigan KM, Peifer M. Wnt signaling from development to disease: Insights from model systems. Cold Spring Harb Perspect Biol 1: a002881, 2009.
 33.Carlomagno Y, Salerno M, Vivenza D, Capalbo D, Godi M, Mellone S, Tiradani L, Corneli G, Momigliano‐Richiardi P, Bona G, Giordano M. A novel recessive splicing mutation in the POU1F1 gene causing combined pituitary hormone deficiency. J Endocrinol Investig 32: 653‐658, 2009.
 34.Carreno G, Apps JR, Lodge EJ, Panousopoulos L, Haston S, Gonzalez‐Meljem JM, Hahn H, Andoniadou CL, Martinez‐Barbera JP. Hypothalamic sonic hedgehog is required for cell specification and proliferation of LHX3/LHX4 pituitary embryonic precursors. Development 144 (18): 3289‐3302, 2017.
 35.Carvalho LR, Woods KS, Mendonca BB, Marcal N, Zamparini AL, Stifani S, Brickman JM, Arnhold IJ, Dattani MT. A homozygous mutation in HESX1 is associated with evolving hypopituitarism due to impaired repressor‐corepressor interaction. J Clin Invest 112: 1192‐1201, 2003.
 36.Castinetti F, Brinkmeier ML, Gordon DF, Vella KR, Kerr JM, Mortensen AH, Hollenberg A, Brue T, Ridgway EC, Camper SA. PITX2 AND PITX1 regulate thyrotroph function and response to hypothyroidism. Mol Endocrinol 25: 1950‐1960, 2011.
 37.Castinetti F, Brinkmeier ML, Mortensen AH, Vella KR, Gergics P, Brue T, Hollenberg AN, Gan L, Camper SA. ISL1 is necessary for maximal thyrotrope response to hypothyroidism. Mol Endocrinol 29 (10): 1510‐1521, 2015.
 38.Castinetti F, Davis SW, Brue T, Camper SA. Pituitary stem cell update and potential implications for treating hypopituitarism. Endocr Rev 32 (4): 453‐471, 2011.
 39.Cha KB, Douglas KR, Potok MA, Liang H, Jones SN, Camper SA. WNT5A signaling affects pituitary gland shape. Mech Dev 121: 183‐194, 2004.
 40.Charles MA, Saunders TL, Wood WM, Owens K, Parlow AF, Camper SA, Ridgway EC, Gordon DF. Pituitary‐specific Gata2 knockout: Effects on gonadotrope and thyrotrope function. Mol Endocrinol 20: 1366‐1377, 2006.
 41.Charles MA, Suh H, Hjalt TA, Drouin J, Camper SA, Gage PJ. PITX genes are required for cell survival and Lhx3 activation. Mol Endocrinol 19: 1893‐1903, 2005.
 42.Chassaing N, Sorrentino S, Davis EE, Martin‐Coignard D, Iacovelli A, Paznekas W, Webb BD, Faye‐Petersen O, Encha‐Razavi F, Lequeux L, Vigouroux A, Yesilyurt A, Boyadjiev SA, Kayserili H, Loget P, Carles D, Sergi C, Puvabanditsin S, Chen CP, Etchevers HC, Katsanis N, Mercer CL, Calvas P, Jabs EW. OTX2 mutations contribute to the otocephaly‐dysgnathia complex. J Med Genet 49 (6): 373‐379, 2012.
 43.Chen J, Hersmus N, Van Duppen V, Caesens P, Denef C, Vankelecom H. The adult pituitary contains a cell population displaying stem/progenitor cell and early embryonic characteristics. Endocrinology 146: 3985‐3998, 2005.
 44.Ciccone NA, Kaiser UB. The biology of gonadotroph regulation. Curr Opin Endocrinol Diabetes Obes 16: 321‐327, 2009.
 45.Clevers H. Wnt/beta‐catenin signaling in development and disease. Cell 127: 469‐480, 2006.
 46.Clevers H, van de Wetering M. TCF/LEF factor earn their wings. Trends Genet 13: 485‐489, 1997.
 47.Cohen LE. GLI2 mutations as a cause of hypopituitarism. Pediatr Endocrinol Rev 9: 706‐709, 2012.
 48.Collignon J, Sockanathan S, Hacker A, Cohen‐Tannoudji M, Norris D, Rastan S, Stevanovic M, Goodfellow PN, Lovell‐Badge R. A comparison of the properties of Sox‐3 with Sry and two related genes, Sox‐1 and Sox‐2. Development 122: 509‐520, 1996.
 49.Conte I, Morcillo J, Bovolenta P. Comparative analysis of Six 3 and Six 6 distribution in the developing and adult mouse brain. Dev Dyn 234: 718‐725, 2005.
 50.Corneli G, Vivenza D, Prodam F, Di Dio G, Vottero A, Rapa A, Bellone S, Bernasconi S, Bona G. Heterozygous mutation of HESX1 causing hypopituitarism and multiple anatomical malformations without features of septo‐optic dysplasia. J Endocrinol Investig 31: 689‐693, 2008.
 51.Correa FA, Trarbach EB, Tusset C, Latronico AC, Montenegro LR, Carvalho LR, Franca MM, Otto AP, Costalonga EF, Brito VN, Abreu AP, Nishi MY, Jorge AA, Arnhold IJ, Sidis Y, Pitteloud N, Mendonca BB. FGFR1 and PROKR2 rare variants found in patients with combined pituitary hormone deficiencies. Endocr Connect 4: 100‐107, 2015.
 52.Cortes R, Navarro S, Agulleiro MJ, Guillot R, Garcia‐Herranz V, Sanchez E, Cerda‐Reverter JM. Evolution of the melanocortin system. Gen Comp Endocrinol 209: 3‐10, 2014.
 53.Couture C, Saveanu A, Barlier A, Carel JC, Fassnacht M, Flück CE, Houang M, Maes M, Phan‐Hug F, Enjalbert A, Drouin J, Brue T, Vallette S. Phenotypic homogeneity and genotypic variability in a large series of congenital isolated ACTH‐deficiency patients with TPIT gene mutations. J Clin Endocrinol Metab 97 (3): E486‐E495, 2012.
 54.Coya R, Vela A, Perez de Nanclares G, Rica I, Castano L, Busturia MA, Martul P. Panhypopituitarism: Genetic versus acquired etiological factors. J Pediatr Endocrinol Metab 20: 27‐36, 2007.
 55.Cushman LJ, Watkins‐Chow DE, Brinkmeier ML, Raetzman LT, Radak AL, Lloyd RV, Camper SA. Persistent Prop1 expression delays gonadotrope differentiation and enhances pituitary tumor susceptibility. Hum Mol Genet 10: 1141‐1153, 2001.
 56.Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KS, Pevny LH, Kelley MW. Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci U S A 105: 18396‐18401, 2008.
 57.Daniels DL, Weis WI. Beta‐catenin directly displaces Groucho/TLE repressors from Tcf/Lef in Wnt‐mediated transcription activation. Nat Struct Mol Biol 12: 364‐371, 2005.
 58.Dasen JS, Barbera JP, Herman TS, Connell SO, Olson L, Ju B, Tollkuhn J, Baek SH, Rose DW, Rosenfeld MG. Temporal regulation of a paired‐like homeodomain repressor/TLE corepressor complex and a related activator is required for pituitary organogenesis. Genes Dev 15: 3193‐3207, 2001.
 59.Dasen JS, O'Connell SM, Flynn SE, Treier M, Gleiberman AS, Szeto DP, Hooshmand F, Aggarwal AK, Rosenfeld MG. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient‐induced determination of pituitary cell types. Cell 97: 587‐598, 1999.
 60.Dasen JS, Rosenfeld MG. Signaling and transcriptional mechanisms in pituitary development. Annu Rev Neurosci 24: 327‐355, 2001.
 61.Dateki S, Fukami M, Sato N, Muroya K, Adachi M, Ogata T. OTX2 mutation in a patient with anophthalmia, short stature, and partial growth hormone deficiency: Functional studies using the IRBP, HESX1, and POU1F1 promoters. J Clin Endocrinol Metab 93: 3697‐3702, 2008.
 62.Dateki S, Kosaka K, Hasegawa K, Tanaka H, Azuma N, Yokoya S, Muroya K, Adachi M, Tajima T, Motomura K, Kinoshita E, Moriuchi H, Sato N, Fukami M, Ogata T. Heterozygous orthodenticle homeobox 2 mutations are associated with variable pituitary phenotype. J Clin Endocrinol Metab 95: 756‐764, 2010.
 63.Dattani MT, Martinez‐Barbera JP, Thomas PQ, Brickman JM, Gupta R, Martensson IL, Toresson H, Fox M, Wales JK, Hindmarsh PC, Krauss S, Beddington RS, Robinson IC. Mutations in the homeobox gene HESX1/Hesx1 associated with septo‐optic dysplasia in human and mouse. Nat Genet 19: 125‐133, 1998.
 64.Davis SW, Camper SA. Noggin regulates Bmp4 activity during pituitary induction. Dev Biol 305: 145‐160, 2007.
 65.Davis SW, Castinetti F, Carvalho LR, Ellsworth BS, Potok MA, Lyons RH, Brinkmeier ML, Raetzman LT, Carninci P, Mortensen AH, Hayashizaki Y, Arnhold IJ, Mendonca BB, Brue T, Camper SA. Molecular mechanisms of pituitary organogenesis: In search of novel regulatory genes. Mol Cell Endocrinol 323: 4‐19, 2010.
 66.Davis SW, Ellsworth BS, Perez Millan MI, Gergics P, Schade V, Foyouzi N, Brinkmeier ML, Mortensen AH, Camper SA. Pituitary gland development and disease: From stem cell to hormone production. Curr Top Dev Biol 106: 1‐47, 2013.
 67.Davis SW, Mortensen AH, Camper SA. Birthdating studies reshape models for pituitary gland cell specification. Dev Biol 352: 215‐227, 2011.
 68.Deladoey J, Fluck C, Buyukgebiz A, Kuhlmann BV, Eble A, Hindmarsh PC, Wu W, Mullis PE. “Hot spot” in the PROP1 gene responsible for combined pituitary hormone deficiency. J Clin Endocrinol Metab 84: 1645‐1650, 1999.
 69.Denef C. Paracrinicity: The story of 30 years of cellular pituitary crosstalk. J Neuroendocrinol 20: 1‐70, 2008.
 70.DePater E, Kaimakis P, Vink CS, Yokomizo T, Yamada‐Inagawa T, van der Linden R, Kartalaei PS, Camper SA, Speck N, Dzierzak E. Gata2 is required for HSC generation and survival. J Exp Med 210: 2843‐2850, 2013.
 71.Diaczok D, Romero C, Zunich J, Marshall I, Radovick S. A novel dominant negative mutation of OTX2 associated with combined pituitary hormone deficiency. J Clin Endocrinol Metab 93: 4351‐4359, 2008.
 72.Dores RM, Londraville RL, Prokop J, Davis P, Dewey N, Lesinski N. Molecular evolution of GPCRs: Melanocortin/melanocortin receptors. J Mol Endocrinol 52: T29‐T42, 2014.
 73.Douglas KR, Brinkmeier ML, Kennell JA, Eswara P, Harrison TA, Patrianakos AI, Sprecher BS, Potok MA, Lyons RH Jr, MacDougald OA, Camper SA. Identification of members of the Wnt signaling pathway in the embryonic pituitary gland. Mamm Genome 12: 843‐851, 2001.
 74.Drouin J, Bilodeau S, Roussel‐Gervais A. Stem cells, differentiation and cell cycle control in pituitary. Front Horm Res 38: 15‐24, 2010.
 75.Dubourg C, Lazaro L, Pasquier L, Bendavid C, Blayau M, Le Duff F, Durou MR, Odent S, David V. Molecular screening of SHH, ZIC2, SIX3, and TGIF genes in patients with features of holoprosencephaly spectrum: Mutation review and genotype‐phenotype correlations. Hum Mutat 24 (1): 43‐51, 2004.
 76.Ellsworth BS, Butts DL, Camper SA. Mechanisms underlying pituitary hypoplasia and failed cell specification in Lhx3‐deficient mice. Dev Biol 313: 118‐129, 2008.
 77.Ellsworth BS, Egashira N, Haller JL, Butts DL, Cocquet J, Clay CM, Osamura RY, Camper SA. FOXL2 in the pituitary: Molecular, genetic, and developmental analysis. Mol Endocrinol 20: 2796‐2805, 2006.
 78.Episkopou V. SOX2 functions in adult neural stem cells. Trends Neurosci 28: 219‐221, 2005.
 79.Ericson J, Norlin S, Jessell TM, Edlund T. Integrated FGF and BMP signaling controls the progression of progenitor cell differentiation and the emergence of pattern in the embryonic anterior pituitary. Development 125: 1005‐1015, 1998.
 80.Fauquier T, Rizzoti K, Dattani M, Lovell‐Badge R, Robinson IC. SOX2‐expressing progenitor cells generate all of the major cell types in the adult mouse pituitary gland. Proc Natl Acad Sci U S A 105: 2907‐2912, 2008.
 81.Ferri AL, Cavallaro M, Braida D, Di Cristofano A, Canta A, Vezzani A, Ottolenghi S, Pandolfi PP, Sala M, DeBiasi S, Nicolis SK. Sox2 deficiency causes neurodegeneration and impaired neurogenesis in the adult mouse brain. Development 131: 3805‐3819, 2004.
 82.Fluck C, Deladoey J, Rutishauser K, Eble A, Marti U, Wu W, Mullis PE. Phenotypic variability in familial combined pituitary hormone deficiency caused by a PROP1 gene mutation resulting in the substitution of Arg‐‐>Cys at codon 120 (R120C). J Clin Endocrinol Metab 83: 3727‐3734, 1998.
 83.Franca MM, Jorge AA, Carvalho LR, Costalonga EF, Vasques GA, Leite CC, Mendonca BB, Arnhold IJ. Novel heterozygous nonsense GLI2 mutations in patients with hypopituitarism and ectopic posterior pituitary lobe without holoprosencephaly. J Clin Endocrinol Metab 95: E384‐E391, 2010.
 84.Fu Q, Gremeaux L, Luque RM, Liekens D, Chen J, Buch T, Waisman A, Kineman R, Vankelecom H. The adult pituitary shows stem/progenitor cell activation in response to injury and is capable of regeneration. Endocrinology 153: 3224‐3235, 2012.
 85.Fu Q, Vankelecom H. Regenerative capacity of the adult pituitary: Multiple mechanisms of lactotrope restoration after transgenic ablation. Stem Cells Dev 21: 3245‐3257, 2012.
 86.Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development 126: 4643‐4651, 1999.
 87.Gahete MD, Duran‐Prado M, Luque RM, Martinez‐Fuentes AJ, Quintero A, Gutierrez‐Pascual E, Cordoba‐Chacon J, Malagon MM, Gracia‐Navarro F, Castano JP. Understanding the multifactorial control of growth hormone release by somatotropes: Lessons from comparative endocrinology. Ann N Y Acad Sci 1163: 137‐153, 2009.
 88.García M, Barrio R, García‐Lavandeira M, Garcia‐Rendueles AR, Escudero A, Díaz‐Rodríguez E, Gorbenko Del Blanco D, Fernández A, de Rijke YB, Vallespín E, Nevado J, Lapunzina P, Matre V, Hinkle PM, Hokken‐Koelega AC, de Miguel MP, Cameselle‐Teijeiro JM, Nistal M, Alvarez CV, Moreno JC. The syndrome of central hypothyroidism and macroorchidism: IGSF1 controls TRHR and FSHB expression by differential modulation of pituitary TGFβ and activin pathways. Sci Rep 7: 42937, 2017.
 89.Gaston‐Massuet C, Andoniadou CL, Signore M, Sajedi E, Bird S, Turner JM, Martinez‐Barbera JP. Genetic interaction between the homeobox transcription factors HESX1 and SIX3 is required for normal pituitary development. Dev Biol 324 (2): 322‐333, 2008.
 90.Goodyer CG, Tremblay JJ, Paradis FW, Marcil A, Lanctot C, Gauthier Y, Drouin J. Pitx1 in vivo promoter activity and mechanisms of positive autoregulation. Neuroendocrinology 78: 129‐137, 2003.
 91.Gordon DF, Lewis SR, Haugen BR, James RA, McDermott MT, Wood WM, Ridgway EC. Pit‐1 and GATA‐2 interact and functionally cooperate to activate the thyrotropin beta‐subunit promoter. J Biol Chem 272: 24339‐24347, 1997.
 92.Gordon DF, Woodmansee WW, Black JN, Dowding JM, Bendrick‐Peart J, Wood WM, Ridgway EC. Domains of Pit‐1 required for transcriptional synergy with GATA‐2 on the TSH beta gene. Mol Cell Endocrinol 196: 53‐66, 2002.
 93.Gregory LC, Gaston‐Massuet C, Andoniadou CL, Carreno G, Webb EA, Kelberman D, McCabe MJ, Panagiotakopoulos L, Saldanha JW, Spoudeas HA, Torpiano J, Rossi M, Raine J, Canham N, Martinez‐Barbera JP, Dattani MT. The role of the sonic hedgehog signalling pathway in patients with midline defects and congenital hypopituitarism. Clin Endocrinol 82: 728‐738, 2015.
 94.Gregory LC, Humayun KN, Turton JP, McCabe MJ, Rhodes SJ, Dattani MT. Novel lethal form of congenital hypopituitarism associated with the first recessive LHX4 mutation. J Clin Endocrinol Metab 100: 2158‐2164, 2015.
 95.Gremeaux L, Fu Q, Chen J, Vankelecom H. Activated phenotype of the pituitary stem/progenitor cell compartment during the early‐postnatal maturation phase of the gland. Stem Cells Dev 21: 801‐813, 2012.
 96.Hever AM, Williamson KA, van Heyningen V. Developmental malformations of the eye: The role of PAX6, SOX2 and OTX2. Clin Genet 69: 459‐470, 2006.
 97.Hodson DJ, Molino F, Fontanaud P, Bonnefont X, Mollard P. Investigating and modelling pituitary endocrine network function. J Neuroendocrinol 22: 1217‐1225, 2010.
 98.Hodson DJ, Mollard P. Pituitary endocrine cell networks ‐ 10 years and beyond. Ann Endocrinol (Paris) 73: 56‐58, 2012.
 99.Hodson DJ, Romano N, Schaeffer M, Fontanaud P, Lafont C, Fiordelisio T, Mollard P. Coordination of calcium signals by pituitary endocrine cells in situ. Cell Calcium 51: 222‐230, 2012.
 100.Hodson DJ, Schaeffer M, Romano N, Fontanaud P, Lafont C, Birkenstock J, Molino F, Christian H, Lockey J, Carmignac D, Fernandez‐Fuente M, Le TP, Mollard P. Existence of long‐lasting experience‐dependent plasticity in endocrine cell networks. Nat Commun 3: 605, 2012.
 101.Hughes JN, Aubert M, Heatlie J, Gardner A, Gecz J, Morgan T, Belsky J, Thomas PQ. Identification of an IGSF1‐specific deletion in a five‐generation pedigree with X‐linked Central Hypothyroidism without macroorchidism. Clin Endocrinol 85 (4): 609‐615, 2016.
 102.Hume CR, Bratt DL, Oesterle EC. Expression of LHX3 and SOX2 during mouse inner ear development. Gene Expr Patterns 7: 798‐807, 2007.
 103.Inoue H, Mukai T, Sakamoto Y, Kimura C, Kangawa N, Itakura M, Ogata T, Ito Y, Fujieda K. Identification of a novel mutation in the exon 2 splice donor site of the POU1F1/PIT‐1 gene in Japanese identical twins with mild combined pituitary hormone deficiency. Clin Endocrinol 76: 78‐87, 2012.
 104.Japon MA, Rubinstein M, Low MJ. In situ hybridization analysis of anterior pituitary hormone gene expression during fetal mouse development. J Histochem Cytochem 42: 1117‐1125, 1994.
 105.Jayakody SA, Andoniadou CL, Gaston‐Massuet C, Signore M, Cariboni A, Bouloux PM, Le TP, Pevny LH, Dattani MT, Martinez‐Barbera JP. SOX2 regulates the hypothalamic‐pituitary axis at multiple levels. J Clin Invest 122: 3635‐3646, 2012.
 106.Jean D, Bernier G, Gruss P. Six6 (Optx2) is a novel murine Six3‐related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech Dev 84: 31‐40, 1999.
 107.Joustra SD, Schoenmakers N, Persani L, Campi I, Bonomi M, Radetti G, Beck‐Peccoz P, Zhu H, Davis TM, Sun Y, Corssmit EP, Appelman‐Dijkstra NM, Heinen CA, Pereira AM, Varewijck AJ, Janssen JA, Endert E, Hennekam RC, Lombardi MP, Mannens MM, Bak B, Bernard DJ, Breuning MH, Chatterjee K, Dattani MT, Oostdijk W, Biermasz NR, Wit JM, van Trotsenburg AS. The IGSF1 deficiency syndrome: Characteristics of male and female patients. J Clin Endocrinol Metab 98 (12): 4942‐4952, 2013.
 108.Jullien N, Romanet P, Philippon M, Quentien MH, Beck‐Peccoz P, Bergada I, Odent S, Reynaud R, Barlier A, Saveanu A, Brue T, Castinetti F. Heterozygous LHX3 mutations may lead to a mild phenotype of combined pituitary hormone deficiency. Eur J Hum Genet, 2018. DOI: 10.1038/s41431‐018‐0264‐6.
 109.Kamachi Y, Uchikawa M, Collignon J, Lovell‐Badge R, Kondoh H. Involvement of Sox1, 2 and 3 in the early and subsequent molecular events of lens induction. Development 125: 2521‐2532, 1998.
 110.Kelberman D, Dattani MT. Role of transcription factors in midline central nervous system and pituitary defects. Endocr Dev 14: 67‐82, 2009.
 111.Kelberman D, de Castro SC, Huang S, Crolla JA, Palmer R, Gregory JW, Taylor D, Cavallo L, Faienza MF, Fischetto R, Achermann JC, Martinez‐Barbera JP, Rizzoti K, Lovell‐Badge R, Robinson IC, Gerrelli D, Dattani MT. SOX2 plays a critical role in the pituitary, forebrain, and eye during human embryonic development. J Clin Endocrinol Metab 93: 1865‐1873, 2008.
 112.Kelberman D, Rizzoti K, Avilion A, bitner‐Glindzicz M, Cianfarani S, Collins J, Chong WK, Kirk JM, Achermann JC, Ross R, Carmigmac D, Lovell‐Badge R, Robinson IC, Dattani MT. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo‐pituitary‐gonadal axis in mice and humans. J Clin Invest 116: 2442‐2445, 2006.
 113.Kelberman D, Rizzoti K, Avilion A, Bitner‐Glindzicz M, Cianfarani S, Collins J, Chong WK, Kirk JM, Achermann JC, Ross R, Carmignac D, Lovell‐Badge R, Robinson IC, Dattani MT. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo‐pituitary‐gonadal axis in mice and humans. J Clin Invest 116: 2442‐2455, 2006.
 114.Kelberman D, Rizzoti K, Lovell‐Badge R, Robinson IC, Dattani MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 30: 790‐829, 2009.
 115.Kiernan AE, Pelling AL, Leung KK, Tang AS, Bell DM, Tease C, Lovell‐Badge R, Steel KP, Cheah KS. Sox2 is required for sensory organ development in the mammalian inner ear. Nature 434: 1031‐1035, 2005.
 116.Kim JD, Leyva S, Diano S. Hormonal regulation of the hypothalamic melanocortin system. Front Physiol 5: 480, 2014.
 117.Kioussi C, Briata P, Baek SH, Rose DW, Hamblet NS, Herman T, Ohgi KA, Lin C, Gleiberman A, Wang J, Brault V, Ruiz‐Lozano P, Nguyen HD, Kemler R, Glass CK, Wynshaw‐Boris A, Rosenfeld MG. Identification of a Wnt/Dvl/beta‐Catenin ‐‐> Pitx2 pathway mediating cell‐type‐specific proliferation during development. Cell 111: 673‐685, 2002.
 118.Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172: 103‐113, 2006.
 119.Kurokawa D, Takasaki N, Kiyonari H, Nakayama R, Kimura‐Yoshida C, Matsuo I, Aizawa S. Regulation of Otx2 expression and its functions in mouse epiblast and anterior neuroectoderm. Development 131: 3307‐3317, 2004.
 120.Lafont C, Desarmenien MG, Cassou M, Molino F, Lecoq J, Hodson D, Lacampagne A, Mennessier G, El YT, Carmignac D, Fontanaud P, Christian H, Coutry N, Fernandez‐Fuente M, Charpak S, Le TP, Robinson IC, Mollard P. Cellular in vivo imaging reveals coordinated regulation of pituitary microcirculation and GH cell network function. Proc Natl Acad Sci U S A 107: 4465‐4470, 2010.
 121.Lagutin OV, Zhu CC, Kobayashi D, Topczewski J, Shimamura K, Puelles L, Russell HR, McKinnon PJ, Solnica‐Krezel L, Oliver G. Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development. Genes Dev 17: 368‐379, 2003.
 122.Lami F, Carli D, Ferrari P, Marini M, Alesi V, Iughetti L, Percesepe A. Holoprosencephaly: Report of four cases and genotype‐phenotype correlations. J Genet 92 (1): 97‐101, 2013.
 123.Lamolet B, Pulichino AM, Lamonerie T, Gauthier Y, Brue T, Enjalbert A, Drouin J. A pituitary cell‐restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell 104: 849‐859, 2001.
 124.Lanctot C, Gauthier Y, Drouin J. Pituitary homeobox 1 (Ptx1) is differentially expressed during pituitary development. Endocrinology 140: 1416‐1422, 1999.
 125.Larder R, Clark DD, Miller NL, Mellon PL. Hypothalamic dysregulation and infertility in mice lacking the homeodomain protein Six6. J Neurosci 31: 426‐438, 2011.
 126.Laumonnier F, Ronce N, Hamel BC, Thomas P, Lespinasse J, Raynaud M, Paringaux C, Van Bokhoven H, Kalscheuer V, Fryns JP, Chelly J, Moraine C, Briault S. Transcription factor SOX3 is involved in X‐linked mental retardation with growth hormone deficiency. Am J Hum Genet 71: 1450‐1455, 2002.
 127.Le Tissier PR, Hodson DJ, Lafont C, Fontanaud P, Schaeffer M, Mollard P. Anterior pituitary cell networks. Front Neuroendocrinol 33: 252‐266, 2012.
 128.Lee K, Tan J, Morris MB, Rizzoti K, Hughes J, Cheah PS, Felquer F, Liu X, Piltz S, Lovell‐Badge R, Thomas PQ. Congenital hydrocephalus and abnormal subcommissural organ development in Sox3 transgenic mice. PLoS One 7: e29041, 2012.
 129.Li X, Perissi V, Liu F, Rose DW, Rosenfeld MG. Tissue‐specific regulation of retinal and pituitary precursor cell proliferation. Science 297: 1180‐1183, 2002.
 130.Lin CR, Kioussi C, O'Connell S, Briata P, Szeto D, Liu F, Izpisua‐Belmonte JC, Rosenfeld MG. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401: 279‐282, 1999.
 131.Liu J, Lin C, Gleiberman A, Ohgi KA, Herman T, Huang HP, Tsai MJ, Rosenfeld MG. Tbx19, a tissue‐selective regulator of POMC gene expression. Proc Natl Acad Sci U S A 98: 8674‐8679, 2001.
 132.Lin L, Gu WX, Ozisik G, To WS, Owen CJ, Jameson JL, Achermann JC. Analysis of DAX1 (NR0B1) and steroidogenic factor‐1 (NR5A1) in children and adults with primary adrenal failure: Ten years' experience. J Clin Endocrinol Metab 91 (8): 3048‐3054, 2006.
 133.Lin L, Philibert P, Ferraz‐de‐Souza B, Kelberman D, Homfray T, Albanese A, Molini V, Sebire NJ, Einaudi S, Conway GS, Hughes IA, Jameson JL, Sultan C, Dattani MT, Achermann JC. Heterozygous missense mutations in steroidogenic factor 1 (SF1/Ad4BP, NR5A1) are associated with 46,XY disorders of sex development with normal adrenal function. J Clin Endocrinol Metab 92, 3: 991‐999, 2007.
 134.Liu W, Selever J, Lu MF, Martin JF. Genetic dissection of Pitx2 in craniofacial development uncovers new functions in branchial arch morphogenesis, late aspects of tooth morphogenesis and cell migration. Development 130: 6375‐6385, 2003.
 135.Luo X, Ikeda Y, Parker KL. A cell‐specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77: 481‐490, 1994.
 136.MacDonald BT, Tamai K, He X. Wnt/beta‐catenin signaling: Components, mechanisms, and diseases. Dev Cell 17: 9‐26, 2009.
 137.Machinis K, Pantel J, Netchine I, Leger J, Camand OJ, Sobrier ML, stot‐Le MF, Duquesnoy P, Abitbol M, Czernichow P, Amselem S. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am J Hum Genet 69: 961‐968, 2001.
 138.Majdic G, Young M, Gomez‐Sanchez E, Anderson P, Szczepaniak LS, Dobbins RL, McGarry JD, Parker KL. Knockout mice lacking steroidogenic factor 1 are a novel genetic model of hypothalamic obesity. Endocrinology 143 (2): 607‐614, 2002.
 139.Mansukhani A, Ambrosetti D, Holmes G, Cornivelli L, Basilico C. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation. J Cell Biol 168: 1065‐1076, 2005.
 140.Marcos‐Mondejar P, Peregrin S, Li JY, Carlsson L, Tole S, Lopez‐Bendito G. The lhx2 transcription factor controls thalamocortical axonal guidance by specific regulation of robo1 and robo2 receptors. J Neurosci 32: 4372‐4385, 2012.
 141.Martinez‐Barbera JP, Rodriguez TA, Beddington RS. The homeobox gene Hesx1 is required in the anterior neural ectoderm for normal forebrain formation. Dev Biol 223: 422‐430, 2000.
 142.Mayran A, Pelletier A, Drouin J. Pax factors in transcription and epigenetic remodelling. Semin Cell Dev Biol 44: 135‐144, 2015.
 143.Mazziotti G, Giustina A. Glucocorticoids and the regulation of growth hormone secretion. Nat Rev Endocrinol 9, 5: 265‐276, 2013.
 144.McCabe MJ, Gaston‐Massuet C, Gregory LC, Alatzoglou KS, Tziaferi V, Sbai O, Rondard P, Masumoto KH, Nagano M, Shigeyoshi Y, Pfeifer M, Hulse T, Buchanan CR, Pitteloud N, Martinez‐Barbera JP, Dattani MT. Variations in PROKR2, but not PROK2, are associated with hypopituitarism and septo‐optic dysplasia. J Clin Endocrinol Metab 98: E547‐E557, 2013.
 145.McCabe MJ, Gaston‐Massuet C, Tziaferi V, Gregory LC, Alatzoglou KS, Signore M, Puelles E, Gerrelli D, Farooqi IS, Raza J, Walker J, Kavanaugh SI, Tsai PS, Pitteloud N, Martinez‐Barbera JP, Dattani MT. Novel FGF8 mutations associated with recessive holoprosencephaly, craniofacial defects, and hypothalamo‐pituitary dysfunction. J Clin Endocrinol Metab 96: E1709‐E1718, 2011.
 146.McNay DE, Turton JP, Kelberman D, Woods KS, Brauner R, Papadimitriou A, Keller E, Keller A, Haufs N, Krude H, Shalet SM, Dattani MT. HESX1 mutations are an uncommon cause of septooptic dysplasia and hypopituitarism. J Clin Endocrinol Metab 92: 691‐697, 2007.
 147.Meyers JR, Hu L, Moses A, Kaboli K, Papandrea A, Raymond PA. Beta‐catenin/Wnt signaling controls progenitor fate in the developing and regenerating zebrafish retina. Neural Dev 7: 30, 2012.
 148.Mortensen AH, MacDonald JW, Ghosh D, Camper SA. Candidate genes for panhypopituitarism identified by gene expression profiling. Physiol Genomics 43: 1105‐1116, 2011.
 149.Mortensen AH, Schade V, Lamonerie T, Camper SA. Deletion of OTX2 in neural ectoderm delays anterior pituitary development. Hum Mol Genet 24: 939‐953, 2015.
 150.Mullen RD, Colvin SC, Hunter CS, Savage JJ, Walvoord EC, Bhangoo AP, Ten S, Weigel J, Pfaffle RW, Rhodes SJ. Roles of the LHX3 and LHX4 LIM‐homeodomain factors in pituitary development. Mol Cell Endocrinol 265‐266: 190‐195, 2007.
 151.Netchine I, Sobrier ML, Krude H, Schnabel D, Maghnie M, Marcos E, Duriez B, Cacheux V, Moers A, Goossens M, Gruters A, Amselem S. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 25: 182‐186, 2000.
 152.Nogami H, Hisano S. Functional maturation of growth hormone cells in the anterior pituitary gland of the fetus. Growth Hormon IGF Res 18: 379‐388, 2008.
 153.Norlin S, Nordstrom U, Edlund T. Fibroblast growth factor signaling is required for the proliferation and patterning of progenitor cells in the developing anterior pituitary. Mech Dev 96: 175‐182, 2000.
 154.Ohba K, Sasaki S, Matsushita A, Iwaki H, Matsunaga H, Suzuki S, Ishizuka K, Misawa H, Oki Y, Nakamura H. GATA2 mediates thyrotropin‐releasing hormone‐induced transcriptional activation of the thyrotropin beta gene. PLoS One 6: e18667, 2011.
 155.Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N. FGF10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi‐organ development. Biochem Biophys Res Commun 277: 643‐649, 2000.
 156.Olson LE, Tollkuhn J, Scafoglio C, Krones A, Zhang J, Ohgi KA, Wu W, Taketo MM, Kemler R, Grosschedl R, Rose D, Li X, Rosenfeld MG. Homeodomain‐mediated beta‐catenin‐dependent switching events dictate cell‐lineage determination. Cell 125: 593‐605, 2006.
 157.Pevny LH, Lovell‐Badge R. Sox genes find their feet. Curr Opin Genet Dev 7: 338‐344, 1997.
 158.Pevny LH, Nicolis SK. Sox2 roles in neural stem cells. Int J Biochem Cell Biol 42 (3): 421‐424, 2010.
 159.Pfaeffle RW, Hunter CS, Savage JJ, Duran‐Prado M, Mullen RD, Neeb ZP, Eiholzer U, Hesse V, Haddad NG, Stobbe HM, Blum WF, Weigel JF, Rhodes SJ. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J Clin Endocrinol Metab 93: 1062‐1071, 2008.
 160.Pfaeffle RW, Savage JJ, Hunter CS, Palme C, Ahlmann M, Kumar P, Bellone J, Schoenau E, Korsch E, Bramswig JH, Stobbe HM, Blum WF, Rhodes SJ. Four novel mutations of the LHX3 gene cause combined pituitary hormone deficiencies with or without limited neck rotation. J Clin Endocrinol Metab 92: 1909‐1919, 2007.
 161.Pfaffle R, Klammt J. Pituitary transcription factors in the aetiology of combined pituitary hormone deficiency. Best Pract Res Clin Endocrinol Metab 25: 43‐60, 2011.
 162.Pfaffle RW, DiMattia GE, Parks JS, Brown MR, Wit JM, Jansen M, Van d NH, Van den Brande JL, Rosenfeld MG, Ingraham HA. Mutation of the POU‐specific domain of Pit‐1 and hypopituitarism without pituitary hypoplasia. Science 257: 1118‐1121, 1992.
 163.Philibert P, Zenaty D, Lin L, Soskin S, Audran F, Léger J, Achermann JC, Sultan C. Mutational analysis of steroidogenic factor 1 (NR5a1) in 24 boys with bilateral anorchia: A French collaborative study. Hum Reprod 22 (12): 3255‐3261, 2007.
 164.Potok MA, Cha KB, Hunt A, Brinkmeier ML, Leitges M, Kispert A, Camper SA. WNT signaling affects gene expression in the ventral diencephalon and pituitary gland growth. Dev Dyn 237: 1006‐1020, 2008.
 165.Prince KL, Walvoord EC, Rhodes SJ. The role of homeodomain transcription factors in heritable pituitary disease. Nat Rev Endocrinol 7: 727‐737, 2011.
 166.Pulichino AM, Lamolet B, Vallette‐Kasic S, Poulin G, Chu K, Gillemot F, Tsai MJ, Drouin J. Tpit−/−NeuroD1−/− mice reveal novel aspects of corticotroph development. Endocr Res 30: 551‐552, 2004.
 167.Pulichino AM, Vallette‐Kasic S, Couture C, Gauthier Y, Brue T, David M, Malpuech G, Deal C, Van VG, De VM, Riepe FG, Partsch CJ, Sippell WG, Berberoglu M, Atasay B, Drouin J. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency. Genes Dev 17: 711‐716, 2003.
 168.Pulichino AM, Vallette‐Kasic S, Tsai JP, Couture C, Gauthier Y, Drouin J. Tpit determines alternate fates during pituitary cell differentiation. Genes Dev 17: 738‐747, 2003.
 169.Raetzman LT, Ward R, Camper SA. Lhx4 and Prop1 are required for cell survival and expansion of the pituitary primordia. Development 129: 4229‐4239, 2002.
 170.Raetzman LT, Wheeler BS, Ross SA, Thomas PQ, Camper SA. Persistent expression of Notch2 delays gonadotrope differentiation. Mol Endocrinol 20 (11): 2898‐2908, 2006.
 171.Ragge NK, Brown AG, Poloschek CM, Lorenz B, Henderson RA, Clarke MP, Russell‐Eggitt I, Fielder A, Gerrelli D, Martinez‐Barbera JP, Ruddle P, Hurst J, Collin JR, Salt A, Cooper ST, Thompson PJ, Sisodiya SM, Williamson KA, FitzPatrick DR, van Heyningen V, Hanson IM. Heterozygous mutations of OTX2 cause severe ocular malformations. Am J Hum Genet 76: 1008‐1022, 2005.
 172.Raivio T, Avbelj M, McCabe MJ, Romero CJ, Dwyer AA, Tommiska J, Sykiotis GP, Gregory LC, Diaczok D, Tziaferi V, Elting MW, Padidela R, Plummer L, Martin C, Feng B, Zhang C, Zhou QY, Chen H, Mohammadi M, Quinton R, Sidis Y, Radovick S, Dattani MT, Pitteloud N. Genetic overlap in Kallmann syndrome, combined pituitary hormone deficiency, and septo‐optic dysplasia. J Clin Endocrinol Metab 97: E694‐E699, 2012.
 173.Rajab A, Kelberman D, de Castro SC, Biebermann H, Shaikh H, Pearce K, Hall CM, Shaikh G, Gerrelli D, Grueters A, Krude H, Dattani MT. Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Hum Mol Genet 17 (14): 2150‐2159, 2008.
 174.Rizzoti K, Brunelli S, Carmignac D, Thomas PQ, Robinson IC, Lovell‐Badge R. SOX3 is required during the formation of the hypothalamo‐pituitary axis. Nat Genet 36: 247‐255, 2004.
 175.Rizzoti K, Lovell‐Badge R. Early development of the pituitary gland: Induction and shaping of Rathke's pouch. Rev Endocr Metab Disord 6: 161‐172, 2005.
 176.Rizzoti K, Lovell‐Badge R. SOX3 activity during pharyngeal segmentation is required for craniofacial morphogenesis. Development 134: 3437‐3448, 2007.
 177.Rizzoti K, Akiyama H, Lovell‐Badge R. Mobilized adult pituitary stem cells contribute to endocrine regeneration in response to physiological demand. Cell Stem Cell 13 (4): 419‐432, 2013.
 178.Roessler E, Du YZ, Mullor JL, Casas E, Allen WP, Gillessen‐Kaesbach G, Roeder ER, Ming JE, Altaba A, Muenke M. Loss‐of‐function mutations in the human GLI2 gene are associated with pituitary anomalies and holoprosencephaly‐like features. Proc Natl Acad Sci U S A 100: 13424‐13429, 2003.
 179.Rogers N, Cheah PS, Szarek E, Banerjee K, Schwartz J, Thomas P. Expression of the murine transcription factor SOX3 during embryonic and adult neurogenesis. Gene Expr Patterns 13: 240‐248, 2013.
 180.Sajedi E, Gaston‐Massuet C, Signore M, Andoniadou CL, Kelberman D, Castro S, Etchevers HC, Gerrelli D, Dattani MT, Martinez‐Barbera JP. Analysis of mouse models carrying the I26T and R160C substitutions in the transcriptional repressor HESX1 as models for septo‐optic dysplasia and hypopituitarism. Dis Model Mech 1: 241‐254, 2008.
 181.Salvatierra J, Lee DA, Zibetti C, Duran‐Moreno M, Yoo S, Newman EA, Wang H, Bedont JL, de MJ, Miranda‐Angulo AL, Gil‐Perotin S, Garcia‐Verdugo JM, Blackshaw S. The LIM homeodomain factor Lhx2 is required for hypothalamic tanycyte specification and differentiation. J Neurosci 34: 16809‐16820, 2014.
 182.Sanchez‐Cardenas C, Fontanaud P, He Z, Lafont C, Meunier AC, Schaeffer M, Carmignac D, Molino F, Coutry N, Bonnefont X, Gouty‐Colomer LA, Gavois E, Hodson DJ, Le TP, Robinson IC, Mollard P. Pituitary growth hormone network responses are sexually dimorphic and regulated by gonadal steroids in adulthood. Proc Natl Acad Sci U S A 107: 21878‐21883, 2010.
 183.Sato N, Kamachi Y, Kondoh H, Shima Y, Morohashi K, Horikawa R, Ogata T. Hypogonadotropic hypogonadism in an adult female with a heterozygous hypomorphic mutation of SOX2. Eur J Endocrinol 156: 167‐171, 2007.
 184.Schaeffer M, Hodson DJ, Lafont C, Mollard P. Functional importance of blood flow dynamics and partial oxygen pressure in the anterior pituitary. Eur J Neurosci 32: 2087‐2095, 2010.
 185.Schaeffer M, Hodson DJ, Meunier AC, Lafont C, Birkenstock J, Carmignac D, Murray JF, Gavois E, Robinson IC, Le TP, Mollard P. Influence of estrogens on GH‐cell network dynamics in females: A live in situ imaging approach. Endocrinology 152: 4789‐4799, 2011.
 186.Schilham MW, Clevers H. HMG box containing transcription factors in lymphocyte differentiation. Semin Immunol 10: 127‐132, 1998.
 187.Schneider A, Bardakjian T, Reis LM, Tyler RC, Semina EV. Novel SOX2 mutations and genotype‐phenotype correlation in anophthalmia and microphthalmia. Am J Med Genet A 149A: 2706‐2715, 2009.
 188.Sheng HZ, Westphal H. Early steps in pituitary organogenesis. Trends Genet 15: 236‐240, 1999.
 189.Sheng HZ, Zhadanov AB, Mosinger B Jr, Fujii T, Bertuzzi S, Grinberg A, Lee EJ, Huang SP, Mahon KA, Westphal H. Specification of pituitary cell lineages by the LIM homeobox gene Lhx3. Science 272: 1004‐1007, 1996.
 190.Shimogori T, Lee DA, Miranda‐Angulo A, Yang Y, Wang H, Jiang L, Yoshida AC, Kataoka A, Mashiko H, Avetisyan M, Qi L, Qian J, Blackshaw S. A genomic atlas of mouse hypothalamic development. Nat Neurosci 13: 767‐775, 2010.
 191.Singh S, Tokhunts R, Baubet V, Goetz JA, Huang ZJ, Schilling NS, Black KE, MacKenzie TA, Dahmane N, Robbins DJ. Sonic hedgehog mutations identified in holoprosencephaly patients can act in a dominant negative manner. Hum Genet 125 (1): 95‐103, 2009.
 192.Sloop KW, Parker GE, Hanna KR, Wright HA, Rhodes SJ. LHX3 transcription factor mutations associated with combined pituitary hormone deficiency impair the activation of pituitary target genes. Gene 265 (1‐2): 61‐69, 2001.
 193.Sobrier ML, Maghnie M, Vie‐Luton MP, Secco A, di Iorgi N, Lorini R, Amselem S. Novel HESX1 mutations associated with a life‐threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. JCEM 91: 4528‐4536, 2006.
 194.Sobrier ML, Maghnie M, Vie‐Luton MP, Secco A, Di IN, Lorini R, Amselem S. Novel HESX1 mutations associated with a life‐threatening neonatal phenotype, pituitary aplasia, but normally located posterior pituitary and no optic nerve abnormalities. J Clin Endocrinol Metab 91: 4528‐4536, 2006.
 195.Sobrier ML, Netchine I, Heinrichs C, Thibaud N, Vie‐Luton MP, Van VG, Amselem S. Alu‐element insertion in the homeodomain of HESX1 and aplasia of the anterior pituitary. Hum Mutat 25: 503, 2005.
 196.Sornson MW, Wu W, Dasen JS, Flynn SE, Norman DJ, O'Connell SM, Gukovsky I, Carriere C, Ryan AK, Miller AP, Zuo L, Gleiberman AS, Andersen B, Beamer WG, Rosenfeld MG. Pituitary lineage determination by the Prophet of Pit‐1 homeodomain factor defective in Ames dwarfism. Nature 384: 327‐333, 1996.
 197.Suga H. Differentiation of pluripotent stem cells into hypothalamic and pituitary cells. Neuroendocrinology 101, 1: 18‐24, 2014.
 198.Suga H, Kadoshima T, Minaguchi M, Ohgushi M, Soen M, Nakano T, Takata N, Wataya T, Muguruma K, Miyoshi H, Yonemura S, Oiso Y, Sasai Y. Self‐formation of functional adenohypophysis in three‐dimensional culture. Nature 480: 57‐62, 2011.
 199.Suh H, Gage PJ, Drouin J, Camper SA. Pitx2 is required at multiple stages of pituitary organogenesis: Pituitary primordium formation and cell specification. Development 129: 329‐337, 2002.
 200.Sun Y, Bak B, Schoenmakers N, van Trotsenburg AS, Oostdijk W, Voshol P, Cambridge E, White JK, le Tissier P, Gharavy SN, Martinez‐Barbera JP, Stokvis‐Brantsma WH, Vulsma T, Kempers MJ, Persani L, Campi I, Bonomi M, Beck‐Peccoz P, Zhu H, Davis TM, Hokken‐Koelega AC, Del Blanco DG, Rangasami JJ, Ruivenkamp CA, Laros JF, Kriek M, Kant SG, Bosch CA, Biermasz NR, Appelman‐Dijkstra NM, Corssmit EP, Hovens GC, Pereira AM, den Dunnen JT, Wade MG, Breuning MH, Hennekam RC, Chatterjee K, Dattani MT, Wit JM, Bernard DJ. Loss‐of‐function mutations in IGSF1 cause an X‐linked syndrome of central hypothyroidism and testicular enlargement. Nat Genet 44 (12): 1375‐1381, 2012.
 201.Szeto DP, Rodriguez‐Esteban C, Ryan AK, O'Connell SM, Liu F, Kioussi C, Gleiberman AS, Izpisua‐Belmonte JC, Rosenfeld MG. Role of the Bicoid‐related homeodomain factor Pitx1 in specifying hindlimb morphogenesis and pituitary development. Genes Dev 13: 484‐494, 1999.
 202.Tajima T, Hattori T, Nakajima T, Okuhara K, Tsubaki J, Fujieda K. A novel missense mutation (P366T) of the LHX4 gene causes severe combined pituitary hormone deficiency with pituitary hypoplasia, ectopic posterior lobe and a poorly developed sella turcica. Endocr J 54: 637‐641, 2007.
 203.Tajima T, Ohtake A, Hoshino M, Amemiya S, Sasaki N, Ishizu K, Fujieda K. OTX2 loss of function mutation causes anophthalmia and combined pituitary hormone deficiency with a small anterior and ectopic posterior pituitary. J Clin Endocrinol Metab 94: 314‐319, 2009.
 204.Tajima T, Yorifuji T, Ishizu K, Fujieda K. A novel mutation (V101A) of the LHX4 gene in a Japanese patient with combined pituitary hormone deficiency. Exp Clin Endocrinol Diabetes 118 (7): 405‐409, 2010.
 205.Takagi M, Ishii T, Inokuchi M, Amano N, Narumi S, Asakura Y, Muroya K, Hasegawa Y, Adachi M, Hasegawa T. Gradual loss of ACTH due to a novel mutation in LHX4: Comprehensive mutation screening in Japanese patients with congenital hypopituitarism. PLoS One 7 (9): e46008, 2012.
 206.Takagi M, Ishii T, Torii C, Kosaki K, Hasegawa T. A novel mutation in SOX3 polyalanine tract: A case of kabuki syndrome with combined pituitary hormone deficiency harboring double mutations in MLL2 and SOX3. Pituitary 17 (6): 569‐574, 2013.
 207.Takuma N, Sheng HZ, Furuta Y, Ward JM, Sharma K, Hogan BL, Pfaff SL, Westphal H, Kimura S, Mahon KA. Formation of Rathke's pouch requires dual induction from the diencephalon. Development 125: 4835‐4840, 1998.
 208.Taranova OV, Magness ST, Fagan BM, Wu Y, Surzenko N, Hutton SR, Pevny LH. SOX2 is a dose‐dependent regulator of retinal neural progenitor competence. Genes Dev 20: 1187‐1202, 2006.
 209.Tenenbaum‐Rakover Y, Sobrier ML, Amselem S. A novel POU1F1 mutation (p.Thr168IlefsX7) associated with an early and severe form of combined pituitary hormone deficiency: Functional analysis and follow‐up from infancy to adulthood. Clin Endocrinol 75: 214‐219, 2011.
 210.Thackray VG. Fox tales: Regulation of gonadotropin gene expression by forkhead transcription factors. Mol Cell Endocrinol 385: 62‐70, 2014.
 211.Thomas PQ, Dattani MT, Brickman JM, McNay D, Warne G, Zacharin M, Cameron F, Hurst J, Woods K, Dunger D, Stanhope R, Forrest S, Robinson IC, Beddington RS. Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo‐optic dysplasia. Hum Mol Genet 10: 39‐45, 2001.
 212.Treier M, Gleiberman AS, O'Connell SM, Szeto DP, McMahon JA, McMahon AP, Rosenfeld MG. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 12: 1691‐1704, 1998.
 213.Treier M, O'Connell S, Gleiberman A, Price J, Szeto DP, Burgess R, Chuang PT, McMahon AP, Rosenfeld MG. Hedgehog signaling is required for pituitary gland development. Development 128: 377‐386, 2001.
 214.Treier M, Rosenfeld MG. The hypothalamic‐pituitary axis: Co‐development of two organs. Curr Opin Cell Biol 8: 833‐843, 1996.
 215.Tumer Z, Bach‐Holm D. Axenfeld‐Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet 17: 1527‐1539, 2009.
 216.Turgeon MO, Silander TL, Doycheva D, Liao XH, Rigden M, Ongaro L, Zhou X, Joustra SD, Wit JM, Wade MG, Heuer H, Refetoff S, Bernard DJ. TRH action is impaired in pituitaries of male IGSF1‐deficient mice. Endocrinology 158 (4): 815‐830, 2017.
 217.Turton JP, Mehta A, Raza J, Woods KS, Tiulpakov A, Cassar J, Chong K, Thomas PQ, Eunice M, Ammini AC, Bouloux PM, Starzyk J, Hindmarsh PC, Dattani MT. Mutations within the transcription factor PROP1 are rare in a cohort of patients with sporadic combined pituitary hormone deficiency (CPHD). Clin Endocrinol 63: 10‐18, 2005.
 218.Turton JP, Reynaud R, Mehta A, Torpiano J, Saveanu A, Woods KS, Tiulpakov A, Zdravkovic V, Hamilton J, ttard‐Montalto S, Parascandalo R, Vella C, Clayton PE, Shalet S, Barton J, Brue T, Dattani MT. Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. J Clin Endocrinol Metab 90: 4762‐4770, 2005.
 219.Unal E, Yıldırım R, Taş FF, Tekin S, Sen A, Haspolat YK. A rare cause of neonatal hypoglycemia in two siblings: TBX19 gene mutation. Hormones (Athens) 17 (2): 269‐273, 2018.
 220.Uwanogho D, Rex M, Cartwright EJ, Pearl G, Healy C, Scotting PJ, Sharpe PT. Embryonic expression of the chicken Sox2, Sox3 and Sox11 genes suggests an interactive role in neuronal development. Mech Dev 49: 23‐36, 1995.
 221.Vakili H, Cattini PA. The hidden but positive role for glucocorticoids in the regulation of growth hormone‐producing cells. Mol Cell Endocrinol 363: 1‐9, 2012.
 222.Vallette‐Kasic S, Barlier A, Teinturier C, Diaz A, Manavela M, Berthezene F, Bouchard P, Chaussain JL, Brauner R, Pellegrini‐Bouiller I, Jaquet P, Enjalbert A, Brue T. PROP1 gene screening in patients with multiple pituitary hormone deficiency reveals two sites of hypermutability and a high incidence of corticotroph deficiency. J Clin Endocrinol Metab 86: 4529‐4535, 2001.
 223.Vankelecom H. Stem cells in the postnatal pituitary? Neuroendocrinology 85: 110‐130, 2007.
 224.Vankelecom H, Gremeaux L. Stem cells in the pituitary gland: A burgeoning field. Gen Comp Endocrinol 166: 478‐488, 2010.
 225.Voutetakis A, Argyropoulou M, Sertedaki A, Livadas S, Xekouki P, Maniati‐Christidi M, Bossis I, Thalassinos N, Patronas N, cou‐Voutetakis C. Pituitary magnetic resonance imaging in 15 patients with Prop1 gene mutations: Pituitary enlargement may originate from the intermediate lobe. J Clin Endocrinol Metab 89: 2200‐2206, 2004.
 226.Wang Y, Martin JF, Bai CB. Direct and indirect requirements of Shh/Gli signaling in early pituitary development. Dev Biol 348: 199‐209, 2010.
 227.Wang Y, Zhao H, Zhang X, Feng H. Novel identification of a four‐base‐pair deletion mutation in PITX2 in a Rieger syndrome family. J Dent Res 82: 1008‐1012, 2003.
 228.Ward RD, Raetzman LT, Suh H, Stone BM, Nasonkin IO, Camper SA. Role of PROP1 in pituitary gland growth. Mol Endocrinol 19: 698‐710, 2005.
 229.Ward RD, Stone BM, Raetzman LT, Camper SA. Cell proliferation and vascularization in mouse models of pituitary hormone deficiency. Mol Endocrinol 20: 1378‐1390, 2006.
 230.Webb EA, AlMutair A, Kelberman D, Bacchelli C, Chanudet E, Lescai F, Andoniadou CL, Banyan A, Alsawaid A, Alrifai MT, Alahmesh MA, Balwi M, Mousavy‐Gharavy SN, Lukovic B, Burke D, McCabe MJ, Kasia T, Kleta R, Stupka E, Beales PL, Thompson DA, Chong WK, Alkuraya FS, Martinez‐Barbera JP, Sowden JC, Dattani MT. ARNT2 mutation causes hypopituitarism, post‐natal microcephaly, visual and renal anomalies. Brain 136: 3096‐3105, 2013.
 231.Wegner M. SOX after SOX: SOXession regulates neurogenesis. Genes Dev 25: 2423‐2428, 2011.
 232.Weiss J, Meeks JJ, Hurley L, Raverot G, Frassetto A, Jameson JL. Sox3 is required for gonadal function, but not sex determination, in males and females. Mol Cell Biol 23: 8084‐8091, 2003.
 233.Weltzien FA, Hildahl J, Hodne K, Okubo K, Haug TM. Embryonic development of gonadotrope cells and gonadotropic hormones – lessons from model fish. Mol Cell Endocrinol 385: 18‐27, 2014.
 234.Williamson KA, Hver AM, Rainger J, Rogers RC, Magee A, Fiedler Z, Keng WT, Sharkey FH, McGill N, Hill CJ, Schneider A, Messina M, Turnpenny PD, Fantes JA, van Heyningen V, FitzPatrick DR. Mutations in SOX2 cause anophthalmia‐esophageal‐genital (AEG) syndrome. Hum Mol Genet 15: 1413‐1422, 2006.
 235.Wood HB, Episkopou V. Comparative expression of the mouse Sox1, Sox2 and Sox3 genes from pre‐gastrulation to early somite stages. Mech Dev 86: 197‐201, 1999.
 236.Woods KS, Cundall M, Turton J, Rizotti K, Mehta A, Palmer R, Wong J, Chong WK, Al‐Zyoud M, El‐Ali M, Otonkoski T, Martinez‐Barbera JP, Thomas PQ, Robinson IC, Lovell‐Badge R, Woodward KJ, Dattani MT. Over‐ and underdosage of SOX3 is associated with infundibular hypoplasia and hypopituitarism. Am J Hum Genet 76: 833‐849, 2005.
 237.Wyatt A, Bakrania P, Bunyan DJ, Osborne RJ, Crolla JA, Salt A, Ayuso C, Newbury‐Ecob R, bou‐Rayyah Y, Collin JR, Robinson D, Ragge N. Novel heterozygous OTX2 mutations and whole gene deletions in anophthalmia, microphthalmia and coloboma. Hum Mutat 29: E278‐E283, 2008.
 238.Xie H, Hoffmann HM, Meadows JD, Mayo SL, Trang C, Leming SS, Maruggi C, Davis SW, Larder R, Mellon PL. Homeodomain proteins SIX3 and SIX6 regulate gonadotrope‐specific genes during pituitary development. Mol Endocrinol 29, 6: 842‐855, 2015.
 239.Zhao L, Bakke M, Krimkevich Y, Cushman LJ, Parlow AF, Camper SA, Parker KL. Steroidogenic factor 1 (SF1) is essential for pituitary gonadotrope function. Development 128: 147‐154, 2001.
 240.Zhao L, Bakke M, Parker KL. Pituitary‐specific knockout of steroidogenic factor 1. Mol Cell Endocrinol 185: 27‐32, 2001.
 241.Zhao L, Zevallos SE, Rizzoti K, Jeong Y, Lovell‐Badge R, Epstein DJ. Disruption of SoxB1‐dependent sonic hedgehog expression in the hypothalamus causes septo‐optic dysplasia. Dev Cell 22: 585‐596, 2012.
 242.Zhao Y, Mailloux CM, Hermesz E, Palkovits M, Westphal H. A role of the LIM‐homeobox gene Lhx2 in the regulation of pituitary development. Dev Biol 337: 313‐323, 2010.
 243.Zhu X, Gleiberman AS, Rosenfeld MG. Molecular physiology of pituitary development: Signaling and transcriptional networks. Physiol Rev 87: 933‐963, 2007.
 244.Zhu X, Wang J, Ju BG, Rosenfeld MG. Signaling and epigenetic regulation of pituitary development. Curr Opin Cell Biol 19: 605‐611, 2007.
 245.Zhu X, Zhang J, Tollkuhn J, Ohsawa R, Bresnick EH, Guillemot F, Kageyama R, Rosenfeld MG. Sustained Notch signaling in progenitors is required for sequential emergence of distinct cell lineages during organogenesis. Genes Dev 20: 2739‐2753, 2006.
 246.Zorn AM, Barish GD, Williams BO, Lavender P, Klymkowsky MW, Varmus HE. Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta‐catenin. Mol Cell 4: 487‐498, 1999.
 247.Wang Q, Curran ME, Splawski I, Burn TC, Millholland JM, VanRaay TJ, et al. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12 (1): 17‐23, 1996.
 248.Tommiska J, Kansakoski J, Skibsbye L, Vaaralahti K, Liu X, Lodge EJ, et al. Two missense mutations in KCNQ1 cause pituitary hormone deficiency and maternally inherited gingival fibromatosis. Nat Commun 8 (1): 1289, 2017.
 249.Stojilkovic SS, Tabak J, Bertram R. Ion channels and signaling in the pituitary gland. Endocr Rev 31 (6): 845‐915, 2010.
 250.Stojilkovic SS, Bjelobaba I, Zemkova H. Ion channels of pituitary gonadotrophs and their roles in signaling and secretion. Front Endocrinol 8: 126, 2017.
 251.Xu R, Roh SG, Loneragan K, Pullar M, Chen C. Human GHRH reduces voltage‐gated K+ currents via a non‐cAMP‐dependent but PKC‐mediated pathway in human GH adenoma cells. J Physiol 520 (Pt 3): 697‐707, 1999.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Kyriaki S. Alatzoglou, Louise C. Gregory, Mehul T. Dattani. Development of the Pituitary Gland. Compr Physiol 2020, 10: 389-413. doi: 10.1002/cphy.c150043