Comprehensive Physiology Wiley Online Library

Regulation of Coronary Blood Flow

Full Article on Wiley Online Library



ABSTRACT

The heart is uniquely responsible for providing its own blood supply through the coronary circulation. Regulation of coronary blood flow is quite complex and, after over 100 years of dedicated research, is understood to be dictated through multiple mechanisms that include extravascular compressive forces (tissue pressure), coronary perfusion pressure, myogenic, local metabolic, endothelial as well as neural and hormonal influences. While each of these determinants can have profound influence over myocardial perfusion, largely through effects on end‐effector ion channels, these mechanisms collectively modulate coronary vascular resistance and act to ensure that the myocardial requirements for oxygen and substrates are adequately provided by the coronary circulation. The purpose of this series of Comprehensive Physiology is to highlight current knowledge regarding the physiologic regulation of coronary blood flow, with emphasis on functional anatomy and the interplay between the physical and biological determinants of myocardial oxygen delivery. © 2017 American Physiological Society. Compr Physiol 7:321‐382, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Schematic diagram of the determinants of myocardial oxygen supply and demand. Adapted, with permission, from Ardehali and Ports (16) and reported by Tune (918).
Figure 2. Figure 2. (A) Relationship between coronary blood flow and myocardial oxygen consumption during exercise in swine [data, with permission, from Berwick et al. (94)]. (B) Relationship between coronary blood flow and coronary perfusion pressure in swine [data, with permission, from Berwick et al. (96)]. (C) Coronary blood flow response to reductions in arterial oxygen content via hemodilution‐anemia [data, with permission, from Tarnow et al. (905) and Fan (323)] or hypoxia [data, with permission, from Merrill et al. (670); Walley et al. (958); and Hermann and Feigl (458)]. (D) Coronary response to a transient coronary artery occlusion [data, with permission, from Borbouse et al. (110)].
Figure 3. Figure 3. Representative pictures of the anatomy of the coronary circulation. Right atrium (RA), RCA, right ventricle (RV); interventricular vein (IVV); LAD coronary artery; left atrium (LA); circumflex coronary artery (CFX); left ventricle (LV); posterior vein (PV); PDA [data, with permission, from Tune (918)].
Figure 4. Figure 4. (A) Radiograph of left ventricular free wall from a 52‐year‐old man who died of acute arsenic poisoning. He had no occlusive coronary disease and no valvular or myocardial abnormalities. Adapted, with permission, from Estes et al. (321). (B) Microvasculature of the left ventricular myocardium showing an arteriole, A (about 35‐40 μm diameter), and two venae comitantes, V. The scale below gives 10‐ and 100‐μm intervals. The venule on the right is about 40 × 80 μm. This arrangement is the usual one for arterioles from l‐mm diameter down to those of 15‐μm diameter [data, with permission, from Bassingthwaighte et al. (62)].
Figure 5. Figure 5. Left: Representative photograph illustrating the apical view of a canine heart 4 months following placement of an ameroid occluder around the proximal left circumflex coronary artery (entering from the left side of the photograph). Typical canine coronary collateral arteries are clearly visible on the epicardial surface, including both large (∼1 mm diameter) and smaller, tortuous arterial connections between a branch of the completely occluded left circumflex coronary artery and a branch of the nonoccluded RCA (446). Right: Green fluorescent replica material was infused in the LAD, and red was infused in the LCX and RCA. Visual inspection reveals at least 2 coronary collaterals between the LAD and LCX as indicated by the two arrows on the right. The arrow on the left indicates a subendocardial collateral connection between LCA and LCX. The inset on the left is an enlarged detail of the inner half of the myocardium corresponding to the border between LAD an RCA (see square in the main image), showing mixing of colors along arterioles. Note that the perfusion areas are well defined, yet borders may be frayed between the LAD and LCX or RCA perfusion territories. Some green vessel segments within the red LCX area indicate that a small amount of green contrast may have entered through collateral connections that then has been pushed to smaller vessels upon the arrival of the red dye (932).
Figure 6. Figure 6. Phasic tracing of right coronary blood flow [adapted, with permission, from Lowensohn et al. (628)] and left circumflex coronary blood flow [adapted, with permission, from Tune et al. (923)] relative to aortic pressure.
Figure 7. Figure 7. Left: Schematic representation of a vascular waterfall in which flow is dependent on the elevation between the rim of the falls [tissue pressure (PT)] and the highest point upstream [arterial pressure (PA)], irrespective of the overall height of the falls [arterial pressure (PA) – venous pressure (PV)]. Right: Principle of the intramyocardial pump. Top: Pressure within a closed elastic tube Pi is in equilibrium with the pressure outside Po. Enlarging Po by ΔP leads to an increase in Pi also by ΔP. Bottom: When the flexible tube is open, ΔP also will be transmitted now causing flow which is impeded by viscous forces [data, with permission, from Spaan et al. (871)].
Figure 8. Figure 8. Schematic cross‐section of the myocardial wall at end‐diastole and end‐systole [data, with permission, from Bell and Fox (72)].
Figure 9. Figure 9. Left: Example of interaction between pressure‐induced myogenic response and flow‐dependent dilation in isolated, pressurized subepicardial arteriole. Right: Pressure‐diameter relationship of arterioles with and without flow [data, with permission, from Kuo et al. (590)].
Figure 10. Figure 10. Relationship between coronary blood flow and coronary vascular resistance relative to coronary perfusion pressure [data, with permission, from Berwick et al. (96)].
Figure 11. Figure 11. Left: Schematic diagram for series‐coupled segmental responses of coronary vasculature to flow, pressure, metabolic, and adrenergic stimuli [data, with permission, from Davis et al. (225)]. Right: Proposed interaction between metabolic, myogenic, and flow‐mediated regulation of coronary microvascular resistance during increases in myocardial metabolism [data, with permission, from Muller et al. (692)].
Figure 12. Figure 12. Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus myocardial oxygen consumption in conscious instrumented swine at rest and during exercise under control conditions, following inhibition of pathway that produces similar reductions in coronary flow and myocardial oxygen consumption (tonic), and during a condition that produces progressive limitation in coronary vasodilation with increases in oxygen consumption (metabolic). The physiologic limit of these relationships are depicted by the red line (maximal physiology response) which represents the condition in which all oxygen delivered in extracted and consumed (i.e., 100% oxygen extraction) [data for each plot were derived, with permission, from the same animal (swine) under the same conditions from the study of Berwick et al. (94)].
Figure 13. Figure 13. Left: Relationship between coronary blood flow and coronary venous PO2 in the right and left ventricle at rest and during exercise in dogs [data, with permission, from Tune et al. (923) and Hart et al. (441)]. Right: Relationship between coronary blood flow and coronary venous PO2 in response to exercise in swine [data, with permission, from Duncker et al. (281)] and isovolemic hemodilution‐induced anemia [data, with permission, from Van Woerkens et al. (935)].
Figure 14. Figure 14. Berne's adenosine hypothesis of local metabolic control of coronary blood flow as a negative feedback control system [data, with permission, from Berne (85)].
Figure 15. Figure 15. Left: Relationship between coronary blood flow and myocardial oxygen consumption with and without adenosine receptor blockade [8‐phenyltheophylline (8‐PT) or 8‐sulfophenyltheophylline (8‐PST)] in dogs at rest and during graded treadmill exercise. Right: Relationship between estimated interstitial adenosine concentration and myocardial oxygen consumption with and without adenosine receptor blockade in dogs at rest and during graded treadmill exercise [data, with permission, from Tune et al. (923)].
Figure 16. Figure 16. Relationship between coronary venous hemoglobin saturation versus myocardial oxygen consumption (left) and coronary blood flow versus coronary venous hemoglobin saturation (right) in instrumented dogs at rest and during exericse with and without inhibition of adenosine receptors [8‐phenyltheophylline (8‐PT), P2Y1 receptors (MRS 2500), and nitric oxide synthase: L‐nitro‐arginine (LNA)] [data, with permission, from Gorman et al. (388)].
Figure 17. Figure 17. Relationship between cardiac H2O2 concentration and myocardial oxygen consumption (top) and coronary blood flow and H2O2 concentration (bottom) in anesthetized, open‐chest dogs at baseline, during cardiac pacing, or norepinephrine infusion [data, with permission, from Saitoh et al. (820)].
Figure 18. Figure 18. Endothelium‐derived vasoactive substances. ACE, angiotensin‐converting enzyme; Ach, acetylcholine; AI, angiotensin I; AII, angiotensin II; AT1, angiotensin 1 receptor; Bk, bradykinin; COX, cyclooxygenase; ECE, ET‐converting enzyme; EDHF, endothelium‐derived hyperpolarizing factor; ETA and ETB, endothelin A and B receptors; ET‐1, endothelin‐1; l‐Arg, l‐arginine; M, muscarinic acetylcholine receptor; PGH2, prostaglandin H2; ROS, reactive oxygen species; S1, serotoninergic receptor; TX, thromboxane receptor; TXA2, thromboxane; 5‐HT, serotonin [from, with permission, Gutierrez et al. (415)].
Figure 19. Figure 19. Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus myocardial oxygen consumption in dogs at rest and during exercise with and without the inhibition of nitric oxide synthase with LNA [data, with permission, from Tune et al. (920)].
Figure 20. Figure 20. Coronary blood flow response to intracoronary arachidonate before (left) and after inhibition of cyclooxygenase with indomethacin (middle). Right: Relationship between coronary blood flow and myocardial oxygen consumption in dogs at rest and during exercise with and without indomethacin [data, with permission, from Dai and Bache (213)].
Figure 21. Figure 21. Left: Biosynthesis and bioavailability of EC‐derived EETs and H2O2. The activation of phospholipase A2 (PLA2) following stimulation with shear stress or secondary to IP3‐sensitive ER Ca2+ store depletion by agonists leads to synthesis of AA, which is metabolized by CYP 2C or 2J isoenzymes to produce EETs, with (sEH; for all EET regioisomers) and COX (for 5,6‐EET only) metabolizing EETs to DHETs and prostaglandins (PGs), respectively, thereby influencing EET bioavailability. Right: Shear stress and agonist stimulation also result in the reduction of molecular O2 to form the ROS superoxide (O2•−), as a byproduct of metabolism, by a number of sources, including NOS, CYP, COX, lipoxygenase (LOX), and mitochondria (mito). O2•− is then further reduced by SOD to form H2O2, the bioavailability of which is determined by endogenous antioxidant enzymes, which include Cat and glutathione peroxidase (GSH‐Px). Nox isoforms (Nox2 and Nox4) synthesize ROS as their sole enzymatic product, with Nox2 producing O2•− and Nox4 mainly H2O2 [adapted, with permission, from Ellinsworth et al. (307)].
Figure 22. Figure 22. Left: Effect of intracoronary endothelin administration on coronary blood flow in anesthetized dogs in the absence and presence of endothelin (ET) receptor blockade. Right: Relationship between coronary blood flow and myocardial oxygen consumption in dogs at rest and during exercise in the absence and presence of ET receptor blockade [data, with permission, from Gorman et al. (386)].
Figure 23. Figure 23. Graphs showing the descending limb of the coronary pressure‐flow relation in the presence of intact vasomotor tone in exercising dogs with and without the nitric oxide synthase inhibitor LNNA [data, with permission, from Duncker and Bache (269)].
Figure 24. Figure 24. Representative drawing of innervation of a coronary artery (cat) from Woollard (989).
Figure 25. Figure 25. Schematic diagram of combined adrenergic feedforward (open‐loop) and local metabolic feedback (closed‐loop) control of coronary blood flow [data, with permission, from Feigl (335)].
Figure 26. Figure 26. Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus myocardial oxygen consumption in dogs at rest and during exercise with and without the inhibition of α‐adrenoceptors or α + β‐adrenoceptors [data, with permission, from Gorman et al. (389)].
Figure 27. Figure 27. Recordings from one dog during norepinephrine infusion (0.25 μg · kg−1 · min−1) before and after α‐adrenoceptor blockade with phenoxybenzamine, with a right atrial paced heart rate of 140 beats/min during low‐level vagal stimulation to slow the intrinsic heart rate. FFT of the septal artery flow velocity is shown with the envelope of the FFT calculated at one‐half the maximum power. Shown at bottom are septal artery velocity profiles determined every 8 ms during individual cardiac cycles, before and after α‐blockade. Forward flow is shown as a curvature of the velocity profile to the right, and retrograde flow is shown by a bowing to the left. Note that negative value retrograde flow velocity was greater after α‐receptor blockade than before blockade during norepinephrine infusion [data, with permission, from Morita et al. (689)].
Figure 28. Figure 28. Effects of a 20‐s vagal stimulation (30 Hz, 8 volts, and 2 ms) on blood pressure, left circumflex coronary blood flow, and heart rate in an anesthetized dog [data, with permission, from Feigl (329)].
Figure 29. Figure 29. Left: Coronary blood flow response to systemic (intravenous) administration of angiotensin II [data, with permission, from Doursout et al. (258)]. Right: Coronary blood flow response to intracoronary administration of angiotensin II with coronary perfusion pressure held constant at 100 mmHg by a servo‐controlled extracorporeal perfusion system [data, with permission, from Zhang et al. (1018)].
Figure 30. Figure 30. Patch clamp recordings of voltage‐gated Ca2+ current in smooth muscle cells from the rabbit coronary artery. Panel A shows a representative I‐V relationship in 2.2 mmol/L Ca2+ before (open symbols) and after (filled symbols) 500 μmol/L Cd2+. Panel B contains a portion of the family of traces, leak subtracted, used to create the I‐V in panel A. Currents were elicited from a holding potential of −80 mV. Panel C is a graph of group data (16 cells) [data, with permission, from Matsuda et al. (647)].
Figure 31. Figure 31. Dominant role of L‐type Ca2+ channels in regulating coronary vascular resistance. The coronary pressure‐flow relationship in swine was autoregulated under control conditions (filled symbols). Coronary pressure was regulated by a servo‐controlled extracorporeal perfusion system while flow was measured. Inhibiting L‐type Ca2+ channels with intracoronary diltiazem (10 μg/min) abolished pressure‐flow autoregulation, indicating a lack of active adjustments to coronary vascular resistance [data, with permission, from Berwick et al. (96)].
Figure 32. Figure 32. Three components of macroscopic K+ current in smooth muscle cells from the human coronary artery. Panel A contains representative current tracings before and after the addition of glibenclamide (Glib; 3 μmol/L), an inhibitor of KATP channels. Only 2 of the 3 major components of K+ current are active under control conditions: BKCa and KV channels (see text for details). Panel B shows that KATP channels, while not open under control conditions, can be activated by pinacidil (Pin; 1 μmol/L) and blocked by glibenclamide [data, with permission, from Gollasch et al. (382)].
Figure 33. Figure 33. Voltage‐dependence of coronary vascular tone: central role of the L‐type Ca2+ channel in coronary smooth muscle. A cartoon schematic represents a coronary myocyte (1), a coronary endothelial cell (2), and metabolic dilators from the adjacent myocardium (3). The L‐type Ca2+ channel in coronary vascular smooth muscle is a major target of regulatory mechanisms, as Ca2+ influx largely controls the amount of Ca2+ available to activate the contractile apparatus. Ca2+ release from the sarcoplasmic reticulum (SR; with ryanodine‐ and IP3‐sensitive Ca2+ release channels) and Ca2+ influx via nonselective cation channels (NSCC) also contribute. NSCC in smooth muscle also contribute to contraction by depolarizing the membrane potential (Em) and activating L‐type Ca2+ channels. Endothelial receptor stimulation (paracrine and mechanical factors) increases Ca2+ in endothelial cells, leading to the production of relaxing/hyperpolarizing factors and hyperpolarization of endothelial Em. Myo‐endothelial junctions can spread Em hyperpolarization to coronary smooth muscle. Relaxing/hyperpolarizing factors diffuse to the smooth muscle, where they activate cell signaling mechanisms to control the contractile apparatus or hyperpolarize Em via K+ channels. The most important physiological stimulus regulating coronary vascular resistance on a beat‐to‐beat basis is metabolic dilators from the myocardium. These factors, which have not been identified conclusively, relax coronary smooth muscle, in large part, by the activation of K+ (especially KV) channels and subsequent inhibition of L‐type Ca2+ channels.
Figure 34. Figure 34. Stretch‐activated nonselective cation current in coronary vascular smooth muscle: effects on the intracellular Ca2+ concentration. Panel A contains a photomicrograph of representative porcine coronary smooth muscle cells. A patch clamp pipette is used to hold one end of a cell and record electrical activity (1) while longitudinal stretch is applied with a second pipette and piezoelectric translator; (2) panel B shows that the magnitude of depolarizing inward current (I, lower trace) is related to the degree of longitudinal stretch (L, upper trace) in a porcine coronary smooth muscle cell [data, with permission, from Wu and Davis (991)]. Panel C demonstrates that, in porcine coronary myocytes, stretch‐induced increases in intracellular Ca2+ ultimately depend upon extracellular Ca2+. Arrows indicate the initiation of longitudinal stretch. In the presence of extracellular Ca2+, stretch‐induced increases in intracellular Ca2+ were rapid and repeatable. In the absence of extracellular Ca2+, longitudinal stretch still elicited Ca2+ transients, but internal stores were quickly depleted [data, with permission, from Davis et al. (226)].
Figure 35. Figure 35. Role of KV1 channels in coronary metabolic vasodilation. Panel A contains coronary blood flow data from five pigs treated with correolide, a selective KV1 channel blocker, and four pigs treated with vehicle only. Myocardial oxygen consumption (MvO2) was elevated from rest by infusing dobutamine at three increasing doses. KV1 channels are important for the increase in coronary blood flow elicited by cardiac metabolism, as correolide depressed the relationship between oxygen supply and demand [data, with permission, from Goodwill et al. (384)]. Panel B shows myocardial blood flow versus cardiac double product, an index of cardiac metabolic demand, in wild‐type mice (WT), global KV1.5 knockout mice (KV1.5−/−), and mice with smooth muscle‐specific restoration of KV1.5 expression (KV1.5−/− RC). Myocardial blood flow was lower at any given level of myocardial demand in global KV1.5 knockout mice (P < 0.05 vs. WT). Smooth muscle‐specific restoration of KV1.5 expression normalized the relationship between myocardial blood flow and metabolic demand [not significant from WT; P < 0.05 versus global knockout; data, with permission, from Ohanyan et al. (725)].
Figure 36. Figure 36. Left: Relationship between coronary venous PO2 and myocardial oxygen consumption at rest and during exercise before and during triple blockade of KATP channels, nitric oxide synthase and adenosine receptors [data, with permission, from Tune et al. (921)]. Right: Relationship between coronary venous PO2 and myocardial oxygen consumption at rest and during exercise before and during inhibition of adenosine receptors (8PT), KATP channels (Glib) and/or nitric oxide synthase (LNNA) [data, with permission, from Ishibashi et al. (497)].


Figure 1. Schematic diagram of the determinants of myocardial oxygen supply and demand. Adapted, with permission, from Ardehali and Ports (16) and reported by Tune (918).


Figure 2. (A) Relationship between coronary blood flow and myocardial oxygen consumption during exercise in swine [data, with permission, from Berwick et al. (94)]. (B) Relationship between coronary blood flow and coronary perfusion pressure in swine [data, with permission, from Berwick et al. (96)]. (C) Coronary blood flow response to reductions in arterial oxygen content via hemodilution‐anemia [data, with permission, from Tarnow et al. (905) and Fan (323)] or hypoxia [data, with permission, from Merrill et al. (670); Walley et al. (958); and Hermann and Feigl (458)]. (D) Coronary response to a transient coronary artery occlusion [data, with permission, from Borbouse et al. (110)].


Figure 3. Representative pictures of the anatomy of the coronary circulation. Right atrium (RA), RCA, right ventricle (RV); interventricular vein (IVV); LAD coronary artery; left atrium (LA); circumflex coronary artery (CFX); left ventricle (LV); posterior vein (PV); PDA [data, with permission, from Tune (918)].


Figure 4. (A) Radiograph of left ventricular free wall from a 52‐year‐old man who died of acute arsenic poisoning. He had no occlusive coronary disease and no valvular or myocardial abnormalities. Adapted, with permission, from Estes et al. (321). (B) Microvasculature of the left ventricular myocardium showing an arteriole, A (about 35‐40 μm diameter), and two venae comitantes, V. The scale below gives 10‐ and 100‐μm intervals. The venule on the right is about 40 × 80 μm. This arrangement is the usual one for arterioles from l‐mm diameter down to those of 15‐μm diameter [data, with permission, from Bassingthwaighte et al. (62)].


Figure 5. Left: Representative photograph illustrating the apical view of a canine heart 4 months following placement of an ameroid occluder around the proximal left circumflex coronary artery (entering from the left side of the photograph). Typical canine coronary collateral arteries are clearly visible on the epicardial surface, including both large (∼1 mm diameter) and smaller, tortuous arterial connections between a branch of the completely occluded left circumflex coronary artery and a branch of the nonoccluded RCA (446). Right: Green fluorescent replica material was infused in the LAD, and red was infused in the LCX and RCA. Visual inspection reveals at least 2 coronary collaterals between the LAD and LCX as indicated by the two arrows on the right. The arrow on the left indicates a subendocardial collateral connection between LCA and LCX. The inset on the left is an enlarged detail of the inner half of the myocardium corresponding to the border between LAD an RCA (see square in the main image), showing mixing of colors along arterioles. Note that the perfusion areas are well defined, yet borders may be frayed between the LAD and LCX or RCA perfusion territories. Some green vessel segments within the red LCX area indicate that a small amount of green contrast may have entered through collateral connections that then has been pushed to smaller vessels upon the arrival of the red dye (932).


Figure 6. Phasic tracing of right coronary blood flow [adapted, with permission, from Lowensohn et al. (628)] and left circumflex coronary blood flow [adapted, with permission, from Tune et al. (923)] relative to aortic pressure.


Figure 7. Left: Schematic representation of a vascular waterfall in which flow is dependent on the elevation between the rim of the falls [tissue pressure (PT)] and the highest point upstream [arterial pressure (PA)], irrespective of the overall height of the falls [arterial pressure (PA) – venous pressure (PV)]. Right: Principle of the intramyocardial pump. Top: Pressure within a closed elastic tube Pi is in equilibrium with the pressure outside Po. Enlarging Po by ΔP leads to an increase in Pi also by ΔP. Bottom: When the flexible tube is open, ΔP also will be transmitted now causing flow which is impeded by viscous forces [data, with permission, from Spaan et al. (871)].


Figure 8. Schematic cross‐section of the myocardial wall at end‐diastole and end‐systole [data, with permission, from Bell and Fox (72)].


Figure 9. Left: Example of interaction between pressure‐induced myogenic response and flow‐dependent dilation in isolated, pressurized subepicardial arteriole. Right: Pressure‐diameter relationship of arterioles with and without flow [data, with permission, from Kuo et al. (590)].


Figure 10. Relationship between coronary blood flow and coronary vascular resistance relative to coronary perfusion pressure [data, with permission, from Berwick et al. (96)].


Figure 11. Left: Schematic diagram for series‐coupled segmental responses of coronary vasculature to flow, pressure, metabolic, and adrenergic stimuli [data, with permission, from Davis et al. (225)]. Right: Proposed interaction between metabolic, myogenic, and flow‐mediated regulation of coronary microvascular resistance during increases in myocardial metabolism [data, with permission, from Muller et al. (692)].


Figure 12. Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus myocardial oxygen consumption in conscious instrumented swine at rest and during exercise under control conditions, following inhibition of pathway that produces similar reductions in coronary flow and myocardial oxygen consumption (tonic), and during a condition that produces progressive limitation in coronary vasodilation with increases in oxygen consumption (metabolic). The physiologic limit of these relationships are depicted by the red line (maximal physiology response) which represents the condition in which all oxygen delivered in extracted and consumed (i.e., 100% oxygen extraction) [data for each plot were derived, with permission, from the same animal (swine) under the same conditions from the study of Berwick et al. (94)].


Figure 13. Left: Relationship between coronary blood flow and coronary venous PO2 in the right and left ventricle at rest and during exercise in dogs [data, with permission, from Tune et al. (923) and Hart et al. (441)]. Right: Relationship between coronary blood flow and coronary venous PO2 in response to exercise in swine [data, with permission, from Duncker et al. (281)] and isovolemic hemodilution‐induced anemia [data, with permission, from Van Woerkens et al. (935)].


Figure 14. Berne's adenosine hypothesis of local metabolic control of coronary blood flow as a negative feedback control system [data, with permission, from Berne (85)].


Figure 15. Left: Relationship between coronary blood flow and myocardial oxygen consumption with and without adenosine receptor blockade [8‐phenyltheophylline (8‐PT) or 8‐sulfophenyltheophylline (8‐PST)] in dogs at rest and during graded treadmill exercise. Right: Relationship between estimated interstitial adenosine concentration and myocardial oxygen consumption with and without adenosine receptor blockade in dogs at rest and during graded treadmill exercise [data, with permission, from Tune et al. (923)].


Figure 16. Relationship between coronary venous hemoglobin saturation versus myocardial oxygen consumption (left) and coronary blood flow versus coronary venous hemoglobin saturation (right) in instrumented dogs at rest and during exericse with and without inhibition of adenosine receptors [8‐phenyltheophylline (8‐PT), P2Y1 receptors (MRS 2500), and nitric oxide synthase: L‐nitro‐arginine (LNA)] [data, with permission, from Gorman et al. (388)].


Figure 17. Relationship between cardiac H2O2 concentration and myocardial oxygen consumption (top) and coronary blood flow and H2O2 concentration (bottom) in anesthetized, open‐chest dogs at baseline, during cardiac pacing, or norepinephrine infusion [data, with permission, from Saitoh et al. (820)].


Figure 18. Endothelium‐derived vasoactive substances. ACE, angiotensin‐converting enzyme; Ach, acetylcholine; AI, angiotensin I; AII, angiotensin II; AT1, angiotensin 1 receptor; Bk, bradykinin; COX, cyclooxygenase; ECE, ET‐converting enzyme; EDHF, endothelium‐derived hyperpolarizing factor; ETA and ETB, endothelin A and B receptors; ET‐1, endothelin‐1; l‐Arg, l‐arginine; M, muscarinic acetylcholine receptor; PGH2, prostaglandin H2; ROS, reactive oxygen species; S1, serotoninergic receptor; TX, thromboxane receptor; TXA2, thromboxane; 5‐HT, serotonin [from, with permission, Gutierrez et al. (415)].


Figure 19. Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus myocardial oxygen consumption in dogs at rest and during exercise with and without the inhibition of nitric oxide synthase with LNA [data, with permission, from Tune et al. (920)].


Figure 20. Coronary blood flow response to intracoronary arachidonate before (left) and after inhibition of cyclooxygenase with indomethacin (middle). Right: Relationship between coronary blood flow and myocardial oxygen consumption in dogs at rest and during exercise with and without indomethacin [data, with permission, from Dai and Bache (213)].


Figure 21. Left: Biosynthesis and bioavailability of EC‐derived EETs and H2O2. The activation of phospholipase A2 (PLA2) following stimulation with shear stress or secondary to IP3‐sensitive ER Ca2+ store depletion by agonists leads to synthesis of AA, which is metabolized by CYP 2C or 2J isoenzymes to produce EETs, with (sEH; for all EET regioisomers) and COX (for 5,6‐EET only) metabolizing EETs to DHETs and prostaglandins (PGs), respectively, thereby influencing EET bioavailability. Right: Shear stress and agonist stimulation also result in the reduction of molecular O2 to form the ROS superoxide (O2•−), as a byproduct of metabolism, by a number of sources, including NOS, CYP, COX, lipoxygenase (LOX), and mitochondria (mito). O2•− is then further reduced by SOD to form H2O2, the bioavailability of which is determined by endogenous antioxidant enzymes, which include Cat and glutathione peroxidase (GSH‐Px). Nox isoforms (Nox2 and Nox4) synthesize ROS as their sole enzymatic product, with Nox2 producing O2•− and Nox4 mainly H2O2 [adapted, with permission, from Ellinsworth et al. (307)].


Figure 22. Left: Effect of intracoronary endothelin administration on coronary blood flow in anesthetized dogs in the absence and presence of endothelin (ET) receptor blockade. Right: Relationship between coronary blood flow and myocardial oxygen consumption in dogs at rest and during exercise in the absence and presence of ET receptor blockade [data, with permission, from Gorman et al. (386)].


Figure 23. Graphs showing the descending limb of the coronary pressure‐flow relation in the presence of intact vasomotor tone in exercising dogs with and without the nitric oxide synthase inhibitor LNNA [data, with permission, from Duncker and Bache (269)].


Figure 24. Representative drawing of innervation of a coronary artery (cat) from Woollard (989).


Figure 25. Schematic diagram of combined adrenergic feedforward (open‐loop) and local metabolic feedback (closed‐loop) control of coronary blood flow [data, with permission, from Feigl (335)].


Figure 26. Relationship between coronary blood flow (left) and coronary venous PO2 (right) versus myocardial oxygen consumption in dogs at rest and during exercise with and without the inhibition of α‐adrenoceptors or α + β‐adrenoceptors [data, with permission, from Gorman et al. (389)].


Figure 27. Recordings from one dog during norepinephrine infusion (0.25 μg · kg−1 · min−1) before and after α‐adrenoceptor blockade with phenoxybenzamine, with a right atrial paced heart rate of 140 beats/min during low‐level vagal stimulation to slow the intrinsic heart rate. FFT of the septal artery flow velocity is shown with the envelope of the FFT calculated at one‐half the maximum power. Shown at bottom are septal artery velocity profiles determined every 8 ms during individual cardiac cycles, before and after α‐blockade. Forward flow is shown as a curvature of the velocity profile to the right, and retrograde flow is shown by a bowing to the left. Note that negative value retrograde flow velocity was greater after α‐receptor blockade than before blockade during norepinephrine infusion [data, with permission, from Morita et al. (689)].


Figure 28. Effects of a 20‐s vagal stimulation (30 Hz, 8 volts, and 2 ms) on blood pressure, left circumflex coronary blood flow, and heart rate in an anesthetized dog [data, with permission, from Feigl (329)].


Figure 29. Left: Coronary blood flow response to systemic (intravenous) administration of angiotensin II [data, with permission, from Doursout et al. (258)]. Right: Coronary blood flow response to intracoronary administration of angiotensin II with coronary perfusion pressure held constant at 100 mmHg by a servo‐controlled extracorporeal perfusion system [data, with permission, from Zhang et al. (1018)].


Figure 30. Patch clamp recordings of voltage‐gated Ca2+ current in smooth muscle cells from the rabbit coronary artery. Panel A shows a representative I‐V relationship in 2.2 mmol/L Ca2+ before (open symbols) and after (filled symbols) 500 μmol/L Cd2+. Panel B contains a portion of the family of traces, leak subtracted, used to create the I‐V in panel A. Currents were elicited from a holding potential of −80 mV. Panel C is a graph of group data (16 cells) [data, with permission, from Matsuda et al. (647)].


Figure 31. Dominant role of L‐type Ca2+ channels in regulating coronary vascular resistance. The coronary pressure‐flow relationship in swine was autoregulated under control conditions (filled symbols). Coronary pressure was regulated by a servo‐controlled extracorporeal perfusion system while flow was measured. Inhibiting L‐type Ca2+ channels with intracoronary diltiazem (10 μg/min) abolished pressure‐flow autoregulation, indicating a lack of active adjustments to coronary vascular resistance [data, with permission, from Berwick et al. (96)].


Figure 32. Three components of macroscopic K+ current in smooth muscle cells from the human coronary artery. Panel A contains representative current tracings before and after the addition of glibenclamide (Glib; 3 μmol/L), an inhibitor of KATP channels. Only 2 of the 3 major components of K+ current are active under control conditions: BKCa and KV channels (see text for details). Panel B shows that KATP channels, while not open under control conditions, can be activated by pinacidil (Pin; 1 μmol/L) and blocked by glibenclamide [data, with permission, from Gollasch et al. (382)].


Figure 33. Voltage‐dependence of coronary vascular tone: central role of the L‐type Ca2+ channel in coronary smooth muscle. A cartoon schematic represents a coronary myocyte (1), a coronary endothelial cell (2), and metabolic dilators from the adjacent myocardium (3). The L‐type Ca2+ channel in coronary vascular smooth muscle is a major target of regulatory mechanisms, as Ca2+ influx largely controls the amount of Ca2+ available to activate the contractile apparatus. Ca2+ release from the sarcoplasmic reticulum (SR; with ryanodine‐ and IP3‐sensitive Ca2+ release channels) and Ca2+ influx via nonselective cation channels (NSCC) also contribute. NSCC in smooth muscle also contribute to contraction by depolarizing the membrane potential (Em) and activating L‐type Ca2+ channels. Endothelial receptor stimulation (paracrine and mechanical factors) increases Ca2+ in endothelial cells, leading to the production of relaxing/hyperpolarizing factors and hyperpolarization of endothelial Em. Myo‐endothelial junctions can spread Em hyperpolarization to coronary smooth muscle. Relaxing/hyperpolarizing factors diffuse to the smooth muscle, where they activate cell signaling mechanisms to control the contractile apparatus or hyperpolarize Em via K+ channels. The most important physiological stimulus regulating coronary vascular resistance on a beat‐to‐beat basis is metabolic dilators from the myocardium. These factors, which have not been identified conclusively, relax coronary smooth muscle, in large part, by the activation of K+ (especially KV) channels and subsequent inhibition of L‐type Ca2+ channels.


Figure 34. Stretch‐activated nonselective cation current in coronary vascular smooth muscle: effects on the intracellular Ca2+ concentration. Panel A contains a photomicrograph of representative porcine coronary smooth muscle cells. A patch clamp pipette is used to hold one end of a cell and record electrical activity (1) while longitudinal stretch is applied with a second pipette and piezoelectric translator; (2) panel B shows that the magnitude of depolarizing inward current (I, lower trace) is related to the degree of longitudinal stretch (L, upper trace) in a porcine coronary smooth muscle cell [data, with permission, from Wu and Davis (991)]. Panel C demonstrates that, in porcine coronary myocytes, stretch‐induced increases in intracellular Ca2+ ultimately depend upon extracellular Ca2+. Arrows indicate the initiation of longitudinal stretch. In the presence of extracellular Ca2+, stretch‐induced increases in intracellular Ca2+ were rapid and repeatable. In the absence of extracellular Ca2+, longitudinal stretch still elicited Ca2+ transients, but internal stores were quickly depleted [data, with permission, from Davis et al. (226)].


Figure 35. Role of KV1 channels in coronary metabolic vasodilation. Panel A contains coronary blood flow data from five pigs treated with correolide, a selective KV1 channel blocker, and four pigs treated with vehicle only. Myocardial oxygen consumption (MvO2) was elevated from rest by infusing dobutamine at three increasing doses. KV1 channels are important for the increase in coronary blood flow elicited by cardiac metabolism, as correolide depressed the relationship between oxygen supply and demand [data, with permission, from Goodwill et al. (384)]. Panel B shows myocardial blood flow versus cardiac double product, an index of cardiac metabolic demand, in wild‐type mice (WT), global KV1.5 knockout mice (KV1.5−/−), and mice with smooth muscle‐specific restoration of KV1.5 expression (KV1.5−/− RC). Myocardial blood flow was lower at any given level of myocardial demand in global KV1.5 knockout mice (P < 0.05 vs. WT). Smooth muscle‐specific restoration of KV1.5 expression normalized the relationship between myocardial blood flow and metabolic demand [not significant from WT; P < 0.05 versus global knockout; data, with permission, from Ohanyan et al. (725)].


Figure 36. Left: Relationship between coronary venous PO2 and myocardial oxygen consumption at rest and during exercise before and during triple blockade of KATP channels, nitric oxide synthase and adenosine receptors [data, with permission, from Tune et al. (921)]. Right: Relationship between coronary venous PO2 and myocardial oxygen consumption at rest and during exercise before and during inhibition of adenosine receptors (8PT), KATP channels (Glib) and/or nitric oxide synthase (LNNA) [data, with permission, from Ishibashi et al. (497)].
References
 1.Abid MR, Sellke FW. Antioxidant therapy: Is it your gateway to improved cardiovascular health? Pharm Anal Acta 6: pii:323, 2015.
 2.Afonso S, Bandow GT, Rowe GG. Indomethacin and the prostaglandin hypothesis of coronary blood flow regulation. J Physiol 241: 299‐308, 1974.
 3.Ahmed A, Waters CM, Leffler CW, Jaggar JH. Ionic mechanisms mediating the myogenic response in newborn porcine cerebral arteries. Am J Physiol Heart Circ Physiol 287: H2061‐H2069, 2004.
 4.Alexander RW, Kent KM, Pisano JJ, Keiser HR, Cooper T. Regulation of postocclusive hyperemia by endogenously synthesized prostaglandins in the dog heart. J Clin Invest 55: 1174‐1181, 1975.
 5.Algranati D, Kassab GS, Lanir Y. Mechanisms of myocardium‐coronary vessel interaction. Am J Physiol Heart Circ Physiol 298: H861‐H873, 2010.
 6.Algranati D, Kassab GS, Lanir Y. Why is the subendocardium more vulnerable to ischemia? A new paradigm. Am J Physiol Heart Circ Physiol 300: H1090‐H1100, 2011.
 7.Altman JD, Kinn J, Duncker DJ, Bache RJ. Effect of inhibition of nitric oxide formation on coronary blood flow during exercise in the dog. Cardiovasc Res 28: 119‐124, 1994.
 8.Amenta F, Coppola L, Gallo P, Ferrante F, Forlani A, Monopoli A, Napoleone P. Autoradiographic localization of beta‐adrenergic receptors in human large coronary arteries. Circ Res 68: 1591‐1599, 1991.
 9.Amezcua JL, Palmer RM, de Souza BM, Moncada S. Nitric oxide synthesized from L‐arginine regulates vascular tone in the coronary circulation of the rabbit. Br J Pharmacol 97: 1119‐1124, 1989.
 10.Ammar RF, Jr, Gutterman DD, Brooks LA, Dellsperger KC. Impaired dilation of coronary arterioles during increases in myocardial O(2) consumption with hyperglycemia. Am J Physiol Endocrinol Metab 279: E868‐E874, 2000.
 11.Anderson SE, Hill AJ, Iaizzo PA. Venous valves: Unseen obstructions to coronary access. J Interv Card Electrophysiol 19: 165‐166, 2007.
 12.Anderson SE, Quill JL, Iaizzo PA. Venous valves within left ventricular coronary veins. J Interv Card Electrophysiol 23: 95‐99, 2008.
 13.Anrep GV, Saalfeld V. The effect of the cardiac contraction upon the coronary flow. J Physiol 79: 317‐331, 1933.
 14.Ansorge EJ, Augustyniak RA, Perinot ML, Hammond RL, Kim JK, Sala‐Mercado JA, Rodriguez J, Rossi NF, O'Leary DS. Altered muscle metaboreflex control of coronary blood flow and ventricular function in heart failure. Am J Physiol Heart Circ Physiol 288: H1381‐H1388, 2005.
 15.Ansorge EJ, Shah SH, Augustyniak RA, Rossi NF, Collins HL, O'Leary DS. Muscle metaboreflex control of coronary blood flow. Am J Physiol Heart Circ Physiol 283: H526‐H532, 2002.
 16.Ardehali A, Ports TA. Myocardial oxygen supply and demand. Chest 98: 699‐705, 1990.
 17.Armour JA, Randall WC. Canine left ventricular intramyocardial pressures. Am J Physiol 220: 1833‐1839, 1971.
 18.Arnold G, Morgenstern C, Lochner W. The autoregulation of the heart work by the coronary perfusion pressure. Pflugers Arch 321: 34‐55, 1970.
 19.Arthur JM, Bonham AC, Gutterman DD, Gebhart GF, Marcus ML, Brody MJ. Coronary vasoconstriction during stimulation in hypothalamic defense region. Am J Physiol 260: R335‐R345, 1991.
 20.Arts T, Reneman RS. Interaction between intramyocardial pressure (IMP) and myocardial circulation. J Biomech Eng 107: 51‐56, 1985.
 21.Ashton JH, Golino P, McNatt JM, Buja LM, Willerson JT. Serotonin S2 and thromboxane A2‐prostaglandin H2 receptor blockade provide protection against epinephrine‐induced cyclic flow variations in severely narrowed canine coronary arteries. J Am Coll Cardiol 13: 755‐763, 1989.
 22.Audibert G, Saunier CG, Siat J, Hartemann D, Lambert J. Effect of the inhibitor of nitric oxide synthase, NG‐nitro‐L‐arginine methyl ester, on cerebral and myocardial blood flows during hypoxia in the awake dog. Anesth Analg 81: 945‐951, 1995.
 23.Aversano T, Becker LC. Persistence of coronary vasodilator reserve despite functionally significant flow reduction. Am J Physiol 248: H403‐H411, 1985.
 24.Azzawi M, Austin C. The effects of endothelial factor inhibition on the time course of responses of isolated rat coronary arteries to intraluminal flow. J Vasc Res 44: 223‐233, 2007.
 25.Bacchus AN, Ely SW, Knabb RM, Rubio R, Berne RM. Adenosine and coronary blood flow in conscious dogs during normal physiological stimuli. Am J Physiol 243: H628‐H633, 1982.
 26.Bache RJ, Cobb FR. Effect of maximal coronary vasodilation on transmural myocardial perfusion during tachycardia in the awake dog. Circ Res 41: 648‐653, 1977.
 27.Bache RJ, Cobb FR, Greenfield JC, Jr. Effects of increased myocardial oxygen consumption on coronary reactive hyperemia in the awake dog. Circ Res 33: 588‐596, 1973.
 28.Bache RJ, Cobb FR, Greenfield JC, Jr. Limitation of the coronary vascular response to ischemia in the awake dog. Circ Res 35: 527‐535, 1974.
 29.Bache RJ, Cobb FR, Greenfield JC, Jr. Myocardial blood flow distribution during ischemia‐induced coronary vasodilation in the unanesthetized dog. J Clin Invest 54: 1462‐1472, 1974.
 30.Bache RJ, Dai XZ, Alyono D, Vrobel TR, Homans DC. Myocardial blood flow during exercise in dogs with left ventricular hypertrophy produced by aortic banding and perinephritic hypertension. Circulation 76: 835‐842, 1987.
 31.Bache RJ, Dai XZ, Baran KW. Effect of pinacidil on myocardial blood flow in the presence of a coronary artery stenosis. J Cardiovasc Pharmacol 15: 618‐625, 1990.
 32.Bache RJ, Dai XZ, Schwartz JS, Homans DC. Role of adenosine in coronary vasodilation during exercise. Circ Res 62: 846‐853, 1988.
 33.Bache RJ, Ederstrom HE. Reactive hyperemia in legs of dogs: Effects of temperature and intravascular tension. Circ Res 16: 416‐422, 1965.
 34.Bache RJ, Homans DC, Dai XZ. Adrenergic vasoconstriction limits coronary blood flow during exercise in hypertrophied left ventricle. Am J Physiol 260: H1489‐H1494, 1991.
 35.Bache RJ, Laxson DD. Coronary arteriolar vasoconstriction in myocardial ischaemia: Coronary vasodilator reserve during ischaemia. Eur Heart J 11(Suppl B): 5‐9, 1990.
 36.Bache RJ, Quanbeck D, Homans DC, Dai XZ. Effects of nifedipine on coronary reactive and exercise induced hyperaemia. Cardiovasc Res 21: 766‐771, 1987.
 37.Bache RJ, Schwartz JS. Myocardial blood flow during exercise after gradual coronary occlusion in the dog. Am J Physiol 245: H131‐H138, 1983.
 38.Bache RJ, Tockman BA. Effect of nitroglycerin and nifedipine on subendocardial perfusion in the presence of a flow‐limiting coronary stenosis in the awake dog. Circ Res 50: 678‐687, 1982.
 39.Bache RJ, Vrobel TR, Ring WS, Emery RW, Andersen RW. Regional myocardial blood flow during exercise in dogs with chronic left ventricular hypertrophy. Circ Res 48: 76‐87, 1981.
 40.Bagher P, Segal SS. Regulation of blood flow in the microcirculation: Role of conducted vasodilation. Acta Physiol (Oxf) 202: 271‐284, 2011.
 41.Bagi Z, Koller A, Kaley G. Superoxide‐NO interaction decreases flow‐ and agonist‐induced dilations of coronary arterioles in Type 2 diabetes mellitus. Am J Physiol Heart Circ Physiol 285: H1404‐H1410, 2003.
 42.Bahl R, Timmis A, Meier P. The coronary collateral circulation–clinical predictors. Anadolu Kardiyol Derg 13: 152‐153, 2013.
 43.Bai XJ, Iwamoto T, Williams AG, Jr, Fan WL, Downey HF. Coronary pressure‐flow autoregulation protects myocardium from pressure‐induced changes in oxygen consumption. Am J Physiol 266: H2359‐H2368, 1994.
 44.Baird RJ, Goldbach MM, De la Rocha A. Intramyocardial pressure. The persistence of its transmural gradient in the empty heart and its relationship to myocardial oxygen consumption. J Thorac Cardiovasc Surg 64: 635‐646, 1972.
 45.Baird RJ, Manktelow RT, Shah PA, Ameli FM. Intramyocardial pressure. A study of its regional variations and its relationship to intraventricular pressure. J Thorac Cardiovasc Surg 59: 810‐823, 1970.
 46.Baker AR, Silva NF, Quinn DW, Harte AL, Pagano D, Bonser RS, Kumar S, McTernan PG. Human epicardial adipose tissue expresses a pathogenic profile of adipocytokines in patients with cardiovascular disease. Cardiovasc Diabetol 5: 1, 2006.
 47.Ball RM, Bache RJ. Distribution of myocardial blood flow in the exercising dog with restricted coronary artery inflow. Circ Res 38: 60‐66, 1976.
 48.Ball RM, Bache RJ, Cobb FR, Greenfield JC, Jr. Regional myocardial blood flow during graded treadmill exercise in the dog. J Clin Invest 55: 43‐49, 1975.
 49.Ballinger WF, Templeton JY, III, Vollenweider H. Anaerobic metabolism of heart. Circ Res 11: 681‐685, 1962.
 50.Banitt PF, Shafique T, Weintraub RM, Johnson RG, Schoen FJ, Sellke FW. Relaxation responses of the coronary microcirculation after cardiopulmonary bypass and ischemic arrest with cardioplegia: Implications for the treatment of postoperative coronary spasm. J Cardiothorac Vasc Anesth 7: 1993.
 51.Barlow RS, El‐Mowafy AM, White RE. H(2)O(2) opens BK(Ca) channels via the PLA(2)‐arachidonic acid signaling cascade in coronary artery smooth muscle. Am J Physiol Heart Circ Physiol 279: H475‐H483, 2000.
 52.Barlow RS, White RE. Hydrogen peroxide relaxes porcine coronary arteries by stimulating BKCa channel activity. Am J Physiol 275: H1283‐H1289, 1998.
 53.Barnard RJ, Duncan HW, Livesay JJ, Buckberg GD. Coronary vasodilator reserve and flow distribution during near‐maximal exercise in dogs. J Appl Physiol 43: 988‐992, 1977.
 54.Baroldi G. Mycardial infarct and sudden coronary heart death in relation to coronary occlusion and collateral circulation. Am Heart J 71: 826‐836, 1966.
 55.Baroldi G. Functional morphology of the anastomotic circulation in human cardiac pathology. Methods Achiev Exp Pathol 5: 438‐473, 1971.
 56.Baroldi G, Mantero O, Scomazzoni G. The collaterals of the coronary arteries in normal and pathologic hearts. Circ Res 4: 223‐229, 1956.
 57.Barta E, Bozner A, Cerny J, Mrena E. Influence of complete surgical denervation of the heart on the structural integrity of the heart muscle. Exp Med Surg 24: 228‐238, 1966.
 58.Barton M. Obesity and aging: Determinants of endothelial cell dysfunction and atherosclerosis. Pflugers Arch 460: 825‐837, 2010.
 59.Bassenge E, Hofling B, von RW. Inertial pressure loss in hemodilution. Significance in coronary pressure‐flow relationship. Bibl Haematol 41: 140‐151, 1975.
 60.Bassenge E, Kucharczyk M, Holtz J, Stoian D. Treadmill exercise in dogs under ‐adrenergic blockade: Adaptation of coronary and systemic hemodynamics. Pflugers Arch 332: 40‐55, 1972.
 61.Bassingthwaighte JB, Yipintsoi T, Grabowski EF. Myocardial capillary permeability: Hydrophilic solutes penetrate 100 A intercellular clefts. Bibl Anat 13: 24‐27, 1975.
 62.Bassingthwaighte JB, Yipintsoi T, Harvey RB. Microvasculature of the dog left ventricular myocardium. Microvasc Res 7: 229‐249, 1974.
 63.Batenburg WW, de VR, Saxena PR, Danser AH. L‐S‐nitrosothiols: Endothelium‐derived hyperpolarizing factors in porcine coronary arteries? J Hypertens 22: 1927‐1936, 2004.
 64.Batenburg WW, Garrelds IM, van Kats JP, Saxena PR, Danser AH. Mediators of bradykinin‐induced vasorelaxation in human coronary microarteries. Hypertension 43: 488‐492, 2004.
 65.Batenburg WW, Popp R, Fleming I, de VR, Garrelds IM, Saxena PR, Danser AH. Bradykinin‐induced relaxation of coronary microarteries: S‐nitrosothiols as EDHF? Br J Pharmacol 142: 125‐135, 2004.
 66.Baumgart D, Ehring T, Kowallik P, Guth BD, Krajcar M, Heusch G. Impact of alpha‐adrenergic coronary vasoconstriction on the transmural myocardial blood flow distribution during humoral and neuronal adrenergic activation. Circ Res 73: 869‐886, 1993.
 67.Baumgart D, Haude M, Gorge G, Liu F, Ge J, Grosse‐Eggebrecht C, Erbel R, Heusch G. Augmented alpha‐adrenergic constriction of atherosclerotic human coronary arteries. Circulation 99: 2090‐2097, 1999.
 68.Baydoun AR, Woodward B. Effects of bradykinin in the rat isolated perfused heart: Role of kinin receptors and endothelium‐derived relaxing factor. Br J Pharmacol 103: 1829‐1833, 1991.
 69.Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28: 220‐231, 1902.
 70.Bayliss WM. The Vasomotor System. London: Longmans Green, 1923.
 71.Belin De Chantemele EJ, Stepp DW. Influence of obesity and metabolic dysfunction on the endothelial control in the coronary circulation. J Mol Cell Cardiol 52: 840‐847, 2011.
 72.Bell JR, Fox AC. Pathogenesis of subendocardial ischemia. Am J Med Sci 268: 3‐13, 1974.
 73.Bellamy RF. Diastolic coronary artery pressure‐flow relations in the dog. Circ Res 43: 92‐101, 1978.
 74.Bellamy RF, Lowensohn HS. Effect of systole on coronary pressure‐flow relations in the right ventricle of the dog. Am J Physiol 238: H481‐H486, 1980.
 75.Bellamy RF, Lowensohn HS, Ehrlich W, Baer RW. Effect of coronary sinus occlusion on coronary pressure‐flow relations. Am J Physiol 239: H57‐H64, 1980.
 76.Belt TH. The anatomy and physiology of the coronary circulation. Can Med Assoc J 29: 19‐21, 1933.
 77.Bender SB, Berwick ZC, Laughlin MH, Tune JD. Functional contribution of P2Y1 receptors to the control of coronary blood flow. J Appl Physiol 111: 1744‐1750, 2011.
 78.Bender SB, Tune JD, Borbouse L, Long X, Sturek M, Laughlin MH. Altered mechanism of adenosine‐induced coronary arteriolar dilation in early‐stage metabolic syndrome. Exp Biol Med (Maywood) 234: 683‐692, 2009.
 79.Bender SB, van Houwelingen MJ, Merkus D, Duncker DJ, Laughlin MH. Quantitative analysis of exercise‐induced enhancement of early‐ and late‐systolic retrograde coronary blood flow. J Appl Physiol (1985) 108: 507‐514, 2010.
 80.Bennett A, Friedmann CA, Vane JR. Release of prostaglandin E‐1 from the rat stomach. Nature 216: 873‐876, 1967.
 81.Berdeaux A, Ghaleh B, Dubois‐Rande JL, Vigue B, Drieu La RC, Hittinger L, Giudicelli JF. Role of vascular endothelium in exercise‐induced dilation of large epicardial coronary arteries in conscious dogs. Circulation 89: 2799‐2808, 1994.
 82.Bergstrom S, Carlson LA, Ekelund LG, Oro L. Cardiovascular and metabolic response to infusions of prostaglandin E1 and to simultaneous infusions of noradrenaline and prostaglandin E1 in man. Prostaglandin and related factors 35. Acta Physiol Scand 64: 332‐339, 1965.
 83.Bergstrom S, Samuelsson B. Isolation of prostaglandin E1 from human seminal plasma. Prostaglandins and related factors. 11. J Biol Chem 237: 3005‐3006, 1962.
 84.Berne RM. Cardiodynamics and the coronary circulation in hypothermia. Ann N Y Acad Sci 80: 365‐383, 1959.
 85.Berne RM. Cardiac nucleotides in hypoxia: Possible role in regulation of coronary blood flow. Am J Physiol 204: 317‐322, 1963.
 86.Berne RM. Metabolic regulation of blood flow. Circ Res 15 (Suppl‐8): 261‐268, 1964.
 87.Berne RM. Regulation of coronary blood flow. Physiol Rev 44: 1‐29, 1964.
 88.Berne RM. The role of adenosine in the regulation of coronary blood flow. Circ Res 47: 807‐813, 1980.
 89.Berne RM, Blackmon JR, Gardner TH. Hypoxemia and coronary blood flow. J Clin Invest 36: 1101‐1106, 1957.
 90.Berne RM, Degeest H, Levy MN. Influence of the cardiac nerves on coronary resistance. Am J Physiol 208: 763‐769, 1965.
 91.Berne RM, Knabb RM, Ely SW, Rubio R. Adenosine in the local regulation of blood flow: A brief overview. Fed Proc 42: 3136‐3142, 1983.
 92.Berne RM, Rubio R, Dobson JG, Jr, Curnish RR. Adenosine and adenine nucleotides as possible mediators of cardiac and skeletal muscle blood flow regulation. Circ Res 28(Suppl): 115+, 1971.
 93.Bernstein RD, Ochoa FY, Xu X, Forfia P, Shen W, Thompson CI, Hintze TH. Function and production of nitric oxide in the coronary circulation of the conscious dog during exercise. Circ Res 79: 840‐848, 1996.
 94.Berwick ZC, Dick GM, Moberly SP, Kohr MC, Sturek M, Tune JD. Contribution of voltage‐dependent K(+) channels to metabolic control of coronary blood flow. J Mol Cell Cardiol 52: 912‐919, 2012.
 95.Berwick ZC, Dick GM, O'Leary HA, Bender SB, Goodwill AG, Moberly SP, Owen MK, Miller SJ, Obukhov AG, Tune JD. Contribution of electromechanical coupling between Kv and Ca v1.2 channels to coronary dysfunction in obesity. Basic Res Cardiol 108: 370, 2013.
 96.Berwick ZC, Moberly SP, Kohr MC, Morrical EB, Kurian MM, Dick GM, Tune JD. Contribution of voltage‐dependent K+ and Ca2+ channels to coronary pressure‐flow autoregulation. Basic Res Cardiol 107: 264, 2012.
 97.Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, Tune JD. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: Role of K(V) and K(ATP) channels. Microcirculation 17: 600‐607, 2010.
 98.Beyer AM, Durand MJ, Hockenberry J, Gamblin TC, Phillips SA, Gutterman DD. An acute rise in intraluminal pressure shifts the mediator of flow‐mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. Am J Physiol Heart Circ Physiol 307: H1587‐H1593, 2014.
 99.Beyer AM, Freed JK, Durand MJ, Riedel M, Ait‐Aissa K, Green P, Hockenberry JC, Morgan RG, Donato AJ, Peleg R, Gasparri M, Rokkas CK, Santos JH, Priel E, Gutterman DD. Critical role for telomerase in the mechanism of flow‐mediated dilation in the human microcirculation. Circ Res 118: 856‐866, 2016.
 100.Beyer AM, Gutterman DD. Regulation of the human coronary microcirculation. J Mol Cell Cardiol 52: 814‐821, 2012.
 101.Bian X, Williams AG, Jr, Gwirtz PA, Downey HF. Right coronary autoregulation in conscious, chronically instrumented dogs. Am J Physiol 275: H169‐H175, 1998.
 102.Biro GP. Comparison of acute cardiovascular effects and oxygen‐supply following haemodilution with dextran, stroma‐free haemoglobin solution and fluorocarbon suspension. Cardiovasc Res 16: 194‐204, 1982.
 103.Block AJ, Poole S, Vane JR. Modification of basal release of prostaglandins from rabbit isolated hearts. Prostaglandins 7: 473‐486, 1974.
 104.Bloor CM, White FC. Functional development of the coronary collateral circulation during coronary artery occlusion in the conscious dog. Am J Pathol 67: 483‐500, 1972.
 105.Blumgart HL, Schlesinger MJ, Davis O. Studies on the relation of the clinical manifestations of angina pectoris, coronary thrombosis and myocardial infarction to the pathologic findings with particular reference to the significance of the collateral circulation. Am Heart J 19: 1‐91, 1940.
 106.Boatwright RB, Downey HF, Bashour FA, Crystal GJ. Transmural variation in autoregulation of coronary blood flow in hyperperfused canine myocardium. Circ Res 47: 599‐609, 1980.
 107.Bohlen HG. Nitric oxide and the cardiovascular system. Compr Physiol 5: 808‐823, 2015.
 108.Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: A marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 23: 168‐175, 2003.
 109.Borbouse L, Dick GM, Asano S, Bender SB, Dincer UD, Payne GA, Neeb ZP, Bratz IN, Sturek M, Tune JD. Impaired function of coronary BK(Ca) channels in metabolic syndrome. Am J Physiol Heart Circ Physiol 297: H1629‐H1637, 2009.
 110.Borbouse L, Dick GM, Payne GA, Berwick ZC, Neeb ZP, Alloosh M, Bratz IN, Sturek M, Tune JD. Metabolic syndrome reduces the contribution of K+ channels to ischemic coronary vasodilation. Am J Physiol Heart Circ Physiol 298: H1182‐H1189, 2010.
 111.Borbouse L, Dick GM, Payne GA, Payne BD, Svendsen MC, Neeb ZP, Alloosh M, Bratz IN, Sturek M, Tune JD. Contribution of BKCa channels to local metabolic coronary vasodilation: Effects of metabolic syndrome. Am J Physiol Heart Circ Physiol 298: H966‐H973, 2010.
 112.Bosnjak JJ, Terata K, Miura H, Sato A, Nicolosi AC, McDonald M, Manthei SA, Saito T, Hatoum OA, Gutterman DD. Mechanism of thrombin‐induced vasodilation in human coronary arterioles. Am J Physiol Heart Circ Physiol 284: H1080‐H1086, 2003.
 113.Bowles DK, Hu Q, Laughlin MH, Sturek M. Exercise training increases L‐type calcium current density in coronary smooth muscle. Am J Physiol 275: H2159‐H2169, 1998.
 114.Bowles DK, Laughlin MH, Sturek M. Exercise training alters the Ca2+ and contractile responses of coronary arteries to endothelin. J Appl Physiol 78: 1079‐1087, 1995.
 115.Bowles DK, Laughlin MH, Sturek M. Exercise training increases K+‐channel contribution to regulation of coronary arterial tone. J Appl Physiol 84: 1225‐1233, 1998.
 116.Bowles DK, Maddali KK, Ganjam VK, Rubin LJ, Tharp DL, Turk JR, Heaps CL. Endogenous testosterone increases L‐type Ca2+ channel expression in porcine coronary smooth muscle. Am J Physiol Heart Circ Physiol 287: H2091‐H2098, 2004.
 117.Bradley KK, Jaggar JH, Bonev AD, Heppner TJ, Flynn ER, Nelson MT, Horowitz B. Kir2.1 encodes the inward rectifier potassium channel in rat arterial smooth muscle cells. J Physiol 515(Pt 3): 639‐651, 1999.
 118.Brand RA. Biographical sketch: Friedrich Daniel von Recklinghausen, MD (1833‐1910). Clin Orthop Relat Res 469: 1225‐1226, 2011.
 119.Braunwald E. Control of myocardial oxygen consumption: Physiologic and clinical considerations. Am J Cardiol 27: 416‐432, 1971.
 120.Brazier J, Cooper N, Maloney JV, Jr, Buckberg G. The adequacy of myocardial oxygen delivery in acute normovolemic anemia. Surgery 75: 508‐516, 1974.
 121.Breisch EA, White FC, Nimmo LE, Bloor CM. Cardiac vasculature and flow during pressure‐overload hypertrophy. Am J Physiol 251: H1031‐H1037, 1986.
 122.Breisch EA, White FC, Nimmo LE, McKirnan MD, Bloor CM. Exercise‐induced cardiac hypertrophy: A correlation of blood flow and microvasculature. J Appl Physiol 60: 1259‐1267, 1986.
 123.Broten TP, Feigl EO. Role of myocardial oxygen and carbon dioxide in coronary autoregulation. Am J Physiol 262: H1231‐H1237, 1992.
 124.Broten TP, Miyashiro JK, Moncada S, Feigl EO. Role of endothelium‐derived relaxing factor in parasympathetic coronary vasodilation. Am J Physiol 262: H1579‐H1584, 1992.
 125.Broten TP, Romson JL, Fullerton DA, Van Winkle DM, Feigl EO. Synergistic action of myocardial oxygen and carbon dioxide in controlling coronary blood flow. Circ Res 68: 531‐542, 1991.
 126.Brown IP, Thompson CI, Belloni FL. Role of nitric oxide in hypoxic coronary vasodilatation in isolated perfused guinea pig heart. Am J Physiol 264: H821‐H829, 1993.
 127.Buckberg GD, Fixler DE, Archie JP, Hoffman JI. Experimental subendocardial ischemia in dogs with normal coronary arteries. Circ Res 30: 67‐81, 1972.
 128.Buffington CW, Feigl EO. Effect of coronary artery pressure on transmural distribution of adrenergic coronary vasoconstriction in the dog. Circ Res 53: 613‐621, 1983.
 129.Buga GM, Gold ME, Fukuto JM, Ignarro LJ. Shear stress‐induced release of nitric oxide from endothelial cells grown on beads. Hypertension 17: 187‐193, 1991.
 130.Buljubasic N, Rusch NJ, Marijic J, Kampine JP, Bosnjak ZJ. Effects of halothane and isoflurane on calcium and potassium channel currents in canine coronary arterial cells. Anesthesiology 76: 990‐998, 1992.
 131.Bunger R, Haddy RJ, Querengasser A, Gerlach E. Studies on potassium induced coronary dilation in the isolated guinea pig heart. Pflugers Arch 363: 27‐31, 1976.
 132.Bunker AK, Laughlin MH. Influence of exercise and perivascular adipose tissue on coronary artery vasomotor function in a familial hypercholesterolemic porcine atherosclerosis model. J Appl Physiol 108: 490‐497, 2010.
 133.Burgoyne JR, Oka S, Ale‐Agha N, Eaton P. Hydrogen peroxide sensing and signaling by protein kinases in the cardiovascular system. Antioxid Redox Signal 18: 1042‐1052, 2013.
 134.Burnham MP, Bychkov R, Feletou M, Richards GR, Vanhoutte PM, Weston AH, Edwards G. Characterization of an apamin‐sensitive small‐conductance Ca(2+)‐activated K(+) channel in porcine coronary artery endothelium: Relevance to EDHF. Br J Pharmacol 135: 1133‐1143, 2002.
 135.Burton AC. On the physical equilibrium of small blood vessels. Am J Physiol 164: 319‐329, 1951.
 136.Burton AC. Relation of structure to function of the tissues of the wall of blood vessels. Physiol Rev 34: 619‐642, 1954.
 137.Busse R, Fleming I. Endothelial dysfunction in atherosclerosis. J Vasc Res 33: 181‐194, 1996.
 138.Busse R, Forstermann U, Matsuda H, Pohl U. The role of prostaglandins in the endothelium‐mediated vasodilatory response to hypoxia. Pflugers Arch 401: 77‐83, 1984.
 139.Busse R, Pohl U, Luckhoff A. Mechanisms controlling the production of endothelial autacoids. Z Kardiol 78(Suppl 6): 64‐69, 1989.
 140.Bychkov R, Burnham MP, Richards GR, Edwards G, Weston AH, Feletou M, Vanhoutte PM. Characterization of a charybdotoxin‐sensitive intermediate conductance Ca2+‐activated K+ channel in porcine coronary endothelium: Relevance to EDHF. Br J Pharmacol 137: 1346‐1354, 2002.
 141.Cabell F, Weiss DS, Price JM. Inhibition of adenosine‐induced coronary vasodilation by block of large‐conductance Ca(2+)‐activated K+ channels. Am J Physiol 267: 1994.
 142.Caldwell JH, Martin GV, Raymond GM, Bassingthwaighte JB. Regional myocardial flow and capillary permeability‐surface area products are nearly proportional. Am J Physiol 267: H654‐H666, 1994.
 143.Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium‐dependent responses. Pflugers Arch 459: 881‐895, 2010.
 144.Canty JM, Jr. Coronary pressure‐function and steady‐state pressure‐flow relations during autoregulation in the unanesthetized dog. Circ Res 63: 821‐836, 1988.
 145.Canty JM, Jr, Schwartz JS. Nitric oxide mediates flow‐dependent epicardial coronary vasodilation to changes in pulse frequency but not mean flow in conscious dogs. Circulation 89: 375‐384, 1994.
 146.Canty JM, Jr, Smith TP, Jr. Modulation of coronary autoregulatory responses by endothelium‐derived nitric oxide. Int J Cardiol 50: 207‐215, 1995.
 147.Canty JM, Jr, Suzuki G. Myocardial perfusion and contraction in acute ischemia and chronic ischemic heart disease. J Mol Cell Cardiol 52: 822‐831, 2012.
 148.Carew TE, Covell JW. Effect of intramyocardial pressure on the phasic flow in the intraventricular septal artery. Cardiovasc Res 10: 56‐64, 1976.
 149.Carlson BE, Beard DA. Mechanical control of cation channels in the myogenic response. Am J Physiol Heart Circ Physiol 301: 2011.
 150.Case RB. Ion alterations during myocardial ischemia. Cardiology 56: 245‐262, 1971.
 151.Case RB, Felix A, Wachter M, Kyriakidis G, Castellana F. Relative effect of CO2 on canine coronary vascular resistance. Circ Res 42: 410‐418, 1978.
 152.Case RB, Greenberg H. The response of canine coronary vascular resistance to local alterations in coronary arterial P CO2. Circ Res 39: 558‐566, 1976.
 153.Charpie JR, Schreur KD, Papadopoulos SM, Webb RC. Endothelium dependency of contractile activity differs in infant and adult vertebral arteries. J Clin Invest 93: 1339‐1343, 1994.
 154.Chatterjee TK, Aronow BJ, Tong WS, Manka D, Tang Y, Bogdanov VY, Unruh D, Blomkalns AL, Piegore MG, Jr, Weintraub DS, Rudich SM, Kuhel DG, Hui DY, Weintraub NL. Human coronary artery perivascular adipocytes overexpress genes responsible for regulating vascular morphology, inflammation, and hemostasis. Physiol Genomics 45: 697‐709, 2013.
 155.Chatterjee TK, Stoll LL, Denning GM, Harrelson A, Blomkalns AL, Idelman G, Rothenberg FG, Neltner B, Romig‐Martin SA, Dickson EW, Rudich S, Weintraub NL. Proinflammatory phenotype of perivascular adipocytes: Influence of high‐fat feeding. Circ Res 104: 541‐549, 2009.
 156.Chen CC, Lamping KG, Nuno DW, Barresi R, Prouty SJ, Lavoie JL, Cribbs LL, England SK, Sigmund CD, Weiss RM, Williamson RA, Hill JA, Campbell KP. Abnormal coronary function in mice deficient in alpha1H T‐type Ca2+ channels. Science 302: 1416‐1418, 2003.
 157.Chen DG, Dai XZ, Bache RJ. Postsynaptic adrenoceptor‐mediated vasoconstriction in coronary and femoral vascular beds. Am J Physiol 254: H984‐H992, 1988.
 158.Chen DG, Dai XZ, Zimmerman BG, Bache RJ. Postsynaptic alpha 2 adrenoceptors in coronary artery and its role in sympathetic induced vasoconstriction. Zhongguo Yao Li Xue Bao 8: 30‐35, 1987.
 159.Chen DG, Dai XZ, Zimmerman BG, Bache RJ. Postsynaptic alpha 1‐ and alpha 2‐adrenergic mechanisms in coronary vasoconstriction. J Cardiovasc Pharmacol 11: 61‐67, 1988.
 160.Chen X, Li W, Hiett SC, Obukhov AG. Novel roles for Kv7 channels in shaping histamine‐induced contractions and bradykinin‐dependent relaxations in pig coronary arteries. PLoS One 11: e0148569, 2016.
 161.Cheng KH, Chu CS, Lee KT, Lin TH, Hsieh CC, Chiu CC, Voon WC, Sheu SH, Lai WT. Adipocytokines and proinflammatory mediators from abdominal and epicardial adipose tissue in patients with coronary artery disease. Int J Obes (Lond) 32: 268‐274, 2008.
 162.Cherbakoff A, Toyama S, Hamilton WF. Relation between coronary sinus plasma potassium and cardiac arrhythmia. Circ Res 5: 517‐521, 1957.
 163.Chilian WM. Adrenergic vasomotion in the coronary microcirculation. Basic Res Cardiol 85(Suppl 1): 111‐120, 1990.
 164.Chilian WM. Functional distribution of alpha 1‐ and alpha 2‐adrenergic receptors in the coronary microcirculation. Circulation 84: 2108‐2122, 1991.
 165.Chilian WM. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res 69: 561‐570, 1991.
 166.Chilian WM, Ackell PH. Transmural differences in sympathetic coronary constriction during exercise in the presence of coronary stenosis. Circ Res 62: 216‐225, 1988.
 167.Chilian WM, Eastham CL, Layne SM, Marcus ML. Small vessel phenomena in the coronary microcirculation: Phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 31: 17‐38, 1988.
 168.Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol 251: H779‐H788, 1986.
 169.Chilian WM, Harrison DG, Haws CW, Snyder WD, Marcus ML. Adrenergic coronary tone during submaximal exercise in the dog is produced by circulating catecholamines. Evidence for adrenergic denervation supersensitivity in the myocardium but not in coronary vessels. Circ Res 58: 68‐82, 1986.
 170.Chilian WM, Kuo L, DeFily DV, Jones CJ, Davis MJ. Endothelial regulation of coronary microvascular tone under physiological and pathophysiological conditions. Eur Heart J 14(Suppl I): 55‐59, 1993.
 171.Chilian WM, Layne SM. Coronary microvascular responses to reductions in perfusion pressure. Evidence for persistent arteriolar vasomotor tone during coronary hypoperfusion. Circ Res 66: 1227‐1238, 1990.
 172.Chilian WM, Layne SM, Eastham CL, Marcus ML. Heterogeneous microvascular coronary alpha‐adrenergic vasoconstriction. Circ Res 64: 376‐388, 1989.
 173.Chilian WM, Layne SM, Klausner EC, Eastham CL, Marcus ML. Redistribution of coronary microvascular resistance produced by dipyridamole. Am J Physiol 256: H383‐H390, 1989.
 174.Chilian WM, Marcus ML. Coronary venous outflow persists after cessation of coronary arterial inflow. Am J Physiol 247: H984‐H990, 1984.
 175.Chilian WM, Mass HJ, Williams SE, Layne SM, Smith EE, Scheel KW. Microvascular occlusions promote coronary collateral growth. Am J Physiol 258: H1103‐H1111, 1990.
 176.Chilian WM, Penn MS, Pung YF, Dong F, Mayorga M, Ohanyan V, Logan S, Yin L. Coronary collateral growth–back to the future. J Mol Cell Cardiol 52: 905‐911, 2012.
 177.Chilian WM, Yin L, Ohanyan VA. Mysteries in the local control of blood flow: A physiological “whodunit” involving red cell release of ATP? Circ Res 111: 156‐157, 2012.
 178.Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: Pathophysiological basis and clinical perspectives. Physiol Rev 91: 327‐387, 2011.
 179.Choi BJ, Matsuo Y, Aoki T, Kwon TG, Prasad A, Gulati R, Lennon RJ, Lerman LO, Lerman A. Coronary endothelial dysfunction is associated with inflammation and vasa vasorum proliferation in patients with early atherosclerosis. Arterioscler Thromb Vasc Biol 34: 2473‐2477, 2014.
 180.Chu A, Chambers DE, Lin CC, Kuehl WD, Cobb FR. Nitric oxide modulates epicardial coronary basal vasomotor tone in awake dogs. Am J Physiol 258: H1250‐H1254, 1990.
 181.Chu A, Chambers DE, Lin CC, Kuehl WD, Palmer RM, Moncada S, Cobb FR. Effects of inhibition of nitric oxide formation on basal vasomotion and endothelium‐dependent responses of the coronary arteries in awake dogs. J Clin Invest 87: 1964‐1968, 1991.
 182.Cicutti N, Rakusan K, Downey HF. Colored microspheres reveal interarterial microvascular anastomoses in canine myocardium. Basic Res Cardiol 87: 400‐409, 1992.
 183.Cicutti N, Rakusan K, Downey HF. Coronary artery occlusion extends perfusion territory boundaries through microvascular collaterals. Basic Res Cardiol 89: 427‐437, 1994.
 184.Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, Barnathan ES, McCrae KR, Hug BA, Schmidt AM, Stern DM. Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91: 3527‐3561, 1998.
 185.Clayton FC, Hess TA, Smith MA, Grover GJ. Coronary reactive hyperemia and adenosine‐induced vasodilation are mediated partially by a glyburide‐sensitive mechanism. Pharmacology 44: 92‐100, 1992.
 186.Clozel JP, Pisarri TE, Coleridge HM, Coleridge JC. Reflex coronary vasodilation evoked by chemical stimulation of cardiac afferent vagal C fibres in dogs. J Physiol 428: 215‐232, 1990.
 187.Clozel JP, Roberts AM, Hoffman JI, Coleridge HM, Coleridge JC. Vagal chemoreflex coronary vasodilation evoked by stimulating pulmonary C‐fibers in dogs. Circ Res 57: 450‐460, 1985.
 188.Coburn RF, Ploegmakers F, Gondrie P, Abboud R. Myocardial myoglobin oxygen tension. Am J Physiol 224: 870‐876, 1973.
 189.Coffman JD, Gregg DE. Reactive hyperemia characteristics of the myocardium. Am J Physiol 199: 1143‐1149, 1960.
 190.Coleman HA, Tare M, Parkington HC. EDHF is not K+ but may be due to spread of current from the endothelium in guinea pig arterioles. Am J Physiol Heart Circ Physiol 280: H2478‐H2483, 2001.
 191.Coleman HA, Tare M, Parkington HC. K+ currents underlying the action of endothelium‐derived hyperpolarizing factor in guinea‐pig, rat and human blood vessels. J Physiol 531: 359‐373, 2001.
 192.Conrad WA. Pressure–flow relationships in collapsible tubes. IEEE Trans Biomed Eng 16: 284‐295, 1969.
 193.Cooper G, Tomanek RJ. Load regulation of the structure, composition, and function of mammalian myocardium. Circ Res 50: 788‐798, 1982.
 194.Cornelissen AJ, Dankelman J, VanBavel E, Spaan JA. Balance between myogenic, flow‐dependent, and metabolic flow control in coronary arterial tree: A model study. Am J Physiol Heart Circ Physiol 282: H2224‐H2237, 2002.
 195.Cornelissen AJ, Dankelman J, VanBavel E, Stassen HG, Spaan JA. Myogenic reactivity and resistance distribution in the coronary arterial tree: A model study. Am J Physiol Heart Circ Physiol 278: H1490‐H1499, 2000.
 196.Costantino C, Corday E, Lang TW, Meerbaum S, Brasch J, Kaplan L, Rubins S, Gold H, Osher J. Revascularization after 3 hours of coronary arterial occlusion: Effects on regional cardiac metabolic function and infarct size. Am J Cardiol 36: 368‐384, 1975.
 197.Coutsos M, Sala‐Mercado JA, Ichinose M, Li Z, Dawe EJ, O'Leary DS. Muscle metaboreflex‐induced coronary vasoconstriction limits ventricular contractility during dynamic exercise in heart failure. Am J Physiol Heart Circ Physiol 304: H1029‐H1037, 2013.
 198.Cowan CL, McKenzie JE. Cholinergic regulation of resting coronary blood flow in domestic swine. Am J Physiol 259: H109‐H115, 1990.
 199.Cox DA, Hintze TH, Vatner SF. Effects of acetylcholine on large and small coronary arteries in conscious dogs. J Pharmacol Exp Ther 225: 764‐769, 1983.
 200.Cross CE. Right ventricular pressure and coronary flow. Am J Physiol 202: 12‐16, 1962.
 201.Cross CE. Influence of coronary arterial pressure on coronary vasomotor tonus. Circ Res 15(Suppl 93): 1964.
 202.Cross CE, Rieben PA, Salisbury PF. Coronary driving pressure and vasomotor tonus as determinants of coronary blood flow. Circ Res 9: 589‐600, 1961.
 203.Cross CE, Rieben PA, Salisbury PF. Influence of coronary perfusion and myocardial edema on pressure‐volume diagram of left ventricle. Am J Physiol 201: 102‐108, 1961.
 204.Crystal GJ. Coronary hemodynamic responses during local hemodilution in canine hearts. Am J Physiol 254: H525‐H531, 1988.
 205.Crystal GJ, Downey HF. Perfusion with non‐oxygenated Tyrode solution causes maximal coronary vasodilation in canine hearts. Clin Exp Pharmacol Physiol 14: 851‐857, 1987.
 206.Crystal GJ, El‐Orbany M, Zhou X, Salem MR, Kim SJ. Hemodilution does not alter the coronary vasodilating effects of endogenous or exogenous nitric oxide. Can J Anaesth 55: 507‐514, 2008.
 207.Crystal GJ, Rooney MW, Salem MR. Myocardial blood flow and oxygen consumption during isovolemic hemodilution alone and in combination with adenosine‐induced controlled hypotension. Anesth Analg 67: 539‐547, 1988.
 208.Crystal GJ, Rooney MW, Salem MR. Regional hemodynamics and oxygen supply during isovolemic hemodilution alone and in combination with adenosine‐induced controlled hypotension. Anesth Analg 67: 211‐218, 1988.
 209.Crystal GJ, Salem MR. Myocardial oxygen consumption and segmental shortening during selective coronary hemodilution in dogs. Anesth Analg 67: 500‐508, 1988.
 210.Crystal GJ, Salem MR. Myocardial and systemic hemodynamics during isovolemic hemodilution alone and combined with nitroprusside‐induced controlled hypotension. Anesth Analg 72: 227‐237, 1991.
 211.Cummings JR. Electrolyte changes in heart tissue and coronary arterial and venous plasma following coronary occlusion. Circ Res 8: 865‐870, 1960.
 212.Dagenais GR, Pogue J, Fox K, Simoons ML, Yusuf S. Angiotensin‐converting‐enzyme inhibitors in stable vascular disease without left ventricular systolic dysfunction or heart failure: A combined analysis of three trials. Lancet 368: 581‐588, 2006.
 213.Dai XZ, Bache RJ. Effect of indomethacin on coronary blood flow during graded treadmill exercise in the dog. Am J Physiol 247: H452‐H458, 1984.
 214.Dai XZ, Herzog CA, Schwartz JS, Bache RJ. Coronary blood flow during exercise following nonselective and selective alpha 1‐adrenergic blockade with indoramin. J Cardiovasc Pharmacol 8: 574‐581, 1986.
 215.Dai XZ, Sublett E, Lindstrom P, Schwartz JS, Homans DC, Bache RJ. Coronary flow during exercise after selective alpha 1‐ and alpha 2‐adrenergic blockade. Am J Physiol 256: H1148‐H1155, 1989.
 216.Dankelman J, Stassen HG, Spaan JA. Interaction between Gregg's phenomenon and coronary flow control: A model study. Med Biol Eng Comput 37: 742‐749, 1999.
 217.Dankelman J, Van der Ploeg CP, Spaan JA. Transients in myocardial O2 consumption after abrupt changes in perfusion pressure in goats. Am J Physiol 270: H492‐H499, 1996.
 218.Danser AH, Schalekamp MA. Is there an internal cardiac renin‐angiotensin system? Heart 76: 28‐32, 1996.
 219.Dart C, Standen NB. Adenosine‐activated potassium current in smooth muscle cells isolated from the pig coronary artery. J Physiol 471: 1993.
 220.Dart C, Standen NB. Activation of ATP‐dependent K+ channels by hypoxia in smooth muscle cells isolated from the pig coronary artery. J Physiol 483(Pt 1): 29‐39, 1995.
 221.Daut J, Klieber HG, Cyrys S, Noack T. KATP channels and basal coronary vascular tone. Cardiovasc Res 28: 1994.
 222.Daut J, Maier‐Rudolph W, von BN, Mehrke G, Gunther K, Goedel‐Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP‐sensitive potassium channels. Science 247: 1341‐1344, 1990.
 223.Davis CA, III, Sherman AJ, Yaroshenko Y, Harris KR, Hedjbeli S, Parker MA, Klocke FJ. Coronary vascular responsiveness to adenosine is impaired additively by blockade of nitric oxide synthesis and a sulfonylurea. J Am Coll Cardiol 31: 816‐822, 1998.
 224.Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79: 387‐423, 1999.
 225.Davis MJ, Hill MA, Kuo L. Local regulation of microvascular perfusion. In: Handbook of Physiology, The Cardiovascular System, Microcirculation, 2008, pp. 161‐284.
 226.Davis MJ, Meininger GA, Zawieja DC. Stretch‐induced increases in intracellular calcium of isolated vascular smooth muscle cells. Am J Physiol 263: H1292‐H1299, 1992.
 227.Davis MJ, Sharma NR. Calcium‐release‐activated calcium influx in endothelium. J Vasc Res 34: 1997.
 228.Davis MJ, Sikes PJ. Myogenic responses of isolated arterioles: Test for a rate‐sensitive mechanism. Am J Physiol 259: H1890‐H1900, 1990.
 229.Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Davis GE, Hill MA, Meininger GA. Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol 280: H1427‐H1433, 2001.
 230.de Beer VJ, Bender SB, Taverne YJ, Gao F, Duncker DJ, Laughlin MH, Merkus D. Exercise limits the production of endothelin in the coronary vasculature. Am J Physiol Heart Circ Physiol 300: H1950‐H1959, 2011.
 231.de WC, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch 459: 897‐914, 2010.
 232.Deanfield J, Donald A, Ferri C, Giannattasio C, Halcox J, Halligan S, Lerman A, Mancia G, Oliver JJ, Pessina AC, Rizzoni D, Rossi GP, Salvetti A, Schiffrin EL, Taddei S, Webb DJ. Endothelial function and dysfunction. Part I: Methodological issues for assessment in the different vascular beds: A statement by the Working Group on Endothelin and Endothelial Factors of the European Society of Hypertension. J Hypertens 23: 7‐17, 2005.
 233.Decking UK, Schrader J. Spatial heterogeneity of myocardial perfusion and metabolism. Basic Res Cardiol 93: 439‐445, 1998.
 234.Deer RR, Heaps CL. Exercise training enhances multiple mechanisms of relaxation in coronary arteries from ischemic hearts. Am J Physiol Heart Circ Physiol 305: H1321‐H1331, 2013.
 235.DeFily DV, Chilian WM. Coronary microcirculation: Autoregulation and metabolic control. Basic Res Cardiol 90: 112‐118, 1995.
 236.DeFily DV, Nishikawa Y, Chilian WM. Endothelin antagonists block alpha1‐adrenergic constriction of coronary arterioles. Am J Physiol 276: H1028‐H1034, 1999.
 237.Denn MJ, Stone HL. Automic innervation of dog coronary arteries. J Appl Physiol 41: 30‐35, 1976.
 238.Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P, Balligand JL. Endothelial beta3‐adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium‐dependent hyperpolarization. Circulation 110: 948‐954, 2004.
 239.Deussen A. Local myocardial glucose uptake is proportional to, but not dependent on blood flow. Pflugers Arch 433: 488‐496, 1997.
 240.Deussen A, Borst M, Kroll K, Schrader J. Formation of S‐adenosylhomocysteine in the heart. II: A sensitive index for regional myocardial underperfusion. Circ Res 63: 250‐261, 1988.
 241.Deussen A, Borst M, Schrader J. Formation of S‐adenosylhomocysteine in the heart. I: An index of free intracellular adenosine. Circ Res 63: 240‐249, 1988.
 242.Deussen A, Brand M, Pexa A, Weichsel J. Metabolic coronary flow regulation‐Current concepts. Basic Res Cardiol 101: 453‐464, 2006.
 243.Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W. Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol 52: 794‐801, 2012.
 244.Devine CE, Somlyo AV, Somlyo AP. Sarcoplasmic reticulum and excitation‐contraction coupling in mammalian smooth muscles. J Cell Biol 52: 1972.
 245.DiCarlo SE, Blair RW, Bishop VS, Stone HL. Role of beta 2‐adrenergic receptors on coronary resistance during exercise. J Appl Physiol (1985) 64: 2287‐2293, 1988.
 246.Dick GM, Bratz IN, Borbouse L, Payne GA, Dincer UD, Knudson JD, Rogers PA, Tune JD. Voltage‐dependent K+ channels regulate the duration of reactive hyperemia in the canine coronary circulation. Am J Physiol Heart Circ Physiol 294: H2371‐H2381, 2008.
 247.Dick GM, Tune JD. Role of potassium channels in coronary vasodilation. Exp Biol Med (Maywood) 235: 10‐22, 2010.
 248.Dincer UD, Araiza AG, Knudson JD, Molina PE, Tune JD. Sensitization of coronary alpha‐adrenoceptor vasoconstriction in the prediabetic metabolic syndrome. Microcirculation 13: 587‐595, 2006.
 249.Ding J, Hsu FC, Harris TB, Liu Y, Kritchevsky SB, Szklo M, Ouyang P, Espeland MA, Lohman KK, Criqui MH, Allison M, Bluemke DA, Carr JJ. The association of pericardial fat with incident coronary heart disease: The Multi‐Ethnic Study of Atherosclerosis (MESA). Am J Clin Nutr 90: 499‐504, 2009.
 250.DiSalvo J, Parker PE, SCOTT JB, Haddy FJ. Carotid baroceptor influence on coronary vascular resistance in the anesthetized dog. Am J Physiol 221: 156‐160, 1971.
 251.Dodd‐o JM, Gwirtz PA. Coronary alpha 1‐adrenergic constrictor tone varies with intensity of exercise. Med Sci Sports Exerc 28: 62‐71, 1996.
 252.Dole WP. Autoregulation of the coronary circulation. Prog Cardiovasc Dis 29: 293‐323, 1987.
 253.Dole WP, Bishop VS. Influence of autoregulation and capacitance on diastolic coronary artery pressure‐flow relationships in the dog. Circ Res 51: 261‐270, 1982.
 254.Dole WP, Montville WJ, Bishop VS. Dependency of myocardial reactive hyperemia on coronary artery pressure in the dog. Am J Physiol 240: H709‐H715, 1981.
 255.Dole WP, Nuno DW. Myocardial oxygen tension determines the degree and pressure range of coronary autoregulation. Circ Res 59: 202‐215, 1986.
 256.Dole WP, Yamada N, Bishop VS, Olsson RA. Role of adenosine in coronary blood flow regulation after reductions in perfusion pressure. Circ Res 56: 517‐524, 1985.
 257.Domenech RJ. Regional diastolic coronary blood flow during diastolic ventricular hypertension. Cardiovasc Res 12: 639‐645, 1978.
 258.Doursout MF, Chelly JE, Hartley CJ, Szilagyi J, Montastruc JL, Buckley JP. Regional blood flows and cardiac function changes induced by angiotensin II in conscious dogs. J Pharmacol Exp Ther 246: 591‐596, 1988.
 259.Downey JM. Myocardial contractile force as a function of coronary blood flow. Am J Physiol 230: 1‐6, 1976.
 260.Downey HF. Coronary‐ventricular interaction: The Gregg phenomenon. In: Maryama YH, editor. Cardiac‐Vascular Remondeling and Functional Interactions. Berlin: Springer‐Verlag, 1997, pp. 321‐332.
 261.Downey HF, Bashour FA, Boatwright RB, Parker PE, Kechejian SJ. Uniformity of transmural perfusion in anesthetized dogs with maximally dilated coronary circulations. Circ Res 37: 111‐117, 1975.
 262.Downey HF, Crystal GJ, Bockman EL, Bashour FA. Nonischemic myocardial hypoxia: Coronary dilation without increased tissue adenosine. Am J Physiol 243: H512‐H516, 1982.
 263.Downey JM, Downey HF, Kirk ES. Effects of myocardial strains on coronary blood flow. Circ Res 34: 286‐292, 1974.
 264.Downey JM, Kirk ES. Distribution of the coronary blood flow across the canine heart wall during systole. Circ Res 34: 251‐257, 1974.
 265.Downey JM, Kirk ES. Inhibition of coronary blood flow by a vascular waterfall mechanism. Circ Res 36: 753‐760, 1975.
 266.Downey JM, Kirk ES. The transmural distribution of coronary blood flow during maximal vasodilation. Proc Soc Exp Biol Med 150: 189‐193, 1975.
 267.Driscol TE, Berne RM. Role of potassium in regulation of coronary blood flow. Proc Soc Exp Biol Med 96: 505‐508, 1957.
 268.Dube GP, Greenfield JC. Hemodynamic and myocardial blood flow. Profiles of pinacidil and nitroprusside in conscious dogs. Am J Hypertens 4: 1991.
 269.Duncker DJ, Bache RJ. Inhibition of nitric oxide production aggravates myocardial hypoperfusion during exercise in the presence of a coronary artery stenosis. Circ Res 74: 629‐640, 1994.
 270.Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev 88: 1009‐1086, 2008.
 271.Duncker DJ, Bache RJ, Merkus D. Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol 52: 802‐813, 2012.
 272.Duncker DJ, Hartog JM, Hugenholtz PG, Saxena PR, Verdouw PD. The effects of nisoldipine (Bay K 5552) on cardiovascular performance and regional blood flow in pentobarbital‐anaesthetized pigs with or without beta‐adrenoceptor blockade. Br J Pharmacol 88: 9‐18, 1986.
 273.Duncker DJ, Heiligers JP, Saxena PR, Verdouw PD. Nisoldipine and perfusion of post‐stenotic myocardium in conscious pigs with different degrees of concentric stenosis. Br J Pharmacol 94: 1988.
 274.Duncker DJ, Ishibashi Y, Bache RJ. Effect of treadmill exercise on transmural distribution of blood flow in hypertrophied left ventricle. Am J Physiol 275: H1274‐H1282, 1998.
 275.Duncker DJ, Laxson DD, Lindstrom P, Bache RJ. Endogenous adenosine and coronary vasoconstriction in hypoperfused myocardium during exercise. Cardiovasc Res 27: 1592‐1597, 1993.
 276.Duncker DJ, Merkus D. Acute adaptations of the coronary circulation to exercise. Cell Biochem Biophys 43: 17‐35, 2005.
 277.Duncker DJ, Merkus D. Exercise hyperaemia in the heart: The search for the dilator mechanism. J Physiol 583: 847‐854, 2007.
 278.Duncker DJ, Oei HH, Hu F, Stubenitsky R, Verdouw PD. Role of K(ATP)(+) channels in regulation of systemic, pulmonary, and coronary vasomotor tone in exercising swine. Am J Physiol Heart Circ Physiol 280: H22‐H33, 2001.
 279.Duncker DJ, Stubenitsky R, Tonino PA, Verdouw PD. Nitric oxide contributes to the regulation of vasomotor tone but does not modulate O(2)‐consumption in exercising swine. Cardiovasc Res 47: 738‐748, 2000.
 280.Duncker DJ, Stubenitsky R, Verdouw PD. Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise: Evidence for feed‐forward beta‐adrenergic control. Circ Res 82: 1312‐1322, 1998.
 281.Duncker DJ, Stubenitsky R, Verdouw PD. Role of adenosine in the regulation of coronary blood flow in swine at rest and during treadmill exercise. Am J Physiol 275: H1663‐H1672, 1998.
 282.Duncker DJ, Traverse JH, Ishibashi Y, Bache RJ. Effect of NO on transmural distribution of blood flow in hypertrophied left ventricle during exercise. Am J Physiol 276: H1305‐H1312, 1999.
 283.Duncker DJ, van Zon NS, Altman JD, Pavek TJ, Bache RJ. Role of K+ATP channels in coronary vasodilation during exercise. Circulation 88: 1245‐1253, 1993.
 284.Duncker DJ, van Zon NS, Crampton M, Herrlinger S, Homans DC, Bache RJ. Coronary pressure‐flow relationship and exercise: Contributions of heart rate, contractility, and alpha 1‐adrenergic tone. Am J Physiol 266: H795‐H810, 1994.
 285.Duncker DJ, van Zon NS, Ishibashi Y, Bache RJ. Role of K+ ATP channels and adenosine in the regulation of coronary blood flow during exercise with normal and restricted coronary blood flow. J Clin Invest 97: 996‐1009, 1996.
 286.Duncker DJ, van Zon NS, Pavek TJ, Herrlinger SK, Bache RJ. Endogenous adenosine mediates coronary vasodilation during exercise after K(ATP)+ channel blockade. J Clin Invest 95: 285‐295, 1995.
 287.Duncker DJ, Zhang J, Crampton MJ, Bache RJ. Alpha 1‐adrenergic tone does not influence the transmural distribution of myocardial blood flow during exercise in dogs with pressure overload left ventricular hypertrophy. Basic Res Cardiol 90: 73‐83, 1995.
 288.Durand MJ, Dharmashankar K, Bian JT, Das E, Vidovich M, Gutterman DD, Phillips SA. Acute exertion elicits a H2O2‐dependent vasodilator mechanism in the microvasculature of exercise‐trained but not sedentary adults. Hypertension 65: 140‐145, 2015.
 289.Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium‐dependent vasodilation in health and disease. Microcirculation 20: 239‐247, 2013.
 290.Durand MJ, Phillips SA, Widlansky ME, Otterson MF, Gutterman DD. The vascular renin‐angiotensin system contributes to blunted vasodilation induced by transient high pressure in human adipose microvessels. Am J Physiol Heart Circ Physiol 307: H25‐H32, 2014.
 291.Dzau VJ. Local expression and pathophysiological role of renin‐angiotensin in the blood vessels and heart. Basic Res Cardiol 88(Suppl 1): 1‐14, 1993.
 292.Eckman DM, Hopkins N, McBride C, Keef KD. Endothelium‐dependent relaxation and hyperpolarization in guinea‐pig coronary artery: Role of epoxyeicosatrienoic acid. Br J Pharmacol 124: 181‐189, 1998.
 293.Edlund A, Conradsson T, Sollevi A. A role for adenosine in coronary vasoregulation in man. Effects of theophylline and enprofylline. Clin Physiol 15: 623‐636, 1995.
 294.Edlund A, Sollevi A. Theophylline increases coronary vascular tone in humans: Evidence for a role of endogenous adenosine in flow regulation. Acta Physiol Scand 155: 303‐311, 1995.
 295.Edlund A, Sollevi A, Wennmalm A. The role of adenosine and prostacyclin in coronary flow regulation in healthy man. Acta Physiol Scand 135: 39‐46, 1989.
 296.Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium‐derived hyperpolarizing factor in rat arteries. Nature 396: 269‐272, 1998.
 297.Edwards G, Feletou M, Gardener MJ, Glen CD, Richards GR, Vanhoutte PM, Weston AH. Further investigations into the endothelium‐dependent hyperpolarizing effects of bradykinin and substance P in porcine coronary artery. Br J Pharmacol 133: 1145‐1153, 2001.
 298.Edwards JM, Neeb ZP, Alloosh MA, Long X, Bratz IN, Peller CR, Byrd JP, Kumar S, Obukhov AG, Sturek M. Exercise training decreases store‐operated Ca2+ entry associated with metabolic syndrome and coronary atherosclerosis. Cardiovasc Res 85: 2010.
 299.Egashira K, Katsuda Y, Mohri M, Kuga T, Tagawa T, Kubota T, Hirakawa Y, Takeshita A. Role of endothelium‐derived nitric oxide in coronary vasodilatation induced by pacing tachycardia in humans. Circ Res 79: 331‐335, 1996.
 300.Ehrlich W, Baer RW, Bellamy RF, Randazzo R. Instantaneous femoral artery pressure‐flow relations in supine anesthetized dogs and the effect of unilateral elevation of femoral venous pressure. Circ Res 47: 88‐98, 1980.
 301.Eidt JF, Ashton J, Golino P, McNatt J, Buja LM, Willerson JT. Thromboxane A2 and serotonin mediate coronary blood flow reductions in unsedated dogs. Am J Physiol 257: H873‐H882, 1989.
 302.Ek L, Ablad B. Effects of three beta adrenergic receptor blockers on myocardial oxygen consumption in the dog. Eur J Pharmacol 14: 19‐28, 1971.
 303.Eklof B, Lassen NA, Nilsson L, Norberg K, Siesjo BK. Blood flow and metabolic rate for oxygen in the cerebral cortex of the rat. Acta Physiol Scand 88: 587‐589, 1973.
 304.Ekstrom‐Jodal B, Haggendal E, Malmberg R, Svedmyr N. The effect of adrenergic ‐receptor blockade on coronary circulation in man during work. Acta Med Scand 191: 245‐248, 1972.
 305.Elies J, Johnson E, Boyle JP, Scragg JL, Peers C. H2S does not regulate proliferation via T‐type Ca2+ channels. Biochem Biophys Res Commun 461: 659‐664, 2015.
 306.Ellinsworth DC, Earley S, Murphy TV, Sandow SL. Endothelial control of vasodilation: Integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Pflugers Arch 466: 389‐405, 2014.
 307.Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, Gutterman DD. Endothelium‐derived hyperpolarization and coronary vasodilation: Diverse and integrated roles of epoxyeicosatrienoic acids, hydrogen peroxide, and gap junctions. Microcirculation 23: 15‐32, 2016.
 308.Ellis AK, Klocke FJ. Effects of preload on the transmural distribution of perfusion and pressure‐flow relationships in the canine coronary vascular bed. Circ Res 46: 68‐77, 1980.
 309.Ellsworth ML. The red blood cell as an oxygen sensor: What is the evidence? Acta Physiol Scand 168: 551‐559, 2000.
 310.Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS. Erythrocytes: Oxygen sensors and modulators of vascular tone. Physiology (Bethesda) 24: 107‐116, 2009.
 311.Ellsworth ML, Forrester T, Ellis CG, Dietrich HH. The erythrocyte as a regulator of vascular tone. Am J Physiol 269: H2155‐H2161, 1995.
 312.Ely SW, Berne RM. Protective effects of adenosine in myocardial ischemia. Circulation 85: 893‐904, 1992.
 313.Ely SW, Knabb RM, Bacchus AN, Rubio R, Berne RM. Measurements of coronary plasma and pericardial infusate adenosine concentrations during exercise in conscious dog: Relationship to myocardial oxygen consumption and coronary blood flow. J Mol Cell Cardiol 15: 673‐683, 1983.
 314.Ely SW, Matherne GP, Coleman SD, Berne RM. Inhibition of adenosine metabolism increases myocardial interstitial adenosine concentrations and coronary flow. J Mol Cell Cardiol 24: 1321‐1332, 1992.
 315.Ely SW, Sawyer DC, Anderson DL, Scott JB. Carotid sinus reflex vasoconstriction in right coronary circulation of dog and pig. Am J Physiol 241: H149‐H154, 1981.
 316.Ely SW, Sun CW, Knabb RM, Gidday JM, Rubio R, Berne RM. Adenosine and metabolic regulation of coronary blood flow in dogs with renal hypertension. Hypertension 5: 943‐950, 1983.
 317.Embrey RP, Brooks LA, Dellsperger KC. Mechanism of coronary microvascular responses to metabolic stimulation. Cardiovasc Res 35: 148‐157, 1997.
 318.Eng C, Kirk ES. Flow into ischemic myocardium and across coronary collateral vessels is modulated by a waterfall mechanism. Circ Res 55: 10‐17, 1984.
 319.Ertl G, Hu K, Bauer WR, Bauer B. The renin‐angiotensin system and coronary vasomotion. Heart 76: 45‐52, 1996.
 320.Essex HF, Herrick JF, Baldes EJ, Mann FC. Effects of exercise on the coronary blood flow, heart rate and blood pressure of trained dogs with denervated and partially denervated hearts. Am J Physiol 138: 687‐697, 1943.
 321.Estes EH, Jr, Entman ML, Dixon HB, Hackel DB. The vascular supply of the left ventricular wall. Anatomic observations, plus a hypothesis regarding acute events in coronary artery disease. Am Heart J 71: 58‐67, 1966.
 322.Faber JE, Chilian WM, Deindl E, van RN, Simons M. A brief etymology of the collateral circulation. Arterioscler Thromb Vasc Biol 34: 1854‐1859, 2014.
 323.Fan FC, Chen RY, Schuessler GB, Chien S. Effects of hematocrit variations on regional hemodynamics and oxygen transport in the dog. Am J Physiol 238: H545‐22, 1980.
 324.Farias M, III, Gorman MW, Savage MV, Feigl EO. Plasma ATP during exercise: Possible role in regulation of coronary blood flow. Am J Physiol Heart Circ Physiol 288: H1586‐H1590, 2005.
 325.Farouque HM, Worthley SG, Meredith IT, Skyrme‐Jones RA, Zhang MJ. Effect of ATP‐sensitive potassium channel inhibition on resting coronary vascular responses in humans. Circ Res 90: 231‐236, 2002.
 326.Farsang C, Kerenyi A, Takacs L. Regulation of myocardial oxygen consumption by perfusion pressure in isolated fibrillating canine heart. Pflugers Arch 380: 211‐213, 1979.
 327.Feher A, Broskova Z, Bagi Z. Age‐related impairment of conducted dilation in human coronary arterioles. Am J Physiol Heart Circ Physiol 306: 2014.
 328.Feigl EO. Sympathetic control of coronary circulation. Circ Res 20: 262‐271, 1967.
 329.Feigl EO. Parasympathetic control of coronary blood flow in dogs. Circ Res 25: 509‐519, 1969.
 330.Feigl EO. Reflex parasympathetic coronary vasodilation elicited from cardiac receptors in the dog. Circ Res 37: 175‐182, 1975.
 331.Feigl EO. Coronary physiology. Physiol Rev 63: 1‐205, 1983.
 332.Feigl EO. Parasympathetic control of coronary blood flow. Fed Proc 43: 2881‐2883, 1984.
 333.Feigl EO. Coronary autoregulation. J Hypertens Suppl 7: S55‐S58, 1989.
 334.Feigl EO. No adrenergic constriction in isolated coronary arterioles? Basic Res Cardiol 90: 70‐72, 1995.
 335.Feigl EO. Neural control of coronary blood flow. J Vasc Res 35: 85‐92, 1998.
 336.Feigl EO. Berne's adenosine hypothesis of coronary blood flow control. Am J Physiol Heart Circ Physiol 287: H1891‐H1894, 2004.
 337.Feigl EO, Van Winkle DM, Miyashiro JK. Cholinergic vasodilatation of coronary resistance vessels in dogs, baboons and goats. Blood Vessels 27: 94‐105, 1990.
 338.Feinberg H, Gerola A, Katz LN, Boyd E. Effect of hypoxia on cardiac oxygen consumption and coronary flow. Am J Physiol 195: 593‐600, 1958.
 339.Feletou M, Vanhoutte PM. Endothelial dysfunction: A multifaceted disorder (The Wiggers Award Lecture). Am J Physiol Heart Circ Physiol 291: H985‐H1002, 2006.
 340.Feletou M, Vanhoutte PM. EDHF: An update. Clin Sci (Lond) 117: 139‐155, 2009.
 341.Feng J, Liu Y, Chu LM, Clements RT, Khabbaz KR, Robich MP, Bianchi C, Sellke FW. Thromboxane‐induced contractile response of human coronary arterioles is diminished after cardioplegic arrest. Ann Thorac Surg 92: 829‐836, 2011.
 342.Fibich G, Lanir Y, Liron N, Abovsky M. Modeling of coronary capillary flow. Adv Exp Med Biol 346: 137‐150, 1993.
 343.Figueroa XF, Chen CC, Campbell KP, Damon DN, Day KH, Ramos S, Duling BR. Are voltage‐dependent ion channels involved in the endothelial cell control of vasomotor tone? Am J Physiol Heart Circ Physiol 293: H1371‐H1383, 2007.
 344.Figueroa XF, Paul DL, Simon AM, Goodenough DA, Day KH, Damon DN, Duling BR. Central role of connexin40 in the propagation of electrically activated vasodilation in mouse cremasteric arterioles in vivo. Circ Res 92: 793‐800, 2003.
 345.Fleetwood G, Gordon JL. Purinoceptors in the rat heart. Br J Pharmacol 90: 219‐227, 1987.
 346.Fleischmann BK, Murray RK, Kotlikoff MI. Voltage window for sustained elevation of cytosolic calcium in smooth muscle cells. Proc Natl Acad Sci U S A 91: 11914‐11918, 1994.
 347.Fleming I, Bauersachs J, Busse R. Paracrine functions of the coronary vascular endothelium. Mol Cell Biochem 157: 137‐145, 1996.
 348.Florey. The endothelial cell. Br Med J 2: 487‐490, 1966.
 349.Folkow B. Transmural pressure and vascular tone—some aspects of an old controversy. Arch Int Pharmacodyn Ther 139: 455‐469, 1962.
 350.Folta A, Joshua IG, Webb RC. Dilator actions of endothelin in coronary resistance vessels and the abdominal aorta of the guinea pig. Life Sci 45: 2627‐2635, 1989.
 351.Franco‐Cereceda A, Saria A, Lundberg JM. Ischaemia and changes in contractility induce release of calcitonin gene‐related peptide but not neuropeptide Y from the isolated perfused guinea‐pig heart. Acta Physiol Scand 131: 319‐320, 1987.
 352.Franco‐Obregon A, Lopez‐Barneo J. Low PO2 inhibits calcium channel activity in arterial smooth muscle cells. Am J Physiol 271: 1996.
 353.Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, Gutterman DD. Ceramide changes the mediator of flow‐induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation. Circ Res 115: 525‐532, 2014.
 354.Friedman PL, Brown EJ, Jr, Gunther S, Alexander RW, Barry WH, Mudge GH, Jr, Grossman W. Coronary vasoconstrictor effect of indomethacin in patients with coronary‐artery disease. N Engl J Med 305: 1171‐1175, 1981.
 355.Friedman SM, Nakashima M, Palaty V, Walters BK. Vascular resistance and Na+‐K+ gradients in the perfused rat‐tail artery. Can J Physiol Pharmacol 51: 410‐417, 1973.
 356.Frobert O, Haink G, Simonsen U, Gravholt CH, Levin M, Deussen A. Adenosine concentration in the porcine coronary artery wall and A2A receptor involvement in hypoxia‐induced vasodilatation. J Physiol 570: 375‐384, 2006.
 357.Frolich JC. The 1982 Nobel Prize in medicine: Prostaglandins. Dtsch Med Wochenschr 107: 1932‐1934, 1982.
 358.Fukumitsu T, Hayashi H, Tokuno H, Tomita T. Increase in calcium channel current by beta‐adrenoceptor agonists in single smooth muscle cells isolated from porcine coronary artery. Br J Pharmacol 100: 1990.
 359.Fulton WF. Arterial anastomoses in the coronary circulation. II. Distribution, enumeration and measurement of coronary arterial anastomoses in health and disease. Scott Med J 8: 466‐474, 1963.
 360.Fulton WF. Anastomotic enlargement and ischaemic myocardial damage. Br Heart J 26: 1‐15, 1964.
 361.Fulton WF. The dynamic factor in enlargement of coronary arterial anastomoses, and paradoxical changes in the subendocardial plexus. Br Heart J 26: 39‐50, 1964.
 362.Fulton WF. The time factor in the enlargement of anastomoses in coronary artery disease. Scott Med J 9: 18‐23, 1964.
 363.Furchgott RF, Vanhoutte PM. Endothelium‐derived relaxing and contracting factors. FASEB J 3: 2007‐2018, 1989.
 364.Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373‐376, 1980.
 365.Gallagher KP, Matsuzaki M, Osakada G, Kemper WS, Ross J, Jr. Effect of exercise on the relationship between myocardial blood flow and systolic wall thickening in dogs with acute coronary stenosis. Circ Res 52: 716‐729, 1983.
 366.Ganitkevich V, Isenberg G. Contribution of two types of calcium channels to membrane conductance of single myocytes from guinea‐pig coronary artery. J Physiol 426: 19‐42, 1990.
 367.Ganz P, Braunwald E. Coronary blood flow and myocardial ischemia. In: Braunwald E, editor. Heart Disease: A Textbook of Cardiovascular Medicine. Philadelphia, Pennsylvania: W.B. Saunders Company, 1997, pp. 1161‐1179.
 368.Gao F, de Beer VJ, Hoekstra M, Xiao C, Duncker DJ, Merkus D. Both beta1‐ and beta2‐adrenoceptors contribute to feedforward coronary resistance vessel dilation during exercise. Am J Physiol Heart Circ Physiol 298: H921‐H929, 2010.
 369.Gaugl JF, Williams AG, Jr., Downey HF. Arteriovenous‐shunt‐mediated increase in venous return causes apparent right coronary arterial autoregulation. Cardiovasc Res 27: 748‐752, 1993.
 370.Gauthier‐Rein KM, Bizub DM, Lombard JH, Rusch NJ. Hypoxia‐induced hyperpolarization is not associated with vasodilation of bovine coronary resistance arteries. Am J Physiol 272: H1462‐H1469, 1997.
 371.Gebremedhin D, Harder DR, Pratt PF, Campbell WB. Bioassay of an endothelium‐derived hyperpolarizing factor from bovine coronary arteries: Role of a cytochrome P450 metabolite. J Vasc Res 35: 274‐284, 1998.
 372.Geha AS. Coronary and cardiovascular dynamics and oxygen availability during acute normovolemic anemia. Surgery 80: 47‐53, 1976.
 373.Gellai M, Detar R. Evidence in support of hypoxia but against high potassium and hyperosmolarity as possible mediators of sustained vasodilation in rabbit cardiac and skeletal muscle. Circ Res 35: 681‐691, 1974.
 374.Gerlings ED, Gilmore JP. Studies on the mechanism of induced changes in the potassium balance of the heart. Acta Physiol Pharmacol Neerl 15: 263‐281, 1969.
 375.Gerlings ED, Miller DT, Gilmore JP. Oxygen availability: A determinant of myocardial potassium balance. Am J Physiol 216: 559‐562, 1969.
 376.Gewirtz H, Olsson RA, Most AS. Role of adenosine in mediating the coronary vasodilative response to acute hypoxia. Cardiovasc Res 21: 81‐89, 1987.
 377.Gisselsson L, Rosberg B, Ericsson M. Myocardial blood flow, oxygen uptake and carbon dioxide release of the human heart during hemodilution. Acta Anaesthesiol Scand 26: 589‐591, 1982.
 378.Giudicelli JF, Berdeaux A, Tato F, Garnier M. Left stellate stimulation: Regional myocardial flows and ischemic injury in dogs. Am J Physiol 239: H359‐H364, 1980.
 379.Golino P, Ashton JH, Buja LM, Rosolowsky M, Taylor AL, McNatt J, Campbell WB, Willerson JT. Local platelet activation causes vasoconstriction of large epicardial canine coronary arteries in vivo. Thromboxane A2 and serotonin are possible mediators. Circulation 79: 154‐166, 1989.
 380.Golino P, Ashton JH, McNatt J, Glas‐Greenwalt P, Yao SK, O'Brien RA, Buja LM, Willerson JT. Simultaneous administration of thromboxane A2‐ and serotonin S2‐receptor antagonists markedly enhances thrombolysis and prevents or delays reocclusion after tissue‐type plasminogen activator in a canine model of coronary thrombosis. Circulation 79: 911‐919, 1989.
 381.Golino P, Rosolowsky M, Yao SK, McNatt J, De CF, Buja LM, Willerson JT. Endogenous prostaglandin endoperoxides and prostacyclin modulate the thrombolytic activity of tissue plasminogen activator. Effects of simultaneous inhibition of thromboxane A2 synthase and blockade of thromboxane A2/prostaglandin H2 receptors in a canine model of coronary thrombosis. J Clin Invest 86: 1095‐1102, 1990.
 382.Gollasch M, Ried C, Bychkov R, Luft FC, Haller H. K+ currents in human coronary artery vascular smooth muscle cells. Circ Res 78: 676‐688, 1996.
 383.Goodwill AG, Fu L, Noblet JN, Casalini ED, Sassoon D, Berwick ZC, Kassab GS, Tune JD, Dick GM. KV7 channels contribute to paracrine, but not metabolic or ischemic, regulation of coronary vascular reactivity in swine. Am J Physiol Heart Circ Physiol 310: H693‐H704, 2016.
 384.Goodwill AG, Noblet JN, Sassoon D, Fu L, Kassab GS, Schepers L, Herring BP, Rottgen TS, Tune JD, Dick GM. Critical contribution of KV1 channels to the regulation of coronary blood flow. Basic Res Cardiol 111: 56, 2016.
 385.Gorlin R, Brachfeld N, Macleod C, Bopp P. Effect of nitroglycerin on the coronary circulation in patients with coronary artery disease or increased left ventricular work. Circulation 19: 705‐718, 1959.
 386.Gorman MW, Farias M, III, Richmond KN, Tune JD, Feigl EO. Role of endothelin in alpha‐adrenoceptor coronary vasoconstriction. Am J Physiol Heart Circ Physiol 288: H1937‐H1942, 2005.
 387.Gorman MW, Feigl EO. Control of coronary blood flow during exercise. Exerc Sport Sci Rev 40: 37‐42, 2012.
 388.Gorman MW, Rooke GA, Savage MV, Jayasekara MP, Jacobson KA, Feigl EO. Adenine nucleotide control of coronary blood flow during exercise. Am J Physiol Heart Circ Physiol 299: H1981‐H1989, 2010.
 389.Gorman MW, Tune JD, Richmond KN, Feigl EO. Feedforward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol 89: 1892‐1902, 2000.
 390.Gorman MW, Tune JD, Richmond KN, Feigl EO. Quantitative analysis of feedforward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol 89: 1903‐1911, 2000.
 391.Goto K, Kasuya Y, Matsuki N, Takuwa Y, Kurihara H, Ishikawa T, Kimura S, Yanagisawa M, Masaki T. Endothelin activates the dihydropyridine‐sensitive, voltage‐dependent Ca2+ channel in vascular smooth muscle. Proc Natl Acad Sci U S A 86: 3915‐3918, 1989.
 392.Gould KL. Quantification of coronary artery stenosis in vivo. Circ Res 57: 341‐353, 1985.
 393.Granata L, Olsson RA, Huvos A, Gregg DE. Coronary inflow and oxygen usage following cardiac sympathetic nerve stimulation in unanesthetized dogs. Circ Res 16: 114‐120, 1965.
 394.Grayson J, Davidson JW, Fitzgerald‐Finch A and Scott C. The functional morphology of the coronary microcirculation in the dog. Microvasc Res 8: 20‐43, 1974.
 395.Gregg DE. Phasic blood flow and its determinants in the right coronary artery. Am J Physiol 119: 580‐588, 1937.
 396.Gregg DE. The coronary circulation. Physiol Rev 26: 28‐46, 1946.
 397.Gregg DE. Effect of coronary perfusion pressure or coronary flow on oxygen usage of the myocardium. Circ Res 13: 497‐500, 1963.
 398.Gregg DE, Fisher LC. Blood supply to the heart. In: Handbook of Physiology. Washington, DC: American Physiological Society, 1963.
 399.Gregg DE, Green HD, Wiggers CJ. Phasic variations in peripheral coronary resistance and their determinants. Am J Physiol 112: 362‐373, 1935.
 400.Gregg DE, Green HD, Wiggers CJ. The phasic changes in coronary flow established by differential pressure curves. Am J Physiol 112: 627‐639, 1935.
 401.Gregg DE, Khouri EM, Donald DE, Lowensohn HS, Pasyk S. Coronary circulation in the conscious dog with cardiac neural ablation. Circ Res 31: 129‐144, 1972.
 402.Gregorini L, Marco J, Farah B, Bernies M, Palombo C, Kozakova M, Bossi IM, Cassagneau B, Fajadet J, Di MC, Albiero R, Cugno M, Grossi A, Heusch G. Effects of selective alpha1‐ and alpha2‐adrenergic blockade on coronary flow reserve after coronary stenting. Circulation 106: 2901‐2907, 2002.
 403.Gregorini L, Marco J, Kozakova M, Palombo C, Anguissola GB, Marco I, Bernies M, Cassagneau B, Distante A, Bossi IM, Fajadet J, Heusch G. Alpha‐adrenergic blockade improves recovery of myocardial perfusion and function after coronary stenting in patients with acute myocardial infarction. Circulation 99: 482‐490, 1999.
 404.Gregorini L, Marco J, Palombo C, Kozakova M, Anguissola GB, Cassagneau B, Bernies M, Distante A, Marco I, Fajadet J, Zanchetti A. Postischemic left ventricular dysfunction is abolished by alpha‐adrenergic blocking agents. J Am Coll Cardiol 31: 992‐1001, 1998.
 405.Greif M, Becker A, von ZF, Lebherz C, Lehrke M, Broedl UC, Tittus J, Parhofer K, Becker C, Reiser M, Knez A, Leber AW. Pericardial adipose tissue determined by dual source CT is a risk factor for coronary atherosclerosis. Arterioscler Thromb Vasc Biol 29: 781‐786, 2009.
 406.Gremels H, Starling EH. On the influence of hydrogen ion concentration and of anoxaemia upon the heart volume. J Physiol 61: 297‐304, 1926.
 407.Griggs DM, Jr, Nakamura Y. Effect of coronary constriction on myocardial distribution of iodoantipyrine‐131‐I. Am J Physiol 215: 1082‐1086, 1968.
 408.Gross GJ. The Blood Supply to the Heart. New York: Hoeber, 1921.
 409.Gross GJ, Buck JD, Warltier DC. Transmural distribution of blood flow during activation of coronary muscarinic receptors. Am J Physiol 240: H941‐H946, 1981.
 410.Gross GJ, Feigl EO. Analysis of coronary vascular beta receptors in situ. Am J Physiol 228: 1909‐1913, 1975.
 411.Grupp G, Acheson GH, Charles A. Heart rate and paired ventricular stimulation: Effects on contractile force and K+ exchange. Am J Physiol 212: 607‐611, 1967.
 412.Gu J, Polak JM, Adrian TE, Allen JM, Tatemoto K, Bloom SR. Neuropeptide tyrosine (NPY)–a major cardiac neuropeptide. Lancet 1: 1008‐1010, 1983.
 413.Gulbenkian S, Barroso CP, Cunha e Sá M, Edvinsson L. The peptidergic innervation of human coronary and cerebral vessels. Ital J Anat Embryol 100(Suppl 1): 317‐327, 1995.
 414.Guller B, Yipintsoi T, Orvis AL, Bassingthwaighte JB. Myocardial sodium extraction at varied coronary flows in the dog. Estimation of capillary permeability of residue and outflow detection. Circ Res 37: 359‐378, 1975.
 415.Gutierrez E, Flammer AJ, Lerman LO, Elizaga J, Lerman A, Fernandez‐Aviles F. Endothelial dysfunction over the course of coronary artery disease. Eur Heart J 34: 3175‐3181, 2013.
 416.Gutterman DD, Arthur JM, Pardubsky PD, Gebhart GF, Marcus ML, Brody MJ. Role of medullary lateral reticular formation in baroreflex coronary vasoconstriction. Brain Res 557: 202‐209, 1991.
 417.Gutterman DD, Bonham AC, Arthur JM, Gebhart GF, Marcus ML, Brody MJ. Characterization of coronary vasoconstrictor site in medullary reticular formation. Am J Physiol 256: H1218‐H1227, 1989.
 418.Gutterman DD, Bonham AC, Gebhart GF, Marcus ML, Brody MJ. Connections between hypothalamus and medullary reticular formation mediate coronary vasoconstriction. Am J Physiol 259: H917‐H924, 1990.
 419.Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, Ait‐Aissa K, Beyer AM. The human microcirculation: Regulation of flow and beyond. Circ Res 118: 157‐172, 2016.
 420.Gutterman DD, Goodson A. Role of parabrachial nucleus in baroreflex‐mediated coronary vasoconstriction. Am J Physiol 271: H1079‐H1086, 1996.
 421.Gutterman DD, Miura H, Liu Y. Redox modulation of vascular tone: Focus of potassium channel mechanisms of dilation. Arterioscler Thromb Vasc Biol 25: 671‐678, 2005.
 422.Gutterman DD, Morgan DA. Transmural regulation of myocardial perfusion by neuropeptide Y. Basic Res Cardiol 90: 348‐355, 1995.
 423.Guyton RA, McClenathan JH, Newman GE, Michaelis LL. Significance of subendocardial S‐T segment elevation caused by coronary stenosis in the dog. Epicardial S‐T segment depression, local ischemia and subsequent necrosis. Am J Cardiol 40: 373‐380, 1977.
 424.Gwirtz PA, Dodd O, Downey HF, Mass HJ, Barron BA, Williams AG, Jr, Jones CE. Effects of a coronary alpha 1‐constriction on transmural left ventricular flow and contractile function. Am J Physiol 262: H965‐H972, 1992.
 425.Gwirtz PA, Dodd‐o JM, Brandt MA, Jones CE. Augmentation of coronary flow improves myocardial function in exercise. J Cardiovasc Pharmacol 15: 752‐758, 1990.
 426.Gwirtz PA, Mass HJ, Strader JR, Jones CE. Coronary and cardiac responses to exercise after chronic ventricular sympathectomy. Med Sci Sports Exerc 20: 126‐135, 1988.
 427.Gwirtz PA, Overn SP, Mass HJ, Jones CE. Alpha 1‐adrenergic constriction limits coronary flow and cardiac function in running dogs. Am J Physiol 250: H1117‐H1126, 1986.
 428.Gwirtz PA, Stone HL. Coronary blood flow and myocardial oxygen consumption after alpha adrenergic blockade during submaximal exercise. J Pharmacol Exp Ther 217: 92‐98, 1981.
 429.Habib GB, Heibig J, Forman SA, Brown BG, Roberts R, Terrin ML, Bolli R. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation 83: 739‐746, 1991.
 430.Hackett JG, Abboud FM, Mark AL, Schmid PG, Heistad DD. Coronary vascular responses to stimulation of chemoreceptors and baroreceptors: Evidence for reflex activation of vagal cholinergic innervation. Circ Res 31: 8‐17, 1972.
 431.Hacking WJ, VanBavel E, Spaan JA. Shear stress is not sufficient to control growth of vascular networks: A model study. Am J Physiol 270: H364‐H375, 1996.
 432.Hahn N, Jehle J, Politz B, Schmiel FK, Spiller P. Relations between ventricle function, myocardial oxygen consumption and coronary circulation following sublingual administration of nitroglycerin. Z Kardiol 72: 456‐464, 1983.
 433.Halcox JP, Schenke WH, Zalos G, Mincemoyer R, Prasad A, Waclawiw MA, Nour KR, Quyyumi AA. Prognostic value of coronary vascular endothelial dysfunction. Circulation 106: 653‐658, 2002.
 434.Halpern W, Mulvany MJ, Warshaw DM. Mechanical properties of smooth muscle cells in the walls of arterial resistance vessels. J Physiol 275: 85‐101, 1978.
 435.Hamdad N, Ming Z, Parent R, Lavallee M. Beta 2‐adrenergic dilation of conductance coronary arteries involves flow‐dependent NO formation in conscious dogs. Am J Physiol 271: H1926‐H1937, 1996.
 436.Hamilton FN, Feigl EO. Coronary vascular sympathetic beta‐receptor innervation. Am J Physiol 230: 1569‐1576, 1976.
 437.Han G, Kryman JP, McMillin PJ, White RE, Carrier GO. A novel transduction mechanism mediating dopamine‐induced vascular relaxation: Opening of BKCa channels by cyclic AMP‐induced stimulation of the cyclic GMP‐dependent protein kinase. J Cardiovasc Pharmacol 34: 619‐627, 1999.
 438.Hanley FL, Grattan MT, Stevens MB, Hoffman JI. Role of adenosine in coronary autoregulation. Am J Physiol 250: H558‐H566, 1986.
 439.Harlan DM, Rooke TW, Belloni FL, Sparks HV. Effect of indomethacin on coronary vascular response to increased myocardial oxygen consumption. Am J Physiol 235: H372‐H378, 1978.
 440.Harris AS, Toth LA, Tan EH. Arrhythmic and antiarrhythmic effects of sodium, potassium, and calcium salts and of glucose injected into coronary arteries of infarcted and normal hearts. Circ Res 6: 570‐579, 1958.
 441.Hart BJ, Bian X, Gwirtz PA, Setty S, Downey HF. Right ventricular oxygen supply/demand balance in exercising dogs. Am J Physiol Heart Circ Physiol 281: H823‐H830, 2001.
 442.Hashimoto K, Igarashi S, Uei I, Kumakura S. Carotid chemoreceptor reflex effects on coronary flow and heart rate. Am J Physiol 206: 536‐540, 1964.
 443.Heaps CL, Bowles DK. Gender‐specific K(+)‐channel contribution to adenosine‐induced relaxation in coronary arterioles. J Appl Physiol (1985) 92: 2002.
 444.Heaps CL, Bowles DK, Sturek M, Laughlin MH, Parker JL. Enhanced L‐type Ca2+ channel current density in coronary smooth muscle of exercise‐trained pigs is compensated to limit myoplasmic free Ca2+ accumulation. J Physiol 528: 435‐445, 2000.
 445.Heaps CL, Jeffery EC, Laine GA, Price EM, Bowles DK. Effects of exercise training and hypercholesterolemia on adenosine activation of voltage‐dependent K+ channels in coronary arterioles. J Appl Physiol 105: 1761‐1771, 2008.
 446.Heaps CL, Parker JL. Effects of exercise training on coronary collateralization and control of collateral resistance. J Appl Physiol (1985) 111: 587‐598, 2011.
 447.Heaps CL, Tharp DL, Bowles DK. Hypercholesterolemia abolishes voltage‐dependent K+ channel contribution to adenosine‐mediated relaxation in porcine coronary arterioles. Am J Physiol Heart Circ Physiol 288: H568‐H576, 2005.
 448.Hedegaard ER, Nielsen BD, Kun A, Hughes AD, Kroigaard C, Mogensen S, Matchkov VV, Frobert O, Simonsen U. KV 7 channels are involved in hypoxia‐induced vasodilatation of porcine coronary arteries. Br J Pharmacol 171: 2014.
 449.Heidland A, Klassen A, Sebekova K, Bahner U. Beginning of modern concept of inflammation: The work of Friedrich Daniel von Recklinghausen and Julius Friedrich Cohnheim. J Nephrol 22(Suppl 14): 71‐79, 2009.
 450.Hein TW, Belardinelli L, Kuo L. Adenosine A(2A) receptors mediate coronary microvascular dilation to adenosine: Role of nitric oxide and ATP‐sensitive potassium channels. J Pharmacol Exp Ther 291: 655‐664, 1999.
 451.Hein TW, Kuo L. cAMP‐independent dilation of coronary arterioles to adenosine: Role of nitric oxide, G proteins, and K(ATP) channels. Circ Res 85: 634‐642, 1999.
 452.Hein TW, Zhang C, Wang W, Kuo L. Heterogeneous beta2‐adrenoceptor expression and dilation in coronary arterioles across the left ventricular wall. Circulation 110: 2708‐2712, 2004.
 453.Heineman FW, Grayson J. Transmural distribution of intramyocardial pressure measured by micropipette technique. Am J Physiol 249: H1216‐H1223, 1985.
 454.Heiss HW, Barmeyer J, Wink K, Hell G, Cerny FJ, Keul J, Reindell H. Studies on the regulation of myocardial blood flow in man. I.: Training effects on blood flow and metabolism of the healthy heart at rest and during standardized heavy exercise. Basic Res Cardiol 71: 658‐675, 1976.
 455.Henquell L, Honig CR. Capillary spacing around coronary venules suggests that diffusion distance is controlled by local tissue pO2. Microvasc Res 15: 363‐366, 1978.
 456.Henquell L, Odoroff CL, Honig CR. Coronary intercapillary distance during growth: Relation to PtO2 and aerobic capacity. Am J Physiol 231: 1852‐1859, 1976.
 457.Henquell L, Odoroff CL, Honig CR. Intercapillary distance and capillary reserve in hypertrophied rat hearts beating in situ. Circ Res 41: 400‐408, 1977.
 458.Herrmann SC, Feigl EO. Adrenergic blockade blunts adenosine concentration and coronary vasodilation during hypoxia. Circ Res 70: 1203‐1216, 1992.
 459.Heusch G. Adenosine and maximum coronary vasodilation in humans: Myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 105: 1‐5, 2010.
 460.Heusch G. The paradox of alpha‐adrenergic coronary vasoconstriction revisited. J Mol Cell Cardiol 51: 16‐23, 2011.
 461.Heusch G, Baumgart D, Camici P, Chilian W, Gregorini L, Hess O, Indolfi C, Rimoldi O. alpha‐adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation 101: 689‐694, 2000.
 462.Heusch G, Deussen A. The effects of cardiac sympathetic nerve stimulation on perfusion of stenotic coronary arteries in the dog. Circ Res 53: 8‐15, 1983.
 463.Heusch G, Deussen A. Nifedipine prevents sympathetic vasoconstriction distal to severe coronary stenoses. J Cardiovasc Pharmacol 6: 378‐383, 1984.
 464.Heusch G, Deussen A, Schipke J, Thamer V. Alpha 1‐ and alpha 2‐adrenoceptor‐mediated vasoconstriction of large and small canine coronary arteries in vivo. J Cardiovasc Pharmacol 6: 961‐968, 1984.
 465.Heusch G, Deussen A, Schipke J, Thamer V. Adenosine, dipyridamole and isosorbide dinitrate are ineffective to prevent the sympathetic initiation of poststenotic myocardial ischemia. Arzneimittelforschung 36: 1045‐1048, 1986.
 466.Heusch G, Deussen A, Thamer V. Cardiac sympathetic nerve activity and progressive vasoconstriction distal to coronary stenoses: Feed‐back aggravation of myocardial ischemia. J Auton Nerv Syst 13: 311‐326, 1985.
 467.Heusch G, Yoshimoto N, Heegemann H, Thamer V. Interaction of methoxamine with compensatory vasodilation distal to coronary stenoses. Arzneimittelforschung 33: 1647‐1650, 1983.
 468.Heyndrickx GR. Alpha‐adrenergic receptors and coronary blood vessels. Bibl Cardiol 52: 161‐168, 1990.
 469.Heyndrickx GR, Muylaert P, Pannier JL. alpha‐Adrenergic control of oxygen delivery to myocardium during exercise in conscious dogs. Am J Physiol 242: H805‐H809, 1982.
 470.Heyndrickx GR, Vilaine JP, Moerman EJ, Leusen I. Role of prejunctional alpha 2‐adrenergic receptors in the regulation of myocardial performance during exercise in conscious dogs. Circ Res 54: 683‐693, 1984.
 471.Hiett SC, Owen MK, Li W, Chen X, Riley A, Noblet J, Flores S, Sturek M, Tune JD, Obukhov AG. Mechanisms underlying capsaicin effects in canine coronary artery: Implications for coronary spasm. Cardiovasc Res 103: 2014.
 472.Higashi Y, Noma K, Yoshizumi M, Kihara Y. Endothelial function and oxidative stress in cardiovascular diseases. Circ J 73: 411‐418, 2009.
 473.Hillier C, Berry C, Petrie MC, O'Dwyer PJ, Hamilton C, Brown A, McMurray J. Effects of urotensin II in human arteries and veins of varying caliber. Circulation 103: 1378‐1381, 2001.
 474.Hilton R, Eichholtz F. The influence of chemical factors on the coronary circulation. J Physiol 59: 413‐425, 1925.
 475.Hintze TH, Kaley G. Prostaglandins and the control of blood flow in the canine myocardium. Circ Res 40: 313‐320, 1977.
 476.Hinze AV, Mayer P, Harst A, von Kugelgen I. P2X1 receptor‐mediated inhibition of the proliferation of human coronary smooth muscle cells involving the transcription factor NR4A1. Purinergic Signal 9: 2013.
 477.Hirata Y, Yoshimi H, Takaichi S, Yanagisawa M, Masaki T. Binding and receptor down‐regulation of a novel vasoconstrictor endothelin in cultured rat vascular smooth muscle cells. FEBS Lett 239: 13‐17, 1988.
 478.Hirsch EF, Borghard‐Erdle AM. The innervation of the human heart. I. The coronary arteries and the myocardium. Arch Pathol 71: 384‐407, 1961.
 479.Hodgson JM, Marshall JJ. Direct vasoconstriction and endothelium‐dependent vasodilation. Mechanisms of acetylcholine effects on coronary flow and arterial diameter in patients with nonstenotic coronary arteries. Circulation 79: 1043‐1051, 1989.
 480.Hoffman JI. Maximal coronary flow and the concept of coronary vascular reserve. Circulation 70: 153‐159, 1984.
 481.Hoffman JI, Spaan JA. Pressure‐flow relations in coronary circulation. Physiol Rev 70: 331‐390, 1990.
 482.Hofling B, von RW, Holtz J, Bassenge E. Viscous and inertial fractions of total perfusion energy dissipation in the coronary circulation of the in situ perfused dog heart. Pflugers Arch 358: 1‐10, 1975.
 483.Holmberg S, Serzysko W, Varnauskas E. Coronary circulation during heavy exercise in control subjects and patients with coronary heart disease. Acta Med Scand 190: 465‐480, 1971.
 484.Holmberg S, Varnauskas E. Coronary circulation during pacing‐induced tachycardia. Acta Med Scand 190: 481‐490, 1971.
 485.Holt JP. Flow through collapsible tubes and through in situ veins. IEEE Trans Biomed Eng 16: 274‐283, 1969.
 486.Holtz J, Bassenge E, von RW, Mayer E. Transmural differences in myocardial blood flow and in coronary dilatory capacity in hemodiluted conscious dogs. Basic Res Cardiol 71: 36‐46, 1976.
 487.Holtz J, Saeed M, Sommer O, Bassenge E. Norepinephrine constricts the canine coronary bed via postsynaptic alpha 2‐adrenoceptors. Eur J Pharmacol 82: 199‐202, 1982.
 488.Honig CR, Odoroff CL. Calculated dispersion of capillary transit times: Significance for oxygen exchange. Am J Physiol 240: H199‐H208, 1981.
 489.Honig CR, Odoroff CL, Frierson JL. Capillary recruitment in exercise: Rate, extent, uniformity, and relation to blood flow. Am J Physiol 238: H31‐H42, 1980.
 490.Horio Y, Yasue H, Okumura K, Takaoka K, Matsuyama K, Goto K, Minoda K. Effects of intracoronary injection of acetylcholine on coronary arterial hemodynamics and diameter. Am J Cardiol 62: 887‐891, 1988.
 491.Houston DS, Vanhoutte PM. Serotonin and the vascular system. Role in health and disease, and implications for therapy. Drugs 31: 149‐163, 1986.
 492.Hu SL, Kim HS, Jeng AY. Dual action of endothelin‐1 on the Ca2(+)‐activated K+ channel in smooth muscle cells of porcine coronary artery. Eur J Pharmacol 194: 31‐36, 1991.
 493.Huang AH, Feigl EO. Adrenergic coronary vasoconstriction helps maintain uniform transmural blood flow distribution during exercise. Circ Res 62: 286‐298, 1988.
 494.Hyvelin JM, Gautier M, Lemaire MC, Bonnet P, Eder V. Adaptative modifications of right coronary myocytes voltage‐gated K+ currents in rat with hypoxic pulmonary hypertension. Pflugers Arch 457: 2009.
 495.Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium‐derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84: 9265‐9269, 1987.
 496.Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium‐derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res 61: 866‐879, 1987.
 497.Ishibashi Y, Duncker DJ, Zhang J, Bache RJ. ATP‐sensitive K+ channels, adenosine, and nitric oxide‐mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82: 346‐359, 1998.
 498.Ishibashi Y, Takahashi N, Shimada T, Sugamori T, Sakane T, Umeno T, Hirano Y, Oyake N, Murakami Y. Short duration of reactive hyperemia in the forearm of subjects with multiple cardiovascular risk factors. Circ J 70: 115‐123, 2006.
 499.Ishizaka H, Gudi SR, Frangos JA, Kuo L. Coronary arteriolar dilation to acidosis: Role of ATP‐sensitive potassium channels and pertussis toxin‐sensitive G proteins. Circulation 99: 558‐563, 1999.
 500.Ishizaka H, Kuo L. Acidosis‐induced coronary arteriolar dilation is mediated by ATP‐sensitive potassium channels in vascular smooth muscle. Circ Res 78: 50‐57, 1996.
 501.Ito M,Zipes DP. Efferent sympathetic and vagal innervation of the canine right ventricle. Circulation 90: 1459‐1468, 1994.
 502.Ito T, Toki Y, Hieda N, Okumura K, Hashimoto H, Ogawa K, Satake T. Protective effects of a thromboxane synthetase inhibitor, a thromboxane antagonist, a lipoxygenase inhibitor and a leukotriene C4, D4 antagonist on myocardial injury caused by acute myocardial infarction in the canine heart. Jpn Circ J 53: 1115‐1121, 1989.
 503.Itoh T, Kubota Y, Kuriyama H. Effects of a phorbol ester on acetylcholine‐induced Ca2+ mobilization and contraction in the porcine coronary artery. J Physiol 397: 1988.
 504.Itoh Y, Yanagisawa M, Ohkubo S, Kimura C, Kosaka T, Inoue A, Ishida N, Mitsui Y, Onda H, Fujino M. Cloning and sequence analysis of cDNA encoding the precursor of a human endothelium‐derived vasoconstrictor peptide, endothelin: Identity of human and porcine endothelin. FEBS Lett 231: 440‐444, 1988.
 505.Izzard AS, Heagerty AM. Myogenic properties of brain and cardiac vessels and their relation to disease. Curr Vasc Pharmacol 12: 829‐835, 2014.
 506.Jackson WF. Arteriolar oxygen reactivity: Where is the sensor? Am J Physiol 253: H1120‐H1126, 1987.
 507.Jackson WF. Arteriolar oxygen reactivity: Where is the sensor and what is the mechanism of action? J Physiol 594: 5055‐5077, 2016.
 508.Jackson WF, Duling BR. The oxygen sensitivity of hamster cheek pouch arterioles. In vitro and in situ studies. Circ Res 53: 515‐525, 1983.
 509.Jan KM, Chien S. Effect of hematocrit variations on coronary hemodynamics and oxygen utilization. Am J Physiol 233: H106‐H113, 1977.
 510.Jennings RB, Sommers HM, Kaltenbach JP, West JJ. Electrolyte alterations in acute myocardial ischemic injury. Circ Res 14: 260‐269, 1964.
 511.Jiang C, Collins P. Inhibition of hypoxia‐induced relaxation of rabbit isolated coronary arteries by NG‐monomethyl‐L‐arginine but not glibenclamide. Br J Pharmacol 111: 711‐716, 1994.
 512.Jimenez AH, Tanner MA, Caldwell WM, Myers PR. Effects of oxygen tension on flow‐induced vasodilation in porcine coronary resistance arterioles. Microvasc Res 51: 365‐377, 1996.
 513.Johnson NP, Kirkeeide RL, Gould KL. Is discordance of coronary flow reserve and fractional flow reserve due to methodology or clinically relevant coronary pathophysiology? JACC Cardiovasc Imaging 5: 193‐202, 2012.
 514.Johnson PC. Review of previous studies and current theories of autoregulation. Circ Res 15(Suppl 9): 2‐9, 1964.
 515.Johnson PC. Autoregulation of blood flow. Circ Res 59: 483‐495, 1986.
 516.Jolly SR, Gross GJ. Improvement in ischemic myocardial blood flow following a new calcium antagonist. Am J Physiol 239: 1980.
 517.Jones CE, Gwirtz PA. Alpha 1‐adrenergic coronary constriction during exercise and ischemia. Basic Res Cardiol 85(Suppl 1): 177‐192, 1990.
 518.Jones CJ, DeFily DV, Patterson JL, Chilian WM. Endothelium‐dependent relaxation competes with alpha 1‐ and alpha 2‐adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 87: 1264‐1274, 1993.
 519.Jones CJ, Kuo L, Davis MJ, Chilian WM. Distribution and control of coronary microvascular resistance. Adv Exp Med Biol 346: 181‐188, 1993.
 520.Jones CJ, Kuo L, Davis MJ, Chilian WM. Myogenic and flow‐dependent control mechanisms in the coronary microcirculation. Basic Res Cardiol 88: 2‐10, 1993.
 521.Jones CJ, Kuo L, Davis MJ, Chilian WM. alpha‐adrenergic responses of isolated canine coronary microvessels. Basic Res Cardiol 90: 61‐69, 1995.
 522.Jones CJ, Kuo L, Davis MJ, Chilian WM. Regulation of coronary blood flow: Coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res 29: 585‐596, 1995.
 523.Jones CJ, Kuo L, Davis MJ, Chilian WM. In vivo and in vitro vasoactive reactions of coronary arteriolar microvessels to nitroglycerin. Am J Physiol 271: 1996.
 524.Jones CJ, Kuo L, Davis MJ, DeFily DV, Chilian WM. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation 91: 1807‐1813, 1995.
 525.Jones LF, Gutterman DD, Brody MJ. Patterns of hemodynamic responses associated with central activation of coronary vasoconstriction. Am J Physiol 262: R276‐R283, 1992.
 526.Jorgensen CR, Wang K, Wang Y, Gobel FL, Nelson RR, Taylor H. Effect of propranolol on myocardial oxygen consumption and its hemodynamic correlates during upright exercise. Circulation 48: 1173‐1182, 1973.
 527.Kaapa P, Viinikka L, Ylikorkala O. Plasma prostacyclin from birth to adolescence. Arch Dis Child 57: 459‐461, 1982.
 528.Kadlec AO, Beyer AM, Ait‐Aissa K, Gutterman DD. Mitochondrial signaling in the vascular endothelium: Beyond reactive oxygen species. Basic Res Cardiol 111: 26, 2016.
 529.Kadokami T, Egashira K, Kuwata K, Fukumoto Y, Kozai T, Yasutake H, Kuga T, Shimokawa H, Sueishi K, Takeshita A. Altered serotonin receptor subtypes mediate coronary microvascular hyperreactivity in pigs with chronic inhibition of nitric oxide synthesis. Circulation 94: 182‐189, 1996.
 530.Kahler RL, Braunwald E, Kelminson LL, Kedes L, Chidsey CA, Segal S. Effect of alterations of coronary blood flow on the oxygen consumption of the nonworking heart. Circ Res 13: 501‐509, 1963.
 531.Kaiser L, Sparks HV, Jr. Endothelial cells. Not just a cellophane wrapper. Arch Intern Med 147: 569‐573, 1987.
 532.Kajiya F, Tomonaga G, Tsujioka K, Ogasawara Y, Nishihara H. Evaluation of local blood flow velocity in proximal and distal coronary arteries by laser Doppler method. J Biomech Eng 107: 10‐15, 1985.
 533.Kajiya F, Tsujioka K, Goto M, Wada Y, Tadaoka S, Nakai M, Hiramatsu O, Ogasawara Y, Mito K, Hoki N. Evaluation of phasic blood flow velocity in the great cardiac vein by a laser Doppler method. Heart Vessels 1: 16‐23, 1985.
 534.Kalsner S. The effect of hypoxia on prostaglandin output and on tone in isolated coronary arteries. Can J Physiol Pharmacol 55: 882‐887, 1977.
 535.Kalsner S. Prostaglandin mediated relaxation of coronary artery strips under hypoxia. Prostaglandins Med 1: 231‐239, 1978.
 536.Kalsner S. Cholinergic constriction in the general circulation and its role in coronary artery spasm. Circ Res 65: 237‐257, 1989.
 537.Kalsner S. Hypoxic relaxation in functionally intact cattle coronary artery segments involves K +ATP channels. J Pharmacol Exp Ther 275: 1219‐1226, 1995.
 538.Kalsner S, Quillan M. Cholinergic contraction to field stimulation in coronary arteries of cattle. J Pharmacol Exp Ther 249: 785‐789, 1989.
 539.Kamekura I, Okumura K, Matsui H, Murase K, Mokuno S, Toki Y, Nakashima Y, Ito T. Mechanisms of hypoxic coronary vasodilatation in isolated perfused rat hearts. J Cardiovasc Pharmacol 33: 836‐842, 1999.
 540.Kamishima T, McCarron JG. Depolarization‐evoked increases in cytosolic calcium concentration in isolated smooth muscle cells of rat portal vein. J Physiol 492(Pt 1): 61‐74, 1996.
 541.Kanatsuka H, Lamping KG, Eastham CL, Marcus ML. Heterogeneous changes in epimyocardial microvascular size during graded coronary stenosis. Evidence of the microvascular site for autoregulation. Circ Res 66: 389‐396, 1990.
 542.Kargacin GJ, Cooke PH, Abramson SB, Fay FS. Periodic organization of the contractile apparatus in smooth muscle revealed by the motion of dense bodies in single cells. J Cell Biol 108: 1465‐1475, 1989.
 543.Kassab GS. The coronary vasculature and its reconstruction. Ann Biomed Eng 28: 903‐915, 2000.
 544.Kassab GS. Functional hierarchy of coronary circulation: Direct evidence of a structure‐function relation. Am J Physiol Heart Circ Physiol 289: H2559‐H2565, 2005.
 545.Kassab GS, Algranati D, Lanir Y. Myocardial‐vessel interaction: Role of LV pressure and myocardial contractility. Med Biol Eng Comput 51: 729‐739, 2013.
 546.Kassab GS, Fung YC. Topology and dimensions of pig coronary capillary network. Am J Physiol 267: H319‐H325, 1994.
 547.Kassab GS, Imoto K, White FC, Rider CA, Fung YC, Bloor CM. Coronary arterial tree remodeling in right ventricular hypertrophy. Am J Physiol 265: H366‐H375, 1993.
 548.Kassab GS, Lin DH, Fung YC. Consequences of pruning in morphometry of coronary vasculature. Ann Biomed Eng 22: 398‐403, 1994.
 549.Kassab GS, Lin DH, Fung YC. Morphometry of pig coronary venous system. Am J Physiol 267: H2100‐H2113, 1994.
 550.Kassab GS, Navia JA, March K, Choy JS. Coronary venous retroperfusion: An old concept, a new approach. J Appl Physiol (1985) 104: 1266‐1272, 2008.
 551.Kassab GS, Rider CA, Tang NJ, Fung YC. Morphometry of pig coronary arterial trees. Am J Physiol 265: H350‐H365, 1993.
 552.Kasuya Y, Ishikawa T, Yanagisawa M, Kimura S, Goto K, Masaki T. Mechanism of contraction to endothelin in isolated porcine coronary artery. Am J Physiol 257: H1828‐H1835, 1989.
 553.Katz LN, Lindner E. The action of excess Na, Ca, And K on the coronary vessels. Am J Physiol 124: 155‐160, 1938.
 554.Kawano H, Kawano T, Tanaka K, Eguchi S, Takahashi A, Nakaya Y, Oshita S. Effects of dopamine on ATP‐sensitive potassium channels in porcine coronary artery smooth‐muscle cells. J Cardiovasc Pharmacol 51: 196‐201, 2008.
 555.Kelley KO, Feigl EO. Segmental alpha‐receptor‐mediated vasoconstriction in the canine coronary circulation. Circ Res 43: 908‐917, 1978.
 556.Kemp BK, Cocks TM. Adenosine mediates relaxation of human small resistance‐like coronary arteries via A2B receptors. Br J Pharmacol 126: 1796‐1800, 1999.
 557.Kern MJ. Histaminergic modulation of coronary vascular resistance: Are we missing a therapeutic adjunct for the treatment of myocardial ischemia? J Am Coll Cardiol 17: 346‐347, 1991.
 558.Khayyal MA, Eng C, Franzen D, Breall JA, Kirk ES. Effects of vasopressin on the coronary circulation: Reserve and regulation during ischemia. Am J Physiol 248: H516‐H522, 1985.
 559.Khouri EM, Gregg DE, Rayford CR. Effect of exercise on cardiac output, left coronary flow and myocardial metabolism in the unanesthetized dog. Circ Res 17: 427‐437, 1965.
 560.Kimura S, Kasuya Y, Sawamura T, Shinmi O, Sugita Y, Yanagisawa M, Goto K, Masaki T. Structure‐activity relationships of endothelin: Importance of the C‐terminal moiety. Biochem Biophys Res Commun 156: 1182‐1186, 1988.
 561.Kirk ES, Honig CR. An experimental and theorectical analysis of myocardial tissue pressure. Am J Physiol 207: 361‐367, 1964.
 562.Kitakaze M, Marban E. Cellular mechanism of the modulation of contractile function by coronary perfusion pressure in ferret hearts. J Physiol 414: 455‐472, 1989.
 563.Kitamura K, Jorgensen CR, Gobel FL, Taylor HL, Wang Y. Hemodynamic correlates of myocardial oxygen consumption during upright exercise. J Appl Physiol 32: 516‐522, 1972.
 564.Kitamura K, Kuriyama H. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea‐pig. J Physiol 293: 1979.
 565.Klieber HG, Daut J. A glibenclamide sensitive potassium conductance in terminal arterioles isolated from guinea pig heart. Cardiovasc Res 28: 1994.
 566.Klocke FJ, Kaiser GA, Ross J, Jr, Braunwald E. An intrinsic adrenergic vasodilator mechanism in the coronary vascular bed of the dog. Circ Res 16: 376‐382, 1965.
 567.Klockner U, Isenberg G. Endothelin depolarizes myocytes from porcine coronary and human mesenteric arteries through a Ca‐activated chloride current. Pflugers Arch 418: 168‐175, 1991.
 568.Klockner U, Isenberg G. Intracellular pH modulates the availability of vascular L‐type Ca2 +channels. J Gen Physiol 103: 1994.
 569.Knot HJ, Zimmermann PA, Nelson MT. Extracellular K(+)‐induced hyperpolarizations and dilatations of rat coronary and cerebral arteries involve inward rectifier K(+) channels. J Physiol 492(Pt 2): 419‐430, 1996.
 570.Knowlton FP, Starling EH. The influence of variations in temperature and blood‐pressure on the performance of the isolated mammalian heart. J Physiol 44: 206‐219, 1912.
 571.Knudson JD, Dincer UD, Bratz IN, Sturek M, Dick GM, Tune JD. Mechanisms of coronary dysfunction in obesity and insulin resistance. Microcirculation 14: 317‐338, 2007.
 572.Ko EA, Park WS, Earm YE. Extracellular Mg(2+) blocks endothelin‐1‐induced contraction through the inhibition of non‐selective cation channels in coronary smooth muscle. Pflugers Arch 449: 195‐204, 2004.
 573.Kobayashi N, Okumura K, Hashimoto H, Ito T, Satake T. Increased Ca2+ influx into platelets induced by thromboxane A2 analog in patients with ischemic heart disease. Clin Cardiol 12: 456‐460, 1989.
 574.Koerselman J, van der Graaf Y, de Jaegere PP, Grobbee DE. Coronary collaterals: An important and underexposed aspect of coronary artery disease. Circulation 107: 2507‐2511, 2003.
 575.Kold‐Petersen H, Brondum E, Nilsson H, Flyvbjerg A, Aalkjaer C. Impaired myogenic tone in isolated cerebral and coronary resistance arteries from the goto‐kakizaki rat model of type 2 diabetes. J Vasc Res 49: 267‐278, 2012.
 576.Koller A, Sun D, Kaley G. Role of shear stress and endothelial prostaglandins in flow‐ and viscosity‐induced dilation of arterioles in vitro. Circ Res 72: 1276‐1284, 1993.
 577.Komaru T, Lamping KG, Dellsperger KC. Role of adenosine in vasodilation of epimyocardial coronary microvessels during reduction in perfusion pressure. J Cardiovasc Pharmacol 24: 434‐442, 1994.
 578.Komaru T, Lamping KG, Eastham CL, Dellsperger KC. Role of ATP‐sensitive potassium channels in coronary microvascular autoregulatory responses. Circ Res 69: 1146‐1151, 1991.
 579.Komaru T, Lamping KG, Eastham CL, Harrison DG, Marcus ML, Dellsperger KC. Effect of an arginine analogue on acetylcholine‐induced coronary microvascular dilatation in dogs. Am J Physiol 261: H2001‐H2007, 1991.
 580.Konidala S, Gutterman DD. Coronary vasospasm and the regulation of coronary blood flow. Prog Cardiovasc Dis 46: 349‐373, 2004.
 581.Konstam MA, Gheorghiade M, Burnett JC, Jr, Grinfeld L, Maggioni AP, Swedberg K, Udelson JE, Zannad F, Cook T, Ouyang J, Zimmer C, Orlandi C. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: The EVEREST Outcome Trial. JAMA 297: 1319‐1331, 2007.
 582.Korzick DH, Laughlin MH, Bowles DK. Alterations in PKC signaling underlie enhanced myogenic tone in exercise‐trained porcine coronary resistance arteries. J Appl Physiol (1985) 96: 2004.
 583.Krams R, Sipkema P, Westerhof N. Varying elastance concept may explain coronary systolic flow impediment. Am J Physiol 257: H1471‐H1479, 1989.
 584.Krams R, Sipkema P, Zegers J, Westerhof N. Contractility is the main determinant of coronary systolic flow impediment. Am J Physiol 257: H1936‐H1944, 1989.
 585.Krams R, van Haelst AC, Sipkema P, Westerhof N. Can coronary systolic‐diastolic flow differences be predicted by left ventricular pressure or time‐varying intramyocardial elastance? Basic Res Cardiol 84: 149‐159, 1989.
 586.Kroll K, Stepp DW. Adenosine kinetics in canine coronary circulation. Am J Physiol 270: H1469‐H1483, 1996.
 587.Krombach RS, Clair MJ, Hendrick JW, Mukherjee R, Houck WV, Hebbar L, Kribbs SB, Dodd MG, Spinale FG. Amlodipine therapy in congestive heart failure: Hemodynamic and neurohormonal effects at rest and after treadmill exercise. Am J Cardiol 84: 3L‐15L, 1999.
 588.Kuhberger E, Groschner K, Kukovetz WR, Brunner F. The role of myoendothelial cell contact in non‐nitric oxide‐, non‐prostanoid‐mediated endothelium‐dependent relaxation of porcine coronary artery. Br J Pharmacol 113: 1994.
 589.Kuo L, Chilian WM, Davis MJ. Coronary arteriolar myogenic response is independent of endothelium. Circ Res 66: 860‐866, 1990.
 590.Kuo L, Chilian WM, Davis MJ. Interaction of pressure‐ and flow‐induced responses in porcine coronary resistance vessels. Am J Physiol 261: H1706‐H1715, 1991.
 591.Kuo L, Davis MJ, Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol 255: H1558‐H1562, 1988.
 592.Kuo L, Davis MJ, Chilian WM. Endothelium‐dependent, flow‐induced dilation of isolated coronary arterioles. Am J Physiol 259: H1063‐H1070, 1990.
 593.Kuo L, Davis MJ, Chilian WM. Longitudinal gradients for endothelium‐dependent and ‐independent vascular responses in the coronary microcirculation. Circulation 92: 518‐525, 1995.
 594.Kurian MM, Berwick ZC, Tune JD. Contribution of IKCa channels to the control of coronary blood flow. Exp Biol Med (Maywood ) 236: 621‐627, 2011.
 595.Kurz MA, Lamping KG, Bates JN, Eastham CL, Marcus ML, Harrison DG. Mechanisms responsible for the heterogeneous coronary microvascular response to nitroglycerin. Circ Res 68: 847‐855, 1991.
 596.Kwon TG, Gulati R, Matsuzawa Y, Aoki T, Guddeti RR, Herrmann J, Lennon RJ, Ritman EL, Lerman LO, Lerman A. Proliferation of Coronary Adventitial Vasa Vasorum in Patients With Spontaneous Coronary Artery Dissection. JACC Cardiovasc Imaging 9: 891‐892, 2016.
 597.Kwon TG, Lerman LO, Lerman A. The Vasa Vasorum in Atherosclerosis: The Vessel Within the Vascular Wall. J Am Coll Cardiol 65: 2478‐2480, 2015.
 598.L'Abbate A, Marzilli M, Ballestra AM, Camici P, Trivella MG, Pelosi G, Klassen GA. Opposite transmural gradients of coronary resistance and extravascular pressure in the working dog's heart. Cardiovasc Res 14: 21‐29, 1980.
 599.Lamontagne D, Pohl U, Busse R. NG‐nitro‐L‐arginine antagonizes endothelium‐dependent dilator responses by inhibiting endothelium‐derived relaxing factor release in the isolated rabbit heart. Pflugers Arch 418: 266‐270, 1991.
 600.Lamontagne D, Pohl U, Busse R. Mechanical deformation of vessel wall and shear stress determine the basal release of endothelium‐derived relaxing factor in the intact rabbit coronary vascular bed. Circ Res 70: 123‐130, 1992.
 601.Lamping KG, Chilian WM, Eastham CL, Marcus ML. Coronary microvascular response to exogenously administered and endogenously released acetylcholine. Microvasc Res 43: 294‐307, 1992.
 602.Lamping KG, Kanatsuka H, Eastham CL, Chilian WM, Marcus ML. Nonuniform vasomotor responses of the coronary microcirculation to serotonin and vasopressin. Circ Res 65: 343‐351, 1989.
 603.Lanfear DE, Sabbah HN, Goldsmith SR, Greene SJ, Ambrosy AP, Fought AJ, Kwasny MJ, Swedberg K, Yancy CW, Konstam MA, Maggioni AP, Zannad F, Gheorghiade M. Association of arginine vasopressin levels with outcomes and the effect of V2 blockade in patients hospitalized for heart failure with reduced ejection fraction: Insights from the EVEREST trial. Circ Heart Fail 6: 47‐52, 2013.
 604.Larsen BT, Miura H, Hatoum OA, Campbell WB, Hammock BD, Zeldin DC, Falck JR, Gutterman DD. Epoxyeicosatrienoic and dihydroxyeicosatrienoic acids dilate human coronary arterioles via BK(Ca) channels: Implications for soluble epoxide hydrolase inhibition. Am J Physiol Heart Circ Physiol 290: H491‐H499, 2006.
 605.Laughlin MH, Bowles DK, Duncker DJ. The coronary circulation in exercise training. Am J Physiol Heart Circ Physiol 302: H10‐H23, 2012.
 606.Laughlin MH, Burns JW, Fanton J, Ripperger J, Peterson DF. Coronary blood flow reserve during +Gz stress and treadmill exercise in miniature swine. J Appl Physiol 64: 2589‐2596, 1988.
 607.Laxson DD, Homans DC, Bache RJ. Inhibition of adenosine‐mediated coronary vasodilation exacerbates myocardial ischemia during exercise. Am J Physiol 265: H1471‐H1477, 1993.
 608.Lee SC, Mallet RT, Shizukuda Y, Williams AG, Jr, Downey HF. Canine coronary vasodepressor responses to hypoxia are attenuated but not abolished by 8‐phenyltheophylline. Am J Physiol 262: H955‐H960, 1992.
 609.Lee YH, Kim JT, Kang BS. Mechanisms of relaxation of coronary artery by hypoxia. Yonsei Med J 39: 252‐260, 1998.
 610.Lefroy DC, Crake T, Uren NG, Davies GJ, Maseri A. Effect of inhibition of nitric oxide synthesis on epicardial coronary artery caliber and coronary blood flow in humans. Circulation 88: 43‐54, 1993.
 611.Lerman A, Zeiher AM. Endothelial function: Cardiac events. Circulation 111: 363‐368, 2005.
 612.Lev M, Simkins CS. Architecture of the human ventricular myocardium; technic for study using a modification of the Mall‐MacCallum method. Lab Invest 5: 396‐409, 1956.
 613.Lever JD, Ahmed M, Irvine G. Neuromuscular and intercellular relationships in the coronary arterioles. A morphological and quantitative study by light and electron microscopy. J Anat 99: 829‐840, 1965.
 614.Levy AS, Chung JC, Kroetsch JT, Rush JW. Nitric oxide and coronary vascular endothelium adaptations in hypertension. Vasc Health Risk Manag 5: 1075‐1087, 2009.
 615.Lewis CJ, Evans RJ. P2X receptor immunoreactivity in different arteries from the femoral, pulmonary, cerebral, coronary and renal circulations. J Vasc Res 38: 332‐340, 2001.
 616.Liang CS, Gavras H, Hood WB, Jr. Renin‐angiotensin system inhibition in conscious sodium‐depleted dogs. Effects on systemic and coronary hemodynamics. J Clin Invest 61: 874‐883, 1978.
 617.Liu GX, Vepa S, Artman M, Coetzee WA. Modulation of human cardiovascular outward rectifying chloride channel by intra‐ and extracellular ATP. Am J Physiol Heart Circ Physiol 293: H3471‐H3479, 2007.
 618.Liu Q, Flavahan NA. Hypoxic dilatation of porcine small coronary arteries: Role of endothelium and KATP‐channels. Br J Pharmacol 120: 728‐734, 1997.
 619.Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD. H2O2 is the transferrable factor mediating flow‐induced dilation in human coronary arterioles. Circ Res 108: 566‐573, 2011.
 620.Liu Y, Gutterman DD. Vascular control in humans: Focus on the coronary microcirculation. Basic Res Cardiol 104: 211‐227, 2009.
 621.Liu Y, Terata K, Chai Q, Li H, Kleinman LH, Gutterman DD. Peroxynitrite inhibits Ca2+‐activated K+ channel activity in smooth muscle of human coronary arterioles. Circ Res 91: 1070‐1076, 2002.
 622.Liu Y, Terata K, Rusch NJ, Gutterman DD. High glucose impairs voltage‐gated K(+) channel current in rat small coronary arteries. Circ Res 89: 146‐152, 2001.
 623.Liu Y, Xie A, Singh AK, Ehsan A, Choudhary G, Dudley S, Sellke FW, Feng J. Inactivation of Endothelial Small/Intermediate Conductance of Calcium‐Activated Potassium Channels Contributes to Coronary Arteriolar Dysfunction in Diabetic Patients. J Am Heart Assoc 4: 2015.
 624.Liu Y, Zhao H, Li H, Kalyanaraman B, Nicolosi AC, Gutterman DD. Mitochondrial sources of H2O2 generation play a key role in flow‐mediated dilation in human coronary resistance arteries. Circ Res 93: 573‐580, 2003.
 625.Loncar R, Flesche CW, Deussen A. Coronary reserve of high‐ and low‐flow regions in the dog heart left ventricle. Circulation 98: 262‐270, 1998.
 626.Loncar R, Flesche CW, Deussen A. Regional myocardial heat‐shock protein (HSP70) concentrations under different blood flow conditions. Pflugers Arch 437: 98‐103, 1998.
 627.Loukas M, Clarke P, Tubbs RS, Kapos T. Raymond de Vieussens. Anat Sci Int 82: 233‐236, 2007.
 628.Lowensohn HS, Khouri EM, GREGG DE, Pyle RL, Patterson RE. Phasic right coronary artery blood flow in conscious dogs with normal and elevated right ventricular pressures. Circ Res 39: 760‐766, 1976.
 629.Lynch FM, Austin C, Heagerty AM, Izzard AS. Adenosine and hypoxic dilation of rat coronary small arteries: Roles of the ATP‐sensitive potassium channel, endothelium, and nitric oxide. Am J Physiol Heart Circ Physiol 290: H1145‐H1150, 2006.
 630.Lynch FM, Austin C, Heagerty AM, Izzard AS. Adenosine‐ and hypoxia‐induced dilation of human coronary resistance arteries: Evidence against the involvement of K(ATP) channels. Br J Pharmacol 147: 455‐458, 2006.
 631.Lyon CK, Scott JB, Anderson DK, Wang CY. Flow through collapsible tubes at high Reynolds numbers. Circ Res 49: 988‐996, 1981.
 632.Lyon CK, Scott JB, Wang CY. Flow through collapsible tubes at low Reynolds numbers. Applicability of the waterfall model. Circ Res 47: 68‐73, 1980.
 633.Maddali KK, Korzick DH, Tharp DL, Bowles DK. PKCdelta mediates testosterone‐induced increases in coronary smooth muscle Cav1.2. J Biol Chem 280: 43024‐43029, 2005.
 634.Maekawa K, Saito D, Obayashi N, Uchida S, Haraoka S. Role of endothelium‐derived nitric oxide and adenosine in functional myocardial hyperemia. Am J Physiol 267: H166‐H173, 1994.
 635.Magrini F, Reggiani P, Fratianni G, Morganti A, Zanchetti A. Coronary blood flow in renovascular hypertension. Am J Med 94: 45S‐48S, 1993.
 636.Magrini F, Reggiani P, Paliotti R, Bonagura F, Ciulla M, Vandoni P. Coronary hemodynamics and the renin angiotensin system. Clin Exp Hypertens 15(Suppl 1): 139‐155, 1993.
 637.Magrini F, Shimizu M, Roberts N, Fouad FM, Tarazi RC, Zanchetti A. Converting‐enzyme inhibition and coronary blood flow. Circulation 75: I168‐I174, 1987.
 638.Maguire JJ, Davenport AP. Is urotensin‐II the new endothelin? Br J Pharmacol 137: 579‐588, 2002.
 639.Mahabadi AA, Reinsch N, Lehmann N, Altenbernd J, Kalsch H, Seibel RM, Erbel R, Mohlenkamp S. Association of pericoronary fat volume with atherosclerotic plaque burden in the underlying coronary artery: A segment analysis. Atherosclerosis 211: 195‐199, 2010.
 640.Makino A, Platoshyn O, Suarez J, Yuan JX, Dillmann WH. Downregulation of connexin40 is associated with coronary endothelial cell dysfunction in streptozotocin‐induced diabetic mice. Am J Physiol Cell Physiol 295: C221‐C230, 2008.
 641.Malor R, Griffin CJ, Taylor S. Innervation of the blood vessels in guinea‐pig atria. Cardiovasc Res 7: 95‐104, 1973.
 642.Manohar M. Transmural coronary vasodilator reserve and flow distribution during maximal exercise in normal and splenectomized ponies. J Physiol 387: 425‐440, 1987.
 643.Mark AL, Abboud FM, Schmid PG, Heistad DD, Mayer HE. Differences in direct effects of adrenergic stimuli on coronary, cutaneous, and muscular vessels. J Clin Invest 51: 279‐287, 1972.
 644.Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA, Butler J. Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol 60: 1455‐1469, 2012.
 645.Martinez RR, Setty S, Zong P, Tune JD, Downey HF. Nitric oxide contributes to right coronary vasodilation during systemic hypoxia. Am J Physiol Heart Circ Physiol 288: H1139‐H1146, 2005.
 646.Matoba T, Shimokawa H, Nakashima M, Hirakawa Y, Mukai Y, Hirano K, Kanaide H, Takeshita A. Hydrogen peroxide is an endothelium‐derived hyperpolarizing factor in mice. J Clin Invest 106: 1521‐1530, 2000.
 647.Matsuda JJ, Volk KA, Shibata EF. Calcium currents in isolated rabbit coronary arterial smooth muscle myocytes. J Physiol 427: 657‐680, 1990.
 648.Matsumoto T, Nakane T, Chiba S. UTP induces vascular responses in the isolated and perfused canine epicardial coronary artery via UTP‐preferring P2Y receptors. Br J Pharmacol 122: 1625‐1632, 1997.
 649.Matsunaga T, Okumura K, Tsunoda R, Tayama S, Tabuchi T, Yasue H. Role of adenosine in regulation of coronary flow in dogs with inhibited synthesis of endothelium‐derived nitric oxide. Am J Physiol 270: H427‐H434, 1996.
 650.Matsunaga T, Warltier DC, Tessmer J, Weihrauch D, Simons M, Chilian WM. Expression of VEGF and angiopoietins‐1 and ‐2 during ischemia‐induced coronary angiogenesis. Am J Physiol Heart Circ Physiol 285: H352‐H358, 2003.
 651.Matsunaga T, Warltier DC, Weihrauch DW, Moniz M, Tessmer J, Chilian WM. Ischemia‐induced coronary collateral growth is dependent on vascular endothelial growth factor and nitric oxide. Circulation 102: 3098‐3103, 2000.
 652.Matsunaga T, Weihrauch DW, Moniz MC, Tessmer J, Warltier DC, Chilian WM. Angiostatin inhibits coronary angiogenesis during impaired production of nitric oxide. Circulation 105: 2185‐2191, 2002.
 653.Maturi MF, Martin SE, Markle D, Maxwell M, Burruss CR, Speir E, Greene R, Ro YM, Vitale D, Green MV. Coronary vasoconstriction induced by vasopressin. Production of myocardial ischemia in dogs by constriction of nondiseased small vessels. Circulation 83: 2111‐2121, 1991.
 654.Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov‐Blat L, O'Brien S, Keiper EA, Johnson AG, Martin J, Goldstein BJ, Shi Y. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108: 2460‐2466, 2003.
 655.McKeever WP, Gregg DE, Canney PC. Oxygen uptake of the nonworking left ventricle. Circ Res 6: 612‐623, 1958.
 656.McKenzie JE, Steffen RP, Haddy FJ. Relationships between adenosine and coronary resistance in conscious exercising dogs. Am J Physiol 242: H24‐H29, 1982.
 657.McRaven DR, Mark AL, Abboud FM, Mayer HE. Responses of coronary vessels to adrenergic stimuli. J Clin Invest 50: 773‐778, 1971.
 658.Meier P, Gloekler S, Zbinden R, Beckh S, de Marchi SF, Zbinden S, Wustmann K, Billinger M, Vogel R, Cook S, Wenaweser P, Togni M, Windecker S, Meier B, Seiler C. Beneficial effect of recruitable collaterals: A 10‐year follow‐up study in patients with stable coronary artery disease undergoing quantitative collateral measurements. Circulation 116: 975‐983, 2007.
 659.Meier P, Hemingway H, Lansky AJ, Knapp G, Pitt B, Seiler C. The impact of the coronary collateral circulation on mortality: A meta‐analysis. Eur Heart J 33: 614‐621, 2012.
 660.Meier P, Seiler C. The coronary collateral circulation—clinical relevances and therapeutic options. Heart 99: 897‐898, 2013.
 661.Mekata F. The role of hyperpolarization in the relaxation of smooth muscle of monkey coronary artery. J Physiol 371: 257‐265, 1986.
 662.Mellander S, Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev 20: 117‐196, 1968.
 663.Merkus D, Duncker DJ, Chilian WM. Metabolic regulation of coronary vascular tone: Role of endothelin‐1. Am J Physiol Heart Circ Physiol 283: H1915‐H1921, 2002.
 664.Merkus D, Haitsma DB, Fung TY, Assen YJ, Verdouw PD, Duncker DJ. Coronary blood flow regulation in exercising swine involves parallel rather than redundant vasodilator pathways. Am J Physiol Heart Circ Physiol 285: H424‐H433, 2003.
 665.Merkus D, Haitsma DB, Sorop O, Boomsma F, de Beer VJ, Lamers JM, Verdouw PD, Duncker DJ. Coronary vasoconstrictor influence of angiotensin II is reduced in remodeled myocardium after myocardial infarction. Am J Physiol Heart Circ Physiol 291: H2082‐H2089, 2006.
 666.Merkus D, Houweling B, Mirza A, Boomsma F, van den Meiracker AH, Duncker DJ. Contribution of endothelin and its receptors to the regulation of vascular tone during exercise is different in the systemic, coronary and pulmonary circulation. Cardiovasc Res 59: 745‐754, 2003.
 667.Merkus D, Houweling B, Zarbanoui A, Duncker DJ. Interaction between prostanoids and nitric oxide in regulation of systemic, pulmonary and coronary vascular tone in exercising swine. Am J Physiol Heart Circ Physiol 286: H1114‐H1123, 2004.
 668.Merkus D, Sorop O, Houweling B, Boomsma F, van den Meiracker AH, Duncker DJ. NO and prostanoids blunt endothelin‐mediated coronary vasoconstrictor influence in exercising swine. Am J Physiol Heart Circ Physiol 291: H2075‐H2081, 2006.
 669.Merkus D, Sorop O, Houweling B, Hoogteijling BA, Duncker DJ. KCa+ channels contribute to exercise‐induced coronary vasodilation in swine. Am J Physiol Heart Circ Physiol 291: H2090‐H2097, 2006.
 670.Merrill GF, Downey HF, Jones CE. Adenosine deaminase attenuates canine coronary vasodilation during systemic hypoxia. Am J Physiol 250: H579‐H583, 1986.
 671.Merrill GF, Downey HF, Yonekura S, Watanabe N, Jones CE. Adenosine deaminase attenuates canine coronary vasodilatation during regional non‐ischaemic myocardial hypoxia. Cardiovasc Res 22: 345‐350, 1988.
 672.Michiels C, Arnould T, Knott I, Dieu M, Remacle J. Stimulation of prostaglandin synthesis by human endothelial cells exposed to hypoxia. Am J Physiol 264: C866‐C874, 1993.
 673.Mihailescu LS, Abel FL. Intramyocardial pressure gradients in working and nonworking isolated cat hearts. Am J Physiol 266: H1233‐H1241, 1994.
 674.Miller FJ, Jr, Dellsperger KC, Gutterman DD. Myogenic constriction of human coronary arterioles. Am J Physiol 273: H257‐H264, 1997.
 675.Miller FJ, Jr, Dellsperger KC, Gutterman DD. Pharmacologic activation of the human coronary microcirculation in vitro: Endothelium‐dependent dilation and differential responses to acetylcholine. Cardiovasc Res 38: 744‐750, 1998.
 676.Miller WL, Bove AA. Differential H1‐ and H2‐receptor‐mediated histamine responses of canine epicardial conductance and distal resistance coronary vessels. Circ Res 62: 226‐232, 1988.
 677.Mirsky I. Left ventricular stresses in the intact human heart. Biophys J 9: 189‐208, 1969.
 678.Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD. Role for hydrogen peroxide in flow‐induced dilation of human coronary arterioles. Circ Res 92: 2003.
 679.Miura H, Liu Y, Gutterman DD. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization: Contribution of nitric oxide and Ca2+‐activated K+ channels. Circulation 99: 3132‐3138, 1999.
 680.Miura H, Wachtel RE, Liu Y, Loberiza FR, Jr, Saito T, Miura M, Gutterman DD. Flow‐induced dilation of human coronary arterioles: Important role of Ca(2+)‐activated K(+) channels. Circulation 103: 1992‐1998, 2001.
 681.Miura H, Wachtel RE, Loberiza FR, Jr, Saito T, Miura M, Nicolosi AC, Gutterman DD. Diabetes mellitus impairs vasodilation to hypoxia in human coronary arterioles: Reduced activity of ATP‐sensitive potassium channels. Circ Res 92: 151‐158, 2003.
 682.Miyamoto MI, Rockman HA, Guth BD, Heusch G, Ross J, Jr. Effect of alpha‐adrenergic stimulation on regional contractile function and myocardial blood flow with and without ischemia. Circulation 84: 1715‐1724, 1991.
 683.Miyashiro JK, Feigl EO. Feedforward control of coronary blood flow via coronary beta‐receptor stimulation. Circ Res 73: 252‐263, 1993.
 684.Miyashiro JK, Feigl EO. A model of combined feedforward and feedback control of coronary blood flow. Am J Physiol 268: H895‐H908, 1995.
 685.Miyazaki T, Fujiki H, Yamamura Y, Nakamura S, Mori T. Tolvaptan, an orally active vasopressin V(2)‐receptor antagonist ‐ pharmacology and clinical trials. Cardiovasc Drug Rev 25: 1‐13, 2007.
 686.Miyoshi Y, Nakaya Y, Wakatsuki T, Nakaya S, Fujino K, Saito K, Inoue I. Endothelin blocks ATP‐sensitive K+ channels and depolarizes smooth muscle cells of porcine coronary artery. Circ Res 70: 612‐616, 1992.
 687.Mohrman DE, Feigl EO. Competition between sympathetic vasoconstriction and metabolic vasodilation in the canine coronary circulation. Circ Res 42: 79‐86, 1978.
 688.Moncada S, Palmer RM, Higgs EA. Nitric oxide: Physiology, pathophysiology, and pharmacology. Pharmacol Rev 43: 109‐142, 1991.
 689.Morita K, Mori H, Tsujioka K, Kimura A, Ogasawara Y, Goto M, Hiramatsu O, Kajiya F, Feigl EO. Alpha‐adrenergic vasoconstriction reduces systolic retrograde coronary blood flow. Am J Physiol 273: H2746‐H2755, 1997.
 690.Mosher P, Ross J, Jr, Mcfate PA, Shaw RF. Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14: 250‐259, 1964.
 691.Most AS, Ruocco NA, Jr, Gewirtz H. Effect of a reduction in blood viscosity on maximal myocardial oxygen delivery distal to a moderate coronary stenosis. Circulation 74: 1085‐1092, 1986.
 692.Muller JM, Davis MJ, Chilian WM. Integrated regulation of pressure and flow in the coronary microcirculation. Cardiovasc Res 32: 668‐678, 1996.
 693.Muller JM, Davis MJ, Kuo L, Chilian WM. Changes in coronary endothelial cell Ca2+ concentration during shear stress‐ and agonist‐induced vasodilation. Am J Physiol 276: H1706‐H1714, 1999.
 694.Muller JM, Myers PR, Laughlin MH. Exercise training alters myogenic responses in porcine coronary resistance arteries. J Appl Physiol (1985) 75: 2677‐2682, 1993.
 695.Mulligan‐Kehoe MJ, Simons M. Vasa vasorum in normal and diseased arteries. Circulation 129: 2557‐2566, 2014.
 696.Murad F, Mittal CK, Arnold WP, Katsuki S, Kimura H. Guanylate cyclase: Activation by azide, nitro compounds, nitric oxide, and hydroxyl radical and inhibition by hemoglobin and myoglobin. Adv Cyclic Nucleotide Res 9: 145‐158, 1978.
 697.Murakami H, Kim SJ, Downey HF. Persistent right coronary flow reserve at low perfusion pressure. Am J Physiol 256: H1176‐H1184, 1989.
 698.Murphree SS, Saffitz JE. Delineation of the distribution of beta‐adrenergic receptor subtypes in canine myocardium. Circ Res 63: 117‐125, 1988.
 699.Murray PA, Belloni FL, Sparks HV. The role of potassium in the metabolic control of coronary vascular resistance of the dog. Circ Res 44: 767‐780, 1979.
 700.Murray PA, Lavallee M, Vatner SF. Alpha‐adrenergic‐mediated reduction in coronary blood flow secondary to carotid chemoreceptor reflex activation in conscious dogs. Circ Res 54: 96‐106, 1984.
 701.Murray PA, Sparks HV. The mechanism of K+‐induced vasodilation of the coronary vascular bed of the dog. Circ Res 42: 35‐42, 1978.
 702.Murray PA, Vatner SF. Carotid sinus baroreceptor control of right coronary circulation in normal, hypertrophied, and failing right ventricles of conscious dogs. Circ Res 49: 1339‐1349, 1981.
 703.Murray PA, Vatner SF. Reflex cardiovascular responses to chemoreceptor stimulation in conscious dogs with cardiac hypertrophy. Am J Physiol 245: H871‐H879, 1983.
 704.Murthy VL, Naya M, Foster CR, Gaber M, Hainer J, Klein J, Dorbala S, Blankstein R, Di Carli MF. Association between coronary vascular dysfunction and cardiac mortality in patients with and without diabetes mellitus. Circulation 126: 1858‐1868, 2012.
 705.Myers PR, Banitt PF, Guerra R, Jr, Harrison DG. Characteristics of canine coronary resistance arteries: Importance of endothelium. Am J Physiol 257: H603‐H610, 1989.
 706.Myers PR, Katwa LC, Tanner M, Morrow C, Guarda E, Parker JL. Effects of angiotensin II on canine and porcine coronary epicardial and resistance arteries. J Vasc Res 31: 338‐346, 1994.
 707.Myers PR, Muller JM, Tanner MA. Effects of oxygen tension on endothelium dependent responses in canine coronary microvessels. Cardiovasc Res 25: 885‐894, 1991.
 708.Nakamura Y, Takahashi M, Takei F, Matsumura N, Scholkens B, Sasamoto H. The change in coronary vascular resistance during acute induced hypoxemia–with special reference to coronary vascular reserve. Cardiologia 54: 91‐103, 1969.
 709.Nakane T, Tsujimoto G, Hashimoto K, Chiba S. Beta adrenoceptors in the canine large coronary arteries: beta‐1 adrenoceptors predominate in vasodilation. J Pharmacol Exp Ther 245: 936‐943, 1988.
 710.Nakano J. Cardiovascular actions of vasopressin. Jpn Circ J 37: 363‐381, 1973.
 711.Nakazawa HK, Roberts DL, Klocke FJ. Quantitation of anterior descending vs. circumflex venous drainage in the canine great cardiac vein and coronary sinus. Am J Physiol 234: H163‐H166, 1978.
 712.Nakhostine N, Lamontagne D. Adenosine contributes to hypoxia‐induced vasodilation through ATP‐sensitive K+ channel activation. Am J Physiol 265: H1289‐H1293, 1993.
 713.Nakhostine N, Lamontagne D. Contribution of prostaglandins in hypoxia‐induced vasodilation in isolated rabbit hearts. Relation to adenosine and KATP channels. Pflugers Arch 428: 526‐532, 1994.
 714.Narishige T, Egashira K, Akatsuka Y, Katsuda Y, Numaguchi K, Sakata M, Takeshita A. Glibenclamide, a putative ATP‐sensitive K+ channel blocker, inhibits coronary autoregulation in anesthetized dogs. Circ Res 73: 771‐776, 1993.
 715.Nathan HJ, Feigl EO. Adrenergic vasoconstriction lessens transmural steal during coronary hypoperfusion. Am J Physiol 250: H645‐H653, 1986.
 716.Nayler WG, Carson V. Effect of stellate ganglion stimulation on myocardial blood flow, oxygen consumption, and cardiac efficiency during beta‐adrenoceptor blockade. Cardiovasc Res 7: 22‐29, 1973.
 717.Neumann T, Heusch G. Myocardial, skeletal muscle, and renal blood flow during exercise in conscious dogs with heart failure. Am J Physiol 273: H2452‐H2457, 1997.
 718.Nishikawa Y, Ogawa S. Importance of nitric oxide in the coronary artery at rest and during pacing in humans. J Am Coll Cardiol 29: 85‐92, 1997.
 719.Nishikawa Y, Stepp DW, Chilian WM. In vivo location and mechanism of EDHF‐mediated vasodilation in canine coronary microcirculation. Am J Physiol 277: H1252‐H1259, 1999.
 720.Noblet JN, Owen MK, Goodwill AG, Sassoon DJ, Tune JD. Lean and obese coronary perivascular adipose tissue impairs vasodilation via differential inhibition of vascular smooth muscle K+ channels. Arterioscler Thromb Vasc Biol 35: 1393‐1400, 2015.
 721.Norton JM, Detar R. Potassium and isolated coronary vascular smooth muscle. Am J Physiol 222: 474‐479, 1972.
 722.O'Donnell SR, Wanstall JC. The classification of beta‐adrenoceptors in isolated ring preparations of canine coronary arteries. Br J Pharmacol 81: 637‐644, 1984.
 723.O'Leary DS, Sala‐Mercado JA, Hammond RL, Ansorge EJ, Kim JK, Rodriguez J, Fano D, Ichinose M. Muscle metaboreflex‐induced increases in cardiac sympathetic activity vasoconstrict the coronary vasculature. J Appl Physiol (1985) 103: 190‐194, 2007.
 724.Oh BH, Volpini M, Kambayashi M, Murata K, Rockman HA, Kassab GS, Ross J, Jr. Myocardial function and transmural blood flow during coronary venous retroperfusion in pigs. Circulation 86: 1265‐1279, 1992.
 725.Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, Hakobyan T, Kmetz J, Bratz I, Luli J, Nagane M, Khan N, Hou H, Kuppusamy P, Graham J, Fu FK, Janota D, Oyewumi MO, Logan S, Lindner JR, Chilian WM. Requisite role of Kv1.5 channels in coronary metabolic dilation. Circ Res 117: 612‐621, 2015.
 726.Ohta M, Toyama K, Gutterman DD, Campbell WB, Lemaitre V, Teraoka R, Miura H. Ecto‐5′‐nucleotidase, CD73, is an endothelium‐derived hyperpolarizing factor synthase. Arterioscler Thromb Vasc Biol 33: 629‐636, 2013.
 727.Okada T. Hypoxia‐induced change in prostanoids production and coronary flow in isolated rat heart. J Mol Cell Cardiol 23: 939‐948, 1991.
 728.Okado‐Matsumoto A, Fridovich I. Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu,Zn‐SOD in mitochondria. J Biol Chem 276: 38388‐38393, 2001.
 729.Olsen UB, Arrigoni‐Martelli E. Vascular effects in dogs of pinacidil (P 1134), a novel vasoactive antihypertensive agent. Eur J Pharmacol 88: 1983.
 730.Olsson RA. Myocardial reactive hyperemia. Circ Res 37: 263‐270, 1975.
 731.Olsson RA, Gregg DE. Metabolic responses during myocardial reactive hyperemia in the unanesthetized dog. Am J Physiol 208: 231‐236, 1965.
 732.Olsson RA, Gregg DE. Myocardial reactive hyperemia in the unanesthetized dog. Am J Physiol 208: 224‐230, 1965.
 733.Opie LH. Metabolism of the heart in health and disease. I. Am Heart J 76: 685‐698, 1968.
 734.Ordway GA, Pitetti KH. Stimulation of pulmonary C fibres decreases coronary arterial resistance in dogs. J Physiol 371: 277‐288, 1986.
 735.Orloff J, Handler JS, Bergstrom S. Effect of prostaglandin (PGE‐1) on the permeability response of toad bladder to vasopressin, theophylline and adenosine 3′,5′‐monophosphate. Nature 205: 397‐398, 1965.
 736.Owen MK, Noblet JN, Sassoon DJ, Conteh AM, Goodwill AG, Tune JD. Perivascular adipose tissue and coronary vascular disease. Arterioscler Thromb Vasc Biol 34: 1643‐1649, 2014.
 737.Owen MK, Witzmann FA, McKenney ML, Lai X, Berwick ZC, Moberly SP, Alloosh M, Sturek M, Tune JD. Perivascular adipose tissue potentiates contraction of coronary vascular smooth muscle: Influence of obesity. Circulation 128: 9‐18, 2013.
 738.Padula RT, Camishion RC, Ballinger WF. Obstruction of the coronary ostia during systole by the aortic valve leaflets. J Thorac Cardiovasc Surg 50: 683‐689, 1965.
 739.Pagny JY, Peronnet F, Beliveau L, Sestier F, Nadeau R. Systemic and regional blood flows during graded treadmill exercise in dogs. J Physiol (Paris) 81: 368‐373, 1986.
 740.Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium‐derived relaxing factor. Nature 327: 524‐526, 1987.
 741.Pan C, Huang AH, Dorsey LM, Guyton RA. Hemodynamic significance of the coronary vein valves. Ann Thorac Surg 57: 424‐430, 1994.
 742.Panerai RB, Chamberlain JH, Sayers BM. Characterization of the extravascular component of coronary resistance by instantaneous pressure‐flow relationships in the dog. Circ Res 45: 378‐390, 1979.
 743.Paolocci N, Pagliaro P, Isoda T, Saavedra FW, Kass DA. Role of calcium‐sensitive K(+) channels and nitric oxide in in vivo coronary vasodilation from enhanced perfusion pulsatility. Circulation 103: 119‐124, 2001.
 744.Parent R, al Obaidi M, Lavallee M. Nitric oxide formation contributes to beta‐adrenergic dilation of resistance coronary vessels in conscious dogs. Circ Res 73: 241‐251, 1993.
 745.Parent R, Hamdad N, Ming Z, Lavallee M. Contrasting effects of blockade of nitric oxide formation on resistance and conductance coronary vessels in conscious dogs. Cardiovasc Res 31: 555‐567, 1996.
 746.Parent R, Pare R, Lavallee M. Contribution of nitric oxide to dilation of resistance coronary vessels in conscious dogs. Am J Physiol 262: H10‐H16, 1992.
 747.Park KH, Rubin LE, Gross SS, Levi R. Nitric oxide is a mediator of hypoxic coronary vasodilatation. Relation to adenosine and cyclooxygenase‐derived metabolites. Circ Res 71: 992‐1001, 1992.
 748.Park WS, Han J, Kim N, Ko JH, Kim SJ, Earm YE. Activation of inward rectifier K+ channels by hypoxia in rabbit coronary arterial smooth muscle cells. Am J Physiol Heart Circ Physiol 289: 2005.
 749.Park WS, Han J, Kim N, Youm JB, Joo H, Kim HK, Ko JH, Earm YE. Endothelin‐1 inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase C. J Cardiovasc Pharmacol 46: 681‐689, 2005.
 750.Park Y, Capobianco S, Gao X, Falck JR, Dellsperger KC, Zhang C. Role of EDHF in type 2 diabetes‐induced endothelial dysfunction. Am J Physiol Heart Circ Physiol 295: H1982‐H1988, 2008.
 751.Parker JO, Chiong MA, West RO, Case RB. The effect of ischemia and alterations of heart rate on myocardial potassium balance in man. Circulation 42: 205‐217, 1970.
 752.Parks CM, Manohar M. Transmural coronary vasodilator reserve and flow distribution during severe exercise in ponies. J Appl Physiol 54: 1641‐1652, 1983.
 753.Payne GA, Bohlen HG, Dincer UD, Borbouse L, Tune JD. Periadventitial adipose tissue impairs coronary endothelial function via PKC‐{beta} dependent phosphorylation of nitric oxide synthase. Am J Physiol Heart Circ Physiol 297: H460‐H465, 2009.
 754.Payne GA, Borbouse L, Bratz IN, Roell WC, Bohlen HG, Dick GM, Tune JD. Endogenous adipose‐derived factors diminish coronary endothelial function via inhibition of nitric oxide synthase. Microcirculation 15: 417‐426, 2008.
 755.Payne GA, Borbouse L, Kumar S, Neeb Z, Alloosh M, Sturek M, Tune JD. Epicardial perivascular adipose‐derived leptin exacerbates coronary endothelial dysfunction in metabolic syndrome via a protein kinase C‐{beta} pathway. Arterioscler Thromb Vasc Biol 30: 1711‐1717, 2010.
 756.Payne GA, Kohr MC, Tune JD. Epicardial perivascular adipose tissue as a therapeutic target in obesity‐related coronary artery disease. Br J Pharmacol 165: 659‐669, 2012.
 757.Pelc LR, Daemmgen JW, Gross GJ, Warltier DC. Muscarinic receptor subtypes mediating myocardial blood flow redistribution. J Cardiovasc Pharmacol 11: 424‐431, 1988.
 758.Pelc LR, Gross GJ, Warltier DC. Changes in regional myocardial perfusion by muscarinic receptor subtypes in dogs. Cardiovasc Res 20: 482‐489, 1986.
 759.Permutt S, Riley RL. Hemodynamics of collapsible vessels with tone: The vascular waterfall. J Appl Physiol 18: 924‐932, 1963.
 760.Phillips SA, Hatoum OA, Gutterman DD. The mechanism of flow‐induced dilation in human adipose arterioles involves hydrogen peroxide during CAD. Am J Physiol Heart Circ Physiol 292: H93‐100, 2007.
 761.Picchi A, Limbruno U, Focardi M, Cortese B, Micheli A, Boschi L, Severi S, De CR. Increased basal coronary blood flow as a cause of reduced coronary flow reserve in diabetic patients. Am J Physiol Heart Circ Physiol 301: H2279‐H2284, 2011.
 762.Pijls NH, van Son JA, Kirkeeide RL, De BB, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation 87: 1354‐1367, 1993.
 763.Pitt B, Elliot EC, Gregg DE. Adrenergic receptor activity in the coronary arteries of the unanesthetized dog. Circ Res 21: 75‐84, 1967.
 764.Porsti I, Hecker M, Bassenge E, Busse R. Dual action of angiotensin II on coronary resistance in the isolated perfused rabbit heart. Naunyn Schmiedebergs Arch Pharmacol 348: 650‐658, 1993.
 765.Porter WT. The influence of the heart‐beat on the flow of blood through the walls of the heart. Am J Physiol 1: 145‐163, 1898.
 766.Powell JR, Feigl EO. Carotid sinus reflex coronary vasoconstriction during controlled myocardial oxygen metabolism in the dog. Circ Res 44: 44‐51, 1979.
 767.Powers ER, Powell WJ, Jr. Effect of arterial hypoxia on myocardial oxygen consumption. Circ Res 33: 749‐756, 1973.
 768.Pradhan RK, Feigl EO, Gorman MW, Brengelmann GL, Beard DA. Open‐loop (feed‐forward) and feedback control of coronary blood flow during exercise, cardiac pacing, and pressure changes. Am J Physiol Heart Circ Physiol 310: H1683‐H1694, 2016.
 769.Prasad A, Halcox JP, Waclawiw MA, Quyyumi AA. Angiotensin type 1 receptor antagonism reverses abnormal coronary vasomotion in atherosclerosis. J Am Coll Cardiol 38: 1089‐1095, 2001.
 770.Pries AR, Schonfeld D, Gaehtgens P, Kiani MF, Cokelet GR. Diameter variability and microvascular flow resistance. Am J Physiol 272: H2716‐H2725, 1997.
 771.Przyklenk K, Vivaldi MT, Arnold JM, Schoen FJ, Kloner RA. Capillary anastomoses between the left anterior descending and circumflex circulations in the canine heart: Possible importance during coronary artery occlusion. Microvasc Res 31: 54‐65, 1986.
 772.Pung YF, Chilian WM. Corruption of coronary collateral growth in metabolic syndrome: Role of oxidative stress. World J Cardiol 2: 421‐427, 2010.
 773.Purdy RE, Stupecky GL, Coulombe PR. Further evidence for a homogeneous population of beta‐1‐adrenoceptors in bovine coronary artery. J Pharmacol Exp Ther 245: 67‐71, 1988.
 774.Puybasset L, Bea ML, Ghaleh B, Giudicelli JF, Berdeaux A. Coronary and systemic hemodynamic effects of sustained inhibition of nitric oxide synthesis in conscious dogs. Evidence for cross talk between nitric oxide and cyclooxygenase in coronary vessels. Circ Res 79: 343‐357, 1996.
 775.Quayle JM, Dart C, Standen NB. The properties and distribution of inward rectifier potassium currents in pig coronary arterial smooth muscle. J Physiol 494(Pt 3): 715‐726, 1996.
 776.Quignard JF, Frapier JM, Harricane MC, Albat B, Nargeot J, Richard S. Voltage‐gated calcium channel currents in human coronary myocytes. Regulation by cyclic GMP and nitric oxide. J Clin Invest 99: 1997.
 777.Quillen J, Sellke F, Banitt P, Harrison D. The effect of norepinephrine on the coronary microcirculation. J Vasc Res 29: 2‐7, 1992.
 778.Quyyumi AA, Dakak N, Andrews NP, Gilligan DM, Panza JA, Cannon RO, III. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart. Circulation 92: 320‐326, 1995.
 779.Quyyumi AA, Dakak N, Mulcahy D, Andrews NP, Husain S, Panza JA, Cannon RO, III. Nitric oxide activity in the atherosclerotic human coronary circulation. J Am Coll Cardiol 29: 308‐317, 1997.
 780.Quyyumi AA, Mulcahy D, Andrews NP, Husain S, Panza JA, Cannon RO, III. Coronary vascular nitric oxide activity in hypertension and hypercholesterolemia. Comparison of acetylcholine and substance P. Circulation 95: 104‐110, 1997.
 781.Raff WK, Kosche F, Goebel H, Lochner W. Extravascular components of coronary resistance with rising left‐ventricular pressure. Pflugers Arch 333: 352‐361, 1972.
 782.Raha S, McEachern GE, Myint AT, Robinson BH. Superoxides from mitochondrial complex III: The role of manganese superoxide dismutase. Free Radic Biol Med 29: 170‐180, 2000.
 783.Rajagopalan S, Dube S, Canty JM, Jr. Regulation of coronary diameter by myogenic mechanisms in arterial microvessels greater than 100 microns in diameter. Am J Physiol 268: H788‐H793, 1995.
 784.Randall MD, Alexander SP, Bennett T, Boyd EA, Fry JR, Gardiner SM, Kemp PA, McCulloch AI, Kendall DA. An endogenous cannabinoid as an endothelium‐derived vasorelaxant. Biochem Biophys Res Commun 229: 114‐120, 1996.
 785.Reid JV, Ito BR, Huang AH, Buffington CW, Feigl EO. Parasympathetic control of transmural coronary blood flow in dogs. Am J Physiol 249: H337‐H343, 1985.
 786.Reifenberger MS, Turk JR, Newcomer SC, Booth FW, Laughlin MH. Perivascular fat alters reactivity of coronary artery: Effects of diet and exercise. Med Sci Sports Exerc 39: 2125‐2134, 2007.
 787.Rembert JC, Boyd LM, Watkinson WP, Greenfield JC, Jr. Effect of adenosine on transmural myocardial blood flow distribution in the awake dog. Am J Physiol 239: H7‐H13, 1980.
 788.Richardson RS. Oxygen transport: Air to muscle cell. Med Sci Sports Exerc 30: 53‐59, 1998.
 789.Richardson RS, Poole DC, Knight DR, Kurdak SS, Hogan MC, Grassi B, Johnson EC, Kendrick KF, Erickson BK, Wagner PD. High muscle blood flow in man: Is maximal O2 extraction compromised? J Appl Physiol 75: 1911‐1916, 1993.
 790.Richmond KN, Tune JD, Gorman MW, Feigl EO. Role of K+ATP channels in local metabolic coronary vasodilation. Am J Physiol 277: H2115‐H2123, 1999.
 791.Richmond KN, Tune JD, Gorman MW, Feigl EO. Role of K(ATP)(+) channels and adenosine in the control of coronary blood flow during exercise. J Appl Physiol 89: 529‐536, 2000.
 792.Rigel DF, Shetty SS. A novel model of conduit coronary constriction reveals local actions of endothelin‐1 and prostaglandin F2alpha. Am J Physiol 272: H2054‐H2064, 1997.
 793.Rivers RJ, Hein TW, Zhang C, Kuo L. Activation of barium‐sensitive inward rectifier potassium channels mediates remote dilation of coronary arterioles. Circulation 104: 2001.
 794.Robb JS, Kaylor CT, Turman WQ. A study of specialized heart tissue at various stages of development of the human fetal heart. Am J Med 5: 324‐336, 1948.
 795.Roberts AM, Messina EJ, Kaley G. Prostacyclin (PGI2) mediates hypoxic relaxation of bovine coronary arterial strips. Prostaglandins 21: 555‐569, 1981.
 796.Roberts DL, Nakazawa HK, Klocke FJ. Origin of great cardiac vein and coronary sinus drainage within the left ventricle. Am J Physiol 230: 486‐492, 1976.
 797.Robertson BE, Bonev AD, Nelson MT. Inward rectifier K+ currents in smooth muscle cells from rat coronary arteries: Block by Mg2+, Ca2+, and Ba2+. Am J Physiol 271: 1996.
 798.Rogers PA, Chilian WM, Bratz IN, Bryan RM, Jr, Dick GM. H2O2 activates redox‐ and 4‐aminopyridine‐sensitive Kv channels in coronary vascular smooth muscle. Am J Physiol Heart Circ Physiol 292: H1404‐H1411, 2007.
 799.Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, Swafford AN, Jr, Saitoh S, Tune JD, Chilian WM. H2O2‐induced redox‐sensitive coronary vasodilation is mediated by 4‐aminopyridine‐sensitive K+ channels. Am J Physiol Heart Circ Physiol 291: H2473‐H2482, 2006.
 800.Ross G, Mulder DG. Effects of right and left cardiosympathetic nerve stimulation on blood flow in the major coronary arteries of the anaesthetized dog. Cardiovasc Res 3: 22‐29, 1969.
 801.Ross J, Jr, Klocke F, Kaiser G, Braunwald E. Effect of alterations of coronary blood flow on the oxygen consumption of the working heart. Circ Res 13: 510‐513, 1963.
 802.Ross R. Atherosclerosis: Current understanding of mechanisms and future strategies in therapy. Transplant Proc 25: 2041‐2043, 1993.
 803.Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 362: 801‐809, 1993.
 804.Ross R. Cellular and molecular studies of atherogenesis. Atherosclerosis 131(Suppl): S3‐S4, 1997.
 805.Ross R. Atherosclerosis–an inflammatory disease. N Engl J Med 340: 115‐126, 1999.
 806.Ross R, Glomset JA. Atherosclerosis and the arterial smooth muscle cell: Proliferation of smooth muscle is a key event in the genesis of the lesions of atherosclerosis. Science 180: 1332‐1339, 1973.
 807.Rothe CF, Nash FD, Thompson DE. Patterns in autoregulation of renal blood flow in the dog. Am J Physiol 220: 1621‐1626, 1971.
 808.Rouleau J, Boerboom LE, Surjadhana A, Hoffman JI. The role of autoregulation and tissue diastolic pressures in the transmural distribution of left ventricular blood flow in anesthetized dogs. Circ Res 45: 804‐815, 1979.
 809.Rubanyi G, Paul RJ. Two distinct effects of oxygen on vascular tone in isolated porcine coronary arteries. Circ Res 56: 1‐10, 1985.
 810.Rubanyi GM, Polokoff MA. Endothelins: Molecular biology, biochemistry, pharmacology, physiology, and pathophysiology. Pharmacol Rev 46: 325‐415, 1994.
 811.Rubanyi GM, Vanhoutte PM. Hypoxia releases a vasoconstrictor substance from the canine vascular endothelium. J Physiol 364: 45‐56, 1985.
 812.Rudehill A, Sollevi A, Franco‐Cereceda A, Lundberg JM. Neuropeptide Y (NPY) and the pig heart: Release and coronary vasoconstrictor effects. Peptides 7: 821‐826, 1986.
 813.Rushmer RF, Thal N. The mechanics of ventricular contraction; a cinefluorographic study. Circulation 4: 219‐228, 1951.
 814.Saada N, Dai B, Echetebu C, Sarna SK, Palade P. Smooth muscle uses another promoter to express primarily a form of human Cav1.2 L‐type calcium channel different from the principal heart form. Biochem Biophys Res Commun 302: 2003.
 815.Sacks HS, Fain JN. Human epicardial adipose tissue: A review. Am Heart J 153: 907‐917, 2007.
 816.Sacks HS, Fain JN. Human epicardial fat: What is new and what is missing? Clin Exp Pharmacol Physiol 38: 879‐887, 2011.
 817.Saetrum OO, Edvinsson L. Mechanical properties and effects of sympathetic co‐transmitters on human coronary arteries and veins. Basic Res Cardiol 92: 168‐180, 1997.
 818.Saetrum OO, Gulbenkian S, Edvinsson L. Innervation and effects of vasoactive substances in the coronary circulation. Eur Heart J 18: 1556‐1568, 1997.
 819.Saito T, Fujiwara Y, Fujiwara R, Hasegawa H, Kibira S, Miura H, Miura M. Role of augmented expression of intermediate‐conductance Ca2+‐activated K+ channels in postischaemic heart. Clin Exp Pharmacol Physiol 29: 2002.
 820.Saitoh S, Zhang C, Tune JD, Potter B, Kiyooka T, Rogers PA, Knudson JD, Dick GM, Swafford A, Chilian WM. Hydrogen peroxide: A feed‐forward dilator that couples myocardial metabolism to coronary blood flow. Arterioscler Thromb Vasc Biol 26: 2614‐2621, 2006.
 821.Saleh SN, Albert AP, Large WA. Activation of native TRPC1/C5/C6 channels by endothelin‐1 is mediated by both PIP3 and PIP2 in rabbit coronary artery myocytes. J Physiol 587: 5361‐5375, 2009.
 822.Saleh SN, Albert AP, Peppiatt‐Wildman CM, Large WA. Diverse properties of store‐operated TRPC channels activated by protein kinase C in vascular myocytes. J Physiol 586: 2463‐2476, 2008.
 823.Samaha FF, Heineman FW, Ince C, Fleming J, Balaban RS. ATP‐sensitive potassium channel is essential to maintain basal coronary vascular tone in vivo. Am J Physiol 262: C1220‐C1227, 1992.
 824.Sanders M, White FC, Bloor CM. Myocardial blood flow distribution in miniature pigs during exercise. Basic Res Cardiol 72: 326‐331, 1977.
 825.Sanders M, White FC, Peterson TM, Bloor CM. Characteristics of coronary blood flow and transmural distribution in miniature pigs. Am J Physiol 235: H601‐H609, 1978.
 826.Sanghi P, Uretsky BF, Schwarz ER. Vasopressin antagonism: A future treatment option in heart failure. Eur Heart J 26: 538‐543, 2005.
 827.Saphir O, Priest WS, Hamburger WW, KATZ LN. Coronary arteriosclerosis, coronary thrombosis and resulting myocardial changes. Am Heart J 9: 762‐792, 1935.
 828.Sarelius IH, Maxwell LC, Gray SD, Duling BR. Capillarity and fiber types in the cremaster muscle of rat and hamster. Am J Physiol 245: H368‐H374, 1983.
 829.Sarin S, Wenger C, Marwaha A, Qureshi A, Go BD, Woomert CA, Clark K, Nassef LA, Shirani J. Clinical significance of epicardial fat measured using cardiac multislice computed tomography. Am J Cardiol 102: 767‐771, 2008.
 830.Sato A, Miura H, Liu Y, Somberg LB, Otterson MF, Demeure MJ, Schulte WJ, Eberhardt LM, Loberiza FR, Sakuma I, Gutterman DD. Effect of gender on endothelium‐dependent dilation to bradykinin in human adipose microvessels. Am J Physiol Heart Circ Physiol 283: H845‐H852, 2002.
 831.Sato A, Sakuma I, Gutterman DD. Mechanism of dilation to reactive oxygen species in human coronary arterioles. Am J Physiol Heart Circ Physiol 285: H2345‐H2354, 2003.
 832.Sato A, Terata K, Miura H, Toyama K, Loberiza FR, Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD. Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 288: H1633‐H1640, 2005.
 833.Sauer G, Jehle J, Karsch R, Kreuzer H, Neuhaus KL, Spiller P. Influence of nitroglycerin on hemodynamics, wall tension and oxygen consumption of the left ventricle. Z Kardiol 65: 753‐767, 1976.
 834.Scaramucci J. De motu cordis, theorema sextum. In: Theoremata Familiaria de Physico‐medicis Lucubrationibus Iucta Leges Mecanicas, 1695, pp. 70‐81.
 835.Schaper W. Collateral circulation: Past and present. Basic Res Cardiol 104: 5‐21, 2009.
 836.Schaper W, Ito WD. Molecular mechanisms of coronary collateral vessel growth. Circ Res 79: 911‐919, 1996.
 837.Scheel KW, Daulat G, Williams SE. Functional anatomical site of intramural collaterals in dogs. Am J Physiol 259: H706‐H711, 1990.
 838.Schlesinger MJ. An injection plus dissection study of coronary artery occlusions and anastomoses. Am Heart J 15: 528‐568, 1938.
 839.Schulz R, Guth BD, Heusch G. No effect of coronary perfusion on regional myocardial function within the autoregulatory range in pigs. Evidence against the Gregg phenomenon. Circulation 83: 1390‐1403, 1991.
 840.Schulz R, Oudiz RJ, Guth BD, Heusch G. Minimal alpha 1‐ and alpha 2‐adrenoceptor‐mediated coronary vasoconstriction in the anaesthetized swine. Naunyn Schmiedebergs Arch Pharmacol 342: 422‐428, 1990.
 841.Schwanke U, Deussen A, Heusch G, Schipke JD. Heterogeneity of local myocardial flow and oxidative metabolism. Am J Physiol Heart Circ Physiol 279: H1029‐H1035, 2000.
 842.Schwartz J, Velly J. The beta‐adrenoceptor of pig coronary arteries: Determination of beta 1 and beta 2 subtypes by radioligand binding. Br J Pharmacol 79: 409‐414, 1983.
 843.Schwartz PJ, Stone HL. Effects of unilateral stellectomy upon cardiac performance during exercise in dogs. Circ Res 44: 637‐645, 1979.
 844.Schwarz ER, Sanghi P. Conivaptan: A selective vasopressin antagonist for the treatment of heart failure. Expert Rev Cardiovasc Ther 4: 17‐23, 2006.
 845.Scornik FS, Codina J, Birnbaumer L, Toro L. Modulation of coronary smooth muscle KCa channels by Gs alpha independent of phosphorylation by protein kinase A. Am J Physiol 265: H1460‐H1465, 1993.
 846.Scott JB, Radawski D. Role of hyperosmolarity in the genesis of active and reactive hyperemia. Circ Res 28 (Suppl‐32): 1971.
 847.Sellke FW, Myers PR, Bates JN, Harrison DG. Influence of vessel size on the sensitivity of porcine coronary microvessels to nitroglycerin. Am J Physiol 258: H515‐H520, 1990.
 848.Sellke FW, Quillen JE. Altered effects of vasopressin on the coronary circulation after ischemia. J Thorac Cardiovasc Surg 104: 357‐363, 1992.
 849.Setty S, Zong P, Sun W, Tune JD, Downey HF. Hypoxia‐induced vasodilation in the right coronary circulation of conscious dogs: Role of adrenergic activation. Auton Neurosci 138: 76‐82, 2008.
 850.Shapiro E. Adolf Fick–forgotten genius of cardiology. Am J Cardiol 30: 662‐665, 1972.
 851.Sharma NR, Davis MJ. Mechanism of substance P‐induced hyperpolarization of porcine coronary artery endothelial cells. Am J Physiol 266: H156‐H164, 1994.
 852.Sharma NR, Davis MJ. Calcium entry activated by store depletion in coronary endothelium is promoted by tyrosine phosphorylation. Am J Physiol 270: 1996.
 853.Shaw RF, Mosher P, Ross J, Jr, Joseph JI, Lee AS. Physiologic principles of coronary perfusion. J Thorac Cardiovasc Surg 44: 608‐616, 1962.
 854.Shen W, Lundborg M, Wang J, Stewart JM, Xu X, Ochoa M, Hintze TH. Role of EDRF in the regulation of regional blood flow and vascular resistance at rest and during exercise in conscious dogs. J Appl Physiol 77: 165‐172, 1994.
 855.Shen W, Ochoa M, Xu X, Wang J, Hintze TH. Role of EDRF/NO in parasympathetic coronary vasodilation following carotid chemoreflex activation in conscious dogs. Am J Physiol 267: H605‐H613, 1994.
 856.Shepherd JT, Vanhoutte PM. Mechanisms responsible for coronary vasospasm. J Am Coll Cardiol 8: 50A‐54A, 1986.
 857.Sherman IA, Grayson J, Bayliss CE. Critical closing and critical opening phenomena in the coronary vasculature of the dog. Am J Physiol 238: H533‐H538, 1980.
 858.Shibasaki I, Nishikimi T, Mochizuki Y, Yamada Y, Yoshitatsu M, Inoue Y, Kuwata T, Ogawa H, Tsuchiya G, Ishimitsu T, Fukuda H. Greater expression of inflammatory cytokines, adrenomedullin, and natriuretic peptide receptor‐C in epicardial adipose tissue in coronary artery disease. Regul Pept 165: 210‐217, 2010.
 859.Shimokawa H. Hydrogen peroxide as an endothelium‐derived hyperpolarizing factor. Pflugers Arch 459: 915‐922, 2010.
 860.Shioiri H, Komaru T, Sato K, Takahashi K, Takeda S, Kanatsuka H, Watanabe J, Shirato K. Impact of hypercholesterolemia on acidosis‐induced coronary microvascular dilation. Basic Res Cardiol 98: 2003.
 861.Silberberg SD, Poder TC, Lacerda AE. Endothelin increases single‐channel calcium currents in coronary arterial smooth muscle cells. FEBS Lett 247: 68‐72, 1989.
 862.Smani T, Hernandez A, Urena J, Castellano AG, Franco‐Obregon A, Ordonez A, Lopez‐Barneo J. Reduction of Ca(2+) channel activity by hypoxia in human and porcine coronary myocytes. Cardiovasc Res 53: 2002.
 863.Smith FD, D'Alecy LG, Feigl EO. Cannula‐tip coronary blood flow transducer for use in closed‐chest animals. J Appl Physiol 37: 592‐595, 1974.
 864.Smith RE, Palmer RM, Bucknall CA, Moncada S. Role of nitric oxide synthesis in the regulation of coronary vascular tone in the isolated perfused rabbit heart. Cardiovasc Res 26: 508‐512, 1992.
 865.Smith TP, Jr, Canty JM, Jr. Modulation of coronary autoregulatory responses by nitric oxide. Evidence for flow‐dependent resistance adjustments in conscious dogs. Circ Res 73: 232‐240, 1993.
 866.Son YK, Park WS, Ko JH, Han J, Kim N, Earm YE. Protein kinase A‐dependent activation of inward rectifier potassium channels by adenosine in rabbit coronary smooth muscle cells. Biochem Biophys Res Commun 337: 1145‐1152, 2005.
 867.Sonntag M, Deussen A, Schultz J, Loncar R, Hort W, Schrader J. Spatial heterogeneity of blood flow in the dog heart. I. Glucose uptake, free adenosine and oxidative/glycolytic enzyme activity. Pflugers Arch 432: 439‐450, 1996.
 868.Sorop O, Merkus D, de Beer VJ, Houweling B, Pistea A, McFalls EO, Boomsma F, van Beusekom HM, van der Giessen WJ, VanBavel E, Duncker DJ. Functional and structural adaptations of coronary microvessels distal to a chronic coronary artery stenosis. Circ Res 102: 795‐803, 2008.
 869.Spaan JA. Coronary Blood Flow: Mechanics, Distribution, and Control. Dordrecht, The Netherlands: Kluwer Academic Publishers, 1991.
 870.Spaan JA. Mechanical determinants of myocardial perfusion. Basic Res Cardiol 90: 89‐102, 1995.
 871.Spaan JA, Breuls NP, Laird JD. Diastolic‐systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 49: 584‐593, 1981.
 872.Spaan JA, Breuls NP, Laird JD. Forward coronary flow normally seen in systole is the result of both forward and concealed back flow. Basic Res Cardiol 76: 582‐586, 1981.
 873.Spaan JA, Cornelissen AJ, Chan C, Dankelman J, Yin FC. Dynamics of flow, resistance, and intramural vascular volume in canine coronary circulation. Am J Physiol Heart Circ Physiol 278: H383‐H403, 2000.
 874.Spaan JA, Piek JJ, Hoffman JI, Siebes M. Physiological basis of clinically used coronary hemodynamic indices. Circulation 113: 446‐455, 2006.
 875.Sparks HV. Effect of local metabolic factors on vascular smooth muscle. In: Bohr DF, Somlyo AP, Sparks HV, editors. Handbook of Physiology, Sec 2: The Cardiovascular System, Vol 2: Vascular Smooth Muscle. Bethesda: American Physiological Society, 1980, pp. 475‐513.
 876.Sprague RS, Bowles EA, Olearczyk JJ, Stephenson AH, Lonigro AJ. The role of G protein beta subunits in the release of ATP from human erythrocytes. J Physiol Pharmacol 53: 667‐674, 2002.
 877.Sprague RS, Ellsworth ML. Erythrocyte‐derived ATP and perfusion distribution: Role of intracellular and intercellular communication. Microcirculation 19: 430‐439, 2012.
 878.Sprague RS, Stephenson AH, Ellsworth ML. Red not dead: Signaling in and from erythrocytes. Trends Endocrinol Metab 18: 350‐355, 2007.
 879.Staib AH, Appel E, Starey F, Lindner E, Grotsch H, Palm D, Grobecker H. Exercise induced changes of catecholamines and potassium in plasma of dogs after treatment with propranolol. Arzneimittelforschung 30: 1514‐1517, 1980.
 880.Stamler JS, Jia L, Eu JP, McMahon TJ, Demchenko IT, Bonaventura J, Gernert K, Piantadosi CA. Blood flow regulation by S‐nitrosohemoglobin in the physiological oxygen gradient. Science 276: 2034‐2037, 1997.
 881.Stebbins CL, Symons JD. Role of angiotensin II in hemodynamic responses to dynamic exercise in miniswine. J Appl Physiol (1985) 78: 185‐190, 1995.
 882.Stehno‐Bittel L, Laughlin MH, Sturek M. Exercise training alters Ca release from coronary smooth muscle sarcoplasmic reticulum. Am J Physiol 259: 1990.
 883.Stepp DW, Kroll K, Feigl EO. K+ATP channels and adenosine are not necessary for coronary autoregulation. Am J Physiol 273: H1299‐H1308, 1997.
 884.Stepp DW, Merkus D, Nishikawa Y, Chilian WM. Nitric oxide limits coronary vasoconstriction by a shear stress‐dependent mechanism. Am J Physiol Heart Circ Physiol 281: H796‐H803, 2001.
 885.Stepp DW, Nishikawa Y, Chilian WM. Regulation of shear stress in the canine coronary microcirculation. Circulation 100: 1555‐1561, 1999.
 886.Stepp DW, Van Bibber R, Kroll K, Feigl EO. Quantitative relation between interstitial adenosine concentration and coronary blood flow. Circ Res 79: 601‐610, 1996.
 887.Stoller M, Seiler C. Salient features of the coronary collateral circulation and its clinical relevance. Swiss Med Wkly 145: w14154, 2015.
 888.Strader JR, Gwirtz PA, Jones CE. Comparative effects of alpha‐1 and alpha‐2 adrenoceptors in modulation of coronary flow during exercise. J Pharmacol Exp Ther 246: 772‐778, 1988.
 889.Streeter DD, Ramon C. Muscle pathway geometry in the heart wall. J Biomech Eng 105: 367‐373, 1983.
 890.Streeter DD, Jr, Spotnitz HM, Patel DP, Ross J, Jr, Sonnenblick EH. Fiber orientation in the canine left ventricle during diastole and systole. Circ Res 24: 339‐347, 1969.
 891.Streeter DD, Jr, Vaishnav RN, Patel DJ, Spotnitz HM, Ross J, Jr, Sonnenblick EH. Stress distribution in the canine left ventricle during diastole and systole. Biophys J 10: 345‐363, 1970.
 892.Strobaek D, Christophersen P, Dissing S, Olesen SP. ATP activates K and Cl channels via purinoceptor‐mediated release of Ca2+ in human coronary artery smooth muscle. Am J Physiol 271: 1996.
 893.Stumpe T, Schrader J. Phosphorylation potential, adenosine formation, and critical PO2 in stimulated rat cardiomyocytes. Am J Physiol 273: H756‐H766, 1997.
 894.Sudhir K, MacGregor JS, Gupta M, Barbant SD, Redberg R, Yock PG, Chatterjee K. Effect of selective angiotensin II receptor antagonism and angiotensin converting enzyme inhibition on the coronary vasculature in vivo. Intravascular two‐dimensional and Doppler ultrasound studies. Circulation 87: 931‐938, 1993.
 895.Sulemanjee NZ, Schwarz ER. Conivaptan: A selective vasopressin antagonist. Drugs Today (Barc) 42: 379‐386, 2006.
 896.Sun D, Huang A, Mital S, Kichuk MR, Marboe CC, Addonizio LJ, Michler RE, Koller A, Hintze TH, Kaley G. Norepinephrine elicits beta2‐receptor‐mediated dilation of isolated human coronary arterioles. Circulation 106: 550‐555, 2002.
 897.Sybers RG, Sybers HD, Helmer PR, Murphy QR. Myocardial potassium balance during cardioaccelerator nerve and atrial stimulation. Am J Physiol 209: 699‐701, 1965.
 898.Symons JD, Rendig SV, Fu LW, Longhurst JC. Endothelin‐1 limits increases in blood flow to native and collateral‐dependent myocardium. Am J Physiol 273: R41‐R48, 1997.
 899.Symons JD, Stebbins CL. The role of vasopressin and angiotensin II in the hemodynamic response to dynamic exercise. Adv Exp Med Biol 381: 215‐221, 1995.
 900.Symons JD, Stebbins CL. Effects of angiotensin II receptor blockade during exercise: Comparison of losartan and saralasin. J Cardiovasc Pharmacol 28: 223‐231, 1996.
 901.Szentivanyi M, Juhasz NA. A new aspect of the nervous control of the coronary blood vessels. Q J Exp Physiol Cogn Med Sci 44: 67‐79, 1959.
 902.Takamura M, Parent R, Cernacek P, Lavallee M. Influence of dual ET(A)/ET(B)‐receptor blockade on coronary responses to treadmill exercise in dogs. J Appl Physiol 89: 2041‐2048, 2000.
 903.Tan AY, Verrier RL. The role of the autonomic nervous system in cardiac arrhythmias. Handb Clin Neurol 117: 135‐145, 2013.
 904.Tancredi RG, Yipintsoi T, Bassingthwaighte JB. Capillary and cell wall permeability to potassium in isolated dog hearts. Am J Physiol 229: 537‐544, 1975.
 905.Tarnow J, Eberlein HJ, Hess W, Schneider E, Schweichel E, Zimmermann G. Hemodynamic interactions of hemodilution, anaesthesia, propranolol pretreatment and hypovolaemia. II: Coronary circulation. Basic Res Cardiol 74: 123‐130, 1979.
 906.Teunissen PF, Horrevoets AJ, van RN. The coronary collateral circulation: Genetic and environmental determinants in experimental models and humans. J Mol Cell Cardiol 52: 897‐904, 2012.
 907.Thengchaisri N, Kuo L. Hydrogen peroxide induces endothelium‐dependent and ‐independent coronary arteriolar dilation: Role of cyclooxygenase and potassium channels. Am J Physiol Heart Circ Physiol 285: H2255‐H2263, 2003.
 908.Tiefenbacher CP, DeFily DV, Chilian WM. Requisite role of cardiac myocytes in coronary alpha1‐adrenergic constriction. Circulation 98: 9‐12, 1998.
 909.Tillmanns H, Ikeda S, Hansen H, Sarma JS, Fauvel JM, Bing RJ. Microcirculation in the ventricle of the dog and turtle. Circ Res 34: 561‐569, 1974.
 910.Toda N, Matsumoto T, Yoshida K. Comparison of hypoxia‐induced contraction in human, monkey, and dog coronary arteries. Am J Physiol 262: H678‐H683, 1992.
 911.Toda N, Okamura T. Beta adrenoceptor subtype in isolated human, monkey and dog epicardial coronary arteries. J Pharmacol Exp Ther 253: 518‐524, 1990.
 912.Tofukuji M, Stamler A, Li J, Hariawala MD, Franklin A, Sellke FW. Comparative effects of continuous warm blood and intermittent cold blood cardioplegia on coronary reactivity. Ann Thorac Surg 64: 1997.
 913.Tomanek RJ. Coronary Vasculature: Development, Structure‐Function, and Adaptations. New York: Springer, 2013.
 914.Traverse JH, Judd D, Bache RJ. Dose‐dependent effect of endothelin‐1 on blood flow to normal and collateral‐dependent myocardium. Circulation 93: 558‐566, 1996.
 915.Traverse JH, Wang YL, Du R, Nelson D, Lindstrom P, Archer SL, Gong G, Bache RJ. Coronary nitric oxide production in response to exercise and endothelium‐dependent agonists. Circulation 101: 2526‐2531, 2000.
 916.Trivella MG, Broten TP, Feigl EO. Beta‐receptor subtypes in the canine coronary circulation. Am J Physiol 259: H1575‐H1585, 1990.
 917.Tune JD. Control of coronary blood flow during hypoxemia. Adv Exp Med Biol 618: 25‐39, 2007.
 918.Tune JD. Coronary Circulation. San Francisco, CA: Morgan & Claypool Life Sciences, 2014.
 919.Tune JD, Gorman MW, Feigl EO. Matching coronary blood flow to myocardial oxygen consumption. J Appl Physiol 97: 404‐415, 2004.
 920.Tune JD, Richmond KN, Gorman MW, Feigl EO. Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs. Circulation 101: 2942‐2948, 2000.
 921.Tune JD, Richmond KN, Gorman MW, Feigl EO. K+ATP channels, nitric oxide, and adenosine are not required for local metabolic coronary vasodilation. Am J Physiol Heart Circ Physiol 280: H868‐H875, 2001.
 922.Tune JD, Richmond KN, Gorman MW, Feigl EO. Control of coronary blood flow during exercise. Exp Biol Med (Maywood) 227: 238‐250, 2002.
 923.Tune JD, Richmond KN, Gorman MW, Olsson RA, Feigl EO. Adenosine is not responsible for local metabolic control of coronary blood flow in dogs during exercise. Am J Physiol Heart Circ Physiol 278: H74‐H84, 2000.
 924.Tune JD, Yeh C, Setty S, Downey HF. ATP‐dependent K(+) channels contribute to local metabolic coronary vasodilation in experimental diabetes. Diabetes 51: 1201‐1207, 2002.
 925.Tune JD, Yeh C, Setty S, Zong P, Downey HF. Coronary blood flow control is impaired at rest and during exercise in conscious diabetic dogs. Basic Res Cardiol 97: 248‐257, 2002.
 926.Udelson JE, McGrew FA, Flores E, Ibrahim H, Katz S, Koshkarian G, O'Brien T, Kronenberg MW, Zimmer C, Orlandi C, Konstam MA. Multicenter, randomized, double‐blind, placebo‐controlled study on the effect of oral tolvaptan on left ventricular dilation and function in patients with heart failure and systolic dysfunction. J Am Coll Cardiol 49: 2151‐2159, 2007.
 927.Ueda A, Ohyanagi M, Koida S, Iwasaki T. Enhanced release of endothelium‐derived hyperpolarizing factor in small coronary arteries from rats with congestive heart failure. Clin Exp Pharmacol Physiol 32: 615‐621, 2005.
 928.Ueeda M, Silvia SK, Olsson RA. Nitric oxide modulates coronary autoregulation in the guinea pig. Circ Res 70: 1296‐1303, 1992.
 929.Urabe Y, Tomoike H, Ohzono K, Koyanagi S, Nakamura M. Role of afterload in determining regional right ventricular performance during coronary underperfusion in dogs. Circ Res 57: 96‐104, 1985.
 930.Van Bibber R, Traub O, Kroll K, Feigl EO. EDRF and norepinephrine‐induced vasodilation in the canine coronary circulation. Am J Physiol 268: H1973‐H1981, 1995.
 931.Van de Hoef TP, Nolte F, Rolandi MC, Piek JJ, van den Wijngaard JP, Spaan JA, Siebes M. Coronary pressure‐flow relations as basis for the understanding of coronary physiology. J Mol Cell Cardiol 52: 786‐793, 2012.
 932.van den Wijngaard JP, Schulten H, van HP, Ter Wee RD, Siebes M, Post MJ, Spaan JA. Porcine coronary collateral formation in the absence of a pressure gradient remote of the ischemic border zone. Am J Physiol Heart Circ Physiol 300: H1930‐H1937, 2011.
 933.Van Winkle DM, Feigl EO. Acetylcholine causes coronary vasodilation in dogs and baboons. Circ Res 65: 1580‐1593, 1989.
 934.Van Woerkens EC, Trouwborst A, Duncker DJ, Koning MM, Boomsma F, Verdouw PD. Catecholamines and regional hemodynamics during isovolemic hemodilution in anesthetized pigs. J Appl Physiol 72: 760‐769, 1992.
 935.Van Woerkens EC, Trouwborst A, Duncker DJ, Verdouw PD. Regional cardiac hemodynamics and oxygenation during isovolemic hemodilution in anesthetized pigs. Adv Exp Med Biol 317: 545‐552, 1992.
 936.Van Wylen DG, Williams AG, Jr, Downey HF. Interstitial purine metabolites and lactate during regional myocardial hypoxia. Cardiovasc Res 27: 1498‐1503, 1993.
 937.van HP, Siebes M, Spaan JA, Hoefer IE, van den Wijngaard JP. Innate collateral segments are predominantly present in the subendocardium without preferential connectivity within the left ventricular wall. J Physiol 592: 1047‐1060, 2014.
 938.van HP, van den Wijngaard JP, Brandt MJ, Hoefer IE, Spaan JA, Siebes M. Perfusion territories subtended by penetrating coronary arteries increase in size and decrease in number toward the subendocardium. Am J Physiol Heart Circ Physiol 306: H496‐H504, 2014.
 939.van RN, Piek JJ, Schaper W, Fulton WF. A critical review of clinical arteriogenesis research. J Am Coll Cardiol 55: 17‐25, 2009.
 940.Vance JP, Parratt JR, Ledingham IM. The effects of hypoxia on myocardial blood flow and oxygen consumption: Negative role of beta adrenoreceptors. Clin Sci 41: 257‐273, 1971.
 941.Vanhoutte PM. Could the absence or malfunction of vascular endothelium precipitate the occurrence of vasospasm? J Mol Cell Cardiol 18: 679‐689, 1986.
 942.Vanhoutte PM. Endothelial control of vasomotor function: From health to coronary disease. Circ J 67: 572‐575, 2003.
 943.Vanhoutte PM. Endothelial dysfunction: The first step toward coronary arteriosclerosis. Circ J 73: 595‐601, 2009.
 944.Vanhoutte PM, Shimokawa H, Tang EH, Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol (Oxf) 196: 193‐222, 2009.
 945.Vassort G. Adenosine 5′‐triphosphate: A P2‐purinergic agonist in the myocardium. Physiol Rev 81: 767‐806, 2001.
 946.Vatner DE, Knight DR, Homcy CJ, Vatner SF, Young MA. Subtypes of beta‐adrenergic receptors in bovine coronary arteries. Circ Res 59: 463‐473, 1986.
 947.Vatner SF, Higgins CB, Franklin D. Regional circulatory adjustments to moderate and severe chronic anemia in conscious dogs at rest and during exercise. Circ Res 30: 731‐740, 1972.
 948.Vatner SF, Hintze TH, Macho P. Regulation of large coronary arteries by beta‐adrenergic mechanisms in the conscious dog. Circ Res 51: 56‐66, 1982.
 949.Vatner SF, Knight D, Hintze TH. Beta 1‐adrenergic regulation of large coronary arteries in conscious dogs. Bibl Cardiol 38: 169‐177, 1984.
 950.Vatner SF, McRitchie RJ. Interaction of the chemoreflex and the pulmonary inflation reflex in the regulation of coronary circulation in conscious dogs. Circ Res 37: 664‐673, 1975.
 951.Vergroesen I, Noble MI, Spaan JA. Intramyocardial blood volume change in first moments of cardiac arrest in anesthetized goats. Am J Physiol 253: H307‐H316, 1987.
 952.Verrier RL, Mittelman MA. Cardiovascular consequences of anger and other stress states. Baillieres Clin Neurol 6: 245‐259, 1997.
 953.Vigorito C, Giordano A, De CL, Vitale DF, Maurea N, Silvestri P, Tuccillo B, Ferrara N, Marone G, Rengo F. Effects of histamine on coronary hemodynamics in humans: Role of H1 and H2 receptors. J Am Coll Cardiol 10: 1207‐1213, 1987.
 954.Vinten‐Johansen J, Johnston WE, Crystal GJ, Mills SA, Santamore WP, Cordell AR. Validation of local venous sampling within the at risk left anterior descending artery vascular bed in the canine left ventricle. Cardiovasc Res 21: 646‐651, 1987.
 955.Vita JA, Treasure CB, Nabel EG, McLenachan JM, Fish RD, Yeung AC, Vekshtein VI, Selwyn AP, Ganz P. Coronary vasomotor response to acetylcholine relates to risk factors for coronary artery disease. Circulation 81: 491‐497, 1990.
 956.von BN, Cyrys S, Dischner A, Daut J. Hypoxic vasodilatation in isolated, perfused guinea‐pig heart: An analysis of the underlying mechanisms. J Physiol 442: 297‐319, 1991.
 957.von RW, Hofling B, Holtz J, Bassenge E. Effect of increased blood fluidity through hemodilution on coronary circulation at rest and during exercise in dogs. Pflugers Arch 357: 15‐24, 1975.
 958.Walley KR, Becker CJ, Hogan RA, Teplinsky K, Wood LD. Progressive hypoxemia limits left ventricular oxygen consumption and contractility. Circ Res 63: 849‐859, 1988.
 959.Wang J, Wolin MS, Hintze TH. Chronic exercise enhances endothelium‐mediated dilation of epicardial coronary artery in conscious dogs. Circ Res 73: 829‐838, 1993.
 960.Warltier DC, Hardman HF, Brooks HL, Gross GJ. Transmural gradient of coronary blood flow following dihydropyridine calcium antagonists and other vasodilator drugs. Basic Res Cardiol 78: 1983.
 961.Watkinson WP, Foley DH, Rubio R, Berne RM. Myocardial adenosine formation with increased cardiac performance in the dog. Am J Physiol 236: H13‐H21, 1979.
 962.Wearn JT. The extent of the capillary bed of the heart. J Exp Med 47: 273‐290, 1928.
 963.Wearn JT. The role of the thebesian vessels in the circulation of the heart. J Exp Med 47: 293‐315, 1928.
 964.Wei HM, Kang YH, Merrill GF. Coronary vasodilation during global myocardial hypoxia: Effects of adenosine deaminase. Am J Physiol 254: H1004‐H1009, 1988.
 965.Wellman GC, Bonev AD, Nelson MT, Brayden JE. Gender differences in coronary artery diameter involve estrogen, nitric oxide, and Ca(2+)‐dependent K+ channels. Circ Res 79: 1024‐1030, 1996.
 966.Welsh DG, Brayden JE. Mechanisms of coronary artery depolarization by uridine triphosphate. Am J Physiol Heart Circ Physiol 280: H2545‐H2553, 2001.
 967.Westerhof N, Boer C, Lamberts RR, Sipkema P. Cross‐talk between cardiac muscle and coronary vasculature. Physiol Rev 86: 1263‐1308, 2006.
 968.Westerhof N, Sipkema P, Van Huis GA. Coronary pressure‐flow relations and the vascular waterfall. Cardiovasc Res 17: 162‐169, 1983.
 969.Westhuyzen J. The oxidation hypothesis of atherosclerosis: An update. Ann Clin Lab Sci 27: 1‐10, 1997.
 970.Weston AH, Feletou M, Vanhoutte PM, Falck JR, Campbell WB, Edwards G. Bradykinin‐induced, endothelium‐dependent responses in porcine coronary arteries: Involvement of potassium channel activation and epoxyeicosatrienoic acids. Br J Pharmacol 145: 775‐784, 2005.
 971.Wexels JC, Myhre ES, Mjos OD. Effects of carbon dioxide and pH on myocardial blood‐flow and metabolism in the dog. Clin Physiol 5: 575‐588, 1985.
 972.White RE, Kryman JP, El‐Mowafy AM, Han G, Carrier GO. cAMP‐dependent vasodilators cross‐activate the cGMP‐dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells. Circ Res 86: 897‐905, 2000.
 973.Wiggers CJ. The Physiology of the Coronary Circulation. New York: Macmillan, 1936.
 974.Wijns W, Kolh P, Danchin N, Di MC, Falk V, Folliguet T, Garg S, Huber K, James S, Knuuti J, Lopez‐Sendon J, Marco J, Menicanti L, Ostojic M, Piepoli MF, Pirlet C, Pomar JL, Reifart N, Ribichini FL, Schalij MJ, Sergeant P, Serruys PW, Silber S, Sousa UM, Taggart D. Guidelines on myocardial revascularization. Eur Heart J 31: 2501‐2555, 2010.
 975.Wilde WS. The pulsatile nature of the release of potassium from heart muscle during the systole. Ann N Y Acad Sci 65: 693‐699, 1957.
 976.Wilkerson DK, Rosen AL, Sehgal LR, Gould SA, Sehgal HL, Moss GS. Limits of cardiac compensation in anemic baboons. Surgery 103: 665‐670, 1988.
 977.Willemsen MJ, Duncker DJ, Krams R, Dijkman MA, Lamberts RR, Sipkema P, Westerhof N. Decrease in coronary vascular volume in systole augments cardiac contraction. Am J Physiol Heart Circ Physiol 281: H731‐H737, 2001.
 978.Willerson JT, Golino P, Eidt J, Campbell WB, Buja LM. Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation 80: 198‐205, 1989.
 979.Willerson JT, Golino P, Eidt J, Yao S, Buja LM. Evidence that combined thromboxane A2 and serotonin receptor blockade might prevent coronary artery thrombosis and the conversion from chronic to acute coronary heart disease syndromes. Blood Coagul Fibrinolysis 1: 211‐218, 1990.
 980.Willerson JT, Golino P, Eidt J, Yao SK, Buja LM. Potential usefulness of combined thromboxane A2 and serotonin receptor blockade for preventing the conversion from chronic to acute coronary artery disease syndromes. Am J Cardiol 66: 48G‐53G, 1990.
 981.Williams KJ, Tabas I. The response‐to‐retention hypothesis of early atherogenesis. Arterioscler Thromb Vasc Biol 15: 551‐561, 1995.
 982.Winbury MM. Redistribution of left ventricular blood flow produced by nitroglycerin. An example of integration of the macro‐ and microcirculation. Circ Res 28(Suppl 7): 140‐147, 1971.
 983.Winbury MM, Howe BB, Hefner MA. Effect of nitrates and other coronary dilators on large and small coronary vessels: An hypothesis for the mechanism of action of nitrates. J Pharmacol Exp Ther 168: 70‐95, 1969.
 984.Winbury MM, Weiss HR, Howe BB. Effects of beta‐adrenoreceptor blockade and nitroglycerin on myocardial oxygenation. Eur J Pharmacol 16: 271‐277, 1971.
 985.Winegrad S, Henrion D, Rappaport L, Samuel JL. Vascular endothelial cell‐cardiac myocyte crosstalk in achieving a balance between energy supply and energy use. Adv Exp Med Biol 453: 507‐514, 1998.
 986.Wood JC, Conn HL, Jr. Potassium tranfer kinetics in the isolated dog heart; influence of contraction rate, ventricular fibrillation, high serum potassium and acetylcholine. Am J Physiol 195: 451‐458, 1958.
 987.Woodman OL. The role of alpha 1‐ and alpha 2‐adrenoceptors in the coronary vasoconstrictor responses to neuronally released and exogenous noradrenaline in the dog. Naunyn Schmiedebergs Arch Pharmacol 336: 161‐168, 1987.
 988.Woodman OL, Vatner SF. Coronary vasoconstriction mediated by alpha 1‐ and alpha 2‐adrenoceptors in conscious dogs. Am J Physiol 253: H388‐H393, 1987.
 989.Woollard HH. The Innervation of the Heart. J Anat 60: 345‐373, 1926.
 990.Wu GB, Zhou EX, Qing DX, Li J. Role of potassium channels in regulation of rat coronary arteriole tone. Eur J Pharmacol 620: 57‐62, 2009.
 991.Wu X, Davis MJ. Characterization of stretch‐activated cation current in coronary smooth muscle cells. Am J Physiol Heart Circ Physiol 280: H1751‐H1761, 2001.
 992.Wusten B, Buss D, Schaper W. Distribution of left ventricular myocardial blood flow under various loading conditions. Bibl Anat 15(Pt 1): 35‐40, 1977.
 993.Wusten B, Buss DD, Deist H, Schaper W. Dilatory capacity of the coronary circulation and its correlation to the arterial vasculature in the canine left ventricle. Basic Res Cardiol 72: 636‐650, 1977.
 994.Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F. In vivo observation of subendocardial microvessels of the beating porcine heart using a needle‐probe videomicroscope with a CCD camera. Circ Res 72: 939‐946, 1993.
 995.Yada T, Hiramatsu O, Tachibana H, Toyota E, Kajiya F. Role of NO and K(+)(ATP) channels in adenosine‐induced vasodilation on in vivo canine subendocardial arterioles. Am J Physiol 277: 1999.
 996.Yada T, Richmond KN, Van Bibber R, Kroll K, Feigl EO. Role of adenosine in local metabolic coronary vasodilation. Am J Physiol 276: H1425‐H1433, 1999.
 997.Yada T, Shimokawa H, Hiramatsu O, Haruna Y, Morita Y, Kashihara N, Shinozaki Y, Mori H, Goto M, Ogasawara Y, Kajiya F. Cardioprotective role of endogenous hydrogen peroxide during ischemia‐reperfusion injury in canine coronary microcirculation in vivo. Am J Physiol Heart Circ Physiol 291: H1138‐H1146, 2006.
 998.Yada T, Shimokawa H, Hiramatsu O, Kajita T, Shigeto F, Goto M, Ogasawara Y, Kajiya F. Hydrogen peroxide, an endogenous endothelium‐derived hyperpolarizing factor, plays an important role in coronary autoregulation in vivo. Circulation 107: 1040‐1045, 2003.
 999.Yada T, Shimokawa H, Hiramatsu O, Satoh M, Kashihara N, Takaki A, Goto M, Ogasawara Y, Kajiya F. Erythropoietin enhances hydrogen peroxide‐mediated dilatation of canine coronary collateral arterioles during myocardial ischemia in dogs in vivo. Am J Physiol Heart Circ Physiol 299: H1928‐H1935, 2010.
 1000.Yada T, Shimokawa H, Hiramatsu O, Shinozaki Y, Mori H, Goto M, Ogasawara Y, Kajiya F. Important role of endogenous hydrogen peroxide in pacing‐induced metabolic coronary vasodilation in dogs in vivo. J Am Coll Cardiol 50: 1272‐1278, 2007.
 1001.Yamanaka A, Ishikawa T, Goto K. Characterization of endothelium‐dependent relaxation independent of NO and prostaglandins in guinea pig coronary artery. J Pharmacol Exp Ther 285: 480‐489, 1998.
 1002.Yanagisawa M, Kurihara H, Kimura S, Goto K, Masaki T. A novel peptide vasoconstrictor, endothelin, is produced by vascular endothelium and modulates smooth muscle Ca2+ channels. J Hypertens Suppl 6: S188‐S191, 1988.
 1003.Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411‐415, 1988.
 1004.Yip H, Chan WY, Leung PC, Kwan HY, Liu C, Huang Y, Michel V, Yew DT, Yao X. Expression of TRPC homologs in endothelial cells and smooth muscle layers of human arteries. Histochem Cell Biol 122: 2004.
 1005.Yonekura S, Watanabe N, Caffrey JL, Gaugl JF, Downey HF. Mechanism of attenuated pressure‐flow autoregulation in right coronary circulation of dogs. Circ Res 60: 133‐141, 1987.
 1006.Yonekura S, Watanabe N, Downey HF. Transmural variation in autoregulation of right ventricular blood flow. Circ Res 62: 776‐781, 1988.
 1007.Yong AS, Layland J, Fearon WF, Ho M, Shah MG, Daniels D, Whitbourn R, Macisaac A, Kritharides L, Wilson A, Ng MK. Calculation of the index of microcirculatory resistance without coronary wedge pressure measurement in the presence of epicardial stenosis. JACC Cardiovasc Interv 6: 53‐58, 2013.
 1008.Young MA, Knight DR, Vatner SF. Autonomic control of large coronary arteries and resistance vessels. Prog Cardiovasc Dis 30: 211‐234, 1987.
 1009.Young MA, Knight DR, Vatner SF. Parasympathetic coronary vasoconstriction induced by nicotine in conscious calves. Circ Res 62: 891‐895, 1988.
 1010.Young MA, Vatner DE, Vatner SF. Alpha‐ and beta‐adrenergic control of large coronary arteries in conscious calves. Basic Res Cardiol 85(Suppl 1): 97‐109, 1990.
 1011.Yu Y, Tune JD, Downey HF. Elevated right atrial pressure does not reduce collateral blood flow to ischemic myocardium. Am J Physiol 273: H2296‐H2303, 1997.
 1012.Yun J, Rocic P, Pung YF, Belmadani S, Carrao AC, Ohanyan V, Chilian WM. Redox‐dependent mechanisms in coronary collateral growth: The “redox window” hypothesis. Antioxid Redox Signal 11: 1961‐1974, 2009.
 1013.Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G. Effects of an angiotensin‐converting‐enzyme inhibitor, ramipril, on cardiovascular events in high‐risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 342: 145‐153, 2000.
 1014.Zatta AJ, Headrick JP. Mediators of coronary reactive hyperaemia in isolated mouse heart. Br J Pharmacol 144: 576‐587, 2005.
 1015.Zeiher AM, Krause T, Schachinger V, Minners J, Moser E. Impaired endothelium‐dependent vasodilation of coronary resistance vessels is associated with exercise‐induced myocardial ischemia. Circulation 91: 2345‐2352, 1995.
 1016.Zhang C, Hein TW, Kuo L. Transmural difference in coronary arteriolar dilation to adenosine: Effect of luminal pressure and K(ATP) channels. Am J Physiol Heart Circ Physiol 279: H2612‐H2619, 2000.
 1017.Zhang C, Hein TW, Wang W, Kuo L. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ Res 92: 322‐329, 2003.
 1018.Zhang C, Knudson JD, Setty S, Araiza A, Dincer UD, Kuo L, Tune JD. Coronary arteriolar vasoconstriction to angiotensin II is augmented in prediabetic metabolic syndrome via activation of AT1 receptors. Am J Physiol Heart Circ Physiol 288: H2154‐H2162, 2005.
 1019.Zhang DX, Borbouse L, Gebremedhin D, Mendoza SA, Zinkevich NS, Li R, Gutterman DD. H2O2‐induced dilation in human coronary arterioles: Role of protein kinase G dimerization and large‐conductance Ca2+‐activated K+ channel activation. Circ Res 110: 471‐480, 2012.
 1020.Zhou Z, Hemradj V, de Beer VJ, Gao F, Hoekstra M, Merkus D, Duncker DJ. Cytochrome P‐450 2C9 exerts a vasoconstrictor influence on coronary resistance vessels in swine at rest and during exercise. Am J Physiol Heart Circ Physiol 302: H1747‐H1755, 2012.
 1021.Zhou Z, Merkus D, Cheng C, Duckers HJ, Jan Danser AH, Duncker DJ. Uridine adenosine tetraphosphate is a novel vasodilator in the coronary microcirculation which acts through purinergic P1 but not P2 receptors. Pharmacol Res 67: 10‐17, 2013.
 1022.Zimarino M, D'Andreamatteo M, Waksman R, Epstein SE, De CR. The dynamics of the coronary collateral circulation. Nat Rev Cardiol 11: 191‐197, 2014.
 1023.Zipes DP, Rubart M. Neural modulation of cardiac arrhythmias and sudden cardiac death. Heart Rhythm 3: 108‐113, 2006.
 1024.Zong P, Sun W, Setty S, Tune JD, Downey HF. Alpha‐adrenergic vasoconstrictor tone limits right coronary blood flow in exercising dogs. Exp Biol Med (Maywood) 229: 312‐322, 2004.
 1025.Zong P, Tune JD, Downey HF. Mechanisms of oxygen demand/supply balance in the right ventricle. Exp Biol Med (Maywood) 230: 507‐519, 2005.
 1026.Zong P, Tune JD, Setty S, Downey HF. Endogenous nitric oxide regulates right coronary blood flow during acute pulmonary hypertension in conscious dogs. Basic Res Cardiol 97: 392‐398, 2002.
 1027.Zucker IH, Cornish KG, Hackley J, Bliss K. Effects of left ventricular receptor stimulation on coronary blood flow in conscious dogs. Circ Res 61: II54‐II60, 1987.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Adam G. Goodwill, Gregory M. Dick, Alexander M. Kiel, Johnathan D. Tune. Regulation of Coronary Blood Flow. Compr Physiol 2017, 7: 321-382. doi: 10.1002/cphy.c160016