Comprehensive Physiology Wiley Online Library

Pathophysiological Fundamentals of Diabetic Cardiomyopathy

Full Article on Wiley Online Library



ABSTRACT

Diabetic cardiomyopathy (DCM) was first recognized more than four decades ago and occurred independent of cardiovascular diseases or hypertension in both type 1 and type 2 diabetic patients. The exact mechanisms underlying this disease remain incompletely understood. Several pathophysiological bases responsible for DCM have been proposed, including the presence of hyperglycemia, nonenzymatic glycosylation of large molecules (e.g., proteins), energy metabolic disturbance, mitochondrial damage and dysfunction, impaired calcium handling, reactive oxygen species formation, inflammation, cardiac cell death, and cardiac hypertrophy and fibrosis, leading to impairment of cardiac contractile functions. Increasing evidence also indicates the phenomenon called “metabolic memory” for diabetes‐induced cardiovascular complications, for which epigenetic modulation seemed to play an important role, suggesting that the aforementioned pathogenic bases may be regulated by epigenetic modification. Therefore, this review aims at briefly summarizing the current understanding of the pathophysiological bases for DCM. Although how epigenetic mechanisms play a role remains incompletely understood now, extensive clinical and experimental studies have implicated its importance in regulating the cardiac responses to diabetes, which are believed to shed insight into understanding of the pathophysiological and epigenetic mechanisms for the development of DCM and its possible prevention and/or therapy. © 2017 American Physiological Society. Compr Physiol 7:693‐711, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Cardiac dysfunction can be derived from structural abnormality (cardiac hypertrophy and fibrosis) and also from the Ca2+ signaling dyshomeostasis.
Figure 2. Figure 2. Pathophysiological mechanisms responsible for DCM. The persistent presence of hyperglycemia, induce AGEs, and both hyperglycemia and hyperlipidemia cause energy metabolic disturbance along with mitochondrial damage and dysfunction. Mitochondrial dysfunction results in excessive ROS formation and calcium signaling abnormality, leading to cardiomyocyte death. The oxidative stress and cell death would cause inflammation, which feedback to further increase oxidative stress and cell death. Compensative cardiac hypertrophy occurs and meanwhile also evocates certain cytokines and inflammation that stimulates fibroblasts in the interstitium to differentiate into myofibroblasts that generate excess ECM accumulation, leading to fibrosis. These abnormal calcium signaling and cardiac structural remodeling result in the dysfunction of cardiac contractility, that is, cardiomyopathy.
Figure 3. Figure 3. Secreted matrix protein (including various collagens) can be accumulated in the interstitium, ECM, leading to the pathological level of fibrosis. In fact, the balance of MMPs and TIMPs also determines the pathogenic fibrosis in ECM.


Figure 1. Cardiac dysfunction can be derived from structural abnormality (cardiac hypertrophy and fibrosis) and also from the Ca2+ signaling dyshomeostasis.


Figure 2. Pathophysiological mechanisms responsible for DCM. The persistent presence of hyperglycemia, induce AGEs, and both hyperglycemia and hyperlipidemia cause energy metabolic disturbance along with mitochondrial damage and dysfunction. Mitochondrial dysfunction results in excessive ROS formation and calcium signaling abnormality, leading to cardiomyocyte death. The oxidative stress and cell death would cause inflammation, which feedback to further increase oxidative stress and cell death. Compensative cardiac hypertrophy occurs and meanwhile also evocates certain cytokines and inflammation that stimulates fibroblasts in the interstitium to differentiate into myofibroblasts that generate excess ECM accumulation, leading to fibrosis. These abnormal calcium signaling and cardiac structural remodeling result in the dysfunction of cardiac contractility, that is, cardiomyopathy.


Figure 3. Secreted matrix protein (including various collagens) can be accumulated in the interstitium, ECM, leading to the pathological level of fibrosis. In fact, the balance of MMPs and TIMPs also determines the pathogenic fibrosis in ECM.
References
 1.Airaksinen KE, Salmela PI, Linnaluoto MK, Ikaheimo MJ, Ahola K, Ryhanen LJ. Diminished arterial elasticity in diabetes: Association with fluorescent advanced glycosylation end products in collagen. Cardiovasc Res 27(6): 942‐945, 1993.
 2.Akash MSH, Rehman K, Chen S. Role of inflammatory mechanisms in pathogenesis of type 2 diabetes mellitus. J Cell Biochem 114(3): 525‐531, 2013.
 3.Aneja A, Tang WHW, Bansilal S, Garcia MJ, Farkouh ME. Diabetic cardiomyopathy: Insights into pathogenesis, diagnostic challenges, and therapeutic options. Am J Med 121(9): 748‐757, 2008.
 4.Aoyama T, Peters JM, Iritani N, Nakajima T, Furihata K, Hashimoto T, Gonzalez FJ. Altered constitutive expression of fatty acid‐metabolizing enzymes in mice lacking the peroxisome proliferator‐activated receptor alpha (PPARalpha). J Biol Chem 273(10): 5678‐5684, 1998.
 5.Aragno M, Mastrocola R, Medana C, Catalano MG, Vercellinatto I, Danni O, Boccuzzi G. Oxidative stress‐dependent impairment of cardiac‐specific transcription factors in experimental diabetes. Endocrinology 147(12): 5967‐5974, 2006.
 6.Ares‐Carrasco S, Picatoste B, Benito‐Martín A, Zubiri I, Sanz AB, Sánchez‐Niño MD, Ortiz A, Egido J, Tuñón J, Lorenzo O. Myocardial fibrosis and apoptosis, but not inflammation, are present in long‐term experimental diabetes. Am J Physiol Heart Circ Physiol 297(6): H2109‐H2119, 2009.
 7.Ashrafian H, Czibik G, Bellahcene M, Aksentijevic D, Smith AC, Mitchell SJ, Dodd MS, Kirwan J, Byrne JJ, Ludwig C, Isackson H, Yavari A, Stottrup NB, Contractor H, Cahill TJ, Sahgal N, Ball DR, Birkler RI, Hargreaves I, Tennant DA, Land J, Lygate CA, Johannsen M, Kharbanda RK, Neubauer S, Redwood C, de Cabo R, Ahmet I, Talan M, Gunther UL, Robinson AJ, Viant MR, Pollard PJ, Tyler DJ, Watkins H. Fumarate is cardioprotective via activation of the Nrf2 antioxidant pathway. Cell Metab 15(3): 361‐371, 2012.
 8.Asrih M, Steffens S. Emerging role of epigenetics and miRNA in diabetic cardiomyopathy. Cardiovasc Pathol 22(2): 117‐125, 2013.
 9.Bagul PK, Deepthi N, Sultana R, Banerjee SK. Resveratrol ameliorates cardiac oxidative stress in diabetes through deacetylation of NFkB‐p65 and histone 3. J Nutr Biochem 26(11): 1298‐1307, 2015.
 10.Bai T, Wang F, Mellen N, Zheng Y, Cai L. Diabetic cardiomyopathy: Role of the E3 ubiquitin ligase. Am J Physiol Endocrinol Metab 310(7): E473‐E483, 2016.
 11.Bai T, Wang F, Zheng Y, Liang Q, Wang Y, Kong J, Cai L. Myocardial redox status, mitophagy and cardioprotection: A potential way to amend diabetic heart?. Clin Sci (Lond) 130(17): 1511‐1521, 2016.
 12.Bai Y, Cui W, Xin Y, Miao X, Barati MT, Zhang C, Chen Q, Tan Y, Cui T, Zheng Y, Cai L. Prevention by sulforaphane of diabetic cardiomyopathy is associated with up‐regulation of Nrf2 expression and transcription activation. J Mol Cell Cardiol 57, 82‐95, 2013.
 13.Barger PM, Kelly DP. PPAR signaling in the control of cardiac energy metabolism. Trends Cardiovasc Med 10(6): 238‐245, 2000.
 14.Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, Capeau J, Feve B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw 17(1): 4‐12, 2006.
 15.Beaudoin MS, Perry CG, Arkell AM, Chabowski A, Simpson JA, Wright DC, Holloway GP. Impairments in mitochondrial palmitoyl‐CoA respiratory kinetics that precede development of diabetic cardiomyopathy are prevented by resveratrol in ZDF rats. J Physiol 592(Pt 12): 2519‐2533, 2014.
 16.Belke DD, Larsen TS, Gibbs EM, Severson DL. Altered metabolism causes cardiac dysfunction in perfused hearts from diabetic (db/db) mice. Am J Physiol Endocrinol Metab 279(5): E1104‐E1113, 2000.
 17.Bellot GL, Liu D, Pervaiz S. ROS, autophagy, mitochondria and cancer: Ras, the hidden master? Mitochondrion 13(3): 155‐162, 2013.
 18.Berg TJ, Snorgaard O, Faber J, Torjesen PA, Hildebrandt P, Mehlsen J, Hanssen KF. Serum levels of advanced glycation end products are associated with left ventricular diastolic function in patients with type 1 diabetes. Diabetes Care 22(7): 1186‐1190, 1999.
 19.Bernardo BC, Weeks KL, Pretorius L, McMullen JR. Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther 128(1): 191‐227, 2010.
 20.Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer UD, Besch HR, Jr. Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+‐ATPase. Diabetes 53(2): 463‐473, 2004.
 21.Bohlen HG. Microvascular consequences of obesity and diabetes. Compr Physiol 1(Suppl. 9): 896‐930, 2011. doi: 10.1002/cphy.cp020419.
 22.Bojunga J, Nowak D, Mitrou PS, Hoelzer D, Zeuzem S, Chow KU. Antioxidative treatment prevents activation of death‐receptor‐ and mitochondrion‐dependent apoptosis in the hearts of diabetic rats. Diabetologia 47(12): 2072‐2080, 2004.
 23.Bostjancic E, Zidar N, Stajer D, Glavac D. MicroRNAs miR‐1, miR‐133a, miR‐133b and miR‐208 are dysregulated in human myocardial infarction. Cardiology 115(3): 163‐169, 2010.
 24.Boyer JK, Thanigaraj S, Schechtman KB, Perez JE. Prevalence of ventricular diastolic dysfunction in asymptomatic, normotensive patients with diabetes mellitus. Am J Cardiol 93(7): 870‐875, 2004.
 25.Brasacchio D, Okabe J, Tikellis C, Balcerczyk A, George P, Baker EK, Calkin AC, Brownlee M, Cooper ME, El‐Osta A. Hyperglycemia induces a dynamic cooperativity of histone methylase and demethylase enzymes associated with gene‐activating epigenetic marks that coexist on the lysine tail. Diabetes 58(5): 1229‐1236, 2009.
 26.Brooks BA, Franjic B, Ban CR, Swaraj K, Yue DK, Celermajer DS, Twigg SM. Diastolic dysfunction and abnormalities of the microcirculation in type 2 diabetes. Diabetes Obes Metab 10(9): 739‐746, 2008.
 27.Bryan S, Baregzay B, Spicer D, Singal PK, Khaper N. Redox‐inflammatory synergy in the metabolic syndrome. Can J Physiol Pharmacol 91(1): 22‐30, 2013.
 28.Buchanan J, Mazumder PK, Hu P, Chakrabarti G, Roberts MW, Yun UJ, Cooksey RC, Litwin SE, Abel ED. Reduced cardiac efficiency and altered substrate metabolism precedes the onset of hyperglycemia and contractile dysfunction in two mouse models of insulin resistance and obesity. Endocrinology 146(12): 5341‐5349, 2005.
 29.Buck SW, Gallo CM, Smith JS. Diversity in the Sir2 family of protein deacetylases. J Leukoc Biol 75(6): 939‐950, 2004.
 30.Bugger H, Abel ED. Rodent models of diabetic cardiomyopathy. Dis Model Mech 2(9‐10): 454‐466, 2009.
 31.Bugger H, Abel ED. Mitochondria in the diabetic heart. Cardiovasc Res 88(2): 229‐240, 2010.
 32.Bugger H, Abel ED. Molecular mechanisms of diabetic cardiomyopathy. Diabetologia 57(4): 660‐671, 2014.
 33.Bugger H, Bode C. The vulnerable myocardium. Diabetic cardiomyopathy. Hamostaseologie 35(1): 17‐24, 2015.
 34.Bugger H, Boudina S, Hu XX, Tuinei J, Zaha VG, Theobald HA, Yun UJ, McQueen AP, Wayment B, Litwin SE, Abel ED. Type 1 diabetic akita mouse hearts are insulin sensitive but manifest structurally abnormal mitochondria that remain coupled despite increased uncoupling protein 3. Diabetes 57(11): 2924‐2932, 2008.
 35.Bugyei‐Twum A, Advani A, Advani SL, Zhang Y, Thai K, Kelly DJ, Connelly KA. High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovasc Diabetol 13: 89, 2014.
 36.Cai L, Kang YJ. Oxidative stress and diabetic cardiomyopathy: A brief review. Cardiovasc Toxicol 1(3): 181‐193, 2001.
 37.Cai L, Wang J, Li Y, Sun X, Wang L, Zhou Z, Kang YJ. Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes 54(6): 1829‐1837, 2005.
 38.Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ. Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48(8): 1688‐1697, 2006.
 39.Care A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, Bang ML, Segnalini P, Gu Y, Dalton ND, Elia L, Latronico MV, Hoydal M, Autore C, Russo MA, Dorn GW, II, Ellingsen O, Ruiz‐Lozano P, Peterson KL, Croce CM, Peschle C, Condorelli G. MicroRNA‐133 controls cardiac hypertrophy. Nat Med 13(5): 613‐618, 2007.
 40.Ceriello A, Ihnat MA, Thorpe JE. Clinical review 2: The “metabolic memory”: Is more than just tight glucose control necessary to prevent diabetic complications? J Clin Endocrinol Metab 94(2): 410‐415, 2009.
 41.Chen J, Zhang Z, Cai L. Diabetic cardiomyopathy and its prevention by nrf2: Current status. Diabetes Metab J 38(5): 337‐345, 2014.
 42.Chen S, Evans T, Mukherjee K, Karmazyn M, Chakrabarti S. Diabetes‐induced myocardial structural changes: Role of endothelin‐1 and its receptors. J Mol Cell Cardiol 32(9): 1621‐1629, 2000.
 43.Chen S, Puthanveetil P, Feng B, Matkovich SJ, Dorn GW, II, Chakrabarti S. Cardiac miR‐133a overexpression prevents early cardiac fibrosis in diabetes. J Cell Mol Med 18(3): 415‐421, 2014.
 44.Chen SS, Jenkins AJ, Majewski H. Elevated plasma prostaglandins and acetylated histone in monocytes in Type 1 diabetes patients. Diabet Med 26(2): 182‐186, 2009.
 45.Chen Y, Du J, Zhao YT, Zhang L, Lv G, Zhuang S, Qin G, Zhao TC. Histone deacetylase (HDAC) inhibition improves myocardial function and prevents cardiac remodeling in diabetic mice. Cardiovasc Diabetol 14: 99, 2015.
 46.Cheng YS, Dai DZ, Dai Y, Zhu DD, Liu BC. Exogenous hydrogen sulphide ameliorates diabetic cardiomyopathy in rats by reversing disordered calcium‐handling system in sarcoplasmic reticulum. J Pharm Pharmacol 68(3): 379‐388, 2016.
 47.Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age‐related disease: From mechanisms to therapy. Nat Med 21(12): 1424‐1435, 2015.
 48.Choi J, Ravipati A, Nimmagadda V, Schubert M, Castellani RJ, Russell JW. Potential roles of PINK1 for increased PGC‐1alpha‐mediated mitochondrial fatty acid oxidation and their associations with Alzheimer disease and diabetes. Mitochondrion 18: 41‐48, 2014.
 49.Chowdhry MF, Vohra HA, Galinanes M. Diabetes increases apoptosis and necrosis in both ischemic and nonischemic human myocardium: Role of caspases and poly‐adenosine diphosphate‐ribose polymerase. J Thorac Cardiovasc Surg 134(1): 124‐131, 131 e121‐123, 2007.
 50.Clouaire T, Stancheva I. Methyl‐CpG binding proteins: Specialized transcriptional repressors or structural components of chromatin?. Cell Mol Life Sci 65(10): 1509‐1522, 2008.
 51.Cohn JN, Ferrari R, Sharpe N. Cardiac remodeling—concepts and clinical implications: A consensus paper from an international forum on cardiac remodeling. J Am Coll Cardiol 35(3): 569‐582, 2000.
 52.Cosson S, Kevorkian JP. Left ventricular diastolic dysfunction: An early sign of diabetic cardiomyopathy? Diabetes Metab 29(5): 455‐466, 2003.
 53.Cusi K, Defronzo RA. Pathogenesis of type 2 diabetes. Compr Physiol 1(Suppl. 21): 1115‐1168, 2011. doi: 10.1002/cphy.cp070237.
 54.Deng F, Xu X, Chen YH. The role of miR‐1 in the heart: From cardiac morphogenesis to physiological function. Human Genet Embryol 4: 119, 2014. doi: 10.4172/2161-0436.1000119.
 55.Devereux RB, Roman MJ, Paranicas M, O'Grady MJ, Lee ET, Welty TK, Fabsitz RR, Robbins D, Rhoades ER, Howard BV. Impact of diabetes on cardiac structure and function: The strong heart study. Circulation 101(19): 2271‐2276, 2000.
 56.Di Bello V, Talarico L, Picano E, Di Muro C, Landini L, Paterni M, Matteucci E, Giusti C, Giampietro O. Increased echodensity of myocardial wall in the diabetic heart: An ultrasound tissue characterization study. J Am Coll Cardiol 25(6): 1408‐1415, 1995.
 57.Diamant M, Lamb HJ, Smit JW, de Roos A, Heine RJ. Diabetic cardiomyopathy in uncomplicated type 2 diabetes is associated with the metabolic syndrome and systemic inflammation. Diabetologia 48(8): 1669‐1670, 2005.
 58.DiLoreto R, Murphy CT. The cell biology of aging. Mol Biol Cell 26(25): 4524‐4531, 2015.
 59.Dinh W, Futh R, Nickl W, Krahn T, Ellinghaus P, Scheffold T, Bansemir L, Bufe A, Barroso MC, Lankisch M. Elevated plasma levels of TNF‐alpha and interleukin‐6 in patients with diastolic dysfunction and glucose metabolism disorders. Cardiovasc Diabetol 8: 58, 2009.
 60.Donato AJ, Morgan RG, Walker AE, Lesniewski LA. Cellular and molecular biology of aging endothelial cells. J Mol Cell Cardiol 89(Pt B): 122‐135, 2015.
 61.Drummond MJ, Addison O, Brunker L, Hopkins PN, McClain DA, LaStayo PC, Marcus RL. Downregulation of E3 ubiquitin ligases and mitophagy‐related genes in skeletal muscle of physically inactive, frail older women: A cross‐sectional comparison. J Gerontol A Biol Sci Med Sci 69(8): 1040‐1048, 2014.
 62.Duckworth W, Abraira C, Moritz T, Reda D, Emanuele N, Reaven PD, Zieve FJ, Marks J, Davis SN, Hayward R, Warren SR, Goldman S, McCarren M, Vitek ME, Henderson WG, Huang GD, Investigators V. Glucose control and vascular complications in veterans with type 2 diabetes. N Engl J Med 360(2): 129‐139, 2009.
 63.Duncan JG. Mitochondrial dysfunction in diabetic cardiomyopathy. Biochim Biophys Acta 1813(7): 1351‐1359, 2011.
 64.Egger G, Liang G, Aparicio A, Jones PA. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990): 457‐463, 2004.
 65.Eguchi K, Boden‐Albala B, Jin Z, Rundek T, Sacco RL, Homma S, Di Tullio MR. Association between diabetes mellitus and left ventricular hypertrophy in a multiethnic population. Am J Cardiol 101(12): 1787‐1791, 2008.
 66.Enzlin P, Rosen R, Wiegel M, Brown J, Wessells H, Gatcomb P, Rutledge B, Chan KL, Cleary PA. Sexual dysfunction in women with type 1 diabetes: Long‐term findings from the DCCT/EDIC study cohort. Diabetes Care 32(5): 780‐785, 2009.
 67.Ernande L, Bergerot C, Rietzschel ER, De Buyzere ML, Thibault H, Pignonblanc PG, Croisille P, Ovize M, Groisne L, Moulin P, Gillebert TC, Derumeaux G. Diastolic dysfunction in patients with type 2 diabetes mellitus: Is it really the first marker of diabetic cardiomyopathy?. J Am Soc Echocardiogr 24(11): 1268‐1275 e1261, 2011.
 68.Fang ZY, Schull‐Meade R, Leano R, Mottram PM, Prins JB, Marwick TH. Screening for heart disease in diabetic subjects. Am Heart J 149(2): 349‐354, 2005.
 69.Fedak PW, Verma S, Weisel RD, Li RK. Cardiac remodeling and failure from molecules to man (Part II). Cardiovasc Pathol 14(2): 49‐60, 2005.
 70.Feng B, Chen S, George B, Feng Q, Chakrabarti S. miR133a regulates cardiomyocyte hypertrophy in diabetes. Diabetes Metab Res Rev 26(1): 40‐49, 2010.
 71.Figueira MF, Monnerat‐Cahli G, Medei E, Carvalho AB, Morales MM, Lamas ME, da Fonseca RN, Souza‐Menezes J. MicroRNAs: Potential therapeutic targets in diabetic complications of the cardiovascular and renal systems. Acta Physiol (Oxf) 211(3): 491‐500, 2014.
 72.Fiordaliso F, Cuccovillo I, Bianchi R, Bai A, Doni M, Salio M, De Angelis N, Ghezzi P, Latini R, Masson S. Cardiovascular oxidative stress is reduced by an ACE inhibitor in a rat model of streptozotocin‐induced diabetes. Life Sci 79(2): 121‐129, 2006.
 73.Fischer VW, Barner HB, Larose LS. Pathomorphologic aspects of muscular tissue in diabetes mellitus. Hum Pathol 15(12): 1127‐1136, 1984.
 74.Fridlyanskaya I, Alekseenko L, Nikolsky N. Senescence as a general cellular response to stress: A mini‐review. Exp Gerontol 72: 124‐128, 2015.
 75.Gaikwad AB, Gupta J, Tikoo K. Epigenetic changes and alteration of Fbn1 and Col3A1 gene expression under hyperglycaemic and hyperinsulinaemic conditions. Biochem J 432(2): 333‐341, 2010.
 76.Gaikwad AB, Sayyed SG, Lichtnekert J, Tikoo K, Anders HJ. Renal failure increases cardiac histone h3 acetylation, dimethylation, and phosphorylation and the induction of cardiomyopathy‐related genes in type 2 diabetes. Am J Pathol 176(3): 1079‐1083, 2010.
 77.Galassetti P, Riddell MC. Exercise and type 1 diabetes (T1DM). Compr Physiol 3(3): 1309‐1336, 2013.
 78.Gerstein HC, Miller ME, Byington RP, Goff DC, Jr, Bigger JT, Buse JB, Cushman WC, Genuth S, Ismail‐Beigi F, Grimm RH, Jr, Probstfield JL, Simons‐Morton DG, Friedewald WT. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 358(24): 2545‐2559, 2008.
 79.Gibbs EM, Stock JL, McCoid SC, Stukenbrok HA, Pessin JE, Stevenson RW, Milici AJ, McNeish JD. Glycemic improvement in diabetic db/db mice by overexpression of the human insulin‐regulatable glucose transporter (GLUT4). J Clin Invest 95(4): 1512‐1518, 1995.
 80.Gomes LC, Benedetto GD, Scorrano L. During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat Cell Biol 13(5): 589‐598, 2011.
 81.Goyal BR, Mehta AA. Diabetic cardiomyopathy: pathophysiological mechanisms and cardiac dysfuntion. Hum Exp Toxicol 32(6): 571‐590, 2013.
 82.Gray SG, De Meyts P. Role of histone and transcription factor acetylation in diabetes pathogenesis. Diabetes Metab Res Rev 21(5): 416‐433, 2005.
 83.Group AC, Patel A, MacMahon S, Chalmers J, Neal B, Billot L, Woodward M, Marre M, Cooper M, Glasziou P, Grobbee D, Hamet P, Harrap S, Heller S, Liu L, Mancia G, Mogensen CE, Pan C, Poulter N, Rodgers A, Williams B, Bompoint S, de Galan BE, Joshi R, Travert F. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 358(24): 2560‐2572, 2008.
 84.Gu K, Cowie CC, Harris MI. Mortality in adults with and without diabetes in a national cohort of the U.S. population, 1971‐1993. Diabetes Care 21(7): 1138‐1145, 1998.
 85.Guo YN, Wang JC, Cai GY, Hu X, Cui SY, Lv Y, Yin Z, Fu B, Hong Q, Chen XM. AMPK‐mediated downregulation of connexin43 and premature senescence of mesangial cells under high‐glucose conditions. Exp Gerontol 51: 71‐81, 2014.
 86.Ha JW, Lee HC, Kang ES, Ahn CM, Kim JM, Ahn JA, Lee SW, Choi EY, Rim SJ, Oh JK, Chung N. Abnormal left ventricular longitudinal functional reserve in patients with diabetes mellitus: Implication for detecting subclinical myocardial dysfunction using exercise tissue Doppler echocardiography. Heart 93(12): 1571‐1576, 2007.
 87.Haberland M, Montgomery RL, Olson EN. The many roles of histone deacetylases in development and physiology: Implications for disease and therapy. Nat Rev Genet 10(1): 32‐42, 2009.
 88.Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 22(17): 1587‐1605, 2015.
 89.Hariharan N, Sussman MA. Cardiac aging—Getting to the stem of the problem. J Mol Cell Cardiol 83: 32‐36, 2015.
 90.Held NM, Houtkooper RH. Mitochondrial quality control pathways as determinants of metabolic health. Bioessays 37(8): 867‐876, 2015.
 91.Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10‐year follow‐up of intensive glucose control in type 2 diabetes. N Engl J Med 359(15): 1577‐1589, 2008.
 92.Horn MA. Cardiac physiology of aging: Extracellular considerations. Compr Physiol 5(3): 1069‐1121, 2015.
 93.Hu P, Lai D, Lu P, Gao J, He H. ERK and Akt signaling pathways are involved in advanced glycation end product‐induced autophagy in rat vascular smooth muscle cells. Int J Mol Med 29(4): 613‐618, 2012.
 94.Hutchinson KR, Lord CK, West TA, Stewart JA, Jr. Cardiac fibroblast‐dependent extracellular matrix accumulation is associated with diastolic stiffness in type 2 diabetes. PLoS One 8(8): e72080, 2013.
 95.Huynh K, Bernardo BC, McMullen JR, Ritchie RH. Diabetic cardiomyopathy: Mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142(3): 375‐415, 2014.
 96.Huynh K, Kiriazis H, Du XJ, Love JE, Gray SP, Jandeleit‐Dahm KA, McMullen JR, Ritchie RH. Targeting the upregulation of reactive oxygen species subsequent to hyperglycemia prevents type 1 diabetic cardiomyopathy in mice. Free Radic Biol Med 60: 307‐317, 2013.
 97.Ido Y, Duranton A, Lan F, Weikel KA, Breton L, Ruderman NB. Resveratrol prevents oxidative stress‐induced senescence and proliferative dysfunction by activating the AMPK‐FOXO3 cascade in cultured primary human keratinocytes. PLoS One 10(2): e0115341, 2015.
 98.International Diabetes Federation, IDF Diabetes Atlas, 7thed. Brussels, Belgium: International Diabetes Federation, 2015.
 99.Jadhav A, Tiwari S, Lee P, Ndisang JF. The heme oxygenase system selectively enhances the anti‐inflammatory macrophage‐M2 phenotype, reduces pericardial adiposity, and ameliorated cardiac injury in diabetic cardiomyopathy in Zucker diabetic fatty rats. J Pharmacol Exp Ther 345(2): 239‐249, 2013.
 100.Jellis C, Wright J, Kennedy D, Sacre J, Jenkins C, Haluska B, Martin J, Fenwick J, Marwick TH. Association of imaging markers of myocardial fibrosis with metabolic and functional disturbances in early diabetic cardiomyopathy. Circ Cardiovasc Imaging 4(6): 693‐702, 2011.
 101.Jensen MT, Sogaard P, Andersen HU, Bech J, Hansen TF, Galatius S, Jorgensen PG, Biering‐Sorensen T, Mogelvang R, Rossing P, Jensen JS. Prevalence of systolic and diastolic dysfunction in patients with type 1 diabetes without known heart disease: The Thousand & 1 Study. Diabetologia 57(4): 672‐680, 2014.
 102.Jermendy G. Late effect of treatment for reducing cardiovascular risk—a hypothesis on cardiometabolic therapeutic memory. Med Hypotheses 73(1): 73‐79, 2009.
 103.Jiang M, Zhang Y, Liu M, Lan MS, Fei J, Fan W, Gao X, Lu D. Hypermethylation of hepatic glucokinase and L‐type pyruvate kinase promoters in high‐fat diet‐induced obese rats. Endocrinology 152(4): 1284‐1289, 2011.
 104.Jiang MH, Fei J, Lan MS, Lu ZP, Liu M, Fan WW, Gao X, Lu DR. Hypermethylation of hepatic Gck promoter in ageing rats contributes to diabetogenic potential. Diabetologia 51(8): 1525‐1533, 2008.
 105.Johnson EJ, Dieter BP, Marsh SA. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci 123: 100‐106, 2015.
 106.Jweied EE, McKinney RD, Walker LA, Brodsky I, Geha AS, Massad MG, Buttrick PM, de Tombe PP. Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 289(6): H2478‐H2483, 2005.
 107.Kajstura J, Fiordaliso F, Andreoli AM, Li B, Chimenti S, Medow MS, Limana F, Nadal‐Ginard B, Leri A, Anversa P. IGF‐1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II‐mediated oxidative stress. Diabetes 50(6): 1414‐1424, 2001.
 108.Kaneto H, Kajimoto Y, Fujitani Y, Matsuoka T, Sakamoto K, Matsuhisa M, Yamasaki Y, Hori M. Oxidative stress induces p21 expression in pancreatic islet cells: Possible implication in beta‐cell dysfunction. Diabetologia 42(9): 1093‐1097, 1999.
 109.Kannel WB, McGee DL. Diabetes and cardiovascular disease: The Framingham study. JAMA 241(19): 2035‐2038, 1979.
 110.Kawai Y, Garduno L, Theodore M, Yang J, Arinze IJ. Acetylation‐deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2‐related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286(9): 7629‐7640, 2011.
 111.Kayama Y, Raaz U, Jagger A, Adam M, Schellinger IN, Sakamoto M, Suzuki H, Toyama K, Spin JM, Tsao PS. Diabetic cardiovascular disease induced by oxidative stress. Int J Mol Sci 16(10): 25234‐25263, 2015.
 112.Kitada K, Nakano D, Ohsaki H, Hitomi H, Minamino T, Yatabe J, Felder RA, Mori H, Masaki T, Kobori H, Nishiyama A. Hyperglycemia causes cellular senescence via a SGLT2‐ and p21‐dependent pathway in proximal tubules in the early stage of diabetic nephropathy. J Diabetes Complications 28(5): 604‐611, 2014.
 113.Klein JB, Wang GW, Zhou Z, Buridi A, Kang YJ. Inhibition of tumor necrosis factor‐alpha‐dependent cardiomyocyte apoptosis by metallothionein. Cardiovasc Toxicol 2(3): 209‐218, 2002.
 114.Kobayashi S, Liang Q. Autophagy and mitophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852(2): 252‐261, 2015.
 115.Kouzarides T. Chromatin modifications and their function. Cell 128(4): 693‐705, 2007.
 116.Kowluru RA, Kanwar M, Kennedy A. Metabolic memory phenomenon and accumulation of peroxynitrite in retinal capillaries. Exp Diabetes Res 2007: 21976, 2007.
 117.Kranstuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, Lacombe VA. Advanced glycation end product cross‐link breaker attenuates diabetes‐induced cardiac dysfunction by improving sarcoplasmic reticulum calcium handling. Front Physiol 3: 292, 2012.
 118.Kuan CJ, al‐Douahji M, Shankland SJ. The cyclin kinase inhibitor p21WAF1, CIP1 is increased in experimental diabetic nephropathy: Potential role in glomerular hypertrophy. J Am Soc Nephrol 9(6): 986‐993, 1998.
 119.Kuethe F, Sigusch HH, Bornstein SR, Hilbig K, Kamvissi V, Figulla HR. Apoptosis in patients with dilated cardiomyopathy and diabetes: A feature of diabetic cardiomyopathy?. Horm Metab Res 39(9): 672‐676, 2007.
 120.Kümpers P, Gueler F, Rong S, Mengel M, Tossidou I, Peters I, Haller H, Schiffer M. Leptin is a coactivator of TGF‐β in unilateral ureteral obstructive kidney disease. Am J Physiol Renal Physiol 293(4): F1355‐F1362, 2007.
 121.Kuroda Y, Mitsui T, Kunishige M, Shono M, Akaike M, Azuma H, Matsumoto T. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet 15(6): 883‐895, 2006.
 122.Kuster GM, Lancel S, Zhang J, Communal C, Trucillo MP, Lim CC, Pfister O, Weinberg EO, Cohen RA, Liao R, Siwik DA, Colucci WS. Redox‐mediated reciprocal regulation of SERCA and Na+–Ca2+ exchanger contributes to sarcoplasmic reticulum Ca2+ depletion in cardiac myocytes. Free Radic Biol Med 48(9): 1182‐1187, 2010.
 123.Lapolla A, Piarulli F, Sartore G, Ceriello A, Ragazzi E, Reitano R, Baccarin L, Laverda B, Fedele D. Advanced glycation end products and antioxidant status in type 2 diabetic patients with and without peripheral artery disease. Diabetes Care 30(3): 670‐676, 2007.
 124.Launer LJ, Miller ME, Williamson JD, Lazar RM, Gerstein HC, Murray AM, Sullivan M, Horowitz KR, Ding J, Marcovina S, Lovato LC, Lovato J, Margolis KL, O'Connor P, Lipkin EW, Hirsch J, Coker L, Maldjian J, Sunshine JL, Truwit C, Davatzikos C, Bryan RN, investigators AM. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): A randomised open‐label substudy. Lancet Neurol 10(11): 969‐977, 2011.
 125.Lee M, Gardin JM, Lynch JC, Smith VE, Tracy RP, Savage PJ, Szklo M, Ward BJ. Diabetes mellitus and echocardiographic left ventricular function in free‐living elderly men and women: The Cardiovascular Health Study. Am Heart J 133(1): 36‐43, 1997.
 126.Ling C, Del Guerra S, Lupi R, Ronn T, Granhall C, Luthman H, Masiello P, Marchetti P, Groop L, Del Prato S. Epigenetic regulation of PPARGC1A in human type 2 diabetic islets and effect on insulin secretion. Diabetologia 51(4): 615‐622, 2008.
 127.Ling H‐Y, Hu B, Feng S‐D, Liao D‐F, Wen G‐B. The role of epigenetic regulation in diabetes and its complications. Prog Biochem Biophys 39(1): 14‐21, 2012. doi: 10.3724/SP.J.1206.2011.00230.
 128.Lo MC, Chen MH, Lee WS, Lu CI, Chang CR, Kao SH, Lee HM. Nepsilon‐(carboxymethyl) lysine‐induced mitochondrial fission and mitophagy causes decreased insulin secretion from beta cells. Am J Physiol Endocrinol Metab 309(10): E829‐839, 2015.
 129.Lopes‐Virella MF, Carter RE, Gilbert GE, Klein RL, Jaffa M, Jenkins AJ, Lyons TJ, Garvey WT, Virella G. Risk factors related to inflammation and endothelial dysfunction in the DCCT/EDIC cohort and their relationship with nephropathy and macrovascular complications. Diabetes Care 31(10): 2006‐2012, 2008.
 130.Lopez B, Gonzalez A, Diez J. Circulating biomarkers of collagen metabolism in cardiac diseases. Circulation 121(14): 1645‐1654, 2010.
 131.Lu H, Buchan RJ, Cook SA. MicroRNA‐223 regulates Glut4 expression and cardiomyocyte glucose metabolism. Cardiovasc Res 86(3): 410‐420, 2010.
 132.Ma H, Li SY, Xu P, Babcock SA, Dolence EK, Brownlee M, Li J, Ren J. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up‐regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med 13(8b): 1751‐1764, 2009.
 133.Malhotra A,Sanghi V. Regulation of contractile proteins in diabetic heart. Cardiovasc Res 34(1): 34‐40, 1997.
 134.Markou T, Cullingford TE, Giraldo A, Weiss SC, Alsafi A, Fuller SJ, Clerk A, Sugden PH. Glycogen synthase kinases 3alpha and 3beta in cardiac myocytes: Regulation and consequences of their inhibition. Cell Signal 20(1): 206‐218, 2008.
 135.Matkovich SJ, Wang W, Tu Y, Eschenbacher WH, Dorn LE, Condorelli G, Diwan A, Nerbonne JM, Dorn GW, II. MicroRNA‐133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure‐overloaded adult hearts. Circ Res 106(1): 166‐175, 2010.
 136.Maytin M, Colucci WS. Molecular and cellular mechanisms of myocardial remodeling. J Nucl Cardiol 9(3): 319‐327, 2002.
 137.Mazumder PK, O'Neill BT, Roberts MW, Buchanan J, Yun UJ, Cooksey RC, Boudina S, Abel ED. Impaired cardiac efficiency and increased fatty acid oxidation in insulin‐resistant ob/ob mouse hearts. Diabetes 53(9): 2366‐2374, 2004.
 138.Mei Y, Thompson MD, Cohen RA, Tong X. Autophagy and oxidative stress in cardiovascular diseases. Biochim Biophys Acta 1852(2): 243‐251, 2015.
 139.Meister G, Tuschl T. Mechanisms of gene silencing by double‐stranded RNA. Nature 431(7006): 343‐349, 2004.
 140.Miao F, Gonzalo IG, Lanting L, Natarajan R. In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions. J Biol Chem 279(17): 18091‐18097, 2004.
 141.Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H, Ishikawa F, Komuro I. A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15(9): 1082‐1087, 2009.
 142.Mishra PK, Givvimani S, Chavali V, Tyagi SC. Cardiac matrix: A clue for future therapy. Biochim Biophys Acta 1832(12): 2271‐2276, 2013.
 143.Mizushige K, Yao L, Noma T, Kiyomoto H, Yu Y, Hosomi N, Ohmori K, Matsuo H. Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin‐resistant prediabetic stage of a type II diabetic rat model. Circulation 101(8): 899‐907, 2000.
 144.Monkemann H, De Vriese AS, Blom HJ, Kluijtmans LA, Heil SG, Schild HH, Golubnitschaja O. Early molecular events in the development of the diabetic cardiomyopathy. Amino Acids 23(1‐3): 331‐336, 2002.
 145.Montaigne D, Marechal X, Coisne A, Debry N, Modine T, Fayad G, Potelle C, El Arid JM, Mouton S, Sebti Y, Duez H, Preau S, Remy‐Jouet I, Zerimech F, Koussa M, Richard V, Neviere R, Edme JL, Lefebvre P, Staels B. Myocardial contractile dysfunction is associated with impaired mitochondrial function and dynamics in type 2 diabetic but not in obese patients. Circulation 130(7): 554‐564, 2014.
 146.Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular actions of insulin. Endocr Rev 28(5): 463‐491, 2007.
 147.Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ, Raskin P, Zinman B. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 353(25): 2643‐2653, 2005.
 148.Ng AC, Auger D, Delgado V, van Elderen SG, Bertini M, Siebelink HM, van der Geest RJ, Bonetti C, van der Velde ET, de Roos A, Smit JW, Leung DY, Bax JJ, Lamb HJ. Association between diffuse myocardial fibrosis by cardiac magnetic resonance contrast‐enhanced T(1) mapping and subclinical myocardial dysfunction in diabetic patients: A pilot study. Circ Cardiovasc Imaging 5(1): 51‐59, 2012.
 149.Nicolai S, Rossi A, Di Daniele N, Melino G, Annicchiarico‐Petruzzelli M, Raschella G. DNA repair and aging: The impact of the p53 family. Aging (Albany NY) 7(12): 1050‐1065, 2015.
 150.Nikoshkov A, Sunkari VG, Savu O, Forsberg E, Catrina S‐B, Brismar K. Epigenetic DNA methylation in the promoters of the Igf1 receptor and insulin receptor genes in db/db mice. Epigenetics 6(4): 405‐409, 2011.
 151.Nishida K, Taneike M, Otsu K. The role of autophagic degradation in the heart. J Mol Cell Cardiol 78: 73‐79, 2015.
 152.Norton GR, Candy G, Woodiwiss AJ. Aminoguanidine prevents the decreased myocardial compliance produced by streptozotocin‐induced diabetes mellitus in rats. Circulation 93(10): 1905‐1912, 1996.
 153.Nunoda S, Genda A, Sugihara N, Nakayama A, Mizuno S, Takeda R. Quantitative approach to the histopathology of the biopsied right ventricular myocardium in patients with diabetes mellitus. Heart Vessels 1(1): 43‐47, 1985.
 154.Ouyang C, You J, Xie Z. The interplay between autophagy and apoptosis in the diabetic heart. J Mol Cell Cardiol 71: 71‐80, 2014.
 155.Packer M. The neurohormonal hypothesis: A theory to explain the mechanism of disease progression in heart failure. J Am Coll Cardiol 20(1): 248‐254, 1992.
 156.Palmer AK, Tchkonia T, LeBrasseur NK, Chini EN, Xu M, Kirkland JL. Cellular senescence in type 2 diabetes: A therapeutic opportunity. Diabetes 64(7): 2289‐2298, 2015.
 157.Panguluri SK, Tur J, Chapalamadugu KC, Katnik C, Cuevas J, Tipparaju SM. MicroRNA‐301a mediated regulation of Kv4.2 in diabetes: Identification of key modulators. PLoS One 8(4): e60545, 2013.
 158.Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR. Tissue‐specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol Cell Biol 28(20): 6314‐6328, 2008.
 159.Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva‐Ware Z, Dence C, Klein S, Marsala J, Meyer T, Gropler RJ. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109(18): 2191‐2196, 2004.
 160.Pitt B, Zannad F. The detection of myocardial fibrosis: An opportunity to reduce cardiovascular risk in patients with diabetes mellitus?. Circ Cardiovasc Imaging 5(1): 9‐11, 2012.
 161.Pop‐Busui R, Low PA, Waberski BH, Martin CL, Albers JW, Feldman EL, Sommer C, Cleary PA, Lachin JM, Herman WH. Effects of prior intensive insulin therapy on cardiac autonomic nervous system function in type 1 diabetes mellitus: The Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications study (DCCT/EDIC). Circulation 119(22): 2886‐2893, 2009.
 162.Raev DC. Which left ventricular function is impaired earlier in the evolution of diabetic cardiomyopathy? An echocardiographic study of young type I diabetic patients. Diabetes Care 17(7): 633‐639, 1994.
 163.Raut SK, Kumar A, Singh GB, Nahar U, Sharma V, Mittal A, Sharma R, Khullar M. miR‐30c mediates upregulation of Cdc42 and Pak1 in diabetic cardiomyopathy. Cardiovasc Ther 33(3): 89‐97, 2015.
 164.Reddy MA, Natarajan R. Epigenetic mechanisms in diabetic vascular complications. Cardiovasc Res 90(3): 421‐429, 2011.
 165.Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia 58(3): 443‐455, 2015.
 166.Regan TJ, Lyons MM, Ahmed SS, Levinson GE, Oldewurtel HA, Ahmad MR, Haider B. Evidence for cardiomyopathy in familial diabetes mellitus. J Clin Invest 60(4): 884‐899, 1977.
 167.Ritchie RH, Irvine JC, Rosenkranz AC, Patel R, Wendt IR, Horowitz JD, Kemp‐Harper BK. Exploiting cGMP‐based therapies for the prevention of left ventricular hypertrophy: NO* and beyond. Pharmacol Ther 124(3): 279‐300, 2009.
 168.Roman G, Hancu N. Early insulin treatment to prevent cardiovascular disease in prediabetes and overt diabetes. Horm Metab Res 41(2): 116‐122, 2009.
 169.Rosso A, Balsamo A, Gambino R, Dentelli P, Falcioni R, Cassader M, Pegoraro L, Pagano G, Brizzi MF. p53 Mediates the accelerated onset of senescence of endothelial progenitor cells in diabetes. J Biol Chem 281(7): 4339‐4347, 2006.
 170.Rota M, LeCapitaine N, Hosoda T, Boni A, De Angelis A, Padin‐Iruegas ME, Esposito G, Vitale S, Urbanek K, Casarsa C, Giorgio M, Luscher TF, Pelicci PG, Anversa P, Leri A, Kajstura J. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res 99(1): 42‐52, 2006.
 171.Roy S, Sala R, Cagliero E, Lorenzi M. Overexpression of fibronectin induced by diabetes or high glucose: phenomenon with a memory. Proc Natl Acad Sci U S A 87(1): 404‐408, 1990.
 172.Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30(6): 595‐602, 1972.
 173.Russo I, Frangogiannis NG. Diabetes‐associated cardiac fibrosis: Cellular effectors, molecular mechanisms and therapeutic opportunities. J Mol Cell Cardiol 90: 84‐93, 2016.
 174.Rutter MK, Parise H, Benjamin EJ, Levy D, Larson MG, Meigs JB, Nesto RW, Wilson PW, Vasan RS. Impact of glucose intolerance and insulin resistance on cardiac structure and function: Sex‐related differences in the Framingham Heart Study. Circulation 107(3): 448‐454, 2003.
 175.Sari FR, Watanabe K, Thandavarayan RA, Harima M, Zhang S, Muslin AJ, Kodama M, Aizawa Y. 14‐3‐3 protein protects against cardiac endoplasmic reticulum stress (ERS) and ERS‐initiated apoptosis in experimental diabetes. J Pharmacol Sci 113(4): 325‐334, 2010.
 176.Satriano J, Mansoury H, Deng A, Sharma K, Vallon V, Blantz RC, Thomson SC. Transition of kidney tubule cells to a senescent phenotype in early experimental diabetes. Am J Physiol Cell Physiol 299(2): C374‐C380, 2010.
 177.Schannwell CM, Schneppenheim M, Perings S, Plehn G, Strauer BE. Left ventricular diastolic dysfunction as an early manifestation of diabetic cardiomyopathy. Cardiology 98(1‐2): 33‐39, 2002.
 178.Schmidt AM, Stern D. Atherosclerosis and diabetes: The RAGE connection. Curr Atheroscler Rep 2(5): 430‐436, 2000.
 179.Schram MT, Schalkwijk CG, Bootsma AH, Fuller JH, Chaturvedi N, Stehouwer CD, Group EPCS. Advanced glycation end products are associated with pulse pressure in type 1 diabetes: The EURODIAB Prospective Complications Study. Hypertension 46(1): 232‐237, 2005.
 180.Sedgwick B, Riches K, Bageghni SA, O'Regan DJ, Porter KE, Turner NA. Investigating inherent functional differences between human cardiac fibroblasts cultured from nondiabetic and Type 2 diabetic donors. Cardiovasc Pathol 23(4): 204‐210, 2014.
 181.Shahbazian MD, Grunstein M. Functions of site‐specific histone acetylation and deacetylation. Annu Rev Biochem 76: 75‐100, 2007.
 182.Shan ZX, Lin QX, Deng CY, Zhu JN, Mai LP, Liu JL, Fu YH, Liu XY, Li YX, Zhang YY, Lin SG, Yu XY. miR‐1/miR‐206 regulate Hsp60 expression contributing to glucose‐mediated apoptosis in cardiomyocytes. FEBS Lett 584(16): 3592‐3600, 2010.
 183.Shen E, Diao X, Wang X, Chen R, Hu B. MicroRNAs involved in the mitogen‐activated protein kinase cascades pathway during glucose‐induced cardiomyocyte hypertrophy. Am J Pathol 179(2): 639‐650, 2011.
 184.Shen X, Zheng S, Metreveli NS, Epstein PN. Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55(3): 798‐805, 2006.
 185.Shimizu M, Umeda K, Sugihara N, Yoshio H, Ino H, Takeda R, Okada Y, Nakanishi I. Collagen remodelling in myocardia of patients with diabetes. J Clin Pathol 46(1): 32‐36, 1993.
 186.Shinde AV, Frangogiannis NG. Fibroblasts in myocardial infarction: A role in inflammation and repair. J Mol Cell Cardiol 70: 74‐82, 2014.
 187.Shishehbor MH, Hoogwerf BJ, Schoenhagen P, Marso SP, Sun JP, Li J, Klein AL, Thomas JD, Garcia MJ. Relation of hemoglobin A1c to left ventricular relaxation in patients with type 1 diabetes mellitus and without overt heart disease. Am J Cardiol 91(12): 1514‐1517, A1519, 2003.
 188.Shivalkar B, Dhondt D, Goovaerts I, Van Gaal L, Bartunek J, Van Crombrugge P, Vrints C. Flow mediated dilatation and cardiac function in type 1 diabetes mellitus. Am J Cardiol 97(1): 77‐82, 2006.
 189.Singh VP, Le B, Khode R, Baker KM, Kumar R. Intracellular angiotensin II production in diabetic rats is correlated with cardiomyocyte apoptosis, oxidative stress, and cardiac fibrosis. Diabetes 57(12): 3297‐3306, 2008.
 190.Song Y, Song Z, Zhang L, McClain CJ, Kang YJ, Cai L. Diabetes enhances lipopolysaccharide‐induced cardiac toxicity in the mouse model. Cardiovasc Toxicol 3(4): 363‐372, 2003.
 191.Song Y, Wang J, Li XK, Cai L. Zinc and the diabetic heart. Biometals 18(4): 325‐332, 2005.
 192.Song Y, Wang J, Li Y, Du Y, Arteel GE, Saari JT, Kang YJ, Cai L. Cardiac metallothionein synthesis in streptozotocin‐induced diabetic mice, and its protection against diabetes‐induced cardiac injury. Am J Pathol 167(1): 17‐26, 2005.
 193.Souders CA, Bowers SL, Baudino TA. Cardiac fibroblast: The renaissance cell. Circ Res 105(12): 1164‐1176, 2009.
 194.Sun Z, Chin YE, Zhang DD. Acetylation of Nrf2 by p300/CBP augments promoter‐specific DNA binding of Nrf2 during the antioxidant response. Mol Cell Biol 29(10): 2658‐2672, 2009.
 195.Tan KC, Chow WS, Ai VH, Metz C, Bucala R, Lam KS. Advanced glycation end products and endothelial dysfunction in type 2 diabetes. Diabetes Care 25(6): 1055‐1059, 2002.
 196.Tarquini R, Lazzeri C, Pala L, Rotella CM, Gensini GF. The diabetic cardiomyopathy. Acta Diabetol 48(3): 173‐181, 2011.
 197.Thakker GD, Frangogiannis NG, Bujak M, Zymek P, Gaubatz JW, Reddy AK, Taffet G, Michael LH, Entman ML, Ballantyne CM. Effects of diet‐induced obesity on inflammation and remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol 291(5): H2504‐H2514, 2006.
 198.Thapa D, Baseler WA, Jagannathan R, Dabkowski ER, Croston TL, Nichols CE, Shepherd DL, Lewis SE, Hollander JM. miRNA‐141 is a potential regulator of the mitochondrial phosphate carrier (slc25a3) in the type 1 diabetic heart. FASEB J 26(1 Supplement): 869.811, 2012.
 199.Tikellis C, Thomas MC, Harcourt BE, Coughlan MT, Pete J, Bialkowski K, Tan A, Bierhaus A, Cooper ME, Forbes JM. Cardiac inflammation associated with a Western diet is mediated via activation of RAGE by AGEs. Am J Physiol Endocrinol Metab 295(2): E323‐E330, 2008.
 200.Toblli JE, Cao G, DeRosa G, Forcada P. Reduced cardiac expression of plasminogen activator inhibitor 1 and transforming growth factor beta1 in obese Zucker rats by perindopril. Heart 91(1): 80‐86, 2005.
 201.Trost SU, Belke DD, Bluhm WF, Meyer M, Swanson E, Dillmann WH. Overexpression of the sarcoplasmic reticulum Ca(2+)‐ATPase improves myocardial contractility in diabetic cardiomyopathy. Diabetes 51(4): 1166‐1171, 2002.
 202.Tschope C, Walther T, Escher F, Spillmann F, Du J, Altmann C, Schimke I, Bader M, Sanchez‐Ferrer CF, Schultheiss HP, Noutsias M. Transgenic activation of the kallikrein‐kinin system inhibits intramyocardial inflammation, endothelial dysfunction and oxidative stress in experimental diabetic cardiomyopathy. FASEB J 19(14): 2057‐2059, 2005.
 203.Turko IV, Li L, Aulak KS, Stuehr DJ, Chang JY, Murad F. Protein tyrosine nitration in the mitochondria from diabetic mouse heart. Implications to dysfunctional mitochondria in diabetes. J Biol Chem 278(36): 33972‐33977, 2003.
 204.Van Den Eeden SK, Sarma AV, Rutledge BN, Cleary PA, Kusek JW, Nyberg LM, McVary KT, Wessells H. Effect of intensive glycemic control and diabetes complications on lower urinary tract symptoms in men with type 1 diabetes: Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC) study. Diabetes Care 32(4): 664‐670, 2009.
 205.van Empel VP, De Windt LJ. Myocyte hypertrophy and apoptosis: A balancing act. Cardiovasc Res 63(3): 487‐499, 2004.
 206.van Hoeven KH, Factor SM. A comparison of the pathological spectrum of hypertensive, diabetic, and hypertensive‐diabetic heart disease. Circulation 82(3): 848‐855, 1990.
 207.Van Linthout S, Seeland U, Riad A, Eckhardt O, Hohl M, Dhayat N, Richter U, Fischer JW, Bohm M, Pauschinger M, Schultheiss HP, Tschope C. Reduced MMP‐2 activity contributes to cardiac fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 103(4): 319‐327, 2008.
 208.Varga ZV, Giricz Z, Liaudet L, Hasko G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochim Biophys Acta 1852(2): 232‐242, 2015.
 209.Varga ZV, Giricz Z, Liaudet L, Haskó G, Ferdinandy P, Pacher P. Interplay of oxidative, nitrosative/nitrative stress, inflammation, cell death and autophagy in diabetic cardiomyopathy. Biochem Biophys 1852(2): 232‐242, 2015.
 210.Varma A, Das A, Hoke NN, Durrant DE, Salloum FN, Kukreja RC. Anti‐inflammatory and cardioprotective effects of tadalafil in diabetic mice. PLoS One 7(9): e45243, 2012.
 211.Vecellio M, Spallotta F, Nanni S, Colussi C, Cencioni C, Derlet A, Bassetti B, Tilenni M, Carena MC, Farsetti A, Sbardella G, Castellano S, Mai A, Martelli F, Pompilio G, Capogrossi MC, Rossini A, Dimmeler S, Zeiher A, Gaetano C. The histone acetylase activator pentadecylidenemalonate 1b rescues proliferation and differentiation in the human cardiac mesenchymal cells of type 2 diabetic patients. Diabetes 63(6): 2132‐2147, 2014.
 212.Verzola D, Gandolfo MT, Gaetani G, Ferraris A, Mangerini R, Ferrario F, Villaggio B, Gianiorio F, Tosetti F, Weiss U, Traverso P, Mji M, Deferrari G, Garibotto G. Accelerated senescence in the kidneys of patients with type 2 diabetic nephropathy. Am J Physiol Renal Physiol 295(5): F1563‐F1573, 2008.
 213.Wang B, Yang Q, Sun YY, Xing YF, Wang YB, Lu XT, Bai WW, Liu XQ, Zhao YX. Resveratrol‐enhanced autophagic flux ameliorates myocardial oxidative stress injury in diabetic mice. J Cell Mol Med 18(8): 1599‐1611, 2014.
 214.Wang B, Zhu X, Kim Y, Li J, Huang S, Saleem S, Li RC, Xu Y, Dore S, Cao W. Histone deacetylase inhibition activates transcription factor Nrf2 and protects against cerebral ischemic damage. Free Radic Biol Med 52(5): 928‐936, 2012.
 215.Wang H, Bei Y, Lu Y, Sun W, Liu Q, Wang Y, Cao Y, Chen P, Xiao J, Kong X. Exercise prevents cardiac injury and improves mitochondrial biogenesis in advanced diabetic cardiomyopathy with PGC‐1alpha and Akt activation. Cell Physiol Biochem 35(6): 2159‐2168, 2015.
 216.Wang XH, Qian RZ, Zhang W, Chen SF, Jin HM, Hu RM. MicroRNA‐320 expression in myocardial microvascular endothelial cells and its relationship with insulin‐like growth factor‐1 in type 2 diabetic rats. Clin Exp Pharmacol Physiol 36(2): 181‐188, 2009.
 217.Wang Y, Feng W, Xue W, Tan Y, Hein DW, Li XK, Cai L. Inactivation of GSK‐3beta by metallothionein prevents diabetes‐related changes in cardiac energy metabolism, inflammation, nitrosative damage, and remodeling. Diabetes 58(6): 1391‐1402, 2009.
 218.Wang Y, Sun W, Du B, Miao X, Bai Y, Xin Y, Tan Y, Cui W, Liu B, Cui T, Epstein PN, Fu Y, Cai L. Therapeutic effect of MG‐132 on diabetic cardiomyopathy is associated with its suppression of proteasomal activities: Roles of Nrf2 and NF‐kappaB. Am J Physiol Heart Circ Physiol 304(4): H567‐H578, 2013.
 219.Wang Y, Zhou S, Sun W, McClung K, Pan Y, Liang G, Tan Y, Zhao Y, Liu Q, Sun J, Cai L. Inhibition of JNK by novel curcumin analog C66 prevents diabetic cardiomyopathy with a preservation of cardiac metallothionein expression. Am J Physiol Endocrinol Metab 306(11): E1239‐E1247, 2014.
 220.Wang YH, Cai L. Diabetes/obesity‐related inflammation, cardiac cell death and cardiomyopathy. Zhong Nan Da Xue Xue Bao Yi Xue Ban 31(6): 814‐818, 2006.
 221.Wautier MP, Chappey O, Corda S, Stern DM, Schmidt AM, Wautier JL. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE. Am J Physiol Endocrinol Metab 280(5): E685‐E694, 2001.
 222.Wen J, Xue T, Huang Y, Chen X, Xue Y, Lin W, Zhang L, Yao J, Huang H, Liang J, Li L, Lin L, Shi L, Cai L, Zhu Z, Chen G. Is beta‐cell aging involved in the pathogenesis of diabetes?. J Diabetes, 2016.
 223.Westermann D, Rutschow S, Jager S, Linderer A, Anker S, Riad A, Unger T, Schultheiss HP, Pauschinger M, Tschope C. Contributions of inflammation and cardiac matrix metalloproteinase activity to cardiac failure in diabetic cardiomyopathy: The role of angiotensin type 1 receptor antagonism. Diabetes 56(3): 641‐646, 2007.
 224.Westermann D, Rutschow S, Van Linthout S, Linderer A, Bucker‐Gartner C, Sobirey M, Riad A, Pauschinger M, Schultheiss HP, Tschope C. Inhibition of p38 mitogen‐activated protein kinase attenuates left ventricular dysfunction by mediating pro‐inflammatory cardiac cytokine levels in a mouse model of diabetes mellitus. Diabetologia 49(10): 2507‐2513, 2006.
 225.Westermann D, Van Linthout S, Dhayat S, Dhayat N, Escher F, Bucker‐Gartner C, Spillmann F, Noutsias M, Riad A, Schultheiss HP, Tschope C. Cardioprotective and anti‐inflammatory effects of interleukin converting enzyme inhibition in experimental diabetic cardiomyopathy. Diabetes 56(7): 1834‐1841, 2007.
 226.Westermann D, Van Linthout S, Dhayat S, Dhayat N, Schmidt A, Noutsias M, Song X‐Y, Spillmann F, Riad A, Schultheiss H‐P, Tschöpe C. Tumor necrosis factor‐alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Res Cardiol 102(6): 500‐507, 2007.
 227.White NH, Sun W, Cleary PA, Danis RP, Davis MD, Hainsworth DP, Hubbard LD, Lachin JM, Nathan DM. Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the Diabetes Control and Complications Trial. Arch Ophthalmol 126(12): 1707‐1715, 2008.
 228.Wold LE, Ceylan‐Isik AF, Ren J. Oxidative stress and stress signaling: Menace of diabetic cardiomyopathy. Acta Pharmacol Sin 26(8): 908‐917, 2005.
 229.Wright JJ, Kim J, Buchanan J, Boudina S, Sena S, Bakirtzi K, Ilkun O, Theobald HA, Cooksey RC, Kandror KV, Abel ED. Mechanisms for increased myocardial fatty acid utilization following short‐term high‐fat feeding. Cardiovasc Res 82(2): 351‐360, 2009.
 230.Writing Team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: The Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290(16): 2159‐2167, 2003.
 231.Xiang L, Mittwede PN, Clemmer JS. Glucose homeostasis and cardiovascular alterations in diabetes. Compr Physiol 5(4): 1815‐1839, 2015.
 232.Xie J, Mendez JD, Mendez‐Valenzuela V, Aguilar‐Hernandez MM. Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal 25(11): 2185‐2197, 2013.
 233.Xu X, Kobayashi S, Chen K, Timm D, Volden P, Huang Y, Gulick J, Yue Z, Robbins J, Epstein PN, Liang Q. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J Biol Chem 288(25): 18077‐18092, 2013.
 234.Xu Z, Wang S, Ji H, Zhang Z, Chen J, Tan Y, Wintergerst K, Zheng Y, Sun J, Cai L. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci Rep 6: 30252, 2016.
 235.Yarygin KN, Lupatov AY, Kholodenko IV. Cell‐based therapies of liver diseases: Age‐related challenges. Clin Interv Aging 10, 1909‐1924, 2015.
 236.Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN. Catalase protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53(5): 1336‐1343, 2004.
 237.Yildirim SS, Akman D, Catalucci D, Turan B. Relationship between downregulation of miRNAs and increase of oxidative stress in the development of diabetic cardiac dysfunction: Junction as a target protein of miR‐1. Cell Biochem Biophys 67(3): 1397‐1408, 2013.
 238.Yilmaz S, Canpolat U, Aydogdu S, Abboud HE. Diabetic cardiomyopathy; summary of 41 years. Korean Circ J 45(4): 266‐272, 2015.
 239.Yokoi T, Fukuo K, Yasuda O, Hotta M, Miyazaki J, Takemura Y, Kawamoto H, Ichijo H, Ogihara T. Apoptosis signal‐regulating kinase 1 mediates cellular senescence induced by high glucose in endothelial cells. Diabetes 55(6): 1660‐1665, 2006.
 240.Yoshida N, Okumura K, Aso Y. High serum pentosidine concentrations are associated with increased arterial stiffness and thickness in patients with type 2 diabetes. Metabolism 54(3): 345‐350, 2005.
 241.Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 12(1): 9‐14, 2011.
 242.Yu M, Liu Y, Zhang B, Shi Y, Cui L, Zhao X. Inhibiting microRNA‐144 abates oxidative stress and reduces apoptosis in hearts of streptozotocin‐induced diabetic mice. Cardiovasc Pathol 24(6): 375‐381, 2015.
 243.Yu W, Gao B, Li N, Wang J, Qiu C, Zhang G, Liu M, Zhang R, Li C, Ji G, Zhang Y. Sirt3 deficiency exacerbates diabetic cardiac dysfunction: Role of Foxo3A‐Parkin‐mediated mitophagy. Biochim Biophys Acta, 2016. doi: 10.1016/j.bbadis.2016.10.021. [Epub ahead of print] Review. PMID: 27794418.
 244.Yu XY, Geng YJ, Liang JL, Lin QX, Lin SG, Zhang S, Li Y. High levels of glucose induce apoptosis in cardiomyocyte via epigenetic regulation of the insulin‐like growth factor receptor. Exp Cell Res 316(17): 2903‐2909, 2010.
 245.Yuan Q, Hu CP, Gong ZC, Bai YP, Liu SY, Li YJ, Jiang JL. Accelerated onset of senescence of endothelial progenitor cells in patients with type 2 diabetes mellitus: Role of dimethylarginine dimethylaminohydrolase 2 and asymmetric dimethylarginine. Biochem Biophys Res Commun 458(4): 869‐876, 2015.
 246.Zannad F, Pitt B. Biomarkers of extracellular matrix turnover. Heart Fail Clin 5(4): 589‐599, 2009.
 247.Zannad F, Rossignol P, Iraqi W. Extracellular matrix fibrotic markers in heart failure. Heart Fail Rev 15(4): 319‐329, 2010.
 248.Zhan M, Usman IM, Sun L, Kanwar YS. Disruption of renal tubular mitochondrial quality control by Myo‐inositol oxygenase in diabetic kidney disease. J Am Soc Nephrol 26(6): 1304‐1321, 2015.
 249.Zhao X, Zhu X, Zhang HS, Zhao W, Li J, Shu Y, Li S, Yang M, Cai L, Zhou J, Li Y. Prevalence of diabetes and predictions of its risks using anthropometric measures in southwest rural areas of China. BMC Public Health 12(1): 821, 2012.
 250.Zheng C, Wu F, Cai L. Transforaminal percutaneous endoscopic discectomy in the treatment of far‐lateral lumbar disc herniations in children. Int Orthop 40(6): 1099‐1102, 2016.
 251.Zheng D, Ma J, Yu Y, Li M, Ni R, Wang G, Chen R, Li J, Fan G‐C, Lacefield JC, Peng T. Silencing of miR‐195 reduces diabetic cardiomyopathy in C57BL/6 mice. Diabetologia 58(8): 1949‐1958, 2015.
 252.Zhou G, Li X, Hein DW, Xiang X, Marshall JP, Prabhu SD, Cai L. Metallothionein suppresses angiotensin II‐induced nicotinamide adenine dinucleotide phosphate oxidase activation, nitrosative stress, apoptosis, and pathological remodeling in the diabetic heart. J Am Coll Cardiol 52(8): 655‐666, 2008.
 253.Zhou S, Jin J, Bai T, Sachleben LR, Jr, Cai L, Zheng Y. Potential drugs which activate nuclear factor E2‐related factor 2 signaling to prevent diabetic cardiovascular complications: A focus on fumaric acid esters. Life Sci 134: 56‐62, 2015.
 254.Ziyadeh FN, Sharma K, Ericksen M, Wolf G. Stimulation of collagen gene expression and protein synthesis in murine mesangial cells by high glucose is mediated by autocrine activation of transforming growth factor‐beta. J Clin Invest 93(2): 536‐542, 1994.

Teaching Material

Hu X, Bai T, Xu Z, Liu Q, Zheng Y, Cai L. Pathophysiological Fundamentals of Diabetic Cardiomyopathy. Compr Physiol 2017, 7: 693-711. doi: 10.1002/cphy.c160021

 

Didactic Synopsis

Major Teaching Points: 

              Understand how diabetes mellitus lead to cardiovascular complications and what is diabetic cardiomyopathy:

              Structural and functional changes of the heart under diabetic conditions:

o             Diabetes can induce cardiac arrhythmia and left ventricular dysfunction (both diastolic and systolic dysfunction)

o             The aforementioned diastolic and systolic dysfunction of the heart is associated with impaired calcium signaling.

o            Cardiac fibrosis and cardiac hypertrophy are two common structural alterations found in the diabetic heart.

              Cellular and molecular mechanisms by which diabetes induces the development of diabetic cardiomyopathy:

o             Classical mechanisms: Glucose and fatty acids metabolic disorders, Advanced glycated end-products (AGEs) and matrix remodeling, mitochondria dysfunction and mitophagy, oxidative stress and inflammation, and cell death.

o             New-discovered mechanisms: Metabolic memory is a phenomenon of the epigenetic mechanism, and the main theories include histone acetylation, DNA methylation, and dysregulation of microRNAs.

The importance to understand and clarify of mechanisms is its potential for developing target-specific treatments for diabetic patients.

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1. Teaching points: Understanding that cardiac dysfunctions (left ventricular dysfunction and arrhythmia) are results of both macro and micro pathological changes.

Figure 2. Teaching points: Interacting pathophysiological mechanisms of diabetic cardiomyopathy. Metabolic disorders (such as hyperglycemia and elevated free fatty acids), and mitochondria dysfunction (mainly causing intracellular energy disruption, also involve abnormal calcium signaling) promote the accumulation of free radicals [reactive oxygen species and reactive nitrogen species are the main participants] that lead to an oxidative stress condition. From this, inflammation, cell death, and other pathological events occur and go into a vicious circle that ultimately results in cardiac morphology and functional alterations that eventually cause diabetic cardiomyopathy.

Figure 3. Teaching points: Normally between cardiomyocytes, there are some space called extracellular matrix (ECM), composed of fibroblasts and proteins. Under diabetic conditions, inflammatory cytokines secreted by inflammatory cells stimulate the collagen accumulation in ECM. The collagen accumulated in ECM can also be removed by matrix metalloproteinases (MMP); however, the activity of MMPs would affect its tissue inhibitors (TIMPs). Therefore, the balance of MMP/TIMP is also important factor for the formation of ECM fibrosis.

 


Related Articles:

Exercise and Type 1 Diabetes (T1DM)
Glucose Homeostasis and Cardiovascular Alterations in Diabetes
Pathogenesis of Type 2 Diabetes
Cardiac Physiology of Aging: Extracellular Considerations
Microvascular Consequences of Obesity and Diabetes

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Xinyue Hu, Tao Bai, Zheng Xu, Qiuju Liu, Yang Zheng, Lu Cai. Pathophysiological Fundamentals of Diabetic Cardiomyopathy. Compr Physiol 2017, 7: 693-711. doi: 10.1002/cphy.c160021