Comprehensive Physiology Wiley Online Library

Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure

Full Article on Wiley Online Library



ABSTRACT

Hydrogen sulfide (H2S) was identified as the third gasotransmitter in 1996 following the discoveries of the biological importance of nitric oxide and carbon monoxide. Although H2S has long been considered a highly toxic gas, the discovery of its presence and enzymatic production in mammalian tissues supports a critical role for this physiological signaling molecule. H2S is synthesized endogenously by three enzymes: cystathionine β‐synthase, cystathionine‐γ‐lyase, and 3‐mercaptopyruvate sulfurtransferase. H2S plays a pivotal role in the regulation of cardiovascular function as H2S has been shown to modulate: vasodilation, angiogenesis, inflammation, oxidative stress, and apoptosis. Perturbation of endogenous production of H2S has been associated with many pathological conditions of the cardiovascular system such as diabetes, heart failure, and hypertension. As such, modulation of the endogenous H2S signaling pathway or administration of exogenous H2S has been shown to be cytoprotective. This review article will provide a summary of the current body of evidence on the role of H2S signaling in the setting of myocardial ischemia and heart failure. © 2017 American Physiological Society. Compr Physiol 7:583‐602, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Transition of understanding of hydrogen sulfide (H2S) from environmental toxin/poison to mammalian intracellular cell signaling molecule. H2S had been considered exclusively an environmental toxin and poison for centuries. The possibility that H2S is formed naturally and exerts fine control over cellular metabolic processes is a more modern concept introduced only in the past decades. The first step in this transition was in 1989 when H2S was detected in the brain of mammals. In 1996 to 1997, H2S was shown to modulate vascular tone and neuronal function. In 2002, H2S was implicated in vascular function and blood pressure regulation. In 2009, S‐sulfhydration was identified as post‐translational protein modification induced by H2S. In 2013, a clinical trial tested an H2S donor in HF patients.
Figure 2. Figure 2. Endogenous enzymatic synthesis of hydrogen sulfide (H2S). The endogenous production of H2S in mammalian systems has been attributed to three tissue‐specific enzymes: CBS, CSE, and 3‐MST. The substrate for the production of endogenous H2S is L‐cysteine. CBS‐driven H2S production is associated to the condensation of homocysteine with L‐cysteine to yield cystathionine and H2S. CSE converts L‐cysteine into pyruvate, ammonia, and H2S. CAT produces 3‐mercaptopyruvate via driving the reaction of L‐cysteine with α‐ketoglutarate. 3‐mercaptopyruvate is then metabolized by 3‐MST to generate H2S.
Figure 3. Figure 3. Mechanisms of hydrogen sulfide (H2S)‐mediated cardioprotection. H2S targets multiple signaling pathways: activation of ATP‐sensitive potassium channel (KATP), the reperfusion injury salvage kinase pathway, signal transducers and activators of transcription pathway, mitochondrial bioenergetics, VEGF, and nuclear‐factor‐E2‐related factor‐2 (Nrf2) signaling, inhibition of TGF‐β1 and ROS production, and both activation and inhibition of microRNA‐based signal modulation. These signaling changes combine to provide a single cytoprotective effect against myocardial ischemia and HF.
Figure 4. Figure 4. Proposed crosstalk between hydrogen sulfide (H2S), NO, and CO signaling. H2S promotes eNOS activation by inducing phosphorylation of the residue serine 1177. NO enhances CBS and CSE activity leading to an increase of H2S bioavailability. H2S activates heme oxygenase‐1 (OH‐1) enhancing the levels of CO. H2S, NO, and CO synergize their biological effects and exert vascular and cardiac protection.
Figure 5. Figure 5. Endogenous hydrogen sulfide (H2S) regulation of the eNOS during cardiovascular disorders. H2S preserves eNOS function and promotes restoration of NO signaling via activation of VEGF/Akt signaling in the setting of HF. In turn, NO positively modulates the H2S pathway by regulating the expression of H2S‐producing enzymes CBS and CSE.


Figure 1. Transition of understanding of hydrogen sulfide (H2S) from environmental toxin/poison to mammalian intracellular cell signaling molecule. H2S had been considered exclusively an environmental toxin and poison for centuries. The possibility that H2S is formed naturally and exerts fine control over cellular metabolic processes is a more modern concept introduced only in the past decades. The first step in this transition was in 1989 when H2S was detected in the brain of mammals. In 1996 to 1997, H2S was shown to modulate vascular tone and neuronal function. In 2002, H2S was implicated in vascular function and blood pressure regulation. In 2009, S‐sulfhydration was identified as post‐translational protein modification induced by H2S. In 2013, a clinical trial tested an H2S donor in HF patients.


Figure 2. Endogenous enzymatic synthesis of hydrogen sulfide (H2S). The endogenous production of H2S in mammalian systems has been attributed to three tissue‐specific enzymes: CBS, CSE, and 3‐MST. The substrate for the production of endogenous H2S is L‐cysteine. CBS‐driven H2S production is associated to the condensation of homocysteine with L‐cysteine to yield cystathionine and H2S. CSE converts L‐cysteine into pyruvate, ammonia, and H2S. CAT produces 3‐mercaptopyruvate via driving the reaction of L‐cysteine with α‐ketoglutarate. 3‐mercaptopyruvate is then metabolized by 3‐MST to generate H2S.


Figure 3. Mechanisms of hydrogen sulfide (H2S)‐mediated cardioprotection. H2S targets multiple signaling pathways: activation of ATP‐sensitive potassium channel (KATP), the reperfusion injury salvage kinase pathway, signal transducers and activators of transcription pathway, mitochondrial bioenergetics, VEGF, and nuclear‐factor‐E2‐related factor‐2 (Nrf2) signaling, inhibition of TGF‐β1 and ROS production, and both activation and inhibition of microRNA‐based signal modulation. These signaling changes combine to provide a single cytoprotective effect against myocardial ischemia and HF.


Figure 4. Proposed crosstalk between hydrogen sulfide (H2S), NO, and CO signaling. H2S promotes eNOS activation by inducing phosphorylation of the residue serine 1177. NO enhances CBS and CSE activity leading to an increase of H2S bioavailability. H2S activates heme oxygenase‐1 (OH‐1) enhancing the levels of CO. H2S, NO, and CO synergize their biological effects and exert vascular and cardiac protection.


Figure 5. Endogenous hydrogen sulfide (H2S) regulation of the eNOS during cardiovascular disorders. H2S preserves eNOS function and promotes restoration of NO signaling via activation of VEGF/Akt signaling in the setting of HF. In turn, NO positively modulates the H2S pathway by regulating the expression of H2S‐producing enzymes CBS and CSE.
References
 1.Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16: 1066‐1071, 1996.
 2.Allsop J, Watts RW. Methionine adenosyltransferase, cystathionine beta‐synthase and cystathionine gamma‐lyase activity of rat liver subcellular particles, human blood cells and mixed white cells from rat bone marrow. Clin Sci Mol Med Suppl 48: 509‐513, 1975.
 3.Alves MG, Soares AF, Carvalho RA, Oliveira PJ. Sodium hydrosulfide improves the protective potential of the cardioplegic histidine buffer solution. Eur J Pharmacol 654: 60‐67, 2011.
 4.Ambrecht LA, Perlman JI, McDonnell JF, Zhai Y, Qiao L, Bu P. Protection of retinal function by sulforaphane following retinal ischemic injury. Exp Eye Res 138: 66‐69, 2015.
 5.Ansara AJ, Kolanczyk DM, Koehler JM. Neprilysin inhibition with sacubitril/valsartan in the treatment of heart failure: Mortality bang for your buck. J Clin Pharm Ther 41: 119‐127, 2016.
 6.Aon MA, Cortassa S, Akar FG, O'Rourke B. Mitochondrial criticality: A new concept at the turning point of life or death. Biochim Biophys Acta 1762: 232‐240, 2006.
 7.Atar D, Arheden H, Berdeaux A, Bonnet JL, Carlsson M, Clemmensen P, Cuvier V, Danchin N, Dubois‐Rande JL, Engblom H, Erlinge D, Firat H, Halvorsen S, Hansen HS, Hauke W, Heiberg E, Koul S, Larsen AI, Le Corvoisier P, Nordrehaug JE, Paganelli F, Pruss RM, Rousseau H, Schaller S, Sonou G, Tuseth V, Veys J, Vicaut E, Jensen SE. Effect of intravenous TRO40303 as an adjunct to primary percutaneous coronary intervention for acute ST‐elevation myocardial infarction: MITOCARE study results. Eur Heart J 36: 112‐119, 2015.
 8.Baines CP, Zhang J, Wang GW, Zheng YT, Xiu JX, Cardwell EM, Bolli R, Ping P. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: Enhanced mitochondrial PKCepsilon‐MAPK interactions and differential MAPK activation in PKCepsilon‐induced cardioprotection. Circ Res 90: 390‐397, 2002.
 9.Barr LA, Shimizu Y, Lambert JP, Nicholson CK, Calvert JW. Hydrogen sulfide attenuates high fat diet‐induced cardiac dysfunction via the suppression of endoplasmic reticulum stress. Nitric Oxide 46: 145‐156, 2015.
 10.Baukrowitz T, Fakler B. KATP channels gated by intracellular nucleotides and phospholipids. Euro J Biochem /FEBS 267: 5842‐5848, 2000.
 11.Bearden SE, Beard RS, Jr., Pfau JC. Extracellular transsulfuration generates hydrogen sulfide from homocysteine and protects endothelium from redox stress. Am J Physio Heart Circulatory Physio 299: H1568‐H1576, 2010.
 12.Beauchamp RO, Jr., Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13: 25‐97, 1984.
 13.Belardinelli MC, Chabli A, Chadefaux‐Vekemans B, Kamoun P. Urinary sulfur compounds in Down syndrome. Clin Chem 47: 1500‐1501, 2001.
 14.Benavides GA, Squadrito GL, Mills RW, Patel HD, Isbell TS, Patel RP, Darley‐Usmar VM, Doeller JE, Kraus DW. Hydrogen sulfide mediates the vasoactivity of garlic. Proc Natl Acad Sci U S A 104: 17977‐17982, 2007.
 15.Bian JS, Yong QC, Pan TT, Feng ZN, Ali MY, Zhou S, Moore PK. Role of hydrogen sulfide in the cardioprotection caused by ischemic preconditioning in the rat heart and cardiac myocytes. J Pharmacol Exp Ther 316: 670‐678, 2006.
 16.Bibli SI, Andreadou I, Chatzianastasiou A, Tzimas C, Sanoudou D, Kranias E, Brouckaert P, Coletta C, Szabo C, Kremastinos DT, Iliodromitis EK, Papapetropoulos A. Cardioprotection by H2S engages a cGMP‐dependent protein kinase G/phospholamban pathway. Cardiovasc Res 106: 432‐442, 2015.
 17.Bradley JM, Organ CL, Lefer DJ. Garlic‐derived organic polysulfides and myocardial protection. J Nutr 146: 403S‐409S, 2016.
 18.Brancaleone V, Roviezzo F, Vellecco V, De Gruttola L, Bucci M, Cirino G. Biosynthesis of H2S is impaired in non‐obese diabetic (NOD) mice. Br J Pharmacol 155: 673‐680, 2008.
 19.Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G. Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30: 1998‐2004, 2010.
 20.Cai WJ, Wang MJ, Moore PK, Jin HM, Yao T, Zhu YC. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76: 29‐40, 2007.
 21.Calvert JW, Elston M, Nicholson CK, Gundewar S, Jha S, Elrod JW, Ramachandran A, Lefer DJ. Genetic and pharmacologic hydrogen sulfide therapy attenuates ischemia‐induced heart failure in mice. Circulation 122: 11‐19, 2010.
 22.Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG, Lefer DJ. Hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res 105: 365‐374, 2009.
 23.Camelliti P, Borg TK, Kohl P. Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res 65: 40‐51, 2005.
 24.Cantley LC. The phosphoinositide 3‐kinase pathway. Science 296: 1655‐1657, 2002.
 25.Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C. Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34: 573‐585, 2008.
 26.Chatzianastasiou A, Bibli SI, Andreadou I, Efentakis P, Kaludercic N, Wood ME, Whiteman M, Di Lisa F, Daiber A, Manolopoulos VG, Szabo C, Papapetropoulos A. Cardioprotection by H2S donors: Nitric oxide‐dependent and ‐independent mechanisms. J Pharmacol Exp Ther 358(3): 431‐440, 2016.
 27.Chen WL, Niu YY, Jiang WZ, Tang HL, Zhang C, Xia QM, Tang XQ. Neuroprotective effects of hydrogen sulfide and the underlying signaling pathways. Rev Neurosci 26: 129‐142, 2014.
 28.Chen X, Jhee KH, Kruger WD. Production of the neuromodulator H2S by cystathionine beta‐synthase via the condensation of cysteine and homocysteine. J Biol Chem 279: 52082‐52086, 2004.
 29.Chen YQ, Pan WH, Liu JH, Chen MM, Liu CM, Yeh MY, Tsai SK, Young MS, Zhang XM, Chao HM. The effects and underlying mechanisms of S‐allyl l‐cysteine treatment of the retina after ischemia/reperfusion. J Ocular Pharmacol Therapeut 28: 110‐117, 2012.
 30.Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide‐induced relaxation of resistance mesenteric artery beds of rats. Am J Physio Heart Circulat Physiol 287: H2316‐H2323, 2004.
 31.Chiang EP, Chiu SC, Pai MH, Wang YC, Wang FY, Kuo YH, Tang FY. Organosulfur garlic compounds induce neovasculogenesis in human endothelial progenitor cells through a modulation of MicroRNA 221 and the PI3‐K/Akt signaling pathways. J Agric Food Chem 61: 4839‐4849, 2013.
 32.Chunyu Z, Junbao D, Dingfang B, Hui Y, Xiuying T, Chaoshu T. The regulatory effect of hydrogen sulfide on hypoxic pulmonary hypertension in rats. Biochem Biophys Res Commun 302: 810‐816, 2003.
 33.d'Emmanuele di Villa Bianca R, Mitidieri E, Donnarumma E, Tramontano T, Brancaleone V, Cirino G, Bucci M, Sorrentino R. Hydrogen sulfide is involved in dexamethasone‐induced hypertension in rat. Nitric Oxide 46: 80‐86, 2015.
 34.Das A, Samidurai A, Hoke NN, Kukreja RC, Salloum FN. Hydrogen sulfide mediates the cardioprotective effects of gene therapy with PKG‐Ialpha. Basic Res Cardiol 110: 42, 2015.
 35.Devarie‐Baez NO, Bagdon PE, Peng B, Zhao Y, Park CM, Xian M. Light‐induced hydrogen sulfide release from “caged” gem‐dithiols. Org Lett 15: 2786‐2789, 2013.
 36.Dinarello CA. Proinflammatory cytokines. Chest 118: 503‐508, 2000.
 37.Dombkowski RA, Russell MJ, Olson KR. Hydrogen sulfide as an endogenous regulator of vascular smooth muscle tone in trout. Am J Physiol Regul Integr Comp Physiol 286: R678‐R685, 2004.
 38.Donnarumma E, Ali MJ, Rushing AM, Scarborough AL, Bradley JM, Organ CL, Islam KN, Polhemus DJ, Evangelista S, Cirino G, Jenkins JS, Patel RA, Lefer DJ, Goodchild TT. Zofenopril protects against myocardial ischemia‐reperfusion injury by increasing nitric oxide and hydrogen sulfide bioavailability. J Am Heart Assoc 5, pii: e003531, 2016.
 39.Donnarumma E, Bhushan S, Bradley JM, Otsuka H, Donnelly EL, Lefer DJ, Islam KN. Nitrite therapy ameliorates myocardial dysfunction via H2S and nuclear factor‐erythroid 2‐related factor 2 (Nrf2)‐dependent signaling in chronic heart failure. J Am Heart Assoc 5, pii: e003551, 2016.
 40.Du J, Yan H, Tang C. [Endogenous H2S is involved in the development of spontaneous hypertension]. Beijing da xue xue bao Yi xue ban 35: 102, 2003.
 41.El‐Seweidy MM, Sadik NA, Shaker OG. Role of sulfurous mineral water and sodium hydrosulfide as potent inhibitors of fibrosis in the heart of diabetic rats. Arch Biochem Biophys 506: 48‐57, 2011.
 42.Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ. Hydrogen sulfide attenuates myocardial ischemia‐reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104: 15560‐15565, 2007.
 43.Fang L, Li H, Tang C, Geng B, Qi Y, Liu X. Hydrogen sulfide attenuates the pathogenesis of pulmonary fibrosis induced by bleomycin in rats. Can J Physiol Pharmacol 87: 531‐538, 2009.
 44.Feil R, Lohmann SM, de Jonge H, Walter U, Hofmann F. Cyclic GMP‐dependent protein kinases and the cardiovascular system: Insights from genetically modified mice. Circ Res 93: 907‐916, 2003.
 45.Fiedler J, Batkai S, Thum T. MicroRNA‐based therapy in cardiology. Herz 39: 194‐200, 2014.
 46.Frangogiannis NG. Pathophysiology of myocardial infarction. Compr Physio 5: 1841‐1875, 2015.
 47.Frangogiannis NG, Smith CW, Entman ML. The inflammatory response in myocardial infarction. Cardiovasc Res 53: 31‐47, 2002.
 48.Fukushima N, Ieda N, Sasakura K, Nagano T, Hanaoka K, Suzuki T, Miyata N, Nakagawa H. Synthesis of a photocontrollable hydrogen sulfide donor using ketoprofenate photocages. Chem Commun 50: 587‐589, 2014.
 49.Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: A specialized function of the colonic mucosa. Biochem Pharmacol 62: 255‐259, 2001.
 50.Geng B, Chang L, Pan C, Qi Y, Zhao J, Pang Y, Du J, Tang C. Endogenous hydrogen sulfide regulation of myocardial injury induced by isoproterenol. Biochem Biophys Res Commun 318: 756‐763, 2004.
 51.Geng B, Yang J, Qi Y, Zhao J, Pang Y, Du J, Tang C. H2S generated by heart in rat and its effects on cardiac function. Biochem Biophys Res Commun 313: 362‐368, 2004.
 52.Givvimani S, Munjal C, Gargoum R, Sen U, Tyagi N, Vacek JC, Tyagi SC. Hydrogen sulfide mitigates transition from compensatory hypertrophy to heart failure. J Appl Physiol 110: 1093‐1100, 2011.
 53.Gong D, Cheng HP, Xie W, Zhang M, Liu D, Lan G, Huang C, Zhao ZW, Chen LY, Yao F, Tan YL, Li L, Xia XD, Zheng XL, Wang ZB, Tang CK. Cystathionine gamma‐lyase(CSE)/hydrogen sulfide system is regulated by miR‐216a and influences cholesterol efflux in macrophages via the PI3K/AKT/ABCA1 pathway. Biochem Biophys Res Commun 470: 107‐116, 2016.
 54.Gori M, Senni M. Sacubitril/valsartan (LCZ696) for the treatment of heart failure. Expert Rev Cardiovasc Ther 14: 145‐153, 2016.
 55.Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F. Sulfide, the first inorganic substrate for human cells. FASEB J 21: 1699‐1706, 2007.
 56.Grilli A, De Lutiis MA, Patruno A, Speranza L, Gizzi F, Taccardi AA, Di Napoli P, De Caterina R, Conti P, Felaco M. Inducible nitric oxide synthase and heme oxygenase‐1 in rat heart: Direct effect of chronic exposure to hypoxia. Ann Clin Lab Sci 33: 208‐215, 2003.
 57.Gross GJ, Fryer RM. Sarcolemmal versus mitochondrial ATP‐sensitive K+ channels and myocardial preconditioning. Circ Res 84: 973‐979, 1999.
 58.Halestrap AP. Calcium, mitochondria and reperfusion injury: A pore way to die. Biochem Soc Trans 34: 232‐237, 2006.
 59.Halestrap AP. A pore way to die: The role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans 38: 841‐860, 2010.
 60.Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, Ikonomidis JS, Khavjou O, Konstam MA, Maddox TM, Nichol G, Pham M, Pina IL, Trogdon JG, American Heart Association Advocacy Coordinating C, Council on Arteriosclerosis T, Vascular B, Council on Cardiovascular R, Intervention, Council on Clinical C, Council on E, Prevention, and Stroke C. Forecasting the impact of heart failure in the United States: A policy statement from the American Heart Association. Circ Heart Failure 6: 606‐619, 2013.
 61.Hennein HA, Ebba H, Rodriguez JL, Merrick SH, Keith FM, Bronstein MH, Leung JM, Mangano DT, Greenfield LJ, Rankin JS. Relationship of the proinflammatory cytokines to myocardial ischemia and dysfunction after uncomplicated coronary revascularization. J Thorac Cardiovasc Surg 108: 626‐635, 1994.
 62.Hibino H, Inanobe A, Furutani K, Murakami S, Findlay I, Kurachi Y. Inwardly rectifying potassium channels: Their structure, function, and physiological roles. Physiol Rev 90: 291‐366, 2010.
 63.Hill BC, Woon TC, Nicholls P, Peterson J, Greenwood C, Thomson AJ. Interactions of sulphide and other ligands with cytochrome c oxidase. An electron‐paramagnetic‐resonance study. The Biochem J 224: 591‐600, 1984.
 64.Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237: 527‐531, 1997.
 65.Hu Y, Chen X, Pan TT, Neo KL, Lee SW, Khin ES, Moore PK, Bian JS. Cardioprotection induced by hydrogen sulfide preconditioning involves activation of ERK and PI3K/Akt pathways. Eur J Physio 455: 607‐616, 2008.
 66.Huang J, Wang D, Zheng J, Huang X, Jin H. Hydrogen sulfide attenuates cardiac hypertrophy and fibrosis induced by abdominal aortic coarctation in rats. Mol Med Rep 5: 923‐928, 2012.
 67.Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H. A source of hydrogen sulfide and a mechanism of its release in the brain. Antioxid Redox Signal 11: 205‐214, 2009.
 68.Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin‐treated rats causes vascular inflammation? Antioxi Redox Signal 12: 1333‐1337, 2010.
 69.Ji Y, Pang QF, Xu G, Wang L, Wang JK, Zeng YM. Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia‐reperfusion injury. Eur J Pharmacol 587: 1‐7, 2008.
 70.Jung KJ, Jang HS, Kim JI, Han SJ, Park JW, Park KM. Involvement of hydrogen sulfide and homocysteine transsulfuration pathway in the progression of kidney fibrosis after ureteral obstruction. Biochim Biophys Acta 1832: 1989‐1997, 2013.
 71.Kabil O, Vitvitsky V, Xie P, Banerjee R. The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxi Redox Signal 15: 363‐372, 2011.
 72.Kamoun P. Endogenous production of hydrogen sulfide in mammals. Amino Acids 26: 243‐254, 2004.
 73.Kan J, Guo W, Huang C, Bao G, Zhu Y, Zhu YZ. S‐propargyl‐cysteine, a novel water‐soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxi Redox Signal 20: 2303‐2316, 2014.
 74.Kang B, Hong J, Xiao J, Zhu X, Ni X, Zhang Y, He B, Wang Z. Involvement of miR‐1 in the protective effect of hydrogen sulfide against cardiomyocyte apoptosis induced by ischemia/reperfusion. Mol Biol Rep 41: 6845‐6853, 2014.
 75.Kang J, Li Z, Organ CL, Park CM, Yang CT, Pacheco A, Wang D, Lefer DJ, Xian M. pH‐controlled hydrogen sulfide release for myocardial ischemia‐reperfusion injury. J Am Chem Soc 138: 6336‐6339, 2016.
 76.Karwi QG, Whiteman M, Wood ME, Torregrossa R, Baxter GF. Pharmacological postconditioning against myocardial infarction with a slow‐releasing hydrogen sulfide donor, GYY4137. Pharmacol Res 111: 442‐451, 2016.
 77.Kimura Y, Kimura H. Hydrogen sulfide protects neurons from oxidative stress. FASEB J 18: 1165‐1167, 2004.
 78.King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao YX, Dugas TR, Kelley EE, Elrod JW, Huang PL, Wang R, Lefer DJ. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase‐nitric oxide dependent. Proc Natl Acad Sci U S A 111: 3182‐3187, 2014.
 79.Kohn C, Dubrovska G, Huang Y, Gollasch M. Hydrogen sulfide: Potent regulator of vascular tone and stimulator of angiogenesis. Int J Biomed Sci 8: 81‐86, 2012.
 80.Kolluru GK, Shen X, Bir SC, Kevil CG. Hydrogen sulfide chemical biology: Pathophysiological roles and detection. Nitric Oxide 35: 5‐20, 2013.
 81.Kondo K, Bhushan S, King AL, Prabhu SD, Hamid T, Koenig S, Murohara T, Predmore BL, Gojon G, Sr., Gojon G, Jr., Wang R, Karusula N, Nicholson CK, Calvert JW, Lefer DJ. H(2)S protects against pressure overload‐induced heart failure via upregulation of endothelial nitric oxide synthase. Circulation 127: 1116‐1127, 2013.
 82.Kuo WW, Wang WJ, Tsai CY, Way CL, Hsu HH, Chen LM. Diallyl trisufide (DATS) suppresses high glucose‐induced cardiomyocyte apoptosis by inhibiting JNK/NFkappaB signaling via attenuating ROS generation. Int J Cardiol 168: 270‐280, 2013.
 83.Lakkisto P, Palojoki E, Backlund T, Saraste A, Tikkanen I, Voipio‐Pulkki LM, Pulkki K. Expression of heme oxygenase‐1 in response to myocardial infarction in rats. J Mol Cell Cardiol 34: 1357‐1365, 2002.
 84.Li B, Kim do S, Yadav RK, Kim HR, Chae HJ. Sulforaphane prevents doxorubicin‐induced oxidative stress and cell death in rat H9c2 cells. Int J Mol Med 36: 53‐64, 2015.
 85.Li H, Wang Y, Wei C, Bai S, Zhao Y, Li H, Wu B, Wang R, Wu L, Xu C. Mediation of exogenous hydrogen sulfide in recovery of ischemic post‐conditioning‐induced cardioprotection via down‐regulating oxidative stress and up‐regulating PI3K/Akt/GSK‐3beta pathway in isolated aging rat hearts. Cell Biosci 5: 11, 2015.
 86.Li L, Hsu A, Moore PK. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases! Pharmacol Ther 123: 386‐400, 2009.
 87.Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK. Characterization of a novel, water‐soluble hydrogen sulfide‐releasing molecule (GYY4137): New insights into the biology of hydrogen sulfide. Circulation 117: 2351‐2360, 2008.
 88.Li N, Wang MJ, Jin S, Bai YD, Hou CL, Ma FF, Li XH, Zhu YC. The H2S donor nahs changes the expression pattern of H2S‐producing enzymes after myocardial infarction. Oxi Med Cell Longev 2016: 6492469, 2016.
 89.Li YF, Xiao CS, Hui RT. Calcium sulfide (CaS), a donor of hydrogen sulfide (H(2)S): A new antihypertensive drug? Med Hypotheses 73: 445‐447, 2009.
 90.Lin Y, Chen Y, Zhu N, Zhao S, Fan J, Liu E. Hydrogen sulfide inhibits development of atherosclerosis through up‐regulating protein S‐nitrosylation. Biomed Pharmacother 83: 466‐476, 2016.
 91.Liu J, Hao DD, Zhang JS, Zhu YC. Hydrogen sulphide inhibits cardiomyocyte hypertrophy by up‐regulating miR‐133a. Biochem Biophys Res Commun 413: 342‐347, 2011.
 92.Liu J, Hao DD, Zhu YC. [Inhibitory effect of hydrogen sulfide on cardiac fibroblast proliferation]. Sheng li xue bao 63: 353‐358, 2011.
 93.Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 7: 684‐696, 2011.
 94.Liu YH, Lu M, Xie ZZ, Hua F, Xie L, Gao JH, Koh YH, Bian JS. Hydrogen sulfide prevents heart failure development via inhibition of renin release from mast cells in isoproterenol‐treated rats. Antioxid Redox Signal 20: 759‐769, 2014.
 95.Lowicka E, Beltowski J. Hydrogen sulfide (H2S)—the third gas of interest for pharmacologists. Pharmacol Rep 59: 4‐24, 2007.
 96.Lu S, Gao Y, Huang X, Wang X. GYY4137, a hydrogen sulfide (H(2)S) donor, shows potent anti‐hepatocellular carcinoma activity through blocking the STAT3 pathway. Int J Oncol 44: 1259‐1267, 2014.
 97.Mancardi D, Penna C, Merlino A, Del Soldato P, Wink DA, Pagliaro P. Physiological and pharmacological features of the novel gasotransmitter: Hydrogen sulfide. Biochim Biophys Acta 1787: 864‐872, 2009.
 98.Marsh N, Marsh A. A short history of nitroglycerine and nitric oxide in pharmacology and physiology. Clin Exp Pharmacol Physiol 27: 313‐319, 2000.
 99.Martelli A, Testai L, Citi V, Marino A, Pugliesi I, Barresi E, Nesi G, Rapposelli S, Taliani S, Da Settimo F, Breschi MC, Calderone V. Arylthioamides as H2S donors: l‐Cysteine‐activated releasing properties and vascular effects in vitro and in vivo. ACS Med Chem Lett 4: 904‐908, 2013.
 100.Mathai JC, Missner A, Kugler P, Saparov SM, Zeidel ML, Lee JK, Pohl P. No facilitator required for membrane transport of hydrogen sulfide. Proc Natl Acad Sci U S A 106: 16633‐16638, 2009.
 101.Meister A, Fraser PE, Tice SV. Enzymatic desulfuration of beta‐mercaptopyruvate to pyruvate. J Biol Chem 206: 561‐575, 1954.
 102.Mewton N, Cung TT, Morel O, Cayla G, Bonnefoy‐Cudraz E, Rioufol G, Angoulvant D, Guerin P, Elbaz M, Delarche N, Coste P, Vanzetto G, Metge M, Aupetit JF, Jouve B, Motreff P, Tron C, Labeque JN, Steg PG, Cottin Y, Range G, Clerc J, Coussement P, Prunier F, Moulin F, Roth O, Belle L, Dubois P, Barragan P, Gilard M, Piot C, Colin P, Morice MC, Monassier JP, Ider O, Dubois‐Rande JL, Unterseeh T, Lebreton H, Beard T, Blanchard D, Grollier G, Malquarti V, Staat P, Sudre A, Hansson MJ, Elmer E, Boussaha I, Jossan C, Torner A, Claeys M, Garcia‐Dorado D, Ovize M, Investigators CS. Rationale and design of the Cyclosporine to ImpRove Clinical oUtcome in ST‐elevation myocardial infarction patients (the CIRCUS trial). Am Heart J 169: 758‐766, 2015.
 103.Mikami Y, Shibuya N, Kimura Y, Nagahara N, Ogasawara Y, Kimura H. Thioredoxin and dihydrolipoic acid are required for 3‐mercaptopyruvate sulfurtransferase to produce hydrogen sulfide. Biochem J 439: 479‐485, 2011.
 104.Mishra PK, Tyagi N, Sen U, Givvimani S, Tyagi SC. H2S ameliorates oxidative and proteolytic stresses and protects the heart against adverse remodeling in chronic heart failure. Am J Physiol Heart Circ Physiol 298: H451‐H456, 2010.
 105.Murata M, Akao M, O'Rourke B, Marban E. Mitochondrial ATP‐sensitive potassium channels attenuate matrix Ca(2+) overload during simulated ischemia and reperfusion: Possible mechanism of cardioprotection. Circ Res 89: 891‐898, 2001.
 106.Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 440: 470‐476, 2006.
 107.Nolan JP, Morley PT, Hoek TL, Hickey RW. Advancement Life support Task Force of the International Liaison committee on R. Therapeutic hypothermia after cardiac arrest. An advisory statement by the Advancement Life support Task Force of the International Liaison committee on Resuscitation. Resuscitation 57: 231‐235, 2003.
 108.Pan LL, Liu XH, Shen YQ, Wang NZ, Xu J, Wu D, Xiong QH, Deng HY, Huang GY, Zhu YZ. Inhibition of NADPH oxidase 4‐related signaling by sodium hydrosulfide attenuates myocardial fibrotic response. Int J Cardiol 168: 3770‐3778, 2013.
 109.Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci U S A 106: 21972‐21977, 2009.
 110.Park CM, Zhao Y, Zhu Z, Pacheco A, Peng B, Devarie‐Baez NO, Bagdon P, Zhang H, Xian M. Synthesis and evaluation of phosphorodithioate‐based hydrogen sulfide donors. Mol Biosyst 9: 2430‐2434, 2013.
 111.Picton R, Eggo MC, Merrill GA, Langman MJ, Singh S. Mucosal protection against sulphide: Importance of the enzyme rhodanese. Gut 50: 201‐205, 2002.
 112.Piper HM, Abdallah Y, Schafer C. The first minutes of reperfusion: A window of opportunity for cardioprotection. Cardiovasc Res 61: 365‐371, 2004.
 113.Piper HM, Kasseckert S, Abdallah Y. The sarcoplasmic reticulum as the primary target of reperfusion protection. Cardiovasc Res 70: 170‐173, 2006.
 114.Polhemus DJ, Kondo K, Bhushan S, Bir SC, Kevil CG, Murohara T, Lefer DJ, Calvert JW. Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis. Circ Heart Fail 6: 1077‐1086, 2013.
 115.Polhemus DJ, Li Z, Pattillo CB, Gojon G, Sr., Gojon G, Jr., Giordano T, Krum H. A novel hydrogen sulfide prodrug, SG1002, promotes hydrogen sulfide and nitric oxide bioavailability in heart failure patients. Cardiovasc Ther 33: 216‐226, 2015.
 116.Pomerantz BJ, Reznikov LL, Harken AH, Dinarello CA. Inhibition of caspase 1 reduces human myocardial ischemic dysfunction via inhibition of IL‐18 and IL‐1beta. Proc Natl Acad Sci U S A 98: 2871‐2876, 2001.
 117.Predmore BL, Kondo K, Bhushan S, Zlatopolsky MA, King AL, Aragon JP, Grinsfelder DB, Condit ME, Lefer DJ. The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am J Physiol Heart Circ Physiol 302: H2410‐H2418, 2012.
 118.Qingyou Z, Junbao D, Weijin Z, Hui Y, Chaoshu T, Chunyu Z. Impact of hydrogen sulfide on carbon monoxide/heme oxygenase pathway in the pathogenesis of hypoxic pulmonary hypertension. Biochem Biophys Res Commun 317: 30‐37, 2004.
 119.Qipshidze N, Metreveli N, Mishra PK, Lominadze D, Tyagi SC. Hydrogen sulfide mitigates cardiac remodeling during myocardial infarction via improvement of angiogenesis. Int J Biol Sci 8: 430‐441, 2012.
 120.Reiffenstein RJ, Hulbert WC, Roth SH. Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32: 109‐134, 1992.
 121.Roger T, Raynaud F, Bouillaud F, Ransy C, Simonet S, Crespo C, Bourguignon MP, Villeneuve N, Vilaine JP, Artaud I, Galardon E. New biologically active hydrogen sulfide donors. Chembiochem: Eur J Chem Biol 14: 2268‐2271, 2013.
 122.Roth MB, Nystul T. Buying time in suspended animation. Sci Am 292: 48‐55, 2005.
 123.Roviezzo F, Bertolino A, Sorrentino R, Terlizzi M, Matteis M, Calderone V, Mattera V, Martelli A, Spaziano G, Pinto A, D'Agostino B, Cirino G. Hydrogen sulfide inhalation ameliorates allergen induced airway hypereactivity by modulating mast cell activation. Pharmacol Res 100: 85‐92, 2015.
 124.Schorb W, Booz GW, Dostal DE, Conrad KM, Chang KC, Baker KM. Angiotensin II is mitogenic in neonatal rat cardiac fibroblasts. Circ Res 72: 1245‐1254, 1993.
 125.Schwer CI, Stoll P, Goebel U, Buerkle H, Hoetzel A, Schmidt R. Effects of hydrogen sulfide on rat pancreatic stellate cells. Pancreas 41: 74‐83, 2012.
 126.Searcy DG. HS‐:O2 oxidoreductase activity of Cu,Zn superoxide dismutase. Arch Biochem Biophys 334: 50‐58, 1996.
 127.Searcy DG, Lee SH. Sulfur reduction by human erythrocytes. J Exp Zool 282: 310‐322, 1998.
 128.Seino S, Iwanaga T, Nagashima K, Miki T. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 49: 311‐318, 2000.
 129.Sen U, Vacek TP, Hughes WM, Kumar M, Moshal KS, Tyagi N, Metreveli N, Hayden MR, Tyagi SC. Cardioprotective role of sodium thiosulfate on chronic heart failure by modulating endogenous H2S generation. Pharmacology 82: 201‐213, 2008.
 130.Shan ZX, Lin QX, Deng CY, Zhu JN, Mai LP, Liu JL, Fu YH, Liu XY, Li YX, Zhang YY, Lin SG, Yu XY. miR‐1/miR‐206 regulate Hsp60 expression contributing to glucose‐mediated apoptosis in cardiomyocytes. FEBS Lett 584: 3592‐3600, 2010.
 131.Shen Y, Shen Z, Miao L, Xin X, Lin S, Zhu Y, Guo W, Zhu YZ. miRNA‐30 family inhibition protects against cardiac ischemic injury by regulating cystathionine‐gamma‐lyase expression. Antioxid Redox Signal 22: 224‐240, 2015.
 132.Sheng J, Shim W, Wei H, Lim SY, Liew R, Lim TS, Ong BH, Chua YL, Wong P. Hydrogen sulphide suppresses human atrial fibroblast proliferation and transformation to myofibroblasts. J Cell Mol Med 17: 1345‐1354, 2013.
 133.Shi YX, Chen Y, Zhu YZ, Huang GY, Moore PK, Huang SH, Yao T, Zhu YC. Chronic sodium hydrosulfide treatment decreases medial thickening of intramyocardial coronary arterioles, interstitial fibrosis, and ROS production in spontaneously hypertensive rats. Am J Physiol Heart Circ Physiol 293: H2093‐H2100, 2007.
 134.Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. Vascular endothelium expresses 3‐mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem (Tokyo) 146: 623‐626, 2009.
 135.Shibuya N, Tanaka M, Yoshida M, Ogasawara Y, Togawa T, Ishii K, Kimura H. 3‐Mercaptopyruvate sulfurtransferase produces hydrogen sulfide and bound sulfane sulfur in the brain. Antioxid Redox Signal 11: 703‐714, 2009.
 136.Shyng S, Nichols CG. Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110: 655‐664, 1997.
 137.Sivarajah A, Collino M, Yasin M, Benetti E, Gallicchio M, Mazzon E, Cuzzocrea S, Fantozzi R, Thiemermann C. Anti‐apoptotic and anti‐inflammatory effects of hydrogen sulfide in a rat model of regional myocardial I/R. Shock 31: 267‐274, 2009.
 138.Sivarajah A, McDonald MC, Thiemermann C. The production of hydrogen sulfide limits myocardial ischemia and reperfusion injury and contributes to the cardioprotective effects of preconditioning with endotoxin, but not ischemia in the rat. Shock 26: 154‐161, 2006.
 139.Smith RP, Abbanat RA. Protective effect of oxidized glutathione in acute sulfide poisoning. Toxicol Appl Pharmacol 9: 209‐217, 1966.
 140.Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, Stahl GL, Sellke FW. Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg 138: 977‐984, 2009.
 141.Song K, Wang F, Li Q, Shi YB, Zheng HF, Peng H, Shen HY, Liu CF, Hu LF. Hydrogen sulfide inhibits the renal fibrosis of obstructive nephropathy. Kidney Int 85: 1318‐1329, 2014.
 142.Streng T, Axelsson HE, Hedlund P, Andersson DA, Jordt SE, Bevan S, Andersson KE, Hogestatt ED, Zygmunt PM. Distribution and function of the hydrogen sulfide‐sensitive TRPA1 ion channel in rat urinary bladder. Eur Urol 53: 391‐399, 2008.
 143.Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P. Protein kinase G Ialpha oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64: 1344‐1351, 2014.
 144.Sun WH, Liu F, Chen Y, Zhu YC. Hydrogen sulfide decreases the levels of ROS by inhibiting mitochondrial complex IV and increasing SOD activities in cardiomyocytes under ischemia/reperfusion. Biochem Biophys Res Commun 421: 164‐169, 2012.
 145.Sun YG, Cao YX, Wang WW, Ma SF, Yao T, Zhu YC. Hydrogen sulphide is an inhibitor of L‐type calcium channels and mechanical contraction in rat cardiomyocytes. Cardiovasc Res 79: 632‐641, 2008.
 146.Szabo C, Papapetropoulos A. Hydrogen sulphide and angiogenesis: Mechanisms and applications. Br J Pharmacol 164: 853‐865, 2011.
 147.Szabo G, Veres G, Radovits T, Gero D, Modis K, Miesel‐Groschel C, Horkay F, Karck M, Szabo C. Cardioprotective effects of hydrogen sulfide. Nitric Oxide 25: 201‐210, 2011.
 148.Tang G, Wu L, Liang W, Wang R. Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68: 1757‐1764, 2005.
 149.Tang Y, Zheng J, Sun Y, Wu Z, Liu Z, Huang G. MicroRNA‐1 regulates cardiomyocyte apoptosis by targeting Bcl‐2. Int Heart J 50: 377‐387, 2009.
 150.Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, Shen Q, Wang MJ, Chen Y, Zhang LJ, Zhu YZ, Zhu YC. VEGFR2 functions as an H2S‐targeting receptor protein kinase with its novel Cys1045‐Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal 19: 448464, 2013.
 151.Terzuoli E, Monti M, Vellecco V, Bucci M, Cirino G, Ziche M, Morbidelli L. Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2S availability. Br J Pharmacol 172: 2961‐2973, 2015.
 152.Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D, Samidurai A, Van Tassell BW, Yin C, Ockaili RA, Vigneshwar N, Mukhopadhyay ND, Kukreja RC, Abbate A, Salloum FN. Induction of microRNA‐21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovas Genet 7: 311‐320, 2014.
 153.Tomasova L, Pavlovicova M, Malekova L, Misak A, Kristek F, Grman M, Cacanyiova S, Tomasek M, Tomaskova Z, Perry A, Wood ME, Lacinova L, Ondrias K, Whiteman M. Effects of AP39, a novel triphenylphosphonium derivatised anethole dithiolethione hydrogen sulfide donor, on rat haemodynamic parameters and chloride and calcium Cav3 and RyR2 channels. Nitric Oxide 46: 131‐144, 2015.
 154.Tortorella SM, Royce SG, Licciardi PV, Karagiannis TC. Dietary sulforaphane in cancer chemoprevention: The role of epigenetic regulation and HDAC inhibition. Antioxid Redox Signal 22: 1382‐1424, 2015.
 155.Trevisani M, Patacchini R, Nicoletti P, Gatti R, Gazzieri D, Lissi N, Zagli G, Creminon C, Geppetti P, Harrison S. Hydrogen sulfide causes vanilloid receptor 1‐mediated neurogenic inflammation in the airways. Br J Pharmacol 145: 1123‐1131, 2005.
 156.Usachev YM, Marsh AJ, Johanns TM, Lemke MM, Thayer SA. Activation of protein kinase C in sensory neurons accelerates Ca2+ uptake into the endoplasmic reticulum. J Neurosci 26: 311‐318, 2006.
 157.Venardos KM, Perkins A, Headrick J, Kaye DM. Myocardial ischemia‐reperfusion injury, antioxidant enzyme systems, and selenium: A review. Curr Med Chem 14: 1539‐1549, 2007.
 158.Wagner F, Asfar P, Calzia E, Radermacher P, Szabo C. Bench‐to‐bedside review: Hydrogen sulfide—the third gaseous transmitter: Applications for critical care. Crit Care 13: 213, 2009.
 159.Wallace JL. Hydrogen sulfide‐releasing anti‐inflammatory drugs. Trends Pharmacol Sci 28: 501‐505, 2007.
 160.Wang L, Cherednichenko G, Hernandez L, Halow J, Camacho SA, Figueredo V, Schaefer S. Preconditioning limits mitochondrial Ca(2+) during ischemia in rat hearts: Role of K(ATP) channels. Am J Physiol Heart Circ Physiol 280: H2321‐H2328, 2001.
 161.Wang M, Wang Y, Abarbanell A, Tan J, Weil B, Herrmann J, Meldrum DR. Both endogenous and exogenous testosterone decrease myocardial STAT3 activation and SOCS3 expression after acute ischemia and reperfusion. Surgery 146: 138‐144, 2009.
 162.Wang MJ, Cai WJ, Li N, Ding YJ, Chen Y, Zhu YC. The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxid Redox Signal 12: 1065‐1077, 2010.
 163.Wang R. The gasotransmitter role of hydrogen sulfide. Antioxid Redox Signal 5: 493‐501, 2003.
 164.Wang R. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol Rev 92: 791‐896, 2012.
 165.Wang X, Wang Q, Guo W, Zhu YZ. Hydrogen sulfide attenuates cardiac dysfunction in a rat model of heart failure: A mechanism through cardiac mitochondrial protection. Biosci Rep 31: 87‐98, 2011.
 166.Whiteman M, Armstrong JS, Chu SH, Jia‐Ling S, Wong BS, Cheung NS, Halliwell B, Moore PK. The novel neuromodulator hydrogen sulfide: An endogenous peroxynitrite ‘scavenger’? J Neurochem 90: 765‐768, 2004.
 167.Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343: 303‐310, 2006.
 168.Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jimenez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond W, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S. Heart Disease and Stroke Statistics‐2016 Update: A report from the American Heart Association. Circulation 133: e38‐e60, 2016.
 169.Xie ZZ, Shi MM, Xie L, Wu ZY, Li G, Hua F, Bian JS. Sulfhydration of p66Shc at cysteine59 mediates the antioxidant effect of hydrogen sulfide. Antioxdi Redox Signal 21: 2531‐2542, 2014.
 170.Xue M, Cui J, Xia W, Li Y, Qian LB, Ye ZG, Wang HP, Xia Q. [Effect of S‐allyl‐L‐cysteine on isolate heart subject to ischemia/reperfusion]. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi. Chinese J Appl Physiol 27: 13‐17, 2011.
 171.Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine gamma‐lyase. Science 322: 587‐590, 2008.
 172.Yin C, Salloum FN, Kukreja RC. A novel role of microRNA in late preconditioning: Upregulation of endothelial nitric oxide synthase and heat shock protein 70. Circ Res 104: 572‐575, 2009.
 173.Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL. Hydrogen sulfide is an endogenous modulator of leukocyte‐mediated inflammation. FASEB J 20: 2118‐2120, 2006.
 174.Zhao DA, Liu J, Huang Q, Han ZM. [Change in plasma H2S level and therapeutic effect of H2S supplementation in tubulointerstitial fibrosis among rats with unilateral ureteral obstruction]. Zhongguo dang dai er ke za zhi.Chinese J Contemp Pediat 15: 903‐908, 2013.
 175.Zhao H, Yan R, Zhou X, Ji F, Zhang B. Hydrogen sulfide improves colonic barrier integrity in DSS‐induced inflammation in Caco‐2 cells and mice. Int Immunopharmacol 39: 121‐127, 2016.
 176.Zhao W, Ndisang JF, Wang R. Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 81: 848‐853, 2003.
 177.Zhao W, Wang R. H(2)S‐induced vasorelaxation and underlying cellular and molecular mechanisms. Am J Physiol Heart Circ Physiol 283: H474‐H480, 2002.
 178.Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H(2)S as a novel endogenous gaseous K(ATP) channel opener. EMBO J 20: 6008‐6016, 2001.
 179.Zhao Y, Yang C, Organ C, Li Z, Bhushan S, Otsuka H, Pacheco A, Kang J, Aguilar HC, Lefer DJ, Xian M. Design, synthesis, and cardioprotective effects of N‐Mercapto‐based hydrogen sulfide donors. J Med Chem 58: 7501‐7511, 2015.
 180.Zhou Y, Li XH, Zhang CC, Wang MJ, Xue WL, Wu DD, Ma FF, Li WW, Tao BB, Zhu YC. Hydrogen sulfide promotes angiogenesis by downregulating miR‐640 via the VEGFR2/mTOR pathway. Am J Physiol Cell Physiol 310: C305‐C317, 2016.
 181.Zhou Z, von Wantoch Rekowski M, Coletta C, Szabo C, Bucci M, Cirino G, Topouzis S, Papapetropoulos A, Giannis A. Thioglycine and L‐thiovaline: Biologically active H(2)S‐donors. Bioorgan Med Chem 20: 2675‐2678, 2012.
 182.Zhu H, Itoh K, Yamamoto M, Zweier JL, Li Y. Role of Nrf2 signaling in regulation of antioxidants and phase 2 enzymes in cardiac fibroblasts: Protection against reactive oxygen and nitrogen species‐induced cell injury. FEBS Lett 579: 3029‐3036, 2005.
 183.Zhu YZ, Wang ZJ, Ho P, Loke YY, Zhu YC, Huang SH, Tan CS, Whiteman M, Lu J, Moore PK. Hydrogen sulfide and its possible roles in myocardial ischemia in experimental rats. J Appl Physiol 102: 261‐268, 2007.
 184.Zhuo Y, Chen PF, Zhang AZ, Zhong H, Chen CQ, Zhu YZ. Cardioprotective effect of hydrogen sulfide in ischemic reperfusion experimental rats and its influence on expression of survivin gene. Biol Pharma Bulletin 32: 1406‐1410, 2009.

Related Articles:

Pathophysiology of Heart Failure
Pathophysiology of Myocardial Infarction
Ischemia/Reperfusion
Nitric Oxide and Hydrogen Sulfide Regulation of Ischemic Vascular Growth and Remodeling
Myocardial Cell Signaling During the Transition to Heart Failure

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Erminia Donnarumma, Rishi K. Trivedi, David J. Lefer. Protective Actions of H2S in Acute Myocardial Infarction and Heart Failure. Compr Physiol 2017, 7: 583-602. doi: 10.1002/cphy.c160023