Comprehensive Physiology Wiley Online Library

Impact of Adrenal Steroids on Regulation of Adipose Tissue

Full Article on Wiley Online Library


Corticosteroids are secreted by the adrenal glands and control the functions of adipose tissue via the activation of mineralocorticoid receptor (MR) and glucocorticoid receptor (GR). In turn, adipocytes release a large variety of adipokines into the bloodstream, regulating the function of several organs and tissues, including the adrenal glands, hereby controlling corticosteroid production. In adipose tissue, the activation of the MR by glucocorticoids (GC) and aldosterone affects important processes such as adipocyte differentiation, oxidative stress, autophagic flux, adipokine expression as well as local production of GC through upregulation of the enzyme 11β‐hydroxysteroid dehydrogenase type 1 (11β‐HSD1). Notably, the proinflammatory responses induced by the MR are counteracted by activation of the GR, whose activity inhibits the expression of inflammatory adipokines. Both GR and MR are deeply involved in adipogenesis and adipose expansion; hence pharmacological blockade of these two receptors has proven effective against adipose tissue dysfunction in experimental models of obesity and metabolic syndrome (MetS), suggesting a potential use for MR and GR antagonists in these clinical settings. Importantly, obesity and Cushing's syndrome (CS) share metabolic similarities and are characterized by high levels of circulating corticosteroids, which in turn are able to deeply affect adipose tissue. In addition, pharmacological approaches aimed at reducing aldosterone and GC levels, by means of the inhibition of CYP11B2 (aldosterone synthase) or 11β‐HSD1, represent alternative strategies to counter the detrimental effects of excessive levels of corticosteroids, which are often observed in obesity and, more general, in MetS. © 2017 American Physiological Society. Compr Physiol 7:1425‐1447, 2017.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images

Figure 1. Figure 1. MR hyperactivation leads to detrimental effects on adipose tissue metabolism. Different cell types are present in adipose tissue, including adipocytes and macrophages (both expressing MR). Activation of MR in the adipocyte promotes adipogenesis, ROS production, and autophagic flux. Notably, MR activity represses conversion of white into brown adipocytes, a phenomenon that has been shown to display a protective role against obesity and insulin resistance, at least in experimental murine models. Adipocyte MR activation promotes inflammation through increased expression of TNF‐α, IL‐6, and MCP‐1, that in turn favors macrophage recruitment into adipose tissue. MR activation also up‐regulates the expression of the enzyme 11β‐HSD1, with a subsequent increase in local production of glucocorticoids (GC) (106). Interestingly, macrophage MR activity promotes polarization toward the M1 phenotype, which exhibits proinflammatory functions. Thus, hyperactivation of MR, both in adipocytes and in macrophages, has deleterious effects on adipose tissue. In addition, local production of aldosterone has been recently described in adipose tissue, with potential enhancement of MR activation in resident cell types expressing MR.
Figure 2. Figure 2. Novel fat‐adrenal axis. Both aldosterone and GC, released by the adrenal glands, are able to activate MR and GR in the adipose tissue where, considering the lack of 11β‐HSD2, a prevalent activation of MR by GC is expected. MR activation promotes adipose tissue expansion, oxidative stress, inflammation, and autophagic flux. Of note, GC activate GR, which induces anti‐inflammatory effects through inhibition of TNF‐α, IL‐6, and MCP‐1 expression. On the other hand, adipose tissue releases into the bloodstream CTRP1, leptin, and other factors capable to increase aldosterone synthesis by the adrenal gland. In particular, activation of the adipocyte MR leads to increased leptin expression that, once released into circulation, can reach the adrenal cortex and stimulate transcription of the CYP11B2 gene, thereby increasing aldosterone production.
Figure 3. Figure 3. In vitro and in vivo effects of pharmacological antagonism of MR and GR on adipose tissue. (A) Differentiating 3T3‐L1 preadipocytes treated with aldosterone show increased accumulation of intracellular lipids (as displayed by Oil‐Red‐O staining). Conversely, treatment with MR antagonist (spironolactone) inhibits intracellular lipid accumulation. These data suggest that MR is important for adipogenesis. (B) Treatment of differentiating 3T3‐L1 preadipocytes with either MR antagonist (spironolactone), GR antagonist (mifepristone), or combined GR/MR antagonist (CORT118335) blocks intracellular lipid accumulation, showing that both MR and GR play a relevant role in adipocyte maturation. (C, D) Treatment of mice fed an HFD with CORT118335 leads to a remarkable reduction of body weight (C) and abdominal fat mass (D), indicating that combined GR/MR antagonism powerfully prevents HFD‐induced adipose tissue expansion.

Figure 1. MR hyperactivation leads to detrimental effects on adipose tissue metabolism. Different cell types are present in adipose tissue, including adipocytes and macrophages (both expressing MR). Activation of MR in the adipocyte promotes adipogenesis, ROS production, and autophagic flux. Notably, MR activity represses conversion of white into brown adipocytes, a phenomenon that has been shown to display a protective role against obesity and insulin resistance, at least in experimental murine models. Adipocyte MR activation promotes inflammation through increased expression of TNF‐α, IL‐6, and MCP‐1, that in turn favors macrophage recruitment into adipose tissue. MR activation also up‐regulates the expression of the enzyme 11β‐HSD1, with a subsequent increase in local production of glucocorticoids (GC) (106). Interestingly, macrophage MR activity promotes polarization toward the M1 phenotype, which exhibits proinflammatory functions. Thus, hyperactivation of MR, both in adipocytes and in macrophages, has deleterious effects on adipose tissue. In addition, local production of aldosterone has been recently described in adipose tissue, with potential enhancement of MR activation in resident cell types expressing MR.

Figure 2. Novel fat‐adrenal axis. Both aldosterone and GC, released by the adrenal glands, are able to activate MR and GR in the adipose tissue where, considering the lack of 11β‐HSD2, a prevalent activation of MR by GC is expected. MR activation promotes adipose tissue expansion, oxidative stress, inflammation, and autophagic flux. Of note, GC activate GR, which induces anti‐inflammatory effects through inhibition of TNF‐α, IL‐6, and MCP‐1 expression. On the other hand, adipose tissue releases into the bloodstream CTRP1, leptin, and other factors capable to increase aldosterone synthesis by the adrenal gland. In particular, activation of the adipocyte MR leads to increased leptin expression that, once released into circulation, can reach the adrenal cortex and stimulate transcription of the CYP11B2 gene, thereby increasing aldosterone production.

Figure 3. In vitro and in vivo effects of pharmacological antagonism of MR and GR on adipose tissue. (A) Differentiating 3T3‐L1 preadipocytes treated with aldosterone show increased accumulation of intracellular lipids (as displayed by Oil‐Red‐O staining). Conversely, treatment with MR antagonist (spironolactone) inhibits intracellular lipid accumulation. These data suggest that MR is important for adipogenesis. (B) Treatment of differentiating 3T3‐L1 preadipocytes with either MR antagonist (spironolactone), GR antagonist (mifepristone), or combined GR/MR antagonist (CORT118335) blocks intracellular lipid accumulation, showing that both MR and GR play a relevant role in adipocyte maturation. (C, D) Treatment of mice fed an HFD with CORT118335 leads to a remarkable reduction of body weight (C) and abdominal fat mass (D), indicating that combined GR/MR antagonism powerfully prevents HFD‐induced adipose tissue expansion.
 1.Amar L, Azizi M, Menard J, Peyrard S, Watson C, Plouin PF. Aldosterone synthase inhibition with LCI699: A proof‐of‐concept study in patients with primary aldosteronism. Hypertension 56: 831‐838, 2010. HYPERTENSIONAHA.110.157271 [pii]; 10.1161/HYPERTENSIONAHA.110.157271 [doi]
 2.Anderson A, Walker BR. 11beta‐HSD1 inhibitors for the treatment of type 2 diabetes and cardiovascular disease. Drugs 73: 1385‐1393, 2013. 10.1007/s40265‐013‐0112‐5 [doi]
 3.Antoniades C, Antonopoulos AS, Tousoulis D, Stefanadis C. Adiponectin: From obesity to cardiovascular disease. Obes Rev 10: 269‐279, 2009. OBR571 [pii]; 10.1111/j.1467‐789X.2009.00571.x [doi]
 4.Archer DF, Thorneycroft IH, Foegh M, Hanes V, Glant MD, Bitterman P, Kempson RL. Long‐term safety of drospirenone‐estradiol for hormone therapy: A randomized, double‐blind, multicenter trial. Menopause 12: 716‐727, 2005. 01.gme.0000177318.24005.b1 [pii]; 10.1097/01.gme.0000177318.24005.b1 [doi]
 5.Armani A, Cinti F, Marzolla V, Morgan J, Cranston GA, Antelmi A, Carpinelli G, Canese R, Pagotto U, Quarta C, Malorni W, Matarrese P, Marconi M, Fabbri A, Rosano G, Cinti S, Young MJ, Caprio M. Mineralocorticoid receptor antagonism induces browning of white adipose tissue through impairment of autophagy and prevents adipocyte dysfunction in high‐fat‐diet‐fed mice. FASEB J 28: 3745‐3757, 2014. fj.13‐245415 [pii]; 10.1096/fj.13‐245415 [doi]
 6.Armani A, Mammi C, Marzolla V, Calanchini M, Antelmi A, Rosano GM, Fabbri A, Caprio M. Cellular models for understanding adipogenesis, adipose dysfunction, and obesity. J Cell Biochem 110: 564‐572, 2010. 10.1002/jcb.22598 [doi]
 7.Armani A, Marzolla V, Fabbri A, Caprio M. Cellular mechanisms of MR regulation of adipose tissue physiology and pathophysiology. J Mol Endocrinol 55: R1‐R10, 2015. JME‐15‐0122 [pii]; 10.1530/JME‐15‐0122 [doi]
 8.Armani A, Marzolla V, Rosano G, Caprio M. Mineralocorticoid vs glucocorticoid receptors: solo players or team mates in the control of adipogenesis? Int J Obes (Lond) 38: 1580‐1581, 2014. ijo201468 [pii]; 10.1038/ijo.2014.68 [doi]
 9.Armanini D, Strasser T, Weber PC. Characterization of aldosterone binding sites in circulating human mononuclear leukocytes. Am J Physiol 248: E388‐E390, 1985.
 10.Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 237: 268‐275, 1987.
 11.Asada M, Rauch A, Shimizu H, Maruyama H, Miyaki S, Shibamori M, Kawasome H, Ishiyama H, Tuckermann J, Asahara H. DNA binding‐dependent glucocorticoid receptor activity promotes adipogenesis via Kruppel‐like factor 15 gene expression. Lab Invest 91: 203‐215, 2011. labinvest2010170 [pii]; 10.1038/labinvest.2010.170 [doi]
 12.Baerga R, Zhang Y, Chen PH, Goldman S, Jin S. Targeted deletion of autophagy‐related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy 5: 1118‐1130, 2009. 9991 [pii]
 13.Barahona MJ, Sucunza N, Resmini E, Fernandez‐Real JM, Ricart W, Moreno‐Navarrete JM, Puig T, Farrerons J, Webb SM. Persistent body fat mass and inflammatory marker increases after long‐term cure of Cushing's syndrome. J Clin Endocrinol Metab 94: 3365‐3371, 2009. jc.2009‐0766 [pii]; 10.1210/jc.2009‐0766 [doi]
 14.Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De MR, Cinti S. The emergence of cold‐induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 298: E1244‐E1253, 2010. ajpendo.00600.2009 [pii]; 10.1152/ajpendo.00600.2009 [doi]
 15.Berdanier CD. Role of glucocorticoids in the regulation of lipogenesis. FASEB J 3: 2179‐2183, 1989.
 16.Bertagna X, Bertagna C, Luton JP, Husson JM, Girard F. The new steroid analog RU 486 inhibits glucocorticoid action in man. J Clin Endocrinol Metab 59: 25‐28, 1984. 10.1210/jcem‐59‐1‐25 [doi]
 17.Bienvenu LA, Morgan J, Rickard AJ, Tesch GH, Cranston GA, Fletcher EK, Delbridge LM, Young MJ. Macrophage mineralocorticoid receptor signaling plays a key role in aldosterone‐independent cardiac fibrosis. Endocrinology 153: 3416‐3425, 2012. en.2011‐2098 [pii]; 10.1210/en.2011‐2098 [doi]
 18.Bjorntorp P, Rosmond R. Obesity and cortisol. Nutrition 16: 924‐936, 2000. S0899‐9007(00)00422‐6 [pii]
 19.Bjorntorp P, Rosmond R. The metabolic syndrome—a neuroendocrine disorder? Br J Nutr 83(Suppl 1): S49‐S57, 2000.
 20.Bjorntorp P, Sjostrom L. Adipose tissue cellularity. Int J Obes 3: 181‐187, 1979.
 21.Bochud M, Nussberger J, Bovet P, Maillard MR, Elston RC, Paccaud F, Shamlaye C, Burnier M. Plasma aldosterone is independently associated with the metabolic syndrome. Hypertension 48: 239‐245, 2006. 01.HYP.0000231338.41548.fc [pii]; 10.1161/01.HYP.0000231338.41548.fc [doi]
 22.Boscaro M, Barzon L, Fallo F, Sonino N. Cushing's syndrome. Lancet 357: 783‐791, 2001. S0140‐6736(00)04172‐6 [pii]; 10.1016/S0140‐6736(00)04172‐6 [doi]
 23.Bradford PG. Curcumin and obesity. Biofactors 39: 78‐87, 2013. 10.1002/biof.1074 [doi]
 24.Briones AM, Nguyen Dinh CA, Callera GE, Yogi A, Burger D, He Y, Correa JW, Gagnon AM, Gomez‐Sanchez CE, Gomez‐Sanchez EP, Sorisky A, Ooi TC, Ruzicka M, Burns KD, Touyz RM. Adipocytes produce aldosterone through calcineurin‐dependent signaling pathways: Implications in diabetes mellitus‐associated obesity and vascular dysfunction. Hypertension 59: 1069‐1078, 2012. HYPERTENSIONAHA.111.190223 [pii]; 10.1161/HYPERTENSIONAHA.111.190223 [doi]
 25.Bruun JM, Lihn AS, Madan AK, Pedersen SB, Schiott KM, Fain JN, Richelsen B. Higher production of IL‐8 in visceral vs. subcutaneous adipose tissue. Implication of nonadipose cells in adipose tissue. Am J Physiol Endocrinol Metab 286: E8‐E13, 2004. 10.1152/ajpendo.00269.2003 [doi];00269.2003 [pii]
 26.Bruun JM, Pedersen SB, Richelsen B. Regulation of interleukin 8 production and gene expression in human adipose tissue in vitro. J Clin Endocrinol Metab 86: 1267‐1273, 2001. 10.1210/jcem.86.3.7264 [doi]
 27.Byun SY, Shin YJ, Nam KY, Hong SP, Ahn SK. A novel highly potent and selective 11beta‐hydroxysteroid dehydrogenase type 1 inhibitor, UI‐1499. Life Sci 120: 1‐7, 2015. S0024‐3205(14)00900‐X [pii]; 10.1016/j.lfs.2014.11.001 [doi]
 28.Calhoun DA, Sharma K. The role of aldosteronism in causing obesity‐related cardiovascular risk. Cardiol Clin 28: 517‐527, 2010. S0733‐8651(10)00041‐X [pii]; 10.1016/j.ccl.2010.04.001 [doi]
 29.Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumie A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, Clement K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery‐induced weight loss. Diabetes 54: 2277‐2286, 2005. 54/8/2277 [pii]
 30.Cannon B, Nedergaard J. Brown adipose tissue: Function and physiological significance. Physiol Rev 84: 277‐359, 2004. 10.1152/physrev.00015.2003 [doi];84/1/277 [pii]
 31.Caprio M, Antelmi A, Chetrite G, Muscat A, Mammi C, Marzolla V, Fabbri A, Zennaro MC, Feve B. Antiadipogenic effects of the mineralocorticoid receptor antagonist drospirenone: Potential implications for the treatment of metabolic syndrome. Endocrinology 152: 113‐125, 2011. en.2010‐0674 [pii]; 10.1210/en.2010‐0674 [doi]
 32.Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro MC. Pivotal role of the mineralocorticoid receptor in corticosteroid‐induced adipogenesis. FASEB J 21: 2185‐2194, 2007. fj.06‐7970com [pii]; 10.1096/fj.06‐7970com [doi]
 33.Caprio M, Newfell BG, la SA, Baur W, Fabbri A, Rosano G, Mendelsohn ME, Jaffe IZ. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule‐1 expression and promote leukocyte adhesion. Circ Res 102: 1359‐1367, 2008. CIRCRESAHA.108.174235 [pii]; 10.1161/CIRCRESAHA.108.174235 [doi]
 34.Carmichael JD, Fleseriu M. Mifepristone: Is there a place in the treatment of Cushing's disease? Endocrine 44: 20‐32, 2013. 10.1007/s12020‐012‐9846‐1 [doi]
 35.Castinetti F, Conte‐Devolx B, Brue T. Medical treatment of Cushing's syndrome: Glucocorticoid receptor antagonists and mifepristone. Neuroendocrinology 92 Suppl 1: 125‐130, 2010. 000314224 [pii]; 10.1159/000314224 [doi]
 36.Catena C, Lapenna R, Baroselli S, Nadalini E, Colussi G, Novello M, Favret G, Melis A, Cavarape A, Sechi LA. Insulin sensitivity in patients with primary aldosteronism: A follow‐up study. J Clin Endocrinol Metab 91: 3457‐3463, 2006. jc.2006‐0736 [pii]; 10.1210/jc.2006‐0736 [doi]
 37.Chen B, Lam KS, Wang Y, Wu D, Lam MC, Shen J, Wong L, Hoo RL, Zhang J, Xu A. Hypoxia dysregulates the production of adiponectin and plasminogen activator inhibitor‐1 independent of reactive oxygen species in adipocytes. Biochem Biophys Res Commun 341: 549‐556, 2006. S0006‐291X(06)00060‐X [pii]; 10.1016/j.bbrc.2006.01.004 [doi]
 38.Chen L, Chen R, Wang H, Liang F. Mechanisms linking inflammation to insulin resistance. Int J Endocrinol 2015: 508409, 2015. 10.1155/2015/508409 [doi]
 39.Cinti S. The adipose organ. Prostaglandins Leukot Essent Fatty Acids 73: 9‐15, 2005. S0952‐3278(05)00054‐2 [pii]; 10.1016/j.plefa.2005.04.010 [doi]
 40.Cinti S. Between brown and white: Novel aspects of adipocyte differentiation. Ann Med 43: 104‐115, 2011. 10.3109/07853890.2010.535557 [doi]
 41.Cinti S. The adipose organ at a glance. Dis Model Mech 5: 588‐594, 2012. 5/5/588 [pii]; 10.1242/dmm.009662 [doi]
 42.Clarke SL, Robinson CE, Gimble JM. CAAT/enhancer binding proteins directly modulate transcription from the peroxisome proliferator‐activated receptor gamma 2 promoter. Biochem Biophys Res Commun 240: 99‐103, 1997. S0006‐291X(97)97627‐0 [pii]; 10.1006/bbrc.1997.7627 [doi]
 43.Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V, Abdennur NA, Liu J, Svensson PA, Hsu YH, Drucker DJ, Mellgren G, Hui CC, Hauner H, Kellis M. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 373: 895‐907, 2015. 10.1056/NEJMoa1502214 [doi]
 44.Connell JM, Davies E. The new biology of aldosterone. J Endocrinol 186: 1‐20, 2005. 186/1/1 [pii]; 10.1677/joe.1.06017 [doi]
 45.Cornelius P, MacDougald OA, Lane MD. Regulation of adipocyte development. Annu Rev Nutr 14: 99‐129, 1994. 10.1146/ [doi]
 46.Crandall DL, Herzlinger HE, Saunders BD, Zolotor RC, Feliciano L, Cervoni P. Identification and characterization of angiotensin II receptors in rat epididymal adipocyte membranes. Metabolism 42: 511‐515, 1993. 0026‐0495(93)90111‐Z [pii]
 47.Cristancho AG, Lazar MA. Forming functional fat: A growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol 12: 722‐734, 2011. nrm3198 [pii]; 10.1038/nrm3198 [doi]
 48.Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 360: 1509‐1517, 2009. 360/15/1509 [pii]; 10.1056/NEJMoa0810780 [doi]
 49.Czaja MJ. Autophagy in health and disease. 2. Regulation of lipid metabolism and storage by autophagy: Pathophysiological implications. Am J Physiol Cell Physiol 298: C973‐C978, 2010. ajpcell.00527.2009 [pii]; 10.1152/ajpcell.00527.2009 [doi] Kloet AD, Krause EG, Solomon MB, Flak JN, Scott KA, Kim DH, Myers B, Ulrich‐Lai YM, Woods SC, Seeley RJ, Herman JP. Adipocyte glucocorticoid receptors mediate fat‐to‐brain signaling. Psychoneuroendocrinology 56: 110‐119, 2015. S0306‐4530(15)00095‐5 [pii]; 10.1016/j.psyneuen.2015.03.008 [doi] Kloet ER, Van Acker SA, Sibug RM, Oitzl MS, Meijer OC, Rahmouni K, de JW. Brain mineralocorticoid receptors and centrally regulated functions. Kidney Int. 57: 1329‐1336, 2000. S0085‐2538(15)46877‐2 [pii]; 10.1046/j.1523‐1755.2000.00971.x [doi]
 52.Deng Y, Scherer PE. Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci 1212: E1‐E19, 2010. 10.1111/j.1749‐6632.2010.05875.x [doi]
 53.Desarzens S, Faresse N. Adipocyte glucocorticoid receptor has a minor contribution in adipose tissue growth. J Endocrinol 230: 1‐11, 2016. JOE‐16‐0121 [pii]; 10.1530/JOE‐16‐0121 [doi]
 54.Desarzens S, Liao WH, Mammi C, Caprio M, Faresse N. Hsp90 blockers inhibit adipocyte differentiation and fat mass accumulation. PLoS One 9: e94127, 2014. 10.1371/journal.pone.0094127 [doi];PONE‐D‐13‐41552 [pii]
 55.Despres JP, Lemieux I. Abdominal obesity and metabolic syndrome. Nature 444: 881‐887, 2006. nature05488 [pii]; 10.1038/nature05488 [doi]
 56.Dinh Cat AN, Friederich‐Persson M, White A, Touyz RM. Adipocytes, aldosterone and obesity‐related hypertension. J Mol Endocrinol 57: F7‐F21, 2016. 57/1/F7 [pii]; 10.1530/JME‐16‐0025 [doi]
 57.Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 365: 1415‐1428, 2005. S0140‐6736(05)66378‐7 [pii]; 10.1016/S0140‐6736(05)66378‐7 [doi]
 58.Edwards CR, Stewart PM, Burt D, Brett L, McIntyre MA, Sutanto WS, de Kloet ER, Monder C. Localisation of 11 beta‐hydroxysteroid dehydrogenase—tissue specific protector of the mineralocorticoid receptor. Lancet 2: 986‐989, 1988. S0140‐6736(88)90742‐8 [pii]
 59.Ehrhart‐Bornstein M, Arakelyan K, Krug AW, Scherbaum WA, Bornstein SR. Fat cells may be the obesity‐hypertension link: Human adipogenic factors stimulate aldosterone secretion from adrenocortical cells. Endocr Res 30: 865‐870, 2004.
 60.Ehrhart‐Bornstein M, Lamounier‐Zepter V, Schraven A, Langenbach J, Willenberg HS, Barthel A, Hauner H, McCann SM, Scherbaum WA, Bornstein SR. Human adipocytes secrete mineralocorticoid‐releasing factors. Proc Natl Acad Sci U S A 100: 14211‐14216, 2003. 10.1073/pnas.2336140100 [doi];2336140100 [pii]
 61.Engeli S, Schling P, Gorzelniak K, Boschmann M, Janke J, Ailhaud G, Teboul M, Massiera F, Sharma AM. The adipose‐tissue renin‐angiotensin‐aldosterone system: Role in the metabolic syndrome? Int J Biochem Cell Biol 35: 807‐825, 2003. S1357272502003114 [pii]
 62.Esser N, Legrand‐Poels S, Piette J, Scheen AJ, Paquot N. Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105: 141‐150, 2014. S0168‐8227(14)00187‐9 [pii]; 10.1016/j.diabres.2014.04.006 [doi]
 63.Faggiano A, Pivonello R, Spiezia S, De Martino MC, Filippella M, Di SC, Lombardi G, Colao A. Cardiovascular risk factors and common carotid artery caliber and stiffness in patients with Cushing's disease during active disease and 1 year after disease remission. J Clin Endocrinol Metab 88: 2527‐2533, 2003. 10.1210/jc.2002‐021558 [doi]
 64.Fain JN. Release of inflammatory mediators by human adipose tissue is enhanced in obesity and primarily by the nonfat cells: A review. Mediators Inflamm 2010: 513948, 2010. 10.1155/2010/513948 [doi]
 65.Fain JN. Impact of glucocorticoid hormones on adipokine secretion and human adipose tissue metabolism. Horm Mol Biol Clin Investig 14: 25‐32, 2013. 10.1515/hmbci‐2013‐0008 [doi];/j/hmbci.2013.14.issue‐1/hmbci‐2013‐0008/hmbci‐2013‐0008.xml [pii]
 66.Fallo F, Della MP, Sonino N, Bertello C, Ermani M, Vettor R, Veglio F, Mulatero P. Adiponectin and insulin sensitivity in primary aldosteronism. Am J Hypertens 20: 855‐861, 2007. S0895‐7061(07)00177‐X [pii]; 10.1016/j.amjhyper.2007.03.012 [doi]
 67.Fallo F, Veglio F, Bertello C, Sonino N, Della MP, Ermani M, Rabbia F, Federspil G, Mulatero P. Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J Clin Endocrinol Metab 91: 454‐459, 2006. jc.2005‐1733 [pii]; 10.1210/jc.2005‐1733 [doi]
 68.Farquharson CA, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure. Circulation 101: 594‐597, 2000.
 69.Farquharson CA, Struthers AD. Aldosterone induces acute endothelial dysfunction in vivo in humans: Evidence for an aldosterone‐induced vasculopathy. Clin Sci (Lond) 103: 425‐431, 2002. 10.1042/ [doi]
 70.Feig PU, Shah S, Hermanowski‐Vosatka A, Plotkin D, Springer MS, Donahue S, Thach C, Klein EJ, Lai E, Kaufman KD. Effects of an 11beta‐hydroxysteroid dehydrogenase type 1 inhibitor, MK‐0916, in patients with type 2 diabetes mellitus and metabolic syndrome. Diabetes Obes Metab 13: 498‐504, 2011. 10.1111/j.1463‐1326.2011.01375.x [doi]
 71.Feldman D, Loose D. Glucocorticoid receptors in adipose tissue. Endocrinology 100: 398‐405, 1977. 10.1210/endo‐100‐2‐398 [doi]
 72.Feraco A, Armani A, Mammi C, Fabbri A, Rosano GM, Caprio M. Role of mineralocorticoid receptor and renin‐angiotensin‐aldosterone system in adipocyte dysfunction and obesity. J Steroid Biochem Mol Biol 137: 99‐106, 2013. S0960‐0760(13)00043‐5 [pii]; 10.1016/j.jsbmb.2013.02.012 [doi]
 73.Fiebeler A, Nussberger J, Shagdarsuren E, Rong S, Hilfenhaus G, Al‐Saadi N, Dechend R, Wellner M, Meiners S, Maser‐Gluth C, Jeng AY, Webb RL, Luft FC, Muller DN. Aldosterone synthase inhibitor ameliorates angiotensin II‐induced organ damage. Circulation 111: 3087‐3094, 2005. CIRCULATIONAHA.104.521625 [pii]; 10.1161/CIRCULATIONAHA.104.521625 [doi]
 74.Fleseriu M, Biller BM, Findling JW, Molitch ME, Schteingart DE, Gross C. Mifepristone, a glucocorticoid receptor antagonist, produces clinical and metabolic benefits in patients with Cushing's syndrome. J Clin Endocrinol Metab 97: 2039‐2049, 2012. jc.2011‐3350 [pii]; 10.1210/jc.2011‐3350 [doi]
 75.Fleseriu M, Molitch ME, Gross C, Schteingart DE, Vaughan TB, III, Biller BM. A new therapeutic approach in the medical treatment of Cushing's syndrome: Glucocorticoid receptor blockade with mifepristone. Endocr Pract 19: 313‐326, 2013. B130026R76871144 [pii]; 10.4158/EP12149.RA [doi]
 76.Freude S, Heise T, Woerle HJ, Jungnik A, Rauch T, Hamilton B, Scholch C, Huang F, Graefe‐Mody U. Safety, pharmacokinetics and pharmacodynamics of BI 135585, a selective 11beta‐hydroxysteroid dehydrogenase‐1 (HSD1) inhibitor in humans: Liver and adipose tissue 11beta‐HSD1 inhibition after acute and multiple administrations over 2 weeks. Diabetes Obes Metab 18: 483‐490, 2016. 10.1111/dom.12635 [doi]
 77.Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin‐6: Depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83: 847‐850, 1998. 10.1210/jcem.83.3.4660 [doi]
 78.Fu M, Sun T, Bookout AL, Downes M, Yu RT, Evans RM, Mangelsdorf DJ. A nuclear receptor atlas: 3T3‐L1 adipogenesis. Mol Endocrinol 19: 2437‐2450, 2005. me.2004‐0539 [pii]; 10.1210/me.2004‐0539 [doi]
 79.Fuhrmann U, Krattenmacher R, Slater EP, Fritzemeier KH. The novel progestin drospirenone and its natural counterpart progesterone: Biochemical profile and antiandrogenic potential. Contraception 54: 243‐251, 1996. S0010782496001953 [pii]
 80.Funder JW. Aldosterone and mineralocorticoid receptors: Orphan questions. Kidney Int 57: 1358‐1363, 2000. S0085‐2538(15)46881‐4 [pii]; 10.1046/j.1523‐1755.2000.00975.x [doi]
 81.Funder JW. Mineralocorticoid receptors: Distribution and activation. Heart Fail Rev 10: 15‐22, 2005. 10.1007/s10741‐005‐2344‐2 [doi]
 82.Funder JW. The nongenomic actions of aldosterone. Endocr Rev 26: 313‐321, 2005. er.2005‐0004 [pii]; 10.1210/er.2005‐0004 [doi]
 83.Funder JW. Reconsidering the roles of the mineralocorticoid receptor. Hypertension 53: 286‐290, 2009. HYPERTENSIONAHA.108.119966 [pii]; 10.1161/HYPERTENSIONAHA.108.119966 [doi]
 84.Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: Target tissue specificity is enzyme, not receptor, mediated. Science 242: 583‐585, 1988.
 85.Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest 114: 1752‐1761, 2004. 10.1172/JCI21625 [doi]
 86.Gaeggeler HP, Gonzalez‐Rodriguez E, Jaeger NF, Loffing‐Cueni D, Norregaard R, Loffing J, Horisberger JD, Rossier BC. Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone‐stimulated sodium transport in a novel renal cell line. J Am Soc Nephrol 16: 878‐891, 2005. ASN.2004121110 [pii]; 10.1681/ASN.2004121110 [doi]
 87.Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 316: 129‐139, 2010. S0303‐7207(09)00438‐9 [pii]; 10.1016/j.mce.2009.08.018 [doi]
 88.Garthwaite SM, McMahon EG. The evolution of aldosterone antagonists. Mol Cell Endocrinol 217: 27‐31, 2004. 10.1016/j.mce.2003.10.005 [doi];S0303720703003769 [pii]
 89.Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid‐induced insulin resistance: Focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am 43: 75‐102, 2014. S0889‐8529(13)00115‐1 [pii]; 10.1016/j.ecl.2013.10.005 [doi]
 90.Giordano A, Frontini A, Cinti S. Convertible visceral fat as a therapeutic target to curb obesity. Nat Rev Drug Discov 15: 405‐424, 2016. nrd.2016.31 [pii]; 10.1038/nrd.2016.31 [doi]
 91.Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol Rev 78: 783‐809, 1998.
 92.Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 29: 415‐445, 2011. 10.1146/annurev‐immunol‐031210‐101322 [doi]
 93.Guo C, Ricchiuti V, Lian BQ, Yao TM, Coutinho P, Romero JR, Li J, Williams GH, Adler GK. Mineralocorticoid receptor blockade reverses obesity‐related changes in expression of adiponectin, peroxisome proliferator‐activated receptor‐gamma, and proinflammatory adipokines. Circulation 117: 2253‐2261, 2008. CIRCULATIONAHA.107.748640 [pii]; 10.1161/CIRCULATIONAHA.107.748640 [doi]
 94.Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G, Stec DE. Obesity‐induced hypertension: Role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem 285: 17271‐17276, 2010. R110.113175 [pii]; 10.1074/jbc.R110.113175 [doi]
 95.Haluzik M, Sindelka G, Widimsky J, Jr., Prazny M, Zelinka T, Skrha J. Serum leptin levels in patients with primary hyperaldosteronism before and after treatment: Relationships to insulin sensitivity. J Hum Hypertens 16: 41‐45, 2002. 10.1038/sj.jhh.1001292 [doi]
 96.Hamilton BS, Himmelsbach F, Nar H, Schuler‐Metz A, Krosky P, Guo J, Guo R, Meng S, Zhao Y, Lala DS, Zhuang L, Claremon DA, McGeehan GM. Pharmacological characterization of the selective 11beta‐hydroxysteroid dehydrogenase 1 inhibitor, BI 135585, a clinical candidate for the treatment of type 2 diabetes. Eur J Pharmacol 746: 50‐55, 2015. S0014‐2999(14)00760‐2 [pii]; 10.1016/j.ejphar.2014.10.053 [doi]
 97.Han F, Ozawa H, Matsuda K, Nishi M, Kawata M. Colocalization of mineralocorticoid receptor and glucocorticoid receptor in the hippocampus and hypothalamus. Neurosci Res 51: 371‐381, 2005. S0168‐0102(04)00311‐6 [pii]; 10.1016/j.neures.2004.12.013 [doi]
 98.Hargovan M, Ferro A. Aldosterone synthase inhibitors in hypertension: Current status and future possibilities. JRSM Cardiovasc Dis 3: 2048004014522440, 2014. 10.1177/2048004014522440 [doi];10.1177_2048004014522440 [pii]
 99.Harms M, Seale P. Brown and beige fat: Development, function and therapeutic potential. Nat Med 19: 1252‐1263, 2013. nm.3361 [pii]; 10.1038/nm.3361 [doi]
 100.Harte A, McTernan P, Chetty R, Coppack S, Katz J, Smith S, Kumar S. Insulin‐mediated upregulation of the renin angiotensin system in human subcutaneous adipocytes is reduced by rosiglitazone. Circulation 111: 1954‐1961, 2005. 111/15/1954 [pii]; 10.1161/01.CIR.0000161954.17870.5D [doi]
 101.Hashimoto T, Igarashi J, Hasan AU, Ohmori K, Kohno M, Nagai Y, Yamashita T, Kosaka H. Mifepristone promotes adiponectin production and improves insulin sensitivity in a mouse model of diet‐induced‐obesity. PLoS One 8: e79724, 2013. 10.1371/journal.pone.0079724 [doi];PONE‐D‐13‐23816 [pii]
 102.Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest 84: 1663‐1670, 1989. 10.1172/JCI114345 [doi]
 103.Hauner H, Schmid P, Pfeiffer EF. Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 64: 832‐835, 1987. 10.1210/jcem‐64‐4‐832 [doi]
 104.Heitzmann D, Derand R, Jungbauer S, Bandulik S, Sterner C, Schweda F, El WA, Lalli E, Guy N, Mengual R, Reichold M, Tegtmeier I, Bendahhou S, Gomez‐Sanchez CE, Aller MI, Wisden W, Weber A, Lesage F, Warth R, Barhanin J. Invalidation of TASK1 potassium channels disrupts adrenal gland zonation and mineralocorticoid homeostasis. EMBO J 27: 179‐187, 2008. 7601934 [pii]; 10.1038/sj.emboj.7601934 [doi]
 105.Hermanowski‐Vosatka A, Balkovec JM, Cheng K, Chen HY, Hernandez M, Koo GC, Le Grand CB, Li Z, Metzger JM, Mundt SS, Noonan H, Nunes CN, Olson SH, Pikounis B, Ren N, Robertson N, Schaeffer JM, Shah K, Springer MS, Strack AM, Strowski M, Wu K, Wu T, Xiao J, Zhang BB, Wright SD, Thieringer R. 11beta‐HSD1 inhibition ameliorates metabolic syndrome and prevents progression of atherosclerosis in mice. J Exp Med 202: 517‐527, 2005. jem.20050119 [pii]; 10.1084/jem.20050119 [doi]
 106.Hirata A, Maeda N, Hiuge A, Hibuse T, Fujita K, Okada T, Kihara S, Funahashi T, Shimomura I. Blockade of mineralocorticoid receptor reverses adipocyte dysfunction and insulin resistance in obese mice. Cardiovasc Res 84: 164‐172, 2009. cvp191 [pii]; 10.1093/cvr/cvp191 [doi]
 107.Hirata A, Maeda N, Nakatsuji H, Hiuge‐Shimizu A, Okada T, Funahashi T, Shimomura I. Contribution of glucocorticoid‐mineralocorticoid receptor pathway on the obesity‐related adipocyte dysfunction. Biochem Biophys Res Commun 419: 182‐187, 2012. S0006‐291X(12)00193‐3 [pii]; 10.1016/j.bbrc.2012.01.139 [doi]
 108.Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318: 635‐641, 1985.
 109.Hong SP, Nam KY, Shin YJ, Kim KW, Ahn SK. Discovery of 11beta‐hydroxysteroid dehydrogenase type 1 inhibitor. Bioorg Med Chem Lett 25: 3501‐3506, 2015. S0960‐894X(15)00704‐0 [pii]; 10.1016/j.bmcl.2015.06.099 [doi]
 110.Hoppmann J, Perwitz N, Meier B, Fasshauer M, Hadaschik D, Lehnert H, Klein J. The balance between gluco‐ and mineralo‐corticoid action critically determines inflammatory adipocyte responses. J Endocrinol 204: 153‐164, 2010. JOE‐09‐0292 [pii]; 10.1677/JOE‐09‐0292 [doi]
 111.Hu GX, Lin H, Lian QQ, Zhou SH, Guo J, Zhou HY, Chu Y, Ge RS. Curcumin as a potent and selective inhibitor of 11beta‐hydroxysteroid dehydrogenase 1: Improving lipid profiles in high‐fat‐diet‐treated rats. PLoS One 8: e49976, 2013. 10.1371/journal.pone.0049976 [doi];PONE‐D‐11‐24899 [pii]
 112.Hu Q, Yin L, Hartmann RW. Aldosterone synthase inhibitors as promising treatments for mineralocorticoid dependent cardiovascular and renal diseases. J Med Chem 57: 5011‐5022, 2014. 10.1021/jm401430e [doi]
 113.Huby AC, Antonova G, Groenendyk J, Gomez‐Sanchez CE, Bollag WB, Filosa JA, Belin de Chantemele EJ. Adipocyte‐derived hormone leptin is a direct regulator of aldosterone secretion, which promotes endothelial dysfunction and cardiac fibrosis. Circulation 132: 2134‐2145, 2015. CIRCULATIONAHA.115.018226 [pii]; 10.1161/CIRCULATIONAHA.115.018226 [doi]
 114.Hunt HJ, Ray NC, Hynd G, Sutton J, Sajad M, O'Connor E, Ahmed S, Lockey P, Daly S, Buckley G, Clark RD, Roe R, Blasey C, Belanoff J. Discovery of a novel non‐steroidal GR antagonist with in vivo efficacy in the olanzapine‐induced weight gain model in the rat. Bioorg Med Chem Lett 22: 7376‐7380, 2012. S0960‐894X(12)01365‐0 [pii]; 10.1016/j.bmcl.2012.10.074 [doi]
 115.Ingelsson E, Pencina MJ, Tofler GH, Benjamin EJ, Lanier KJ, Jacques PF, Fox CS, Meigs JB, Levy D, Larson MG, Selhub J, D'Agostino RB, Sr., Wang TJ, Vasan RS. Multimarker approach to evaluate the incidence of the metabolic syndrome and longitudinal changes in metabolic risk factors: the Framingham Offspring Study. Circulation 116: 984‐992, 2007. CIRCULATIONAHA.107.708537 [pii]; 10.1161/CIRCULATIONAHA.107.708537 [doi]
 116.Ishibashi J, Seale P. Medicine. Beige can be slimming. Science 328: 1113‐1114, 2010. science.1190816 [pii]; 10.1126/science.1190816 [doi]
 117.Isomura Y, Mune T, Morita H, Suwa T, Takada N, Yamamoto Y, Takeda J. Physiologic roles of 11beta‐hydroxysteroid dehydrogenase type 2 in kidney. Metabolism 55: 1352‐1357, 2006. S0026‐0495(06)00210‐1 [pii]; 10.1016/j.metabol.2006.06.005 [doi]
 118.Iwasaki Y, Takayasu S, Nishiyama M, Tsugita M, Taguchi T, Asai M, Yoshida M, Kambayashi M, Hashimoto K. Is the metabolic syndrome an intracellular Cushing state? Effects of multiple humoral factors on the transcriptional activity of the hepatic glucocorticoid‐activating enzyme (11beta‐hydroxysteroid dehydrogenase type 1) gene. Mol Cell Endocrinol 285: 10‐18, 2008. S0303‐7207(08)00006‐3 [pii]; 10.1016/j.mce.2008.01.012 [doi]
 119.Jeon JH, Kim KY, Kim JH, Baek A, Cho H, Lee YH, Kim JW, Kim D, Han SH, Lim JS, Kim KI, Yoon DY, Kim SH, Oh GT, Kim E, Yang Y. A novel adipokine CTRP1 stimulates aldosterone production. FASEB J 22: 1502‐1511, 2008. fj.07‐9412com [pii]; 10.1096/fj.07‐9412com [doi]
 120.Jung‐Testas I, Baulieu EE. Inhibition of glucocorticosteroid action in cultured L‐929 mouse fibroblasts by RU 486, a new anti‐glucocorticosteroid of high affinity for the glucocorticosteroid receptor. Exp Cell Res 147: 177‐182, 1983. 0014‐4827(83)90282‐3 [pii]
 121.Kajimura S, Seale P, Spiegelman BM. Transcriptional control of brown fat development. Cell Metab 11: 257‐262, 2010. S1550‐4131(10)00075‐6 [pii]; 10.1016/j.cmet.2010.03.005 [doi]
 122.Kalupahana NS, Massiera F, Quignard‐Boulange A, Ailhaud G, Voy BH, Wasserman DH, Moustaid‐Moussa N. Overproduction of angiotensinogen from adipose tissue induces adipose inflammation, glucose intolerance, and insulin resistance. Obesity (Silver Spring) 20: 48‐56, 2012. oby2011299 [pii]; 10.1038/oby.2011.299 [doi]
 123.Kalupahana NS, Moustaid‐Moussa N. The adipose tissue renin‐angiotensin system and metabolic disorders: A review of molecular mechanisms. Crit Rev Biochem Mol Biol 47: 379‐390, 2012. 10.3109/10409238.2012.694843 [doi]
 124.Karashima S, Yoneda T, Kometani M, Ohe M, Mori S, Sawamura T, Furukawa K, Seta T, Yamagishi M, Takeda Y. Comparison of eplerenone and spironolactone for the treatment of primary aldosteronism. Hypertens Res 39: 133‐137, 2016. hr2015129 [pii]; 10.1038/hr.2015.129 [doi]
 125.Kidambi S, Kotchen JM, Grim CE, Raff H, Mao J, Singh RJ, Kotchen TA. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension 49: 704‐711, 2007. 01.HYP.0000253258.36141.c7 [pii]; 10.1161/01.HYP.0000253258.36141.c7 [doi]
 126.Kolkhof P, Delbeck M, Kretschmer A, Steinke W, Hartmann E, Barfacker L, Eitner F, Albrecht‐Kupper B, Schafer S. Finerenone, a novel selective nonsteroidal mineralocorticoid receptor antagonist protects from rat cardiorenal injury. J Cardiovasc Pharmacol 64: 69‐78, 2014. 10.1097/FJC.0000000000000091 [doi]
 127.Kong X, Yu J, Bi J, Qi H, Di W, Wu L, Wang L, Zha J, Lv S, Zhang F, Li Y, Hu F, Liu F, Zhou H, Liu J, Ding G. Glucocorticoids transcriptionally regulate miR‐27b expression promoting body fat accumulation via suppressing the browning of white adipose tissue. Diabetes 64: 393‐404, 2015. db14‐0395 [pii]; 10.2337/db14‐0395 [doi]
 128.Kovsan J, Bluher M, Tarnovscki T, Kloting N, Kirshtein B, Madar L, Shai I, Golan R, Harman‐Boehm I, Schon MR, Greenberg AS, Elazar Z, Bashan N, Rudich A. Altered autophagy in human adipose tissues in obesity. J Clin Endocrinol Metab 96: E268‐E277, 2011. jc.2010‐1681 [pii]; 10.1210/jc.2010‐1681 [doi]
 129.Kraus D, Jager J, Meier B, Fasshauer M, Klein J. Aldosterone inhibits uncoupling protein‐1, induces insulin resistance, and stimulates proinflammatory adipokines in adipocytes. Horm Metab Res 37: 455‐459, 2005. 10.1055/s‐2005‐870240 [doi]
 130.Labuzek K, Liber S, Buldak L, Machnik G, Liber J, Okopien B. Eplerenone promotes alternative activation in human monocyte‐derived macrophages. Pharmacol Rep 65: 226‐234, 2013.
 131.Lastra G, Whaley‐Connell A, Manrique C, Habibi J, Gutweiler AA, Appesh L, Hayden MR, Wei Y, Ferrario C, Sowers JR. Low‐dose spironolactone reduces reactive oxygen species generation and improves insulin‐stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am J Physiol Endocrinol Metab 295: E110‐E116, 2008. 00258.2007 [pii]; 10.1152/ajpendo.00258.2007 [doi]
 132.Lee J. Adipose tissue macrophages in the development of obesity‐induced inflammation, insulin resistance and type 2 diabetes. Arch Pharm Res 36: 208‐222, 2013. 10.1007/s12272‐013‐0023‐8 [doi]
 133.Lee MJ, Fried SK. The glucocorticoid receptor, not the mineralocorticoid receptor, plays the dominant role in adipogenesis and adipokine production in human adipocytes. Int J Obes (Lond) 38: 1228‐1233, 2014. ijo20146 [pii]; 10.1038/ijo.2014.6 [doi]
 134.Lee MJ, Gong DW, Burkey BF, Fried SK. Pathways regulated by glucocorticoids in omental and subcutaneous human adipose tissues: A microarray study. Am J Physiol Endocrinol Metab 300: E571‐E580, 2011. ajpendo.00231.2010 [pii]; 10.1152/ajpendo.00231.2010 [doi]
 135.Li P, Sun F, Cao HM, Ma QY, Pan CM, Ma JH, Zhang XN, Jiang H, Song HD, Chen MD. Expression of adiponectin receptors in mouse adrenal glands and the adrenocortical Y‐1 cell line: Adiponectin regulates steroidogenesis. Biochem Biophys Res Commun 390: 1208‐1213, 2009. S0006‐291X(09)02113‐5 [pii]; 10.1016/j.bbrc.2009.10.122 [doi]
 136.Lin FT, Lane MD. CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3‐L1 adipocyte differentiation program. Proc Natl Acad Sci U S A 91: 8757‐8761, 1994.
 137.Lombes M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 71: 503‐510, 1992.
 138.Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 117: 175‐184, 2007. 10.1172/JCI29881 [doi]
 139.Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet‐induced obesity. Diabetes 56: 16‐23, 2007. 56/1/16 [pii]; 10.2337/db06‐1076 [doi]
 140.Luo P, Dematteo A, Wang Z, Zhu L, Wang A, Kim HS, Pozzi A, Stafford JM, Luther JM. Aldosterone deficiency prevents high‐fat‐feeding‐induced hyperglycaemia and adipocyte dysfunction in mice. Diabetologia 56: 901‐910, 2013. 10.1007/s00125‐012‐2814‐8 [doi]
 141.Mammi C, Marzolla V, Armani A, Feraco A, Antelmi A, Maslak E, Chlopicki S, Cinti F, Hunt H, Fabbri A, Caprio M. A novel combined glucocorticoid‐mineralocorticoid receptor selective modulator markedly prevents weight gain and fat mass expansion in mice fed a high‐fat diet. Int J Obes (Lond) 40: 964‐972, 2016. ijo201613 [pii]; 10.1038/ijo.2016.13 [doi]
 142.Marcus Y, Shefer G, Stern N. Adipose tissue renin‐angiotensin‐aldosterone system (RAAS) and progression of insulin resistance. Mol Cell Endocrinol 378: 1‐14, 2013. S0303‐7207(12)00335‐8 [pii]; 10.1016/j.mce.2012.06.021 [doi]
 143.Marzolla V, Armani A, Mammi C, Moss ME, Pagliarini V, Pontecorvo L, Antelmi A, Fabbri A, Rosano G, Jaffe IZ, Caprio M. Essential role of ICAM‐1 in aldosterone‐induced atherosclerosis. Int J Cardiol, 2017. S0167‐5273(17)30032‐3 [pii]; 10.1016/j.ijcard.2017.01.013 [doi]
 144.Marzolla V, Armani A, Zennaro MC, Cinti F, Mammi C, Fabbri A, Rosano GM, Caprio M. The role of the mineralocorticoid receptor in adipocyte biology and fat metabolism. Mol Cell Endocrinol 350: 281‐288, 2012. S0303‐7207(11)00545‐4 [pii]; 10.1016/j.mce.2011.09.011 [doi]
 145.Masuzaki H, Yamamoto H, Kenyon CJ, Elmquist JK, Morton NM, Paterson JM, Shinyama H, Sharp MG, Fleming S, Mullins JJ, Seckl JR, Flier JS. Transgenic amplification of glucocorticoid action in adipose tissue causes high blood pressure in mice. J Clin Invest 112: 83‐90, 2003. 10.1172/JCI17845 [doi];112/1/83 [pii]
 146.McGraw AP, Bagley J, Chen WS, Galayda C, Nickerson H, Armani A, Caprio M, Carmeliet P, Jaffe IZ. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor‐dependent mechanism. J Am Heart Assoc 2: e000018, 2013. 2/1/e000018 [pii]; 10.1161/JAHA.112.000018 [doi]
 147.McLaughlin T, Deng A, Yee G, Lamendola C, Reaven G, Tsao PS, Cushman SW, Sherman A. Inflammation in subcutaneous adipose tissue: Relationship to adipose cell size. Diabetologia 53: 369‐377, 2010. 10.1007/s00125‐009‐1496‐3 [doi]
 148.Menard J, Rigel DF, Watson C, Jeng AY, Fu F, Beil M, Liu J, Chen W, Hu CW, Leung‐Chu J, LaSala D, Liang G, Rebello S, Zhang Y, Dole WP. Aldosterone synthase inhibition: Cardiorenal protection in animal disease models and translation of hormonal effects to human subjects. J Transl Med 12: 340, 2014. 10.1186/s12967‐014‐0340‐9 [doi];s12967‐014‐0340‐9 [pii]
 149.Messaoudi S, Azibani F, Delcayre C, Jaisser F. Aldosterone, mineralocorticoid receptor, and heart failure. Mol Cell Endocrinol 350: 266‐272, 2012. S0303‐7207(11)00371‐6 [pii]; 10.1016/j.mce.2011.06.038 [doi]
 150.Miller LK, Kral JG, Strain GW, Zumoff B. Differential binding of dexamethasone to ammonium sulfate precipitates of human adipose tissue cytosols. Steroids 49: 507‐522, 1987.
 151.Milliez P, Girerd X, Plouin PF, Blacher J, Safar ME, Mourad JJ. Evidence for an increased rate of cardiovascular events in patients with primary aldosteronism. J Am Coll Cardiol 45: 1243‐1248, 2005. S0735‐1097(05)00218‐4 [pii]; 10.1016/j.jacc.2005.01.015 [doi]
 152.Mizushima N. Autophagy: Process and function. Genes Dev. 21: 2861‐2873, 2007. 21/22/2861 [pii]; 10.1101/gad.1599207 [doi]
 153.Morgan SA, McCabe EL, Gathercole LL, Hassan‐Smith ZK, Larner DP, Bujalska IJ, Stewart PM, Tomlinson JW, Lavery GG. 11beta‐HSD1 is the major regulator of the tissue‐specific effects of circulating glucocorticoid excess. Proc Natl Acad Sci U S A 111: E2482‐E2491, 2014. 1323681111 [pii]; 10.1073/pnas.1323681111 [doi]
 154.Morton NM, Seckl JR. 11beta‐hydroxysteroid dehydrogenase type 1 and obesity. Front Horm Res 36: 146‐164, 2008. 115363 [pii]; 10.1159/0000115363 [doi]
 155.Muhn P, Krattenmacher R, Beier S, Elger W, Schillinger E. Drospirenone: A novel progestogen with antimineralocorticoid and antiandrogenic activity. Pharmacological characterization in animal models. Contraception 51: 99‐110, 1995. 001078249400015O [pii]
 156.Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M, Cinti S. Dead adipocytes, detected as crown‐like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 49: 1562‐1568, 2008. M800019‐JLR200 [pii]; 10.1194/jlr.M800019‐JLR200 [doi]
 157.Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293: E444‐E452, 2007. 00691.2006 [pii]; 10.1152/ajpendo.00691.2006 [doi]
 158.Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480: 104‐108, 2011. nature10653 [pii]; 10.1038/nature10653 [doi]
 159.Nigro E, Scudiero O, Monaco ML, Palmieri A, Mazzarella G, Costagliola C, Bianco A, Daniele A. New insight into adiponectin role in obesity and obesity‐related diseases. Biomed Res Int 2014: 658913, 2014. 10.1155/2014/658913 [doi]
 160.Nikolic I, Vujicic M, Saksida T, Berki T, Stosic‐Grujicic S, Stojanovic I. The role of endogenous glucocorticoids in glucose metabolism and immune status of MIF‐deficient mice. Eur J Pharmacol 714: 498‐506, 2013. S0014‐2999(13)00506‐2 [pii]; 10.1016/j.ejphar.2013.06.037 [doi]
 161.Northcott CA, Fink GD, Garver H, Haywood JR, Laimon‐Thomson EL, McClain JL, Pires PW, Rainey WE, Rigsby CS, Dorrance AM. The development of hypertension and hyperaldosteronism in a rodent model of life‐long obesity. Endocrinology 153: 1764‐1773, 2012. en.2011‐1176 [pii]; 10.1210/en.2011‐1176 [doi]
 162.Ntambi JM, Young‐Cheul K. Adipocyte differentiation and gene expression. J Nutr 130: 3122S‐3126S, 2000.
 163.Nuotio‐Antar AM, Hachey DL, Hasty AH. Carbenoxolone treatment attenuates symptoms of metabolic syndrome and atherogenesis in obese, hyperlipidemic mice. Am J Physiol Endocrinol Metab 293: E1517‐E1528, 2007. 00522.2007 [pii]; 10.1152/ajpendo.00522.2007 [doi]
 164.Odermatt A, Kratschmar DV. Tissue‐specific modulation of mineralocorticoid receptor function by 11beta‐hydroxysteroid dehydrogenases: An overview. Mol Cell Endocrinol 350: 168‐186, 2012. S0303‐7207(11)00400‐X [pii]; 10.1016/j.mce.2011.07.020 [doi]
 165.Oelkers W, Foidart JM, Dombrovicz N, Welter A, Heithecker R. Effects of a new oral contraceptive containing an antimineralocorticoid progestogen, drospirenone, on the renin‐aldosterone system, body weight, blood pressure, glucose tolerance, and lipid metabolism. J Clin Endocrinol Metab 80: 1816‐1821, 1995. 10.1210/jcem.80.6.7775629 [doi]
 166.Okazaki S, Takahashi T, Iwamura T, Nakaki J, Sekiya Y, Yagi M, Kumagai H, Sato M, Sakami S, Nitta A, Kawai K, Kainoh M. HIS‐388, a novel orally active and long‐acting 11beta‐hydroxysteroid dehydrogenase type 1 inhibitor, ameliorates insulin sensitivity and glucose intolerance in diet‐induced obesity and nongenetic type 2 diabetic murine models. J Pharmacol Exp Ther 351: 181‐189, 2014. jpet.114.216556 [pii]; 10.1124/jpet.114.216556 [doi]
 167.Palacios S, Foidart JM, Genazzani AR. Advances in hormone replacement therapy with drospirenone, a unique progestogen with aldosterone receptor antagonism. Maturitas 55: 297‐307, 2006. S0378‐5122(06)00282‐9 [pii]; 10.1016/j.maturitas.2006.07.009 [doi]
 168.Pasarica M, Sereda OR, Redman LM, Albarado DC, Hymel DT, Roan LE, Rood JC, Burk DH, Smith SR. Reduced adipose tissue oxygenation in human obesity: Evidence for rarefaction, macrophage chemotaxis, and inflammation without an angiogenic response. Diabetes 58: 718‐725, 2009. db08‐1098 [pii]; 10.2337/db08‐1098 [doi]
 169.Patsouris D, Neels JG, Fan W, Li PP, Nguyen MT, Olefsky JM. Glucocorticoids and thiazolidinediones interfere with adipocyte‐mediated macrophage chemotaxis and recruitment. J Biol Chem 284: 31223‐31235, 2009. M109.041665 [pii]; 10.1074/jbc.M109.041665 [doi]
 170.Peckett AJ, Wright DC, Riddell MC. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60: 1500‐1510, 2011. S0026‐0495(11)00192‐2 [pii]; 10.1016/j.metabol.2011.06.012 [doi]
 171.Pedersen SB, Jonler M, Richelsen B. Characterization of regional and gender differences in glucocorticoid receptors and lipoprotein lipase activity in human adipose tissue. J Clin Endocrinol Metab 78: 1354‐1359, 1994. 10.1210/jcem.78.6.8200937 [doi]
 172.Penfornis P, Viengchareun S, Le MD, Cluzeaud F, Zennaro MC, Lombes M. The mineralocorticoid receptor mediates aldosterone‐induced differentiation of T37i cells into brown adipocytes. Am J Physiol Endocrinol Metab 279: E386‐E394, 2000.
 173.Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator‐activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1‐containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285: 7153‐7164, 2010. M109.053942 [pii]; 10.1074/jbc.M109.053942 [doi]
 174.Pisani DF, Beranger GE, Corinus A, Giroud M, Ghandour RA, Altirriba J, Chambard JC, Mazure NM, Bendahhou S, Duranton C, Michiels JF, Frontini A, Rohner‐Jeanrenaud F, Cinti S, Christian M, Barhanin J, Amri EZ. The K+ channel TASK1 modulates beta‐adrenergic response in brown adipose tissue through the mineralocorticoid receptor pathway. FASEB J 30: 909‐922, 2016. fj.15‐277475 [pii]; 10.1096/fj.15‐277475 [doi]
 175.Pitt B, Anker SD, Bohm M, Gheorghiade M, Kober L, Krum H, Maggioni AP, Ponikowski P, Voors AA, Zannad F, Nowack C, Kim SY, Pieper A, Kimmeskamp‐Kirschbaum N, Filippatos G. Rationale and design of MinerAlocorticoid Receptor antagonist Tolerability Study‐Heart Failure (ARTS‐HF): A randomized study of finerenone vs. eplerenone in patients who have worsening chronic heart failure with diabetes and/or chronic kidney disease. Eur J Heart Fail 17: 224‐232, 2015. 10.1002/ejhf.218 [doi]
 176.Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348: 1309‐1321, 2003. 10.1056/NEJMoa030207 [doi];NEJMoa030207 [pii]
 177.Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341: 709‐717, 1999. 10.1056/NEJM199909023411001 [doi]
 178.Pivonello R, De Martino MC, Iacuaniello D, Simeoli C, Muscogiuri G, Carlomagno F, De LM, Cozzolino A, Colao A. Metabolic alterations and cardiovascular outcomes of cortisol excess. Front Horm Res 46: 54‐65, 2016. 000443864 [pii]; 10.1159/000443864 [doi]
 179.Pivonello R, De LM, Cozzolino A, Colao A. The treatment of Cushing's disease. Endocr Rev 36: 385‐486, 2015. 10.1210/er.2013‐1048 [doi]
 180.Poggioli R, Ueta CB, Drigo RA, Castillo M, Fonseca TL, Bianco AC. Dexamethasone reduces energy expenditure and increases susceptibility to diet‐induced obesity in mice. Obesity (Silver Spring) 21: E415‐E420, 2013. 10.1002/oby.20338 [doi]
 181.Rajala MW, Scherer PE. Minireview: The adipocyte–at the crossroads of energy homeostasis, inflammation, and atherosclerosis. Endocrinology 144: 3765‐3773, 2003. 10.1210/en.2003‐0580 [doi]
 182.Ramage LE, Akyol M, Fletcher AM, Forsythe J, Nixon M, Carter RN, van Beek EJ, Morton NM, Walker BR, Stimson RH. Glucocorticoids acutely increase brown adipose tissue activity in humans, revealing species‐specific differences in UCP‐1 regulation. Cell Metab 24: 130‐141, 2016. S1550‐4131(16)30297‐2 [pii]; 10.1016/j.cmet.2016.06.011 [doi]
 183.Rickard AJ, Morgan J, Tesch G, Funder JW, Fuller PJ, Young MJ. Deletion of mineralocorticoid receptors from macrophages protects against deoxycorticosterone/salt‐induced cardiac fibrosis and increased blood pressure. Hypertension 54: 537‐543, 2009. HYPERTENSIONAHA.109.131110 [pii]; 10.1161/HYPERTENSIONAHA.109.131110 [doi]
 184.Ridker PM, Buring JE, Cook NR, Rifai N. C‐reactive protein, the metabolic syndrome, and risk of incident cardiovascular events: An 8‐year follow‐up of 14 719 initially healthy American women. Circulation 107: 391‐397, 2003.
 185.Rosenstock J, Banarer S, Fonseca VA, Inzucchi SE, Sun W, Yao W, Hollis G, Flores R, Levy R, Williams WV, Seckl JR, Huber R. The 11‐beta‐hydroxysteroid dehydrogenase type 1 inhibitor INCB13739 improves hyperglycemia in patients with type 2 diabetes inadequately controlled by metformin monotherapy. Diabetes Care 33: 1516‐1522, 2010. dc09‐2315 [pii]; 10.2337/dc09‐2315 [doi]
 186.Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi‐directional interconversion of brite and white adipocytes. Nat Cell Biol 15: 659‐667, 2013. ncb2740 [pii]; 10.1038/ncb2740 [doi]
 187.Rossi GP, Sacchetto A, Pavan E, Palatini P, Graniero GR, Canali C, Pessina AC. Remodeling of the left ventricle in primary aldosteronism due to Conn's adenoma. Circulation 95: 1471‐1478, 1997.
 188.Rutkowski JM, Davis KE, Scherer PE. Mechanisms of obesity and related pathologies: The macro‐ and microcirculation of adipose tissue. FEBS J 276: 5738‐5746, 2009. EJB7303 [pii]; 10.1111/j.1742‐4658.2009.07303.x [doi]
 189.Ryu JH, Kim S, Lee JA, Han HY, Son HJ, Lee HJ, Kim YH, Kim JS, Park HG. Synthesis and optimization of picolinamide derivatives as a novel class of 11beta‐hydroxysteroid dehydrogenase type 1 (11beta‐HSD1) inhibitors. Bioorg Med Chem Lett 25: 1679‐1683, 2015. S0960‐894X(15)00197‐3 [pii]; 10.1016/j.bmcl.2015.03.003 [doi]
 190.Saint‐Marc P, Kozak LP, Ailhaud G, Darimont C, Negrel R. Angiotensin II as a trophic factor of white adipose tissue: Stimulation of adipose cell formation. Endocrinology 142: 487‐492, 2001. 10.1210/endo.142.1.7883 [doi]
 191.Saito M, Okamatsu‐Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio‐Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M. High incidence of metabolically active brown adipose tissue in healthy adult humans: Effects of cold exposure and adiposity. Diabetes 58: 1526‐1531, 2009. db09‐0530 [pii]; 10.2337/db09‐0530 [doi]
 192.Sartipy P, Loskutoff DJ. Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 100: 7265‐7270, 2003. 10.1073/pnas.1133870100 [doi];1133870100 [pii]
 193.Schling P, Mallow H, Trindl A, Loffler G. Evidence for a local renin angiotensin system in primary cultured human preadipocytes. Int J Obes Relat Metab Disord 23: 336‐341, 1999.
 194.Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scime A, Devarakonda S, Conroe HM, Erdjument‐Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM. PRDM16 controls a brown fat/skeletal muscle switch. Nature 454: 961‐967, 2008. nature07182 [pii]; 10.1038/nature07182 [doi]
 195.Seale P, Kajimura S, Spiegelman BM. Transcriptional control of brown adipocyte development and physiological function–of mice and men. Genes Dev 23: 788‐797, 2009. 23/7/788 [pii]; 10.1101/gad.1779209 [doi]
 196.Sethi JK, Vidal‐Puig AJ. Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res 48: 1253‐1262, 2007. R700005‐JLR200 [pii]; 10.1194/jlr.R700005‐JLR200 [doi]
 197.Setola E, Losa M, Lanzi R, Lucotti P, Monti LD, Castrignano T, Galluccio E, Giovanelli M, Piatti P. Increased insulin‐stimulated endothelin‐1 release is a distinct vascular phenotype distinguishing Cushing's disease from metabolic syndrome. Clin Endocrinol (Oxf) 66: 586‐592, 2007. CEN2774 [pii]; 10.1111/j.1365‐2265.2007.02774.x [doi]
 198.Shah N, Ruiz HH, Zafar U, Post KD, Buettner C, Geer EB. Proinflammatory cytokines remain elevated despite long‐term remission in Cushing's disease: A prospective study. Clin Endocrinol (Oxf), 2016. 10.1111/cen.13230 [doi]
 199.Shao S, Zhang X, Zhang M. Inhibition of 11beta‐hydroxysteroid dehydrogenase type 1 ameliorates obesity‐related insulin resistance. Biochem Biophys Res Commun 478: 474‐480, 2016. S0006‐291X(16)30933‐0 [pii]; 10.1016/j.bbrc.2016.06.015 [doi]
 200.Sharma ST, Nieman LK. Cushing's syndrome: All variants, detection, and treatment. Endocrinol Metab Clin North Am 40: 379‐3ix, 2011. S0889‐8529(11)00007‐7 [pii]; 10.1016/j.ecl.2011.01.006 [doi]
 201.Singh R, Xiang Y, Wang Y, Baikati K, Cuervo AM, Luu YK, Tang Y, Pessin JE, Schwartz GJ, Czaja MJ. Autophagy regulates adipose mass and differentiation in mice. J Clin Invest 119: 3329‐3339, 2009. 39228 [pii]; 10.1172/JCI39228 [doi]
 202.Skurk T, Alberti‐Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 92: 1023‐1033, 2007. jc.2006‐1055 [pii]; 10.1210/jc.2006‐1055 [doi]
 203.Soumano K, Desbiens S, Rabelo R, Bakopanos E, Camirand A, Silva JE. Glucocorticoids inhibit the transcriptional response of the uncoupling protein‐1 gene to adrenergic stimulation in a brown adipose cell line. Mol Cell Endocrinol 165: 7‐15, 2000. S0303‐7207(00)00276‐8 [pii]
 204.Staab CA, Maser E. 11beta‐Hydroxysteroid dehydrogenase type 1 is an important regulator at the interface of obesity and inflammation. J Steroid Biochem Mol Biol 119: 56‐72, 2010. S0960‐0760(09)00306‐9 [pii]; 10.1016/j.jsbmb.2009.12.013 [doi]
 205.Stefan N, Ramsauer M, Jordan P, Nowotny B, Kantartzis K, Machann J, Hwang JH, Nowotny P, Kahl S, Harreiter J, Hornemann S, Sanyal AJ, Stewart PM, Pfeiffer AF, Kautzky‐Willer A, Roden M, Haring HU, Furst‐Recktenwald S. Inhibition of 11beta‐HSD1 with RO5093151 for non‐alcoholic fatty liver disease: A multicentre, randomised, double‐blind, placebo‐controlled trial. Lancet Diabetes Endocrinol 2: 406‐416, 2014. S2213‐8587(13)70170‐0 [pii]; 10.1016/S2213‐8587(13)70170‐0 [doi]
 206.Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ, Jr., Lazar MA. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev. 24: 1035‐1044, 2010. 24/10/1035 [pii]; 10.1101/gad.1907110 [doi]
 207.Stewart PM. Tissue‐specific Cushing's syndrome, 11beta‐hydroxysteroid dehydrogenases and the redefinition of corticosteroid hormone action. Eur J Endocrinol 149: 163‐168, 2003.
 208.Stewart PM, Walker BR, Holder G, O'Halloran D, Shackleton CH. 11 beta‐Hydroxysteroid dehydrogenase activity in Cushing's syndrome: Explaining the mineralocorticoid excess state of the ectopic adrenocorticotropin syndrome. J Clin Endocrinol Metab 80: 3617‐3620, 1995. 10.1210/jcem.80.12.8530609 [doi]
 209.Stollenwerk MM, Schiopu A, Fredrikson GN, Dichtl W, Nilsson J, Ares MP. Very low density lipoprotein potentiates tumor necrosis factor‐alpha expression in macrophages. Atherosclerosis 179: 247‐254, 2005. S0021‐9150(04)00615‐X [pii]; 10.1016/j.atherosclerosis.2004.12.002 [doi]
 210.Stowasser M, Sharman J, Leano R, Gordon RD, Ward G, Cowley D, Marwick TH. Evidence for abnormal left ventricular structure and function in normotensive individuals with familial hyperaldosteronism type I. J Clin Endocrinol Metab 90: 5070‐5076, 2005. jc.2005‐0681 [pii]; 10.1210/jc.2005‐0681 [doi]
 211.Strack AM, Bradbury MJ, Dallman MF. Corticosterone decreases nonshivering thermogenesis and increases lipid storage in brown adipose tissue. Am J Physiol 268: R183‐R191, 1995.
 212.Strauch B, Widimsky J, Sindelka G, Skrha J. Does the treatment of primary hyperaldosteronism influence glucose tolerance? Physiol Res 52: 503‐506, 2003.
 213.Struthers A, Krum H, Williams GH. A comparison of the aldosterone‐blocking agents eplerenone and spironolactone. Clin Cardiol 31: 153‐158, 2008. 10.1002/clc.20324 [doi]
 214.Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest 121: 2094‐2101, 2011. 45887 [pii]; 10.1172/JCI45887 [doi]
 215.Takeshita Y, Watanabe S, Hattori T, Nagasawa K, Matsuura N, Takahashi K, Murohara T, Nagata K. Blockade of glucocorticoid receptors with RU486 attenuates cardiac damage and adipose tissue inflammation in a rat model of metabolic syndrome. Hypertens Res 38: 741‐750, 2015. hr201577 [pii]; 10.1038/hr.2015.77 [doi]
 216.Tanko LB, Christiansen C. Effects of 17beta‐oestradiol plus different doses of drospirenone on adipose tissue, adiponectin and atherogenic metabolites in postmenopausal women. J Intern Med 258: 544‐553, 2005. JIM1571 [pii]; 10.1111/j.1365‐2796.2005.01571.x [doi]
 217.Teich T, Dunford EC, Porras DP, Pivovarov JA, Beaudry JL, Hunt H, Belanoff JK, Riddell MC. Glucocorticoid antagonism limits adiposity rebound and glucose intolerance in young male rats following the cessation of daily exercise and caloric restriction. Am J Physiol Endocrinol Metab 311: E56‐E68, 2016. ajpendo.00490.2015 [pii]; 10.1152/ajpendo.00490.2015 [doi]
 218.Tomlinson JJ, Boudreau A, Wu D, Atlas E, Hache RJ. Modulation of early human preadipocyte differentiation by glucocorticoids. Endocrinology 147: 5284‐5293, 2006. en.2006‐0267 [pii]; 10.1210/en.2006‐0267 [doi]
 219.Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GG, Cooper MS, Hewison M, Stewart PM. 11beta‐hydroxysteroid dehydrogenase type 1: A tissue‐specific regulator of glucocorticoid response. Endocr Rev 25: 831‐866, 2004. 25/5/831 [pii]; 10.1210/er.2003‐0031 [doi]
 220.Toth MJ, Tchernof A, Sites CK, Poehlman ET. Menopause‐related changes in body fat distribution. Ann N Y Acad Sci 904: 502‐506, 2000.
 221.Trayhurn P, Wood IS. Adipokines: Inflammation and the pleiotropic role of white adipose tissue. Br J Nutr 92: 347‐355, 2004. S0007114504001795 [pii]
 222.Urbanet R, Nguyen Dinh CA, Feraco A, Venteclef N, El MS, Sierra‐Ramos C, Alvarez dlR, Adler GK, Quilliot D, Rossignol P, Fallo F, Touyz RM, Jaisser F. Adipocyte mineralocorticoid receptor activation leads to metabolic syndrome and induction of prostaglandin D2 synthase. Hypertension 66: 149‐157, 2015. HYPERTENSIONAHA.114.04981 [pii]; 10.1161/HYPERTENSIONAHA.114.04981 [doi]
 223.Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, Schutz G, Lumeng CN, Mortensen RM. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J Clin Invest 120: 3350‐3364, 2010. 41080 [pii]; 10.1172/JCI41080 [doi]
 224.van den Heuvel JK, Boon MR, van Hengel I, Peschier‐van der Put E, van Beek L, van Harmelen V, van Dijk KW, Pereira AM, Hunt H, Belanoff JK, Rensen PC, Meijer OC. Identification of a selective glucocorticoid receptor modulator that prevents both diet‐induced obesity and inflammation. Br J Pharmacol 173: 1793‐1804, 2016. 10.1111/bph.13477 [doi]
 225.van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold‐activated brown adipose tissue in healthy men. N Engl J Med 360: 1500‐1508, 2009. 360/15/1500 [pii]; 10.1056/NEJMoa0808718 [doi]
 226.van Uum SH, Lenders JW, Hermus AR. Cortisol, 11beta‐hydroxysteroid dehydrogenases, and hypertension. Semin Vasc Med 4: 121‐128, 2004. 10.1055/s‐2004‐835369 [doi]
 227.Veilleux A, Laberge PY, Morency J, Noel S, Luu‐The V, Tchernof A. Expression of genes related to glucocorticoid action in human subcutaneous and omental adipose tissue. J Steroid Biochem Mol Biol 122: 28‐34, 2010. S0960‐0760(10)00078‐6 [pii]; 10.1016/j.jsbmb.2010.02.024 [doi]
 228.Viengchareun S, Penfornis P, Zennaro MC, Lombes M. Mineralocorticoid and glucocorticoid receptors inhibit UCP expression and function in brown adipocytes. Am J Physiol Endocrinol Metab 280: E640‐E649, 2001.
 229.Viguerie N, Picard F, Hul G, Roussel B, Barbe P, Iacovoni JS, Valle C, Langin D, Saris WH. Multiple effects of a short‐term dexamethasone treatment in human skeletal muscle and adipose tissue. Physiol Genomics 44: 141‐151, 2012. physiolgenomics.00032.2011 [pii]; 10.1152/physiolgenomics.00032.2011 [doi]
 230.Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med 360: 1518‐1525, 2009. 360/15/1518 [pii]; 10.1056/NEJMoa0808949 [doi]
 231.Wada T, Ohshima S, Fujisawa E, Koya D, Tsuneki H, Sasaoka T. Aldosterone inhibits insulin‐induced glucose uptake by degradation of insulin receptor substrate (IRS) 1 and IRS2 via a reactive oxygen species‐mediated pathway in 3T3‐L1 adipocytes. Endocrinology 150: 1662‐1669, 2009. en.2008‐1018 [pii]; 10.1210/en.2008‐1018 [doi]
 232.Wajchenberg BL, Bosco A, Marone MM, Levin S, Rocha M, Lerario AC, Nery M, Goldman J, Liberman B. Estimation of body fat and lean tissue distribution by dual energy X‐ray absorptiometry and abdominal body fat evaluation by computed tomography in Cushing's disease. J Clin Endocrinol Metab 80: 2791‐2794, 1995. 10.1210/jcem.80.9.7673425 [doi]
 233.Wamil M, Battle JH, Turban S, Kipari T, Seguret D, de Sousa PR, Nelson YB, Nowakowska D, Ferenbach D, Ramage L, Chapman KE, Hughes J, Dunbar DR, Seckl JR, Morton NM. Novel fat depot‐specific mechanisms underlie resistance to visceral obesity and inflammation in 11 beta‐hydroxysteroid dehydrogenase type 1‐deficient mice. Diabetes 60: 1158‐1167, 2011. db10‐0830 [pii]; 10.2337/db10‐0830 [doi]
 234.Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation‐related adipokines by hypoxia in human adipocytes. Pflugers Arch 455: 479‐492, 2007. 10.1007/s00424‐007‐0301‐8 [doi]
 235.Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 1796‐1808, 2003. 10.1172/JCI19246 [doi];112/12/1796 [pii]
 236.Wernstedt Asterholm I, Tao C, Morley TS, Wang QA, Delgado‐Lopez F, Wang ZV, Scherer PE. Adipocyte inflammation is essential for healthy adipose tissue expansion and remodeling. Cell Metab 20: 103‐118, 2014. S1550‐4131(14)00213‐7 [pii]; 10.1016/j.cmet.2014.05.005 [doi]
 237.Wolf G. The molecular mechanism of the stimulation of adipocyte differentiation by a glucocorticoid. Nutr Rev 57: 324‐326, 1999.
 238.Wood IS, de Heredia FP, Wang B, Trayhurn P. Cellular hypoxia and adipose tissue dysfunction in obesity. Proc Nutr Soc 68: 370‐377, 2009. S0029665109990206 [pii]; 10.1017/S0029665109990206 [doi]
 239.Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, Huang K, Tu H, van Marken Lichtenbelt WD, Hoeks J, Enerback S, Schrauwen P, Spiegelman BM. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150: 366‐376, 2012. S0092‐8674(12)00595‐8 [pii]; 10.1016/j.cell.2012.05.016 [doi]
 240.Wu J, Cohen P, Spiegelman BM. Adaptive thermogenesis in adipocytes: Is beige the new brown? Genes Dev 27: 234‐250, 2013. 27/3/234 [pii]; 10.1101/gad.211649.112 [doi]
 241.Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity‐related insulin resistance. J Clin Invest 112: 1821‐1830, 2003. 10.1172/JCI19451 [doi];112/12/1821 [pii]
 242.Yang J, Eliasson B, Smith U, Cushman SW, Sherman AS. The size of large adipose cells is a predictor of insulin resistance in first‐degree relatives of type 2 diabetic patients. Obesity (Silver Spring) 20: 932‐938, 2012. oby2011371 [pii]; 10.1038/oby.2011.371 [doi]
 243.Yuan X, Li H, Bai H, Su Z, Xiang Q, Wang C, Zhao B, Zhang Y, Zhang Q, Chu Y, Huang Y. Synthesis of novel curcumin analogues for inhibition of 11beta‐hydroxysteroid dehydrogenase type 1 with anti‐diabetic properties. Eur J Med Chem 77: 223‐230, 2014. S0223‐5234(14)00216‐5 [pii]; 10.1016/j.ejmech.2014.03.012 [doi]
 244.Yvan‐Charvet L, Quignard‐Boulange A. Role of adipose tissue renin‐angiotensin system in metabolic and inflammatory diseases associated with obesity. Kidney Int 79: 162‐168, 2011. S0085‐2538(15)54785‐6 [pii]; 10.1038/ki.2010.391 [doi]
 245.Zennaro MC, Caprio M, Feve B. Mineralocorticoid receptors in the metabolic syndrome. Trends Endocrinol Metab 20: 444‐451, 2009. S1043‐2760(09)00108‐8 [pii]; 10.1016/j.tem.2009.05.006 [doi]
 246.Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S. Adipose‐specific deletion of autophagy‐related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci U S A 106: 19860‐19865, 2009. 0906048106 [pii]; 10.1073/pnas.0906048106 [doi]
 247.Zhang YL, Zhong X, Gjoka Z, Li Y, Stochaj W, Stahl M, Kriz R, Tobin JF, Erbe D, Suri V. H6PDH interacts directly with 11beta‐HSD1: Implications for determining the directionality of glucocorticoid catalysis. Arch Biochem Biophys 483: 45‐54, 2009. S0003‐9861(08)00575‐4 [pii]; 10.1016/ [doi]
 248.Zhu D, Rashdan NA, Chapman KE, Hadoke PW, MacRae VE. A novel role for the mineralocorticoid receptor in glucocorticoid driven vascular calcification. Vascul Pharmacol, 2016. S1537‐1891(15)30124‐5 [pii]; 10.1016/j.vph.2016.04.005 [doi]

Teaching Material

M. Infante, A. Armani, C. Mammi, A. Fabbri, M. Caprio. Impact of Adrenal Steroids on Regulation of Adipose Tissue. Compr Physiol 7: 2017, 1425-1447. doi:10.1002/cphy.c160037

Didactic Synopsis

Major Teaching Points:

  1. Understanding the physiology of adipose tissue is essential for the comprehension of its complex cross talk with other organs.
  2. Adrenal steroids play a pivotal role in the regulation of adipose tissue through activation of their nuclear receptors, GR and MR.
  3. Activation of GR or MR displays distinct effects on adipose tissue differentiation, inflammation, and browning.
  4. Adipose tissue-derived factors have a strong impact on aldosterone production by the adrenal glands.
  5. The existence of a bidirectional fat-adrenal endocrine axis provides novel therapeutic perspectives for the treatment of obesity and metabolic syndrome.

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1. Teaching points: This figure illustrates that MR is expressed in adipocytes and macrophages infiltrating adipose tissue. MR activity in both cell types is modulated by circulating GC and aldosterone; also, it was recently reported that adipose tissue itself is able to synthesize aldosterone, which could further activate MR. A better comprehension of the regulation of adipocyte function and macrophage polarization by MR could clarify mechanisms leading to adipose tissue dysfunction induced by high levels of GC and aldosterone.

Figure 2. Teaching points: This figure shows that the hormonal cross talk between the adrenal gland and adipose tissue is mediated by corticosteroids and adipokines. GC secreted by the adrenal glands lead to MR-mediated inflammation, oxidative stress, and a high autophagic rate. In dysfunctional adipocytes, MR hyperactivation results in increased secretion of adipokines (in particular leptin), which are capable of promoting aldosterone synthesis. The altered function of adipocyte MR is able to affect aldosterone secretion and has a causal role in favoring cardiovascular alterations related to obesity. The recent discovery that MR regulates the expression of adipokines, modulating aldosterone production, suggests that the beneficial effects of MR antagonists in patients with cardiovascular disease could be mediated by adipose MR blockade.

Figure 3. Teaching points: MR has a central role in adipogenesis. Pharmacological activation (by aldosterone) or blockade (by MR antagonist) of MR in preadipocyte cultures promotes or represses, respectively, adipocyte differentiation (Panel A). Because of the extremely low levels of 11β-HSD2, adipocyte MR is mainly activated by GC. However, GC also activate adipocyte GR, whose involvement in adipogenesis is important; in fact, GR antagonism in preadipocyte cultures inhibits adipogenesis. Therefore, it is well established that both MR and GR antagonism are able to regulate preadipocyte differentiation (Panel B), although their reciprocal interplay still needs to be clarified. Treatment of mice fed HFD with the combined GR/MR antagonist CORT118335 markedly represses HFD-induced fat mass expansion, underlying that both MR and GR play a crucial role in adipose tissue plasticity. Indeed, combined GR/MR blockade by CORT118335 prevents HFD-induced body weight gain and excessive expansion of adipose tissue, leading to beneficial systemic metabolic effects (Panel C, D).

Related Articles:

Regulation and Functions of the Renin‐Angiotensin System in White and Brown Adipose Tissue
Hormonal Regulation of Adipogenesis
The Multifaceted Mineralocorticoid Receptor
Contribution of Maladaptive Adipose Tissue Expansion to Development of Cardiovascular Disease

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Marco Infante, Andrea Armani, Caterina Mammi, Andrea Fabbri, Massimiliano Caprio. Impact of Adrenal Steroids on Regulation of Adipose Tissue. Compr Physiol 2017, 7: 1425-1447. doi: 10.1002/cphy.c160037