Comprehensive Physiology Wiley Online Library

Insulin‐Like Growth Factor I Regulation and Its Actions in Skeletal Muscle

Full Article on Wiley Online Library



ABSTRACT

The insulin‐like growth factor (IGF) pathway is essential for promoting growth and survival of virtually all tissues. It bears high homology to its related protein insulin, and as such, there is an interplay between these molecules with regard to their anabolic and metabolic functions. Skeletal muscle produces a significant proportion of IGF‐1, and is highly responsive to its actions, including increased muscle mass and improved regenerative capacity. In this overview, the regulation of IGF‐1 production, stability, and activity in skeletal muscle will be described. Second, the physiological significance of the forms of IGF‐1 produced will be discussed. Last, the interaction of IGF‐1 with other pathways will be addressed. © 2019 American Physiological Society. Compr Physiol 9:413‐438, 2019.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Primary sequence and structure of mature IGF‐1. (A) Sequence comparison of human IGF‐1 and proinsulin. Mature IGF‐1 has high homology with the related protein insulin. Boxed residues indicate identical sequence between the two proteins. Domains B (residues 3‐28), C (residues 29‐41), A (residues 42‐62), and D (residues 63‐70) are depicted with colored bands in blue, light yellow, pink, and light gray, respectively. The proinsulin sequence is used to include Domain C, which is cleaved in the formation of insulin. Adapted with permission from (240). (B) A ribbon diagram of the 3D structure of IGF‐1. Domains are color coded as in A. In yellow are depicted the disulfide bonds (Cys 6‐Cys 48, Cys 18‐Cys 61, and Cys 47‐Cys 52). The dotted regions between Ser 34 and Thr 41 is flexible and not resolved in the first crystal structure. The D domain after Leu 64 is also flexible. Figure adapted with permission from [Felix F. Vajdos, Mark Ultsch, Michelle L. Schaffer, et al. (306)]. Copyright (2018) American Chemical Society.
Figure 2. Figure 2. Schematic representation of human IGF1 gene, its alternative splicing events and their putative translational products. (A) IGF1 gene consists of six exons. Exons 1 and 2 contain multiple transcription initiation sites (TIS) (solid arrows). Translation initiation codons are located in exons 1, 2, and 3 (hollow arrows). The white portions of each exon represent the untranslated regions (UTRs). (B) Alternative splicing occurs both at 5′‐ and 3′‐ends of the gene and can give rise to various mRNA transcripts. Exons 1 and 2 are used interchangeably. Exon 4 is spliced to Exon 6 in most cases. However, Exon 4 can also be spliced to Exon 5. Further, an additional internal splice site in Exon 5 (shown as a break in the aqua portion of the Exon) can splice to Exon 6 causing a reading frame shift and a premature stop codon in the Exon 6 sequence, shown as a break in the orange portion of the Exon 6. (C) The resultant translational products include a signal peptide encoded by Exon 1, 3 (Class 1), Exons 2, 3 (Class 2), or in rare occasions Exon 3 (Class 3). The mature peptide is invariant and is encoded by portions of Exons 3 and 4 (in red). Last, the translational products include an E‐peptide consisting of the C‐terminal portion of Exon 4 (in purple) and Exon 6 in orange (Class Ea), or Exon 5 in aqua (Class Eb), or portions of Exons 5 and 6 (Class Ec). Exon 6 in Class Ec is shown in brown to indicate the frame shift that occurs with alternative splicing.
Figure 3. Figure 3. Posttranslational processing of IGF‐1. Human Pro‐IGF‐1 contains mature IGF‐1 and one of three E‐peptides (Ea, Eb, and Ec). All three pro‐forms share the B, C, A, and D domains of mature IGF‐1 (in red) and the first 16 amino acids of the E‐peptide (in purple). Alternative splicing results in the divergent sequences of the E‐peptides, which are color coded as described in Figure 2. The N‐terminus of the mature peptide contains a putative cleavage site for acid proteases that can give rise to des‐(1‐3)‐IGF‐1, following cleavage of the initial GPE (in bold). The residues (Lys68, Arg71, Arg74, and Arg77 in bold) are recognized by members of the proprotein convertase family, and are required for cleavage of the E peptides from the mature peptide. These sites are located in the sequence shared by all pro‐IGF‐1 forms. Grey arrows indicate sites for cleavage at the N‐terminus and between the mature and E‐peptides. In the human pro‐IGF‐1Ea, there is one glycosylation site Asn92 (in rodents there are two N‐glycosylation sites, Asn92 and Asn100).
Figure 4. Figure 4. Overview of the IGF‐1 system and its associated IGF‐1 receptor signaling pathway in skeletal muscle. IGF‐1 is found in the extracellular matrix as a complex with IGF binding proteins. Protease cleavage of the Binding proteins releases IGF‐1, which can then bind to IGF‐1 receptors (IGF‐1R). IGF‐1 also has high affinity for hybrid receptors (IGF‐1R/IR‐A and IGF‐1R/IR‐1B), but lower affinity for insulin receptors (IR‐A, IR‐B). Only the pathway associated with IGF‐1R is depicted for simplicity. Upon IGF‐1 binding to its receptor, the receptor tyrosine kinase is activated. Receptor activation results in phosphorylation of the IRS and SHC adaptor proteins and consequently leads to activation of PI3K/Akt/mTOR and RAF/MEK/ERK1/2 pathways, respectively. Akt phosphorylation leads to phosphorylation many substrates. mTOR phosphorylation causes it activation, which then phosphorylates p70s6 kinase (P70S6K) causing activation, the eukaryotic translation initiation factor 4E‐ binding protein (4E‐BP1) causing its inactivation, and also phosphorylated Akt at Ser473 causing maximal activation. Akt also phosphorylates Glycogen synthase kinase 3 beta (GSK3b) causing its inactivation, and as a result, disinhibits eukaryotic initiation factor 2B (elF2B). Akt also phosphorylates the forkhead box O transcription factors (FoXO) blocking its nuclear translocation and activation of expression of the E3 ubiquitin ligases, MURF1 and MAFbx. Negative feedback of the signaling pathway can occur, including the serine phosphorylation of IRS by P70S6K, causing its degradation. The MAPK arm of the signaling pathway is known to stimulate cell proliferation and regulation of gene expression, and as a hub kinase, is associated with multiple ligand‐receptor actions.


Figure 1. Primary sequence and structure of mature IGF‐1. (A) Sequence comparison of human IGF‐1 and proinsulin. Mature IGF‐1 has high homology with the related protein insulin. Boxed residues indicate identical sequence between the two proteins. Domains B (residues 3‐28), C (residues 29‐41), A (residues 42‐62), and D (residues 63‐70) are depicted with colored bands in blue, light yellow, pink, and light gray, respectively. The proinsulin sequence is used to include Domain C, which is cleaved in the formation of insulin. Adapted with permission from (240). (B) A ribbon diagram of the 3D structure of IGF‐1. Domains are color coded as in A. In yellow are depicted the disulfide bonds (Cys 6‐Cys 48, Cys 18‐Cys 61, and Cys 47‐Cys 52). The dotted regions between Ser 34 and Thr 41 is flexible and not resolved in the first crystal structure. The D domain after Leu 64 is also flexible. Figure adapted with permission from [Felix F. Vajdos, Mark Ultsch, Michelle L. Schaffer, et al. (306)]. Copyright (2018) American Chemical Society.


Figure 2. Schematic representation of human IGF1 gene, its alternative splicing events and their putative translational products. (A) IGF1 gene consists of six exons. Exons 1 and 2 contain multiple transcription initiation sites (TIS) (solid arrows). Translation initiation codons are located in exons 1, 2, and 3 (hollow arrows). The white portions of each exon represent the untranslated regions (UTRs). (B) Alternative splicing occurs both at 5′‐ and 3′‐ends of the gene and can give rise to various mRNA transcripts. Exons 1 and 2 are used interchangeably. Exon 4 is spliced to Exon 6 in most cases. However, Exon 4 can also be spliced to Exon 5. Further, an additional internal splice site in Exon 5 (shown as a break in the aqua portion of the Exon) can splice to Exon 6 causing a reading frame shift and a premature stop codon in the Exon 6 sequence, shown as a break in the orange portion of the Exon 6. (C) The resultant translational products include a signal peptide encoded by Exon 1, 3 (Class 1), Exons 2, 3 (Class 2), or in rare occasions Exon 3 (Class 3). The mature peptide is invariant and is encoded by portions of Exons 3 and 4 (in red). Last, the translational products include an E‐peptide consisting of the C‐terminal portion of Exon 4 (in purple) and Exon 6 in orange (Class Ea), or Exon 5 in aqua (Class Eb), or portions of Exons 5 and 6 (Class Ec). Exon 6 in Class Ec is shown in brown to indicate the frame shift that occurs with alternative splicing.


Figure 3. Posttranslational processing of IGF‐1. Human Pro‐IGF‐1 contains mature IGF‐1 and one of three E‐peptides (Ea, Eb, and Ec). All three pro‐forms share the B, C, A, and D domains of mature IGF‐1 (in red) and the first 16 amino acids of the E‐peptide (in purple). Alternative splicing results in the divergent sequences of the E‐peptides, which are color coded as described in Figure 2. The N‐terminus of the mature peptide contains a putative cleavage site for acid proteases that can give rise to des‐(1‐3)‐IGF‐1, following cleavage of the initial GPE (in bold). The residues (Lys68, Arg71, Arg74, and Arg77 in bold) are recognized by members of the proprotein convertase family, and are required for cleavage of the E peptides from the mature peptide. These sites are located in the sequence shared by all pro‐IGF‐1 forms. Grey arrows indicate sites for cleavage at the N‐terminus and between the mature and E‐peptides. In the human pro‐IGF‐1Ea, there is one glycosylation site Asn92 (in rodents there are two N‐glycosylation sites, Asn92 and Asn100).


Figure 4. Overview of the IGF‐1 system and its associated IGF‐1 receptor signaling pathway in skeletal muscle. IGF‐1 is found in the extracellular matrix as a complex with IGF binding proteins. Protease cleavage of the Binding proteins releases IGF‐1, which can then bind to IGF‐1 receptors (IGF‐1R). IGF‐1 also has high affinity for hybrid receptors (IGF‐1R/IR‐A and IGF‐1R/IR‐1B), but lower affinity for insulin receptors (IR‐A, IR‐B). Only the pathway associated with IGF‐1R is depicted for simplicity. Upon IGF‐1 binding to its receptor, the receptor tyrosine kinase is activated. Receptor activation results in phosphorylation of the IRS and SHC adaptor proteins and consequently leads to activation of PI3K/Akt/mTOR and RAF/MEK/ERK1/2 pathways, respectively. Akt phosphorylation leads to phosphorylation many substrates. mTOR phosphorylation causes it activation, which then phosphorylates p70s6 kinase (P70S6K) causing activation, the eukaryotic translation initiation factor 4E‐ binding protein (4E‐BP1) causing its inactivation, and also phosphorylated Akt at Ser473 causing maximal activation. Akt also phosphorylates Glycogen synthase kinase 3 beta (GSK3b) causing its inactivation, and as a result, disinhibits eukaryotic initiation factor 2B (elF2B). Akt also phosphorylates the forkhead box O transcription factors (FoXO) blocking its nuclear translocation and activation of expression of the E3 ubiquitin ligases, MURF1 and MAFbx. Negative feedback of the signaling pathway can occur, including the serine phosphorylation of IRS by P70S6K, causing its degradation. The MAPK arm of the signaling pathway is known to stimulate cell proliferation and regulation of gene expression, and as a hub kinase, is associated with multiple ligand‐receptor actions.
References
 1.Accili D, Drago J, Lee EJ, Johnson MD, Cool MH, Salvatore P, Asico LD, Joe PA, Taylor SI, Westphal H. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat Genet 12: 106‐109, 1996.
 2.Adamo ML, Ben‐Hur H, LeRoith D, Roberts CT, Jr. Transcription initiation in the two leader exons of the rat IGF‐I gene occurs from disperse versus localized sites. Biochem Biophys Res Commun 176: 887‐893, 1991.
 3.Adamo ML, Ben‐Hur H, Roberts CT, Jr., LeRoith D. Regulation of start site usage in the leader exons of the rat insulin‐like growth factor‐I gene by development, fasting, and diabetes. Mol Endocrinol 5: 1677‐1686, 1991.
 4.Adams GR. Invited review: Autocrine/paracrine IGF‐I and skeletal muscle adaptation. J Appl Physiol (1985) 93: 1159‐1167, 2002.
 5.Adams TE, Epa VC, Garrett TP, Ward CW. Structure and function of the type 1 insulin‐like growth factor receptor. Cell Mol Life Sci 57: 1050‐1093, 2000.
 6.Ahtiainen JP, Hulmi JJ, Lehti M, Kraemer WJ, Nyman K, Selänne H, Alen M, Komulainen J, Kovanen V, Mero AA, Philippou A, Laakkonen EK, Häkkinen K. Effects of resistance training on expression of IGF‐I splice variants in younger and older men. Eur J Sport Sci 16: 1055‐1063, 2016.
 7.Ahtiainen JP, Lehti M, Hulmi JJ, Kraemer WJ, Alen M, Nyman K, Selänne H, Pakarinen A, Komulainen J, Kovanen V, Mero AA, Häkkinen K. Recovery after heavy resistance exercise and skeletal muscle androgen receptor and insulin‐like growth factor‐I isoform expression in strength trained men. J Strength Cond Res 25: 767‐777, 2011.
 8.Alfieri CM, Evans‐Anderson HJ, Yutzey KE. Developmental regulation of the mouse IGF‐I exon 1 promoter region by calcineurin activation of NFAT in skeletal muscle. Am J Physiol Cell Physiol 292: C1887‐C1894, 2007.
 9.Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D. Down‐regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150: 286‐294, 2009.
 10.An MR, Lowe WL, Jr. The major promoter of the rat insulin‐like growth factor‐I gene binds a protein complex that is required for basal expression. Mol Cell Endocrinol 114: 77‐89, 1995.
 11.Annibalini G, Bielli P, De Santi M, Agostini D, Guescini M, Sisti D, Contarelli S, Brandi G, Villarini A, Stocchi V, Sette C, Barbieri E5. MIR retroposon exonization promotes evolutionary variability and generates species‐specific expression of IGF‐1 splice variants. Biochim Biophys Acta 1859: 757‐768, 2016.
 12.Annibalini G, Contarelli S, De Santi M, Saltarelli R, Di Patria L, Guescini M, Villarini A, Brandi G, Stocchi V, Barbieri E. The intrinsically disordered E-domains regulate the IGF-1 prohormones stability, subcellular localisation and secretion. Sci Rep. 8(1): 8919, 2018. doi: 10.1038/s41598-018-27233-3. PMID: 29891966.
 13.Antoniades HN. Studies on the state of insulin in blood: The state and transport of insulin in blood. Endocrinology 68: 7‐16, 1961.
 14.Araki E, Lipes MA, Patti ME, Brüning JC, Haag B, III, Johnson RS, Kahn CR. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS‐1 gene. Nature 372: 186‐190, 1994.
 15.Ates K, Yang SY, Orrell RW, Sinanan AC, Simons P, Solomon A, Beech S, Goldspink G, Lewis MP. The IGF‐I splice variant MGF increases progenitor cells in ALS, dystrophic, and normal muscle. FEBS Lett 581: 2727‐2732, 2007.
 16.Authier F, Metioui M, Fabrega S, Kouach M, Briand G. Endosomal proteolysis of internalized insulin at the C‐terminal region of the B chain by cathepsin D. J Biol Chem 277: 9437‐9446, 2002.
 17.Bach LA. IGFBP‐6 five years on; not so ‘forgotten’? Growth Horm IGF Res 15: 185‐192, 2005.
 18.Bach LA. Insulin‐like growth factor binding proteins 4‐6. Best Pract Res Clin Endocrinol Metab 29: 713‐722, 2015.
 19.Bach LA, Headey SJ, Norton RS. IGF‐binding proteins–the pieces are falling into place. Trends Endocrinol Metab 16: 228‐234, 2005.
 20.Bailyes EM, Nave BT, Soos MA, Orr SR, Hayward AC, Siddle K. Insulin receptor/IGF‐I receptor hybrids are widely distributed in mammalian tissues: Quantification of individual receptor species by selective immunoprecipitation and immunoblotting. Biochem J 327(Pt 1): 209‐215, 1997.
 21.Barton ER. The ABCs of IGF‐I isoforms: Impact on muscle hypertrophy and implications for repair. Appl Physiol Nutr Metab 31: 791‐797, 2006.
 22.Barton ER. Viral expression of insulin‐like growth factor‐I isoforms promotes different responses in skeletal muscle. J Appl Physiol (1985) 100: 1778‐1784, 2006.
 23.Barton ER, DeMeo J, Lei H. The insulin‐like growth factor (IGF)‐I E‐peptides are required for isoform‐specific gene expression and muscle hypertrophy after local IGF‐I production. J Appl Physiol (1985) 108: 1069‐1076, 2010.
 24.Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL. Muscle‐specific expression of insulin‐like growth factor I counters muscle decline in mdx mice. J Cell Biol 157: 137‐148, 2002.
 25.Barton ER, Park S, James JK, Makarewich CA, Philippou A, Eletto D, Lei H, Brisson B, Ostrovsky O, Li Z, Argon Y. Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB J 26: 3691‐3702, 2012.
 26.Barton‐Davis ER, Shoturma DI, Musaro A, Rosenthal N, Sweeney HL. Viral mediated expression of insulin‐like growth factor I blocks the aging‐related loss of skeletal muscle function. Proc Natl Acad Sci U S A 95: 15603‐15607, 1998.
 27.Baxter RC. Circulating levels and molecular distribution of the acid‐labile (alpha) subunit of the high molecular weight insulin‐like growth factor‐binding protein complex. J Clin Endocrinol Metab 70: 1347‐1353, 1990.
 28.Bell GI, Stempien MM, Fong NM, Rall LB. Sequences of liver cDNAs encoding two different mouse insulin‐like growth factor I precursors. Nucleic Acids Res 14: 7873‐7882, 1986.
 29.Bentzinger CF, Romanino K, Cloëtta D, Lin S, Mascarenhas JB, Oliveri F, Xia J, Casanova E, Costa CF, Brink M, Zorzato F, Hall MN, Rüegg MA. Skeletal muscle‐specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8: 411‐424, 2008.
 30.Bentzinger CF, Wang YX, Rudnicki MA. Building muscle: Molecular regulation of myogenesis. Cold Spring Harb Perspect Biol 4: pii: a008342, 2012.
 31.Blaauw B, Canato M, Agatea L, Toniolo L, Mammucari C, Masiero E, Abraham R, Sandri M, Schiaffino S, Reggiani C. Inducible activation of Akt increases skeletal muscle mass and force without satellite cell activation. FASEB J 23: 3896‐3905, 2009.
 32.Bodine SC, Baehr LM. Skeletal muscle atrophy and the E3 ubiquitin ligases MuRF1 and MAFbx/atrogin‐1. Am J Physiol Endocrinol Metab 307: E469‐E484, 2014.
 33.Bodine SC, Latres E, Baumhueter S, Lai VK, Nunez L, Clarke BA, Poueymirou WT, Panaro FJ, Na E, Dharmarajan K, Pan ZQ, Valenzuela DM, DeChiara TM, Stitt TN, Yancopoulos GD, Glass DJ. Identification of ubiquitin ligases required for skeletal muscle atrophy. Science 294: 1704‐1708, 2001.
 34.Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3: 1014‐1019, 2001.
 35.Bokov AF, Garg N, Ikeno Y, Thakur S, Musi N, DeFronzo RA, Zhang N, Erickson RC, Gelfond J, Hubbard GB, Adamo ML, Richardson A. Does reduced IGF‐1R signaling in Igf1r+/‐ mice alter aging? PLoS One 6: e26891, 2011.
 36.Bonaldo P, Sandri M. Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6: 25‐39, 2013.
 37.Bond JJ, Meka S, Baxter RC. Binding characteristics of pro‐insulin‐like growth factor‐II from cancer patients: Binary and ternary complex formation with IGF binding proteins‐1 to ‐6. J Endocrinol 165: 253‐260, 2000.
 38.Boucher J, Softic S, El Ouaamari A, Krumpoch MT, Kleinridders A, Kulkarni RN, O'Neill BT, Kahn CR. Differential roles of insulin and IGF‐1 receptors in adipose tissue development and function. Diabetes 65: 2201‐2213, 2016.
 39.Braulke T, Claussen M, Saftig P, Wendland M, Neifer K, Schmidt B, Zapf J, von Figura K, Peters C. Proteolysis of IGFBPs by cathepsin D in vitro and in cathepsin D‐deficient mice. Prog Growth Factor Res 6: 265‐271, 1995.
 40.Brisson BK, Barton ER. Insulin‐like growth factor‐I E‐peptide activity is dependent on the IGF‐I receptor. PLoS One 7: e45588, 2012.
 41.Brisson BK, Barton ER. New modulators for IGF‐I activity within IGF‐I processing products. Front Endocrinol (Lausanne) 4: 42, 2013.
 42.Brisson BK, Spinazzola J, Park S, Barton ER. Viral expression of insulin‐like growth factor I E‐peptides increases skeletal muscle mass but at the expense of strength. Am J Physiol Endocrinol Metab 306: E965‐E974, 2014.
 43.Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857‐868, 1999.
 44.Brüning JC, Michael MD, Winnay JN, Hayashi T, Hörsch D, Accili D, Goodyear LJ, Kahn CR. A muscle‐specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol Cell 2: 559‐569, 1998.
 45.Bunn RC, Fowlkes JL. Insulin‐like growth factor binding protein proteolysis. Trends Endocrinol Metab 14: 176‐181, 2003.
 46.Burgi H, Muller WA, Humbel RE, Labhart A, Froesch ER. Non‐suppressible insulin‐like activity of human serum. I. Physicochemical properties, extraction and partial purification. Biochim Biophys Acta 121: 349‐359, 1966.
 47.Burks TN, Cohn RD. Role of TGF‐beta signaling in inherited and acquired myopathies. Skelet Muscle 1: 19, 2011.
 48.Ceafalan LC, Popescu BO, Hinescu ME. Cellular players in skeletal muscle regeneration. Biomed Res Int 2014: 957014, 2014.
 49.Chan SJ, Emdin SO, Kwok SC, Kramer JM, Falkmer S, Steiner DF. Messenger RNA sequence and primary structure of preproinsulin in a primitive vertebrate, the Atlantic hagfish. J Biol Chem 256: 7595‐7602, 1981.
 50.Chang AC, Hook J, Lemckert FA, McDonald MM, Nguyen MA, Hardeman EC, Little DG, Gunning PW, Reddel RR. The murine stanniocalcin 2 gene is a negative regulator of postnatal growth. Endocrinology 149: 2403‐2410, 2008.
 51.Chelh I, Meunier B, Picard B, Reecy MJ, Chevalier C, Hocquette JF, Cassar‐Malek I. Molecular profiles of Quadriceps muscle in myostatin‐null mice reveal PI3K and apoptotic pathways as myostatin targets. BMC Genomics 10: 196, 2009.
 52.Chelh I, Picard B, Hocquette JF, Cassar‐Malek I. Myostatin inactivation induces a similar muscle molecular signature in double‐muscled cattle as in mice. Animal 5: 278‐286, 2011.
 53.Chen MH, Lin G, Gong H, Weng C, Chang C, Wu J. The characterization of prepro‐insulin‐like growth factor‐1 Ea‐2 expression and insulin‐like growth factor‐1 genes (devoid 81 bp) in the zebrafish (Danio rerio). Gene 268: 67‐75, 2001.
 54.Chew SL, Lavender P, Clark AJ, Ross RJ. An alternatively spliced human insulin‐like growth factor‐I transcript with hepatic tissue expression that diverts away from the mitogenic IBE1 peptide. Endocrinology 136: 1939‐1944, 1995.
 55.Chia DJ. Minireview: Mechanisms of growth hormone‐mediated gene regulation. Mol Endocrinol 28: 1012‐1025, 2014.
 56.Cho H, Mu J, Kim JK, Thorvaldsen JL, Chu Q, Crenshaw EB, III, Kaestner KH, Bartolomei MS, Shulman GI, Birnbaum MJ. Insulin resistance and a diabetes mellitus‐like syndrome in mice lacking the protein kinase Akt2 (PKB beta). Science 292: 1728‐1731, 2001.
 57.Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ. Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276: 38349‐38352, 2001.
 58.Christoffersen CT, Bornfeldt KE, Rotella CM, Gonzales N, Vissing H, Shymko RM, ten Hoeve J, Groffen J, Heisterkamp N, De Meyts P. Negative cooperativity in the insulin‐like growth factor‐I receptor and a chimeric IGF‐I/insulin receptor. Endocrinology 135: 472‐475, 1994.
 59.Christoffolete MA, Silva WJ, Ramos GV, Bento MR, Costa MO, Ribeiro MO, Okamoto MM, Lohmann TH, Machado UF, Musarò A, Moriscot AS. Muscle IGF‐1‐induced skeletal muscle hypertrophy evokes higher insulin sensitivity and carbohydrate use as preferential energy substrate. Biomed Res Int 2015: 282984, 2015.
 60.Christov C, Chretien F, Abou‐Khalil R, Bassez G, Vallet G, Authier FJ, Bassaglia Y, Shinin V, Tajbakhsh S, Chazaud B, Gherardi RK. Muscle satellite cells and endothelial cells: Close neighbors and privileged partners. Mol Biol Cell 18: 1397‐1409, 2007.
 61.Clarke BA, Drujan D, Willis MS, Murphy LO, Corpina RA, Burova E, Rakhilin SV, Stitt TN, Patterson C, Latres E, Glass DJ. The E3 Ligase MuRF1 degrades myosin heavy chain protein in dexamethasone‐treated skeletal muscle. Cell Metab 6: 376‐385, 2007.
 62.Cohen S, Brault JJ, Gygi SP, Glass DJ, Valenzuela D, Gartner C, Latres E, Goldberg LA. During muscle atrophy, thick, but not thin, filament components are degraded by MuRF1‐dependent ubiquitylation. J Cell Biol 185: 1083‐1095, 2009.
 63.Coleman ME, DeMayo F, Yin KC, Lee HM, Geske R, Montgomery C, Schwartz RJ. Myogenic vector expression of insulin‐like growth factor I stimulates muscle cell differentiation and myofiber hypertrophy in transgenic mice. J Biol Chem 270: 12109‐12116, 1995.
 64.Conery AR, Cao Y, Thompson EA, Townsend CM, Jr., Ko TC, Luo K. Akt interacts directly with Smad3 to regulate the sensitivity to TGF‐beta induced apoptosis. Nat Cell Biol 6: 366‐372, 2004.
 65.Conover CA, Baker BK, Hintz RL. Cultured human fibroblasts secrete insulin‐like growth factor IA prohormone. J Clin Endocrinol Metab 69: 25‐30, 1989.
 66.Conover CA, Bale LK, Nair KS. Comparative gene expression and phenotype analyses of skeletal muscle from aged wild‐type and PAPP‐A‐deficient mice. Exp Gerontol 80: 36‐42, 2016.
 67.Conover CA, Bale LK, Overgaard MT, Johnstone EW, Laursen UH, Füchtbauer EM, Oxvig C, van Deursen J. Metalloproteinase pregnancy‐associated plasma protein A is a critical growth regulatory factor during fetal development. Development 131: 1187‐1194, 2004.
 68.Conover CA, De Leon DD. Acid‐activated insulin‐like growth factor‐binding protein‐3 proteolysis in normal and transformed cells. Role of cathepsin D. J Biol Chem 269: 7076‐7080, 1994.
 69.Cooney GJ, Lyons RJ, Crew AJ, Jensen TE, Molero JC, Mitchell CJ, Biden TJ, Ormandy CJ, James DE, Daly RJ. Improved glucose homeostasis and enhanced insulin signalling in Grb14‐deficient mice. EMBO J 23: 582‐593, 2004.
 70.Costoya JA, Finidori J, Moutoussamy S, Searis R, Devesa J, Arce VM. Activation of growth hormone receptor delivers an antiapoptotic signal: Evidence for a role of Akt in this pathway. Endocrinology 140: 5937‐5943, 1999.
 71.Coverley JA, Martin JL, Baxter RC. The effect of phosphorylation by casein kinase 2 on the activity of insulin‐like growth factor‐binding protein‐3. Endocrinology 141: 564‐570, 2000.
 72.Criswell DS, Booth FW, DeMayo F, Schwartz RJ, Gordon SE, Fiorotto ML. Overexpression of IGF‐I in skeletal muscle of transgenic mice does not prevent unloading‐induced atrophy. Am J Physiol 275: E373‐E379, 1998.
 73.Croker BA, Kiu H, Nicholson SE. SOCS regulation of the JAK/STAT signalling pathway. Semin Cell Dev Biol 19: 414‐422, 2008.
 74.D'Ercole AJ, Stiles AD, Underwood LE. Tissue concentrations of somatomedin C: Further evidence for multiple sites of synthesis and paracrine or autocrine mechanisms of action. Proc Natl Acad Sci U S A 81: 935‐939, 1984.
 75.De Meyts P, Whittaker J. Structural biology of insulin and IGF1 receptors: Implications for drug design. Nat Rev Drug Discov 1: 769‐783, 2002.
 76.De Santi M, Annibalini G, Barbieri E, Villarini A, Vallorani L, Contarelli S, Berrino F, Stocchi V, Brandi G. Human IGF1 pro‐forms induce breast cancer cell proliferation via the IGF1 receptor. Cell Oncol (Dordr) 39: 149‐159, 2016.
 77.Denley A, Cosgrove LJ, Booker GW, Wallace JC, Forbes BE. Molecular interactions of the IGF system. Cytokine Growth Factor Rev 16: 421‐439, 2005.
 78.Desbuquois B, Carre N, Burnol AF. Regulation of insulin and type 1 insulin‐like growth factor signaling and action by the Grb10/14 and SH2B1/B2 adaptor proteins. FEBS J 280: 794‐816, 2013.
 79.Diniz GP, Wang DZ. Regulation of skeletal muscle by microRNAs. Compr Physiol 6: 1279‐1294, 2016.
 80.Dobrowolny G, Giacinti C, Pelosi L, Nicoletti C, Winn N, Barberi L, Molinaro M, Rosenthal N, Musarò A. Muscle expression of a local Igf‐1 isoform protects motor neurons in an ALS mouse model. J Cell Biol 168: 193‐199, 2005.
 81.Duan C, Yang H, White MF, Rui L. Disruption of the SH2‐B gene causes age‐dependent insulin resistance and glucose intolerance. Mol Cell Biol 24: 7435‐7443, 2004.
 82.Duguay SJ, Lai‐Zhang J, Steiner DF. Mutational analysis of the insulin‐like growth factor I prohormone processing site. J Biol Chem 270: 17566‐17574, 1995.
 83.Duguay SJ, Milewski WM, Young BD, Nakayama K, Steiner DF. Processing of wild‐type and mutant proinsulin‐like growth factor‐IA by subtilisin‐related proprotein convertases. J Biol Chem 272: 6663‐6670, 1997.
 84.Duguay SJ, Park LK, Samadpour M, Dickhoff WW. Nucleotide sequence and tissue distribution of three insulin‐like growth factor I prohormones in salmon. Mol Endocrinol 6: 1202‐1210, 1992.
 85.Duguay SJ, Swanson P, Dickhoff WW. Differential expression and hormonal regulation of alternatively spliced IGF‐I mRNA transcripts in salmon. J Mol Endocrinol 12: 25‐37, 1994.
 86.Dupont J, LeRoith D. Insulin and insulin‐like growth factor I receptors: Similarities and differences in signal transduction. Horm Res 55(Suppl 2): 22‐26, 2001.
 87.Durzynska J, Philippou A, Brisson BK, Nguyen‐McCarty M, Barton ER. The pro‐forms of insulin‐like growth factor I (IGF‐I) are predominant in skeletal muscle and alter IGF‐I receptor activation. Endocrinology 154: 1215‐1224, 2013.
 88.Durzynska J, Wardzinski A, Koczorowska M, Gozdzicka‐Jozefiak A, Barton ER. Human Eb peptide: Not just a by‐product of pre‐pro‐IGF1b processing? Horm Metab Res 45: 415‐422, 2013.
 89.Elia L, Contu R, Quintavalle M, Varrone F, Chimenti C, Russo MA, Cimino V, De Marinis L, Frustaci A, Catalucci D, Condorelli G. Reciprocal regulation of microRNA‐1 and insulin‐like growth factor‐1 signal transduction cascade in cardiac and skeletal muscle in physiological and pathological conditions. Circulation 120: 2377‐2385, 2009.
 90.Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3‐kinases as regulators of growth and metabolism. Nat Rev Genet 7: 606‐619, 2006.
 91.Federici M, Giaccari A, Hribal ML, Giovannone B, Lauro D, Morviducci L, Pastore L, Tamburrano G, Lauro R, Sesti G. Evidence for glucose/hexosamine in vivo regulation of insulin/IGF‐I hybrid receptor assembly. Diabetes 48: 2277‐2285, 1999.
 92.Feng C, Von Bartheld CS. Schwann cells as a source of insulin‐like growth factor‐1 for extraocular muscles. Muscle Nerve 41: 478‐486, 2010.
 93.Fernandez AM, Dupont J, Farrar RP, Lee S, Stannard B, Le Roith D. Muscle‐specific inactivation of the IGF‐I receptor induces compensatory hyperplasia in skeletal muscle. J Clin Invest 109: 347‐355, 2002.
 94.Fernández AM, Kim JK, Yakar S, Dupont J, Hernandez‐Sanchez C, Castle AL, Filmore J, Shulman GI, Le Roith D. Functional inactivation of the IGF‐I and insulin receptors in skeletal muscle causes type 2 diabetes. Genes Dev 15: 1926‐1934, 2001.
 95.Fiorotto ML, Schwartz RJ, Delaughter MC. Persistent IGF‐I overexpression in skeletal muscle transiently enhances DNA accretion and growth. Faseb J 17: 59‐60, 2003.
 96.Firth SM, Baxter RC. Cellular actions of the insulin‐like growth factor binding proteins. Endocr Rev 23: 824‐854, 2002.
 97.Forbes BE, McCarthy P, Norton RS. Insulin‐like growth factor binding proteins: A structural perspective. Front Endocrinol (Lausanne) 3: 38, 2012.
 98.Fornaro M, Hinken AC, Needle S, Hu E, Trendelenburg AU, Mayer A, Rosenstiel A, Chang C, Meier V, Billin AN, Becherer JD, Brace AD, Evans WJ, Glass DJ, Russell AJ. Mechano‐growth factor peptide, the COOH terminus of unprocessed insulin‐like growth factor 1, has no apparent effect on myoblasts or primary muscle stem cells. Am J Physiol Endocrinol Metab 306: E150‐E156, 2014.
 99.Foyt HL, LeRoith D, Roberts CT, Jr. Differential association of insulin‐like growth factor I mRNA variants with polysomes in vivo. J Biol Chem 266: 7300‐7305, 1991.
 100.Froesch ER, Buergi H, Ramseier EB, Bally P, Labhart A. Antibody‐suppressible and nonsuppressible insulin‐like activities in human serum and their physiologic significance. An insulin assay with adipose tissue of increased precision and specificity. J Clin Invest 42: 1816‐1834, 1963.
 101.Fruman DA, Mauvais‐Jarvis F, Pollard DA, Yballe CM, Brazil D, Bronson RT, Kahn CR, Cantley LC. Hypoglycaemia, liver necrosis and perinatal death in mice lacking all isoforms of phosphoinositide 3‐kinase p85 alpha. Nat Genet 26: 379‐382, 2000.
 102.Furuyama T, Kitayama K, Yamashita H, Mori N. Forkhead transcription factor FOXO1 (FKHR)‐dependent induction of PDK4 gene expression in skeletal muscle during energy deprivation. Biochem J 375: 365‐371, 2003.
 103.Gagliardi AD, Kuo EY, Raulic S, Wagner GF, DiMattia GE. Human stanniocalcin‐2 exhibits potent growth‐suppressive properties in transgenic mice independently of growth hormone and IGFs. Am J Physiol Endocrinol Metab 288: E92‐E105, 2005.
 104.Gatti R, De Palo EF, Antonelli G, Spinella P. IGF‐I/IGFBP system: Metabolism outline and physical exercise. J Endocrinol Invest 35: 699‐707, 2012.
 105.Geering B, Cutillas PR, Nock G, Gharbi SI, Vanhaesebroeck B. Class IA phosphoinositide 3‐kinases are obligate p85‐p110 heterodimers. Proc Natl Acad Sci U S A 104: 7809‐7814, 2007.
 106.Gellhorn E, Feldman J, Allen A. Assay of insulin on hypophysectomized, adreno‐demedullated, and hypophysectomized adreno‐demedullated rats. Endocrinology 29: 137‐140, 1941.
 107.Glisovic T, Bachorik JL, Yong J, Dreyfuss G. RNA‐binding proteins and post‐transcriptional gene regulation. FEBS Lett 582: 1977‐1986, 2008.
 108.Gomes MD, Lecker SH, Jagoe RT, Navon A, Goldberg AL. Atrogin‐1, a muscle‐specific F‐box protein highly expressed during muscle atrophy. Proc Natl Acad Sci U S A 98: 14440‐14445, 2001.
 109.Gonzalez E, McGraw TE. The Akt kinases: Isoform specificity in metabolism and cancer. Cell Cycle 8: 2502‐2508, 2009.
 110.Gosteli‐Peter MA, Winterhalter KH, Schmid C, Froesch ER, Zapf J. Expression and regulation of insulin‐like growth factor‐I (IGF‐I) and IGF‐binding protein messenger ribonucleic acid levels in tissues of hypophysectomized rats infused with IGF‐I and growth hormone. Endocrinology 135: 2558‐2567, 1994.
 111.Greig CA, Hameed M, Young A, Goldspink G, Noble B. Skeletal muscle IGF‐I isoform expression in healthy women after isometric exercise. Growth Horm IGF Res 16: 373‐376, 2006.
 112.Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Ménissier F, Massabanda J, Fries R, Hanset R, Georges M. A deletion in the bovine myostatin gene causes the double‐muscled phenotype in cattle. Nat Genet 17: 71‐74, 1997.
 113.Groen J, Kamminga CE, Willebrands AF, Blickman JR. Evidence for the presence of insulin in blood serum; a method for an approximate determination of the insulin content of blood. J Clin Invest 31: 97‐106, 1952.
 114.Guan J, Gluckman P, Yang P, Krissansen G, Sun X, Zhou Y, Wen J, Phillips G, Shorten PR, McMahon CD, Wake GC, Chan WH, Thomas MF, Ren A, Moon S, Liu DX. Cyclic glycine‐proline regulates IGF‐1 homeostasis by altering the binding of IGFBP‐3 to IGF‐1. Sci Rep 4: 4388, 2014.
 115.Guha S, Padh H. Cathepsins: Fundamental effectors of endolysosomal proteolysis. Indian J Biochem Biophys 45: 75‐90, 2008.
 116.Guler HP, Zapf J, Schmid C, Froesch ER. Insulin‐like growth factors I and II in healthy man. Estimations of half‐lives and production rates. Acta Endocrinol (Copenh) 121: 753‐758, 1989.
 117.Guller I, Russell AP. MicroRNAs in skeletal muscle: Their role and regulation in development, disease and function. J Physiol 588: 4075‐4087, 2010.
 118.Haddad F, Adams GR. Inhibition of MAP/ERK kinase prevents IGF‐I‐induced hypertrophy in rat muscles. J Appl Physiol (1985) 96: 203‐210, 2004.
 119.Hall K, Uthne K. Some biological properties of purified sulfation factor (SF) from human plasma. Acta Med Scand 190: 137‐143, 1971.
 120.Hall LJ, Kajimoto Y, Bichell D, Kim SW, James PL, Counts D, Nixon LJ, Tobin G, Rotwein P. Functional analysis of the rat insulin‐like growth factor I gene and identification of an IGF‐I gene promoter. DNA Cell Biol 11: 301‐313, 1992.
 121.Hameed M, Lange KH, Andersen JL, Schjerling P, Kjaer M, Harridge SD, Goldspink G. The effect of recombinant human growth hormone and resistance training on IGF‐I mRNA expression in the muscles of elderly men. J Physiol 555: 231‐240, 2004.
 122.Hameed M, Orrell RW, Cobbold M, Goldspink G, Harridge SD. Expression of IGF‐I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547: 247‐254, 2003.
 123.Hameed M, Toft AD, Pedersen BK, Harridge SD, Goldspink G. Effects of eccentric cycling exercise on IGF‐I splice variant expression in the muscles of young and elderly people. Scand J Med Sci Sports 18: 447‐452, 2008.
 124.Hay N, Sonenberg N. Upstream and downstream of mTOR. Genes Dev 18: 1926‐1945, 2004.
 125.Haywood NJ, Cordell PA, Tang KY, Makova N, Yuldasheva NY, Imrie H, Viswambharan H, Bruns AF, Cubbon RM, Kearney MT, Wheatcroft SB. Insulin‐like growth factor binding protein 1 could improve glucose regulation and insulin sensitivity through its RGD domain. Diabetes 66: 287‐299, 2017.
 126.Hede MS, Salimova E, Piszczek A, Perlas E, Winn N, Nastasi T, Rosenthal N. E‐peptides control bioavailability of IGF‐1. PLoS One 7: e51152, 2012.
 127.Heinemeier KM, Olesen JL, Schjerling P, Haddad F, Langberg H, Baldwin KM, Kjaer M. Short‐term strength training and the expression of myostatin and IGF‐I isoforms in rat muscle and tendon: Differential effects of specific contraction types. J Appl Physiol (1985) 102: 573‐581, 2007.
 128.Hepler JE, Van Wyk JJ, Lund PK. Different half‐lives of insulin‐like growth factor I mRNAs that differ in length of 3′ untranslated sequence. Endocrinology 127: 1550‐1552, 1990.
 129.Hill M, Goldspink G. Expression and splicing of the insulin‐like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549: 409‐418, 2003.
 130.Hill M, Wernig A, Goldspink G. Muscle satellite (stem) cell activation during local tissue injury and repair. J Anat 203: 89‐99, 2003.
 131.Hoeflich KP, Luo J, Rubie EA, Tsao MS, Jin O, Woodgett JR. Requirement for glycogen synthase kinase‐3beta in cell survival and NF‐kappaB activation. Nature 406: 86‐90, 2000.
 132.Hoffmann C, Zurn A, Bunemann M, Lohse MJ. Conformational changes in G‐protein‐coupled receptors‐the quest for functionally selective conformations is open. Br J Pharmacol 153(Suppl 1): S358‐S366, 2008.
 133.Holt LJ, Turner N, Mokbel N, Trefely S, Kanzleiter T, Kaplan W, Ormandy CJ, Daly RJ, Cooney GJ. Grb10 regulates the development of fiber number in skeletal muscle. FASEB J 26: 3658‐3669, 2012.
 134.Hosaka T, Biggs WH, III, Tieu D, Boyer AD, Varki NM, Cavenee WK, Arden KC. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci U S A 101: 2975‐2980, 2004.
 135.Hu P, Geles KG, Paik JH, DePinho RA, Tjian R. Codependent activators direct myoblast‐specific MyoD transcription. Dev Cell 15: 534‐546, 2008.
 136.Hu Z, Wang H, Lee IH, Modi S, Wang X, Du J, Mitch WE. PTEN inhibition improves muscle regeneration in mice fed a high‐fat diet. Diabetes 59: 1312‐1320, 2010.
 137.Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci 120: 2479‐2487, 2007.
 138.Hynes RO. The extracellular matrix: Not just pretty fibrils. Science 326: 1216‐1219, 2009.
 139.Izumiya Y, Hopkins T, Morris C, Sato K, Zeng L, Viereck J, Hamilton JA, Ouchi N, LeBrasseur NK, Walsh K. Fast/Glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab 7: 159‐172, 2008.
 140.Jansen E, Steenbergh PH, van Schaik FM, Sussenbach JS. The human IGF‐I gene contains two cell type‐specifically regulated promoters. Biochem Biophys Res Commun 187: 1219‐1226, 1992.
 141.Jansen M, van Schaik FM, Ricker AT, Bullock B, Woods DE, Gabbay KH, Nussbaum AL, Sussenbach JS, Van den Brande JL. Sequence of cDNA encoding human insulin‐like growth factor I precursor. Nature 306: 609‐611, 1983.
 142.Jean‐Baptiste G, Yang Z, Khoury C, Gaudio S, Greenwood MT. Peptide and non‐peptide G‐protein coupled receptors (GPCRs) in skeletal muscle. Peptides 26: 1528‐1536, 2005.
 143.Jennische E, Skottner A and Hansson HA. Satellite cells express the trophic factor IGF‐I in regenerating skeletal muscle. Acta Physiol Scand 129: 9‐15, 1987.
 144.Jepsen MR, Kløverpris S, Mikkelsen JH, Pedersen JH, Füchtbauer EM, Laursen LS, Oxvig C. Stanniocalcin‐2 inhibits mammalian growth by proteolytic inhibition of the insulin‐like growth factor axis. J Biol Chem 290: 3430‐3439, 2015.
 145.Jia L, Li YF, Wu GF, Song ZY, Lu HZ, Song CC, Zhang QL, Zhu JY, Yang GS, Shi XE. MiRNA‐199a‐3p regulates C2C12 myoblast differentiation through IGF‐1/AKT/mTOR signal pathway. Int J Mol Sci 15: 296‐308, 2014.
 146.Jogo M, Shiraishi S, Tamura TA. Identification of MAFbx as a myogenin‐engaged F‐box protein in SCF ubiquitin ligase. FEBS Lett 583: 2715‐2719, 2009.
 147.Kajimoto Y, Rotwein P. Structure and expression of a chicken insulin‐like growth factor I precursor. Mol Endocrinol 3: 1907‐1913, 1989.
 148.Kamei Y, Miura S, Suzuki M, Kai Y, Mizukami J, Taniguchi T, Mochida K, Hata T, Matsuda J, Aburatani H, Nishino I, Ezaki O. Skeletal muscle FOXO1 (FKHR) transgenic mice have less skeletal muscle mass, down‐regulated Type I (slow twitch/red muscle) fiber genes, and impaired glycemic control. J Biol Chem 279: 41114‐41123, 2004.
 149.Kamei Y, Mizukami J, Miura S, Suzuki M, Takahashi N, Kawada T, Taniguchi T, Ezaki O. A forkhead transcription factor FKHR up‐regulates lipoprotein lipase expression in skeletal muscle. FEBS Lett 536: 232‐236, 2003.
 150.Kandalla PK, Goldspink G, Butler‐Browne G, Mouly V. Mechano Growth Factor E peptide (MGF‐E), derived from an isoform of IGF‐1, activates human muscle progenitor cells and induces an increase in their fusion potential at different ages. Mech Ageing Dev 132: 154‐162, 2011.
 151.Kavsan VM, Koval AP, Grebenjuk VA, Chan SJ, Steiner DF, Roberts CT, Jr., LeRoith D. Structure of the chum salmon insulin‐like growth factor I gene. DNA Cell Biol 12: 729‐737, 1993.
 152.Kawai M, Delany AM, Green CB, Adamo ML, Rosen CJ. Nocturnin suppresses igf1 expression in bone by targeting the 3′ untranslated region of igf1 mRNA. Endocrinology 151: 4861‐4870, 2010.
 153.Kikuchi K, Bichell DP, Rotwein P. Chromatin changes accompany the developmental activation of insulin‐like growth factor I gene transcription. J Biol Chem 267: 21505‐21511, 1992.
 154.Kim JK, Michael MD, Previs SF, Peroni OD, Mauvais‐Jarvis F, Neschen S, Kahn BB, Kahn CR, Shulman GI. Redistribution of substrates to adipose tissue promotes obesity in mice with selective insulin resistance in muscle. J Clin Invest 105: 1791‐1797, 2000.
 155.Kim SW, Lajara R, Rotwein P. Structure and function of a human insulin‐like growth factor‐I gene promoter. Mol Endocrinol 5: 1964‐1972, 1991.
 156.Kitamura T, Kitamura Y, Nakae J, Giordano A, Cinti S, Kahn CR, Efstratiadis A, Accili D. Mosaic analysis of insulin receptor function. J Clin Invest 113: 209‐219, 2004.
 157.Klapper DG, Svoboda ME, Van Wyk JJ. Sequence analysis of somatomedin‐C: Confirmation of identity with insulin‐like growth factor I. Endocrinology 112: 2215‐2217, 1983.
 158.Kline WO, Panaro FJ, Yang H, Bodine SC. Rapamycin inhibits the growth and muscle‐sparing effects of clenbuterol. J Appl Physiol (1985) 102: 740‐747, 2007.
 159.Kristensen C, Wiberg FC, Andersen AS. Specificity of insulin and insulin‐like growth factor I receptors investigated using chimeric mini‐receptors. Role of C‐terminal of receptor alpha subunit. J Biol Chem 274: 37351‐37356, 1999.
 160.Kuo YH, Chen TT. Novel activities of pro‐IGF‐I E peptides: Regulation of morphological differentiation and anchorage‐independent growth in human neuroblastoma cells. Exp Cell Res 280: 75‐89, 2002.
 161.Lagirand‐Cantaloube J, Cornille K, Csibi A, Batonnet‐Pichon S, Leibovitch MP, Leibovitch SA. Inhibition of atrogin‐1/MAFbx mediated MyoD proteolysis prevents skeletal muscle atrophy in vivo. PLoS One 4: e4973, 2009.
 162.Lagirand‐Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet‐Pichon S, Tintignac LA, Segura CT, Leibovitch SA. The initiation factor eIF3‐f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27: 1266‐1276, 2008.
 163.Lai KM, Gonzalez M, Poueymirou WT, Kline WO, Na E, Zlotchenko E, Stitt TN, Economides AN, Yancopoulos GD, Glass DJ. Conditional activation of akt in adult skeletal muscle induces rapid hypertrophy. Mol Cell Biol 24: 9295‐9304, 2004.
 164.Laplante M, Sabatini DM. mTOR signaling at a glance. J Cell Sci 122: 3589‐3594, 2009.
 165.Laron Z. Insulin‐like growth factor 1 (IGF‐1): A growth hormone. Mol Pathol 54: 311‐316, 2001.
 166.Lauro D, Kido Y, Castle AL, Zarnowski MJ, Hayashi H, Ebina Y, Accili D. Impaired glucose tolerance in mice with a targeted impairment of insulin action in muscle and adipose tissue. Nat Genet 20: 294‐298, 1998.
 167.Laviola L, Natalicchio A and Giorgino F. The IGF‐I signaling pathway. Curr Pharm Des 13: 663‐669, 2007.
 168.Lawrence JB, Oxvig C, Overgaard MT, Sottrup‐Jensen L, Gleich GJ, Hays LG, Yates JR, III, Conover CA. The insulin‐like growth factor (IGF)‐dependent IGF binding protein‐4 protease secreted by human fibroblasts is pregnancy‐associated plasma protein‐A. Proc Natl Acad Sci U S A 96: 3149‐3153, 1999.
 169.Lee EK, Gorospe M. Minireview: Posttranscriptional regulation of the insulin and insulin‐like growth factor systems. Endocrinology 151: 1403‐1408, 2010.
 170.Lee SJ. Quadrupling muscle mass in mice by targeting TGF‐beta signaling pathways. PLoS One 2: e789, 2007.
 171.Lee SJ, McPherron AC. Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci U S A 98: 9306‐9311, 2001.
 172.Li M, Li C, Parkhouse WS. Age‐related differences in the des IGF‐I‐mediated activation of Akt‐1 and p70 S6K in mouse skeletal muscle. Mech Ageing Dev 124: 771‐778, 2003.
 173.Lingappa VR, Blobel G. Early events in the biosynthesis of secretory and membrane proteins: The signal hypothesis. Recent Prog Horm Res 36: 451‐475, 1980.
 174.Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. Mice carrying null mutations of the genes encoding insulin‐like growth factor I (Igf‐1) and type 1 IGF receptor (Igf1r). Cell 75: 59‐72, 1993.
 175.Liu P, Cheng H, Roberts TM, Zhao JJ. Targeting the phosphoinositide 3‐kinase pathway in cancer. Nat Rev Drug Discov 8: 627‐644, 2009.
 176.Long YC, Cheng Z, Copps KD, White MF. Insulin receptor substrates Irs1 and Irs2 coordinate skeletal muscle growth and metabolism via the Akt and AMPK pathways. Mol Cell Biol 31: 430‐441, 2011.
 177.Louvi A, Accili D, Efstratiadis A. Growth‐promoting interaction of IGF‐II with the insulin receptor during mouse embryonic development. Dev Biol 189: 33‐48, 1997.
 178.Lowe WL, Jr., Lasky SR, LeRoith D, Roberts CT, Jr. Distribution and regulation of rat insulin‐like growth factor I messenger ribonucleic acids encoding alternative carboxyterminal E‐peptides: Evidence for differential processing and regulation in liver. Mol Endocrinol 2: 528‐535, 1988.
 179.Lowe WL, Jr., Roberts CT, Jr., Lasky SR, LeRoith D. Differential expression of alternative 5′ untranslated regions in mRNAs encoding rat insulin‐like growth factor I. Proc Natl Acad Sci U S A 84: 8946‐8950, 1987.
 180.Lund PK, Hoyt EC, Van Wyk JJ. The size heterogeneity of rat insulin‐like growth factor‐I mRNAs is due primarily to differences in the length of 3′‐untranslated sequence. Mol Endocrinol 3: 2054‐2061, 1989.
 181.Luo J, Sobkiw CL, Hirshman MF, Logsdon MN, Li TQ, Goodyear LJ, Cantley LC. Loss of class IA PI3K signaling in muscle leads to impaired muscle growth, insulin response, and hyperlipidemia. Cell Metab 3: 355‐366, 2006.
 182.MacAulay K, Doble BW, Patel S, Hansotia T, Sinclair EM, Drucker DJ, Nagy A, Woodgett JR. Glycogen synthase kinase 3alpha‐specific regulation of murine hepatic glycogen metabolism. Cell Metab 6: 329‐337, 2007.
 183.Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden SJ, Di Lisi R, Sandri C, Zhao J, Goldberg AL, Schiaffino S, Sandri M. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 6: 458‐471, 2007.
 184.Manning BD, Cantley LC. AKT/PKB signaling: Navigating downstream. Cell 129: 1261‐1274, 2007.
 185.Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9: 493‐495, 1961.
 186.Mavalli MD, DiGirolamo DJ, Fan Y, Riddle RC, Campbell KS, van Groen T, Frank SJ, Sperling MA, Esser KA, Bamman MM, Clemens TL. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice. J Clin Invest 120: 4007‐4020, 2010.
 187.McCall GE, Allen DL, Haddad F, Baldwin KM. Transcriptional regulation of IGF‐I expression in skeletal muscle. Am J Physiol Cell Physiol 285: C831‐C839, 2003.
 188.McKoy G, Ashley W, Mander J, Yang SY, Williams N, Russell B, Goldspink G. Expression of insulin growth factor‐1 splice variants and structural genes in rabbit skeletal muscle induced by stretch and stimulation. J Physiol 516(Pt 2): 583‐592, 1999.
 189.McLellan AS, Kealey T, Langlands K. An E box in the exon 1 promoter regulates insulin‐like growth factor‐I expression in differentiating muscle cells. Am J Physiol Cell Physiol 291: C300‐C307, 2006.
 190.McManus EJ, Sakamoto K, Armit LJ, Ronaldson L, Shpiro N, Marquez R, Alessi DR. Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. EMBO J 24: 1571‐1583, 2005.
 191.McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF‐beta superfamily member. Nature 387: 83‐90, 1997.
 192.Megyesi K, Kahn CR, Roth J, Neville DM, Jr., Nissley SP, Humbel RE, Froesch ER. The NSILA‐s receptor in liver plasma membranes. Characterization and comparison with the insulin receptor. J Biol Chem 250: 8990‐8996, 1975.
 193.Metzger F, Sajid W, Saenger S, Staudenmaier C, van der Poel C, Sobottka B, Schuler A, Sawitzky M, Poirier R, Tuerck D, Schick E, Schaubmar A, Hesse F, Amrein K, Loetscher H, Lynch GS, Hoeflich A, De Meyts P, Schoenfeld HJ. Separation of fast from slow anabolism by site‐specific PEGylation of insulin‐like growth factor I (IGF‐I). J Biol Chem 286: 19501‐19510, 2011.
 194.Mignone F, Gissi C, Liuni S, Pesole G. Untranslated regions of mRNAs. Genome Biol 3: REVIEWS0004, 2002.
 195.Milan G, Romanello V, Pescatore F, Armani A, Paik JH, Frasson L, Seydel A, Zhao J, Abraham R, Goldberg AL, Blaauw B, DePinho RA, Sandri M. Regulation of autophagy and the ubiquitin‐proteasome system by the FoxO transcriptional network during muscle atrophy. Nat Commun 6: 6670, 2015.
 196.Mills P, Lafreniere JF, Benabdallah BF, El Fahime el M, Tremblay JP. A new pro‐migratory activity on human myogenic precursor cells for a synthetic peptide within the E domain of the mechano growth factor. Exp Cell Res 313: 527‐537, 2007.
 197.Minetti GC, Feige JN, Rosenstiel A, Bombard F, Meier V, Werner A, Bassilana F, Sailer AW, Kahle P, Lambert C, Glass DJ, Fornaro M. Galphai2 signaling promotes skeletal muscle hypertrophy, myoblast differentiation, and muscle regeneration. Sci Signal 4: ra80, 2011.
 198.Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H. Running‐induced systemic cathepsin B secretion is associated with memory function. Cell Metab 24: 332‐340, 2016.
 199.Mora A, Davies AM, Bertrand L, Sharif I, Budas GR, Jovanović S, Mouton V, Kahn CR, Lucocq JM, Gray GA, Jovanović A, Alessi DR. Deficiency of PDK1 in cardiac muscle results in heart failure and increased sensitivity to hypoxia. EMBO J 22: 4666‐4676, 2003.
 200.Morell B, Froesch ER. Fibroblasts as an experimental tool in metabolic and hormone studies. I. Growth and glucose metabolism of fibroblasts in culture. Eur J Clin Invest 3: 112‐118, 1973.
 201.Morino K, Neschen S, Bilz S, Sono S, Tsirigotis D, Reznick RM, Moore I, Nagai Y, Samuel V, Sebastian D, White M, Philbrick W, Shulman GI. Muscle‐specific IRS‐1 Ser→Ala transgenic mice are protected from fat‐induced insulin resistance in skeletal muscle. Diabetes 57: 2644‐2651, 2008.
 202.Morissette MR, Cook SA, Buranasombati C, Rosenberg MA, Rosenzweig A. Myostatin inhibits IGF‐I‐induced myotube hypertrophy through Akt. Am J Physiol Cell Physiol 297: C1124‐C1132, 2009.
 203.Moutoussamy S, Renaudie F, Lago F, Kelly PA, Finidori J. Grb10 identified as a potential regulator of growth hormone (GH) signaling by cloning of GH receptor target proteins. J Biol Chem 273: 15906‐15912, 1998.
 204.Murga C, Laguinge L, Wetzker R, Cuadrado A, Gutkind JS. Activation of Akt/protein kinase B by G protein‐coupled receptors. A role for alpha and beta gamma subunits of heterotrimeric G proteins acting through phosphatidylinositol‐3‐OH kinasegamma. J Biol Chem 273: 19080‐19085, 1998.
 205.Murgia M, Serrano AL, Calabria E, Pallafacchina G, Lomo T, Schiaffino S. Ras is involved in nerve‐activity‐dependent regulation of muscle genes. Nat Cell Biol 2: 142‐147, 2000.
 206.Murphy LJ. Overexpression of insulin‐like growth factor binding protein‐1 in transgenic mice. Pediatr Nephrol 14: 567‐571, 2000.
 207.Murphy LJ, Bell GI, Duckworth ML, Friesen HG. Identification, characterization, and regulation of a rat complementary deoxyribonucleic acid which encodes insulin‐like growth factor‐I. Endocrinology 121: 684‐691, 1987.
 208.Musarò A, McCullagh K, Paul A, Houghton L, Dobrowolny G, Molinaro M, Barton ER, Sweeney HL, Rosenthal N. Localized Igf‐1 transgene expression sustains hypertrophy and regeneration in senescent skeletal muscle. Nat Genet 27: 195‐200, 2001.
 209.Nakayama K. Furin: A mammalian subtilisin/Kex2p‐like endoprotease involved in processing of a wide variety of precursor proteins. Biochem J 327 (Pt 3): 625‐635, 1997.
 210.Neel BA, Lin Y, Pessin JE. Skeletal muscle autophagy: A new metabolic regulator. Trends Endocrinol Metab 24: 635‐643, 2013.
 211.Neumann GM, Marinaro JA, Bach LA. Identification of O‐glycosylation sites and partial characterization of carbohydrate structure and disulfide linkages of human insulin‐like growth factor binding protein 6. Biochemistry 37: 6572‐6585, 1998.
 212.Ning Y, Hoang B, Schuller AG, Cominski TP, Hsu MS, Wood TL, Pintar JE. Delayed mammary gland involution in mice with mutation of the insulin‐like growth factor binding protein 5 gene. Endocrinology 148: 2138‐2147, 2007.
 213.Ning Y, Schuller AG, Bradshaw S, Rotwein P, Ludwig T, Frystyk J, Pintar JE. Diminished growth and enhanced glucose metabolism in triple knockout mice containing mutations of insulin‐like growth factor binding protein‐3, ‐4, and ‐5. Mol Endocrinol 20: 2173‐2186, 2006.
 214.Nolten LA, Steenbergh PH, Sussenbach JS. Hepatocyte nuclear factor 1 alpha activates promoter 1 of the human insulin‐like growth factor I gene via two distinct binding sites. Mol Endocrinol 9: 1488‐1499, 1995.
 215.Nolten LA, Steenbergh PH, Sussenbach JS. The hepatocyte nuclear factor 3beta stimulates the transcription of the human insulin‐like growth factor I gene in a direct and indirect manner. J Biol Chem 271: 31846‐31854, 1996.
 216.Nolten LA, van Schaik FM, Steenbergh PH, Sussenbach JS. Expression of the insulin‐like growth factor I gene is stimulated by the liver‐enriched transcription factors C/EBP alpha and LAP. Mol Endocrinol 8: 1636‐1645, 1994.
 217.O'Neill BT, Lauritzen HP, Hirshman MF, Smyth G, Goodyear LJ, Kahn CR. Differential role of insulin/IGF‐1 receptor signaling in muscle growth and glucose homeostasis. Cell Rep 11: 1220‐1235, 2015.
 218.Oberbauer AM. The regulation of IGF‐1 gene transcription and splicing during development and aging. Front Endocrinol (Lausanne) 4: 39, 2013.
 219.Ortiz CO, Chen BK, Bale LK, Overgaard MT, Oxvig C, Conover CA. Transforming growth factor‐beta regulation of the insulin‐like growth factor binding protein‐4 protease system in cultured human osteoblasts. J Bone Miner Res 18: 1066‐1072, 2003.
 220.Overgaard MT, Boldt HB, Laursen LS, Sottrup‐Jensen L, Conover CA, Oxvig C. Pregnancy‐associated plasma protein‐A2 (PAPP‐A2), a novel insulin‐like growth factor‐binding protein‐5 proteinase. J Biol Chem 276: 21849‐21853, 2001.
 221.Owino V, Yang SY, Goldspink G. Age‐related loss of skeletal muscle function and the inability to express the autocrine form of insulin‐like growth factor‐1 (MGF) in response to mechanical overload. FEBS Lett 505: 259‐263, 2001.
 222.Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S. A protein kinase B‐dependent and rapamycin‐sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci U S A 99: 9213‐9218, 2002.
 223.Pansters NA, Schols AM, Verhees KJ, de Theije CC, Snepvangers FJ, Kelders MC, Ubags ND, Haegens A, Langen RC. Muscle‐specific GSK‐3beta ablation accelerates regeneration of disuse‐atrophied skeletal muscle. Biochim Biophys Acta 1852: 490‐506, 2015.
 224.Pao CI, Lin KW, Zhu J, Wu G, Farmer PK, Phillips LS. In vitro transcription of the rat insulin‐like growth factor‐I gene. J Biol Chem 271: 8667‐8674, 1996.
 225.Park S, Brisson BK, Liu M, Spinazzola JM, Barton ER. Mature IGF‐I excels in promoting functional muscle recovery from disuse atrophy compared with pro‐IGF‐IA. J Appl Physiol (1985) 116: 797‐806, 2014.
 226.Patel S, Doble BW, MacAulay K, Sinclair EM, Drucker DJ, Woodgett JR. Tissue‐specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Mol Cell Biol 28: 6314‐6328, 2008.
 227.Patursky‐Polischuk I, Stolovich‐Rain M, Hausner‐Hanochi M, Kasir J, Cybulski N, Avruch J, Rüegg MA, Hall MN, Meyuhas O. The TSC‐mTOR pathway mediates translational activation of TOP mRNAs by insulin largely in a raptor‐ or rictor‐independent manner. Mol Cell Biol 29: 640‐649, 2009.
 228.Paul AC, Rosenthal N. Different modes of hypertrophy in skeletal muscle fibers. J Cell Biol 156: 751‐760, 2002.
 229.Pederson TM, Kramer DL, Rondinone CM. Serine/threonine phosphorylation of IRS‐1 triggers its degradation: Possible regulation by tyrosine phosphorylation. Diabetes 50: 24‐31, 2001.
 230.Peng XD, Xu PZ, Chen ML, Hahn‐Windgassen A, Skeen J, Jacobs J, Sundararajan D, Chen WS, Crawford SE, Coleman KG, Hay N. Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17: 1352‐1365, 2003.
 231.Peserico A, Chiacchiera F, Grossi V, Matrone A, Latorre D, Simonatto M, Fusella A, Ryall JG, Finley LW, Haigis MC, Villani G, Puri PL, Sartorelli V, Simone C. A novel AMPK‐dependent FoxO3A‐SIRT3 intramitochondrial complex sensing glucose levels. Cell Mol Life Sci 70: 2015‐2029, 2013.
 232.Petrella JK, Kim JS, Cross JM, Kosek DJ, Bamman MM. Efficacy of myonuclear addition may explain differential myofiber growth among resistance‐trained young and older men and women. Am J Physiol Endocrinol Metab 291: E937‐E946, 2006.
 233.Philippou A, Papageorgiou E, Bogdanis G, Halapas A, Sourla A, Maridaki M, Pissimissis N, Koutsilieris M. Expression of IGF‐1 isoforms after exercise‐induced muscle damage in humans: Characterization of the MGF E peptide actions in vitro. In Vivo 23: 567‐575, 2009.
 234.Pierno S, Camerino GM, Cannone M, Liantonio A, De Bellis M, Digennaro C, Gramegna G, De Luca A, Germinario E, Danieli‐Betto D, Betto R, Dobrowolny G, Rizzuto E, Musarò A, Desaphy JF, Camerino DC. Paracrine effects of IGF‐1 overexpression on the functional decline due to skeletal muscle disuse: Molecular and functional evaluation in hindlimb unloaded MLC/mIgf‐1 transgenic mice. PLoS One 8: e65167, 2014.
 235.Previs SF, Withers DJ, Ren JM, White MF, Shulman GI. Contrasting effects of IRS‐1 versus IRS‐2 gene disruption on carbohydrate and lipid metabolism in vivo. J Biol Chem 275: 38990‐38994, 2000.
 236.Rabinovsky ED, Gelir E, Gelir S, Lui H, Kattash M, DeMayo FJ, Shenaq SM, Schwartz RJ. Targeted expression of IGF‐1 transgene to skeletal muscle accelerates muscle and motor neuron regeneration. FASEB J 17: 53‐55, 2003.
 237.Rajaram S, Baylink DJ, Mohan S. Insulin‐like growth factor‐binding proteins in serum and other biological fluids: Regulation and functions. Endocr Rev 18: 801‐831, 1997.
 238.Ramos JW. The regulation of extracellular signal‐regulated kinase (ERK) in mammalian cells. Int J Biochem Cell Biol 40: 2707‐2719, 2008.
 239.Reed SA, Sandesara PB, Senf SM, Judge AR. Inhibition of FoxO transcriptional activity prevents muscle fiber atrophy during cachexia and induces hypertrophy. FASEB J 26: 987‐1000, 2012.
 240.Rehage M, Mohan S, Wergedal JE, Bonafede B, Tran K, Hou D, Phang D, Kumar A, Qin X. Transgenic overexpression of pregnancy‐associated plasma protein‐A increases the somatic growth and skeletal muscle mass in mice. Endocrinology 148: 6176‐6185, 2007.
 241.Rinderknecht E, Humbel RE. The amino acid sequence of human insulin‐like growth factor I and its structural homology with proinsulin. J Biol Chem 253: 2769‐2776, 1978.
 242.Rinderknecht E, Humbel RE. Amino‐terminal sequences of two polypeptides from human serum with nonsuppressible insulin‐like and cell‐growth‐promoting activities: Evidence for structural homology with insulin B chain. Proc Natl Acad Sci U S A 73: 4379‐4381, 1976.
 243.Rinderknecht E, Humbel RE. Primary structure of human insulin‐like growth factor II. FEBS Lett 89: 283‐286, 1978.
 244.Risson V, Mazelin L, Roceri M, Sanchez H, Moncollin V, Corneloup C, Richard‐Bulteau H, Vignaud A, Baas D, Defour A, Freyssenet D, Tanti JF, Le‐Marchand‐Brustel Y, Ferrier B, Conjard‐Duplany A, Romanino K, Bauché S, Hantaï D, Mueller M, Kozma SC, Thomas G, Rüegg MA, Ferry A, Pende M, Bigard X, Koulmann N, Schaeffer L, Gangloff YG. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy. J Cell Biol 187: 859‐874, 2009.
 245.Roberts CT, Jr., Lasky SR, Lowe WL, Jr., Seaman WT, LeRoith D. Molecular cloning of rat insulin‐like growth factor I complementary deoxyribonucleic acids: Differential messenger ribonucleic acid processing and regulation by growth hormone in extrahepatic tissues. Mol Endocrinol 1: 243‐248, 1987.
 246.Roberts MD, Dalbo VJ, Sunderland KL, Poole CN, Hassell SE, Bemben D, Cramer J, Stout J, Kerksick CM. IGF‐1 splice variant and IGF‐1 peptide expression patterns in young and old human skeletal muscle prior to and following sequential exercise bouts. Eur J Appl Physiol 110: 961‐969, 2010.
 247.Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ. Mediation of IGF‐1‐induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3: 1009‐1013, 2001.
 248.Rosenfeld L. Insulin: Discovery and controversy. Clin Chem 48: 2270‐2288, 2002.
 249.Rotwein P, Folz RJ, Gordon JI. Biosynthesis of human insulin‐like growth factor I (IGF‐I). The primary translation product of IGF‐I mRNA contains an unusual 48‐amino acid signal peptide. J Biol Chem 262: 11807‐11812, 1987.
 250.Rotwein P, Pollock KM, Didier DK, Krivi GG. Organization and sequence of the human insulin‐like growth factor I gene. Alternative RNA processing produces two insulin‐like growth factor I precursor peptides. J Biol Chem 261: 4828‐4832, 1986.
 251.Rotwein P, Wilson EM. Distinct actions of Akt1 and Akt2 in skeletal muscle differentiation. J Cell Physiol 219: 503‐511, 2009.
 252.Rouillé Y, Duguay SJ, Lund K, Furuta M, Gong Q, Lipkind G, Oliva AA, Jr., Chan SJ, Steiner DF. Proteolytic processing mechanisms in the biosynthesis of neuroendocrine peptides: The subtilisin‐like proprotein convertases. Front Neuroendocrinol 16: 322‐361, 1995.
 253.Rui L, Yuan M, Frantz D, Shoelson S, White MF. SOCS‐1 and SOCS‐3 block insulin signaling by ubiquitin‐mediated degradation of IRS1 and IRS2. J Biol Chem 277: 42394‐42398, 2002.
 254.Sakuma K, Yamaguchi A. The functional role of calcineurin in hypertrophy, regeneration, and disorders of skeletal muscle. J Biomed Biotechnol 2010: 721219, 2010.
 255.Salih DA, Tripathi G, Holding C, Szestak TA, Gonzalez MI, Carter EJ, Cobb LJ, Eisemann JE, Pell JM. Insulin‐like growth factor‐binding protein 5 (Igfbp5) compromises survival, growth, muscle development, and fertility in mice. Proc Natl Acad Sci U S A 101: 4314‐4319, 2004.
 256.Salmon WD, Jr., Daughaday WH. A hormonally controlled serum factor which stimulates sulfate incorporation by cartilage in vitro. J Lab Clin Med 49: 825‐836, 1957.
 257.Samaan N, Fraser R, Dempster WJ. The “typical” and “atypical” forms of serum insulin. Diabetes 12: 339‐348, 1963.
 258.Sanchez AM, Candau RB, Bernardi H. FoxO transcription factors: Their roles in the maintenance of skeletal muscle homeostasis. Cell Mol Life Sci 71: 1657‐1671, 2014.
 259.Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL. Foxo transcription factors induce the atrophy‐related ubiquitin ligase atrogin‐1 and cause skeletal muscle atrophy. Cell 117: 399‐412, 2004.
 260.Sara VR, Carlsson‐Skwirut C, Bergman T, Jörnvall H, Roberts PJ, Crawford M, Håkansson LN, Civalero I, Nordberg A. Identification of Gly‐Pro‐Glu (GPE), the aminoterminal tripeptide of insulin‐like growth factor 1 which is truncated in brain, as a novel neuroactive peptide. Biochem Biophys Res Commun 165: 766‐771, 1989.
 261.Sara VR, Carlsson‐Skwirut C, Drakenberg K, Giacobini MB, Håkansson L, Mirmiran M, Nordberg A, Olson L, Reinecke M, Ståhlbom PA, Sandberg Nordqvist AC. The biological role of truncated insulin‐like growth factor‐1 and the tripeptide GPE in the central nervous system. Ann N Y Acad Sci 692: 183‐191, 1993.
 262.Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor‐mTOR complex. Science 307: 1098‐1101, 2005.
 263.Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M. Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296: C1248‐C1257, 2009.
 264.Sasaoka T, Kobayashi M. The functional significance of Shc in insulin signaling as a substrate of the insulin receptor. Endocr J 47: 373‐381, 2000.
 265.Schiaffino S, Mammucari C. Regulation of skeletal muscle growth by the IGF1‐Akt/PKB pathway: Insights from genetic models. Skelet Muscle 1: 4, 2011.
 266.Seidah NG, Chretien M. Proprotein and prohormone convertases: A family of subtilases generating diverse bioactive polypeptides. Brain Res 848: 45‐62, 1999.
 267.Shavlakadze T, Boswell JM, Burt DW, Asante EA, Tomas FM, Davies MJ, White JD, Grounds MD, Goddard C. Rskalpha‐actin/hIGF‐1 transgenic mice with increased IGF‐I in skeletal muscle and blood: Impact on regeneration, denervation and muscular dystrophy. Growth Horm IGF Res 16: 157‐173, 2006.
 268.Shemer J, Adamo ML, Roberts CT, Jr., LeRoith D. Tissue‐specific transcription start site usage in the leader exons of the rat insulin‐like growth factor‐I gene: Evidence for differential regulation in the developing kidney. Endocrinology 131: 2793‐2799, 1992.
 269.Shi H, Scheffler JM, Zeng C, Pleitner JM, Hannon KM, Grant AL, Gerrard DE. Mitogen‐activated protein kinase signaling is necessary for the maintenance of skeletal muscle mass. Am J Physiol Cell Physiol 296: C1040‐C1048, 2009.
 270.Shi J, Luo L, Eash J, Ibebunjo C, Glass DJ. The SCF‐Fbxo40 complex induces IRS1 ubiquitination in skeletal muscle, limiting IGF1 signaling. Dev Cell 21: 835‐847, 2011.
 271.Shimatsu A, Rotwein P. Mosaic evolution of the insulin‐like growth factors. Organization, sequence, and expression of the rat insulin‐like growth factor I gene. J Biol Chem 262: 7894‐7900, 1987.
 272.Shuldiner AR, Nirula A, Scott LA, Roth J. Evidence that Xenopus laevis contains two different nonallelic insulin‐like growth factor‐I genes. Biochem Biophys Res Commun 166: 223‐230, 1990.
 273.Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: Neglected corners and recent advances. Front Endocrinol (Lausanne) 3: 34, 2012.
 274.Siddle K. Signalling by insulin and IGF receptors: Supporting acts and new players. J Mol Endocrinol 47: R1‐R10, 2011.
 275.Siegfried JM, Kasprzyk PG, Treston AM, Mulshine JL, Quinn KA, Cuttitta F. A mitogenic peptide amide encoded within the E peptide domain of the insulin‐like growth factor IB prohormone. Proc Natl Acad Sci U S A 89: 8107‐8111, 1992.
 276.Silha JV, Gui Y, Murphy LJ. Impaired glucose homeostasis in insulin‐like growth factor‐binding protein‐3‐transgenic mice. Am J Physiol Endocrinol Metab 283: E937‐E945, 2002.
 277.Simmons JG, Van Wyk JJ, Hoyt EC, Lund PK. Multiple transcription start sites in the rat insulin‐like growth factor‐I gene give rise to IGF‐I mRNAs that encode different IGF‐I precursors and are processed differently in vitro. Growth Factors 9: 205‐221, 1993.
 278.Sitar T, Popowicz GM, Siwanowicz I, Huber R, Holak TA. Structural basis for the inhibition of insulin‐like growth factors by insulin‐like growth factor‐binding proteins. Proc Natl Acad Sci U S A 103: 13028‐13033, 2006.
 279.Sivaramakrishnan M, Croll TI, Gupta R, Stupar D, Van Lonkhuyzen DR, Upton Z, Shooter GK. Lysine residues of IGF‐I are substrates for transglutaminases and modulate downstream IGF‐I signalling. Biochim Biophys Acta 1833: 3176‐3185, 2013.
 280.Slaaby R. Specific insulin/IGF1 hybrid receptor activation assay reveals IGF1 as a more potent ligand than insulin. Sci Rep 5: 7911, 2015.
 281.Smit LS, Meyer DJ, Billestrup N, Norstedt G, Schwartz J, Carter‐Su C. The role of the growth hormone (GH) receptor and JAK1 and JAK2 kinases in the activation of Stats 1, 3, and 5 by GH. Mol Endocrinol 10: 519‐533, 1996.
 282.Smith FM, Holt LJ, Garfield AS, Charalambous M, Koumanov F, Perry M, Bazzani R, Sheardown SA, Hegarty BD, Lyons RJ, Cooney GJ, Daly RJ, Ward A. Mice with a disruption of the imprinted Grb10 gene exhibit altered body composition, glucose homeostasis, and insulin signaling during postnatal life. Mol Cell Biol 27: 5871‐5886, 2007.
 283.Smrcka AV. G protein betagamma subunits: Central mediators of G protein‐coupled receptor signaling. Cell Mol Life Sci 65: 2191‐2214, 2008.
 284.Sparkman AM, Schwartz TS, Madden JA, Boyken SE, Ford NB, Serb JM, Bronikowski AM. Rates of molecular evolution vary in vertebrates for insulin‐like growth factor‐1 (IGF‐1), a pleiotropic locus that regulates life history traits. Gen Comp Endocrinol 178: 164‐173, 2012.
 285.Steiner DF. The proprotein convertases. Curr Opin Chem Biol 2: 31‐39, 1998.
 286.Sun XJ, Liu F. Phosphorylation of IRS proteins Yin‐Yang regulation of insulin signaling. Vitam Horm 80: 351‐387, 2009.
 287.Sussenbach JS, Steenbergh PH, Holthuizen P. Structure and expression of the human insulin‐like growth‐factor genes. Growth Regulation 2: 1‐9, 1992.
 288.Swiderski K, Martins KJ, Chee A, Trieu J, Naim T, Gehrig SM, Baum DM, Brenmoehl J, Chau L, Koopman R, Gregorevic P, Metzger F, Hoeflich A, Lynch GS. Skeletal muscle‐specific overexpression of IGFBP‐2 promotes a slower muscle phenotype in healthy but not dystrophic mdx mice and does not affect the dystrophic pathology. Growth Horm IGF Res 30‐31: 1‐10, 2016.
 289.Takahashi Y, Tobe K, Kadowaki H, Katsumata D, Fukushima Y, Yazaki Y, Akanuma Y, Kadowaki T. Roles of insulin receptor substrate‐1 and Shc on insulin‐like growth factor I receptor signaling in early passages of cultured human fibroblasts. Endocrinology 138: 741‐750, 1997.
 290.Takano K, Watanabe‐Takano H, Suetsugu S, Kurita S, Tsujita K, Kimura S, Karatsu T, Takenawa T, Endo T. Nebulin and N‐WASP cooperate to cause IGF‐1‐induced sarcomeric actin filament formation. Science 330: 1536‐1540, 2010.
 291.Tan DS, Cook A, Chew SL. Nucleolar localization of an isoform of the IGF‐I precursor. BMC Cell Biol 3: 17, 2002.
 292.Tanaka M, Taniguchi T, Yamamoto I, Sakaguchi K, Yoshizato H, Ohkubo T, Nakashima K. Gene and cDNA structures of flounder insulin‐like growth factor‐I (IGF‐I): Multiple mRNA species encode a single short mature IGF‐I. DNA Cell Biol 17: 859‐868, 1998.
 293.Tavakkol A, Simmen FA, Simmen RC. Porcine insulin‐like growth factor‐I (pIGF‐I): Complementary deoxyribonucleic acid cloning and uterine expression of messenger ribonucleic acid encoding evolutionarily conserved IGF‐I peptides. Mol Endocrinol 2: 674‐681, 1988.
 294.Telgmann R, Dördelmann C, Brand E, Nicaud V, Hagedorn C, Pavenstädt H, Cambien F, Tiret L, Paul M, Brand‐Herrmann SM. Molecular genetic analysis of a human insulin‐like growth factor 1 promoter P1 variation. FASEB J 23: 1303‐1313, 2009.
 295.Temmerman L, Slonimsky E, Rosenthal N. Class 2 IGF‐1 isoforms are dispensable for viability, growth and maintenance of IGF‐1 serum levels. Growth Hormone & Igf Research 20: 255‐263, 2010.
 296.Thakur S, Garg N, Zhang N, Hussey SE, Musi N, Adamo ML. IGF‐1 receptor haploinsufficiency leads to age‐dependent development of metabolic syndrome. Biochem Biophys Res Commun 486: 937‐944, 2017.
 297.Thirone AC, Carvalho CR, Saad MJ. Growth hormone stimulates the tyrosine kinase activity of JAK2 and induces tyrosine phosphorylation of insulin receptor substrates and Shc in rat tissues. Endocrinology 140: 55‐62, 1999.
 298.Thomas MJ, Umayahara Y, Shu H, Centrella M, Rotwein P, McCarthy TL. Identification of the cAMP response element that controls transcriptional activation of the insulin‐like growth factor‐I gene by prostaglandin E2 in osteoblasts. J Biol Chem 271: 21835‐21841, 1996.
 299.Tian XC, Chen MJ, Pantschenko AG, Yang TJ, Chen TT. Recombinant E‐peptides of pro‐IGF‐I have mitogenic activity. Endocrinology 140: 3387‐3390, 1999.
 300.Tintignac LA, Lagirand J, Batonnet S, Sirri V, Leibovitch MP, Leibovitch SA. Degradation of MyoD mediated by the SCF (MAFbx) ubiquitin ligase. J Biol Chem 280: 2847‐2856, 2005.
 301.Toker A. PDK‐1 and protein kinase C phosphorylation. Methods Mol Biol 233: 171‐189, 2003.
 302.Tonkin J, Temmerman L, Sampson RD, Gallego‐Colon E, Barberi L, Bilbao D, Schneider MD, Musarò A, Rosenthal N. Monocyte/macrophage‐derived IGF‐1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther 23: 1189‐1200, 2015.
 303.Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296: C1258‐C1270, 2009.
 304.Twigg SM, Baxter RC. Insulin‐like growth factor (IGF)‐binding protein 5 forms an alternative ternary complex with IGFs and the acid‐labile subunit. J Biol Chem 273: 6074‐6079, 1998.
 305.Ueki K, Yballe CM, Brachmann SM, Vicent D, Watt JM, Kahn CR, Cantley LC. Increased insulin sensitivity in mice lacking p85beta subunit of phosphoinositide 3‐kinase. Proc Natl Acad Sci U S A 99: 419‐424, 2002.
 306.Umayahara Y, Kajimoto Y, Fujitani Y, Gorogawa S, Yasuda T, Kuroda A, Ohtoshi K, Yoshida S, Kawamori D, Yamasaki Y, Hori M. Protein kinase C‐dependent, CCAAT/enhancer‐binding protein beta‐mediated expression of insulin‐like growth factor I gene. J Biol Chem 277: 15261‐15270, 2002.
 307.Vajdos FF, Ultsch M, Schaffer ML, Deshayes KD, Liu J, Skelton NJ, de Vos AM. Crystal structure of human insulin‐like growth factor‐1: Detergent binding inhibits binding protein interactions. Biochemistry 40: 11022‐11029, 2001.
 308.Vanderkuur JA, Butch ER, Waters SB, Pessin JE, Guan KL, Carter‐Su C. Signaling molecules involved in coupling growth hormone receptor to mitogen‐activated protein kinase activation. Endocrinology 138: 4301‐4307, 1997.
 309.Vassilakos G, Lei H, Yang Y, Puglise J, Matheny M, Durzynska J, Ozery M, Bennett K, Spradlin R, Bonanno H, Park S, Ahima RS, Barton ER. Deletion of muscle IGF‐I transiently impairs growth and progressively disrupts glucose homeostasis in male mice. FASEB J 2018: fj201800459R. [Epub ahead of print].
 310.Vassilakos G, Philippou A, Koutsilieris M. Identification of the IGF‐1 processing product human Ec/rodent Eb peptide in various tissues: Evidence for its differential regulation after exercise‐induced muscle damage in humans. Growth Horm IGF Res 32: 22‐28, 2016.
 311.Vassilakos G, Philippou A, Tsakiroglou P, Koutsilieris M. Biological activity of the e domain of the IGF‐1Ec as addressed by synthetic peptides. Hormones (Athens) 13: 182‐196, 2014.
 312.Vong QP, Chan KM, Cheng CH. Quantification of common carp (Cyprinus carpio) IGF‐I and IGF‐II mRNA by real‐time PCR: Differential regulation of expression by GH. J Endocrinol 178: 513‐521, 2003.
 313.Wallis M. New insulin‐like growth factor (IGF)‐precursor sequences from mammalian genomes: The molecular evolution of IGFs and associated peptides in primates. Growth Horm IGF Res 19: 12‐23, 2009.
 314.Wang L, Wang X, Adamo ML. Two putative GATA motifs in the proximal exon 1 promoter of the rat insulin‐like growth factor I gene regulate basal promoter activity. Endocrinology 141: 1118‐1126, 2000.
 315.Welle SL. Myostatin and muscle fiber size. Focus on “Smad2 and 3 transcription factors control muscle mass in adulthood” and “Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size.” Am J Physiol Cell Physiol 296: C1245‐C1247, 2009.
 316.White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab 283: E413‐E422, 2002.
 317.Wijesekara N, Konrad D, Eweida M, Jefferies C, Liadis N, Giacca A, Crackower M, Suzuki A, Mak TW, Kahn CR, Klip A, Woo M. Muscle‐specific Pten deletion protects against insulin resistance and diabetes. Mol Cell Biol 25: 1135‐1145, 2005.
 318.Wilson HE, Westwood M, White A, Clayton PE. Monoclonal antibodies to the carboxy‐terminal Ea sequence of pro‐insulin‐like growth factor‐IA (proIGF‐IA) recognize proIGF‐IA secreted by IM9 B‐lymphocytes. Growth Horm IGF Res 11: 10‐17, 2001.
 319.Withers DJ, Burks DJ, Towery HH, Altamuro SL, Flint CL and White MF. Irs‐2 coordinates Igf‐1 receptor‐mediated beta‐cell development and peripheral insulin signalling. Nat Genet 23: 32‐40, 1999.
 320.Withers DJ, Gutierrez JS, Towery H, Burks DJ, Ren JM, Previs S, Zhang Y, Bernal D, Pons S, Shulman GI, Bonner‐Weir S, White MF. Disruption of IRS‐2 causes type 2 diabetes in mice. Nature 391: 900‐904, 1998.
 321.Wood TL, Rogler LE, Czick ME, Schuller AG, Pintar JE. Selective alterations in organ sizes in mice with a targeted disruption of the insulin‐like growth factor binding protein‐2 gene. Mol Endocrinol 14: 1472‐1482, 2000.
 322.Woodall BP, Woodall MC, Luongo TS, Grisanti LA, Tilley DG, Elrod JW, Koch WJ. Skeletal muscle‐specific G protein‐coupled receptor kinase 2 ablation alters isolated skeletal muscle mechanics and enhances clenbuterol‐stimulated hypertrophy. J Biol Chem 291: 21913‐21924, 2016.
 323.Woodgett JR. Molecular cloning and expression of glycogen synthase kinase‐3/factor A. EMBO J 9: 2431‐2438, 1990.
 324.Wu Y, Zhao W, Zhao J, Pan J, Wu Q, Zhang Y, Bauman WA, Cardozo CP. Identification of androgen response elements in the insulin‐like growth factor I upstream promoter. Endocrinology 148: 2984‐2993, 2007.
 325.Xiao F, Wang H, Fu X, Li Y, Ma K, Sun L, Gao X, Wu Z. Oncostatin M inhibits myoblast differentiation and regulates muscle regeneration. Cell Res 21: 350‐364, 2011.
 326.Xu QJ, Li SH, Zhao Y, Maures TJ, Yin P, Duan CM. Evidence that IGF binding protein‐5 functions as a ligand‐independent transcriptional regulator in vascular smooth muscle cells. Circulation Research 94: E46‐E54, 2004.
 327.Xu X, Sarikas A, Dias‐Santagata DC, Dolios G, Lafontant PJ, Tsai SC, Zhu W, Nakajima H, Nakajima HO, Field LJ, Wang R, Pan ZQ. The CUL7 E3 ubiquitin ligase targets insulin receptor substrate 1 for ubiquitin‐dependent degradation. Mol Cell 30: 403‐414, 2008.
 328.Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D. Normal growth and development in the absence of hepatic insulin‐like growth factor I. Proc Natl Acad Sci U S A 96: 7324‐7329, 1999.
 329.Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest 39: 1157‐1175, 1960.
 330.Yamamoto H, Murphy LJ. Generation of des‐(1‐3) insulin‐like growth factor‐I in serum by an acid protease. Endocrinology 135: 2432‐2439, 1994.
 331.Yan B, Zhu CD, Guo JT, Zhao LH, Zhao JL. miR‐206 regulates the growth of the teleost tilapia (Oreochromis niloticus) through the modulation of IGF‐1 gene expression. J Exp Biol 216: 1265‐1269, 2013.
 332.Yang H, Adamo ML, Koval AP, McGuinness MC, Ben‐Hur H, Yang Y, LeRoith D, Roberts CT, Jr. Alternative leader sequences in insulin‐like growth factor I mRNAs modulate translational efficiency and encode multiple signal peptides. Mol Endocrinol 9: 1380‐1395, 1995.
 333.Yang H, Alnaqeeb M, Simpson H, Goldspink G. Changes in muscle fibre type, muscle mass and IGF‐I gene expression in rabbit skeletal muscle subjected to stretch. J Anat 190(Pt 4): 613‐622, 1997.
 334.Yang S, Alnaqeeb M, Simpson H, Goldspink G. Cloning and characterization of an IGF‐1 isoform expressed in skeletal muscle subjected to stretch. J Muscle Res Cell Motil 17: 487‐495, 1996.
 335.Yang SY, Goldspink G. Different roles of the IGF‐I Ec peptide (MGF) and mature IGF‐I in myoblast proliferation and differentiation. FEBS Letters 522: 156‐160, 2002.
 336.Zhong Y, Lu L, Zhou J, Li Y, Liu Y, Clemmons DR, Duan C. IGF binding protein 3 exerts its ligand‐independent action by antagonizing BMP in zebrafish embryos. J Cell Sci 124: 1925‐1935, 2011.
 337.Zhou R, Diehl D, Hoeflich A, Lahm H, Wolf E. IGF‐binding protein‐4: Biochemical characteristics and functional consequences. J Endocrinol 178: 177‐193, 2003.
 338.Zhu JL, Kaytor EN, Pao CI, Meng XP, Phillips LS. Involvement of Sp1 in the transcriptional regulation of the rat insulin‐like growth factor‐1 gene. Mol Cell Endocrinol 164: 205‐218, 2000.
 339.Zhu T, Ling L, Lobie PE. Identification of a JAK2‐independent pathway regulating growth hormone (GH)‐stimulated p44/42 mitogen‐activated protein kinase activity. GH activation of Ral and phospholipase D is Src‐dependent. J Biol Chem 277: 45592‐45603, 2002.

 

Teaching Material

G. Vassilakos, E. R. Barton. Insulin-Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. Compr Physiol 9: 2019, 443-468.

Didactic Synopsis

Major Teaching Points:

  • IGF-1 and insulin are highly related molecules with similar and divergent actions.
  • The regulation of IGF-1 production occurs at both the transcriptional and translational levels.
    • Alternative splicing generates multiple forms of IGF-1
    • Protease cleavage and protein modifications happen after translation of IGF-1
  • The forms are different and the C-terminal end of the protein, producing multiple E-peptides, which have potential, but controversial, functional significance.
  • IGF-1 signal transduction drives both increased protein synthesis, protection against degradative pathways, and negative feedback to tune IGF-1 activity.
  • IGF-1 availability is modulated by many extracellular proteins.
  • The IGF-1 signaling pathway interacts with other growth factors.
  • IGF-1 regulates both growth (anabolic actions) and glucose (metabolic actions).

Didactic Legends

The figures—in a freely downloadable PowerPoint format—can be found on the Images tab along with the formal legends published in the article. The following legends to the same figures are written to be useful for teaching.

Figure 1 Teaching points: The IGF-1 and insulin proteins are related both in primary sequence and in their structure. One of the main divergent features is that IGF-1 retains the C domain, which is removed from proinsulin when it is processed to generate mature insulin.

Figure 2 Teaching points: For such a small protein, IGF-1 has very complex transcriptional regulation. The major point of this figure is to illustrate this complexity, including the alternative splicing, the multiple transcriptional initiation sites, and the different classes of peptides that result. It is important to recognize that all forms that are produced share a common mature IGF-1 sequence.

Figure 3 Teaching points: This is a continuation from Figure 2, showing how the peptides that get translated are subjected to more post-translational processing. This includes several proteases that can separate the mature IGF-1 peptide from the C-terminal E peptides, and also “trim” the mature peptide. It also includes the N-glycosylation that can occur in the major IGF-1Ea form, which is the predominant form in skeletal muscle.

Figure 4 Teaching points: The IGF-1 signaling pathway shown is the major arm through the IGF-1 receptor. The figure shows the general features of the pathway, including the serial phosphorylation by many kinases in the pathway. In some cases, the phosphorylation activate the downstream target, such as in the Ras/Raf/MEK/Erk1/2 arm. In other cases, the phosphorylation inactivates the target, such as with Akt phosphorylation of GSK3b or FoXO. Of note, is the presence of IGFBPs outside of the cell, which bind to IGF-1, keeping is stored, but also preventing it from binding to receptors.

 


Related Articles:

Regulation of Skeletal Muscle by microRNAs
Satellite Cells and Skeletal Muscle Regeneration

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Georgios Vassilakos, Elisabeth R. Barton. Insulin‐Like Growth Factor I Regulation and Its Actions in Skeletal Muscle. Compr Physiol 2018, 9: 413-438. doi: 10.1002/cphy.c180010