Comprehensive Physiology Wiley Online Library

Gastric Peptides—Gastrin and Somatostatin

Full Article on Wiley Online Library



Abstract

Gastric acid secretion (i) facilitates digestion of protein as well as absorption of micronutrients and certain medications, (ii) kills ingested microorganisms, including Helicobacter pylori, and (iii) prevents bacterial overgrowth and enteric infection. The principal regulators of acid secretion are the gastric peptides gastrin and somatostatin. Gastrin, the major hormonal stimulant for acid secretion, is synthesized in pyloric mucosal G cells as a 101‐amino acid precursor (preprogastrin) that is processed to yield biologically active amidated gastrin‐17 and gastrin‐34. The C‐terminal active site of gastrin (Trp‐Met‐Asp‐Phe‐NH2) binds to gastrin/CCK2 receptors on parietal and, more importantly, histamine‐containing enterochromaffin‐like (ECL) cells, located in oxyntic mucosa, to induce acid secretion. Histamine diffuses to the neighboring parietal cells where it binds to histamine H2‐receptors coupled to hydrochloric acid secretion. Gastrin is also a trophic hormone that maintains the integrity of gastric mucosa, induces proliferation of parietal and ECL cells, and is thought to play a role in carcinogenesis. Somatostatin, present in D cells of the gastric pyloric and oxyntic mucosa, is the main inhibitor of acid secretion, particularly during the interdigestive period. Somatostatin exerts a tonic paracrine restraint on gastrin secretion from G cells, histamine secretion from ECL cells, and acid secretion from parietal cells. Removal of this restraint, for example by activation of cholinergic neurons during ingestion of food, initiates and maximizes acid secretion. Knowledge regarding the structure and function of gastrin, somatostatin, and their respective receptors is providing novel avenues to better diagnose and manage acid‐peptic disorders and certain cancers. Published 2020. Compr Physiol 10:197‐228, 2020.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Functional gastric anatomy. The stomach consists of three anatomic (fundus, corpus or body, and antrum) and two functional (oxyntic and pyloric gland; 80% and 20%, respectively) areas. The hallmark of the oxyntic gland area is the acid‐secreting parietal cell. Also present are histamine‐secreting enterochromaffin‐like (ECL) cells. The hallmark of the pyloric gland area is the gastrin‐secreting G cell. Somatostatin‐secreting D cells are present in both areas and exert a tonic inhibitory restraint on secretions from G, ECL, and parietal cells. +, stimulatory; −, inhibitory.
Figure 2. Figure 2. Gastric gland anatomy. Somatostatin‐containing D cells possess cytoplasmic processes that terminate near (i) gastrin‐secreting G and pepsinogen‐secreting chief cells in the pyloric gland (antrum) and (ii) histamine‐secreting enterochromaffin‐like, acid‐secreting parietal, and pepsinogen‐secreting chief cells in the oxyntic gland (fundus and corpus). The functional correlate of this anatomic coupling is a tonic paracrine restraint exerted by somatostatin on the secretion of gastrin, histamine, acid, and pepsinogen. Somatostatin inhibits acid secretion directly as well as indirectly by inhibiting the secretion of gastrin and histamine.
Figure 3. Figure 3. (A) Structure of human gastrin‐17. The N‐ and C‐terminus are pyroglutaminated and carboxyamidated, respectively, which protect the peptide against amino‐ and carboxypeptidase degradation. The single tyrosyl (Tyr) residue is O‐sulfated in approximately half of the gastrins. (B) Overall structure of bioactive/amidated gastrins and their relationship to human preprogastrin (101 amino acids). The mono‐ and dibasic cleavage sites in progastrin (80 amino acids) are indicated as R, RR, and KK. The seryl site from where the signal peptide is removed is indicated as S. s, sulfated; ns, nonsulfated.
Figure 4. Figure 4. Overall structure of the human gastrin gene, mRNA, and prepropeptide. Exons are shown as boxes and introns as straight lines. The shaded area of the mRNA indicates the coding region. Numbers show base pairs (bp) or kilobase pairs (kb) in each region of the gene. In preprogastrin, the position occupied by gastrin‐34 is shown by shading.
Figure 5. Figure 5. Primary structures of mammalian preprogastrins deduced from cloned cDNAs (monoletter code). Letters in bold are residues common in most species. |→ indicates point and length of major gastrins (gastrin‐71, ‐34, and ‐17). The box contains the iconic C‐terminal tetrapeptide sequence, which constitutes the “active site” that is preserved during evolution and common to all bioactive members of the gastrin family. Courtesy to A.H. Johnsen; for review and sources, see Ref. 205.
Figure 6. Figure 6. Schematic illustration of the posttranslational maturation process of gastrins derived from progastrin in antral G cells. Mono‐ and dibasic cleavage sites are shown on the upper structure of preprogastrin. The main organelles in the cellular processing pathway are indicated on the left side of the figure. The main processing enzymes are indicated on the right side of the figure.
Figure 7. Figure 7. Primary structure of the canine gastrin/CCK2 receptor, a G protein‐coupled receptor with seven‐transmembrane domains. Shaded amino acid residues indicate identity with corresponding residues in the CCK1 receptor. Symbols on the extracellular N(Asn) residues indicate glycosylation sites.
Figure 8. Figure 8. The C‐terminal amino acid sequences of members of the gastrin/cholecystokinin family in vertebrates (upper part) and the partly homologous sequences of sulfakinins in insects (lower part). In the boxes are the evolutionarily preserved, carboxyamidated tetrapeptide sequence (Trp‐Met‐Asp‐Phe‐NH2) required for binding to the gastrin/CCK2 receptor.
Figure 9. Figure 9. Model illustrating the gastrin‐enterochromaffin‐like (ECL) cell‐parietal cell axis. Although gastrin/CCK2 receptors are present on both ECL and parietal cells, gastrin stimulates gastric acid secretion mainly by releasing histamine from ECL cells. Histamine then diffuses to the neighboring parietal cells where it binds to histamine H2‐receptors coupled to the generation of cAMP and activation of the proton pump, H+/K+‐ATPase. Courtesy to R. Håkanson 159.
Figure 10. Figure 10. Model illustrating the roles of gastrin and somatostatin (SST) and their receptors in the regulation of gastric acid secretion. Gastrin, secreted into the local circulation by G cells of the gastric antrum (pyloric mucosa), is the main hormonal stimulant for acid secretion. Acting via gastrin/CCK2 receptors, gastrin stimulates the parietal cell directly and, most importantly, indirectly by releasing histamine from enterochromaffin (ECL) cells. Histamine diffuses to the neighboring parietal cells (paracrine action) where it binds to histamine H2‐receptors coupled to the generation of cAMP and subsequent activation of the proton pump, H+/K+‐ATPase. Somatostatin, acting in a paracrine manner, is the main inhibitor of acid secretion. Somatostatin, secreted by D cells in both the pyloric and oxyntic mucosa, binds to somatostatin subtype‐2 (SST2) receptors located on G, ECL, and parietal cells. Somatostatin, secreted by D cells in the antrum, exerts a tonic inhibitory influence on gastrin secretion. Somatostatin, secreted by D cells in the fundus/corpus, exerts a tonic inhibitory influence on histamine secretion from ECL cells and acid secretion from parietal cells. Withdrawal of the inhibitory influence of somatostatin (i.e., disinhibition) by activation of cholinergic neurons initiates acid secretion and permits a maximal acid secretory response. A feedback pathway exists in both the antrum and the corpus/fundus whereby luminal acid stimulates somatostatin secretion and thus restrains acid secretion. +, stimulation; −, inhibition.
Figure 11. Figure 11. Model illustrating the neural and paracrine pathways regulating gastrin and somatostatin (SST) secretion in the stomach. Preganglionic efferent vagal nerve fibers synapse, within the wall of the stomach, with intramural cholinergic (ACh) and peptidergic [gastrin‐releasing peptide (GRP) and vasoactive intestinal peptide (VIP)] neurons that regulate gastrin and somatostatin secretion. In the antrum, reciprocal paracrine pathways link somatostatin‐secreting D cells and gastrin‐secreting G cells. In the fundus/corpus, reciprocal paracrine pathways link somatostatin‐secreting D cells to acid‐secreting parietal and histamine‐secreting enterochromaffin‐like (ECL) cells. During the basal interdigestive state, gastric acid secretion is maintained at low levels by the tonic inhibitory influence of somatostatin‐secreting D cells on (i) parietal and ECL cells in the fundus/corpus and (ii) G cells in the antrum. During ingestion of food, cholinergic neurons are activated by the thought, smell, sight, and taste of food as well as by protein components of the food and gastric distension. In the fundus/body, ACh, released from intramural cholinergic neurons, stimulates the parietal cell directly as well as indirectly by eliminating the inhibitory paracrine influence of somatostatin on parietal and ECL cells. The resultant increase in histamine stimulates the parietal cell directly via H2 receptors and indirectly via H3 receptors that further suppress somatostatin secretion. In the antrum, cholinergic neurons, activated by anticipation of food as well as luminal protein and high distension, stimulate gastrin secretion directly as well as indirectly by suppressing somatostatin secretion. Protein, acting via GRP neurons, directly stimulates gastrin secretion. It should be emphasized that suppression of somatostatin permits an optimal gastrin response. As the food empties the stomach, a number of pathways are actuated that restore somatostatin and thus restrain gastrin and acid secretion: (i) a paracrine pathway links gastrin to stimulation of somatostatin secretion, (ii) cholinergic neurons are less activated by anticipation of food as well by protein and distension, (iii) VIP neurons that stimulate somatostatin secretion are preferentially activated by low levels of distension, (iv) unbuffered luminal acid activates calcitonin gene‐related peptide (CGRP) extrinsic sensory neurons that stimulate somatostatin secretion, and (v) enterogastrones (e.g., cholecystokinin), released from the small intestine, stimulate somatostatin secretion. +, stimulation; −, inhibition.
Figure 12. Figure 12. Model illustrating the regulation of somatostatin and gastrin secretion in the antrum of the stomach by luminal acid, amino acids, and calcium as well as infection with Helicobacter pylori (HP). Unbuffered luminal acid activates calcitonin gene‐related peptide (CGRP) extrinsic sensory neurons that, via an axon reflex, stimulate somatostatin secretion from D cells and thus inhibit gastrin secretion from G cells. Antisecretory agents, such as proton pump inhibitors, inhibit acid secretion and thus lessen activation of CGRP neurons, leading to a decrease in somatostatin and reciprocal increase in gastrin secretion (hypergastrinemia). Protein stimulates gastrin secretion via activation of intramural neurons (Figure 11), but amino acids and calcium may act directly on the G cell. Acute infection with H. pylori (HP) activates CGRP neurons to stimulate somatostatin and thus inhibit gastrin (and acid) secretion; inhibition of acid facilitates colonization and infection. In patients with duodenal ulcer who have chronic HP infection of the antrum, the bacteria and/or cytokines released by the inflammatory infiltrate inhibit somatostatin and thus stimulate gastrin (and acid) secretion. +, stimulation; −, inhibition.
Figure 13. Figure 13. Electromicroscopic image of a rat G cell. The cell expresses polarity with the apical border, lined by microvilli, exposed to the glandular lumen and the basolateral aspect packed with gastrin‐containing secretory granules. The apical membrane may “taste” luminal contents, whereas gastrin is secreted across the basolateral membrane into the local circulation. Courtesy to L.‐I. Larsson.
Figure 14. Figure 14. Model illustrating the amino acid structure of somatostatin‐14 (SST‐14), somatostatin‐28 (SST‐28), and the synthetic somatostatin analogue, octreotide. The four amino acids, Phe‐Trp‐Lys‐Thr, shaded in color, are crucial for the binding of somatostatin to its receptor. The disulfide bridge between two cysteine residues, present in each structure, is represented as ‐S‐S‐.


Figure 1. Functional gastric anatomy. The stomach consists of three anatomic (fundus, corpus or body, and antrum) and two functional (oxyntic and pyloric gland; 80% and 20%, respectively) areas. The hallmark of the oxyntic gland area is the acid‐secreting parietal cell. Also present are histamine‐secreting enterochromaffin‐like (ECL) cells. The hallmark of the pyloric gland area is the gastrin‐secreting G cell. Somatostatin‐secreting D cells are present in both areas and exert a tonic inhibitory restraint on secretions from G, ECL, and parietal cells. +, stimulatory; −, inhibitory.


Figure 2. Gastric gland anatomy. Somatostatin‐containing D cells possess cytoplasmic processes that terminate near (i) gastrin‐secreting G and pepsinogen‐secreting chief cells in the pyloric gland (antrum) and (ii) histamine‐secreting enterochromaffin‐like, acid‐secreting parietal, and pepsinogen‐secreting chief cells in the oxyntic gland (fundus and corpus). The functional correlate of this anatomic coupling is a tonic paracrine restraint exerted by somatostatin on the secretion of gastrin, histamine, acid, and pepsinogen. Somatostatin inhibits acid secretion directly as well as indirectly by inhibiting the secretion of gastrin and histamine.


Figure 3. (A) Structure of human gastrin‐17. The N‐ and C‐terminus are pyroglutaminated and carboxyamidated, respectively, which protect the peptide against amino‐ and carboxypeptidase degradation. The single tyrosyl (Tyr) residue is O‐sulfated in approximately half of the gastrins. (B) Overall structure of bioactive/amidated gastrins and their relationship to human preprogastrin (101 amino acids). The mono‐ and dibasic cleavage sites in progastrin (80 amino acids) are indicated as R, RR, and KK. The seryl site from where the signal peptide is removed is indicated as S. s, sulfated; ns, nonsulfated.


Figure 4. Overall structure of the human gastrin gene, mRNA, and prepropeptide. Exons are shown as boxes and introns as straight lines. The shaded area of the mRNA indicates the coding region. Numbers show base pairs (bp) or kilobase pairs (kb) in each region of the gene. In preprogastrin, the position occupied by gastrin‐34 is shown by shading.


Figure 5. Primary structures of mammalian preprogastrins deduced from cloned cDNAs (monoletter code). Letters in bold are residues common in most species. |→ indicates point and length of major gastrins (gastrin‐71, ‐34, and ‐17). The box contains the iconic C‐terminal tetrapeptide sequence, which constitutes the “active site” that is preserved during evolution and common to all bioactive members of the gastrin family. Courtesy to A.H. Johnsen; for review and sources, see Ref. 205.


Figure 6. Schematic illustration of the posttranslational maturation process of gastrins derived from progastrin in antral G cells. Mono‐ and dibasic cleavage sites are shown on the upper structure of preprogastrin. The main organelles in the cellular processing pathway are indicated on the left side of the figure. The main processing enzymes are indicated on the right side of the figure.


Figure 7. Primary structure of the canine gastrin/CCK2 receptor, a G protein‐coupled receptor with seven‐transmembrane domains. Shaded amino acid residues indicate identity with corresponding residues in the CCK1 receptor. Symbols on the extracellular N(Asn) residues indicate glycosylation sites.


Figure 8. The C‐terminal amino acid sequences of members of the gastrin/cholecystokinin family in vertebrates (upper part) and the partly homologous sequences of sulfakinins in insects (lower part). In the boxes are the evolutionarily preserved, carboxyamidated tetrapeptide sequence (Trp‐Met‐Asp‐Phe‐NH2) required for binding to the gastrin/CCK2 receptor.


Figure 9. Model illustrating the gastrin‐enterochromaffin‐like (ECL) cell‐parietal cell axis. Although gastrin/CCK2 receptors are present on both ECL and parietal cells, gastrin stimulates gastric acid secretion mainly by releasing histamine from ECL cells. Histamine then diffuses to the neighboring parietal cells where it binds to histamine H2‐receptors coupled to the generation of cAMP and activation of the proton pump, H+/K+‐ATPase. Courtesy to R. Håkanson 159.


Figure 10. Model illustrating the roles of gastrin and somatostatin (SST) and their receptors in the regulation of gastric acid secretion. Gastrin, secreted into the local circulation by G cells of the gastric antrum (pyloric mucosa), is the main hormonal stimulant for acid secretion. Acting via gastrin/CCK2 receptors, gastrin stimulates the parietal cell directly and, most importantly, indirectly by releasing histamine from enterochromaffin (ECL) cells. Histamine diffuses to the neighboring parietal cells (paracrine action) where it binds to histamine H2‐receptors coupled to the generation of cAMP and subsequent activation of the proton pump, H+/K+‐ATPase. Somatostatin, acting in a paracrine manner, is the main inhibitor of acid secretion. Somatostatin, secreted by D cells in both the pyloric and oxyntic mucosa, binds to somatostatin subtype‐2 (SST2) receptors located on G, ECL, and parietal cells. Somatostatin, secreted by D cells in the antrum, exerts a tonic inhibitory influence on gastrin secretion. Somatostatin, secreted by D cells in the fundus/corpus, exerts a tonic inhibitory influence on histamine secretion from ECL cells and acid secretion from parietal cells. Withdrawal of the inhibitory influence of somatostatin (i.e., disinhibition) by activation of cholinergic neurons initiates acid secretion and permits a maximal acid secretory response. A feedback pathway exists in both the antrum and the corpus/fundus whereby luminal acid stimulates somatostatin secretion and thus restrains acid secretion. +, stimulation; −, inhibition.


Figure 11. Model illustrating the neural and paracrine pathways regulating gastrin and somatostatin (SST) secretion in the stomach. Preganglionic efferent vagal nerve fibers synapse, within the wall of the stomach, with intramural cholinergic (ACh) and peptidergic [gastrin‐releasing peptide (GRP) and vasoactive intestinal peptide (VIP)] neurons that regulate gastrin and somatostatin secretion. In the antrum, reciprocal paracrine pathways link somatostatin‐secreting D cells and gastrin‐secreting G cells. In the fundus/corpus, reciprocal paracrine pathways link somatostatin‐secreting D cells to acid‐secreting parietal and histamine‐secreting enterochromaffin‐like (ECL) cells. During the basal interdigestive state, gastric acid secretion is maintained at low levels by the tonic inhibitory influence of somatostatin‐secreting D cells on (i) parietal and ECL cells in the fundus/corpus and (ii) G cells in the antrum. During ingestion of food, cholinergic neurons are activated by the thought, smell, sight, and taste of food as well as by protein components of the food and gastric distension. In the fundus/body, ACh, released from intramural cholinergic neurons, stimulates the parietal cell directly as well as indirectly by eliminating the inhibitory paracrine influence of somatostatin on parietal and ECL cells. The resultant increase in histamine stimulates the parietal cell directly via H2 receptors and indirectly via H3 receptors that further suppress somatostatin secretion. In the antrum, cholinergic neurons, activated by anticipation of food as well as luminal protein and high distension, stimulate gastrin secretion directly as well as indirectly by suppressing somatostatin secretion. Protein, acting via GRP neurons, directly stimulates gastrin secretion. It should be emphasized that suppression of somatostatin permits an optimal gastrin response. As the food empties the stomach, a number of pathways are actuated that restore somatostatin and thus restrain gastrin and acid secretion: (i) a paracrine pathway links gastrin to stimulation of somatostatin secretion, (ii) cholinergic neurons are less activated by anticipation of food as well by protein and distension, (iii) VIP neurons that stimulate somatostatin secretion are preferentially activated by low levels of distension, (iv) unbuffered luminal acid activates calcitonin gene‐related peptide (CGRP) extrinsic sensory neurons that stimulate somatostatin secretion, and (v) enterogastrones (e.g., cholecystokinin), released from the small intestine, stimulate somatostatin secretion. +, stimulation; −, inhibition.


Figure 12. Model illustrating the regulation of somatostatin and gastrin secretion in the antrum of the stomach by luminal acid, amino acids, and calcium as well as infection with Helicobacter pylori (HP). Unbuffered luminal acid activates calcitonin gene‐related peptide (CGRP) extrinsic sensory neurons that, via an axon reflex, stimulate somatostatin secretion from D cells and thus inhibit gastrin secretion from G cells. Antisecretory agents, such as proton pump inhibitors, inhibit acid secretion and thus lessen activation of CGRP neurons, leading to a decrease in somatostatin and reciprocal increase in gastrin secretion (hypergastrinemia). Protein stimulates gastrin secretion via activation of intramural neurons (Figure 11), but amino acids and calcium may act directly on the G cell. Acute infection with H. pylori (HP) activates CGRP neurons to stimulate somatostatin and thus inhibit gastrin (and acid) secretion; inhibition of acid facilitates colonization and infection. In patients with duodenal ulcer who have chronic HP infection of the antrum, the bacteria and/or cytokines released by the inflammatory infiltrate inhibit somatostatin and thus stimulate gastrin (and acid) secretion. +, stimulation; −, inhibition.


Figure 13. Electromicroscopic image of a rat G cell. The cell expresses polarity with the apical border, lined by microvilli, exposed to the glandular lumen and the basolateral aspect packed with gastrin‐containing secretory granules. The apical membrane may “taste” luminal contents, whereas gastrin is secreted across the basolateral membrane into the local circulation. Courtesy to L.‐I. Larsson.


Figure 14. Model illustrating the amino acid structure of somatostatin‐14 (SST‐14), somatostatin‐28 (SST‐28), and the synthetic somatostatin analogue, octreotide. The four amino acids, Phe‐Trp‐Lys‐Thr, shaded in color, are crucial for the binding of somatostatin to its receptor. The disulfide bridge between two cysteine residues, present in each structure, is represented as ‐S‐S‐.
References
 1.Abdu F, Hicks GA, Gareth A, Hennig G, Allen JP, Grundy D. Somatostatin SST2 receptors inhibit peristalsis in the rat and mouse jejunum. Am J Phys 282: G624‐G633, 2002.
 2.Acher R, Chauvet J. La structure de la vasopressine de boeuf. Biochim Biophys Acta 12: 487‐488, 1953.
 3.Agersnap M, Rehfeld JF. Nonsulfated cholecystokinins in the small intestine of pigs and rats. Peptides 71: 121‐127, 2015.
 4.Allen JP, Canty AJ, Schulz S, Humphrey PPA, Emson PC, Young HM. Identification of cells expressing somatostatin receptor 2 in the gastrointestinal tract of Sstr2 knockout/lacZ knockin mice. J Comp Neurol 454: 329‐340, 2002.
 5.Almeida‐Vega S, Catlow K, Kenny S, Dimaline R, Varro A. Gastrin activates paracrine networks leading to induction of PAI‐2 via MAZ and ASC‐1. Am J Physiol Gastrointest Liver Physiol 296: G414‐G423, 2009.
 6.Annibale B, Aprile MR, D'Ambra G, Caruana P, Bordi C, Delle Fave G. Cure of Helicobacter pylori infection in atrophic body gastritis patients does not improve mucosal atrophy but reduces hypergastrinemia and its related effects on body ECL‐cell hyperplasia. Aliment Pharmacol Ther 14: 625‐634, 2000.
 7.Arimura A, Sato D, Coy H, Schally AV. Radioimmunoassay for GH‐release inhibiting hormone. Proc Soc Exp Biol Med 148: 784‐789, 1975.
 8.Arin RM, Gorostidi A, Navarro‐Imaz H, Rueda Y, Fresnedo O, Ochoa B. Adenosine: Direct and indirect actions on gastric acid secretion. Front Physiol 8: 737, 2017.
 9.Ashcroft FJ, Varro A, Dimaline R, Dockray GJ. Control of expression of the lectin‐like protein Reg‐1 by gastrin: Role of the Rho family GTPase RhoA and a C‐rich promoter element. Biochem J 381: 397‐403, 2004.
 10.Athmann C, Zeng N, Scott DR, Sachs G. Regulation of parietal cell calcium signaling in gastric glands. Am J Physiol Gastrointest Liver Physiol 79: G1048‐G1058, 2000.
 11.Attoub S, Levasseur S, Buyse M, Goïot H, Laigneau JP, Moizo L, Hervatin F, Le Marchand‐Brustel Y, Lewin JM, Bado A. Physiological role of cholecystokinin B/gastrin receptor in leptin secretion. Endocrinology 140: 4406‐4410, 1999.
 12.Bachwich D, Merchant J, Brand SJ. Identification of a cis‐regulatory element mediating somatostatin inhibition of epidermal growth factor‐stimulated gastrin gene transcription. Mol Endocrinol 6: 1175‐1184, 1992.
 13.Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN, Moizo L, Lehy T, Guerre‐Millo M, Le Marchand‐Brustel Y, Lewin MJ. The stomach is a source of leptin. Nature 394: 790‐793, 1998.
 14.Bado A, Moizo L, Laigneau JP, Delwaide J, Lewin MJ. H3‐receptor regulation of vascular gastrin and somatostatin releases by the isolated rat stomach. Yale J Biol Med 67: 113‐121, 1994.
 15.Bakke L, Qvigstad G, Brenna E, Sandvik AK, Waldum HL. Gastrin has a specific proliferative effect on the rat enterochromaffin‐like cell, but not on the parietal cell: A study by elutriation centrifugation. Acta Physiol Scand 169: 29‐37, 2000.
 16.Baldwin GS, Patel O, Shulkes A. Evolution of gastrointestinal hormones: The cholecystokinin/gastrin family. Curr Opin Endocrinol Diabetes Obes 17: 77‐88, 2010.
 17.Baldwin GS, Sims I. Tyrosine modification increases the affinity of gastrin for ferric ions. Springerplus 24: 815, 2015.
 18.Bardram L, Hilsted L, Rehfeld JF. Cholecystokinin, gastrin and their precursors in pheochromocytomas. Acta Endocrinol 120: 479‐484, 1989.
 19.Bardram L, Hilsted L, Rehfeld JF. Progastrin expression in mammalian pancreas. Proc Natl Acad Sci U S A 87: 298‐302, 1990.
 20.Bardram L, Rehfeld JF. Processing‐independent radioimmunoanalysis: A general analytical principle applied to progastrin and its products. Anal Biochem 175: 537‐543, 1988.
 21.Barrett TD, Lagaud G, Wagaman P, Freedman JM, Yan W, Andries L, Rizzolio MC, Morton MF, Shankley NP. The cholecystokinin CCK2 receptor antagonist, JNJ‐26070109, inhibits gastric acid secretion and prevents omeprazole‐induced acid rebound in the rat. Br J Pharmacol 166: 1684‐1693, 2012.
 22.Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless. SMS 201‐995: A very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31: 1133‐1140, 1982.
 23.Bayliss WM, Starling EH. The mechanism of pancreatic secretion. J Physiol 28 (5): 325‐353, 1902.
 24.Beales IL, Calam J. Interleukin 1 beta and tumour necrosis factor alpha inhibit acid secretion in cultures rabbit parietal cells by multiple pathways. Gut 42: 227‐234, 1998.
 25.Beales IL, Calam J. Inhibition of carbachol stimulated acid secretion by interleukin 1 beta in rabbit parietal cells requires protein kinase C. Gut 48: 782‐789, 2001.
 26.Bergqvist E, Obrink KJ. Gastrin‐histamine as a normal sequence in gastric acid stimulation in the rabbit. Ups J Med Sci 84: 145‐154, 1979.
 27.Betesh AL, Santa Ana CA, Cole JA, Fordtran JS. Is achlorhydria a cause of iron deficiency anemia? Am J Clin Nutr 102: 9‐19, 2015.
 28.Boel E, Vuust J, Norris F, Norris K, Wind A, Rehfeld JF, Marcker KA. Molecular cloning of human gastrin cDNA: Evidence for evolution of gastrin by gene duplication. Proc Natl Acad Sci U S A 80: 2866‐2869, 1983.
 29.Bonetto V, Jörnvall H, Andersson M, Renlund S, Mutt V, Sillard R. Isolation and characterization of sulphated and nonsulphated forms of cholecystokinin‐58 and their action on gallbladder contraction. Eur J Biochem 264: 336‐340, 1999.
 30.Boyce M, Lloyd KA, Pritchard DM. Potential clinical indications for a CCK2 receptor antagonist. Curr Opin Pharmacol 31: 68‐75, 2016.
 31.Boyce M, Moore AR, Sagatun L, Parsons BN, Varro A, Campbell F, Fossmark R, Waldum HL, Pritchard DM. Netazepide, a gastrin/cholecystokinin‐2 receptor antagonist, can eradicate gastric neuroendocrine tumors in patients with autoimmune chronic atrophic gastritis. Br J Clin Pharmcol 83: 466‐475, 2017.
 32.Brand SJ, Andersen BN, Rehfeld JF. Complete tyrosine‐O‐sulphation of gastrin in neonatal rat pancreas. Nature 309: 456‐458, 1984.
 33.Brand SJ, Fuller PJ. Differential gastrin gene expression in rat gastrointestinal tract and pancreas during neonatal development. J Biol Chem 263: 5341‐5347, 1988.
 34.Brand SJ, Klarlund J, Schwartz TW, Rehfeld JF. Biosynthesis of tyrosine‐O‐sulfated gastrins in rat antral mucosa. J Biol Chem 259: 13246‐13252, 1984.
 35.Brand SJ, Stone D. Reciprocal regulation of antral gastrin and somatostatin gene expression by omeprazole‐induced achlorhydria. J Clin Invest 82: 1059‐1066, 1988.
 36.Brazeau P, Vale W, Burgus R, Ling N, Butcher J, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179: 77‐79, 1973.
 37.Brodin K, Nilsson G. Increase in duodenal tissue gastrin in dogs following antrectomy with gastroduodenostomy and after total gastrectomy with oesophagoduodenostomy. Acta Physiol Scand 116: 113‐120, 1982.
 38.Brodin K, Nilsson G. Molecular forms of gastrin in canine duodenum after antrectomy. Acta Physiol Scand 117: 385‐390, 1983.
 39.Buchan AM, Polak JM, Solcia E, Pearse AG. Localisation of intestinal gastrin in a distinct endocrine cell type. Nature 277: 138‐140, 1979.
 40.Buchan AM, Squires PF, Ring M, Meloche RM. Mechanism of action of the calcium‐sensing receptor in human antral gastrin cells. Gastroenterology 120: 1128‐1139, 2001.
 41.Bugge A, Jansen PG, De Maria L, Sanni SJ, Clausen TR. Cloning and characterization of the porcine gastrin/cholecystokinin type 2 receptor. Eur J Pharmacol 833: 357‐363, 2018.
 42.Bundgaard JR, Birkedal H, Rehfeld JF. Progastrin is directed to the regulated secretory pathway by synergistically acting basic and acidic motifs. J Biol Chem 279: 5488‐5493, 2004.
 43.Bundgaard JR, Hansen TO, Friis‐Hansen L, Rourke IJ, van Solinge WW, Nielsen FC, Rehfeld JF. A distal Sp1‐element is necessary for maximal activity of the human gastrin gene promoter. FEBS Lett 369: 225‐228, 1995.
 44.Bundgaard JR, Rehfeld JF. Distinct linkage between post‐translational processing and differential secretion of progastrin derivatives in endocrine cells. J Biol Chem 283: 4014‐4021, 2008.
 45.Bundgaard JR, Rehfeld JF. Posttranslational processing of progastrin. In: Richter D, Tiedge H, editors. Results and Problems in Cell Differentiation. Heidelberg/New York: Springer Co., vol. 50, 2010, p. 207‐220.
 46.Bundgaard JR, Rehfeld JF. Tyrosylprotein sulfotransferases. In: Kastin AJ, Minamino N, editors. Handbook of Biologically Active Peptides. New York: Elsevier Science USA, 2013, p. 1829‐1834.
 47.Bundgaard JR, Vuust J, Rehfeld JF. Tyrosine O‐sulfation promotes proteolytic processing of progastrin. EMBO J 14: 3073‐3079, 1995.
 48.Burks J, Nadella S, Mahmud A, Mankongpaisamrung C, Wang J, Hahm JI, Tucker RD, Shivapurkar N, Stern ST, Smith JP. Cholecystokinin receptor‐targeted polyplex nanoparticle inhibits growth and metastasis of pancreatic cancer. Cell Mol Gastroenterol Hepatol 6: 17‐32, 2018.
 49.Busque SM, Kerstetter JE, Geibel JP, Insogna K. L‐type amino acids stimulate gastric acid secretion by activation of the calcium‐sensing receptor in parietal cells. Am J Phys 289: G664‐G669, 2005.
 50.Cabero JL, Grapengiesser E, Gylfe E, Li ZQ, Mårdh S. Effects of gastrin on cytosolic free Ca2+ in individual, acid‐secreting rat parietal cells. Biochem Biophys Res Commun 183: 1097‐1102, 1992.
 51.Cantor P, Andersen BN, Rehfeld JF. Complete tyrosine O‐sulphation of gastrin in adult and neonatal cat pancreas. FEBS Lett 195: 272‐274, 1986.
 52.Cantor P, Petronijevic L, Pedersen JF, Worning H. Cholecystokinetic and pancreozymic effect of O‐sulfated gastrin compared with nonsulfated gastrin and cholecystokinin. Gastroenterology 91: 1154‐1163, 1986.
 53.Chang HY, Mashimo H, Goyal RK. Musings on the wanderer: What's new in our understanding of vago‐vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 284: G357‐G366, 2003.
 54.Chang M, Xiao L, Shulkes A, Baldwin GS, Patel O. Zinc ions mediate gastrin expression, proliferation, and migration downstream of the cholecystokinin‐2 receptor. Endocrinology 157: 4706‐4719, 2016.
 55.Chen D, Zhao CM, Al‐Haider W, Hakanson R, Rehfeld JF, Kopin AS. Differentiation of gastric ECL cells is altered in CCK2 receptor‐deficient mice. Gastroenterology 123: 577‐585, 2002.
 56.Chen D, Zhao CM, Dockray GJ, Varro A, Van Hoek A, Sinclair NF, Wang TC, Koh TJ. Glycine‐extended gastrin synergizes with gastrin 17 to stimulate acid secretion in gastrin‐deficient mice. Gastroenterology 119: 756‐765, 2000.
 57.Chen D, Zhao CM, Håkanson R, Samuelson LC, Rehfeld JF, Friis‐Hansen L. Altered control of gastric acid secretion in gastrin‐cholecystokinin double mutant mice. Gastroenterology 126: 476‐487, 2004.
 58.Chey WY, Kim MS, Lee KY, Chang TM. Secretin is an enterogastrone in the dog. Am J Phys 240: G239‐G244, 1981.
 59.Chia CW, Egan JM. Incretin‐based therapies in type 2 diabetes mellitus. J Clin Endocrinol Metab 93: 3703‐3716, 2008.
 60.Chiba T, Kadowaki S, Taminato T, Chihara K, Seino Y, Matsukura S, Fujita T. Effect of antisomatostatin gamma‐globulin on gastrin release in rats. Gastroenterology 81: 321‐326, 1981.
 61.Chiba T, Taminato T, Kadowski S, Inoue Y, Mori K, Seino Y, Abe H, Chihara K, Masukura S, Fujita T, Goto Y. Effects of various gastrointestinal peptides on gastric somatostatin release. Endocrinology 106: 145‐149, 1980.
 62.Choi E, Roland JT, Barlow BJ, O'Neal R, Rich AE, Nam KT, Shi C, Goldenring JR. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum. Gut 63: 1711‐1720, 2014.
 63.Christensen KC. Specific beta‐adrenergic mechanisms in the hypoglycaemic activation of gastrin and gastric acid secretion. Scand J Gastroenterol 19: 339‐342, 1984.
 64.Christiansen LA, Jensen SL, Rehfeld JF, Stadil F, Christensen KC. Antral content and secretion of gastrins in pigs. Scand J Gastroenterol 13: 719‐725, 1978.
 65.Chuang CN, Tanner M, Chen MC, Davidson S, Soll AH. Gastrin induction of histamine release from primary cultures of canine oxyntic mucosal cells. Am J Phys 263: G460‐G465, 1992.
 66.Chung I, Li P, Lee K, Chang T, Chey WY. Dual inhibitory mechanism of secretin action on acid secretion in totally isolated, vascularly perfused rat stomach. Gastroenterology 107: 1751‐1758, 1994.
 67.Clerc P, Dufresne M, Saillan C, Chastre E, André T, Escrieut C, Kennedy K, Vaysse N, Gespach C, Fourmy D. Differential expression of the CCK‐A and CCK‐B/gastrin receptor genes in human cancers of the esophagus, stomach and colon. Int J Cancer 72: 931‐936, 1997.
 68.Colucci R, Blandizzi C, Tanini M, Vassallle C, Breschi MC, Del Tacca M. Gastrin promotes human colon cancer cell growth via CCK‐2 receptor‐mediated cyclooxygenase‐2 induction and prostaglandin E2 production. Br J Pharmacol 144: 38‐48, 2005.
 69.Cooke HJ, Wang YZ, Wray D, O'Dorisio MS, Woltering EA, Coy DH, Murphy WA, Christofi FL, Gosh P, O'Dorisio TM. A multi‐tyrosinated SST1/2 receptor preferring somatostatin agonist inhibits reflex and immune‐mediated secretion in the guinea pig colon. Regul Pept 114: 51‐60, 2003.
 70.Corleto VD, Weber HC, Jensen RT. Expression of somatostatin receptor subtypes on guinea pig gastric and colonic smooth muscle cells. Am J Phys 277: G235‐G244, 1999.
 71.Crawley JN. Comparative distribution of cholecystokinin and other neuropeptides. Why is this peptide different from all other peptides? Ann N Y Acad Sci 448: 1‐8, 1985.
 72.Crean GP, Marshall MW, Rumsey RD. Parietal cell hyperplasia induced by the administration of pentagastrin (ICI 50,123) to rats. Gastroenterology 57: 147‐155, 1969.
 73.Cui G, Koh TJ, Chen D, Zhao CM, Takaishi S, Dockray GJ, Varro A, Rogers AB, Fox JG, Wang TC. Overexpression of glycine‐extended gastrin inhibits parietal cell loss and atrophy in the mouse stomach. Cancer Res 64: 8160‐8166, 2004.
 74.Cui G, Sandvik AK, Munkvold B, Waldum HL. Glycine‐extended gastrin‐17 stimulates acid secretion via CCK‐2 receptor‐induced histamine release in the totally isolated vascularly perfused rat stomach. Acta Physiol Scand 174: 125‐130, 2002.
 75.Culler MD, Oberg K, Arnold R, Krenning EP, Sevilla I, Diaz JA. Somatostatin analogs for the treatment of neuroendocrine tumors. Cancer Metastasis Rev 30 (Suppl 1): 9‐17, 2011.
 76.Dale HH, Laidlaw PP. The physiological action of β‐iminazolylethylamine. J Physiol 41: 3, 1910.
 77.Dalenback J, Fandriks L, Olbe L, Sjovall H. Mechanisms behind changes in gastric acid and bicarbonate outputs during the human interdigestive motility cycle. Am J Phys 270: G113‐G122, 1996.
 78.De la Cour CD, Norlen P, Hakanson R. Secretion of ghrelin from rat stomach ghrelin cells in response to local microinfusion of candidate messenger compounds: A microdialysis study. Regul Pept 143: 118‐126, 2007.
 79.de Weerth A, Jonas L, Schade R, Schöneberg T, Wolf G, Pace A, Kirchhoff F, Schulz M, Heinig T, Greten H, von Schrenck T. Gastrin/cholecystokinin type B receptors in the kidney: Molecular, pharmacological, functional characterization, and localization. Eur J Clin Investig 28: 592‐601, 1998.
 80.Den Bosch JVO, Adriaensen D, VanNassauw L, Timmermans JP. The role(s) of somatostatin, structurally related peptides and somatostatin receptors in the gastrointestinal tract. Regul Pept 156: 1‐9, 2009.
 81.Derakhshan M, El‐Omar E, Oien K, Gillen D, Fyfe V, Crabtree JE, McColl KE. Gastric histology, serological markers and age as predictors of gastric acid secretion in patients infected with Helicobacter pylori. J Clin Pathol 59: 1293‐1299, 2006.
 82.Dimaline R, Varro A. Novel roles of gastrin. J Physiol 592: 2951‐2958, 2014.
 83.Dockray GJ, Dimaline R, Varro A. Gastrin: Old hormone, new functions. Pflügers Arch/Eur J Physiol 119: 344‐355, 2005.
 84.Dockray GJ, Moore A, Varro A, Pritchard DM. Gastrin receptor pharmacology. Curr Gastroenterol Rep 14: 453‐459, 2012.
 85.Dockray GJ, Varro A, Desmond H, Young J, Gregory H, Gregory RA. Post‐translational processing of the porcine gastrin precursor by phosphorylation of the COOH‐terminal fragment. J Biol Chem 262: 8643‐8647, 1987.
 86.Dockray GJ, Varro A, Dimaline R, Wang T. The gastrins: Their production and biological activities. Annu Rev Physiol 63: 119‐139, 2001.
 87.Dornand J, Roche S, Michel F, Bali JP, Cabane S, Favero J, Magous R. Gastrin‐CCK‐B type receptors on human T lymphoblastoid Jurkat cells. Am J Phys 268: G522‐G529, 1995.
 88.Dornonville de la Cour C, Bjorkqvist M, Sandvik AK, Bakke I, Zhao CM, Chen D, Hakanson R. A‐like cells in the rat stomach contain ghrelin and do not operate under gastrin control. Regul Pept 99: 141‐150, 2001.
 89.Drucker DJ. The biology of incretin hormones. Cell Metab 3: 153‐165, 2006.
 90.Du Vigneaud V, Ressler C, Trippett S. The sequence of amino acids in oxytocin, with a proposal for the structure of oxytocin. J Biol Chem 205: 949‐957, 1953.
 91.Dufresne M, Seva C, Fourmy D. Cholecystokinin and gastrin receptors. Physiol Rev 86: 805‐847, 2006.
 92.Dupré D, Tostivint H. Evolution of the gastrin‐cholecystokinin gene family revealed by synteny analysis. Gen Comp Endocrinol 195: 164‐173, 2014.
 93.Duval JW, Saffouri B, Weir GC, Walsh JH, Arimura A, Makhlouf GM. Stimulation of gastrin and somatostatin secretion from the isolated rat stomach by bombesin. Am J Phys 241: G241‐G247, 1981.
 94.Edkins JS. Mechanism of secretion of gastric, pancreatic and intestinal juices. In: Schäfer EA, editor. Textbook of Physiology. Edinburgh: Pentland, vol. I, 1898, p. 531‐558.
 95.Edkins JS. On the chemical mechanism of gastric secretion. Proc R Soc Lond B 76: 376, 1905.
 96.Edkins JS, Tweedy M. The natural channels of absorption evoking the chemical mechanism of gastric secretion. J Physiol 34: 263‐267, 1909.
 97.Egerod KL, Engelstoft MS, Lund ML, Grunddal KV, Zhao M, Barir‐Jensen D, Nygaard EB, Petersen N, Holst JJ, Schwartz TW. Transcriptional and functional characterization of the G protein‐coupled receptor repertoire of gastric somatostatin cells. Endocrinology 156: 3909‐3923, 2015.
 98.Eliakim R, Karmeli F, Okon E, Rachmilewitz D. Octreotide effectively decreases mucosal damage in experimental colitis. Gut 34: 264‐269, 1993.
 99.El‐Omar E, Oien K, El‐Nujumi A, Gillen D, Wirz A, Dahill S, Williams C, Ardil JE, McColl KE. Helicobacter pylori infection and chronic gastric acid hyposecretion. Gastroenterology 113: 15‐24, 1997.
 100.Ericsson P, Håkanson R, Norlén P. Gastrin response to candidate messengers in intact conscious rats monitored by antrum microdialysis. Regul Pept 163: 24‐30, 2010.
 101.Eysselein VE, Maxwell V, Reedy T, Wünsch E, Walsh JH. Similar acid stimulatory potencies of synthetic human big and little gastrins in man. J Clin Invest 73: 1284‐1290, 1984.
 102.Fakhry J, Stebbing MJ, Hunne B, Bayguinov Y, Ward SM, Sasse KC, Callaghan B, McQuade RM, Furness JB. Relationships of endocrine cells to each other and to other cell types in the human gastric fundus and corpus. Cell Tissue Res 376: 37‐49, 2019. DOI: 10.1007/s00441‐018‐2957‐0.
 103.Feldman M, Cryer B, Lee E. Effects of Helicobacter pylori gastritis on gastric secretion in healthy human beings. Am J Phys 274: G1011‐G1017, 1998.
 104.Feldman M, Richardson CT. Role of thought, sight, smell, and taste of food in the cephalic phase of gastric acid secretion in humans. Gastroenterology 90: 428‐433, 1986.
 105.Feldman M, Unger RH, Walsh JH. Effect of atropine on plasma gastrin and somatostatin concentrations during sham feeding in man. Regul Pept 12: 345‐352, 1985.
 106.Feng J, Petersen CD, Coy DH, Jiang JK, Thomas CJ, Pollak MR, Wank SA. Calcium‐sensing receptor is a physiologic multimodal chemosensor regulating gastric G‐cell growth and gastrin secretion. Proc Natl Acad Sci U S A 107: 17791‐17796, 2010.
 107.Ferrand A, Wang TC. Gastrin and cancer: A review. Cancer Lett 238: 15‐29, 2006.
 108.Fischbach LA, Nordenstedt H, Kramer JR, Gandhi S, Dick‐Onuoha S, Lewis A, El‐Serag HB. The association between Barrett's esophagus and Helicobacter pylori infection: A meta‐analysis. Helicobacter 17: 163‐175, 2012.
 109.Fischer WH, Spiess J. Identification of a mammalian glutaminyl cyclase converting glutaminyl into pyroglutamyl peptides. Proc Natl Acad Sci U S A 84: 3628‐3632, 1987.
 110.Fjeldbo CS, Bakke I, Erlandsen SE, Holmseth J, Laegreid A, Sandvik AK, Thommesen L, Bruland T. Gastrin upregulates the prosurvival factor secretory clusterin in adenocarcinoma cells and in oxyntic mucosa of hypergastrinemia rats. Am J Phys 302: G21‐G33, 2012.
 111.Ford MG, Valle JD, Soroka CJ, Merchant JL. EGF receptor activation stimulates endogenous gastrin gene expression in canine G cells and human gastric cell cultures. J Clin Invest 99: 2762‐2771, 1997.
 112.Fosgerau K, Jessen L, Lind Tolborg J, Østerlund T, Schæffer Larsen K, Rolsted K, Brorson M, Jelsing J, Skovlund Ryge Neerup T. The novel GLP‐1‐gastrin dual agonist, ZP3022, increases β‐cell mass and prevents diabetes in db/db mice. Diabetes Obes Metab 15: 62‐71, 2013.
 113.Fossmark R, Calvete O, Mjones P, Benitez J, Waldum HL. ECL‐cell carcinoids and carcinoma in patients homozygous for an inactivating mutation in the gastric H+K+ATPase alpha subunit. APMIS 124: 561‐566, 2016.
 114.Fossmark R, Johnsen G, Johanessen E, Waldum HL. Rebound hypersecretion after long‐term inhibition of gastric acid secretion. Aliment Pharmacol Ther 21: 149‐154, 2005.
 115.Fossmark R, Sordal O, Jianu CS, Qvigstad G, Nordrum IS, Boyce M, Waldum HL. Treatment of gastric carcinoids type 1 with the gastrin receptor antagonist netazepide (YF476) results in regression of tumours and normalisation of serum chromogranin A. Aliment Pharmacol Ther 36: 1067‐1075, 2012.
 116.Foucaud M, Archer‐Lahlou E, Marco E, Tikhonova IG, Maigret B, Escrieut C, Langer I, Fourmy D. Insights into the binding and activation sites of the receptors for cholecystokinin and gastrin. Regul Pept 145: 17‐23, 2008.
 117.Fricker LD. Carboxypeptidase E. Annu Rev Physiol 50: 309‐321, 1988.
 118.Friis‐Hansen L, Rehfeld JF. Ileal expression of gastrin and cholecystokinin. In search of a related hormone. FEBS Lett 343: 115‐119, 1994.
 119.Friis‐Hansen L, Rieneck K, Nilsson HO, Wadström T, Rehfeld JF. Gastric inflammation, metaplasia, and tumor development in gastrin‐deficient mice. Gastroenterology 131: 246‐258, 2006.
 120.Friis‐Hansen L, Rourke IJ, Bundgaard JR, Rehfeld JF, Samuelson LC. Molecular structure and genetic mapping of the mouse gastrin gene. FEBS Lett 386: 128‐132, 1996.
 121.Friis‐Hansen L, Sundler F, Li Y, Gillespie PJ, Saunders TL, Greenson JK, Owyang C, Rehfeld JF, Samuelson LC. Impaired gastric acid secretion in gastrin‐deficient mice. Am J Phys 274: G561‐G568, 1998.
 122.Fukui H, Kinoshita Y, Maekawa T, Okada A, Waki S, Hassan S, Okamoto H, Chiba T. Regenerating gene protein may mediate gastric mucosal proliferation induced by hypergastrinemia in rats. Gastroenterology 115: 1483‐1493, 1998.
 123.Fuller PJ, Stone DL, Brand SJ. Molecular cloning and sequencing of a rat preprogastrin complementary deoxyribonucleic acid. Mol Endocrinol 1: 306‐311, 1987.
 124.Fung L, Pokol‐Daniel S, Greenberg GR. Cholecystokinin type A receptors mediate intestinal fat‐induced inhibition of acid secretion through somatostatin‐14 in dogs. Endocrinology 134: 2376‐2382, 1994.
 125.Furuta T, Baba S, Takshima M, Shirai N, Xiao F, Futami H, Arai H, Hanai H, Kaneko E. H+/K+‐adenosine triphosphatase mRNA in gastric fundic gland mucosa in patients infected with Helicobacter pylori. Scand J Gastroenterol 34: 384‐390, 1999.
 126.Fykse V, Coy DH, Waldum HL, Sandvik AK. Somatostatin‐receptor 2(sst2)‐mediated effects of endogenous somatostatin on exocrine and endocrine secretion of the rat stomach. Br J Pharmacol 144: 416‐421, 2005.
 127.Gantz I, Takeuchi T, Yamada T. Cloning of canine gastrin cDNA's encoding variant amino acid sequences. Digestion 46 (Suppl 2): 99‐104, 1990.
 128.Geibel JP, Hebert SC. The functions and roles of the extracellular Ca2+‐sensing receptor along the gastrointestinal tract. Annu Rev Physiol 71: 205‐217, 2009.
 129.Gillen D, El‐Omar EM, Wirz AA, Ardill JE, McColl KE. The acid response to gastrin distinguishes duodenal ulcer patients from Helicobacter pylori‐infected healthy subjects. Gastroenterology 114: 50‐57, 1998.
 130.Gillen D, Wirz AA, Ardill JE, McColl KE. Rebound hypersecretion after omeprazole and its relation to on‐treatment acid suppression and Helicobacter pylori status. Gastroenterology 116: 239‐247, 1999.
 131.Gillen D, Wirz AA, Neithercut WD, Ardill JE, McColl KE. Helicobacter pylori infection potentiates the inhibition of gastric acid secretion by omeprazole. Gut 44: 468‐475, 1999.
 132.Glass GBJ. Antral chalone and gastrones. In: Glass GBJ, editor. Comprehensive Endocrinology: Gastrointestinal Hormones. New York: Raven Press, 1980, p. 929‐970.
 133.Gledhill T, Leicester RJ, Addis B, Lightfoot N, Barnard J, Viney N, Karkin D, Hunt RH. Epidemic hypochlorhydria. Br Med J 290: 1383‐1386, 1985.
 134.Goetze JP, Eiland S, Svendsen LB, Vainer B, Hannibal J, Rehfeld JF. Characterization of gastrins and their receptor in solid human gastric adenocarcinomas. Scand J Gastroenterol 48: 688‐695, 2013.
 135.Goetze JP, Hansen CP, Rehfeld JF. Acute effects of N‐terminal progastrin fragments on gastric acid secretion in man. Physiol Rep 5: e13164, 2017.
 136.Goetze JP, Nielsen FC, Burcharth F, Rehfeld JF. Closing the gastrin loop in pancreatic carcinoma: Coexpression of gastrin and its receptor in solid human pancreatic adenocarcinoma. Cancer 88: 2487‐2494, 2000.
 137.Gooz M, Hammond CE, Larsen K, Mukhin YV, Smolka AJ. Inhibition of human gastric H(+)‐K(+)‐ATPase alpha‐subunit gene expression by Helicobacter pylori. Am J Phys 278: G981‐G991, 2000.
 138.Gower WR, McCuen RW, Arimura A, Coy DA, Dietz JR, Landon CS, Schubert ML. Reciprocal paracrine pathways link atrial natriuretic peptide and somatostatin secretion in the antrum of the stomach. Regul Pept 110: 101‐106, 2003.
 139.Gower WR, Premaratne S, McCuen RW, Arimura A, McAfee Q, Schubert ML. Gastric atrial natriuretic peptide regulates endocrine secretion in antrum and fundus of human and rat stomach. Am J Phys 284: G638‐G645, 2003.
 140.Grabowska AM, Watson SA. Role of gastrin peptides in carcinogenesis. Cancer Lett 145: 17‐23, 2007.
 141.Graham DY, Alpert LC, Smith JL, Yoshimura HH. Iatrogenic Campylobacter pylori infection is a cause of epidemic achlorhydria. Am J Gastroenterol 83: 974‐980, 1988.
 142.Graham DY, Go MF, Lew M, Genta RM, Rehfeld JF. Helicobacter pylori infection and exaggerated gastrin release: Effects of inflammation and progastrin processing. Scand J Gastroenterol 28: 690‐694, 1993.
 143.Gregory H. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature 257: 325‐327, 1975.
 144.Gregory H, Hardy PM, Jones DS, Kenner GW, Sheppard RC. The antral hormone gastrin. I. Structure of gastrin. Nature 204: 931‐933, 1964.
 145.Gregory RA. Gastrin, the natural history of a peptide hormone. Harvey Lect 64: 121‐155, 1970.
 146.Gregory RA, Dockray GJ. Gastrin. In: Makhlouf GM, Schultz, editors. Handbook of Physiology, The Gastrointestinal System, Neural and Endocrine Biology. Oxford, England: Oxford University Press, 1989, p. 311‐336.
 147.Gregory RA, Dockray GJ, Reeve JR Jr, Shively JE, Miller C. Isolation from porcine antral mucosa of a hexapeptide corresponding to the C‐terminal sequence of gastrin. Peptides 4: 319‐323, 1983.
 148.Gregory RA, Grossman MI, Tracy HJ, Bentley PH. Nature of the gastric secretagogue in Zollinger‐Ellison tumours. Lancet 2: 543‐544, 1967.
 149.Gregory RA, Ivy AC. The hormonal stimulation of gastric secretion. Q J Exp Physiol Cogn Med Sci 31: 112‐128, 1942.
 150.Gregory RA, Tracy HJ. The preparation and properties of gastrin. J Physiol 156: 523‐543, 1961.
 151.Gregory RA, Tracy HJ. The constitution and properties of two gastrins extracted from hog antral mucosa. Gut 5: 103‐114, 1964.
 152.Gregory RA, Tracy HJ. Isolation of two "big gastrins" from Zollinger‐Ellison tumour tissue. Lancet 2: 797‐799, 1972.
 153.Gregory RA, Tracy HJ. Isolation of two minigastrins from Zollinger‐Ellison tumour tissue. Gut 15: 683‐685, 1974.
 154.Gregory RA, Tracy HJ, Harris JI, Runswick MJ, Moore S, Kenner GW, Ramage R. Minigastrin; corrected structure and synthesis. Hoppe Seylers Z Physiol Chem 360: 73‐80, 1979.
 155.Greider MH, Steinberg V, McGuigan JE. Electron microscopic identification of the gastrin cell of the human antral mucosa by means of immunocytochemistry. Gastroenterology 63: 572‐583, 1972.
 156.Grider JR. Neurotransmitters mediating the intestinal peristaltic reflex in the mouse. J Pharmacol Exp Ther 307: 460‐467, 2003.
 157.Grossman MI, Robertson CR, Ivy AC. Proof of a hormonal mechanism for gastric secretion – the humoral transmission of the distension stimulus. Am J Phys 153: 1‐9, 1948.
 158.Guo YS, Cheng JZ, Jin GF, Gutkind JS, Hellmich MR, Townsend CM Jr. Gastrin stimulates cyclooxygenase‐2 expression in intestinal epithelial cells through multiple signaling pathways ‐ evidence for involvement of Erk 5 kinase and transactivation of the epidermal growth factor receptor. J Biol Chem 277: 48755‐48763, 2002.
 159.Håkanson R, Ding XQ, Norlén P, Lindström E. CCK2 receptor antagonists: Pharmacological tools to study the gastrin‐ECL cell‐parietal cell axis. Regul Pept 80: 1‐12, 1999.
 160.Hakanson R, Sundler F. Proposed mechanism of induction of gastric carcinoids: The gastrin hypothesis. Eur J Clin Investig 20: S65‐S71, 1990.
 161.Hakanson R, Sundler F. Histamine‐producing cells in the stomach and their role in the regulation of gastric acid secretion. Scand J Gastroenterol 180: 88‐94, 1991.
 162.Hakanson R, Surve VV, Chen D. ECL cells in a physiological context. In: Merchant J, Buchan AMJ, Wang TC, editors. Gastrin in the New Millennium. Los Angeles: CURE Foundation, 2004, p. 161‐181.
 163.Hammer RA, Ochoa A, Fernandez C, Ertan A, Arimura A. Somatostatin as a mediator of the effect of neurotensin on pentagastrin‐stimulated acid secretion in rats. Peptides 13: 1175‐1179, 1992.
 164.Hansen CP, Stadil F, Rehfeld JF. Metabolism and influence of gastrin‐52 on gastric acid secretion in humans. Am J Phys 269: G600‐G605, 1995.
 165.Hansen L, Hartmann B, Mineo H, Holst JJ. Glucagon‐like peptide‐1 secretion is influenced by perfusate glucose concentration and by a feedback mechanism involving somatostatin is isolated perfused porcine ileum. Regul Pept 118: 11‐18, 2004.
 166.Hansen TO, Bundgaard JR, Nielsen FC, Rehfeld JF. Composite action of three GC/GT boxes in the proximal promoter region is important for gastrin gene transcription. Mol Cell Endocrinol 155: 1‐8, 1999.
 167.Hansky J, Cain MD. Radioimmunoassay of gastrin in human serum. Lancet 2: 1388‐1390, 1969.
 168.Happé RP, van der Gaag I, Lamers CBHW, van Toorenburg J, Rehfeld JF, Larsson L‐I. Zollinger‐Ellison syndrome in three dogs. Vet Pathol 17: 177‐186, 1980.
 169.Harford WV, Barnett C, Lee E, Perez‐Perez G, Blaser MJ, Peterson WL. Acute gastritis with hypochlorhydria: Report of 35 cases with long term follow up. Gut 47: 467‐472, 2000.
 170.Harris AG. Somatostatin and somatostatin analogues: Pharmacokinetics and pharmacodynamic effects. Gut 3: S1‐S4, 1994.
 171.Harty RF, Maico DG, McGuigan JE. Antral release of gastrin and somatostatin in duodenal ulcer and control subjects. Gut 27: 652‐658, 1986.
 172.Havu N, Mattsson H, Ekman L, Carlsson E. Enterochromaffin‐like cell carcinoids in the rat gastric mucosa following long‐term administration of ranitidine. Digestion 45: 189‐195, 1990.
 173.Hayakawa Y, Jin G, Wang H, Chen X, Westphalen CB, Asfaha S, Renz BW, Ariyama H, Dubeykovskaya ZA, Takemoto Y, Lee Y, Muley A, Tailor Y, Chen D, Muthupalani S, Fox JG, Shulkes A, Worthley DL, Takaishi S, Wang TC. CCK2R identifies and regulates gastric antral stem cell states and carcinogenesis. Gut 64: 544‐553, 2015.
 174.Hellmich MR, Hull R, Harper EA. Structure, function of the CCK2/gastrin receptor. In: Merchant JL, Buchan AMJ, Wang TC, editors. Gastrin in the New Millennium. Los Angeles: CURE Foundation, 2004.
 175.Hellmich MR, Rui XL, Hellmich HL, Fleming RY, Evers BM, Townsend CM Jr. Human colorectal cancers express a constitutively active cholecystokinin‐B/gastrin receptor that stimulates cell growth. J Biol Chem 275: 32122‐32128, 2000.
 176.Higashide S, Gomez G, Greeley GH Jr, Townsend CM Jr, Thompson JC. Glycine‐extended gastrin potentiates gastrin‐stimulated gastric acid in rats. Am J Phys 270: G220‐G224, 1996.
 177.Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R, Haas HL. International Union of Pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49: 253‐278, 1997.
 178.Hilsted L, Bardram L, Rehfeld JF. Progastrin maturation during ontogenesis: Accumulation of glycine‐extended gastrins in rat antrum at weaning. Biochem J 255: 397‐402, 1988.
 179.Hilsted L, Hansen CP. Corelease of amidated and glycine‐extended antral gastrins after a meal. Am J Phys 255: G665‐G669, 1988.
 180.Hilsted L, Rehfeld JF. α‐carboxyamidation of antral progastrin: Relation to other post‐translational modifications. J Biol Chem 262: 16953‐16957, 1987.
 181.Hindle E, Zanotti‐Fregonara P, Morgat C. Somatostatin antagonists for radioligand therapy of nonendocrine tumors. J Nucl Med 59: 544, 2018.
 182.Hirsch AB, McCuen RW, Arimura A, Schubert ML. Adrenomedulin stimulates somatostatin and thus inhibits histamine and acid secretion in the fundus of the stomach. Regul Pept 110: 189‐195, 2003.
 183.Hocker M. Molecular mechanisms of gastrin‐dependent gene regulation. Ann N Y Acad Sci 1014: 97‐109, 2004.
 184.Hoffman JS, King WW, Fox JG, Janik D, Cave DR. Rabbit and ferret parietal cell inhibition by Helicobacter species. Dig Dis Sci 40: 147‐162, 1995.
 185.Holst JJ, Jensen SL, Knuhtsen S, Nielsen OV, Rehfeld JF. Effect of vagus, gastric inhibitory polypeptide, and HCl on gastrin and somatostatin release from perfused pig antrum. Am J Phys 244: G515‐G522, 1983.
 186.Holst JJ, Jorgensen PM, Rasmussen TN, Schmidt P. Somatostatin restraint on gastrin secretin in pigs revealed by monoclonal antibody immunoneutralization. Am J Phys 263: G908‐G912, 1992.
 187.Honda T, Wada E, Battey JF, Wank SA. Differential gene expression of CCK(A) and CCK(B) receptors in the rat brain. Mol Cell Neurosci 4: 143‐154, 1993.
 188.Hou W, Schubert M. Treatment of gastric carcinoids. Curr Treat Options Gastroenterol 10: 123‐133, 2007.
 189.Hoyer D, Epelbaum J, Feniuk W, Humphrey PP, Meyerhof W, Patel Y. Somatostatin receptors. In: Girdleston D, editor. The IUPHAR Compendium of Receptor Characterization and Classification. Cambridge, UK: Nightingale Press, 2000.
 190.Huang H, Ansorge N, Schrader H, Banasch M, Yu HG, Schmidt WE, Hocker M, Schmitz F. The CCK‐2/gastrin splice variant receptor retaining intron 4 transactivates the COX‐2 promoter in vitro. Regul Pept 144: 34‐42, 2007.
 191.Huebner VD, Jiang RL, Lee TD, Legesse K, Walsh JH, Shively JE, Chew P, Azumi T, Reeve JR Jr. Purification and structural characterization of progastrin‐derived peptides from a human gastrinoma. J Biol Chem 266: 12223‐12227, 1991.
 192.Hung PD, Schubert ML, Mihas AA. Zollinger‐Ellison Syndrome. Curr Treat Options Gastroenterol 6: 163‐170, 2003.
 193.Ito M, Iwata N, Taniguchi T, Murayama T, Chihara K, Matsui T. Functional characterization of two cholecystokinin‐B/gastrin receptor isoforms: A preferential splice donor site in the human receptor gene. Cell Growth Differ 5: 1127‐1135, 1994.
 194.Ito M, Tanaka S, Maeda M, Takamura A, Tatsugami M, Wada Y, Matsumoto Y, Yoshihara M, Haruma K, Chayama K. Role of the gastrin‐gastrin receptor system in the expansive growth of human gastric neoplasms. Digestion 78: 163‐170, 2008.
 195.Ito R, Sato K, Helmer T, Jay G, Agarwal K. Structural analysis of the gene encoding human gastrin: The large intron contains an Alu sequence. Proc Natl Acad Sci U S A 81: 4662‐4666, 1984.
 196.Ivy AC, Whitlow JE. The gastrin theory put to physiological test. Am J Phys 60: 578‐588, 1922.
 197.Jacobsen O, Bardram L, Rehfeld JF. The requirement for gastrin measurements. Scand J Clin Lab Invest 46: 423‐426, 1986.
 198.Jaffe BM, McGuigan JE, Newton WT. Immunochemical measurement of the vagal release of gastrin. Surgery 68: 196‐201, 1970.
 199.Jain RN, Samuelson LC. Differentiation of the gastric mucosa: Role of gastrin in gastric epithelial cell proliferation and maturation. Am J Phys 291: G762‐G765, 2006.
 200.Jayavelu ND, Bar NS. Metabolomic studies of human gastric cancer: review. World J Gastroenterol 20: 8092‐8101, 2014.
 201.Jensen RT. Recent insights from studies of gastrinomas. In: Merchant JL, Buchan AMJ, Wang TC, editors. Gastrin in the New Millennium. Los Angeles: CURE Foundation, 2004, p. 339‐352.
 202.Jensen S, Borch K, Hilsted L, Rehfeld JF. Progastrin processing during antral G‐cell hypersecretion in humans. Gastroenterology 96: 1063‐10670, 1989.
 203.Jensen SL, Rehfeld JF, Holst JJ, Fahrenkrug J, Nielsen OV, Schaffalitzky de Muckadell OB. Secretory effects of gastrins on isolated perfused porcine pancreas. Am J Phys 238: E186‐E192, 1980.
 204.Jin G, Westphalen CB, Hayakawa Y, Worthley DL, Asfaha S, Yang X, Chen X, Si Y, Wang H, Tailor Y, Friedman RA, Wang TC. Progastrin stimulates colonic cell proliferation via CCK2R‐ and B‐arrestin‐dependent suppression of BMP2. Gastroenterology 145: 820‐830, 2013.
 205.Johnsen AH. Phylogeny of the cholecystokinin/gastrin family. Front Neuroendocrinol 19: 73‐99, 1998.
 206.Johnsen AH, Sandin A, Rourke IJ, Bundgaard JR, Nilsson G, Rehfeld JF. Unique progastrin processing in equine G‐cells suggests marginal tyrosyl sulfotransferase activity. Eur J Biochem 255: 432‐438, 1998.
 207.Johnsen AH, Shulkes A. Gastrin and cholecystokinin in the Eastern Grey kangaroo, Macropus giganteus giganteus. Peptides 14: 1133‐1139, 1993.
 208.Johnson LR. Regulation of gastrointestinal growth. In: Johnson LR, Christensen J, Jackson MJ, Jacobson ED, Walsh JR, editors. Physiology of the Gastrointestinal Tract. New York: Raven Press Ltd., 1987, p. 301‐333.
 209.Joseph IM, Zavros Y, Merchant JL, Kirschner D. A model for integrative study of human gastric secretion. J Appl Physiol 94: 1602‐1618, 2003.
 210.Karnik PS, Dushkin H, Wolfe MM. Somatostatin inhibition of gastrin gene expression: Involvement of pertussis toxin‐sensitive and ‐insensitive pathways. Regul Pept 38: 167‐177, 1992.
 211.Kawakubo K, Coy DH, Walsh JH, Tache Y. Urethane‐induced somatostatin mediated inhibition of gastric acid: Reversal by the somatostatin 2 receptor antagonist, PRL‐2903. Life Sci 65: 115‐120, 1999.
 212.Kazumori H, Ishihara S, Kawashima K, Fukuda R, Chiba T, Konoshita Y. Analysis of gastrin receptor gene expression in proliferating cells in the neck zone of gastric fundic glands using laser capture microdissection. FEBS Lett 489: 208‐214, 2001.
 213.Kelly BB. Pathways of protein secretion in eukaryotes. Science 230: 25‐32, 1985.
 214.Khan D, Vasu S, Moffett RC, Irwin N, Flatt PR. Expression of gastrin family peptides in pancreatic islets and their role in beta‐cell function and survival. Pancreas 47: 190‐199, 2018.
 215.Kidd M, Hauso Ø, Drozdov I, Gustafsson BI, Modlin IM. Delineation of the chemomechanosensory regulation of gastrin secretion using pure rodent G cells. Gastroenterology 137: 231‐241, 2009.
 216.Kinoshita Y, Nakata H, Kishi K, Kawanami C, Sawada M, Chiba T. Comparison of the signal transduction pathways activated by gastrin in enterochromaffin‐like and parietal cells. Gastroenterology 115: 93‐100, 1998.
 217.Klein KB. Gastric secretory testing. In: Drossman DA, editor. Manual of Gastrointestinal Procedures. New York: Raven Press, 1993, p. 61‐67.
 218.Kobayashi H, Kamiya S, Suzuki T, Kohda K, Muramatsu S, Kurumada T, Ohta U, Miyazawa M, Kimura N, Mutoh N, Shirai T, Takagi A, Harasawa S, Tani N, Miwa T. The effect of Helicobacter pylori on gastric acid secretion by isolated parietal cells from guinea pig. Association with production of vacuolating toxin by H. pylori. Scand J Gastroenterol 31: 428‐433, 1996.
 219.Kobayashi T, Tonai S, Ishihara Y, Koga R, Okabe S, Watanabe T. Abnormal functional and morphological regulation of the gastric mucosa in histamine H2 receptor‐deficient mice. J Clin Invest 105: 1741‐1749, 2000.
 220.Kochman ML, DelValle J, Dickinson CJ, Boland CR. Post‐translational processing of gastrin in neoplastic human colonic tissues. Biochem Biophys Res Commun 189: 1165‐1169, 1992.
 221.Koh TJ, Goldenring JR, Ito S, Mashimo H, Kopin AS, Varro A, Dockray GJ, Wang TC. Gastrin deficiency results in altered gastric differentiation and decreased colonic proliferation in mice. Gastroenterology 113: 1015‐1025, 1997.
 222.Kolch W. Coordinating ERK/MAPK signaling through scaffolds and inhibitors. Nat Rev Mol Cell Biol 6: 827‐837, 2005.
 223.Komarov SA. Studies on gastrin. I. Methods of isolation of a specific gastric secretagogue from the pyloric mucous membrane and its chemical properties. Rev Can Biol 1: 191‐376, 1942.
 224.Komarov SA. Studies on gastrin. II. Physiological properties of a specific gastric secretagogue of pyloric mucous membrane. Rev Can Biol 1: 377‐392, 1942.
 225.Konturek SJ, Biernat J, Oleksy J. Serum gastrin and gastric acid responses to meals at various pH levels in man. Gut 15: 526‐530, 1974.
 226.Koop H, Behrens HI, Bothe E, McIntosh CH, Pederson RA, Arnold R, Creutzfeldt W. Adrenergic and cholinergic interactions in rat gastric somatostatin and gastrin release. Digestion 25: 96‐102, 1982.
 227.Koop I, Squires PE, Meloche RM, Buchan AMJ. Effect of cholinergic agonists on gastrin release from primary cultures of human antral G cells. Gastroenterology 112: 357‐363, 1997.
 228.Kopin AS, Lee YM, McBride EW, Miller LJ, Lu M, Lin HY, Kolakowski LF Jr, Beinborn M. Expression cloning and characterization of the canine parietal cell gastrin receptor. Proc Natl Acad Sci U S A 89: 3605‐3609, 1992.
 229.Kovac S, Anderson GJ, Alexander WS, Shulkes A, Baldwin GS. Gastrin‐deficient mice have disturbed hematopoiesis in response to iron deficiency. Endocrinology 152: 3062‐3073, 2011.
 230.Kovac S, Smith K, Anderson GJ, Burgess JR, Shulkes A, Baldwin GS. Interrelationships between circulating gastrin and iron status in mice and humans. Am J Phys 295: G855‐G861, 2008.
 231.Krejs GJ, Browne R, Raskin P. Effect of intravenous somatostatin on jejunal absorption of glucose, amino acids, water, and electrolytes. Gastroenterology 78: 26‐31, 1980.
 232.Krulich L, Dharival APS, McCann SM. Stimulatory and inhibitory effects of purified hypothalamic extracts in growth hormone release from rat pituitary in vitro. Endocrinology 83: 783‐790, 1968.
 233.Kulaksiz H, Arnold R, Goke B, Maronde E, Meyer M, Fahrenholz F, Forssmann WG, Eissele R. Expression and cell‐specific localization of the cholecystokinin G/gastrin receptor in the human stomach. Cell Tissue Res 299: 289‐299, 2000.
 234.Kwon DH, Nakakura EK, Bergstand EK, Dai S‐C. Gastric neuroendocrine tumors: Management and challenges. Gastrointestinal Cancer: Targets and Therapy 7: 31‐37, 2017.
 235.La Barre J. Sur les possibilités d'un traitement du diabète par l'incrétine. Bull Acad R Med Belg 12: 620‐634, 1932.
 236.Labenz J, Blum AL, Bayerdorffer E, Meining A, Stolte M, Borsch G. Curing Helicobacter pylori infection in patients with duodenal ulcer may provoke reflux esophagitis. Gastroenterology 112: 1442‐1447, 1997.
 237.Lahlou H, Guillermet J, Hortala M, Vernejoul F, Pyronnet S, Bousquet C, Susini C. Molecular signaling of somatostatin receptors. Ann N Y Acad Sci 1014: 121‐131, 2004.
 238.Lamberts R, Stumps D, Plumpe L, Creutzfeldt W. Somatostatin cells in rat antral mucosa: Qualitative and quantitative ultrastructural analysis in different states of gastric acid secretion. Histochemistry 95: 373‐382, 1991.
 239.Lamers CB, Walsh JH, Jansen JB, Harrison AR, Ippoliti AF, van Tongeren JH. Evidence that gastrin 34 is preferentially released from the human duodenum. Gastroenterology 83: 233‐239, 1982.
 240.Lange A, Sakhnini E, Fidder HH, Maor Y, Bar‐Meir S, Chowers Y. Somatostatin inhibits pro‐inflammatory cytokine secretion from rat hepatic stellate cells. Liver Int 25: 808‐816, 2005.
 241.Langhans N, Rindi G, Chiu M, Rehfeld JF, Ardman B, Beinborn M, Kopin AS. Abnormal gastric histology and decreased acid production in cholecystokinin‐B/gastrin receptor‐deficient mice. Gastroenterology 112: 280‐286, 1997.
 242.Larsson L‐I. Developmental biology of gastrin and somatostatin cells in the antropyloric mucosa of the stomach. Microsc Res Tech 48: 272‐281, 2000.
 243.Larsson L‐I, Goltermann NR, de Magistris L, Rehfeld JF, Schwartz TW. Somatostatin cell processes as pathways for paracrine secretion. Science 205: 1393‐1395, 1979.
 244.Larsson L‐I, Hakanson R, Rehfeld JF, Stadil F, Sundler F. Occurrence and neonatal development of gastrin immunoreactivity in the digestive tract of the rat. Cell Tissue Res 149: 275‐281, 1974.
 245.Larsson L‐I, Hougaard DM. Evidence for paracrine somatostatinergic regulation of gastrin gene expression by double‐staining cytochemistry and quantitation. J Histochem Cytochem 42: 37‐40, 1994.
 246.Larsson L‐I, Rehfeld JF. Characterization of antral gastrin cells with region‐specific antisera. Histochem Cytochem 25: 1317‐1321, 1977.
 247.Larsson L‐I, Rehfeld JF. Evidence for a common evolutionary origin of gastrin and cholecystokinin. Nature 269: 335‐338, 1977.
 248.Larsson L‐I, Rehfeld JF. Pituitary gastrins occur in corticotrophs and melanotrophs. Science 23: 768‐770, 1981.
 249.Larsson L‐I, Rehfeld JF, Goltermann N. Gastrin in the human fetus: Distribution and molecular forms of gastrin in the antro‐pyloric gland area, duodenum and pancreas. Scand J Gastroenterol 12: 869‐872, 1977.
 250.Larsson L‐I, Rehfeld JF, Stockbrügger R, Blohme G, Schöön I‐M, Lundqvist G, Kindblom LG, Säve‐Söderberg J, Grimelius L, Olbe L. Mixed endocrine gastric tumors associated with hypergastrinemia of antral origin. Am J Pathol 93: 53‐68, 1978.
 251.Larsson L‐I, Rehfeld JF, Sundler F, Håkanson R. Pancreatic gastrin in foetal and neonatal rats. Nature 262: 609‐610, 1976.
 252.Laval M, Baldwin GS, Shulkes A, Marshall KM. Increased gastrin gene expression provides a physiological advantage to mice under hypoxic conditions. Am J Phys 308: G76‐G84, 2015.
 253.Le Meuth V, Philouze‐Rome V, Le Huerou‐Luron I, Formal M, Vaysse N, Gespach C, Guilloteau P, Fourmy D. Differential expression of A‐ and B‐subtypes of cholecystokinin/gastrin receptors in the developing calf pancreas. Endocrinology 133: 1182‐1191, 1993.
 254.Lee HM, Wang GY, Englander EW, Kojima M, Greeley GH Jr. Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: Enteric distribution, ontogeny, influence of endocrine, and dietary manipulations. Endocrinology 143: 185‐190, 2001.
 255.Lee Y, Beinborn M, McBride EW, Lu M, Kolakowski LF Jr, Kopin AS. The human brain cholecystokinin‐B/gastrin receptor. Cloning and characterization. J Biol Chem 268: 8164‐8169, 1993.
 256.Lee Y, Urbanska AM, Hayakawa Y, Wang H, Au AS, Luna AM, Chang W, Jin G, Bhagat G, Abrams JA, Friedman RA, Varro A, Wang KK, Boyce M, Rustgi AK, Sepulveda AR, Quante M, Wang TC. Gastrin stimulates a cholecystokinin‐2‐receptor‐expressing cardia progenitor cell and promotes progression of Barrett's ‐like esophagus. Oncotarget 8: 203‐314, 2017.
 257.Lehmann FS, Golodner EH, Wang J, Chen MC, Avedian D, Calam J, Walsh JH, Dubinett S, Soll AH. Mononuclear cells and cytokines stimulate gastrin release from canine antral cells in primary culture. Am J Phys 270: G783‐G788, 1996.
 258.Levasseur S, Bado A, Laigneau JP, Moizo L, Reyl‐Desmars F, Lewin MJ. Characterization of a beta 3‐adrenoceptor stimulating gastrin and somatostatin secretions in rat antrum. Am J Phys 272: G1000‐G1006, 1997.
 259.Levi S, Beardshall K, Haddad G, Playford R, Ghosh P, Calam J. Campylobacter pylori and duodenal ulcers: The gastrin link. Lancet 1: 1167‐1168, 1989.
 260.Li P, Chang TM, Coy D, Chey WY. Inhibition of gastric acid secretion in rat stomach by PACAP is mediated by secretin, somatostatin, and PGE2. Am J Phys 278: G68‐G74, 2000.
 261.Li W, Shi Y‐H, Yang R‐L, Cui J, Xiao Y, Le GW. Reactive oxygen species serve as signals mediating glucose‐stimulated somatostatin secretion from cultures rat gastric primary D‐cells. Free Radic Res 44: 614‐623, 2011.
 262.Lichtenberger LM, Delansorne R, Graziani LA. Importance of amino acid uptake and decarboxylation in gastrin release from isolated G cells. Nature 295: 698‐700, 1982.
 263.Lignon MF, Bernad N, Martinez J. Pharmacological characterization of type B cholecystokinin binding sites on the human JURKAT T lymphocyte cell line. Mol Pharmacol 39: 615‐620, 1991.
 264.Lindström E, Björkqvist M, Boketoft A, Chen D, Zhao CM, Kimura K, Håkanson R. Neurohormonal regulation of histamine and pancreastatin secretion from isolated rat stomach ECL cells. Regul Pept 71: 73‐86, 1997.
 265.Lindstrom E, Bjorkqvist M, Hakanson R. Pharmacological analysis of CCK2 receptor antagonists using isolated rat stomach ECL cells. Br J Pharmacol 127: 530‐536, 1999.
 266.Linverse RJ, Jansen JB, Jebbink MC, Masclee AA, Rovati LC, Lamers CB. Effects of somatostatin and loxiglumide on gallbladder motility. Eur J Clin Pharmacol 47: 489‐492, 1995.
 267.Liszt KI, Ley JP, Lieder B, Behrens M, Stoger V, Reiner A, Hochkogler CM, Kock E, Marchiori A, Hans J, Widder S, Krammer G, Sanger GJ, Somoza MM, Meyerhof W, Somoza V. Caffeine induces gastric acid secretion via bitter taste signaling in gastric parietal cells. Proc Natl Acad Sci U S A 114: E6260‐E6269, 2017.
 268.Lloyd KC, Amirmoazzami S, Friedik F, Chew P, Walsh JH. Somatostatin inhibits gastrin release and acid secretion by activating sst2 in dogs. Am J Phys 272: G1481‐G1488, 1997.
 269.Lloyd KC, Maxwell V, Chuang CN, Wong HC, Soll AH, Walsh JH. Somatostatin is released in response to cholecystokinin by activation of type A CCK receptors. Peptides 15: 223‐227, 1994.
 270.Loffeld R, Werdmuller BF, Kuster JG, Perez‐Perez GI, Blaser MJ, Kuipers EJ. Colonization with cag A‐positive Helicobacter pylori strains inversely associated with reflux esophagitis and Barrett's esophagus. Digestion 62: 95‐99, 2000.
 271.Lu Y, Germano P, Ohning GV, Vu JP, Pisegna JR. PAC1 deficiency in a murine model induces gastric mucosa hypertrophy and higher basal gastric acid secretion. J Mol Neurosci 43: 76‐84, 2011.
 272.Lucey MR, Wass JA, Rees LH, Dawson AM, Fairclough PD. Relationship between gastric acid and elevated plasma somatostatinlike immunoreactivity after a mixed meal. Gastroenterology 97: 867‐872, 1989.
 273.Lund T, Geurts van Kessel AH, Haun S, Dixon JE. The genes for human gastrin and cholecystokinin are located on different chromosomes. Hum Genet 73: 77‐80, 1986.
 274.Lund T, Olsen J, Rehfeld JF. Cloning and sequencing of bovine gastrin gene. Mol Endocrinol 3: 1585‐1588, 1989.
 275.Luttichau HR, van Solinge WW, Nielsen FC, Rehfeld JF. Developmental expression of the gastrin and cholecystokinin genes in rat colon. Gastroenterology 104: 1092‐1098, 1993.
 276.Madaus S, Schusdziarra V, Dummer W, Classen M. The effect of glucose and insulin on vagally induced gastrin, bombesin‐like immunoreactivity and somatostatin secretion from the perfused rat stomach. Neuropeptides 18: 215‐222, 1991.
 277.Madaus S, Schusdziarra V, Seufferlein T, Classen M. Effect of galanin on gastrin and somatostatin release from the rat stomach. Life Sci 42: 2381‐2387, 1988.
 278.Maddalo G, Spolverato Y, Rugge M, Farinati F. Gastrin: From pathophysiology to cancer prevention and treatment. Eur J Cancer Prev 23: 258‐263, 2014.
 279.Mahr S, Neumayer N, Kolb HJ, Schepp W, Classen M, Prinz C. Growth factor effects on apoptosis of rat gastric enterochromaffin‐like cells. Endocrinology 139: 4380‐4390, 1998.
 280.Makhlouf GM, Schubert ML. Antral bombesin: Physiological regulator of gastrin secretion. Ann N Y Acad Sci 547: 225‐233, 1988.
 281.Makhlouf GM, Schubert ML. Gastric somatostatin: A paracrine regulator of acid secretion. Metabolism 39 (Suppl 2): 138‐142, 1990.
 282.Malendowicz LK, Nowak M, Gottardo L, Tortorella C, Majchrzak M, Nussdorfer GG. Cholecystokinin stimulates aldosterone secretion from dispersed rat zona glomerulosa cells, acting through cholecystokinin receptors 1 and 2 coupled with the adenylate cyclase‐dependent cascade. Endocrinology 142: 4251‐4255, 2001.
 283.Malmstrøm J, Stadil F, Rehfeld JF. Gastrins in tissue: Concentration and component pattern in gastric, duodenal, and jejunal mucosa of normal human subjects and patients with duodenal ulcer. Gastroenterology 70: 697‐704, 1976.
 284.Manela FD, Ren J, Gao J, McGuigan JE, Harty RF. Calcitonin gene‐related peptide modulates acid‐mediated regulation of somatostatin and gastrin release from rat antrum. Gastroenterology 109: 701‐706, 1995.
 285.Marco E, Foucaud M, Langer I, Escrieut C, Tikhonova IG, Fourmy D. Mechanism of activation of a G protein‐coupled receptor, the human cholecystokinin‐2 receptor. J Biol Chem 282: 28779‐28790, 2007.
 286.Marley PD, Rehfeld JF, Emson PC. Distribution and chromatographic characterisation of gastrin and cholecystokinin in the rat central nervous system. J Neurochem 42: 1523‐1535, 1984.
 287.Marshall BJ, Goodwin CS, Warren JR, Murray R, Blincow ED, Blackbourn SJ, Phillips M, Waters TE, Sanderson CR. Prospective double‐blind trial of duodenal ulcer relapse after eradication of Campylobacter pylori. Lancet 2: 1437‐1442, 1988.
 288.Martindale R, Kauffman GL, Levin S, Walsh JH, Yamada T. Differential regulation of gastric somatostatin secretion from isolated perfused rat stomachs. Gastroenterology 83: 240‐244, 1982.
 289.Martinez V. Somatostatin. In: Kastin AJ, editor. Handbook of Biologically Active Peptides. San Diego, CA: Elsevier, 2013.
 290.Martinez V, Curi AP, Torkian B, Schaeffler JM, Wilkinson HA, Walsh JH, Tache Y. High basal gastric acid secretion in somatostatin receptor subtype 2 knockout mice. Gastroenterology 114: 1125‐1132, 1998.
 291.Martinez V, Tache Y. Somatostatin. In: Johnson LR, editor. Encyclopedia of Gastroenterology. New York, NY: Elsevier, 2004.
 292.Mazzocchi G, Malendowicz LK, Aragona F, Spinazzi R, Nussdorfer GG. Cholecystokinin (CCK) stimulates aldosterone secretion from human adrenocortical cells via CCK2 receptors coupled to the adenylate cyclase/protein kinase A signaling cascade. J Clin Endocrinol Metab 89: 1277‐1284, 2004.
 293.McArthur KE, Isenberg JI, Hogan DL, Dreier SJ. Intravenous infusion of L‐isomers of phenylalanine and tryptophan stimulate gastric acid secretion at physiologic plasma concentrations in normal subjects and after parietal cell vagotomy. J Clin Invest 71: 1254‐1262, 1983.
 294.McGuigan JE. Gastrin mucosal intracellular localization by immunofluorescence. Gastroenterology 55: 315‐327, 1968.
 295.McGuigan JE. Immunochemical studies with synthetic human gastrin. Gastroenterology 54: 1005‐1011, 1968.
 296.McGuigan JE, Jaffe BM, Newton WT. Immunochemical measurements of endogenous gastrin release. Gastroenterology 59: 499‐505, 1970.
 297.McGuigan JE, Trudeau WL. Immunochemical measurement of elevated levels of gastrin in the serum of patients with pancreatic tumors of the Zollinger‐Ellison variety. N Engl J Med 278: 1308‐1313, 1968.
 298.Mensah‐Osman E, Veniaminova NA, Merchant JL. Menin and JunD regulate gastrin gene expression through proximal DNA elements. Am J Phys 301: G783‐G790, 2011.
 299.Mensah‐Osman E, Zavros Y, Merchant JL. Somatostatin stimulates menin gene expression by inhibiting protein kinase A. Am J Phys 295: G843‐G854, 2008.
 300.Merchant JL, Demediuk B, Brand SJ. A GC‐rich element confers epidermal growth factor responsiveness to transcription from the gastrin promoter. Mol Cell Biol 11: 2686‐2696, 1991.
 301.Meyer AR, Goldenring JR. Injury, repair, inflammation and metaplasia in the stomach. J Physiol 596: 3861‐3867, 2018.
 302.Miller AS, Furness JB, Costa M. The relationship between gastrin cells and bombesin‐like immunoreactive nerve fibres in the gastric antral mucosa of guinea‐pig, rat, dog and man. Cell Tissue Res 257: 171‐178, 1989.
 303.Mix H, Widjaja A, Jandl O, Cornberg M, Kaul A, Goke M, Bell W, Kuske M, Brabant G, Manns MP, Wagner S. Expression of leptin and leptin receptor isoforms in the human stomach. Gut 47: 481‐486, 2000.
 304.Miyake A. A truncated isoform of human CCK‐B/gastrin receptor generated by alternative usage of a novel exon. Biochem Biophys Res Commun 208: 230‐237, 1995.
 305.Miyamoto S, Shikata K, Miyasaka K, Okada S, Sasaki M, Kodera R, Hirota D, Kajitani N, Takatsuka T, Kataoka HU, Nishishita S, Sato C, Funakoshi A, Nishimori H, Uchida HA, Ogawa D, Makino H. Cholecystokinin plays a novel protective role in diabetic kidney through anti‐inflammatory actions on macrophage: Anti‐inflammatory effect of cholecystokinin. Diabetes 61: 897‐907, 2012.
 306.Modlin IM, Kidd M, Latich I, Zikusoka MN, Shapiro MD. Current status of gastrointestinal carcinoids. Gastroenterology 128: 1717‐1751, 2005.
 307.Modlin IM, Lamers C, Walsh JH. Mechanisms of gastrin release by bombesin and food. J Surg Res 28: 539‐546, 1980.
 308.Modlin IM, Latich I, Kidd M, Zikusoka M, Eick G. Therapeutic options for gastrointestinal carcinoids. Clin Gastroenerol Hepatol 4: 526‐547, 2006.
 309.Moore KL. The biology and enzymology of protein tyrosine O‐sulfation. J Biol Chem 278: 24243‐24246, 2003.
 310.Morley JS, Tracy HJ, Gregory RA. Structure‐function relationships in the active C‐terminal tetrapeptide sequences of gastrin. Nature 207: 1356‐1359, 1965.
 311.Morris A, Nicholson G. Ingestion of Campylobacter pyrloridis causes gatritis and raised fasting gastric pH. Am J Gastroenterol 83: 192‐199, 1987.
 312.Moss SF, Legon S, Bishop AE, Polak JM, Calam J. Effect of Helicobacter pylori on gastric somatostatin in duodenal ulcer disease. Lancet 340: 930‐932, 1992.
 313.Nagata A, Ito M, Iwata N, Kuno J, Takano H, Minowa O, Chihara K, Matsui T, Noda T. G protein‐coupled cholecystokinin‐B/gastrin receptors are responsible for physiological cell growth of the stomach mucosa in vivo. Proc Natl Acad Sci U S A 93: 11825‐11830, 1996.
 314.Nakajima T, Konda Y, Izumi Y, Kanai M, Hayashi N, Chiba T. Gastrin stimulates the growth of gastric pit cell precursors by inducing its own receptors. Am J Phys 282: G359‐G366, 2002.
 315.Nakamura E, Hasumura M, SanGabriel A, Uneyama H, Torii K. New frontiers in gut nutrient sensor research: Luminal glutamate‐sensing cells in rat gastric mucosa. J Pharmacol Sci 112: 13‐18, 2010.
 316.Nakamura E, Hasumura M, Uneyama H, Torii K. Luminal amino‐acid sensing cells in gastric mucosa. Digestion 83 (Suppl 1): 13‐18, 2011.
 317.Nandy N, Dasanu CA. Management of advanced and/or metastatic carcinoid tumors: Historical perspectives and emerging therapies. Expert Opin Pharmacother 14: 1649‐1658, 2013.
 318.Nandy N, Hanson JA, Strickland RG, McCarthy DM. Solitary gastric carcinoid tumor associated with long‐term use of omeprazole: A case report and review of the literature. Dig Dis Sci 61: 708‐712, 2016.
 319.Nemeth J, Taylor B, Pauwels S, Varro A, Dockray GJ. Identification of progastrin derived peptides in colorectal carcinoma extracts. Gut 34: 90‐95, 1993.
 320.Nylander O, Bergqvist E, Obrink K. Dual inhibitory actions of somatostatin on isolated gastric glands. Acta Physiol Scand 125: 111‐119, 1985.
 321.Odum L, Petersen HD, Andersen IB, Hansen BF, Rehfeld JF. Gastrin and somatostatin in Helicobacter pylori infected antral mucosa. Gut 35: 615‐618, 1994.
 322.Ohning GV, Wu SV. Gastrin is a physiological regulator of gastric acid secretion. In: Merchant J, Buchan AMJ, Wang TC, editors. Gastrin in the New Millennium. Los Angeles: CURE Foundation, 2004, p. 151‐160.
 323.Orskov C, Holst JJ, Nielsen OV. Effect of truncated glucagon‐like peptide‐1 [proglucagon‐(78‐107) amide] on endocrine secretion from pig pancreas, antrum, and nonantral stomach. Endocrinology 123: 2009‐2013, 1988.
 324.Padol IT, Hunt RH. Effect of Th1 cytokines on acid secretion in pharmacologically characterised mouse gastric glands. Gut 53: 1075‐1081, 2004.
 325.Park J, Chiba T, Yamata T. Mechanisms for direct inhibition of canine gastric parietal cells by somatostatin. J Biol Chem 262: 14190‐14196, 1987.
 326.Peghini PL, Annibale B, Azzoni C, Milione M, Corleto VD, Gibril F, Venzon DJ, DelleFave G, Bordi C, Jensen RT. Effect of chronic hypergastrinemia on human enterochromaffin‐like cells: Insights from patients with sporadic gastrinomas. Gastroenterology 123: 68‐85, 2002.
 327.Penman E, Wass JAH, Butler MG, Penny ES, Price J, Wu P, Rees LH. Distribution and characterization of immunoreactive somatostatin in human gastrointestinal tract. Regul Pept 7: 53‐65, 1983.
 328.Persson H, Ericsson A, Schalling M, Rehfeld JF, Hökfelt T. Detection of cholecystokinin in spermatogenic cells. Acta Physiol Scand 134: 565‐566, 1988.
 329.Persson H, Rehfeld JF, Ericsson A, Schalling M, Pelto‐Huikko M, Hökfelt T. Transient expression of the cholecystokinin gene in male germ cells and accumulation of the peptide in the acrosomal granule: Possible role of cholecystokinin in fertilization. Proc Natl Acad Sci U S A 86: 6166‐6170, 1989.
 330.Petersen CP, Weis VG, Nam KT, Sousa JF, Fingleton B, Goldenring JR. Macrophages promote progression of spasmolytic polypeptide‐expressing metaplasia after acute loss of parietal cells. Gastroenterology 146: 727‐738, 2014.
 331.Peterson WL, Barnett C, Walsh JH. Effect of intragastric infusions of ethanol and wine on serum gastrin concentration and gastric acid secretion. Gastroenterology 91: 1390‐1395, 1986.
 332.Phan AT, Kunz PL, Reidy‐Lagunes DL. New and emerging treatment options in gastroenteropancreatic neuroendocrine tumors. Clin Adv Hematol Oncol 13 (Suppl 5): 1‐18, 2015.
 333.Piqueras L, Martinez V. Role of somatostatin receptors on gastric acid secretion in wild‐type and somatostatin receptor type 2 knockout mice. Naunyn Schmiedeberg's Arch Pharmacol 370: 510‐520, 2004.
 334.Piqueras L, Tache Y, Martinez V. Peripheral PACAP inhibits gastric acid secretion through somatostatin release in mice. Br J Pharmacol 142: 67‐78, 2004.
 335.Piqueras L, Tache Y, Martinez V. Galanin inhibits gastric acid secretion through a somatostatin‐independent mechanism in mice. Peptides 25: 1287‐1295, 2004.
 336.Pisegna JR, de Weerth A, Huppi K, Wank SA. Molecular cloning of the human brain and gastric cholecystokinin receptor: Structure, functional expression and chromosomal localization. Biochem Biophys Res Commun 189: 296‐303, 1992.
 337.Plottel CS, Blaser MJ. Microbiome and malignancy. Cell Host Microbe 10: 324‐335, 2011.
 338.Pohl M, Silvente‐Poirot S, Pisegna JR, Tarasova NI, Wank SA. Ligand‐induced internalization of cholecystokinin receptors. J Biol Chem 272: 18179‐18184, 1997.
 339.Popielsky L. β‐Imidazolyläthylamin und die Organextrakte. I. β‐imidazolylamin als mächtiger erreger der Magendrüsen. Pfluegers Arch Gesamte Physiol Menschen Tiere 178: 214‐259, 1919.
 340.Powley TL, Phillips RJ. Musings on the wanderer: What's new in our understanding of vago‐vagal reflexes: 1. Morphology and topography of vagal afferents innervating the GI tract. Am J Physiol Gastrointest Liver Physiol 283: G1217‐G1225, 2003.
 341.Pradayrol L, Jornvall H, Mutt V, Ribet A. N‐terminally extended somatostatin: The primary structure of somatostatin‐28. FEBS Lett 109: 55‐58, 1980.
 342.Pradeep A, Sharma C, Sathyanarayana P, Albanese C, Fleming JV, Wang TC, Wolfe MM, Baker KM, Pestell RG, Rana B. Gastrin‐mediated activation of cyclin D1 transcription involves beta‐catenin and CREB pathways in gastric cancer cells. Oncogene 23: 3689‐3699, 2004.
 343.Prigge ST, Kolhekar AS, Eipper BA, Mains RE, Amzel LM. Amidation of bioactive peptides: The structure of peptidylglycine alpha‐hydroxylating monooxygenase. Science 278: 1300‐1305, 1997.
 344.Prinz C, Sachs G, Walsh JH, Coy DH, Wu SV. The somatostatin receptor subtype on rat enterochromaffinlike cells. Gastroenterology 107: 1067‐1074, 1994.
 345.Prinz C, Zanner R, Gerhard M, Mahr S, Neumayer N, Höhne‐Zell B, Gratzl M. The mechanism of histamine secretion from gastric enterochromaffin‐like cells. Am J Phys 277: C845‐C855, 1999.
 346.Queiroz DMM, Mendes EN, Rocha GA, Moura SB, Resende LMH, Barbosa AJ, Coelho LG, Passos MC, Castro LP, Oliveira CA. Effect of Helicobacter pylori eradication on antral gastrin‐ and somatostatin‐immunoreactive cell density and gastrin and somatostatin concentrations. Scand J Gastroenterol 28: 858‐864, 1993.
 347.Rai R, Kim JJ, Tewari M, Shukla HS. Heterogeneous expression of cholecystokinin and gastrin receptor in stomach and pancreatic cancer. J Cancer Res Ther 12: 411‐416, 2016.
 348.Rall LB, Scott J, Bell GI, Crawford RJ, Penschow JD, Niall HD, Coghlan JP. Mouse prepro‐epidermal growth factor synthesis by the kidney and other tissues. Nature 313: 228‐231, 1985.
 349.Ramsey EJ, Carey KV, Peterson WL, Jackson JJ, Murphy FK, Read NW, Taylor KB, Trier JS, Fordtran JS. Epidemic gastritis and achlorhydria. Gastroenterology 76: 1449‐1457, 1979.
 350.Ray JM, Squires PE, Meloche RM, Nelson DW, Snutch TP, Buchan AM. L‐type calcium channels regulate gastrin release from human antral G cells. Am J Phys 273: G281‐G288, 1997.
 351.Rector WG. Drug therapy for portal hypertension. Ann Intern Med 105: 96‐107, 1986.
 352.Reeve JR Jr, Liddle RA, McVey DC, Vigna SR, Solomon TE, Keire DA, Rosenquist G, Shively JE, Lee TD, Chew P, Green GM, Coskun T. Identification of nonsulfated cholecystokinin‐58 in canine intestinal extracts and its biological properties. Am J Physiol Gastrointest Liver Physiol 287: G326‐G333, 2004.
 353.Rehfeld JF. Three components of gastrin in human serum. Gel filtration studies on the molecular size of immunoreactive serum gastrin. Biochim Biophys Acta 285: 364‐372, 1972.
 354.Rehfeld JF. Gastrins in serum. A review of gastrin radioimmunoanalysis and the discovery of gastrin heterogeneity in serum. Scand J Gastroenterol 8: 577‐583, 1973.
 355.Rehfeld JF. Disturbed islet‐cell function related to endogenous gastrin release: Studies on insulin secretion and glucose tolerance in pernicious anemia. J Clin Invest 58: 41‐49, 1976.
 356.Rehfeld JF. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem 253: 4022‐4030, 1978.
 357.Rehfeld JF. Localisation of gastrins to neuro‐ and adenohypophysis. Nature 271: 771‐773, 1978.
 358.Rehfeld JF. Sequence‐specific radioimmunoassays for cholecystokinin, gastrin and somatostatin. Biomed Res S1: 73‐78, 1980.
 359.Rehfeld JF. Accumulation of nonamidated preprogastrin and preprocholecystokinin products in porcine pituitary corticotrophs: Evidence of post‐translational control of cell differentiation. J Biol Chem 261: 5841‐5847, 1986.
 360.Rehfeld JF. Progastrin and its products in the cerebellum. Neuropeptides 20: 239‐245, 1991.
 361.Rehfeld JF. The new biology of gastrointestinal hormones. Physiol Rev 78: 1087‐1108, 1998.
 362.Rehfeld JF. To study the molecular nature of gastrin – and to know John Walsh: A flashback to the seventies. In: Taché Y, Goto Y, Ohning G, Yamada T, editors. Gut‐Brain Peptides in the New Millennium. Los Angeles: Cure Foundation, 2002, p. 11‐21.
 363.Rehfeld JF. Progastrin defines the molecular forms of gastrin. In: Merchant JL, Buchan AMJ, Wang TC, editors. Gastrin in the New Millenium. Los Angeles: CURE Foundation, 2004, p. 13‐19.
 364.Rehfeld JF. Prohormonal junk fragments as hormones? Gastroenterology 131: 1638‐1640, 2006.
 365.Rehfeld JF. The endoproteolytic maturation of progastrin and procholecystokinin. J Mol Med (Berl) 84: 544‐550, 2006.
 366.Rehfeld JF. Incretin physiology beyond glucagon‐like peptide 1 and glucose‐dependent insulinotropic polypeptide: Cholecystokinin and gastrin peptides. Acta Physiol 201: 405‐411, 2011.
 367.Rehfeld JF. Beginnings: A reflection on the history of gastrointestinal endocrinology. Regul Pept 177 (Suppl S1‐S5), 2012.
 368.Rehfeld JF. Do glycine‐extended hormone precursors have clinical significance? Int J Endo Oncol 1: 133‐143, 2014.
 369.Rehfeld JF. Gastrointestinal hormones and their targets. Adv Exp Med Biol 817: 157‐175, 2014.
 370.Rehfeld JF. CCK, gastrin and diabetes mellitus. Biomark Med, 2016. DOI: 10.2217/bmm‐2016‐0175.
 371.Rehfeld JF, Agersnap M. Unsulfated cholecystokinin: An overlooked hormone? Regul Pept 173: 1‐5, 2012.
 372.Rehfeld JF, Bardram L, Hilsted L. Gastrin in human bronchogenic carcinomas: Constant expression but variable processing of progastrin. Cancer Res 49: 2840‐2843, 1989.
 373.Rehfeld JF, Bundgaard JR, Goetze JP, Friis‐Hansen L, Hilsted L, Johnsen AH. Naming progastrin‐derived peptides. Regul Pept 120: 177‐183, 2004.
 374.Rehfeld JF, Friis‐Hansen L, Goetze JP, Hansen TO. The biology of cholecystokinin and gastrin peptides. Curr Top Med Chem 7: 1154‐1165, 2007.
 375.Rehfeld JF, Gingras MH, Bardram L, Hilsted L, Goetze JP, Poitras P. The Zollinger‐Ellison syndrome and mismeasurement of gastrin. Gastroenterology 140: 1444‐1453, 2011.
 376.Rehfeld JF, Goetze JP. The posttranslational phase of gene expression: New possibilities in molecular diagnosis. Curr Mol Med 3: 25‐38, 2003.
 377.Rehfeld JF, Goetze JP. Gastrin. In: Kastin AJ, editor. Handbook of Biologically Active Peptides (2nd ed). Amsterdam: Academic Press, 2015, p. 519‐523.
 378.Rehfeld JF, Hansen CP, Johnsen AH. Post‐poly(Glu) cleavage and degradation modified by O‐sulfated tyrosine: A novel posttranslational processing mechanism. EMBO J 14: 389‐396, 1995.
 379.Rehfeld JF, Hansen HF, Larsson L‐I, Stengaard‐Pedersen K, Thorn NA. Gastrin and cholecystokinin in pituitary neurons. Proc Natl Acad Sci U S A 81: 1902‐1905, 1984.
 380.Rehfeld JF, Johnsen AH. Identification of gastrin component I as gastrin‐71. The largest possible bioactive progastrin product. Eur J Biochem 223: 765‐773, 1994.
 381.Rehfeld JF, Larsson L‐I. Pituitary gastrins: Different processing in corticotrophs and melanotrophs. J Biol Chem 256: 10426‐10429, 1981.
 382.Rehfeld JF, Larsson L‐I, Goltermann NR, Schwartz TW, Holst JJ, Jensen SL, Morley JS. Neural regulation of pancreatic hormone secretion by the C‐terminal tetrapeptide of CCK. Nature 284: 33‐38, 1980.
 383.Rehfeld JF, Lindberg I, Friis‐Hansen L. Progastrin processing differs in 7B2 and PC2 knockout animals: A role for 7B2 independent of action on PC2. FEBS Lett 510: 89‐93, 2002.
 384.Rehfeld JF, Schwartz TW, Stadil F. Immunochemical studies on macromolecular gastrins: Evidence that "big big gastrins" are artifacts in blood and mucosa, but truly present in some large gastrinomas. Gastroenterology 73: 469‐477, 1977.
 385.Rehfeld JF, Stadil F. Gel filtration studies on immunoreactive gastrin in serum from Zollinger‐Ellison patients. Gut 14: 369‐373, 1973.
 386.Rehfeld JF, Stadil F. The effect of gastrin on basal‐ and glucose‐stimulated insulin secretion in man. J Clin Invest 52: 1415‐1426, 1973.
 387.Rehfeld JF, Stadil F, Vikelsøe J. Immunoreactive gastrin components in human serum. Gut 15: 102‐111, 1974.
 388.Rehfeld JF, Uvnäs‐Wallensten K. Gastrins in cat and dog: Evidence for a biosynthetic relationship between the large molecular forms of gastrin and heptadecapeptide gastrin. J Physiol 283: 379‐396, 1978.
 389.Rehfeld JF, van Solinge WW. The tumor biology of gastrin and cholecystokinin. Adv Cancer Res 63: 295‐347, 1994.
 390.Rehfeld JF, van Solinge WW, Tos M, Thomsen J. Gastrin, cholecystokinin and their precursors in acoustic neuromas. Brain Res 530: 235‐238, 1990.
 391.Rehfeld JF, Zhu X, Norrbom C, Bundgaard JR, Johnsen AH, Nielsen JE, Vikesaa J, Stein J, Dey A, Steiner DF, Friis‐Hansen L. Prohormone convertases 1/3 and 2 together orchestrate the site‐specific cleavages of progastrin to release gastrin‐34 and gastrin‐17. Biochem J 415: 35‐43, 2008.
 392.Rettenberger AT, Schulze W, Breer H, Haid D. Analysis of the protein related receptor GPR92 in G‐cells. Front Physiol 6: 261, 2015.
 393.Reubi JC, Waser B, Gugger M, Friess H, Kleeff J, Kayed H, Büchler MW, Laissue JA. Distribution of CCK1 and CCK2 receptors in normal and diseased human pancreatic tissue. Gastroenterology 125: 98‐106, 2003.
 394.Reubi JC, Waser B, Macke H, Rivier J. Highly expressed 125I‐JR11 antagonist binding in vitro reveals novel indications for sst2 targeting in human cancers. J Nucl Med 58: 300‐306, 2017.
 395.Reynaert H, Rombouts K, Jia Y, Urbain D, Chatterjee N, Uyama N, Geerts A. Somatostatin at nanomolar concentration reduces collagen I and III synthesis but not proliferation of activated rat hepatic stellate cells. Br J Pharmacol 146: 77‐88, 2005.
 396.Richardson CT, Walsh JH, Cooper KA, Feldman M, Fordtran JS. Studies on the role of cephalic‐vagal stimulation in the acid secretory response to eating in normal human subjects. J Clin Invest 60: 435‐441, 1977.
 397.Richardson CT, Walsh JH, Hicks MI, Fordtran JS. Studies on the mechanisms of food‐stimulated gastric acid secretion in normal human subjects. J Clin Invest 58: 623‐631, 1976.
 398.Roosenberg S, Laverman P, Joosten L, Cooper MS, Kolenc‐Peitl PK, Foster JM, Hudson C, Leyton J, Burnet J, Oyen WJ, Blower PJ, Mather SJ, Boerman OC, Sosabowski JK. PET and SPECT imaging of a radiolabeled minigastrin analogue conjugated with DOTA, NOTA, and NODAGA and labeled with (64)Ga, and (111)In. Mol Pharm 11: 3930‐3937, 2014.
 399.Rossowski W, Cheng BL, Jiang NY, Coy DH. Examination of somatostatin involvement in the inhibitory action of GIP, GLP‐1, amylin and adrenomedullin on gastric acid release using a new SRIF antagonist analogue. Br J Pharmacol 125: 1081‐1087, 1998.
 400.Ryberg B, Axelson J, Hakanson R, Sundler F, Mattson H. Trophic effects of continuous infusion of [leu15]‐gastrin 17 in the rat. Gastroenterology 98: 33‐38, 1990.
 401.Ryberg B, Tielemans Y, Axelson J, Carlson E, Hakanson R, Mattsson H, Sundler F, Willems G. Gastrin stimulates the self‐replication rate of enterochromaffinlike cells in the rat stomach. Effects of omeprazole, ranitidine, and gastrin‐17 in intact and antrectomized rats. Gastroenterology 99: 935‐942, 1990.
 402.Saffouri B, DuVal JW, Arimura A, Makhlouf GM. Effects of vasoactive intestinal peptide and secretin on gastrin and somatostatin secretion in the perfused rat stomach. Gastroenterology 86: 839‐842, 1984.
 403.Saffouri B, DuVal JW, Makhlouf GM. Stimulation of gastrin secretion in vitro by intraluminal chemicals: Regulation by intramural cholinergic and noncholinergic neurons. Gastroenterology 87: 557‐561, 1984.
 404.Saffouri B, Weir GC, Bitar KN, Makhlouf GM. Stimulation of gastrin secretion from the perfused rat stomach by somatostatin antiserum. Life Sci 25: 1749‐1754, 1979.
 405.Saffouri B, Weir GC, Bitar KN, Makhlouf GM. Gastrin and somatostatin secretion by perfused rat stomach: Functional linkage of antral peptides. Am J Phys 238: G495‐G501, 1980.
 406.Saha A, Backert S, Hammond CE, Gooz M, Smolka AJ. Helicobacter pylori CagL activates ADAM17 to induce repression of the gastric H,K‐ATPase alpha subunit. Gastroenterology 139: 239‐248, 2010.
 407.Saha A, Hammond CE, Gooz M, Smolka AJ. IL‐1B modulation of H,K‐ATPase a‐subunit gene transcription in Helicobacter pylori infection. Am J Phys 292: G1055‐G1061, 2007.
 408.Saito A, Sankaran H, Goldfine ID, Williams JA. Cholecystokinin receptors in the brain: Characterization and distribution. Science 208: 1155‐1156, 1980.
 409.Samuelson LC, Hinkle KL. Insights into the regulation of gastric acid secretion through analysis of genetically engineered mice. Annu Rev Physiol 65: 383‐400, 2003.
 410.Sandvik AK, Dimaline R, Mårvik R, Brenna E, Waldum HL. Gastrin regulates histidine decarboxylase activity and mRNA abundance in rat oxyntic mucosa. Am J Phys 267: G254‐G258, 1994.
 411.Sanger F. Chemistry of insulin. Science 129: 1340‐1344, 1959.
 412.Schalling M, Persson H, Pelto‐Huikko M, Ødum L, Ekman P, Gottlieb C, Hökfelt T, Rehfeld JF. Expression and localization of gastrin messenger RNA and peptide in human spermatogenic cells. J Clin Invest 86: 660‐669, 1990.
 413.Schepp W, Chan CB, Giraud AS, Avedian D, Chen MC, Chew P, Walsh JH, Soll AH. Effects of prostaglandins on gastrin release from canine antral mucosal cells in primary culture. Am J Phys 266: G194‐G200, 1994.
 414.Schepp W, Dehne K, Hermuth H, Pfeffer K, Prinz C. Identification and functional importance of IL‐1 receptors on rat parietal cells. Am J Phys 275: G1094‐G1105, 1998.
 415.Schepp W, Soll AH, Walsh JH. Dual modulation by adenosine of gastrin release from canine G‐cells in primary culture. Am J Phys 259: G556‐G563, 1990.
 416.Schiller LR, Walsh JH, Feldman M. Distention‐induced gastrin release: Effects of luminal acidification and intravenous atropine. Gastroenterology 78: 912‐917, 1980.
 417.Schindler M, Hmphrey PP. Differential distribution of somatostatin sst2 receptor splice variants in rat gastric mucosa. Cell Tissue Res 297: 163‐168, 1999.
 418.Schmid HA. Pasireotide (SOM230): Development, mechanism of action, and potential applications. Mol Cell Endocrinol 286: 69‐74, 2008.
 419.Schmidt WE, Schmitz F. Cellular localization of cholecystokinin receptors as the molecular basis of the peripheral regulation of acid secretion. Pharmacol Toxicol 91: 351‐358, 2002.
 420.Schmitz F, Schrader H, Otte J, Schmitz H, Stüber E, Herzig K, Schmidt WE. Identification of CCK‐B/gastrin receptor splice variants in human peripheral blood mononuclear cells. Regul Pept 101: 25‐33, 2001.
 421.Schubert ML. Gastric somatostatin: A paracrine regulator of gastrin and acid secretion. Reg Pep Lett 3: 7‐11, 1991.
 422.Schubert ML. Gastric secretion. Curr Opin Gastroenterol 27: 536‐542, 2011.
 423.Schubert ML. Gastric acid secretion. Curr Opin Gastroenterol 32: 452‐460, 2016.
 424.Schubert ML, Bitar KN, Makhlouf GM. Regulation of gastrin and somatostatin secretion by cholinergic and noncholinergic intramural neurons. Am J Phys 243: G442‐G447, 1982.
 425.Schubert ML, Coy DH, Makhlouf GM. Peptone stimulates gastrin secretion from the stomach by activating bombesin/GRP and cholinergic neurons. Am J Phys 262: G685‐G689, 1992.
 426.Schubert ML, Edwards NF, Arimura A, Makhlouf GM. Paracrine regulation of gastric acid secretion by fundic somatostatin. Am J Phys 252: G485‐G490, 1987.
 427.Schubert ML, Edwards NF, Makhlouf GM. Regulation of gastric somatostatin secretion in the mouse by luminal acid: A local feedback mechanism. Gastroenterology 94: 317‐322, 1988.
 428.Schubert ML, Hightower J. Functionally distinct muscarinic receptors on gastric somatostatin cells. Am J Phys 258: G982‐G987, 1990.
 429.Schubert ML, Hightower J. Release of gastric somatostatin during distension is mediated by gastric VIP neurons. Gastroenterology 104: 834‐839, 1993.
 430.Schubert ML, Hightower J, Makhlouf GM. Linkage between somatostatin and acid secretion: Evidence from use of pertussis toxin. Am J Phys 256: G418‐G422, 1989.
 431.Schubert ML, Jong MJ, Makhlouf GM. Bombesin/GRP‐stimulated somatostatin secretion is mediated by gastrin in the antrum and intrinsic neurons in the fundus. Am J Phys 261: G885‐G889, 1991.
 432.Schubert ML, Makhlouf GM. Neural, hormonal, and paracrine regulation of gastrin and acid secretion. Yale J Biol Med 65: 553‐560, 1992.
 433.Schubert ML, Makhlouf GM. Gastrin secretion induced by distension is regulated by cholinergic and vasoactive intestinal peptide neurons in rats. Gastroenterology 104: 834‐839, 1993.
 434.Schubert ML, Peura DA. Control of gastric acid secretion in health and disease. Gastroenterology 134: 1842‐1860, 2008.
 435.Schubert ML, Saffouri B, Walsh JH, Makhlouf GM. Inhibition of neurally mediated gastrin secretion by bombesin antiserum. Am J Phys 248: G456‐G462, 1985.
 436.Schultzberg M, Hokfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Elde R, Goldstein M, Said S. Distribution of peptide‐ and catecholamine‐containing neurons in the gastrointestinal tract of the rat and guinea pig: Immunohistochemical studies with antisera to substance P, vasoactive intestinal peptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin, and dopamine beta‐hydroxylase. Neuroscience 5: 689‐744, 1980.
 437.Schwarz P, Kubler JA, Strnad P, Muller K, Barth TF, Gerloff A, Feick P, Peyssonnaux C, Vaulont S, Adler G, Kulaksiz H. Hepcidin is localized in gastric parietal cells, regulates acid secretion and is induced by Helicobacter pylori infection. Gut 61: 193‐201, 2012.
 438.Seal A, Liu E, Buchan A, Brown J. Immunoneutralization of somatostatin and neurotensin: Effect on gastric acid secretion. Am J Phys 255: G40‐G45, 1988.
 439.Seva C, Dickinson CJ, Yamada T. Growth‐promoting effects of glycine‐extended progastrin. Science 265: 410‐412, 1994.
 440.Shimatini T, Inoue M, Iwamoto K, Hyogo H, Yokozaki M, Saeki T, Tazuma S, Horikawa Y, Harada N. Gastric acidity in patients with follicular gastritis is significantly reduced, but can be normalized after eradication for Helicobacter pylori. Helicobacter 10: 256‐265, 2005.
 441.Shimzu D, Kanda M, Kodera Y. Review of recent molecular landscape knowledge of gastric cancer. Histol Histopathol 33: 11‐26, 2018.
 442.Short GM, Doyle JW, Wolfe MM. Effect of antibodies to somatostatin on acid secretion and gastrin release by isolated perfused rat stomach. Gastroenterology 88: 984‐988, 1985.
 443.Sinclair NF, Ai W, Raychowdhury R, Bi M, Wang TC, Koh TJ, McLaughlin JT. Gastrin regulates the heparin‐binding epidermal‐like growth factor promoter via a PKC/EGFR‐dependent mechanism. Am J Physiol Gastrointest Liver Physiol 286: G992‐G999, 2004.
 444.Singer MV, Leffmann C, Eysselein VE, Calden H, Goebell H. Action of ethanol and some alcoholic beverages on gastric acid secretion and release of gastrin in humans. Gastroenterology 93: 1247‐1254, 1987.
 445.Sjovall M, Lindstedt G, Olbe L, Lundell L. Effect of parietal cell vagotomy and cholinergic blockade on gastrin release in man induced by gastrin‐releasing peptide. Digestion 46: 114‐120, 1990.
 446.Smith JP, Fonkoua LK, Moody TW. The role of gastrin and CCK receptors in pancreatic cancer and other malignancies. Int J Biol Sci 12: 283‐291, 2016.
 447.Smith JP, Verderame MF, McLaughlin P, Martenis M, Ballard E, Zagon IS. Characterization of the CCK‐C (cancer) receptor in human pancreatic cancer. Int J Mol Med 10: 689‐694, 2002.
 448.Smith JP, Wang S, Nadella S, Jablonski SA, Weiner LM. Cholecystokinin receptor antagonist alters pancreatic cancer microenvironment and increases efficacy of immune checkpoint antibody therapy in mice. Cancer Immunol Immunother 67: 195‐207, 2018.
 449.Smith KA, Patel O, Lachal S, Jennings I, Kemp B, Burgess J, Baldwin GS, Shulkes A. Production, secretion, and biological activity of the C‐terminal flanking peptide of human progastrin. Gastroenterology 131: 1463‐1474, 2006.
 450.Smolka AJ, Schubert ML. Helicobacter pylori‐induced changes in gastric acid secretion and upper gastrointestinal diseases. Curr Top Microbiol Immunol 400: 227‐252, 2017.
 451.Sobala GM, Crabtree JE, Dixon MF, Schorah CJ, Taylor JD, Rathbone BJ, Heatley RV, Axon AT. Acute Helicobacter pylori infection: Clinical features, local and systemic immune response, gastric mucosal biology, and gastric juice ascorbic acid concentrations. Gut 32: 1415‐1418, 1991.
 452.Soll AH, Amirian DA, Thomas LP, Reedy TJ, Elashoff JD. Gastrin receptors on isolated canine parietal cells. J Clin Invest 73: 1434‐1437, 1984.
 453.Song I, Brown DR, Wiltshire RN, Gantz I, Trent JM, Yamada T. The human gastrin/cholecystokinin type B receptor gene: Alternative splice donor site in exon 4 generates two variant mRNAs. Proc Natl Acad Sci U S A 90: 9085‐9089, 1993.
 454.Spicer Z, Miller ML, Andringa A, Riddle TM, Duffy JJ, Doetschman T, Shull GE. Stomachs of mice lacking the gastric H,K‐ATPase alpha subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem 275: 21555‐21565, 2000.
 455.Stadil F, Rehfeld JF. Radioimmunoassay of gastrin in human serum. Scand J Gastroenterol S9: 61‐65, 1971.
 456.Stadil F, Rehfeld JF. Release of gastrin by epinephrine in man. Gastroenterology 65: 201‐215, 1973.
 457.Stadil F, Rehfeld JF, Christiansen LA, Malmstrøm J. Patterns of gastrin components in serum during feeding in normal subjects and duodenal ulcer patients. Scand J Gastroenterol 10: 863‐868, 1975.
 458.Stang EF, Schneider A, Schusdziarra V, Kitschuneit H. Inhibitory effects of somatostatin on growth and differentiation in cultured intestinal mucosa. Horm Metab Res 16: 74‐78, 1984.
 459.Starling EH. The Croonian Lecture on the chemical correlation of the function of the body. I. Lancet: 339‐341, 1905.
 460.Steigedal TS, Prestvik WS, Selvik LK, Fjeldbo CS, Bruland T, Laegreid A, Thommesen L. Gastrin‐induced proliferation involves MEK partner 1 (MP1). In Vitro Cell Dev Biol Anim 49: 162‐169, 2013.
 461.Stengel A, Tache Y. Yin and yang – the gastric X/A‐like cell as possible dual regulator of food intake. J Neurogastroenterol Motil 18: 138‐149, 2012.
 462.Stengel A, Tache Y. Activation of somatostatin 2 receptors in the brain and the periphery induces opposite changes in circulating ghrelin levels: Functional implications. Front Endocrinol 3: 178, 2013. DOI: 10.3389/fendo.2012.00178.
 463.Stepan V, Ramamoorthy S, Pausawasdi N, Logsdon CD, Askari FK, Todisco A. Role of small GTP binding proteins in the growth‐promoting and antiapoptotic actions of gastrin. Am J Physiol Gastrointest Liver Physiol 287: G715‐G725, 2004.
 464.Stepan VM, Dickinson CJ, del Valle J, Matsushima M, Todisco A. Cell type‐specific requirement of the MAPK pathway for the growth factor action of gastrin. Am J Phys 276: G1363‐G1372, 1999.
 465.Suarez‐Pinzon WL, Power RF, Yan Y, Wasserfall C, Atkinson M, Rabinovitch A. Combination therapy with glucagon‐like peptide‐1 and gastrin restores normoglycemia in diabetic NOD mice. Diabetes 57: 3281‐3288, 2008.
 466.Subramaniam D, Ramalingam S, May R, Dieckgraefe BK, Berg DE, Pothoulakis C, Houchen CW, Wang TC, Anant S. Gastrin‐mediated interleukin‐8 and cyclooxygenase‐2 gene expression: Differential transcriptional and posttranscriptional mechanisms. Gastroenterology 134: 1070‐1082, 2008.
 467.Sugano K, Aponte GW, Yamada T. Identification and characterization of glycine‐extended post‐translational processing intermediates of progastrin in porcine stomach. J Biol Chem 260: 11724‐11179, 1985.
 468.Sugano K, Park J, Dobbins WO, Yamada T. Glycine‐extended progastrin processing intermediates: Accumulation and cosecretion with gastrin. Am J Phys 253: G502‐G507, 1987.
 469.Sugano K, Park J, Soll AH, Yamada T. Stimulation of gastrin release by bombesin and canine gastrin‐releasing peptides. Studies with isolated canine G cells in primary culture. J Clin Invest 79: 935‐942, 1987.
 470.Sun LC, Coy DH. Somatostatin receptor‐targeted anti‐cancer therapy. Curr Drug Deliv 8: 2‐10, 2011.
 471.Sundaresan S, Kang AJ, Merchant JL. Pathophysiology of gastric NETs: Role of gastrin and menin. Gastroenterol Rep 19: 32, 2017.
 472.Taché Y, Grijalva CV, Gunion MW, Cooper PH, Walsh JH, Novin D. Lateral hypothalamic mediation of hypergastrinemia induced by intracisternal bombesin. Neuroendocrinology 39: 114‐119, 1984.
 473.Takahashi H, Nakano Y, Matsuoka T, Kumaki N, Asami Y, Koga Y. Role of indigenous lactobacilli in gastrin‐mediated acid production in the mouse stomach. Appl Environ Microbiol 77: 6964‐6971, 2011.
 474.Tanaka S, Hamada K, Yamada N, Sugita Y, Tonai S, Hunyady B, Palkovits M, Falus A, Watanabe T, Okabe S, Ohtsu H, Ichikawa A, Nagy A. Gastric acid secretion in L‐histidine decarboxylase‐deficient mice. Gastroenterology 122: 145‐155, 2002.
 475.Tanaka‐Shintani M, Watanabe M. Immunohistochemical study of enterochromaffin‐like cell in human gastric mucosa. Pathol Int 57: 572‐583, 2007.
 476.Tari A, Kamiyasu T, Yonei Y, Hamada M, Sumii M, Sumii K, Kajiyama G, Dimaline R. Role of gastrin/CCK‐B receptor in the regulation of gastric acid secretion in rat. Dig Dis Sci 42: 1901‐1907, 1997.
 477.Taylor IL, Byrne WJ, Christie DL, Ament ME, Walsh JH. Effect of individual L‐amino acids on gastric acid secretion and serum gastrin and pancreatic polypeptide release in humans. Gastroenterology 83: 273‐278, 1982.
 478.Todisco A, Ramamoorthy S, Wisham T, Pausawasdi N, Srinivasan S, Dickinson CT. Molecular mechanisms for the antiapoptotic action of gastrin. Am J Phys 280: G298‐G307, 2001.
 479.Todisco A, Takeuchi Y, Seva C, Dickinson CJ, Yamada T. Gastrin and glycine‐extended progastrin processing intermediates induce different programs of early gene activation. J Biol Chem 270: 28337‐28341, 1995.
 480.Tommeras K, Hammer P, Sundler F, Borch K, Mardh S, Cabero JL. Immunolocalization of cholecystokinin‐2 receptors in rat gastric mucosa. Scand J Gastroenterol 37: 1017‐1024, 2002.
 481.Tostivint H, Lihrmann I, Vaudry H. New insight into the molecular evolution of the somatostatin family. Mol Cell Endocrinol 286: 5‐17, 2008.
 482.Uvnäs‐Wallensten K, Rehfeld JF. Molecular forms of gastrin in antral mucosa, plasma and gastric juice during vagal stimulation of anesthetized cats. Acta Physiol Scand 98: 217‐226, 1976.
 483.Uvnäs‐Wallensten K, Rehfeld JF, Larsson L‐I, Uvnäs B. Heptadecapeptide gastrin in the vagal nerve. Proc Natl Acad Sci U S A 74: 5707‐5710, 1977.
 484.van Solinge WW, Nielsen FC, Friis‐Hansen L, Falkmer UG, Rehfeld JF. Expression but incomplete maturation of progastrin in colorectal carcinomas. Gastroenterology 104: 1099‐1107, 1993.
 485.van Solinge WW, Odum L, Rehfeld JF. Ovarian cancer express and process progastrin. Cancer Res 53: 1823‐1828, 1993.
 486.Varner AA, Modlin IM, Walsh JH. High potency of bombesin for stimulation of human gastrin release and gastric acid secretion. Regul Pept 1: 289‐296, 1981.
 487.Varro A, Hemers E, Archer D, Pagliocca A, Haigh C, Ahmed S, Dimaline R, Dockray GJ. Identification of plasminogen activator inhibitor‐2 as a gastrin‐regulated gene: Role of Rho GTPase and menin. Gastroenterology 123: 271‐280, 2002.
 488.Varro A, Kenny S, Hemers E, McCaig C, Przemeck S, Wang TC, Bodger K, Pritchard DM. Increased gastric expression of MMP‐7 in hypergastrinemia and significance for epithelial‐mesenchymal signaling. Am J Physiol Gastrointest Liver Physiol 292: G1133‐G1140, 2007.
 489.Varro A, Noble PJ, Wroblewski LE, Bishop L, Dockray GJ. Gastrin‐cholecystokinin(B) receptor expression in AGS cells is associated with direct inhibition and indirect stimulation of cell proliferation via paracrine activation of the epidermal growth factor receptor. Gut 50: 827‐833, 2002.
 490.Vergara‐Esteras P, Harrison FA, Brown D. The localization of somatostatin‐like immunoreactivity in the alimentary tract of the sheep with observations on the effect of infection with the parasite Haemonchus contortus. Exp Physiol 75: 779‐789, 1990.
 491.Vigna SR, Giraud AS, Mantyh PW, Soll AH, Walsh JH. Characterization of bombesin receptors on canine antral gastrin cells. Peptides 11: 259‐284, 1990.
 492.Vishwanatha KS, Mains RE, Eipper BA. Peptidylglycine amidating monooxygenase (PAM). In: Kastin AJ, Minamino N, editors. Handbook of Biologically Active Peptides. New York: Elsevier Science USA, 2013, p. 1780‐1788.
 493.von Schrenck T, Ahrens M, de Weerth A, Bobrowski C, Wolf G, Jonas L, Jocks T, Schulz M, Bläker M, Neumaier M, Stahl RA. CCKB/gastrin receptors mediate changes in sodium and potassium absorption in the isolated perfused rat kidney. Kidney Int 58: 995‐1003, 2000.
 494.Vongthavaravat V, Saymeh LA, Mesiya SA, Dunn ST, Harty RF. Functional interaction between transforming growth factor α and capsaicin‐sensitive sensory neurons in the rat stomach. Regul Pept 119: 163‐167, 2004.
 495.Vuyyuru L, Harrington L, Arimura A, Schubert ML. Reciprocal inhibitory paracrine pathways link histamine and somatostatin secretion in the fundus of the stomach. Am J Phys 273: G101‐G111, 1997.
 496.Vuyyuru L, Schubert ML. Histamine, acting via H3 receptors, inhibits somatostatin and stimulates acid secretion in isolated mouse stomach. Gastroenterology 113: 1545‐1552, 1997.
 497.Vuyyuru L, Schubert ML, Harrington L, Arimura A, Makhlouf GM. Dual inhibitory pathways link antral somatostatin and histamine secretion in human, dog, and rat stomach. Gastroenterology 109: 1566‐1574, 1995.
 498.Waldum HL, Fossmark R. Types of gastric carcinoma. Int J Mol Sci 19: E4019, 2018. DOI: 10.3390/ijms19124109.
 499.Waldum HL, Kleveland PM, Fossmark R. Upper gastrointestinal physiology and diseases. Scand J Gastroenterol 50: 649‐656, 2015.
 500.Waldum HL, Sandvik AK, Brenna E, Petersen H. Gastrin‐histamine sequence in the regulation of gastric acid secretion. Gut 32: 698‐701, 1991.
 501.Walsh JH. Peptides as regulators of gastric acid secretion. Annu Rev Physiol 50: 41‐63, 1988.
 502.Walsh JH. Gastrin. In: Walsh JH, Dockray GJ, editors. Gut Peptides: Biochemistry and Physiology. New York: Raven Press Ltd, 1994, p. 75‐121.
 503.Walsh JH, Debas HT, Grossman MI. Pure human big gastrin. Immunochemical properties, disappearance half time, and acid‐stimulating action in dogs. J Clin Invest 54: 477‐485, 1974.
 504.Walsh JH, Isenberg JI, Ansfield J, Maxwell V. Clearance and acid‐stimulating action of human big and little gastrins in duodenal ulcer subjects. J Clin Invest 57: 1125‐1131, 1976.
 505.Walsh JH, Richardson CT, Fordtran JS. pH dependence of acid secretion and gastrin release in normal and ulcer subjects. J Clin Invest 55: 462‐468, 1975.
 506.Wang TC, Brand SJ. Islet cell‐specific regulatory domain in the gastrin promoter contains adjacent positive and negative DNA elements. J Biol Chem 265: 8908‐8914, 1990.
 507.Wang TC, Dockray GJ. Lessons from genetically engineered animal models. I. Physiological studies with gastrin in transgenic mice. Am J Phys 277: G6‐G11, 1999.
 508.Wank SA. Cholecystokinin receptors. Am J Phys 269: G628‐G646, 1995.
 509.Wank SA, Harkins R, Jensen RT, Shapira H, de Weerth A, Slattery T. Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc Natl Acad Sci U S A 89: 3125‐3129, 1992.
 510.Warhurst G, Turnberg LA, Higgs NR, Tonge A, Grundy J, Fogg KE. Multiple G‐protein‐dependent pathways mediate the antisecretory effects of somatostatin and clonidine in the HT29‐19A colonic cell line. J Clin Invest 92: 603‐611, 1993.
 511.Warren JR, Marshall B. Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1: 1273‐1275, 1983.
 512.Watanabe T, Kubota F, Sawada T, Muto T. Distribution and quantification of somatostatin in inflammatory disease. Dis Colon Rectum 35: 488‐494, 1992.
 513.Weigert N, Schaffer K, Wegner U, Schusdziarra V, Classen M, Schepp W. Functional characterization of a muscarinic receptor stimulating gastrin release from rabbit antral G‐cells in primary culture. Eur J Pharmacol 264: 337‐344, 1994.
 514.Wiborg O, Berglund L, Boel E, Norris F, Norris K, Rehfeld JF, Marcker KA, Vuust J. Structure of a human gastrin gene. Proc Natl Acad Sci U S A 81: 1067‐1069, 1984.
 515.Wild D, Fani M, Fischer R, Del Pozzo L, Kaul F, Krebs S, Fischer R, Ribier JE, Reubi JC, Maecke HR, Weber WA. Comparison of somatostatin receptor agonist and antagonist for peptide receptor radionuclide therapy: A pilot study. J Nucl Med 55: 1248‐1252, 2014.
 516.Willems G. Trophic action of gastrin on specific target cells in the gut. Front Gastrointest Res 23: 30‐44, 1995.
 517.Willems G, Lehy T. Radioautographic and quantitative studies on parietal and peptic cell kinetics in the mouse. A selective effect of gastrin on parietal cell proliferation. Gastroenterology 69: 416‐426, 1975.
 518.Williams JA, Gryson KA, McChesney DJ. Brain CCK receptors: Species differences in regional distribution and selectivity. Peptides 7: 293‐296, 1986.
 519.Wolfe MM, Jain DK, Reel GM, McGuigan JE. Effects of carbachol on gastrin and somatostatin release in rat antral tissue culture. Gastroenterology 87: 86‐93, 1984.
 520.Wolfe MM, Mailliard ME, Dunn BM, Green EP, Karnik PS. Inhibition of antral gastrin cells by peptide histidine isoleucine. Am J Phys 257: G328‐G333, 1989.
 521.Wolfe MM, McGuigan JE. Immunochemical characterization of gastrinlike and cholecystokininlike peptides released in dogs in response to a peptone meal. Gastroenterology 87: 323‐334, 1984.
 522.Wolfe MM, Reel GM. Inhibition of gastrin release by gastric inhibitory peptide mediated by somatostatin. Am J Phys 250: G331‐G335, 1986.
 523.Wolfe MM, Reel GM, McGuigan J. Inhibition of gastrin release by secretin is mediated by somatostatin in cultured rat antral mucosa. J Clin Invest 72: 1586‐1593, 1983.
 524.Wu S, Giraud A, Mogard M, Sumii K, Walsh JH. Effects of inhibition of gastric secretion on antral gastrin and somatostatin gene expression in the rat. Am J Phys 258: G788‐G793, 1990.
 525.Xian Y, Zhao X, Wang C, Kang C, Ding L, Zhu W, Hang S. Phenylalanine and tryptophan stimulate gastrin and somatostatin secretion and H+‐K+‐ATPase activity in pigs through calcium‐sensing receptor. Gen Comp Endocrinol 267: 1‐8, 2018.
 526.Xiao L, Kovac S, Chang M, Shulkes A, Baldwin GS, Patel O. Zinc ions upregulate the hormone gastrin via an E‐box motif in the proximal gastrin promoter. J Mol Endocrinol 52: 29‐42, 2014.
 527.Xobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, Laigneau JP, Attoub S, Lehy T, Henin D, Mignon M, Lewin MJ. Leptin secretion and leptin receptor in the human stomach. Gut 47: 178‐183, 2000.
 528.Yalow RS, Berson SA. Immunoassay of endogenous plasma insulin in man. J Clin Invest 39: 1157‐1175, 1960.
 529.Yalow RS, Berson SA. Radioimmunoassay of gastrin. Gastroenterology 58: 1‐14, 1970.
 530.Yalow RS, Berson SA. Size and charge distinctions between endogenous human plasma gastrin in peripheral blood and heptadecapeptide gastrins. Gastroenterology 58: 609‐615, 1970.
 531.Yalow RS, Berson SA. And now, “big, big” gastrin. Biochem Biophys Res Commun 48: 391‐395, 1972.
 532.Yalow RS, Wu N. Additional studies on the nature of big big gastrin. Gastroenterology 65: 19‐27, 1973.
 533.Yang GK, Chen JF, Kieffer TJ, Kwok YN. Regulation of somatostatin release by adenosine in the mouse stomach. J Pharmacol Exp Ther 329: 729‐737, 2009.
 534.Yang H, Wong H, Wu V, Walsh JH, Taché Y. Somatostatin monoclonal antibody immunoneutralization increases gastrin and gastric acid secretion in urethane‐anesthetized rats. Gastroenterology 99: 659‐665, 1990.
 535.Yip L, Chi H, Leung H, Kwok YN. Role of adenosine A1 receptor in the regulation of gastrin release. J Pharmacol Exp Ther 310: 477‐487, 2004.
 536.Yokotani K, DelValle J, Park J, Yamada T. Muscarinic M3 receptor‐mediated release of gastrin from canine antral G cells in primary culture. Digestion 56: 31‐34, 1995.
 537.Yoo OJ, Powell CT, Agarwal KL. Molecular cloning and nucleotide sequence of full‐length of cDNA coding for porcine gastrin. Proc Natl Acad Sci U S A 79: 1049‐1053, 1982.
 538.Zaki M, Coudron PE, McCuen RW, Harrington L, Chu S, Schubert ML. H. pylori acutely inhibits gastric secretion by activating CGRP sensory neurons coupled to stimulation of somatostatin and inhibition of histamine secretion. Am J Phys 304: G715‐G722, 2013.
 539.Zaki M, Harrington L, McCuen R, Coy DH, Arimura A, Schubert ML. Somatostatin receptor subtype 2 mediates inhibition of gastrin and histamine secretion from human, dog, and rat antrum. Gastroenterology 111: 919‐p24, 1996.
 540.Zaki M, Koduru S, McCuen RW, Vuyyuru L, Schubert ML. Amylin, released from the gastric fundus, stimulates somatostatin and thus inhibits histamine and acid secretion in mice. Gastroenterology 123: 247‐255, 2002.
 541.Zavros Y, Eaton KA, Kang W, Rathanavelu S, Katukuri V, Kao JY, Samuelson LC, Merchant JL. Chronic gastritis in the hypochlorhydric gastrin‐deficient mouse progresses to adenocarcinoma. Oncogene 24: 2354‐2366, 2005.
 542.Zavros Y, Rathinavelu S, Kao JY, Todisco A, DelValle J, Weinstock JV, Low MJ, Merchant JL. Treatment of Helicobacter gastritis with IL‐4 requires somatostatin. Proc Natl Acad Sci U S A 100: 12944‐12949, 2003.
 543.Zavros Y, Rieder G, Ferguson A, Samuelson LC, Merchant JL. Genetic or chemical hypochlorhydria is associated with inflammation that modulates parietal and G‐cell populations in mice. Gastroenterology 122: 119‐133, 2002.
 544.Zavros Y, Rieder G, Ferguson A, Samuelson LC, Merchant JL. Hypergastrinemia in response to gastric inflammation suppresses somatostatin. Am J Phys 282: G175‐G183, 2002.
 545.Zeng N, Athmann C, Kang T, Lyu R‐M, Walsh JH, Ohning GV, Sachs G, Pisegna JR. PACAP type I receptor activation regulates ECL cells and gastric acid secretion. J Clin Invest 104: 1383‐1391, 1999.
 546.Zhai HH, Meng J, Wang JB, Liu ZX, Li YF, Feng SS. Cacy/BP/SSIP nuclear translocation induced by gastrin promotes gastric cancer cell proliferation. World J Gastroenterol 20: 10062‐10070, 2014.
 547.Zhao C‐M, Chen D. The ECL cell: Relay station for gastric integrity. Curr Med Chem 19: 98‐108, 2012.
 548.Zhao C‐M, Chen D, Yamada H, Dornonville de la Cour C, Lindström E, Persson L, Håkanson R. Rat stomach ECL cells: Mode of activation of histidine decarboxylase. Regul Pept 114: 21‐27, 2003.
 549.Zhou S, Yao D, Guo L, Teng L. Curcumin suppresses gastric cancer by inhibiting gastrin‐mediated acid secretion. FEBS Open Bio 7: 1078‐1084, 2017.
 550.Zhukova E, Sinnett‐Smith J, Wong H, Chiu T, Rozengurt E. CCK(B)/gastrin receptor mediates synergistic stimulation of DNA synthesis and cyclin D1, D3, and E expression in Swiss 3T3 cells. J Cell Physiol 189: 291‐305, 2001.
 551.Zolotarev V, Khropycheva R, Uneyama H, Torii K. Effect of free dietary glutamate on gastric secretion in dogs. Ann N Y Acad Sci 1170: 87‐90, 2009.

 

Teaching Material

Mitchell L. Schubert, Jens F. Rehfeld. Gastric Peptides—Gastrin and Somatostatin. Compr Physiol 10: 2020, 197-228.

Didactic Synopsis

Major Teaching Points:

*Gastrin, present in G cells of the gastric antrum (pyloric mucosa), is the main hormonal stimulant of acid secretion during ingestion of a meal.

*Gastrin stimulates acid secretion directly and, more importantly, indirectly, by inducing histamine synthesis and secretion from enterochromaffin-like (ECL) cells located in the body and fundus of the stomach (oxyntic mucosa). Histamine, acting in a paracrine manner, diffuses to neighboring parietal cells where it binds to histamine H2-receptors coupled to secretion of hydrochloric acid.

*Gastrin, synthesized as a 101-amino acid precursor (preprogastrin), is processed to yield a variety of forms, the principal of which are gastrin-17 and gastrin-34. Although antral G cells produce predominantly gastrin-17, the peripheral blood contains almost equal amounts of gastrin-17 and gastrin-34 due to the slower metabolic clearance of large gastrins.

*Gastrin exerts its biologic actions through binding of its C-terminal active site, -Trp-Met-Asp-Phe-NH2, to the gastrin/CCK2 receptor, a G protein-coupled receptor formerly referred to as the CCKB or gastrin receptor.

*Gastrin is also a trophic hormone that (i) maintains the integrity of gastric mucosa by stimulating proliferation, cell migration, and angiogenesis as well as inhibiting apoptosis and (ii) may play a role in carcinogenesis (gastric adenocarcinoma, neuroendocrine tumor, and esophageal adenocarcinoma).

*Somatostatin, present in D cells of gastric pyloric and oxyntic glands, functions in a paracrine manner as the main inhibitor of gastric exocrine (acid and pepsinogen) and endocrine (gastrin, histamine, and ghrelin) secretion.

*Somatostatin, synthesized as a 116-amino acid precursor (preprosomatostatin), is processed to yield somatostatin-14 and somatostatin-28. Gastric D cells produce almost exclusively somatostatin-14.

*Somatostatin exerts it biologic actions through a family of G protein-coupled receptors termed SSTR1-SSTR5; SSTR2 is the subtype ubiquitously expressed in the gastrointestinal tract and involved in the regulation of gastric acid secretion.

*Endogenous somatostatin also plays a role in H. pylori-induced disease whereas exogenous somatostatin is used clinically to manage neuroendocrine tumors.

Didactic Legends

The following legends to the figures that appear throughout the article are written to be useful for teaching.

Fig 1. Functional gastric anatomy. The stomach consists of three anatomic (fundus, corpus or body, and antrum) and two functional (oxyntic and pyloric gland areas; 80% and 20%, respectively). The hallmark of the oxyntic gland area is the acid-secreting parietal cell. Also present are histamine-secreting enterochromaffin-like (ECL) cells. The hallmark of the pyloric gland area is the gastrin-secreting G cell. Somatostatin-secreting D cells are present in both areas and exert a tonic inhibitory restraint on secretions from G, ECL, and parietal cells. +, stimulatory; -, inhibitory.

Fig 2. Gastric gland anatomy. Somatostatin-containing D cells possess cytoplasmic processes that terminate near (i) gastrin-secreting G and pepsinogen-secreting chief cells in the pyloric gland (antrum) and (ii) histamine-secreting enterochromaffin-like, acid-secreting parietal, and pepsinogen-secreting chief cells in the oxyntic gland (fundus and corpus). The functional correlate of this anatomic coupling is a tonic paracrine restraint exerted by somatostatin on the secretion of gastrin, histamine, acid, and pepsinogen. Somatostatin inhibits acid secretion directly as well as indirectly by inhibiting the secretion of gastrin and histamine.

Fig 3. (A) Structure of human gastrin-17. The N- and C-termini are pyroglutaminated and carboxyamidated, respectively, which protects the peptide against amino- and carboxypeptidase degradation. the single tyrosyl (Tyr) residue is O-sulfated in ~half of the gastrins.

(B) Overall structure of bioactive/amidated gastrins and their relationship to human preprogastrin (101 amino acids). The mono- and dibasic cleavage sites in progastrin (80 amino acids) are indicated as R, RR, and KK. The seryl site from where the signal peptide is removed is indicated as S. s = sulfated; ns = nonsulfated.

Fig. 4. Overall structure of the human gastrin gene, mRNA, and prepropeptide. Exons are shown as boxes and introns as straight lines. The shaded area of the mRNA indicates the coding region. Numbers show base pairs (bp) or kilobase pairs (kb) in each region of the gene. In preprogastrin the position occupied by gastrin-34 is shown by shading.

Fig. 5. Primary structures of mammalian preprogastrins deduced from cloned cDNAs (monoletter code). Letters in bold are residues common in most species. │→ indicates point and length of major gastrins (gastrin-71, -34, and -17). The box contains the iconic C-terminal tetrapeptide sequence, which constitutes the "active site" that is preserved during evolution and common to all bioactive members of the gastrin family. (Courtesy to A.H. Johnsen; for review and sources, see ref 119 Fuller).

Fig. 6. Schematic illustration of the posttranslational maturation process of gastrins derived from progastrin in antral G-cells. Mono- and dibasic cleavage-sites are shown on the upper structure of preprogastrin. Main organelles in the cellular processing pathway are indicated on the left side of the figure. Main processing enzymes are indicated on the right side of the figure.

Fig. 7. Primary structure of the canine gastrin/CCK2 receptor, a G-protein coupled with seven-transmembrane domains. Shaded amino acid residues indicate identity with corresponding residues in the CCK1 receptor. Symbols on the extracellular N(Asn) residues indicate glycosylation sites.

Fig. 8. The C-terminal amino acid sequences of members of the gastrin/cholecystokinin family in vertebrates (upper part) and the partly homologous sequences of sulfakinins in insects (lower part). In the boxes are the evolutionarily preserved, carboxyamidated tetrapeptide sequence (Trp-Met-Asp-Phe-NH2) required for binding to the gastrin/CCK2 receptor.

Fig. 9. Model illustrating the gastrin – enterochromaffin-like (ECL)-cell – parietal cell axis. Altlhough gastrin/CCK2 receptors are present on both ECL and parietal cells, gastrin stimulates gastric acid secretion mainly by releasing histamine from ECL cells. Histamine then diffuses to neighboring parietal cells where it binds to histamine H2-receptors coupled to generation of cAMP and activation of the the proton pump, H+/K+-ATPase. (Courtesy to R. Håkanson (ref. 155)).

Fig 10. Model illustrating the roles of gastrin and somatostatin (SST) and their receptors in the regulation of gastric acid secretion. Gastrin, secreted into the local circulation by G cells of the gastric antrum (pyloric mucosa), is the main hormonal stimulant for acid secretion. Acting via gastrin/CCK2 receptors, gastrin stimulates the parietal cell directly and, most importantly, indirectly by releasing histamine from enterochromaffin (ECL) cells. Histamine diffuses to neighboring parietal cells (paracrine action) where it binds to histamine H2-receptors coupled to generation of cAMP and subsequent activation of the proton pump, H+/K+-ATPase. Somatostatin, acting in a paracrine manner, is the main inhibitor of acid secretion. Somatostatin, secreted by D cells in both the pyloric and oxyntic mucosa, binds to somatostatin subtype-2 (SST2) receptors located on G, ECL, and parietal cells. Somatostatin, secreted by D cells in the antrum, exerts a tonic inhibitory influence on gastrin secretion. Somatostatin, secreted by D cells in the fundus/corpus, exerts a tonic inhibitory influence on histamine secretion from ECL cells and acid secretion from parietal cells. Withdrawal of the inhibitory influence of somatostatin (i.e., disinhibition) by activation of cholinergic neurons initiates acid secretion and permits a maximal acid secretory response. A feedback pathway exists in both the antrum and corpus/fundus whereby luminal acid stimulates somatostatin secretion and thus restrains acid secretion. +, stimulation; -, inhibition.

Fig 11. Model illustrating the neural and paracrine pathways regulating gastrin and somatostatin (SST) secretion in the stomach. Preganglionic efferent vagal nerve fibers synapse, within the wall of the stomach, with intramural cholinergic (ACh) and peptidergic (gastrin-releasing peptide (GRP) and vasoactive intestinal peptide (VIP)) neurons that regulate gastrin and somatostatin secretion. In antrum, reciprocal paracrine pathways link somatostatin-secreting D cells and gastrin-secreting G cells. In fundus/corpus, reciprocal paracrine pathways link somatostatin-secreting D cells to acid-secreting parietal and histamine-secreting enterochromaffin-like (ECL) cells. During the basal interdigestive state, gastric acid secretion is maintained at low levels by the tonic inhibitory influence of somatostatin-secreting D cells on (i) parietal and ECL cells in the fundus/corpus and (ii) G cells in the antrum. During ingestion of a meal, cholinergic neurons are activated by the thought, smell, sight, and taste of food as well as by protein components of the meal and gastric distension. In the fundus/body, ACh, released from intramural cholinergic neurons, stimulates the parietal cell directly as well as indirectly by eliminating the inhibitory paracrine influence of somatostatin on parietal and ECL cells. The resultant increase in histamine stimulates the parietal cell directly via H2 receptors and indirectly via H3 receptors that further suppress somatostatin secretion. In the antrum, cholinergic neurons, activated by anticipation of the meal as well as luminal protein and high distension, stimulate gastrin secretion directly as well as indirectly by suppressing somatostatin secretion. Protein, acting via GRP neurons directly stimulates gastrin secretion. It should be emphasized that suppression of somatostatin permits an optimal gastrin response. As the meal empties the stomach, a number of pathways are actuated that restore somatostatin and thus restrain gastrin and acid secretion: (i) a paracrine pathway links gastrin to stimulation of somatostatin secretion, (ii) cholinergic neurons are less activated by anticipation of a meal as well by protein and distension, (iii) VIP neurons that stimulate somatostatin secretion are preferentially activated by low levels of distension, (iv) unbuffered luminal acid activates calcitonin gene-related peptide (CGRP) extrinsic sensory neurons that stimulate somatostatin secretion, and (v) enterogastrones (e.g. cholecystokinin), released from the small intestine, stimulate somatostatin secretion. +, stimulation; -, inhibition

Fig 12. Model illustrating the regulation of somatostatin and gastrin secretion in the antrum of the stomach by luminal acid, amino acids, and calcium as well as infection with Helicobacter pylori (HP). Unbuffered luminal acid activates calcitonin gene-related peptide (CGRP) extrinsic sensory neurons that, via an axon reflex, stimulate somatostatin secretion from D cells and thus inhibit gastrin secretion from G cells. Antisecretory agents, such as proton pump inhibitors, inhibit acid secretion and thus lessen activation of CGRP neurons leading to a decrease in somatostatin and reciprocal increase in gastrin secretion (hypergastrinemia). Protein stimulates gastrin secretion via activation of intramural neurons (Fig 11) but amino acids and calcium may act directly on the G cell. Acute infection with H. pylori (HP) activates CGRP neurons to stimulate somatostatin and thus inhibit gastrin (and acid) secretion; inhibition of acid facilitates colonization and infection. In patients with duodenal ulcer who have chronic HP infection of the antrum, the bacteria and/or cytokines released by the inflammatory infiltrate inhibit somatostatin and thus stimulate gastrin (and acid) secretion. +, stimulation; -, inhibition

Fig 13. Electromicroscopic image of a rat G cell. The cell expresses polarity with the apical border, lined by microvilli, exposed to the glandular lumen and the basolateral aspect packed with gastrin-containing secretory granules. The apical membrane may "taste" luminal contents whereas gastrin is secreted across the basolateral membrane into the local circulation. Courtesy to L.-I Larsson).

Fig. 14. Model illustrating the amino acid structure of somatostatin-14 (SST-14), somatostatin-28 (SST-28), and the synthetic somatostatin analogue, octreotide. The four amino acids, Phe-Trp-Lys-Thr, shaded in color, are crucial for the binding of somatostatin to its receptor. The disulfide bridge between two cysteine residues, present in each structure, is represented as -S-S-.

 


Related Articles:

Teaching Material

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Mitchell L. Schubert, Jens F. Rehfeld. Gastric Peptides—Gastrin and Somatostatin. Compr Physiol 2019, 10: 197-228. doi: 10.1002/cphy.c180035