Comprehensive Physiology Wiley Online Library

Gut Peptide Agonism in the Treatment of Obesity and Diabetes

Full Article on Wiley Online Library



Abstract

Obesity is a global healthcare challenge that gives rise to devastating diseases such as the metabolic syndrome, type‐2 diabetes (T2D), and a variety of cardiovascular diseases. The escalating prevalence of obesity has led to an increased interest in pharmacological options to counteract excess weight gain. Gastrointestinal hormones such as glucagon, amylin, and glucagon‐like peptide‐1 (GLP‐1) are well recognized for influencing food intake and satiety, but the therapeutic potential of these native peptides is overall limited by a short half‐life and an often dose‐dependent appearance of unwanted effects. Recent clinical success of chemically optimized GLP‐1 mimetics with improved pharmacokinetics and sustained action has propelled pharmacological interest in using bioengineered gut hormones to treat obesity and diabetes. In this article, we summarize the basic biology and signaling mechanisms of selected gut peptides and discuss how they regulate systemic energy and glucose metabolism. Subsequently, we focus on the design and evaluation of unimolecular drugs that combine the beneficial effects of selected gut hormones into a single entity to optimize the beneficial impact on systems metabolism. © 2020 American Physiological Society. Compr Physiol 10:99‐124, 2020.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. (A) Schematic of the systemic effects of selected gastrointestinal peptide hormones. Arrows are color codes by the hormone; arrow up indicates an increase, and arrow down a decrease. (B) Monoagonists in clinical use or en route for clinical use.
Figure 2. Figure 2. Schematic of selected unimolecular polyagonists with simultaneous activity at the receptors for GLP‐1, GIP, and glucagon.
Figure 3. Figure 3. Schematic representation of gut‐peptide‐based tissue‐specific delivery of nuclear hormones. Hormones are targeted to tissues expressing GLP‐1R. GLP‐1 activates canonical GLP‐1 signaling. The hypothesis residing in this concept is based on the vision that the ligand‐receptor complex is internalized into the peptide receptor target cell, followed by dissociation of the nuclear hormone cargo and activation of nuclear hormone signaling.


Figure 1. (A) Schematic of the systemic effects of selected gastrointestinal peptide hormones. Arrows are color codes by the hormone; arrow up indicates an increase, and arrow down a decrease. (B) Monoagonists in clinical use or en route for clinical use.


Figure 2. Schematic of selected unimolecular polyagonists with simultaneous activity at the receptors for GLP‐1, GIP, and glucagon.


Figure 3. Schematic representation of gut‐peptide‐based tissue‐specific delivery of nuclear hormones. Hormones are targeted to tissues expressing GLP‐1R. GLP‐1 activates canonical GLP‐1 signaling. The hypothesis residing in this concept is based on the vision that the ligand‐receptor complex is internalized into the peptide receptor target cell, followed by dissociation of the nuclear hormone cargo and activation of nuclear hormone signaling.
References
 1.Accili D, Taylor SI. Targeted inactivation of the insulin receptor gene in mouse 3T3‐L1 fibroblasts via homologous recombination [Online]. Proc Natl Acad Sci U S A 88: 4708‐4712, 1991. http://www.ncbi.nlm.nih.gov/pubmed/2052553 (accessed 30 Nov. 2018).
 2.Acuna‐Goycolea C. Peptide YY3‐36 inhibits both anorexigenic proopiomelanocortin and orexigenic neuropeptide Y neurons: Implications for hypothalamic regulation of energy homeostasis. J Neurosci 25: 10510‐10519, 2005.
 3.Adrian TE, Bloom SR, Hermansen K, Iversen J. Pancreatic polypeptide, glucagon and insulin secretion from the isolated perfused canine pancreas [Online]. Diabetologia 14: 413‐417, 1978. http://www.ncbi.nlm.nih.gov/pubmed/669104(accessed 27 Nov. 2018).
 4.Agersø H, Jensen LB, Elbrønd B, Rolan P, Zdravkovic M. The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long‐acting GLP‐1 derivative, in healthy men. Diabetologia 45: 195‐202, 2002.
 5.Alcántara AI, Morales M, Delgado E, López‐Delgado MI, Clemente F, Luque MA, Malaisse WJ, Valverde I, Villanueva‐Peñacarrillo ML. Exendin‐4 agonist and exendin(9‐39)amide antagonist of the GLP‐1(7‐36)amide effects in liver and muscle [Online]. Arch Biochem Biophys 341: 1‐7, 1997. http://www.ncbi.nlm.nih.gov/pubmed/9143346 (accessed 27 Nov. 2018).
 6.Althage MC, Ford EL, Wang S, Tso P, Polonsky KS, Wice BM. Targeted ablation of glucose‐dependent insulinotropic polypeptide‐producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 283: 18365‐18376, 2008.
 7.Alvarez E, Martinez MD, Roncero I, Chowen JA, Garcia‐Cuartero B, Gispert JD, Sanz C, Vazquez P, Maldonado A, de Caceres J, Desco M, Pozo MA, Blazquez E. The expression of GLP‐1 receptor mRNA and protein allows the effect of GLP‐1 on glucose metabolism in the human hypothalamus and brainstem. J Neurochem 92: 798‐806, 2005.
 8.Ambery P, Parker VE, Stumvoll M, Posch MG, Heise T, Plum‐Moerschel L, Tsai LF, Robertson D, Jain M, Petrone M, Rondinone C, Hirshberg B, Jermutus L. MEDI0382, a GLP‐1 and glucagon receptor dual agonist, in obese or overweight patients with type 2 diabetes: A randomised, controlled, double‐blind, ascending dose and phase 2a study. Lancet 391: 2607‐2618, 2018.
 9.Andari Sawaya R, Jaffe J, Friedenberg L, Friedenberg FK. Vitamin, mineral, and drug absorption following bariatric surgery. Curr Drug Metab 13: 1345‐1355, 2012.
 10.Andersen A, Lund A, Knop FK, Vilsbøll T. Glucagon‐like peptide 1 in health and disease. Nat Rev Endocrinol 14: 390‐403, 2018.
 11.Aroda VR, Rosenstock J, Terauchi Y, Jeppesen O, Christiansen E, Hertz CL, Haluzik M. Effect and safety of oral semaglutide monotherapy in type 2 diabetes—PIONEER 1 trial. Diabetes: 2018, 2018.
 12.Astrup A. Drug management of obesity—Efficacy versus safety. N Engl J Med 363: 288‐290, 2010.
 13.Astrup A, Madsbad S, Breum L, Jensen TJ, Kroustrup JP, Larsen TM. Effect of tesofensine on bodyweight loss, body composition, and quality of life in obese patients: A randomised, double‐blind, placebo‐controlled trial. Lancet (London, England) 372: 1906‐1913, 2008.
 14.Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, Cappola TP, Margulies KB, Drucker DJ. GLP‐1 receptor expression within the human heart. Endocrinology 159: 1570‐1584, 2018.
 15.Bailey CJ, Flatt PR, Kwasowski P, Powell CJ, Marks V. Immunoreactive gastric inhibitory polypeptide and K cell hyperplasia in obese hyperglycaemic (ob/ob) mice fed high fat and high carbohydrate cafeteria diets [Online]. Acta Endocrinol 112: 224‐229, 1986. http://www.ncbi.nlm.nih.gov/pubmed/3526784 (accessed 28 Nov. 2018).
 16.Banks WA. The source of cerebral insulin. Eur J Pharmacol 490: 5‐12, 2004.
 17.Barrington P, Chien JY, Tibaldi F, Showalter HDH, Schneck K, Ellis B. LY2189265, a long‐acting glucagon‐like peptide‐1 analogue, showed a dose‐dependent effect on insulin secretion in healthy subjects. Diabetes Obes Metab 13: 434‐438, 2011.
 18.Batterham RL, Ffytche DH, Rosenthal JM, Zelaya FO, Barker GJ, Withers DJ, Williams SCR. PYY modulation of cortical and hypothalamic brain areas predicts feeding behaviour in humans. Nature 450: 106‐109, 2007.
 19.Bayham BE, Greenway FL, Bellanger DE, O'Neil CE. Early resolution of type 2 diabetes seen after Roux‐en‐Y gastric bypass and vertical sleeve gastrectomy. Diabetes Technol Ther 14: 30‐34, 2012.
 20.Beglinger C, Degen L, Matzinger D, D'Amato M, Drewe J. Loxiglumide, a CCK‐A receptor antagonist, stimulates calorie intake and hunger feelings in humans. Am J Physiol Regul Integr Comp Physiol 280: R1149‐R1154, 2001.
 21.Bello NT, Zahner MR. Tesofensine, a monoamine reuptake inhibitor for the treatment of obesity [Online]. Curr Opin Investig Drugs 10: 1105‐1116, 2009. http://www.ncbi.nlm.nih.gov/pubmed/19777399 (accessed 27 Mar. 2019).
 22.Belza A, Ritz C, Sørensen MQ, Holst JJ, Rehfeld JF, Astrup A. Contribution of gastroenteropancreatic appetite hormones to protein‐induced satiety. Am J Clin Nutr 97: 980‐989, 2013.
 23.Berglund ED, Liu C, Sohn J‐W, Liu T, Kim MH, Lee CE, Vianna CR, Williams KW, Xu Y, Elmquist JK. Serotonin 2C receptors in pro‐opiomelanocortin neurons regulate energy and glucose homeostasis. J Clin Invest 123: 5061‐5070, 2013.
 24.Bettge K, Kahle M, Abd MS, Aziz E, Meier JJ, Nauck MA. Occurrence of nausea, vomiting and diarrhoea reported as adverse events in clinical trials studying glucagon‐like peptide‐1 receptor agonists: A systematic analysis of published clinical trials. Diabetes Obes Metab 19: 336‐347, 2017.
 25.Blevins T, Pullman J, Malloy J, Yan P, Taylor K, Schulteis C, Trautmann M, Porter L. DURATION‐5: Exenatide once weekly resulted in greater improvements in glycemic control compared with exenatide twice daily in patients with type 2 diabetes. J Clin Endocrinol Metab 96: 1301‐1310, 2011.
 26.Bodnaruc AM, Prud'homme D, Blanchet R, Giroux I. Nutritional modulation of endogenous glucagon‐like peptide‐1 secretion: A review. Nutr Metab (Lond) 13: 92, 2016.
 27.Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, Baldock PA, Herzog H, Sainsbury A. PYY transgenic mice are protected against diet‐induced and genetic obesity. Neuropeptides 42: 19‐30, 2008.
 28.Bohula EA, Wiviott SD, McGuire DK, Inzucchi SE, Kuder J, Im K, Fanola CL, Qamar A, Brown C, Budaj A, Garcia‐Castillo A, Gupta M, Leiter LA, Weissman NJ, White HD, Patel T, Francis B, Miao W, Perdomo C, Dhadda S, Bonaca MP, Ruff CT, Keech AC, Smith SR, Sabatine MS, Scirica BM. Cardiovascular safety of lorcaserin in overweight or obese patients. N Engl J Med, 2018. DOI: 10.1093/nq/s3‐II.46.389‐a.
 29.Bojsen‐Møller KN, Dirksen C, Jørgensen NB, Jacobsen SH, Serup AK, Albers PH, Hansen DL, Worm D, Naver L, Kristiansen VB, Wojtaszewski JFP, Kiens B, Holst JJ, Richter EA, Madsbad S. Early enhancements of hepatic and later of peripheral insulin sensitivity combined with increased postprandial insulin secretion contribute to improved glycemic control after Roux‐en‐Y gastric bypass. Diabetes 63: 537‐557, 2014.
 30.Brandt SJ, Kleinert M, Tschöp MH, Müller TD. Are peptide conjugates the golden therapy against obesity? J Endocrinol 238: R109‐R119, 2018.
 31.Breisch ST, Zemlan FP, Hoebel BG. Hyperphagia and obesity following serotonin depletion by intraventricular p‐chlorophenylalanine. Science 192: 382‐385, 1976.
 32.Brolin RE, Robertson LB, Kenler HA, Cody RP. Weight loss and dietary intake after vertical banded gastroplasty and Roux‐en‐Y gastric bypass. Ann Surg 744: 271‐280, 1994.
 33.Brown JC. A gastric inhibitory polypeptide. I. The amino acid composition and the tryptic peptides [Online]. Can J Biochem 49: 255‐261, 1971. http://www.ncbi.nlm.nih.gov/pubmed/5545261 (accessed 27 Nov. 2018).
 34.Brown JC, Pederson RA. A multiparameter study on the action of preparations containing cholecystokinin‐pancreozymin [Online]. Scand J Gastroenterol 5: 537‐541, 1970. http://www.ncbi.nlm.nih.gov/pubmed/4918420 (accessed 27 Nov. 2018).
 35.Brüning JC, Gautam D, Burks DJ, Gillette J, Schubert M, Orban PC, Klein R, Krone W, Müller‐Wieland D, Kahn CR. Role of brain insulin receptor in control of body weight and reproduction [Online]. Science 289: 2122‐2125, 2000. http://www.ncbi.nlm.nih.gov/pubmed/11000114 (accessed 28 Nov. 2018).
 36.Brüning JC, Michael MD, Winnay JN, Hayashi T, Hörsch D, Accili D, Goodyear LJ, Kahn CR. A muscle‐specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance [Online]. Mol Cell 2: 559‐569, 1998. http://www.ncbi.nlm.nih.gov/pubmed/9844629.
 37.Bünemann M, Gerhardstein BL, Gao T, Hosey MM. Functional regulation of L‐type calcium channels via protein kinase A‐mediated phosphorylation of the beta(2) subunit. J Biol Chem 274: 33851‐33854, 1999.
 38.Burge JC, Schaumburg JZ, Choban PS, DiSilvestro RA, Flancbaum L. Changes in patients' taste acuity after Roux‐en‐Y gastric bypass for clinically severe obesity. J Am Diet Assoc 95: 666‐670, 1995.
 39.Burgess E, Hassmén P, Pumpa KL. Determinants of adherence to lifestyle intervention in adults with obesity: A systematic review. Clin Obes 7: 123‐135, 2017.
 40.Burmeister MA, Ayala JE, Smouse H, Landivar‐Rocha A, Brown JD, Drucker DJ, Stoffers DA, Sandoval DA, Seeley RJ, Ayala JE. The hypothalamic glucagon‐like peptide 1 receptor is sufficient but not necessary for the regulation of energy balance and glucose homeostasis in mice. Diabetes 66: 372‐384, 2017.
 41.Buse JB, Drucker DJ, Taylor KL, Kim T, Walsh B, H H, Wilhelm K, Trautmann M, Shen LZ, Porter LE, DURATION‐1 Study Group. DURATION‐1: Exenatide once weekly produces sustained glycemic control and weight loss over 52 weeks. Diabetes Care 33: 1255‐1261, 2010.
 42.Buse JB, Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH, Zychma M, Blonde L. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: A 26‐week randomised, parallel‐group, multinational, open‐label trial (LEAD‐6). Lancet 374: 39‐47, 2009.
 43.Bush MA, Matthews JE, De Boever EH, Dobbins RL, Hodge RJ, Walker SE, Holland MC, Gutierrez M, Stewart MW. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long‐acting glucagon‐like peptide‐1 mimetic, in healthy subjects. Diabetes Obes Metab 11: 498‐505, 2009.
 44.Calles‐Escandón J. Insulin dissociates hepatic glucose cycling and glucagon‐induced thermogenesis in man [Online]. Metabolism 43: 1000‐1005, 1994. http://www.ncbi.nlm.nih.gov/pubmed/8052138 (accessed 30 Nov. 2018).
 45.Cannistra LB, Davis SM, Bauman AG. Dietary patterns and blood pressure. N Engl J Med 337: 636‐638, 1997.
 46.Cao X, Xu P, Oyola MG, Xia Y, Yan X, Saito K, Zou F, Wang C, Yang Y, Hinton A, Yan C, Ding H, Zhu L, Yu L, Yang B, Feng Y, Clegg DJ, Khan S, DiMarchi R, Mani SK, Tong Q, Xu Y. Estrogens stimulate serotonin neurons to inhibit binge‐like eating in mice. J Clin Invest 124: 4351‐4362, 2014.
 47.Capozzi ME, Svendsen B, Encisco SE, Lewandowski SL, Martin MD, Lin H, Jaffe JL, Coch RW, Haldeman JM, MacDonald PE, Merrins MJ, D'Alessio DA, Campbell JE. β Cell tone is defined by proglucagon peptides through cAMP signaling. JCI Insight 4, pii: 126742, 2019.
 48.Carlsson LMS, Peltonen M, Ahlin S, Anveden Å, Bouchard C, Carlsson B, Jacobson P, Lönroth H, Maglio C, Näslund I, Pirazzi C, Romeo S, Sjöholm K, Sjöström E, Wedel H, Svensson P‐A, Sjöström L. Bariatric surgery and prevention of type 2 diabetes in Swedish obese subjects. N Engl J Med 367: 695‐704, 2012.
 49.Carswell KA, Vincent RP, Belgaumkar AP, Sherwood RA, Amiel SA, Patel AG, le Roux CW. The effect of bariatric surgery on intestinal absorption and transit time. Obes Surg 24: 796‐805, 2014.
 50.Caspi CE, Sorensena G, Subramaniana SV, Kawachia I. The local food environment and diet: A systematic review. Health Place 18: 3‐34, 2012.
 51.Castillo EJ, Delgado‐Aros S, Camilleri M, Burton D, Stephens D, O'Connor‐Semmes R, Walker A, Shachoy‐Clark A, Zinsmeister AR. Effect of oral CCK‐1 agonist GI181771X on fasting and postprandial gastric functions in healthy volunteers. Am J Physiol Liver Physiol 287: G363‐G369, 2004.
 52.Centers for Disease Control and Prevention (CDC). Cardiac valvulopathy associated with exposure to fenfluramine or dexfenfluramine: U.S. Department of Health and Human Services interim public health recommendations, November 1997 [Online]. MMWR Morb Mortal Wkly Rep 46: 1061‐1066, 1997. http://www.ncbi.nlm.nih.gov/pubmed/9385873 (accessed 27 Nov. 2018).
 53.Chakradhar S. All in one: Researchers create combination drugs for diabetes and obesity. Nat Med 22: 694‐696, 2016.
 54.Chan JL, Mun EC, Stoyneva V, Mantzoros CS, Goldfine AB. Peptide YY levels are elevated after gastric bypass surgery. Obesity 14: 194‐198, 2006.
 55.Chan JL, Roth JD, Weyer C. It takes two to tango. J Investig Med 57: 777‐783, 2009.
 56.Chandarana K, Gelegen C, Irvine EE, Choudhury AI, Amouyal C, Andreelli F, Withers DJ, Batterham RL. Peripheral activation of the Y2‐receptor promotes secretion of GLP‐1 and improves glucose tolerance. Mol Metab 2: 142‐152, 2013.
 57.Chandarana K, Gelegen C, Karra E, Choudhury AI, Drew ME, Fauveau V, Viollet B, Andreelli F, Withers DJ, Batterham RL. Diet and gastrointestinal bypass‐induced weight loss: The roles of ghrelin and peptide YY. Diabetes 60: 810‐818, 2011.
 58.Chang SH, Stoll CRT, Song J, Varela JE, Eagon CJ, Colditz GA. The effectiveness and risks of bariatric surgery an updated systematic review and meta‐analysis, 2003‐2012. JAMA Surg 149: 275‐287, 2014.
 59.Charlton MR, Adey DB, Nair KS. Evidence for a catabolic role of glucagon during an amino acid load. J Clin Invest 98: 90‐99, 1996.
 60.Choi IY, Kim JK, Lee JS, Park E, Kim YH, Jung SY, Kim SJ. Effect of a novel long‐acting GLP‐1/GIP/glucagon triple agonist (HM15211) in a NASH and fibrosis animal model. Diabetes 67: 1106‐P, 2018.
 61.Christensen M, Vedtofte L, Holst JJ, Vilsboll T, Knop FK. Glucose‐dependent insulinotropic polypeptide: A bifunctional glucose‐dependent regulator of glucagon and insulin secretion in humans. Diabetes 60: 3103‐3109, 2011.
 62.Christensen R, Kristensen PK, Bartels EM, Bliddal H, Astrup A. Efficacy and safety of the weight‐loss drug rimonabant: A meta‐analysis of randomised trials. Lancet 370: 1706‐1730, 2007.
 63.Clemmensen C, Chabenne J, Finan B, Sullivan L, Fischer K, Küchler D, Sehrer L, Ograjsek T, Hofmann SM, Schriever SC, Pfluger PT, Pinkstaff J, Tschöp MH, DiMarchi R, Müller TD, Kuchler D, Sehrer L, Ograjsek T, Hofmann SM, Schriever SC, Pfluger PT, Pinkstaff J, Tschop MH, DiMarchi R, Muller TD. GLP‐1/glucagon coagonism restores leptin responsiveness in obese mice chronically maintained on an obesogenic diet. Diabetes 63: 1422‐1427, 2014.
 64.Clemmensen C, Finan B, Fischer K, Tom RZ, Legutko B, Sehrer L, Heine D, Grassl N, Meyer CW, Henderson B, Hofmann SM, Tschop MH, Van der Ploeg LH, Muller TD. Dual melanocortin‐4 receptor and GLP‐1 receptor agonism amplifies metabolic benefits in diet‐induced obese mice. EMBO Mol Med 7: 288‐298, 2015.
 65.Connolly HM, Crary JL, McGoon MD, Hensrud DD, Edwards BS, Edwards WD, Schaff HV. Valvular heart disease associated with fenfluramine–phentermine. N Engl J Med 337: 581‐588, 1997.
 66.Coskun T, Sloop KW, Loghin C, Alsina‐Fernandez J, Urva S, Bokvist KB, Cui X, Briere DA, Cabrera O, Roell WC, Kuchibhotla U, Moyers JS, Benson CT, Gimeno RE, D'Alessio DA, Haupt A. LY3298176, a novel dual GIP and GLP‐1 receptor agonist for the treatment of type 2 diabetes mellitus: From discovery to clinical proof of concept. Mol Metab 18: 3‐14, 2018.
 67.Costa E, Groppetti A, Revuelta A. Action of fenfluramine on monoamine stores of rat tissues. Br J Pharmacol 41: 57‐64, 1971.
 68.Cota D, Tschöp MH, Horvath TL, Levine AS. Cannabinoids, opioids and eating behavior: The molecular face of hedonism? Brain Res Rev 51: 85‐107, 2006.
 69.Côté CD, Zadeh‐Tahmasebi M, Rasmussen BA, Duca FA, Lam TKT. Hormonal signaling in the gut. J Biol Chem 289: 11642‐11649, 2014.
 70.Creutzfeldt WO, Kleine N, Willms B, Orskov C, Holst JJ, Nauck MA. Glucagonostatic actions and reduction of fasting hyperglycemia by exogenous glucagon‐like peptide I(7‐36) amide in type I diabetic patients [Online]. Diabetes Care 19: 580‐586, 1996. http://www.ncbi.nlm.nih.gov/pubmed/8725855 (accessed 29 Nov. 2018).
 71.Cryer PE, Davis SN, Shamoon H. Hypoglycemia in diabetes. Diabetes Care 26: 1902‐1912, 2003.
 72.Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ. Plasma ghrelin levels after diet‐induced weight loss or gastric bypass surgery. N Engl J Med 346: 1623‐1630, 2002.
 73.Cypess AM, Kahn CR. Brown fat as a therapy for obesity and diabetes. Curr Opin Endocrinol Diabetes Obes 17: 143‐149, 2010.
 74.Cypess AM, Weiner LS, Roberts‐Toler C, Elía EF, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM. Activation of human brown adipose tissue by a β3‐adrenergic receptor agonist. Cell Metab 21: 33‐38, 2015.
 75.D'Agostino G, Lyons D, Cristiano C, Lettieri M, Olarte‐Sanchez C, Burke LK, Greenwald‐Yarnell M, Cansell C, Doslikova B, Georgescu T, Martinez de Morentin PB, Myers MG, Rochford JJ, Heisler LK. Nucleus of the solitary tract serotonin 5‐HT2C receptors modulate food intake. Cell Metab 28: 619‐630.e5, 2018.
 76.Damond N, Thorel F, Moyers JS, Charron MJ, Vuguin PM, Powers AC, Herrera PL. Blockade of glucagon signaling prevents or reverses diabetes onset only if residual β‐cells persist. Elife 5, pii: e13828, 2016.
 77.Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ, Chaudhary N, Holland J, Hembree J, Abplanalp W, Grant E, Ruehl J, Wilson H, Kirchner H, Lockie SH, Hofmann S, Woods SC, Nogueiras R, Pfluger PT, Perez‐Tilve D, Dimarchi R, Tschöp MH. A new glucagon and GLP‐1 co‐agonist eliminates obesity in rodents. Nat Chem Biol 5: 749‐757, 2009.
 78.De Silva A, Bloom SR. Gut hormones and appetite control: A focus on PYY and GLP‐1 as therapeutic targets in obesity. Gut Liver 6: 10‐20, 2012.
 79.Deacon CF, Knudsen LB, Madsen K, Wiberg FC, Jacobsen O, Holst JJ. Dipeptidyl peptidase IV resistant analogues of glucagon‐like peptide‐1 which have extended metabolic stability and improved biological activity. Diabetologia 41: 271‐278, 1998.
 80.Defronzo RA, Ratner RE, Jenny Han M, Dennis D, Kim M, Mark S, Fineman B, Alain D, Baron M. Effects of exenatide (exendin‐4) on glycemic control and weight over 30 weeks in metformin‐treated patients with type 2 diabetes. Diabetes Care 28: AKB 100.67, 2005.
 81.Després J‐P, Golay A, Sjöström L. Rimonabant in Obesity‐Lipids Study Group. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N Engl J Med 353: 2121‐2134, 2005.
 82.Dicker A, Zhao J, Cannon B, Nedergaard J. Apparent thermogenic effect of injected glucagon is not due to a direct effect on brown fat cells. Am J Physiol 275: R1674‐R1682, 1998.
 83.Dimitriadis GK, Randeva MS, Miras AD. Potential hormone mechanisms of bariatric surgery. Curr Obes Rep 6: 253‐265, 2017.
 84.Ding WG, Renström E, Rorsman P, Buschard K, Gromada J. Glucagon‐like peptide I and glucose‐dependent insulinotropic polypeptide stimulate Ca2+‐induced secretion in rat alpha‐cells by a protein kinase A‐mediated mechanism [Online]. Diabetes 46: 792‐800, 1997. http://www.ncbi.nlm.nih.gov/pubmed/9133546 (accessed 29 Nov. 2018).
 85.DiNicolantonio JJ, Chatterjee S, O'Keefe JH, Meier P. Lorcaserin for the treatment of obesity? A closer look at its side effects. Open Heart 1: 19‐21, 2014.
 86.DiPilato LM, Ahmad F, Harms M, Seale P, Manganiello V, Birnbaum MJ. The role of PDE3B phosphorylation in the inhibition of lipolysis by insulin. Mol Cell Biol 35: 2752‐2760, 2015.
 87.Dodson G, Steiner D. The role of assembly in insulin's biosynthesis. Curr Opin Struct Biol 8: 189‐194, 1998.
 88.Doi K, Kuroshima A. Modified metabolic responsiveness to glucagon in cold‐acclimated and heat‐acclimated rats [Online]. Life Sci 30: 785‐791, 1982. http://www.ncbi.nlm.nih.gov/pubmed/7070233 (accessed 1 Dec. 2018).
 89.Doucet É, Laviolette M, Imbeault P, Strychar I, Rabasa‐Lhoret R, Prud'homme D. Total peptide YY is a correlate of postprandial energy expenditure but not of appetite or energy intake in healthy women. Metabolism 57: 1458‐1464, 2008.
 90.Doyle ME, Egan JM. Mechanisms of action of glucagon‐like peptide 1 in the pancreas. Pharmacol Ther 113: 546‐593, 2007.
 91.Drucker DJ. The biology of incretin hormones. Cell Metab 3: 153‐165, 2006.
 92.Drucker DJ, Habener JF, Holst JJ. Discovery, characterization, and clinical development of the glucagon‐like peptides. J Clin Invest 127: 4217‐4227, 2017.
 93.Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF. Glucagon‐like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci U S A 84: 3434‐3438, 1987.
 94.Dunning BE, Foley JE, Ahrén B. Alpha cell function in health and disease: Influence of glucagon‐like peptide‐1. Diabetologia 48: 1700‐1713, 2005.
 95.Dupre J, Ross SA, Watson D, Brown JC. Stimulation of insulin secretion by gastric inhibitory polypeptide in man. J Clin Endocrinol Metab 37: 826‐828, 1973.
 96.Eckel RH, Fujimoto WY, Brunzell JD. Gastric inhibitory polypeptide enhanced lipoprotein lipase activity in cultured preadipocytes [Online]. Diabetes 28: 1141‐1142, 1979. http://www.ncbi.nlm.nih.gov/pubmed/510813 (accessed 28 Nov. 2018).
 97.Edelman S, Garg S, Frias J, Maggs D, Wang Y, Zhang B, Strobel S, Lutz K, Kolterman O. A double‐blind, placebo‐controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care: 29, 2189‐95, 2006.
 98.Edvell A, Lindström P. Initiation of increased pancreatic islet growth in young normoglycemic mice (Umeå +/?). Endocrinology 140: 778‐783, 1999.
 99.Elliott HR, Shihab HA, Lockett GA, Holloway JW, Allan F, Davey G, Susan S, Gaunt TR, Relton CL, Elliott HR. Preproglucagon neurons in the nucleus of the solitary tract are the main source of brain GLP‐1, mediate stress‐induced hypophagia, and limit unusually large intakes of food. Diabetes 44: 1‐34, 2018.
 100.Eng J, Kleinman WA, Singh L, Singh G, Raufman JP. Isolation and characterization of exendin‐4, an exendin‐3 analogue, from Heloderma suspectum venom: Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem 267: 7402‐7405, 1992.
 101.Erthal LCS, Marques AF, Almeida FCL, Melo GLM, Carvalho CM, Palmieri LC, Cabral KMS, Fontes GN, Lima LMTR. Regulation of the assembly and amyloid aggregation of murine amylin by zinc. Biophys Chem 218: 58‐70, 2016.
 102.Evers A, Haack T, Lorenz M, Bossart M, Elvert R, Henkel B, Stengelin S, Kurz M, Glien M, Dudda A, Lorenz K, Kadereit D, Wagner M. Design of novel exendin‐based dual glucagon‐like peptide 1 (GLP‐1)/glucagon receptor agonists. J Med Chem 60: 4293‐4303, 2017.
 103.Farilla L, Hui H, Bertolotto C, Kang E, Bulotta A, Di Mario U, Perfetti R. Glucagon‐like peptide‐1 promotes islet cell growth and inhibits apoptosis in Zucker diabetic rats. Endocrinology 143: 4397‐4408, 2002.
 104.Finan B, Capozzi ME, Campbell JE. Repositioning glucagon action in the physiology and pharmacology of diabetes. Diabetes (Published online ahead of print June 9, 2019).
 105.Finan B, Ma T, Ottaway N, Müller TD, Habegger KM, Heppner KM, Kirchner H, Holland J, Hembree J, Raver C, Lockie SH, Smiley DL, Gelfanov V, Yang B, Hofmann S, Bruemmer D, Drucker DJ, Pfluger PT, Perez‐tilve D, Gidda J, Vignati L, Zhang L, Hauptman JB, Lau M, Brecheisen M, Uhles S, Riboulet W, Hainaut E, Sebokova E. Unimolecular dual incretins maximize metabolic benefits in rodents, monkeys, and humans. Sci Transl Med 5: 209ra151, 2013.
 106.Finan B, Müller TD, Clemmensen C, Perez‐Tilve D, DiMarchi RD, Tschöp MH. Reappraisal of GIP pharmacology for metabolic diseases. Trends Mol Med 22: 359‐376, 2016.
 107.Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, Chabenne J, Zhang L, Habegger KM, Fischer K, Campbell JE, Sandoval D, Seeley RJ, Bleicher K, Uhles S, Riboulet W, Funk J, Hertel C, Belli S, Sebokova E, Conde‐Knape K, Konkar A, Drucker DJ, Gelfanov V, Pfluger PT, Müller TD, Perez‐Tilve D, DiMarchi RD, Tschöp MH. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21: 27‐36, 2015.
 108.Finan B, Yang B, Ottaway N, Stemmer K, Müller TD, Yi CX, Habegger K, Schriever SC, García‐Cáceres C, Kabra DG, Hembree J, Holland J, Raver C, Seeley RJ, Hans W, Irmler M, Beckers J, De Angelis MH, Tiano JP, Mauvais‐Jarvis F, Perez‐Tilve D, Pfluger P, Zhang L, Gelfanov V, Dimarchi RD, Tschöp MH. Targeted estrogen delivery reverses the metabolic syndrome. Nat Med 18: 1847‐1856, 2012.
 109.Fisher SJ, Kahn CR. Insulin signaling is required for insulin's direct and indirect action on hepatic glucose production. J Clin Invest 111: 463‐468, 2003.
 110.Flack KD, Ufholz KE, Johnson LK, Fitzgerald JS, Roemmich JN. Energy compensation in response to aerobic exercise training in overweight adults. Am J Physiol Regul Integr Comp Physiol, 2018. DOI: 10.1152/ajpregu.00071.2018.
 111.Flatt PR, Bailey CJ, Kwasowski P, Swanston‐Flatt SK, Marks V. Abnormalities of GIP in spontaneous syndromes of obesity and diabetes in mice. Diabetes 32: 433‐435, 1983.
 112.Frias JP, Iii EJB, Vignati L, Owen K, Dimarchi RD, Schmitt C, Owen K. Clinical and translational report the sustained effects of a dual GIP/GLP‐1 receptor clinical and translational report the sustained effects of a dual in patients with type 2 diabetes. Cell Metab, 2017. DOI: 10.1016/j.cmet.2017.07.011.
 113.Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, Urva S, Gimeno RE, Milicevic Z, Robins D, Haupt A. Efficacy and safety of LY3298176, a novel dual GIP and GLP‐1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo‐controlled and active comparator‐controlled phase 2 trial. Lancet 392: 2180‐2193, 2018.
 114.Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta‐cell dysfunction in diabetes. Curr Diabetes Rev 9: 25‐53, 2013.
 115.Fujioka K, Seaton TB, Rowe E, Jelinek CA, Raskin P, Lebovitz HE, Weinstein SP, Sibutramine/Diabetes Clinical Study Group. Weight loss with sibutramine improves glycaemic control and other metabolic parameters in obese patients with type 2 diabetes mellitus [Online]. Diabetes Obes Metab 2: 175‐187, 2000. http://www.ncbi.nlm.nih.gov/pubmed/11220553 (accessed 27 Nov. 2018).
 116.Gao Q, Mezei G, Nie Y, Rao Y, Choi CS, Bechmann I, Leranth C, Toran‐Allerand D, Priest CA, Roberts JL, Gao X‐B, Mobbs C, Shulman GI, Diano S, Horvath TL. Anorectic estrogen mimics leptin's effect on the rewiring of melanocortin cells and Stat3 signaling in obese animals. Nat Med 13: 89‐94, 2007.
 117.Garattini S, Mennini T, Bendotti C, Invernizzi R, Samanin R. Neurochemical mechanism of action of drugs which modify feeding via the serotoninergic system. Appetite 7: 15‐38, 1986.
 118.Gasbjerg LS, Christensen MB, Hartmann B, Lanng AR, Sparre‐Ulrich AH, Gabe MBN, Dela F, Vilsbøll T, Holst JJ, Rosenkilde MM, Knop FK. GIP(3‐30)NH2 is an efficacious GIP receptor antagonist in humans: A randomised, double‐blinded, placebo‐controlled, crossover study. Diabetologia 61: 413‐423, 2018.
 119.Gault VA, Bhat VK, Irwin N, Flatt PR. A novel glucagon‐like peptide‐1 (GLP‐1)/glucagon hybrid peptide with triple‐acting agonist activity at glucose‐dependent insulinotropic polypeptide, GLP‐1, and glucagon receptors and therapeutic potential in high fat‐fed mice. J Biol Chem 288: 35581‐35591, 2013.
 120.Geary N, Smith GP. Selective hepatic vagotomy blocks pancreatic glucagon's satiety effect. Physiol Behav 31: 391‐394, 1983.
 121.Gedulin BR, Jodka CM, Herrmann K, Young AA. Role of endogenous amylin in glucagon secretion and gastric emptying in rats demonstrated with the selective antagonist, AC187. Regul Pept 137: 121‐127, 2006.
 122.Gibbs J, Young RC, Smith GP. Cholecystokinin decreases food intake in rats [Online]. J Comp Physiol Psychol 84: 488‐495, 1973. http://www.ncbi.nlm.nih.gov/pubmed/4745816 (accessed 29 Nov. 2018).
 123.Glaesner W, Mark Vick A, Millican R, Ellis B, Tschang S‐H, Tian Y, Bokvist K, Brenner M, Koester A, Porksen N, Etgen G, Bumol T. Engineering and characterization of the long‐acting glucagon‐like peptide‐1 analogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev 26: 287‐296, 2010.
 124.Gogebakan O, Andres J, Biedasek K, Mai K, Kuhnen P, Krude H, Isken F, Rudovich N, Osterhoff MA, Kintscher U, Nauck M, Pfeiffer AFH, Spranger J. Glucose‐dependent insulinotropic polypeptide reduces fat‐specific expression and activity of 11‐hydroxysteroid dehydrogenase type 1 and inhibits release of free fatty acids. Diabetes 61: 292‐300, 2012.
 125.Goldfine AB, Fonseca V, Jablonski KA, Chen YDI, Tipton L, Staten MA, Shoelson SE. Salicylate (salsalate) in patients with type 2 diabetes: A randomized trial. Ann Intern Med 159: 1‐12, 2013.
 126.Goldfine AB, Silver R, Aldhahi W, Cai D, Tatro E, Lee J, Shoelson SE. Use of salsalate to target inflammation in the treatment of insulin resistance and type 2 diabetes. Clin Transl Sci 1: 36‐43, 2008.
 127.González N, Acitores A, Sancho V, Valverde I, Villanueva‐Peñacarrillo ML. Effect of GLP‐1 on glucose transport and its cell signalling in human myocytes. Regul Pept 126: 203‐211, 2005.
 128.Gotfredsen CF, Molck A‐M, Thorup I, Nyborg NCB, Salanti Z, Knudsen LB, Larsen MO. The human GLP‐1 analogs liraglutide and semaglutide: Absence of histopathological effects on the pancreas in nonhuman primates. Diabetes 63: 2486‐2497, 2014.
 129.Grandl G, Straub L, Rudigier C, Arnold M, Wueest S, Konrad D, Wolfrum C. Short‐term feeding of a ketogenic diet induces more severe hepatic insulin resistance than a obesogenic high‐fat diet. J Physiol 19: 4597‐4609, 2018.
 130.Grandl G, Wolfrum C. Hemostasis, endothelial stress, inflammation, and the metabolic syndrome. Semin Immunopathol 40: 215‐224, 2018. DOI: 101007/s00281‐017‐0666‐5.
 131.Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol 29: 415‐445, 2011.
 132.Gribble FM, Reimann F. Enteroendocrine cells: Chemosensors in the intestinal epithelium. Annu Rev Physiol 78: 277‐299, 2016.
 133.Gual P, Le Marchand‐Brustel Y, Tanti J‐F. Positive and negative regulation of insulin signaling through IRS‐1 phosphorylation. Biochimie 87: 99‐109, 2005.
 134.Guida C, Stephen SD, Watson M, Dempster N, Larraufie P, Marjot T, Cargill T, Rickers L, Pavlides M, Tomlinson J, Cobbold JFL, Zhao C‐M, Chen D, Gribble F, Reimann F, Gillies R, Sgromo B, Rorsman P, Ryan JD, Ramracheya RD. PYY plays a key role in the resolution of diabetes following bariatric surgery in humans. EBioMedicine 40: 67‐76, 2019.
 135.Guo Y, Ma L, Enriori PJ, Koska J, Franks PW, Brookshire T, Cowley MA, Salbe AD, DelParigi A, Tataranni PA. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity 14: 1562‐1570, 2006.
 136.Gutniak M, Ørkov C, Holst JJ, Ahrén B, Efendić S. Antidiabetogenic effect of glucagon‐like peptide‐1 (7–36)amide in normal subjects and patients with diabetes mellitus. N Engl J Med 326: 1316‐1322, 1992.
 137.Habegger KM, Heppner KM, Geary N, Bartness TJ, DiMarchi R, Tschöp MH. The metabolic actions of glucagon revisited. Nat Rev Endocrinol 6: 689‐697, 2010.
 138.Hankir MK, Seyfried F, Hintschich CA, Diep TA, Kleberg K, Kranz M, Deuther‐Conrad W, Tellez LA, Rullmann M, Patt M, Teichert J, Hesse S, Sabri O, Brust P, Hansen HS, de Araujo IE, Krügel U, Fenske WK. Gastric bypass surgery recruits a gut PPAR‐α‐striatal D1R pathway to reduce fat appetite in obese rats. Cell Metab 25: 335‐344, 2017.
 139.Harada N, Yamada Y, Tsukiyama K, Yamada C, Nakamura Y, Mukai E, Hamasaki A, Liu X, Toyoda K, Seino Y, Inagaki N. A novel GIP receptor splice variant influences GIP sensitivity of pancreatic β‐cells in obese mice. Am J Physiol Metab 294: E61‐E68, 2008.
 140.Hare KJ, Knop FK, Asmar M, Madsbad S, Deacon CF, Holst JJ, Vilsbøll T. Preserved inhibitory potency of GLP‐1 on glucagon secretion in type 2 diabetes mellitus. J Clin Endocrinol Metab 94: 4679‐4687, 2009.
 141.Hare KJ, Vilsboll T, Asmar M, Deacon CF, Knop FK, Holst JJ. The glucagonostatic and insulinotropic effects of glucagon‐like peptide 1 contribute equally to its glucose‐lowering action. Diabetes 59: 1765‐1770, 2010.
 142.Hauner H, Meier M, Wendland G, Kurscheid T, Lauterbach K, Study Group SA, SAT Study. Weight reduction by sibutramine in obese subjects in primary care medicine: The S. A. T. Study. Exp Clin Endocrinol Diabetes 112: 201‐207, 2004.
 143.Heal DJ, Aspley S, Prow MR, Jackson HC, Martin KF, Cheetham SC. Sibutramine: A novel anti‐obesity drug. A review of the pharmacological evidence to differentiate it from d‐amphetamine and d‐fenfluramine [Online]. Int J Obes Relat Metab Disord 22 (Suppl 1): S18‐S28, 1998; discussion S29. http://www.ncbi.nlm.nih.gov/pubmed/9758240 (accessed 27 Nov. 2018).
 144.Helman A, Gilbert M, Pfister‐Lemaire N, Réach G, Assan R. Glucagon and insulin secretion and their biological activities in hypothermic rats. Endocrinology 115: 1722‐1728, 1984.
 145.Henderson SJ, Konkar A, Hornigold DC, Trevaskis JL, Jackson R, Fritsch Fredin M, Jansson‐Löfmark R, Naylor J, Rossi A, Bednarek MA, Bhagroo N, Salari H, Will S, Oldham S, Hansen G, Feigh M, Klein T, Grimsby J, Maguire S, Jermutus L, Rondinone CM, Coghlan MP. Robust anti‐obesity and metabolic effects of a dual GLP‐1/glucagon receptor peptide agonist in rodents and non‐human primates. Diabetes Obes Metab 18: 1176‐1190, 2016.
 146.Henry RR, Rosenstock J, Denham DS, Prabhakar P, Kjems L, Baron MA. Clinical impact of ITCA 650, a novel drug‐device GLP‐1 receptor agonist, in uncontrolled type 2 diabetes and very high baseline HbA1c: The FREEDOM‐1 HBL (High Baseline) Study. Diabetes Care 41: 613‐619, 2018.
 147.Hewson G, Leighton GE, Hill RG, Hughes J. The cholecystokinin receptor antagonist L364,718 increases food intake in the rat by attenuation of the action of endogenous cholecystokinin [Online]. Br J Pharmacol 93: 79‐84, 1988. http://www.ncbi.nlm.nih.gov/pubmed/3349234 (accessed 29 Nov. 2018).
 148.Heymsfield SB, Wadden TA. Mechanisms, pathophysiology, and management of obesity. N Engl J Med 376: 254‐266, 2017.
 149.Higham CE, Hull RL, Lawrie L, Shennan KIJ, Morris JF, Birch NP, Docherty K, Clark A. Processing of synthetic pro‐islet amyloid polypeptide (proIAPP) “amylin” by recombinant prohormone convertase enzymes, PC2 and PC3, in vitro. Eur J Biochem 267: 4998‐5004, 2000.
 150.Holz GG. Epac: A new cAMP‐binding protein in support of glucagon‐like peptide‐1 receptor‐mediated signal transduction in the pancreatic beta‐cell [Online]. Diabetes 53: 5‐13, 2004. http://www.ncbi.nlm.nih.gov/pubmed/14693691 (accessed 28 Nov. 2018).
 151.Holz GG, Leech CA, Heller RS, Castonguay M, Habener JF. cAMP‐dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta‐cells. A Ca2+ signaling system stimulated by the insulinotropic hormone glucagon‐like peptide‐1‐(7‐37) [Online]. J Biol Chem 274: 14147‐14156, 1999. http://www.ncbi.nlm.nih.gov/pubmed/10318832 (accessed 28 Nov. 2018).
 152.Home PD, Shamanna P, Stewart M, Yang F, Miller M, Perry C, Carr MC. Efficacy and tolerability of albiglutide versus placebo or pioglitazone over 1 year in people with type 2 diabetes currently taking metformin and glimepiride: HARMONY 5. Diabetes Obes Metab 17: 179‐187.
 153.Honda T, Wada E, Battey JF, Wank SA. Differential gene expression of CCKA and CCKB receptors in the rat brain. Mol Cell Neurosci 4: 143‐154, 1993.
 154.Hotamisligil GS, Peraldi SP, Budavari A, Ellis R, White MF, Spiegelman BM. IRS‐1‐mediated inhibition of insulin receptor tyrosine kinase activity in TNF‐alpha‐ and obesity‐induced insulin resistance. Science 271: 665‐668, 1996.
 155.Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor‐α: Direct role in obesity‐linked insulin resistance. Science 259: 87‐91, 1993.
 156.Hotamisligil GS, Shargill S, Spiegelman BM. Adipose expression of tumor necrosis factor‐alpha: Direct role in obesity‐linked insulin resistance. Science 259: 87‐91, 2012.
 157.Hsieh YS, Yang SF, Kuo DY. Amphetamine, an appetite suppressant, decreases neuropeptide Y immunoreactivity in rat hypothalamic paraventriculum. Regul Pept 127: 169‐176, 2005.
 158.Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab 5: 237‐252, 2007.
 159.Hui H, Farilla L, Merkel P, Perfetti R. The short half‐life of glucagon‐like peptide‐1 in plasma does not reflect its long‐lasting beneficial effects [Online]. Eur J Endocrinol 146: 863‐869, 2002. http://www.ncbi.nlm.nih.gov/pubmed/12039708 (accessed 27 Nov. 2018).
 160.Hvidberg A, Nielsen MT, Hilsted J, Orskov C, Holst JJ. Effect of glucagon‐like peptide‐1 (proglucagon 78‐107amide) on hepatic glucose production in healthy man [Online]. Metabolism 43: 104‐108, 1994. http://www.ncbi.nlm.nih.gov/pubmed/8289665 (accessed 30 Jun. 2019).
 161.Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP, Chen CT, Liang KC, Ho IK, Yang WS, Chiou LC. Sex differences in high‐fat diet‐induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obesity 18: 463‐469, 2010.
 162.Idris I, Patiag D, Gray S, Donnelly R. Exendin‐4 increases insulin sensitivity via a PI‐3‐kinase‐dependent mechanism: Contrasting effects of GLP‐1 [Online]. Biochem Pharmacol 63: 993‐996, 2002. http://www.ncbi.nlm.nih.gov/pubmed/11911852 (accessed 27 Nov. 2018).
 163.Inagaki N, Seino Y, Takeda J, Yano H, Yamada Y, Bell GI, Eddy RL, Fukushima Y, Byers MG, Shows TB, Imura H. Gastric inhibitory polypeptide: Structure and chromosomal localization of the human gene. Mol Endocrinol 3: 1014‐1021, 1989.
 164.Inoue K, Hiramatsu S, Hisatomi A, Umeda F, Nawata H. Effects of amylin on the release of insulin and glucagon from the perfused rat pancreas. Horm Metab Res 25: 135‐137, 1993.
 165.Irie S, Matsumura Y, Zdravkovic M, Jacobsen LV, Kageyama S. Tolerability, pharmacokinetics and pharmacodynamics of the once‐daily human GLP‐1 analog liraglutide in Japanese healthy subjects: A randomized, double‐blind, placebo‐controlled dose‐escalation study [Online]. Int J Clin Pharmacol Ther 46: 273‐279, 2008. http://www.ncbi.nlm.nih.gov/pubmed/18541123 (accessed 28 Nov. 2018).
 166.Irwin N. A novel, long‐acting agonist of glucose‐dependent insulinotropic polypeptide suitable for once‐daily administration in type 2 diabetes. J Pharmacol Exp Ther 314: 1187‐1194, 2005.
 167.Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP, Phillips SE, Marks‐Shulman PA, Abumrad NN. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux‐en‐Y gastric bypass surgery. Diabetes Care 33: 1438‐1442, 2010.
 168.Ivy AC. A hormone mechanism for gall‐bladder contraction & evacuation. Am J Surg 7: 455‐459, 1929.
 169.IWF D, Salter J, Best C. The effect of glucagon on the metabolic rate of rats. Am J Clin Nutr 8: 540‐546, 1960.
 170.IWF D, Salter J, Best C. Calorigenic action of glucagon. Nature.
 171.Jacobsen SH, Olesen SC, Dirksen C, Jørgensen NB, Bojsen‐Møller KN, Kielgast U, Worm D, Almdal T, Naver LS, Hvolris LE, Rehfeld JF, Wulff BS, Clausen TR, Hansen DL, Holst JJ, Madsbad S. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta‐cell function within 2 weeks after gastric bypass in non‐diabetic subjects. Obes Surg 22: 1084‐1096, 2012.
 172.Jall S, Sachs S, Clemmensen C, Finan B, Neff F, DiMarchi RD, Tschöp MH, Müller TD, Hofmann SM. Monomeric GLP‐1/GIP/glucagon triagonism corrects obesity, hepatosteatosis, and dyslipidemia in female mice. Mol Metab 6: 440‐446, 2017.
 173.James WPT, Caterson ID, Coutinho W, Finer N, Van Gaal LF, Maggioni AP, Torp‐Pedersen C, Sharma AM, Shepherd GM, Rode RA, Renz CL, SCOUT Investigators. Effect of sibutramine on cardiovascular outcomes in overweight and obese subjects. N Engl J Med 363: 905‐917, 2010.
 174.Jelinek LJ, Lok S, Rosenberg GB, Smith RA, Grant FJ, Biggs S, Bensch PA, Kuijper JL, Sheppard PO, Sprecher CA, O'Hara PJ, Foster D, Walker KM, Chen LHJ, McKernan PA, Kindsvogel W. Expression cloning and signaling properties of the rat glucagon receptor. Science 259: 1614‐1616, 1993.
 175.Jendle J, Grunberger G, Blevins T, Giorgino F, Hietpas RT, Botros FT. Efficacy and safety of dulaglutide in the treatment of type 2 diabetes: A comprehensive review of the dulaglutide clinical data focusing on the AWARD phase 3 clinical trial program. Diabetes Metab Res Rev 18: 1‐18, 2013.
 176.Jiang G, Zhang BB. Glucagon and regulation of glucose metabolism. Am J Physiol Endocrinol Metab 284: E671‐E678, 2003.
 177.Johnson DG, Goebel CU, Hruby VJ, Bregman MD, Trivedi D. Hyperglycemia of diabetic rats decreased by a glucagon receptor antagonist [Online]. Science 215: 1115‐1116, 1982. http://www.ncbi.nlm.nih.gov/pubmed/6278587 (accessed 28 Mar. 2019).
 178.Jordan J, Greenway F, Leiter L, Li Z, Jacobson P, Murphy K, Hill J, Kler L, Aftring RP. Stimulation of cholecystokinin‐A receptors with GI181771X does not cause weight loss in overweight or obese patients. Clin Pharmacol Ther 83: 281‐287, 2008.
 179.Jørgensen NB, Dirksen C, Bojsen‐Møller KN, Jacobsen SH, Worm D, Hansen DL, Kristiansen VB, Naver L, Madsbad S, Holst JJ. Exaggerated glucagon‐like peptide 1 response is important for improved β‐cell function and glucose tolerance after roux‐en‐Y gastric bypass in patients with type 2 diabetes. Diabetes 62: 3044‐3052, 2013.
 180.Junker AE, Gluud LL, van Hall G, Holst JJ, Knop FK, Vilsbøll T. Effects of glucagon‐like peptide‐1 on glucagon secretion in patients with non‐alcoholic fatty liver disease. J Hepatol 64: 908‐915, 2016.
 181.Kahn CR, White MF. The insulin receptor and the molecular mechanism of insulin action. J Clin Invest 82: 1151‐1156, 1988.
 182.Kang G, Chepurny OG, Holz GG. cAMP‐regulated guanine nucleotide exchange factor II (Epac2) mediates Ca2+‐induced Ca2+ release in INS‐1 pancreatic beta‐cells [Online]. J Physiol 536: 375‐385, 2001. http://www.ncbi.nlm.nih.gov/pubmed/11600673 (accessed 28 Nov. 2018).
 183.Kang JG, Park CY, Kang JH, Park YW, Park SW. Randomized controlled trial to investigate the effects of a newly developed formulation of phentermine diffuse‐controlled release for obesity. Diabetes Obes Metab 12: 876‐882, 2010.
 184.Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol 587: 19‐25, 2009.
 185.Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract 2014: 943162, 2014.
 186.Khera R, Murad MH, Chandar AK, Dulai PS, Wang Z, Prokop LJ, Loomba R, Camilleri M, Singh S. Association of pharmacological treatments for obesity with weight loss and adverse events a systematic review and meta‐analysis. JAMA 315: 2424‐2434, 2016.
 187.Kieffer TJ, McIntosh CH, Pederson RA. Degradation of glucose‐dependent insulinotropic polypeptide and truncated glucagon‐like peptide 1 in vitro and in vivo by dipeptidyl peptidase IV. Endocrinology 136: 3585‐3596, 1995.
 188.Kim KK, Cho HJ, Kang HC, Youn BB, Lee KR. Effects on weight reduction and safety of short‐term phentermine administration in Korean obese people. Yonsei Med J 47: 614‐625, 2006.
 189.Kim S‐J, Nian C, Karunakaran S, Clee SM, Isales CM, McIntosh CHS. GIP‐overexpressing mice demonstrate reduced diet‐induced obesity and steatosis, and improved glucose homeostasis. PLoS One 7: e40156, 2012.
 190.Kim T, Holleman CL, Nason S, Arble DM, Ottaway N, Chabenne J, Loyd C, Kim J‐A, Sandoval D, Drucker DJ, DiMarchi R, Perez‐Tilve D, Habegger KM. Hepatic glucagon receptor signaling enhances insulin‐stimulated glucose disposal in rodents. Diabetes 67: 2157‐2166, 2018.
 191.Kinoshita K, Ozaki N, Takagi Y, Murata Y, Oshida Y, Hayashi Y. Glucagon is essential for adaptive thermogenesis in brown adipose tissue. Endocrinology 155: 3484‐3492, 2014.
 192.Kissileff HR, Pi‐Sunyer FX, Thornton J, Smith GP. C‐terminal octapeptide of cholecystokinin decreases food intake in man. Am J Clin Nutr 34: 154‐160, 1981.
 193.Kitamura T, Kahn CR, Accili D. Insulin receptor knockout mice. Annu Rev Physiol 65: 313‐332, 2003.
 194.Klemm DJ, Leitner JW, Watson P, Nesterova A, Reusch JE‐B, Goalstone ML, Draznin B. Insulin‐induced adipocyte differentiation. J Biol Chem 276: 28430‐28435, 2001.
 195.Kleppinger EL, Vivian EM. Pramlintide for the treatment of diabetes mellitus. Ann Pharmacother 37: 1082‐1089, 2003.
 196.Kolterman OG, Buse JB, Fineman MS, Gaines E, Heintz S, Bicsak TA, Taylor K, Kim D, Aisporna M, Wang Y, Baron AD. Synthetic exendin‐4 (exenatide) significantly reduces postprandial and fasting plasma glucose in subjects with type 2 diabetes. J Clin Endocrinol Metab 88: 3082‐3089, 2003.
 197.Koopmans SJ, van Mansfeld AD, Jansz HS, Krans HM, Radder JK, Frölich M, de Boer SF, Kreutter DK, Andrews GC, Maassen JA. Amylin‐induced in vivo insulin resistance in conscious rats: The liver is more sensitive to amylin than peripheral tissues [Online]. Diabetologia 34: 218‐224, 1991. http://www.ncbi.nlm.nih.gov/pubmed/2065857 (accessed 1 Dec. 2018).
 198.Kopin AS, Mathes WF, McBride EW, Nguyen M, Al‐Haider W, Schmitz F, Bonner‐Weir S, Kanarek R, Beinborn M. The cholecystokinin‐A receptor mediates inhibition of food intake yet is not essential for the maintenance of body weight. J Clin Invest 103: 383‐391, 1999.
 199.Korner J, Bessler M, Inabnet W, Taveras C, Holst JJ. Exaggerated glucagon‐like peptide‐1 and blunted glucose‐dependent insulinotropic peptide secretion are associated with Roux‐en‐Y gastric bypass but not adjustable gastric banding. Surg Obes Relat Dis 3: 597‐601, 2007.
 200.Korner J, Inabnet W, Febres G, Conwell IM, McMahon DJ, Salas R, Taveras C, Schrope B, Bessler M. Prospective study of gut hormone and metabolic changes after adjustable gastric banding and Roux‐en‐Y gastric bypass. Int J Obes 33: 786‐795, 2009.
 201.Koster JC, Permutt MA, Nichols CG. Diabetes and insulin secretion: The ATP‐sensitive K+ channel (KATP) connection. Diabetes 54: 3065‐3072, 2005.
 202.Kraemer FB, Shen W‐J. Hormone‐sensitive lipase: Control of intracellular tri‐(di‐)acylglycerol and cholesteryl ester hydrolysis. J Lipid Res 43: 1585‐1594, 2002.
 203.Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon‐like peptide‐1 7‐36: A physiological incretin in man [Online]. Lancet (London, England) 2: 1300‐1304, 1987. http://www.ncbi.nlm.nih.gov/pubmed/2890903 (accessed 28 Nov. 2018).
 204.Langhans W, Zieger U, Scharrer E, Geary N. Stimulation of feeding in rats by intraperitoneal injection of antibodies to glucagon. Science 218: 894‐896, 1982.
 205.Lardinois CK, Starich GH, Mazzaferri EL. The postprandial response of gastric inhibitory polypeptide to various dietary fats in man [Online]. J Am Coll Nutr 7: 241‐247, 1988. http://www.ncbi.nlm.nih.gov/pubmed/3392357 (accessed 27 Nov. 2018).
 206.Lau J, Bloch P, Schäffer L, Pettersson I, Spetzler J, Kofoed J, Madsen K, Knudsen LB, McGuire J, Steensgaard DB, Strauss HM, Gram DX, Knudsen SM, Nielsen FS, Thygesen P, Reedtz‐Runge S, Kruse T. Discovery of the once‐weekly glucagon‐like peptide‐1 (GLP‐1) analogue semaglutide. J Med Chem 58: 7370‐7380, 2015.
 207.Laurenius A, Larsson I, Bueter M, Melanson KJ, Bosaeus I, Forslund HB, Lönroth H, Fändriks L, Olbers T. Changes in eating behaviour and meal pattern following Roux‐en‐Y gastric bypass. Int J Obes 36: 348‐355, 2012.
 208.Le Roux CW, Aylwin SJB, Batterham RL, Borg CM, Coyle F, Prasad V, Shurey S, Ghatei MA, Patel AG, Bloom SR. Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Ann Surg 243: 108‐114, 2006.
 209.le Roux CW, Batterham RL, Aylwin SJBB, Patterson M, Borg CM, Wynne KJ, Kent A, Vincent RP, Gardiner J, Ghatei MA, Bloom SR. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147: 3‐8, 2006.
 210.Le Sauter J, Geary N. Hepatic portal glucagon infusion decreases spontaneous meal size in rats. Am J Phys 261: R154‐R161, 1991.
 211.Lee Y, Song T, Lim C, Kim D, Yun Y, Choi K, Trautmann M, Kwon S, Choi IY, Park SH, Trautmann M, Moon MJ, Kim JY, Lee YM, Hompesch M, Kwon SC. Analysis of absorption and excretion route of efpeglenatide using radiolabeled underlying superagonistic mechanisms of efpeglenatide in glycaemic control and weight loss potency. American Diabetes Association's (ADA) 76th Scientific Sessions, New Orleans, Louisiana, USA. http://www.hanmi.co.kr/hanmi/img/rnd/2016_ADA_(HM11260C).pdf (accessed 20 Aug. 2019).
 212.Lee YS, Li P, Huh JY, Hwang IJ, Lu M, Kim JI, Ham M, Talukdar S, Chen A, Lu WJ, Bandyopadhyay GK, Schwendener R, Olefsky J, Kim JB. Inflammation is necessary for long‐term but not short‐term high‐fat diet‐induced insulin resistance. Diabetes 60: 2474‐2483, 2011.
 213.Lee Y‐S, Shin S, Shigihara T, Hahm E, Liu M‐J, Han J, Yoon J‐W, Jun H‐S. Glucagon‐like peptide‐1 gene therapy in obese diabetic mice results in long‐term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes 56: 1671‐1679, 2007.
 214.Leith NJ, Barrett RJ. Amphetamine and the reward system: Evidence for tolerance and post‐drug depression. Psychopharmacologia 46: 19‐25, 1976.
 215.Levin BE, Lutz TA. Amylin and leptin: Co‐regulators of energy homeostasis and neuronal development. Trends Endocrinol Metab 28: 153‐164, 2017.
 216.Li XC, Zhuo JL. Targeting glucagon receptor signalling in treating metabolic syndrome and renal injury in type 2 diabetes: Theory versus promise. Clin Sci (Lond) 113: 183‐193, 2007.
 217.Li Z, Kelly L, Heiman M, Greengard P, Friedman JM. Hypothalamic amylin acts in concert with leptin to regulate food intake. Cell Metab 22: 1059‐1067, 2015.
 218.Liang Y, Osborne MC, Monia BP, Bhanot S, Gaarde WA, Reed C, She P, Jetton TL, Demarest KT. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice [Online]. Diabetes 53: 410‐417, 2004. http://www.ncbi.nlm.nih.gov/pubmed/14747292 (accessed 28 Mar. 2019).
 219.Lidell ME, Betz MJ, Leinhard OD, Heglind M, Elander L, Slawik M, Mussack T, Nilsson D, Romu T, Nuutila P, Virtanen KA, Beuschlein F, Persson A, Borga M, Enerbäck S. Evidence for two types of brown adipose tissue in humans. Nat Med 19: 631‐634, 2013.
 220.Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, Brown JP, Cohen A, Kim H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol 9: 30, 2013.
 221.London IC. Safety and pharmacokinetic study of Y242 in adult subjects (Y242‐01) [Online]. 2013. https://clinicaltrials.gov/ct2/show/NCT01515319 (accessed 20 Aug. 2019).
 222.Lutz TA. The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 298: R1475‐R1484, 2010.
 223.Lutz TA, Meyer U. Amylin at the interface between metabolic and neurodegenerative disorders. Front Neurosci 9: 1‐13, 2015.
 224.Lynn FC, Pamir N, Ng EH, McIntosh CH, Kieffer TJ, Pederson RA. Defective glucose‐dependent insulinotropic polypeptide receptor expression in diabetic fatty Zucker rats [Online]. Diabetes 50: 1004‐1011, 2001. http://www.ncbi.nlm.nih.gov/pubmed/11334402 (accessed 29 Nov. 2018).
 225.Lynn FC, Thompson SA, Pospisilik JA, Ehses JA, Hinke SA, Pamir N, Mcintosh CHS, Pederson RA. A novel pathway for regulation of glucose‐dependent insulinotropic polypeptide (GIP) receptor expression in β cells. FASEB J 17: 91‐93, 2003.
 226.Ma X, Zhang Y, Gromada J, Sewing S, Berggren P‐O, Buschard K, Salehi A, Vikman J, Rorsman P, Eliasson L. Glucagon stimulates exocytosis in mouse and rat pancreatic α‐cells by binding to glucagon receptors. Mol Endocrinol 19: 198‐212, 2005.
 227.MacDonald PE, De Marinis YZ, Ramracheya R, Salehi A, Ma X, Johnson PRV, Cox R, Eliasson L, Rorsman P. A KATPchannel‐dependent pathway within α cells regulates glucagon release from both rodent and human islets of langerhans. PLoS Biol 5: 1236‐1247, 2007.
 228.MacDonald PE, Wang X, Xia F, El‐kholy W, Targonsky ED, Tsushima RG, Wheeler MB. Antagonism of rat β‐cell voltage‐dependent K+ currents by exendin 4 requires dual activation of the cAMP/protein kinase A and phosphatidylinositol 3‐kinase signaling pathways. J Biol Chem 278: 52446‐52453, 2003.
 229.Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, De Las FL, He S, Okunade AL, Patterson BW, Klein S. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 23: 591‐601, 2016.
 230.Manning S, Batterham RL. The role of gut hormone peptide YY in energy and glucose homeostasis: Twelve years on. Annu Rev Physiol 76: 585‐608, 2014.
 231.Marín‐Peñalver JJ, Martín‐Timón I, Sevillano‐Collantes C, del Cañizo‐Gómez FJ. Update on the treatment of type 2 diabetes. World J Diabetes 11: 56‐63, 2016.
 232.Martin CMA, Irwin N, Flatt PR, Gault VA. A novel acylated form of (d‐Ala2)GIP with improved antidiabetic potential, lacking effect on body fat stores. Biochim Biophys Acta 1830: 3407‐3413, 2013.
 233.Martínez De Morentin PB, González‐García I, Martins L, Lage R, Fernández‐Mallo D, Martínez‐Sánchez N, Ruíz‐Pino F, Liu J, Morgan DA, Pinilla L, Gallego R, Saha AK, Kalsbeek A, Fliers E, Bisschop PH, Diéguez C, Nogueiras R, Rahmouni K, Tena‐Sempere M, López M. Estradiol regulates brown adipose tissue thermogenesis via hypothalamic AMPK. Cell Metab 20: 41‐53, 2014.
 234.Mathes CM, Spector AC. Food selection and taste changes in humans after Roux‐en‐Y gastric bypass surgery: A direct‐measures approach. Physiol Behav 107: 476‐483, 2012.
 235.Mathus‐Vliegen EM. Prolonged surveillance of dexfenfluramine in severe obesity [Online]. Neth J Med 43: 246‐253, 1993. http://www.ncbi.nlm.nih.gov/pubmed/8107932 (accessed 27 Nov. 2018).
 236.Mauvais‐Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 34: 309‐338, 2013.
 237.Mauvais‐Jarvis F, Manson JE, Stevenson JC, Fonseca VA. Menopausal hormone therapy and type 2 diabetes prevention: Evidence, mechanisms, and clinical implications. Endocr Rev 38: 173‐188, 2017.
 238.Mcallister EJ, Dhurandhar NV, Keith SW, Aronne LJ, Baskin M, Benca RM, Biggio J, Boggiano MM, Joe C, Elobeid M, Fontaine KR, Gluckman P, Hanlon EC, Pietrobelli A, Redden DT, Ruden DM, Waterland RA, Wright SM, Allison DB. Ten putative contributors to the obesity epidemic. Crit Rev Food Sci Nutr 49: 868‐913, 2009.
 239.McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL. GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: Implications for understanding genetic association signals at this locus. Mol Genet Metab 104: 648‐653, 2011.
 240.McLaughlin JT, Lomax RB, Hall L, Dockray GJ, Thompson DG, Warhurst G. Fatty acids stimulate cholecystokinin secretion via an acyl chain length‐specific, Ca2+‐dependent mechanism in the enteroendocrine cell line STC‐1. J Physiol 513: 11‐18, 1998.
 241.McMahon FG, Fujioka K, Singh BN, Mendel CM, Rowe E, Rolston K, Johnson F, Mooradian AD. Efficacy and safety of sibutramine in obese white and African American patients with hypertension: A 1‐year, double‐blind, placebo‐controlled, multicenter trial [Online]. Arch Intern Med 160: 2185‐2191, 2000. http://www.ncbi.nlm.nih.gov/pubmed/10904462 (accessed 27 Nov. 2018).
 242.McNeely W, Goa KL. Sibutramine. Drugs 56: 1093‐1124, 1998.
 243.Meier JJ, Gallwitz B, Siepmann N, Holst JJ, Deacon CF, Schmidt WE, Nauck MA. Gastric inhibitory polypeptide (GIP) dose‐dependently stimulates glucagon secretion in healthy human subjects at euglycaemia. Diabetologia 46: 798‐801, 2003.
 244.Melanson EL, Keadle SK, Donnelly JE, Braun B, King NA. Resistance to exercise‐induced weight loss: Compensatory behavioral adaptations. Med Sci Sports Exerc 45: 1600‐1609, 2013.
 245.Mietlicki‐Baase EG. Amylin‐mediated control of glycemia, energy balance, and cognition. Physiol Behav 162: 130‐140, 2016.
 246.Mietlicki‐Baase EG, Olivos DR, Jeffrey BA, Hayes MR. Cooperative interaction between leptin and amylin signaling in the ventral tegmental area for the control of food intake. Am J Physiol Endocrinol Metab 308: 1116‐1122, 2015.
 247.Mietlicki‐Baase EG, Reiner DJ, Cone JJ, Olivos DR, McGrath LE, Zimmer DJ, Roitman MF, Hayes MR. Amylin modulates the mesolimbic dopamine system to control energy balance. Neuropsychopharmacology 40: 372‐385, 2015.
 248.Miras AD, Le Roux CW. Bariatric surgery and taste: Novel mechanisms of weight loss. Curr Opin Gastroenterol 26: 140‐145, 2010.
 249.Miyawaki K, Yamada Y, Ban N, Ihara Y, Tsukiyama K, Zhou H, Fujimoto S, Oku A, Tsuda K, Toyokuni S, Hiai H, Mizunoya W, Fushiki T, Holst JJ, Makino M, Tashita A, Kobara Y, Tsubamoto Y, Jinnouchi T, Jomori T, Seino Y. Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8: 738‐742, 2002.
 250.Mojsov S, Weir GC, Habener JF. Insulinotropin: Glucagon‐like peptide I (7‐37) co‐encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J Clin Invest 79: 616‐619, 1987.
 251.Moldovan CP, Weldon AJ, Daher NS, Schneider LE, Bellinger DL, Berk LS, Hermé AC, Aréchiga AL, Davis WL, Peters WR. Effects of a meal replacement system alone or in combination with phentermine on weight loss and food cravings. Obesity 24: 2344‐2350, 2016.
 252.Montani JP, Schutz Y, Dulloo AG. Dieting and weight cycling as risk factors for cardiometabolic diseases: Who is really at risk? Obes Rev 16: 7‐18, 2015.
 253.Moran TH, Ameglio PJ, Peyton HJ, Schwartz GJ, McHugh PR. Blockade of type A, but not type B, CCK receptors postpones satiety in rhesus monkeys. Am J Physiol Regul Integr Comp Physiol 265: R620‐R624, 1993.
 254.Moran TH, Baldessarini AR, Salorio CF, Lowery T, Schwartz GJ. Vagal afferent and efferent contributions to the inhibition of food intake by cholecystokinin. Am J Physiol Regul Integr Comp Physiol 272: R1245‐R1251, 1997.
 255.Moran TH, Robinson PH, Goldrich MS, McHugh PR. Two brain cholecystokinin receptors: Implications for behavioral actions [Online]. Brain Res 362: 175‐179, 1986. http://www.ncbi.nlm.nih.gov/pubmed/3002550 (accessed 29 Nov. 2018).
 256.Mori Y, Hoshino K, Yokota K, Itoh Y, Tajima N. Differences in the pathology of the metabolic syndrome with or without visceral fat accumulation. Endocrine 29: 149‐154, 2006.
 257.Müller TD, Clemmensen C, Finan B, DiMarchi RD, Tschöp MH. Anti‐obesity therapy: From rainbow pills to polyagonists. Pharmacol Rev 70: 712‐746, 2018.
 258.Müller TD, Finan B, Clemmensen C, DiMarchi RD, Tschöp MH. The new biology and pharmacology of glucagon. Physiol Rev 97: 721‐766, 2017.
 259.Müller TD, Sullivan LM, Habegger K, Yi C‐X, Kabra D, Grant E, Ottaway N, Krishna R, Holland J, Hembree J, Perez‐Tilve D, Pfluger PT, DeGuzman MJ, Siladi ME, Kraynov VS, Axelrod DW, DiMarchi R, Pinkstaff JK, Tschöp MH. Restoration of leptin responsiveness in diet‐induced obese mice using an optimized leptin analog in combination with exendin‐4 or FGF21. J Pept Sci 18: 383‐393, 2012.
 260.Müller WA, Faloona GR, Aguilar‐Parada E, Unger RH. Abnormal alpha‐cell function in diabetes—Response to carbohydrate and protein ingestion. N Engl J Med 319: 1374‐1378, 1970.
 261.Münzberg H, Laque A, Yu S, Rezai‐Zadeh K, Berthoud HR. Appetite and body weight regulation after bariatric surgery. Obes Rev 16: 77‐90, 2015.
 262.Muraro MJ, Dharmadhikari G, Grün D, Groen N, Dielen T, Jansen E, van Gurp L, Engelse MA, Carlotti F, de Koning EJP, van Oudenaarden A. A single‐cell transcriptome atlas of the human pancreas. Cell Syst 3: 385‐394.e3, 2016.
 263.Muurahainen N, Kissileff HR, Derogatis AJ, Pi‐Sunyer FX. Effects of cholecystokinin‐octapeptide (CCK‐8) on food intake and gastric emptying in man [Online]. Physiol Behav 44: 645‐649, 1988. http://www.ncbi.nlm.nih.gov/pubmed/3237850 (accessed 29 Nov. 2018).
 264.Myer JR, Romach EH, Elangbam CS. Species‐ and dose‐specific pancreatic responses and progression in single‐ and repeat‐dose studies with GI181771X: A novel cholecystokinin 1 receptor agonist in mice, rats, and monkeys. Toxicol Pathol 42: 260‐274, 2014.
 265.NAIR KS. Hyperglucagonemia increases resting metabolic rate in man during insulin deficiency. J Clin Endocrinol Metab 64: 896‐901, 1987.
 266.Nauck MA, Bartels E, Orskov C, Ebert R, Creutzfeldt W. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon‐like peptide‐1‐(7‐36) amide infused at near‐physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 76: 912‐917, 1993.
 267.Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W. Preserved incretin activity of glucagon‐like peptide 1 [7‐36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type‐2 diabetes mellitus. J Clin Invest 91: 301‐307, 1993.
 268.Nauck MA, Stewart MW, Perkins C, Jones‐Leone A, Yang F, Perry C, Reinhardt RR, Rendell M. Efficacy and safety of once‐weekly GLP‐1 receptor agonist albiglutide (HARMONY 2): 52 week primary endpoint results from a randomised, placebo‐controlled trial in patients with type 2 diabetes mellitus inadequately controlled with diet and exercise. Diabetologia 59: 266‐274, 2016.
 269.NCD Risk Factor Collaboration. Worldwide trends in body‐mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population‐based measurement studies in 128·9 million children, adolescents, and adults. Lancet, 2017. DOI: 10.1016/S0140‐6736(17)32129‐3.
 270.NCT02568306. A first human dose trial investigating safety, tolerability and pharmacokinetics for single doses and multiple doses of NNC0165‐1562 in overweight to obese but otherwise healthy subjects [Online]. 2015. https://clinicaltrials.gov/ct2/show/NCT02568306 (accessed 20 Aug. 2019).
 271.NCT03490786. A dose escalating study to assess the safety and tolerability of GT‐001. 2018. https://clinicaltrials.gov/ct2/show/NCT03490786 (accessed 20 Aug. 2019).
 272.NCT03574584. A research study of NNC0165‐1562 and semaglutide in people who are overweight or obese [Online]. 2018. https://clinicaltrials.gov/ct2/show/NCT03574584 (accessed 20 Aug. 2019).
 273.NCT03730662. A study of tirzepatide (LY3298176) once a week versus insulin glargine once a day in participants with type 2 diabetes and increased cardiovascular risk (SURPASS‐4). 2018. https://clinicaltrials.gov/ct2/show/NCT03730662 (accessed 20 Aug. 2019).
 274.NCT03856047. Research study investigating how well NNC0174‐0833 works in people suffering from overweight or obesity. 2018. https://clinicaltrials.gov/ct2/show/NCT03856047 (accessed 20 Aug. 2019).
 275.Neary NM, Small CJ, Druce MR, Park AJ, Ellis SM, Semjonous NM, Dakin CL, Filipsson K, Wang F, Kent AS, Frost GS, Ghatei MA, Bloom SR. Peptide YY3–36 and glucagon‐like peptide‐17–36 inhibit food intake additively. Endocrinology 146: 5120‐5127, 2005.
 276.Neumann UH, Ho JSS, Mojibian M, Covey SD, Charron MJ, Kieffer TJ. Glucagon receptor gene deletion in insulin knockout mice modestly reduces blood glucose and ketones but does not promote survival. Mol Metab 5: 731‐736, 2016.
 277.Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu‐Rmeileh NME, Achoki T, Albuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA, Bhutta Z, Blore J, Cabral N, Nonato IC, Chang JC, Chowdhury R, Courville KJ, Criqui MH, Cundiff DK, Dabhadkar KC, Dandona L, Davis A, Dayama A, Dharmaratne SD, Ding EL, Durrani AM, Esteghamati A, Farzadfar F, Fay DFJ, Feigin VL, Flaxman A, Forouzanfar MH, Goto A, Green MA, Gupta R, Hafezi‐Nejad N, Hankey GJ, Harewood HC, Havmoeller R, Hay S, Hernandez L, Husseini A, Idrisov BT, Ikeda N, Islami F, Jahangir E, Jassal SK, Jee SH, Jeffreys M, Jonas JB, Kabagambe EK, Khalifa SEAH, Kengne AP, Khader YS, Khang YH, Kim D, Kimokoti RW, Kinge JM, Kokubo Y, Kosen S, Kwan G, Lai T, Leinsalu M, Li Y, Liang X, Liu S, Logroscino G, Lotufo PA, Lu Y, Ma J, Mainoo NK, Mensah GA, Merriman TR, Mokdad AH, Moschandreas J, Naghavi M, Naheed A, Nand D, Narayan KMV, Nelson EL, Neuhouser ML, Nisar MI, Ohkubo T, Oti SO, Pedroza A, Prabhakaran D, Roy N, Sampson U, Seo H, Sepanlou SG, Shibuya K, Shiri R, Shiue I, Singh GM, Singh JA, Skirbekk V, Stapelberg NJC, Sturua L, Sykes BL, Tobias M, Tran BX, Trasande L, Toyoshima H, Van De Vijver S, Vasankari TJ, Veerman JL, Velasquez‐Melendez G, Vlassov VV, Vollset SE, Vos T, Wang C, Wang X, Weiderpass E, Werdecker A, Wright JL, Yang YC, Yatsuya H, Yoon J, Yoon SJ, Zhao Y, Zhou M, Zhu S, Lopez AD, Murray CJL, Gakidou E. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980‐2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 384: 766, 781‐2014.
 278.Nikolaidis LA, Doverspike A, Hentosz T, Zourelias L, Shen Y‐T, Elahi D, Shannon RP. Glucagon‐like peptide‐1 limits myocardial stunning following brief coronary occlusion and reperfusion in conscious canines. J Pharmacol Exp Ther 312: 303‐308, 2004.
 279.Nikolaidis LA, Elahi D, Hentosz T, Doverspike A, Huerbin R, Zourelias L, Stolarski C, Shen Y, Shannon RP. Recombinant glucagon‐like peptide‐1 increases myocardial glucose uptake and improves left ventricular performance in conscious dogs with pacing‐induced dilated cardiomyopathy. Circulation 110: 955‐961, 2004.
 280.Nikolaidis LA, Mankad S, Sokos GG, Miske G, Shah A, Elahi D, Shannon RP. Effects of glucagon‐like peptide‐1 in patients with acute myocardial infarction and left ventricular dysfunction after successful reperfusion. Circulation 109: 962‐965, 2004.
 281.Nørregaard PK, Deryabina MA, Tofteng Shelton P, Fog JU, Daugaard JR, Eriksson P‐O, Larsen LF, Jessen L. A novel GIP analogue, ZP4165, enhances glucagon‐like peptide‐1‐induced body weight loss and improves glycaemic control in rodents. Diabetes Obes Metab 20: 60‐68, 2018.
 282.Noyan‐Ashraf MH, Momen MA, Ban K, Sadi A‐M, Zhou Y‐Q, Riazi AM, Baggio LL, Henkelman RM, Husain M, Drucker DJ. GLP‐1R agonist liraglutide activates cytoprotective pathways and improves outcomes after experimental myocardial infarction in mice. Diabetes 58: 975‐983, 2009.
 283.O'Harte F, Gault V, Parker J, Harriott P, Mooney M, Bailey C, Flatt P. Improved stability, insulin‐releasing activity and antidiabetic potential of two novel N‐terminal analogues of gastric inhibitory polypeptide: N‐acetyl‐GIP and pGlu‐GIP. Diabetologia 45: 1281‐1291, 2002.
 284.O'Neil PM, Birkenfeld AL, McGowan B, Mosenzon O, Pedersen SD, Wharton S, Carson CG, Jepsen CH, Kabisch M, Wilding JPH. Efficacy and safety of semaglutide compared with liraglutide and placebo for weight loss in patients with obesity: A randomised, double‐blind, placebo and active controlled, dose‐ranging, phase 2 trial. Lancet 392: 637‐649, 2018.
 285.Oben J, Morgan L, Fletcher J, Marks V. Effect of the entero‐pancreatic hormones, gastric inhibitory polypeptide and glucagon‐like polypeptide‐1(7‐36) amide, on fatty acid synthesis in explants of rat adipose tissue [Online]. J Endocrinol 130: 267‐272, 1991. http://www.ncbi.nlm.nih.gov/pubmed/1919397 (accessed 28 Nov. 2018).
 286.Odstrcil EA, Martinez JG, Santa Ana CA, Xue B, Schneider RE, Steffer KJ, Porter JL, Asplin J, Kuhn JA, Fordtran JS. The contribution of malabsorption to the reduction in net energy absorption after long‐limb Roux‐en‐Y gastric bypass. Am J Clin Nutr 92: 704‐713, 2010.
 287.Olbers T, Björkman S, Lindroos A, Maleckas A, Lönn L, Sjöström L, Lönroth H. Body composition, dietary intake, and energy expenditure after laparoscopic Roux‐en‐Y gastric bypass and laparoscopic vertical banded gastroplasty: A randomized clinical trial. Ann Surg 244: 715‐722, 2006.
 288.Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72: 219‐246, 2010.
 289.Owen OE, Felig P, Morgan AP, Wahren J, Cahill GF. Liver and kidney metabolism during prolonged starvation. J Clin Invest 48: 574‐583, 1969.
 290.Özcan U, Cao Q, Yilmaz E, Lee A‐H, Iwakoshi NN, Özdelen E, Tuncman G, Görgü C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306: 457‐461, 2004.
 291.Pederson RA, Brown JC. Interaction of gastric inhibitory polypeptide, glucose, and arginine on insulin and glucagon secretion from the perfused rat pancreas. Endocrinology 103: 610‐615, 1978.
 292.Penney NC, Kinross J, Newton RC, Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: A systematic review. Int J Obes 39: 1565‐1574, 2015.
 293.Perna MJ, Byrne TK, Pullattrana CC. Bariatric surgery for treatment of obesity. Sleep Loss Obes Intersecting Epidemics 35: 227‐241, 2012.
 294.Peterli R, Wölnerhanssen B, Peters T, Devaux N, Kern B, Christoffel‐Courtin C, Drewe J, Von Flüe M, Beglinger C. Improvement in glucose metabolism after bariatric surgery: Comparison of laparoscopic roux‐en‐Y gastric bypass and laparoscopic sleeve gastrectomy: A prospective randomized trial. Ann Surg 250: 234‐241, 2009.
 295.Pi‐Sunyer FX, Aronne LJ, Heshmati HM, Devin J, Rosenstock J, RIO‐North America Study Group. Effect of rimonabant, a cannabinoid‐1 receptor blocker, on weight and cardiometabolic risk factors in overweight or obese patients. JAMA 295: 761, 2006.
 296.Piteau S, Olver A, Kim S‐J, Winter K, Pospisilik JA, Lynn F, Manhart S, Demuth H‐U, Speck M, Pederson RA, McIntosh CHS. Reversal of islet GIP receptor down‐regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat. Biochem Biophys Res Commun 362: 1007‐1012, 2007.
 297.Plamboeck A, Veedfald S, Deacon CF, Hartmann B, Vilsbøll T, Knop FK, Holst JJ. The role of efferent cholinergic transmission for the insulinotropic and glucagonostatic effects of GLP‐1. Am J Physiol Regul Integr Comp Physiol 309: R544‐R551, 2015.
 298.Pocai A, Carrington PE, Adams JR, Wright M, Eiermann G, Zhu L, Du X, Petrov A, Lassman ME, Jiang G, Liu F, Miller C, Tota LM, Zhou G, Zhang X, Sountis MM, Santoprete A, Capito' E, Chicchi GG, Thornberry N, Bianchi E, Pessi A, Marsh DJ, SinhaRoy R. Glucagon‐like peptide 1/glucagon receptor dual agonism reverses obesity in mice. Diabetes 58: 2258‐2266, 2009.
 299.Pontzer H, Raichlen DA, Wood BM, Mabulla AZP, Racette SB, Marlowe FW. Hunter‐gatherer energetics and human obesity. PLoS One 7: 1‐8, 2012.
 300.Ponzani P, Scardapane M, Nicolucci A, Rossi MC. Effectiveness and safety of liraglutide after three years of treatment [Online]. Minerva Endocrinol 41: 35‐42, 2016. http://www.ncbi.nlm.nih.gov/pubmed/26878560 (accessed 28 Nov. 2018).
 301.Pories WJ, Swanson MS, MacDonald KG, Long SB, Morris PG, Brown BM, Barakat HA, deRamon RA, Israel G, Dolezal JM. Who would have thought it? An operation proves to be the most effective therapy for adult‐onset diabetes mellitus. Ann Surg 222: 339‐350, 1995.
 302.Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband‐Zadeh J, Mahon D, Bekker JHR, Ghatei MA, Bloom SR, Walters JRF, Welbourn R, Le Roux CW. The role of bile after Roux‐en‐Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology 153: 3613‐3619, 2012.
 303.Prigeon RL, Quddusi S, Paty B, D'Alessio DA. Suppression of glucose production by GLP‐1 independent of islet hormones: A novel extrapancreatic effect. Am J Physiol Metab 285: E701‐E707, 2003.
 304.Pullman J, Darsow T, Frias JP. Pramlintide in the management of insulin‐using patients with type 2 and type 1 diabetes [Online]. Vasc Health Risk Manag 2: 203‐212, 2006. http://www.ncbi.nlm.nih.gov/pubmed/17326327 (accessed 1 Dec. 2018).
 305.Quarta C, Clemmensen C, Zhu Z, Yang B, Joseph SS, Lutter D, Yi CX, Graf E, García‐Cáceres C, Legutko B, Fischer K, Brommage R, Zizzari P, Franklin BS, Krueger M, Koch M, Vettorazzi S, Li P, Hofmann SM, Bakhti M, Bastidas‐Ponce A, Lickert H, Strom TM, Gailus‐Durner V, Bechmann I, Perez‐Tilve D, Tuckermann J, Hrabě de Angelis M, Sandoval D, Cota D, Latz E, Seeley RJ, Müller TD, RD DM, Finan B, Tschöp MH. Molecular integration of incretin and glucocorticoid action reverses immunometabolic dysfunction and obesity. Cell Metab 26: 620‐632.e6, 2017.
 306.Rahardjo GL, Huang X‐F, Tan YY, Deng C. Decreased plasma peptide YY accompanied by elevated peptide YY and Y2 receptor binding densities in the medulla oblongata of diet‐induced obese mice. Endocrinology 148: 4704‐4710, 2007.
 307.Ramnanan CJ, Edgerton DS, Kraft G, Cherrington AD. Physiologic action of glucagon on liver glucose metabolism. Diabetes Obes Metab 13 (Suppl 1): 118‐125, 2011.
 308.Ramracheya RD, McCulloch LJ, Clark A, Wiggins D, Johannessen H, Olsen MK, Cai X, Zhao C‐M, Chen D, Rorsman P. PYY‐dependent restoration of impaired insulin and glucagon secretion in type 2 diabetes following Roux‐En‐Y gastric bypass surgery. Cell Rep 15: 944‐950, 2016.
 309.Rasmussen N. America's first amphetamine epidemic 1929‐1971: A quantitative and qualitative retrospective with implications for the present. Am J Public Health 98: 974‐985, 2008.
 310.Reaven GM. Role of insulin resistance in human disease. Diabetes 37: 1595‐1607, 1988.
 311.Recasens MA, Barenys M, Sola R, Blanch S, Masana L, Salas‐Salvadó J. Effect of dexfenfluramine on energy expenditure in obese patients on a very‐low‐calorie‐diet [Online]. Int J Obes Relat Metab Disord 19: 162‐168, 1995. http://www.ncbi.nlm.nih.gov/pubmed/7780491 (accessed 27 Nov. 2018).
 312.Rehfeld JF. Preprocholecystokinin processing in the normal human anterior pituitary. Proc Natl Acad Sci U S A 84: 3019‐3023, 1987.
 313.Rehfeld JF. Cholecystokinin‐From local gut hormone to ubiquitous messenger. Front Endocrinol (Lausanne) 8: 1‐8, 2017.
 314.Rehfeld JF, Friis‐Hansen L, Goetze JP, Hansen TV. The biology of cholecystokinin and gastrin peptides. Curr Top Med Chem 7: 1154‐1165, 2007.
 315.Rehfeld JF, Hansen HF. Characterization of preprocholecystokinin products in the porcine cerebral cortex. Evidence of different processing pathways [Online]. J Biol Chem 261: 5832‐5840, 1986. http://www.ncbi.nlm.nih.gov/pubmed/3700374 (accessed 29 Nov. 2018).
 316.Reidelberger RD, Kalogeris TJ, Solomon TE. Plasma CCK levels after food intake and infusion of CCK analogues that inhibit feeding in dogs. Am J Physiol Regul Integr Comp Physiol 256: R1148‐R1154, 1989.
 317.Renner S, Fehlings C, Herbach N, Hofmann A, von Waldthausen DC, Kessler B, Ulrichs K, Chodnevskaja I, Moskalenko V, Amselgruber W, Goke B, Pfeifer A, Wanke R, Wolf E. Glucose intolerance and reduced proliferation of pancreatic‐cells in transgenic pigs with impaired glucose‐dependent insulinotropic polypeptide function. Diabetes 59: 1228‐1238, 2010.
 318.Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, Gribble FM, Reimann F. Identification and characterization of GLP‐1 receptor‐expressing cells using a new transgenic mouse model. Diabetes 63: 1224‐1233, 2014.
 319.Rodriguez‐Diaz R, Molano RD, Weitz JR, Abdulreda MH, Berman DM, Leibiger B, Leibiger IB, Kenyon NS, Ricordi C, Pileggi A, Caicedo A, Berggren P‐O. Paracrine interactions within the pancreatic islet determine the glycemic set point. Cell Metab 27: 549‐558.e4, 2018.
 320.Rolin B, Larsen MO, Gotfredsen CF, Deacon CF, Carr RD, Wilken M, Knudsen LB. The long‐acting GLP‐1 derivative NN2211 ameliorates glycemia and increases β‐cell mass in diabetic mice. Am J Physiol Metab 283: E745‐E752, 2002.
 321.Rosenfeld L. Insulin: Discovery and controversy [Online]. Clin Chem 48: 2270‐2288, 2002. http://www.ncbi.nlm.nih.gov/pubmed/12446492 (accessed 30 Nov. 2018).
 322.Rosenstock J, Buse JB, Azeem R, Prabhakar P, Kjems L, Huang H, Baron MA. Efficacy and safety of ITCA 650, a novel drug‐Device GLP‐1 receptor agonist, in type 2 diabetes uncontrolled with oral antidiabetes drugs: The FREEDOM‐1 trial. Diabetes Care 41: 333‐340, 2018.
 323.Roth JD, Hughes H, Kendall E, Baron AD, Anderson CM. Antiobesity effects of the β‐cell hormone amylin in diet‐induced obese rats: Effects on food intake, body weight, composition, energy expenditure, and gene expression. Endocrinology 147: 5855‐5864, 2006.
 324.Roth JD, Roland BL, Cole RL, Trevaskis JL, Weyer C, Koda JE, Anderson CM, Parkes DG, Baron AD. Leptin responsiveness restored by amylin agonism in diet‐induced obesity: Evidence from nonclinical and clinical studies. Proc Natl Acad Sci 105: 7257‐7262, 2008.
 325.Rubino F, Nathan DM, Eckel RH, Schauer PR, Alberti KGMM, Zimmet PZ, Del Prato S, Ji L, Sadikot SM, Herman WH, Amiel SA, Kaplan LM, Taroncher‐Oldenburg G, Cummings DE. Metabolic surgery in the treatment algorithm for type 2 diabetes: A Joint Statement by International Diabetes Organizations. Obes Surg 27: 2‐21, 2017.
 326.Rucker D, Padwal R, Li SK, Curioni C, Lau DCW. Long term pharmacotherapy for obesity and overweight: Updated meta‐analysis. BMJ 335: 1194‐1199, 2007.
 327.Russo J, Russo IH. The role of oestrogen in the initiation of Breast Cancer. J Steroid Biochem Mol Biol 102: 89‐96, 2007.
 328.Saillan‐Barreau C, Dufresne M, Clerc P, Sanchez D, Corominola H, Moriscot C, Guy‐Crotte O, Escrieut C, Vaysse N, Gomis R, Tarasova N, Fourmy D. Evidence for a functional role of the cholecystokinin‐B/gastrin receptor in the human fetal and adult pancreas [Online]. Diabetes 48: 2015‐2021, 1999. http://www.ncbi.nlm.nih.gov/pubmed/10512367 (accessed 29 Nov. 2018).
 329.Sakaguchi M, Fujisaka S, Cai W, Winnay JN, Konishi M, O'Neill BT, Li M, García‐Martín R, Takahashi H, Hu J, Kulkarni RN, Kahn CR. Adipocyte dynamics and reversible metabolic syndrome in mice with an inducible adipocyte‐specific deletion of the insulin receptor. Cell Metab 25: 448‐462, 2017.
 330.Sam AH, Salem V, Ghatei MA. Rimonabant: From RIO to Ban. J Obes 2011: 432607, 2011.
 331.Samanin R, Mennini T, Garattini S. Evidence that it is possible to cause anorexia by increasing release and/or directly stimulating postsynaptic serotonin receptors in the brain. Prog Neuropsychopharrmacol 4: 363‐369, 1980.
 332.Samols E, Marri G, Marks V. Promotion of insulin secretion by glucagon. Lancet 286: 415‐416, 1965.
 333.Saudek CD, Herman WH, Sacks DB, Bergenstal RM, Edelman D, Davidson MB. A new look at screening and diagnosing diabetes mellitus. J Clin Endocrinol Metab 93: 2447‐2453, 2008.
 334.Scheen AJ, Paquot N, Lefèbvre PJ. Investigational glucagon receptor antagonists in Phase I and II clinical trials for diabetes. Expert Opin Investig Drugs 26: 1373‐1389, 2017.
 335.Schirra J, Sturm K, Leicht P, Arnold R, Göke B, Katschinski M. Exendin(9‐39)amide is an antagonist of glucagon‐like peptide‐1(7‐36)amide in humans. J Clin Invest 101: 1421‐1430, 1998.
 336.Schmidt JB, Pedersen SD, Gregersen NT, Vestergaard L, Nielsen MS, Ritz C, Madsbad S, Worm D, Hansen DL, Clausen TR, Rehfeld JF, Astrup A, Holst JJ, Sjödin A. Effects of RYGB on energy expenditure, appetite and glycaemic control: A randomized controlled clinical trial. Int J Obes 40: 281‐290, 2016.
 337.Schmitz O, Brock B, Rungby J. Amylin agonists: A novel approach in the treatment of diabetes. Diabetes 53: 233‐238, 2004.
 338.Schwartz MW, Seeley RJ, Tschöp MH, Woods SC, Morton GJ, Myers MG, D'Alessio D. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503: 59‐66, 2013.
 339.Schwartz MW, Woods C, Figlewicz P, Baskin G. Insulin in the brain: A hormonal regulator of energy balance. Endocr Rev 13: 387‐414, 1992.
 340.Schwenk RW, Baumeier C, Finan B, Kluth O, Brauer C, Joost H‐G, DiMarchi RD, Tschöp MH, Schürmann A. GLP‐1–oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes‐prone New Zealand obese (NZO) mice. Diabetologia 58: 604‐614, 2015.
 341.Scruggs DM, Buffington C, Cowan GSM. Taste acuity of the morbidly obese before and after gastric bypass surgery. Obes Surg 4: 24‐28, 1994.
 342.Segerstolpe Å, Palasantza A, Eliasson P, Andersson E‐M, Andréasson A‐C, Sun X, Picelli S, Sabirsh A, Clausen M, Bjursell MK, Smith DM, Kasper M, Ämmälä C, Sandberg R. Single‐cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24: 593‐607, 2016.
 343.Seino Y, Fukushima M, Yabe D. GIP and GLP‐1, the two incretin hormones: Similarities and differences. J Diabetes Investig 1: 8‐23, 2010.
 344.Seino Y, Rasmussen MF, Zdravkovic M, Kaku K. Dose‐dependent improvement in glycemia with once‐daily liraglutide without hypoglycemia or weight gain: A double‐blind, randomized, controlled trial in Japanese patients with type 2 diabetes. Diabetes Res Clin Pract 81: 161‐168, 2008.
 345.Seitz HJ, Krone W, Wilke H, Tarnowski W. Rapid rise in plasma glucagon induced by acute cold exposure in man and rat [Online]. Pflugers Arch 389: 115‐120, 1981. http://www.ncbi.nlm.nih.gov/pubmed/6259583 (accessed 1 Dec. 2018).
 346.Shi Y‐C, Loh K, Bensellam M, Lee K, Zhai L, Lau J, Cantley J, Luzuriaga J, Laybutt DR, Herzog H. Pancreatic PYY is critical in the control of insulin secretion and glucose homeostasis in female mice. Endocrinology 156: 3122‐3136, 2015.
 347.Shin AC, Berthoud HR. Food reward functions as affected by obesity and bariatric surgery. Int J Obes 35: S40‐S44, 2011.
 348.Silvestre RA, Peiró E, Dégano P, Miralles P, Marco J. Inhibitory effect of rat amylin on the insulin responses to glucose and arginine in the perfused rat pancreas [Online]. Regul Pept 31: 23‐31, 1990. http://www.ncbi.nlm.nih.gov/pubmed/2270316 (accessed 30 Jun. 2019).
 349.Sisley S, Gutierrez‐Aguilar R, Scott M, D'Alessio DA, Sandoval DA, Seeley RJ. Neuronal GLP1R mediates liraglutide's anorectic but not glucose‐lowering effect. J Clin Invest 124: 2456‐2463, 2014.
 350.Sisley S, Smith K, Sandoval DA, Seeley RJ. Differences in acute anorectic effects of long‐acting GLP‐1 receptor agonists in rats. Peptides 58: 1‐6, 2014.
 351.Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B, Wedel H, Lystig T, Sullivan M, Bouchard C, Carlsson B, Bengtsson C, Dahlgren S, Gummesson A, Jacobson P, Karlsson J, Lindroos A‐K, Lönroth H, Näslund I, Olbers T, Stenlöf K, Torgerson J, Ågren G, Carlsson LM, Swedish Obese Subjects Study. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med 357: 741‐752, 2007.
 352.Sloth B, Davidsen L, Holst JJ, Flint A, Astrup A. Effect of subcutaneous injections of PYY1‐36 and PYY3‐36 on appetite, ad libitum energy intake, and plasma free fatty acid concentration in obese males. Am J Physiol Metab 293: E604‐E609, 2007.
 353.Smith IG, Goulder MA, Sibutramine Clinical Study 1047 Team. Randomized placebo‐controlled trial of long‐term treatment with sibutramine in mild to moderate obesity [Online]. J Fam Pract 50: 505‐512, 2001. http://www.ncbi.nlm.nih.gov/pubmed/11407998 (accessed 27 Nov. 2018).
 354.Smith SR, Aronne LJ, Burns CM, Kesty NC, Halseth AE, Weyer C. Sustained weight loss following 12‐month pramlintide treatment as an adjunct to lifestyle intervention in obesity. Biomed Res 31: 1816‐1823, 2008.
 355.Stoffers DA, Kieffer TJ, Hussain MA, Drucker DJ, Bonner‐Weir S, Habener JF, Egan JM. Insulinotropic glucagon‐like peptide 1 agonists stimulate expression of homeodomain protein IDX‐1 and increase islet size in mouse pancreas [Online]. Diabetes 49: 741‐748, 2000. http://www.ncbi.nlm.nih.gov/pubmed/10905482 (accessed 27 Nov. 2018).
 356.Svane MS, Jørgensen NB, Bojsen‐Møller KN, Dirksen C, Nielsen S, Kristiansen VB, Toräng S, Wewer Albrechtsen NJ, Rehfeld JF, Hartmann B, Madsbad S, Holst JJ. Peptide YY and glucagon‐like peptide‐1 contribute to decreased food intake after Roux‐en‐Y gastric bypass surgery. Int J Obes 40: 1699‐1706, 2016.
 357.Svendsen B, Larsen O, Gabe MBN, Christiansen CB, Rosenkilde MM, Drucker DJ, Holst JJ. Insulin secretion depends on intra‐islet glucagon signaling. Cell Rep 25: 1127‐1134.e2, 2018.
 358.Swinnen SG, Hoekstra JB, DeVries JH. Insulin therapy for type 2 diabetes. Diabetes Care 32 (Suppl 2): S253‐S259, 2009.
 359.Szecówka J, Grill V, Sandberg E, Efendić S. Effect of GIP on the secretion of insulin and somatostatin and the accumulation of cyclic AMP in vitro in the rat [Online]. Acta Endocrinol 99: 416‐421, 1982. http://www.ncbi.nlm.nih.gov/pubmed/6122321 (accessed 29 Nov. 2018).
 360.Takeda J, Seino Y, Tanaka K, Fukumoto H, Kayano T, Takahashi H, Mitani T, Kurono M, Suzuki T, Tobe T. Sequence of an intestinal cDNA encoding human gastric inhibitory polypeptide precursor [Online]. Proc Natl Acad Sci U S A 84: 7005‐7008, 1987. http://www.ncbi.nlm.nih.gov/pubmed/2890159 (accessed 27 Nov. 2018).
 361.Taminato T, Seino Y, Goto Y, Inoue Y, Kadowaki S. Synthetic gastric inhibitory polypeptide. Stimulatory effect on insulin and glucagon secretion in the rat [Online]. Diabetes 26: 480‐484, 1977. http://www.ncbi.nlm.nih.gov/pubmed/323091 (accessed 27 Nov. 2018).
 362.Tan TM, Salem V, Troke RC, Alsafi A, Field BCT, De Silva A, Misra S, Baynes KCR, Donaldson M, Minnion J, Ghatei MA, Godsland IF, Bloom SR. Combination of peptide YY3‐36 with GLP‐1(7‐36) amide causes an increase in first‐phase insulin secretion after IV glucose. J Clin Endocrinol Metab 99: E2317‐E2324, 2014.
 363.Tanaka K, Saisho Y, Kawai T, Tanaka M, Meguro S, Irie J, Imai T, Shigihara T, Morimoto J, Yajima K, Atsumi Y, Takei I, Itoh H. Efficacy and safety of liraglutide monotherapy compared with metformin in Japanese overweight/obese patients with type 2 diabetes. Endocr J 62: 399‐409, 2015.
 364.Thaler J, Yi C, Schur E, Guyenet S, Hwang B, Dietrich M, Zhao X, Sarruf D, Izgur V, Maravilla K, Nguyen H, Fischer J, Matsen M, Wisse B, Morton G, Horvarth T, Baskin D, Tshop M, Schwartz M. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Investig 122: 153, 2011.
 365.Thorburn A, Litchfield A, Fabris S, Proietto J. Abnormal transient rise in hepatic glucose production after oral glucose in non‐insulin‐dependent diabetic subjects. Diabetes Res Clin Pract 28: 127‐135, 1995.
 366.Tiano JP, Tate CR, Yang BS, DiMarchi R, Mauvais‐Jarvis F. Effect of targeted estrogen delivery using glucagon‐like peptide‐1 on insulin secretion, insulin sensitivity and glucose homeostasis. Sci Rep 5: 10211, 2015.
 367.Trevaskis JL, Coffey T, Cole R, Lei C, Wittmer C, Walsh B, Weyer C, Koda J, Baron AD, Parkes DG, Roth JD. Amylin‐mediated restoration of leptin responsiveness in diet‐induced obesity: Magnitude and mechanisms. Endocrinology 149: 5679‐5687, 2008.
 368.Trevaskis JL, Lei C, Koda JE, Weyer C, Parkes DG, Roth JD. Interaction of leptin and amylin in the long‐term maintenance of weight loss in diet‐induced obese rats. Obesity 18: 21‐26, 2010.
 369.Trevaskis JL, Sun C, Athanacio J, D'Souza L, Samant M, Tatarkiewicz K, Griffin PS, Wittmer C, Wang Y, Teng C‐H, Forood B, Parkes DG, Roth JD. Synergistic metabolic benefits of an exenatide analogue and cholecystokinin in diet‐induced obese and leptin‐deficient rodents. Diabetes Obes Metab 17: 61‐73, 2015.
 370.Tschöp MH, Finan B, Clemmensen C, Gelfanov V, Perez‐Tilve D, Müller TD, DiMarchi RD. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab 24: 51‐62, 2016.
 371.Tsuboi T, da Silva XG, Holz GG, Jouaville LS, Thomas AP, Rutter GA. Glucagon‐like peptide‐1 mobilizes intracellular Ca2+ and stimulates mitochondrial ATP synthesis in pancreatic MIN6 beta‐cells. Biochem J 369: 287‐299, 2003.
 372.Turek VF, Trevaskis JL, Levin BE, Dunn‐Meynell AA, Irani B, Gu G, Wittmer C, Griffin PS, Vu C, Parkes DG, Roth JD. Mechanisms of amylin/leptin synergy in rodent models. Endocrinology 151: 143‐152, 2010.
 373.Unger RH, Cherrington AD, Unger RH, Cherrington AD. Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover Find the latest version: Science in medicine Glucagonocentric restructuring of diabetes: A pathophysiologic and therapeutic makeover. J Clin Invest 122: 4‐12, 2012.
 374.Unick JL, Beavers D, Jakicic JM, Kitabchi AE, Knowler WC, Wadden TA, Wing RR. Effectiveness of lifestyle interventions for individuals with severe obesity and type 2 diabetes: Results from the look AHEAD trial. Diabetes Care 34: 2152‐2157, 2011.
 375.Valdearcos M, Douglass JD, Robblee MM, Barres BA, Thaler JP, Koliwad SK, Dorfman MD, Stifler DR, Bennett ML, Gerritse I, Fasnacht R, Barres BA, Thaler JP, Koliwad SK. Microglial inflammatory signaling orchestrates the hypothalamic immune response to dietary excess and mediates obesity susceptibility. Cell Metab 26: 185‐197.e3, 2017.
 376.Valverde I, Morales M, Clemente F, López‐Delgado MI, Delgado E, Perea A, Villanueva‐Peñacarrillo ML. Glucagon‐like peptide 1: A potent glycogenic hormone [Online]. FEBS Lett 349: 313‐316, 1994. http://www.ncbi.nlm.nih.gov/pubmed/8050588 (accessed 27 Nov. 2018).
 377.Van Gaal L, Pi‐Sunyer X, Despres J‐P, McCarthy C, Scheen A. Efficacy and safety of rimonabant for improvement of multiple cardiometabolic risk factors in overweight/obese patients: Pooled 1‐year data from the Rimonabant in obesity (RIO) program. Diabetes Care 31: S229‐S240, 2008.
 378.Vilsboll T, Krarup T, Madsbad S, Holst J. Defective amplification of the late phase insulin response to glucose by GIP in obese Type II diabetic patients. Diabetologia 45: 1111‐1119, 2002.
 379.Vilsbøll T, Krarup T, Madsbad S, Holst JJ. No reactive hypoglycaemia in Type 2 diabetic patients after subcutaneous administration of GLP‐1 and intravenous glucose [Online]. Diabet Med 18: 144‐149, 2001. http://www.ncbi.nlm.nih.gov/pubmed/11251679 (accessed 28 Nov. 2018).
 380.Vilsbøll T, Krarup T, Sonne J, Madsbad S, Vølund A, Juul AG, Holst JJ. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab 88: 2706‐2713, 2003.
 381.Vilsboll T, Zdravkovic M, Le‐Thi T, Krarup T, Schmitz O, Courreges J‐P, Verhoeven R, Buganova I, Madsbad S. Liraglutide, a long‐acting human glucagon‐like peptide‐1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care 30: 1608‐1610, 2007.
 382.Vogel H, Wolf S, Rabasa C, Rodriguez‐Pacheco F, Babaei CS, Stöber F, Goldschmidt J, DiMarchi RD, Finan B, Tschöp MH, Dickson SL, Schürmann A, Skibicka KP. GLP‐1 and estrogen conjugate acts in the supramammillary nucleus to reduce food‐reward and body weight. Neuropharmacology 110: 396‐406, 2016.
 383.Walhin JP, Richardson JD, Betts JA, Thompson D. Exercise counteracts the effects of short‐term overfeeding and reduced physical activity independent of energy imbalance in healthy young men. J Physiol 591: 6231‐6243, 2013.
 384.Wang X, Cahill CM, Piñeyro MA, Zhou J, Doyle ME, Egan JM. Glucagon‐like peptide‐1 regulates the beta cell transcription factor, PDX‐1, in insulinoma cells. Endocrinology 140: 4904‐4907, 1999.
 385.Wang X, Zhou J, Doyle ME, Egan JM. Glucagon‐like peptide‐1 causes pancreatic duodenal homeobox‐1 protein translocation from the cytoplasm to the nucleus of pancreatic beta‐cells by a cyclic adenosine monophosphate/protein kinase A‐dependent mechanism. Endocrinology 142: 1820‐1827, 2001.
 386.Wang Y, Chandra R, Samsa LA, Gooch B, Fee BE, Cook JM, Vigna SR, Grant AO, Liddle RA. Amino acids stimulate cholecystokinin release through the Ca 2+‐sensing receptor. Am J Physiol Liver Physiol 300: G528‐G537, 2011.
 387.Wang Y, Du J, Zou H, Liu Y, Zhang Y, Gonzalez J, Chao E, Lu L, Yang P, Parker H, Nguyen‐Tran V, Shen W, Wang D, Schultz PG, Wang F. Multifunctional antibody agonists targeting glucagon‐like peptide‐1, glucagon, and glucose‐dependent insulinotropic polypeptide receptors. Angew Chem Int Ed Engl 55: 12475‐12478, 2016.
 388.Wank SA, Pisegna JR, de Weerth A. Brain and gastrointestinal cholecystokinin receptor family: Structure and functional expression. Proc Natl Acad Sci 89: 8691‐8695, 1992.
 389.Waser B, Blank A, Karamitopoulou E, Perren A, Reubi JC. Glucagon‐like‐peptide‐1 receptor expression in normal and diseased human thyroid and pancreas. Mod Pathol 28: 391‐402, 2015.
 390.Wei Y, Mojsov S. Tissue‐specific expression of the human receptor for glucagon‐like peptide‐I: Brain, heart and pancreatic forms have the same deduced amino acid sequences [Online]. FEBS Lett 358: 219‐224, 1995. http://www.ncbi.nlm.nih.gov/pubmed/7843404 (accessed 28 Nov. 2018).
 391.Weir GC, Mojsov S, Hendrick GK, Habener JF. Glucagonlike peptide I (7–37) actions on endocrine pancreas. Diabetes 38: 338‐342, 1989.
 392.Willms B, Werner J, Holst JJ, Orskov C, Creutzfeldt W, Nauck MA. Gastric emptying, glucose responses, and insulin secretion after a liquid test meal: Effects of exogenous glucagon‐like peptide‐1 (GLP‐1)‐(7‐36) amide in type 2 (noninsulin‐dependent) diabetic patients. J Clin Endocrinol Metab 81: 327‐332, 1996.
 393.Wilson‐Pérez HE, Chambers AP, Ryan KK, Li B, Sandoval DA, Stoffers D, Drucker DJ, Pérez‐Tilve D, Seeley RJ. Vertical sleeve gastrectomy is effective in two genetic mouse models of glucagon‐like peptide 1 receptor deficiency. Diabetes 62: 2380‐2385, 2013.
 394.Wing RR, Lang W, Wadden RA, Safford M, Knowler WC, Bertoni AG, Hill JO, Brancati FL, Wagenknecht L, The Look AHEAD Research Group. Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 34: 1481‐1486, 2011.
 395.Woods SC, Lotter EC, McKay LD, Porte D. Chronic intracerebroventricular infusion of insulin reduces food intake and body weight of baboons. Nature 282: 503‐505, 1979.
 396.Wooltorton E. Obesity drug sibutramine (Meridia): Hypertension and cardiac arrhythmias [Online]. CMAJ 166: 1307‐1308, 2002. http://www.ncbi.nlm.nih.gov/pubmed/12041851 (accessed 27 Nov. 2018).
 397.World Health Organization (2016). Global Report on Diabetes, 978, 88. https://apps.who.int/iris/bitstream/10665/204871/1/9789241565257_eng.pdf (accessed 20 Aug. 2018).
 398.Xu Y, Jones JE, Kohno D, Williams KW, Lee CE, Choi MJ, Anderson JG, Heisler LK, Zigman JM, Lowell BB, Elmquist JK. 5‐HT2CRs expressed by pro‐opiomelanocortin neurons regulate energy homeostasis. Neuron 60: 582‐589, 2008.
 399.Yamada Y, Miyawaki K, Tsukiyama K, Harada N, Yamada C, Seino Y. Pancreatic and extrapancreatic effects of gastric inhibitory polypeptide. Diabetes 55: S86‐S91, 2006.
 400.Yang H. Central and peripheral regulation of gastric acid secretion by peptide YY. Peptides 23: 349‐358, 2002.
 401.Yang N, Wang C, Xu M, Mao L, Liu L, Sun X. Interaction of dietary composition and PYY gene expression in diet‐induced obesity in rats [Online]. J Huazhong Univ Sci Technol Med Sci 25: 243‐246, 2005. http://www.ncbi.nlm.nih.gov/pubmed/16201260 (accessed 2 Dec. 2018).
 402.Yanovski SZ, Yanovski JA. Obesity. N Engl J Med 346: 591‐602, 2002.
 403.Ye J, Hao Z, Mumphrey MB, Townsend RL, Patterson LM, Stylopoulos N, Munzberg H, Morrison CD, Drucker DJ, Berthoud H‐R. GLP‐1 receptor signaling is not required for reduced body weight after RYGB in rodents. Am J Physiol Regul Integr Comp Physiol 306: R352‐R362, 2014.
 404.Younan SM, Rashed LA. Impairment of the insulinotropic effect of gastric inhibitory polypeptide (GIP) in obese and diabetic rats is related to the down‐regulation of its pancreatic receptors [Online]. Gen Physiol Biophys 26: 181‐193, 2007. http://www.ncbi.nlm.nih.gov/pubmed/18063845 (accessed 29 Nov. 2018).
 405.Young A, Pittner R, Gedulin B, Vine W, Rink T. Amylin regulation of carbohydrate metabolism [Online]. Biochem Soc Trans 23: 325‐331, 1995. http://www.ncbi.nlm.nih.gov/pubmed/7672355 (accessed 1 Dec. 2018).
 406.Young DA, Deems RO, Deacon RW, McIntosh RH, Foley JE. Effects of amylin on glucose metabolism and glycogenolysis in vivo and in vitro. Am J Physiol Metab 259: E457, 1990.
 407.Yuan M, Konstantopoulos N, Lee J. Reversal of obesity‐ and diet‐induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 293: 1673‐1677, 2001.
 408.Yulyaningsih E, Zhang L, Herzog H, Sainsbury A. NPY receptors as potential targets for anti‐obesity drug development. Br J Pharmacol 163: 1170‐1202, 2011.
 409.Zhou J, Livak MFA, Bernier M, Muller DC, Carlson OD, Elahi D, Maudsley S, Egan JM. Ubiquitination is involved in glucose‐mediated downregulation of GIP receptors in islets. Am J Physiol Metab 293: E538‐E547, 2007.
 410.Zhu L, Dattaroy D, Pham J, Wang L, Barella LF, Cui Y, Wilkins KJ, Roth BL, Hochgeschwender U, Matschinsky FM, Kaestner KH, Doliba NM, Wess J. Intra‐islet glucagon signaling is critical for maintaining glucose homeostasis. JCI Insight 5, 2019.
 411.Zwirska‐Korczala K, Konturek SJ, Sodowski M, Wylezol M, Kuka D, Sowa P, Adamczyk‐Sowa M, Kukla M, Berdowska A, Rehfeld JF, Bielanski W, Brzozowski T. Basal and postprandial plasma levels of PYY, ghrelin, cholecystokinin, gastrin and insulin in women with moderate and morbid obesity and metabolic syndrome [Online]. J Physiol Pharmacol 58 (Suppl 1): 13‐35, 2007. http://www.ncbi.nlm.nih.gov/pubmed/17443025 (accessed 2 Dec. 2018).
Further Reading
 1.Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ, Chaudhary N, Holland J, Hembree J, Abplanalp W, Grant E, Ruehl J, Wilson H, Kirchner H, Lockie SH, Hofmann S, Woods SC, Nogueiras R, Pfluger PT, Perez‐Tilve D, Dimarchi R, Tschöp MH. A new glucagon and GLP‐1 co‐agonist eliminates obesity in rodents. Nat Chem Biol 5: 749‐757, 2009.
 2.Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, Chabenne J, Zhang L, Habegger KM, Fischer K, Campbell JE, Sandoval D, Seeley RJ, Bleicher K, Uhles S, Riboulet W, Funk J, Hertel C, Belli S, Sebokova E, Conde‐Knape K, Konkar A, Drucker DJ, Gelfanov V, Pfluger PT, Müller TD, Perez‐Tilve D, DiMarchi RD, Tschöp MH. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21: 27‐36, 2015.
 3.Finan B, Yang B, Ottaway N, Stemmer K, Müller TD, Yi CX, Habegger K, Schriever SC, García‐Cáceres C, Kabra DG, Hembree J, Holland J, Raver C, Seeley RJ, Hans W, Irmler M, Beckers J, De Angelis MH, Tiano JP, Mauvais‐Jarvis F, Perez‐Tilve D, Pfluger P, Zhang L, Gelfanov V, Dimarchi RD, Tschöp MH. Targeted estrogen delivery reverses the metabolic syndrome. Nat Med 18: 1847‐1856, 2012.
 4.Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, Urva S, Gimeno RE, Milicevic Z, Robins D, Haupt A. Efficacy and safety of LY3298176, a novel dual GIP and GLP‐1 receptor agonist, in patients with type 2 diabetes: A randomised, placebo‐controlled and active comparator‐controlled phase 2 trial. Lancet 392: 2180‐2193, 2018.
 5.Tschöp MH, Finan B, Clemmensen C, Gelfanov V, Perez‐Tilve D, Müller TD, DiMarchi RD. Unimolecular polypharmacy for treatment of diabetes and obesity. Cell Metab 24: 51‐62, 2016.

Further Reading

Day JW, Ottaway N, Patterson JT, Gelfanov V, Smiley D, Gidda J, Findeisen H, Bruemmer D, Drucker DJ, Chaudhary N, Holland J, Hembree J, Abplanalp W, Grant E, Ruehl J, Wilson H, Kirchner H, Lockie SH, Hofmann S, Woods SC, Nogueiras R, Pfluger PT, Perez-Tilve D, Dimarchi R, Tschöp MH. A new glucagon and GLP-1 co-agonist eliminates obesity in rodents. Nat Chem Biol 5: 749-757, 2009.

Finan B, Yang B, Ottaway N, Smiley DL, Ma T, Clemmensen C, Chabenne J, Zhang L, Habegger KM, Fischer K, Campbell JE, Sandoval D, Seeley RJ, Bleicher K, Uhles S, Riboulet W, Funk J, Hertel C, Belli S, Sebokova E, Conde-Knape K, Konkar A, Drucker DJ, Gelfanov V, Pfluger PT, Müller TD, Perez-Tilve D, DiMarchi RD, Tschöp MH. A rationally designed monomeric peptide triagonist corrects obesity and diabetes in rodents. Nat Med 21: 27-36, 2015.

Finan B, Yang B, Ottaway N, Stemmer K, Müller TD, Yi CX, Habegger K, Schriever SC, García-Cáceres C, Kabra DG, Hembree J, Holland J, Raver C, Seeley RJ, Hans W, Irmler M, Beckers J, De Angelis MH, Tiano JP, Mauvais-Jarvis F, Perez-Tilve D, Pfluger P, Zhang L, Gelfanov V, Dimarchi RD, Tschöp MH. Targeted estrogen delivery reverses the metabolic syndrome. Nat Med 18: 1847-1856, 2012.

Frias JP, Nauck MA, Van J, Kutner ME, Cui X, Benson C, Urva S, Gimeno RE, Milicevic Z, Robins D, Haupt A. Efficacy and safety of LY3298176, a novel dual GIP and GLP-1 receptor agonist, in patients with type 2 diabetes: a randomised, placebo-controlled and active comparator-controlled phase 2 trial. Lancet 392: 2180-2193, 2018.

Tschöp MH, Finan B, Clemmensen C, Gelfanov V, Perez-Tilve D, Müller TD, DiMarchi RD. Unimolecular Polypharmacy for Treatment of Diabetes and Obesity. Cell Metab 24: 51-62, 2016.


 

Teaching Material

Grandl G, Novikoff A, DiMarchi R, Tschöp M.H, Müller T.D. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 10: 2020, 99-124.

Didactic Synopsis

Major Teaching Points:

-A variety of peptide hormones are secreted from the gut in response to food intake.

-Gut peptides regulate meal size and satiety via binding to specific receptors expressed on target tissues in the brain and the periphery

-GLP1 and GIP constitute a specific class of gut peptides, called incretins, which directly influence the release of insulin from the pancreas after a meal.

-Agonists for various gut peptide receptors have been explored for the clinical treatment of obesity, the metabolic syndrome and type 2-diabetes.

-Long-lasting agonists at the GLP-1 receptor have proven to be useful in the treatment of type-2 diabetes.

-The concept of combining gut peptides into unimolecular multi-agonists has been explored with great promise for the enhancement of incretin-based pharmacology.

-In parallel, the concept of using gut peptides to deliver small molecule drugs to specific cell types has been explored.

Didactic Legends

The following legends to the figures that appear throughout the article are written to be useful for teaching.

Figure 1. Teaching Points: This figure provides an overview of well-studied gut peptides directly involved in satiety and meal size. The various actions of the peptides have been described next to the relevant depicted tissue. The arrows illustrate whether the peptide elevates or reduces the described action.

Figure 2. Teaching Points: This figure demonstrates the principle classes of gut peptide polyagonism that have been explored so far. Through the unimolecular combination of two or three distinct peptide hormone sequences, and following careful testing and fine-tuning, peptides with equal activation of the respective receptors can be designed. These multi-agonist compounds can interact with each relevant receptor individually or in combination, creating a unique capacity for activating downstream intracellular signalling events.

Figure 3. Teaching Points: This figure illustrates the principle of using gut peptides for the targeted delivery of small molecule hormones. The small molecule is linked to a peptide sequence which precisely targets the small molecule to tissues and cell types expressing the carrier peptide receptor. After binding to the peptide receptor, the small molecule that is attached is internalized. Once inside the cell, through a mechanism not clearly elucidated yet, the small molecule is released from the peptide for subsequent nuclear receptor activation.

 


Related Articles:

Teaching Material

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Gerald Grandl, Aaron Novikoff, Richard DiMarchi, Matthias H. Tschöp, Timo D. Müller. Gut Peptide Agonism in the Treatment of Obesity and Diabetes. Compr Physiol 2019, 10: 99-124. doi: 10.1002/cphy.c180044