Comprehensive Physiology Wiley Online Library

Regulation of Cell Cycle Entry and Exit: A Single Cell Perspective

Full Article on Wiley Online Library



Abstract

The transition between proliferating and quiescent states must be carefully regulated to ensure that cells divide to create the cells an organism needs only at the appropriate time and place. Cyclin‐dependent kinases (CDKs) are critical for both transitioning cells from one cell cycle state to the next, and for regulating whether cells are proliferating or quiescent. CDKs are regulated by association with cognate cyclins, activating and inhibitory phosphorylation events, and proteins that bind to them and inhibit their activity. The substrates of these kinases, including the retinoblastoma protein, enforce the changes in cell cycle status. Single cell analysis has clarified that competition among factors that activate and inhibit CDK activity leads to the cell's decision to enter the cell cycle, a decision the cell makes before S phase. Signaling pathways that control the activity of CDKs regulate the transition between quiescence and proliferation in stem cells, including stem cells that generate muscle and neurons. © 2020 American Physiological Society. Compr Physiol 10:317‐344, 2020.

Comprehensive Physiology offers downloadable PowerPoint presentations of figures for non-profit, educational use, provided the content is not modified and full credit is given to the author and publication.

Download a PowerPoint presentation of all images


Figure 1. Figure 1. Molecular changes in proliferating versus quiescent cells. A schematic of quiescent cells and a summary of the molecular changes are provided. Compared with proliferating cells, quiescent cells have lower levels of receptor tyrosine kinase and MAP kinase signaling, lower cyclin D levels, lower CDK activity, higher levels of cyclin‐dependent kinase inhibitor levels, lower levels of retinoblastoma phosphorylation, and reduced E2F activity. The activity of mitogens and integrins can shift quiescent cells to proliferation. Proliferating cells have higher levels of receptor tyrosine kinase and MAP kinase activity, increased cyclin D levels, increased CDK activity, lower levels of cyclin‐dependent kinase inhibitors, increased retinoblastoma phosphorylation, and increased E2F activity. The notch signaling pathway can promote the quiescent state.


Figure 1. Molecular changes in proliferating versus quiescent cells. A schematic of quiescent cells and a summary of the molecular changes are provided. Compared with proliferating cells, quiescent cells have lower levels of receptor tyrosine kinase and MAP kinase signaling, lower cyclin D levels, lower CDK activity, higher levels of cyclin‐dependent kinase inhibitor levels, lower levels of retinoblastoma phosphorylation, and reduced E2F activity. The activity of mitogens and integrins can shift quiescent cells to proliferation. Proliferating cells have higher levels of receptor tyrosine kinase and MAP kinase activity, increased cyclin D levels, increased CDK activity, lower levels of cyclin‐dependent kinase inhibitors, increased retinoblastoma phosphorylation, and increased E2F activity. The notch signaling pathway can promote the quiescent state.
References
 1.Abbas T, Dutta A. p21 in cancer: Intricate networks and multiple activities. Nat Rev Cancer 9: 400‐414, 2009.
 2.Abou‐Khalil R, Le Grand F, Pallafacchina G, Valable S, Authier FJ, Rudnicki MA, Gherardi RK, Germain S, Chretien F, Sotiropoulos A, Lafuste P, Montarras D, Chazaud B. Autocrine and paracrine angiopoietin 1/Tie‐2 signaling promotes muscle satellite cell self‐renewal. Cell Stem Cell 5: 298‐309, 2009.
 3.Aguda BD. Kick‐starting the cell cycle: From growth‐factor stimulation to initiation of DNA replication. Chaos 11: 269‐276, 2001.
 4.Ahn S, Joyner AL. In vivo analysis of quiescent adult neural stem cells responding to Sonic hedgehog. Nature 437: 894‐897, 2005.
 5.Akhoondi S, Sun D, von der Lehr N, Apostolidou S, Klotz K, Maljukova A, Cepeda D, Fiegl H, Dafou D, Marth C, Mueller‐Holzner E, Corcoran M, Dagnell M, Nejad SZ, Nayer BN, Zali MR, Hansson J, Egyhazi S, Petersson F, Sangfelt P, Nordgren H, Grander D, Reed SI, Widschwendter M, Sangfelt O, Spruck C. FBXW7/hCDC4 is a general tumor suppressor in human cancer. Cancer Res 67: 9006‐9012, 2007.
 6.Akita K, von Holst A, Furukawa Y, Mikami T, Sugahara K, Faissner A. Expression of multiple chondroitin/dermatan sulfotransferases in the neurogenic regions of the embryonic and adult central nervous system implies that complex chondroitin sulfates have a role in neural stem cell maintenance. Stem Cells 26: 798‐809, 2008.
 7.Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin‐dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93: 13742‐13747, 1996.
 8.al‐Khodairy F, Fotou E, Sheldrick KS, Griffiths DJ, Lehmann AR, Carr AM. Identification and characterization of new elements involved in checkpoint and feedback controls in fission yeast. Mol Biol Cell 5: 147‐160, 1994.
 9.Allbrook DB, Han MF, Hellmuth AE. Population of muscle satellite cells in relation to age and mitotic activity. Pathology 3: 223‐243, 1971.
 10.Almasan A, Yin Y, Kelly RE, Lee EY, Bradley A, Li W, Bertino JR, Wahl GM. Deficiency of retinoblastoma protein leads to inappropriate S‐phase entry, activation of E2F‐responsive genes, and apoptosis. Proc Natl Acad Sci U S A 92: 5436‐5440, 1995.
 11.Alvarez‐Buylla A, Garcia‐Verdugo JM, Tramontin AD. A unified hypothesis on the lineage of neural stem cells. Nat Rev Neurosci 2: 287‐293, 2001.
 12.Andersen J, Urban N, Achimastou A, Ito A, Simic M, Ullom K, Martynoga B, Lebel M, Goritz C, Frisen J, Nakafuku M, Guillemot F. A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron 83: 1085‐1097, 2014.
 13.Andreu Z, Khan MA, Gonzalez‐Gomez P, Negueruela S, Hortiguela R, San Emeterio J, Ferron SR, Martinez G, Vidal A, Farinas I, Lie DC, Mira H. The cyclin‐dependent kinase inhibitor p27 kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus. Stem Cells 33: 219‐229, 2015.
 14.Androutsellis‐Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD. Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442: 823‐826, 2006.
 15.Assoian RK, Schwartz MA. Coordinate signaling by integrins and receptor tyrosine kinases in the regulation of G1 phase cell‐cycle progression. Curr Opin Genet Dev 11: 48‐53, 2001.
 16.Attwooll C, Lazzerini Denchi E, Helin K. The E2F family: Specific functions and overlapping interests. EMBO J 23: 4709‐4716, 2004.
 17.Augenlicht LH, Baserga R. Changes in the G0 state of WI‐38 fibroblasts at different times after confluence. Exp Cell Res 89: 255‐262, 1974.
 18.Bahrami S, Drablos F. Gene regulation in the immediate‐early response process. Adv Biol Regul 62: 37‐49, 2016.
 19.Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ. A model of yeast cell‐cycle regulation based on multisite phosphorylation. Mol Syst Biol 6: 405, 2010.
 20.Barnum KJ, O'Connell MJ. Cell cycle regulation by checkpoints. Methods Mol Biol 1170: 29‐40, 2014.
 21.Basak O, Giachino C, Fiorini E, Macdonald HR, Taylor V. Neurogenic subventricular zone stem/progenitor cells are Notch1‐dependent in their active but not quiescent state. J Neurosci 32: 5654‐5666, 2012.
 22.Basak O, Krieger TG, Muraro MJ, Wiebrands K, Stange DE, Frias‐Aldeguer J, Rivron NC, van de Wetering M, van Es JH, van Oudenaarden A, Simons BD, Clevers H. Troy+ brain stem cells cycle through quiescence and regulate their number by sensing niche occupancy. Proc Natl Acad Sci U S A 115: E610‐E619, 2018.
 23.Bauer S. Cytokine control of adult neural stem cells. Ann N Y Acad Sci 1153: 48‐56, 2009.
 24.Bauer S, Patterson PH. Leukemia inhibitory factor promotes neural stem cell self‐renewal in the adult brain. J Neurosci 26: 12089‐12099, 2006.
 25.Beach D, Durkacz B, Nurse P. Functionally homologous cell cycle control genes in budding and fission yeast. Nature 300: 706‐709, 1982.
 26.Bentzinger CF, Wang YX, von Maltzahn J, Soleimani VD, Yin H, Rudnicki MA. Fibronectin regulates Wnt7a signaling and satellite cell expansion. Cell Stem Cell 12: 75‐87, 2013.
 27.Bernet JD, Doles JD, Hall JK, Kelly Tanaka K, Carter TA, Olwin BB. p38 MAPK signaling underlies a cell‐autonomous loss of stem cell self‐renewal in skeletal muscle of aged mice. Nat Med 20: 265‐271, 2014.
 28.Besson A, Dowdy SF, Roberts JM. CDK inhibitors: Cell cycle regulators and beyond. Dev Cell 14: 159‐169, 2008.
 29.Besson A, Gurian‐West M, Chen X, Kelly‐Spratt KS, Kemp CJ, Roberts JM. A pathway in quiescent cells that controls p27Kip1 stability, subcellular localization, and tumor suppression. Genes Dev 20: 47‐64, 2006.
 30.Bian YS, Osterheld MC, Fontolliet C, Bosman FT, Benhattar J. p16 inactivation by methylation of the CDKN2A promoter occurs early during neoplastic progression in Barrett's esophagus. Gastroenterology 122: 1113‐1121, 2002.
 31.Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30: 232‐242, 2012.
 32.Blackwell TK, Kretzner L, Blackwood EM, Eisenman RN, Weintraub H. Sequence‐specific DNA binding by the c‐Myc protein. Science 250: 1149‐1151, 1990.
 33.Blackwood EM, Eisenman RN. Max: A helix‐loop‐helix zipper protein that forms a sequence‐specific DNA‐binding complex with Myc. Science 251: 1211‐1217, 1991.
 34.Blais A, Dynlacht BD. Hitting their targets: An emerging picture of E2F and cell cycle control. Curr Opin Genet Dev 14: 527‐532, 2004.
 35.Blanco‐Bose WE, Yao CC, Kramer RH, Blau HM. Purification of mouse primary myoblasts based on alpha 7 integrin expression. Exp Cell Res 265: 212‐220, 2001.
 36.Blanpain C, Lowry WE, Pasolli HA, Fuchs E. Canonical notch signaling functions as a commitment switch in the epidermal lineage. Genes Dev 20: 3022‐3035, 2006.
 37.Bohmer RM, Scharf E, Assoian RK. Cytoskeletal integrity is required throughout the mitogen stimulation phase of the cell cycle and mediates the anchorage‐dependent expression of cyclin D1. Mol Biol Cell 7: 101‐111, 1996.
 38.Bonaguidi MA, Peng CY, McGuire T, Falciglia G, Gobeske KT, Czeisler C, Kessler JA. Noggin expands neural stem cells in the adult hippocampus. J Neurosci 28: 9194‐9204, 2008.
 39.Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: Five decades later. Cell Stem Cell 17: 385‐395, 2015.
 40.Bouchard C, Thieke K, Maier A, Saffrich R, Hanley‐Hyde J, Ansorge W, Reed S, Sicinski P, Bartek J, Eilers M. Direct induction of cyclin D2 by Myc contributes to cell cycle progression and sequestration of p27. EMBO J 18: 5321‐5333, 1999.
 41.Brooks RF. Regulation of fibroblast cell cycle by serum. Nature 260: 248‐250, 1976.
 42.Brooks RF, Richmond FN, Riddle PN, Richmond KM. Apparent heterogeneity in the response of quiescent swiss 3T3 cells to serum growth factors: Implications for the transition probability model and parallels with “cellular senescence” and “competence”. J Cell Physiol 121: 341‐350, 1984.
 43.Brotherton DH, Dhanaraj V, Wick S, Brizuela L, Domaille PJ, Volyanik E, Xu X, Parisini E, Smith BO, Archer SJ, Serrano M, Brenner SL, Blundell TL, Laue ED. Crystal structure of the complex of the cyclin D‐dependent kinase Cdk6 bound to the cell‐cycle inhibitor p19INK4d. Nature 395: 244‐250, 1998.
 44.Brown VD, Phillips RA, Gallie BL. Cumulative effect of phosphorylation of pRB on regulation of E2F activity. Mol Cell Biol 19: 3246‐3256, 1999.
 45.Buchkovich K, Duffy LA, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58: 1097‐1105, 1989.
 46.Burton JL, Solomon MJ. D box and KEN box motifs in budding yeast Hsl1p are required for APC‐mediated degradation and direct binding to Cdc20p and Cdh1p. Genes Dev 15: 2381‐2395, 2001.
 47.Cajal R. Degeneration and Regeneration of the Nervous System. London: Oxford University Press, 1913.
 48.Calvo CF, Fontaine RH, Soueid J, Tammela T, Makinen T, Alfaro‐Cervello C, Bonnaud F, Miguez A, Benhaim L, Xu Y, Barallobre MJ, Moutkine I, Lyytikka J, Tatlisumak T, Pytowski B, Zalc B, Richardson W, Kessaris N, Garcia‐Verdugo JM, Alitalo K, Eichmann A, Thomas JL. Vascular endothelial growth factor receptor 3 directly regulates murine neurogenesis. Genes Dev 25: 831‐844, 2011.
 49.Cameron HA, McKay RD. Adult neurogenesis produces a large pool of new granule cells in the dentate gyrus. J Comp Neurol 435: 406‐417, 2001.
 50.Campbell KP, Stull JT. Skeletal muscle basement membrane‐sarcolemma‐cytoskeleton interaction minireview series. J Biol Chem 278: 12599‐12600, 2003.
 51.Campos LS. Beta1 integrins and neural stem cells: Making sense of the extracellular environment. BioEssays 27: 698‐707, 2005.
 52.Cappell SD, Chung M, Jaimovich A, Spencer SL, Meyer T. Irreversible APC(Cdh1) inactivation underlies the point of no return for cell‐cycle entry. Cell 166: 167‐180, 2016.
 53.Cappell SD, Mark KG, Garbett D, Pack LR, Rape M, Meyer T. EMI1 switches from being a substrate to an inhibitor of APC/C(CDH1) to start the cell cycle. Nature 558: 313‐317, 2018.
 54.Carlen M, Meletis K, Goritz C, Darsalia V, Evergren E, Tanigaki K, Amendola M, Barnabe‐Heider F, Yeung MS, Naldini L, Honjo T, Kokaia Z, Shupliakov O, Cassidy RM, Lindvall O, Frisen J. Forebrain ependymal cells are Notch‐dependent and generate neuroblasts and astrocytes after stroke. Nat Neurosci 12: 259‐267, 2009.
 55.Carvajal LA, Hamard PJ, Tonnessen C, Manfredi JJ. E2F7, a novel target, is up‐regulated by p53 and mediates DNA damage‐dependent transcriptional repression. Genes Dev 26: 1533‐1545, 2012.
 56.Carvajal LA, Manfredi JJ. Another fork in the road—life or death decisions by the tumour suppressor p53. EMBO Rep 14: 414‐421, 2013.
 57.Casar JC, Cabello‐Verrugio C, Olguin H, Aldunate R, Inestrosa NC, Brandan E. Heparan sulfate proteoglycans are increased during skeletal muscle regeneration: Requirement of syndecan‐3 for successful fiber formation. J Cell Sci 117: 73‐84, 2004.
 58.Castella P, Wagner JA, Caudy M. Regulation of hippocampal neuronal differentiation by the basic helix‐loop‐helix transcription factors HES‐1 and MASH‐1. J Neurosci Res 56: 229‐240, 1999.
 59.Cerletti M, Jurga S, Witczak CA, Hirshman MF, Shadrach JL, Goodyear LJ, Wagers AJ. Highly efficient, functional engraftment of skeletal muscle stem cells in dystrophic muscles. Cell 134: 37‐47, 2008.
 60.Chaker Z, Codega P, Doetsch F. A mosaic world: Puzzles revealed by adult neural stem cell heterogeneity. Wiley Interdiscip Rev Dev Biol 5: 640‐658, 2016.
 61.Chakkalakal JV, Jones KM, Basson MA, Brack AS. The aged niche disrupts muscle stem cell quiescence. Nature 490: 355‐360, 2012.
 62.Chang F, Herskowitz I. Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63: 999‐1011, 1990.
 63.Chao WC, Kulkarni K, Zhang Z, Kong EH, Barford D. Structure of the mitotic checkpoint complex. Nature 484: 208‐213, 2012.
 64.Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev 84: 209‐238, 2004.
 65.Chellappan SP, Hiebert S, Mudryj M, Horowitz JM, Nevins JR. The E2F transcription factor is a cellular target for the RB protein. Cell 65: 1053‐1061, 1991.
 66.Chen C, Liu Y, Liu R, Ikenoue T, Guan KL, Liu Y, Zheng P. TSC‐mTOR maintains quiescence and function of hematopoietic stem cells by repressing mitochondrial biogenesis and reactive oxygen species. J Exp Med 205: 2397‐2408, 2008.
 67.Chen PL, Scully P, Shew JY, Wang JY, Lee WH. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58: 1193‐1198, 1989.
 68.Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14: 329‐340, 2013.
 69.Chi Y, Welcker M, Hizli AA, Posakony JJ, Aebersold R, Clurman BE. Identification of CDK2 substrates in human cell lysates. Genome Biol 9: R149, 2008.
 70.Chiorino G, Metz JA, Tomasoni D, Ubezio P. Desynchronization rate in cell populations: Mathematical modeling and experimental data. J Theor Biol 208: 185‐199, 2001.
 71.Chong JP, Mahbubani HM, Khoo CY, Blow JJ. Purification of an MCM‐containing complex as a component of the DNA replication licensing system. Nature 375: 418‐421, 1995.
 72.Classon M, Harlow E. The retinoblastoma tumour suppressor in development and cancer. Nat Rev Cancer 2: 910‐917, 2002.
 73.Clurman BE, Sheaff RJ, Thress K, Groudine M, Roberts JM. Turnover of cyclin E by the ubiquitin‐proteasome pathway is regulated by cdk2 binding and cyclin phosphorylation. Genes Dev 10: 1979‐1990, 1996.
 74.Clute P, Pines J. Temporal and spatial control of cyclin B1 destruction in metaphase. Nat Cell Biol 1: 82‐87, 1999.
 75.Coats S, Flanagan WM, Nourse J, Roberts JM. Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272: 877‐880, 1996.
 76.Codega P, Silva‐Vargas V, Paul A, Maldonado‐Soto AR, Deleo AM, Pastrana E, Doetsch F. Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82: 545‐559, 2014.
 77.Cohn RD, Henry MD, Michele DE, Barresi R, Saito F, Moore SA, Flanagan JD, Skwarchuk MW, Robbins ME, Mendell JR, Williamson RA, Campbell KP. Disruption of DAG1 in differentiated skeletal muscle reveals a role for dystroglycan in muscle regeneration. Cell 110: 639‐648, 2002.
 78.Colak D, Mori T, Brill MS, Pfeifer A, Falk S, Deng C, Monteiro R, Mummery C, Sommer L, Gotz M. Adult neurogenesis requires Smad4‐mediated bone morphogenic protein signaling in stem cells. J Neurosci 28: 434‐446, 2008.
 79.Coleman TR, Carpenter PB, Dunphy WG. The Xenopus Cdc6 protein is essential for the initiation of a single round of DNA replication in cell‐free extracts. Cell 87: 53‐63, 1996.
 80.Coller HA. What's taking so long? S‐phase entry from quiescence versus proliferation. Nat Rev Mol Cell Biol 8: 667‐670, 2007.
 81.Coller HA. Cell biology. The essence of quiescence. Science 334: 1074‐1075, 2011.
 82.Coller HA, Grandori C, Tamayo P, Colbert T, Lander ES, Eisenman RN, Golub TR. Expression analysis with oligonucleotide microarrays reveals that MYC regulates genes involved in growth, cell cycle, signaling, and adhesion. Proc Natl Acad Sci U S A 97: 3260‐3265, 2000.
 83.Coller HA, Sang L, Roberts JM. A new description of cellular quiescence. PLoS Biol 4: e83, 2006.
 84.Collins CA, Olsen I, Zammit PS, Heslop L, Petrie A, Partridge TA, Morgan JE. Stem cell function, self‐renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122: 289‐301, 2005.
 85.Colucci‐D'Amato L, Bonavita V, di Porzio U. The end of the central dogma of neurobiology: Stem cells and neurogenesis in adult CNS. Neurol Sci 27: 266‐270, 2006.
 86.Conboy IM, Rando TA. The regulation of Notch signaling controls satellite cell activation and cell fate determination in postnatal myogenesis. Dev Cell 3: 397‐409, 2002.
 87.Connell‐Crowley L, Harper JW, Goodrich DW. Cyclin D1/Cdk4 regulates retinoblastoma protein‐mediated cell cycle arrest by site‐specific phosphorylation. Mol Biol Cell 8: 287‐301, 1997.
 88.Connell‐Crowley L, Solomon MJ, Wei N, Harper JW. Phosphorylation independent activation of human cyclin‐dependent kinase 2 by cyclin A in vitro. Mol Biol Cell 4: 79‐92, 1993.
 89.Cook JG, Park CH, Burke TW, Leone G, DeGregori J, Engel A, Nevins JR. Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proc Natl Acad Sci U S A 99: 1347‐1352, 2002.
 90.Cornelison DD, Wilcox‐Adelman SA, Goetinck PF, Rauvala H, Rapraeger AC, Olwin BB. Essential and separable roles for Syndecan‐3 and Syndecan‐4 in skeletal muscle development and regeneration. Genes Dev 18: 2231‐2236, 2004.
 91.Costanzo M, Nishikawa JL, Tang X, Millman JS, Schub O, Breitkreuz K, Dewar D, Rupes I, Andrews B, Tyers M. CDK activity antagonizes Whi5, an inhibitor of G1/S transcription in yeast. Cell 117: 899‐913, 2004.
 92.Coverley D, Laman H, Laskey RA. Distinct roles for cyclins E and A during DNA replication complex assembly and activation. Nat Cell Biol 4: 523‐528, 2002.
 93.Cross FR. Starting the cell cycle: What's the point? Curr Opin Cell Biol 7: 790‐797, 1995.
 94.Cross FR. Two redundant oscillatory mechanisms in the yeast cell cycle. Dev Cell 4: 741‐752, 2003.
 95.Dahmann C, Diffley JF, Nasmyth KA. S‐phase‐promoting cyclin‐dependent kinases prevent re‐replication by inhibiting the transition of replication origins to a pre‐replicative state. Curr Biol 5: 1257‐1269, 1995.
 96.Dannenberg JH, van Rossum A, Schuijff L, te Riele H. Ablation of the retinoblastoma gene family deregulates G(1) control causing immortalization and increased cell turnover under growth‐restricting conditions. Genes Dev 14: 3051‐3064, 2000.
 97.Darzynkiewicz Z, Crissman H, Traganos F, Steinkamp J. Cell heterogeneity during the cell cycle. J Cell Physiol 113: 465‐474, 1982.
 98.Davis RJ, Swanger J, Hughes BT, Clurman BE. The PP2A‐B56 phosphatase opposes cyclin E autocatalytic degradation via site‐specific dephosphorylation. Mol Cell Biol 37, 2017.
 99.Dayer AG, Jenny B, Sauvain MO, Potter G, Salmon P, Zgraggen E, Kanemitsu M, Gascon E, Sizonenko S, Trono D, Kiss JZ. Expression of FGF‐2 in neural progenitor cells enhances their potential for cellular brain repair in the rodent cortex. Brain 130: 2962‐2976, 2007.
 100.Daynac M, Chicheportiche A, Pineda JR, Gauthier LR, Boussin FD, Mouthon MA. Quiescent neural stem cells exit dormancy upon alteration of GABAAR signaling following radiation damage. Stem Cell Res 11: 516‐528, 2013.
 101.Daynac M, Morizur L, Kortulewski T, Gauthier LR, Ruat M, Mouthon MA, Boussin FD. Cell sorting of neural stem and progenitor cells from the adult mouse subventricular zone and live‐imaging of their cell cycle dynamics. J Vis Exp, 2015. doi: 10.3791/53247
 102.De Bondt HL, Rosenblatt J, Jancarik J, Jones HD, Morgan DO, Kim SH. Crystal structure of cyclin‐dependent kinase 2. Nature 363: 595‐602, 1993.
 103.De Clercq A, Inze D. Cyclin‐dependent kinase inhibitors in yeast, animals, and plants: A functional comparison. Crit Rev Biochem Mol Biol 41: 293‐313, 2006.
 104.DeCaprio JA, Ludlow JW, Lynch D, Furukawa Y, Griffin J, Piwnica‐Worms H, Huang CM, Livingston DM. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58: 1085‐1095, 1989.
 105.DeGregori J, Kowalik T, Nevins JR. Cellular targets for activation by the E2F1 transcription factor include DNA synthesis‐ and G1/S‐regulatory genes. Mol Cell Biol 15: 4215‐4224, 1995.
 106.Deng C, Zhang P, Harper JW, Elledge SJ, Leder P. Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675‐684, 1995.
 107.Desai D, Gu Y, Morgan DO. Activation of human cyclin‐dependent kinases in vitro. Mol Biol Cell 3: 571‐582, 1992.
 108.Deshaies RJ. Make it or break it—the role of ubiquitin‐dependent proteolysis in cellular‐regulation. Trends Cell Biol 5: 428‐434, 1995.
 109.Devault A, Gueydon E, Schwob E. Interplay between S‐cyclin‐dependent kinase and Dbf4‐dependent kinase in controlling DNA replication through phosphorylation of yeast Mcm4 N‐terminal domain. Mol Biol Cell 19: 2267‐2277, 2008.
 110.Dey‐Guha I, Alves CP, Yeh AC, Salony, Sole X, Darp R, Ramaswamy S. A mechanism for asymmetric cell division resulting in proliferative asynchronicity. Mol Cancer Res 13: 223‐230, 2015.
 111.Dey‐Guha I, Wolfer A, Yeh AC, G Albeck J, Darp R, Leon E, Wulfkuhle J, Petricoin EF 3rd, Wittner BS, Ramaswamy S. Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci U S A 108: 12845‐12850, 2011.
 112.Di Talia S, Skotheim JM, Bean JM, Siggia ED, Cross FR. The effects of molecular noise and size control on variability in the budding yeast cell cycle. Nature 448: 947‐951, 2007.
 113.Diffley JF. Regulation of early events in chromosome replication. Curr Biol 14: R778‐R786, 2004.
 114.Dimova DK, Dyson NJ. The E2F transcriptional network: Old acquaintances with new faces. Oncogene 24: 2810‐2826, 2005.
 115.Doe CQ. Neural stem cells: Balancing self‐renewal with differentiation. Development 135: 1575‐1587, 2008.
 116.Doetsch F, Alvarez‐Buylla A. Network of tangential pathways for neuronal migration in adult mammalian brain. Proc Natl Acad Sci U S A 93: 14895‐14900, 1996.
 117.Doetsch F, Caille I, Lim DA, Garcia‐Verdugo JM, Alvarez‐Buylla A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97: 703‐716, 1999.
 118.Doetsch F, Garcia‐Verdugo JM, Alvarez‐Buylla A. Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci U S A 96: 11619‐11624, 1999.
 119.Doetsch F, Petreanu L, Caille I, Garcia‐Verdugo JM, Alvarez‐Buylla A. EGF converts transit‐amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36: 1021‐1034, 2002.
 120.Dolznig H, Grebien F, Sauer T, Beug H, Mullner EW. Evidence for a size‐sensing mechanism in animal cells. Nat Cell Biol 6: 899‐905, 2004.
 121.Drury LS, Perkins G, Diffley JF. The Cdc4/34/53 pathway targets Cdc6p for proteolysis in budding yeast. EMBO J 16: 5966‐5976, 1997.
 122.Drury LS, Perkins G, Diffley JF. The cyclin‐dependent kinase Cdc28p regulates distinct modes of Cdc6p proteolysis during the budding yeast cell cycle. Curr Biol 10: 231‐240, 2000.
 123.Dryja TP, Rapaport JM, Joyce JM, Petersen RA. Molecular detection of deletions involving band q14 of chromosome 13 in retinoblastomas. Proc Natl Acad Sci U S A 83: 7391‐7394, 1986.
 124.Dueck H, Eberwine J, Kim J. Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function. BioEssays 38: 172‐180, 2016.
 125.Dulic V, Lees E, Reed SI. Association of human cyclin E with a periodic G1‐S phase protein kinase. Science 257: 1958‐1961, 1992.
 126.Dulken BW, Leeman DS, Boutet SC, Hebestreit K, Brunet A. Single‐cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep 18: 777‐790, 2017.
 127.Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, Rudnicki MA. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med 21: 1455‐1463, 2015.
 128.Dunphy WG, Brizuela L, Beach D, Newport J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell 54: 423‐431, 1988.
 129.Duronio RJ, O'Farrell PH. Developmental control of the G1 to S transition in Drosophila: Cyclin E is a limiting downstream target of E2F. Genes Dev 9: 1456‐1468, 1995.
 130.Duronio RJ, O'Farrell PH, Xie JE, Brook A, Dyson N. The transcription factor E2F is required for S phase during Drosophila embryogenesis. Genes Dev 9: 1445‐1455, 1995.
 131.Dynlacht BD, Flores O, Lees JA, Harlow E. Differential regulation of E2F transactivation by cyclin/cdk2 complexes. Genes Dev 8: 1772‐1786, 1994.
 132.Dyson N. The regulation of E2F by pRB‐family proteins. Genes Dev 12: 2245‐2262, 1998.
 133.Edgar BA, Lehner CF. Developmental control of cell cycle regulators: A fly's perspective. Science 274: 1646‐1652, 1996.
 134.Eguren M, Manchado E, Malumbres M. Non‐mitotic functions of the anaphase‐promoting complex. Semin Cell Dev Biol 22: 572‐578, 2011.
 135.Ekholm‐Reed S, Spruck CH, Sangfelt O, van Drogen F, Mueller‐Holzner E, Widschwendter M, Zetterberg A, Reed SI. Mutation of hCDC4 leads to cell cycle deregulation of cyclin E in cancer. Cancer Res 64: 795‐800, 2004.
 136.el‐Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817‐825, 1993.
 137.Elledge SJ. Cell cycle checkpoints: Preventing an identity crisis. Science 274: 1664‐1672, 1996.
 138.Enoch T, Carr AM, Nurse P. Fission yeast genes involved in coupling mitosis to completion of DNA replication. Genes Dev 6: 2035‐2046, 1992.
 139.Ernst A, Alkass K, Bernard S, Salehpour M, Perl S, Tisdale J, Possnert G, Druid H, Frisen J. Neurogenesis in the striatum of the adult human brain. Cell 156: 1072‐1083, 2014.
 140.Espinoza FH, Farrell A, Erdjument‐Bromage H, Tempst P, Morgan DO. A cyclin‐dependent kinase‐activating kinase (CAK) in budding yeast unrelated to vertebrate CAK. Science 273: 1714‐1717, 1996.
 141.Evans T, Rosenthal ET, Youngblom J, Distel D, Hunt T. Cyclin: A protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33: 389‐396, 1983.
 142.Evertts AG, Manning AL, Wang X, Dyson NJ, Garcia BA, Coller HA. H4K20 methylation regulates quiescence and chromatin compaction. Mol Biol Cell 24: 3025‐3037, 2013.
 143.Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM. Functional interactions of the retinoblastoma protein with mammalian D‐type cyclins. Cell 73: 487‐497, 1993.
 144.Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ. The murine gene p27Kip1 is haplo‐insufficient for tumour suppression. Nature 396: 177‐180, 1998.
 145.Fero ML, Rivkin M, Tasch M, Porter P, Carow CE, Firpo E, Polyak K, Tsai LH, Broudy V, Perlmutter RM, Kaushansky K, Roberts JM. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)‐deficient mice. Cell 85: 733‐744, 1996.
 146.Ferrell JE Jr. Tripping the switch fantastic: How a protein kinase cascade can convert graded inputs into switch‐like outputs. Trends Biochem Sci 21: 460‐466, 1996.
 147.Ferrer Soler L, Cedano J, Querol E, de Llorens R. Cloning, expression and purification of human epidermal growth factor using different expression systems. J Chromatogr B Analyt Technol Biomed Life Sci 788: 113‐123, 2003.
 148.Fiorelli R, Azim K, Fischer B, Raineteau O. Adding a spatial dimension to postnatal ventricular‐subventricular zone neurogenesis. Development 142: 2109‐2120, 2015.
 149.Fisher RP, Morgan DO. A novel cyclin associates with MO15/CDK7 to form the CDK‐activating kinase. Cell 78: 713‐724, 1994.
 150.Fleig UN, Gould KL. Regulation of cdc2 activity in Schizosaccharomyces pombe: The role of phosphorylation. Semin Cell Biol 2: 195‐204, 1991.
 151.Forsburg SL, Nurse P. Cell cycle regulation in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe. Annu Rev Cell Biol 7: 227‐256, 1991.
 152.Frame S, Balmain A. Integration of positive and negative growth signals during ras pathway activation in vivo. Curr Opin Genet Dev 10: 106‐113, 2000.
 153.Fre S, Huyghe M, Mourikis P, Robine S, Louvard D, Artavanis‐Tsakonas S. Notch signals control the fate of immature progenitor cells in the intestine. Nature 435: 964‐968, 2005.
 154.Friend SH, Bernards R, Rogelj S, Weinberg RA, Rapaport JM, Albert DM, Dryja TP. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643‐646, 1986.
 155.Frolov MV, Dyson NJ. Molecular mechanisms of E2F‐dependent activation and pRB‐mediated repression. J Cell Sci 117: 2173‐2181, 2004.
 156.Frolov MV, Huen DS, Stevaux O, Dimova D, Balczarek‐Strang K, Elsdon M, Dyson NJ. Functional antagonism between E2F family members. Genes Dev 15: 2146‐2160, 2001.
 157.Fuentealba L, Carey DJ, Brandan E. Antisense inhibition of syndecan‐3 expression during skeletal muscle differentiation accelerates myogenesis through a basic fibroblast growth factor‐dependent mechanism. J Biol Chem 274: 37876‐37884, 1999.
 158.Fuentealba LC, Obernier K, Alvarez‐Buylla A. Adult neural stem cells bridge their niche. Cell Stem Cell 10: 698‐708, 2012.
 159.Fuentealba LC, Rompani SB, Parraguez JI, Obernier K, Romero R, Cepko CL, Alvarez‐Buylla A. Embryonic origin of postnatal neural stem cells. Cell 161: 1644‐1655, 2015.
 160.Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe‐Suzuki Y, Takeda S. Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells 25: 2448‐2459, 2007.
 161.Fukada S, Yamaguchi M, Kokubo H, Ogawa R, Uezumi A, Yoneda T, Matev MM, Motohashi N, Ito T, Zolkiewska A, Johnson RL, Saga Y, Miyagoe‐Suzuki Y, Tsujikawa K, Takeda S, Yamamoto H. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development 138: 4609‐4619, 2011.
 162.Fung YK, Murphree AL, T'Ang A, Qian J, Hinrichs SH, Benedict WF. Structural evidence for the authenticity of the human retinoblastoma gene. Science 236: 1657‐1661, 1987.
 163.Galaktionov K, Chen X, Beach D. Cdc25 cell‐cycle phosphatase as a target of c‐myc. Nature 382: 511‐517, 1996.
 164.Gartel AL, Tyner AL. Transcriptional regulation of the p21(WAF1/CIP1) gene. Exp Cell Res 246: 280‐289, 1999.
 165.Gasparian ME, Elistratov PA, Drize NI, Nifontova IN, Dolgikh DA, Kirpichnikov MP. Overexpression in Escherichia coli and purification of human fibroblast growth factor (FGF‐2). Biochemistry (Mosc) 74: 221‐225, 2009.
 166.Geng Y, Eaton EN, Picon M, Roberts JM, Lundberg AS, Gifford A, Sardet C, Weinberg RA. Regulation of cyclin E transcription by E2Fs and retinoblastoma protein. Oncogene 12: 1173‐1180, 1996.
 167.Geng Y, Lee YM, Welcker M, Swanger J, Zagozdzon A, Winer JD, Roberts JM, Kaldis P, Clurman BE, Sicinski P. Kinase‐independent function of cyclin E. Mol Cell 25: 127‐139, 2007.
 168.Georgia S, Soliz R, Li M, Zhang P, Bhushan A. p57 and Hes1 coordinate cell cycle exit with self‐renewal of pancreatic progenitors. Dev Biol 298: 22‐31, 2006.
 169.Geyer M, Wittinghofer A. GEFs, GAPs, GDIs and effectors: Taking a closer (3D) look at the regulation of Ras‐related GTP‐binding proteins. Curr Opin Struct Biol 7: 786‐792, 1997.
 170.Gieffers C, Peters BH, Kramer ER, Dotti CG, Peters JM. Expression of the CDH1‐associated form of the anaphase‐promoting complex in postmitotic neurons. Proc Natl Acad Sci U S A 96: 11317‐11322, 1999.
 171.Gilbert DM. Making sense of eukaryotic DNA replication origins. Science 294: 96‐100, 2001.
 172.Giono LE, Manfredi JJ. The p53 tumor suppressor participates in multiple cell cycle checkpoints. J Cell Physiol 209: 13‐20, 2006.
 173.Giordani L, He GJ, Negroni E, Sakai H, Law JYC, Siu MM, Wan R, Tajbakhsh S, Cheung TH, Grand FL. High‐dimensional single‐cell cartography reveals novel skeletal muscle resident cell populations. Mol Cell 74: 609‐621.e6, 2019.
 174.Girard F, Strausfeld U, Fernandez A, Lamb NJ. Cyclin A is required for the onset of DNA replication in mammalian fibroblasts. Cell 67: 1169‐1179, 1991.
 175.Givogri MI, de Planell M, Galbiati F, Superchi D, Gritti A, Vescovi A, de Vellis J, Bongarzone ER. Notch signaling in astrocytes and neuroblasts of the adult subventricular zone in health and after cortical injury. Dev Neurosci 28: 81‐91, 2006.
 176.Glotzer M, Murray AW, Kirschner MW. Cyclin is degraded by the ubiquitin pathway. Nature 349: 132‐138, 1991.
 177.Gokhin DS, Ward SR, Bremner SN, Lieber RL. Quantitative analysis of neonatal skeletal muscle functional improvement in the mouse. J Exp Biol 211: 837‐843, 2008.
 178.Gomez‐Gaviro MV, Scott CE, Sesay AK, Matheu A, Booth S, Galichet C, Lovell‐Badge R. Betacellulin promotes cell proliferation in the neural stem cell niche and stimulates neurogenesis. Proc Natl Acad Sci U S A 109: 1317‐1322, 2012.
 179.Gosselet FP, Magnaldo T, Culerrier RM, Sarasin A, Ehrhart JC. BMP2 and BMP6 control p57(Kip2) expression and cell growth arrest/terminal differentiation in normal primary human epidermal keratinocytes. Cell Signal 19: 731‐739, 2007.
 180.Gould KL, Moreno S, Owen DJ, Sazer S, Nurse P. Phosphorylation at Thr167 is required for Schizosaccharomyces pombe p34cdc2 function. EMBO J 10: 3297‐3309, 1991.
 181.Goulev Y, Charvin G. Ultrasensitivity and positive feedback to promote sharp mitotic entry. Mol Cell 41: 243‐244, 2011.
 182.Greenberg ME, Ziff EB. Stimulation of 3T3 cells induces transcription of the c‐fos proto‐oncogene. Nature 311: 433‐438, 1984.
 183.Grimpe B, Dong S, Doller C, Temple K, Malouf AT, Silver J. The critical role of basement membrane‐independent laminin gamma 1 chain during axon regeneration in the CNS. J Neurosci 22: 3144‐3160, 2002.
 184.Gross CG. Neurogenesis in the adult brain: Death of a dogma. Nat Rev Neurosci 1: 67‐73, 2000.
 185.Gu Y, Turck CW, Morgan DO. Inhibition of CDK2 activity in vivo by an associated 20K regulatory subunit. Nature 366: 707‐710, 1993.
 186.Hahn AT, Jones JT, Meyer T. Quantitative analysis of cell cycle phase durations and PC12 differentiation using fluorescent biosensors. Cell Cycle 8: 1044‐1052, 2009.
 187.Halazonetis TD, Kandil AN. Determination of the c‐MYC DNA‐binding site. Proc Natl Acad Sci U S A 88: 6162‐6166, 1991.
 188.Hall MC, Warren EN, Borchers CH. Multi‐kinase phosphorylation of the APC/C activator Cdh1 revealed by mass spectrometry. Cell Cycle 3: 1278‐1284, 2004.
 189.Hall PE, Lathia JD, Caldwell MA, Ffrench‐Constant C. Laminin enhances the growth of human neural stem cells in defined culture media. BMC Neurosci 9: 71, 2008.
 190.Hanafusa H, Torii S, Yasunaga T, Nishida E. Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4: 850‐858, 2002.
 191.Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. Structure of a Fbw7‐Skp1‐cyclin E complex: Multisite‐phosphorylated substrate recognition by SCF ubiquitin ligases. Mol Cell 26: 131‐143, 2007.
 192.Harper JW, Adami GR, Wei N, Keyomarsi K, Elledge SJ. The p21 Cdk‐interacting protein Cip1 is a potent inhibitor of G1 cyclin‐dependent kinases. Cell 75: 805‐816, 1993.
 193.Harper JW, Burton JL, Solomon MJ. The anaphase‐promoting complex: It's not just for mitosis any more. Genes Dev 16: 2179‐2206, 2002.
 194.Harper JW, Elledge SJ. The role of Cdk7 in CAK function, a retro‐retrospective. Genes Dev 12: 285‐289, 1998.
 195.Harper JW, Elledge SJ, Keyomarsi K, Dynlacht B, Tsai LH, Zhang P, Dobrowolski S, Bai C, Connell‐Crowley L, Swindell E. Inhibition of cyclin‐dependent kinases by p21. Mol Biol Cell 6: 387‐400, 1995.
 196.Harrington EA, Bruce JL, Harlow E, Dyson N. pRB plays an essential role in cell cycle arrest induced by DNA damage. Proc Natl Acad Sci U S A 95: 11945‐11950, 1998.
 197.Hartwell LH. Twenty‐five years of cell cycle genetics. Genetics 129: 975‐980, 1991.
 198.Hartwell LH, Culotti J, Pringle JR, Reid BJ. Genetic control of the cell division cycle in yeast. Science 183: 46‐51, 1974.
 199.Hartwell LH, Culotti J, Reid B. Genetic control of the cell‐division cycle in yeast. I. Detection of mutants. Proc Natl Acad Sci U S A 66: 352‐359, 1970.
 200.Hartwell LH, Weinert TA. Checkpoints: Controls that ensure the order of cell cycle events. Science 246: 629‐634, 1989.
 201.Hatakeyama M, Weinberg RA. The role of RB in cell cycle control. Prog Cell Cycle Res 1: 9‐19, 1995.
 202.Healy S, Khan P, Davie JR. Immediate early response genes and cell transformation. Pharmacol Ther 137: 64‐77, 2013.
 203.Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL, Hack MA, Chapouton P, Barde YA, Gotz M. Glial cells generate neurons: The role of the transcription factor Pax6. Nat Neurosci 5: 308‐315, 2002.
 204.Hermeking H, Rago C, Schuhmacher M, Li Q, Barrett JF, Obaya AJ, O'Connell BC, Mateyak MK, Tam W, Kohlhuber F, Dang CV, Sedivy JM, Eick D, Vogelstein B, Kinzler KW. Identification of CDK4 as a target of c‐MYC. Proc Natl Acad Sci U S A 97: 2229‐2234, 2000.
 205.Herschman HR. Primary response genes induced by growth factors and tumor promoters. Annu Rev Biochem 60: 281‐319, 1991.
 206.Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem 67: 425‐479, 1998.
 207.Hershko A, Ganoth D, Pehrson J, Palazzo RE, Cohen LH. Methylated ubiquitin inhibits cyclin degradation in clam embryo extracts. J Biol Chem 266: 16376‐16379, 1991.
 208.Hinds PW, Mittnacht S, Dulic V, Arnold A, Reed SI, Weinberg RA. Regulation of retinoblastoma protein functions by ectopic expression of human cyclins. Cell 70: 993‐1006, 1992.
 209.Hoffmann I, Clarke PR, Marcote MJ, Karsenti E, Draetta G. Phosphorylation and activation of human cdc25‐C by cdc2—cyclin B and its involvement in the self‐amplification of MPF at mitosis. EMBO J 12: 53‐63, 1993.
 210.Huang JN, Park I, Ellingson E, Littlepage LE, Pellman D. Activity of the APC(Cdh1) form of the anaphase‐promoting complex persists until S phase and prevents the premature expression of Cdc20p. J Cell Biol 154: 85‐94, 2001.
 211.Hwang HC, Clurman BE. Cyclin E in normal and neoplastic cell cycles. Oncogene 24: 2776‐2786, 2005.
 212.Hwang LH, Lau LF, Smith DL, Mistrot CA, Hardwick KG, Hwang ES, Amon A, Murray AW. Budding yeast Cdc20: A target of the spindle checkpoint. Science 279: 1041‐1044, 1998.
 213.Hynes RO. Integrins: Bidirectional, allosteric signaling machines. Cell 110: 673‐687, 2002.
 214.Ihrie RA, Alvarez‐Buylla A. Lake‐front property: A unique germinal niche by the lateral ventricles of the adult brain. Neuron 70: 674‐686, 2011.
 215.Imayoshi I, Sakamoto M, Ohtsuka T, Takao K, Miyakawa T, Yamaguchi M, Mori K, Ikeda T, Itohara S, Kageyama R. Roles of continuous neurogenesis in the structural and functional integrity of the adult forebrain. Nat Neurosci 11: 1153‐1161, 2008.
 216.Irniger S. Cyclin destruction in mitosis: A crucial task of Cdc20. FEBS Lett 532: 7‐11, 2002.
 217.Irniger S, Piatti S, Michaelis C, Nasmyth K. Genes involved in sister chromatid separation are needed for B‐type cyclin proteolysis in budding yeast. Cell 81: 269‐278, 1995.
 218.Iso T, Kedes L, Hamamori Y. HES and HERP families: Multiple effectors of the Notch signaling pathway. J Cell Physiol 194: 237‐255, 2003.
 219.Izawa D, Pines J. Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation. J Cell Biol 199: 27‐37, 2012.
 220.Izumi T, Walker DH, Maller JL. Periodic changes in phosphorylation of the Xenopus cdc25 phosphatase regulate its activity. Mol Biol Cell 3: 927‐939, 1992.
 221.Jarriault S, Brou C, Logeat F, Schroeter EH, Kopan R, Israel A. Signalling downstream of activated mammalian Notch. Nature 377: 355‐358, 1995.
 222.Jaspersen SL, Charles JF, Morgan DO. Inhibitory phosphorylation of the APC regulator Hct1 is controlled by the kinase Cdc28 and the phosphatase Cdc14. Curr Biol 9: 227‐236, 1999.
 223.Jeffrey PD, Russo AA, Polyak K, Gibbs E, Hurwitz J, Massague J, Pavletich NP. Mechanism of CDK activation revealed by the structure of a cyclinA‐CDK2 complex. Nature 376: 313‐320, 1995.
 224.Jiang W, Kahn SM, Zhou P, Zhang YJ, Cacace AM, Infante AS, Doi S, Santella RM, Weinstein IB. Overexpression of cyclin D1 in rat fibroblasts causes abnormalities in growth control, cell cycle progression and gene expression. Oncogene 8: 3447‐3457, 1993.
 225.Johnson DG, Schwarz JK, Cress WD, Nevins JR. Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature 365: 349‐352, 1993.
 226.Johnson RL, Riddle RD, Tabin CJ. Mechanisms of limb patterning. Curr Opin Genet Dev 4: 535‐542, 1994.
 227.Johnson SE, Allen RE. Activation of skeletal muscle satellite cells and the role of fibroblast growth factor receptors. Exp Cell Res 219: 449‐453, 1995.
 228.Jones NC, Fedorov YV, Rosenthal RS, Olwin BB. ERK1/2 is required for myoblast proliferation but is dispensable for muscle gene expression and cell fusion. J Cell Physiol 186: 104‐115, 2001.
 229.Jones NC, Tyner KJ, Nibarger L, Stanley HM, Cornelison DD, Fedorov YV, Olwin BB. The p38alpha/beta MAPK functions as a molecular switch to activate the quiescent satellite cell. J Cell Biol 169: 105‐116, 2005.
 230.Kabraji S, Sole X, Huang Y, Bango C, Bowden M, Bardia A, Sgroi D, Loda M, Ramaswamy S. AKT1(low) quiescent cancer cells persist after neoadjuvant chemotherapy in triple negative breast cancer. Breast Cancer Res 19: 88, 2017.
 231.Kaelin WG Jr. Functions of the retinoblastoma protein. BioEssays 21: 950‐958, 1999.
 232.Kaldis P, Sutton A, Solomon MJ. The Cdk‐activating kinase (CAK) from budding yeast. Cell 86: 553‐564, 1996.
 233.Kamb A, Gruis NA, Weaver‐Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS 3rd, Johnson BE, Skolnick MH. A cell cycle regulator potentially involved in genesis of many tumor types. Science 264: 436‐440, 1994.
 234.Kamb A, Shattuck‐Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver‐Feldhaus J, McClure M, Aitken JF, Anderson DE, Bergman W, Frants R, Goldgar DE, Green A, MacLennan R, Martin NG, Meyer LJ, Youl P, Zone JJ, Skolnick MH, Cannon‐Albright LA. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 8: 23‐26, 1994.
 235.Kato J, Matsushime H, Hiebert SW, Ewen ME, Sherr CJ. Direct binding of cyclin D to the retinoblastoma gene product (pRb) and pRb phosphorylation by the cyclin D‐dependent kinase CDK4. Genes Dev 7: 331‐342, 1993.
 236.Katz B. The termination of the afferent nerve fibre in the muscle spindle of the frog. Philos Trans R Soc B 243: 221‐240, 1961.
 237.Kawai H, Kawaguchi D, Kuebrich BD, Kitamoto T, Yamaguchi M, Gotoh Y, Furutachi S. Area‐specific regulation of quiescent neural stem cells by Notch3 in the adult mouse subependymal zone. J Neurosci 37: 11867‐11880, 2017.
 238.Kazanis I, Lathia JD, Vadakkan TJ, Raborn E, Wan R, Mughal MR, Eckley DM, Sasaki T, Patton B, Mattson MP, Hirschi KK, Dickinson ME, ffrench‐Constant C. Quiescence and activation of stem and precursor cell populations in the subependymal zone of the mammalian brain are associated with distinct cellular and extracellular matrix signals. J Neurosci 30: 9771‐9781, 2010.
 239.Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 386: 493‐495, 1997.
 240.Kempermann G, van Praag H, Gage FH. Activity‐dependent regulation of neuronal plasticity and self repair. Prog Brain Res 127: 35‐48, 2000.
 241.Kennedy BK, Barbie DA, Classon M, Dyson N, Harlow E. Nuclear organization of DNA replication in primary mammalian cells. Genes Dev 14: 2855‐2868, 2000.
 242.Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa‐Hirasawa E, Efird JT, Mercier F. Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25: 2146‐2157, 2007.
 243.Killander D, Zetterberg A. A quantitative cytochemical investigation of the relationship between cell mass and initiation of DNA synthesis in mouse fibroblasts in vitro. Exp Cell Res 40: 12‐20, 1965.
 244.Killander D, Zetterberg A. Quantitative cytochemical studies on interphase growth. I. Determination of DNA, RNA and mass content of age determined mouse fibroblasts in vitro and of intercellular variation in generation time. Exp Cell Res 38: 272‐284, 1965.
 245.Kim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE. Ascl1 (Mash1) defines cells with long‐term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6: e18472, 2011.
 246.Kim HJ, Bar‐Sagi D. Modulation of signalling by Sprouty: A developing story. Nat Rev Mol Cell Biol 5: 441‐450, 2004.
 247.Kim JH, Han GC, Seo JY, Park I, Park W, Jeong HW, Lee SH, Bae SH, Seong J, Yum MK, Hann SH, Kwon YG, Seo D, Choi MH, Kong YY. Sex hormones establish a reserve pool of adult muscle stem cells. Nat Cell Biol 18: 930‐940, 2016.
 248.Kim SH, Lin DP, Matsumoto S, Kitazono A, Matsumoto T. Fission yeast Slp1: An effector of the Mad2‐dependent spindle checkpoint. Science 279: 1045‐1047, 1998.
 249.King RW, Peters JM, Tugendreich S, Rolfe M, Hieter P, Kirschner MW. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis‐specific conjugation of ubiquitin to cyclin B. Cell 81: 279‐288, 1995.
 250.Kippin TE, Martens DJ, van der Kooy D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19: 756‐767, 2005.
 251.Kitamoto T, Hanaoka K. Notch3 null mutation in mice causes muscle hyperplasia by repetitive muscle regeneration. Stem Cells 28: 2205‐2216, 2010.
 252.Kitamura K, Maekawa H, Shimoda C. Fission yeast Ste9, a homolog of Hct1/Cdh1 and Fizzy‐related, is a novel negative regulator of cell cycle progression during G1‐phase. Mol Biol Cell 9: 1065‐1080, 1998.
 253.Kiyokawa H, Kineman RD, Manova‐Todorova KO, Soares VC, Hoffman ES, Ono M, Khanam D, Hayday AC, Frohman LA, Koff A. Enhanced growth of mice lacking the cyclin‐dependent kinase inhibitor function of p27(Kip1). Cell 85: 721‐732, 1996.
 254.Knighton DR, Zheng JH, Ten Eyck LF, Ashford VA, Xuong NH, Taylor SS, Sowadski JM. Crystal structure of the catalytic subunit of cyclic adenosine monophosphate‐dependent protein kinase. Science 253: 407‐414, 1991.
 255.Knudsen ES, Wang JY. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J Biol Chem 271: 8313‐8320, 1996.
 256.Knudson AG Jr. Mutation and cancer: Statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68: 820‐823, 1971.
 257.Koepp DM, Schaefer LK, Ye X, Keyomarsi K, Chu C, Harper JW, Elledge SJ. Phosphorylation‐dependent ubiquitination of cyclin E by the SCFFbw7 ubiquitin ligase. Science 294: 173‐177, 2001.
 258.Koff A, Giordano A, Desai D, Yamashita K, Harper JW, Elledge S, Nishimoto T, Morgan DO, Franza BR, Roberts JM. Formation and activation of a cyclin E‐cdk2 complex during the G1 phase of the human cell cycle. Science 257: 1689‐1694, 1992.
 259.Koh J, Enders GH, Dynlacht BD, Harlow E. Tumour‐derived p16 alleles encoding proteins defective in cell‐cycle inhibition. Nature 375: 506‐510, 1995.
 260.Kominami K, Seth‐Smith H, Toda T. Apc10 and Ste9/Srw1, two regulators of the APC‐cyclosome, as well as the CDK inhibitor Rum1 are required for G1 cell‐cycle arrest in fission yeast. EMBO J 17: 5388‐5399, 1998.
 261.Kriegstein A, Alvarez‐Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci 32: 149‐184, 2009.
 262.Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA. Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172: 103‐113, 2006.
 263.Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self‐renewal and differentiation. Cell Stem Cell 2: 22‐31, 2008.
 264.Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self‐renewal and commitment of satellite stem cells in muscle. Cell 129: 999‐1010, 2007.
 265.Kuerbitz SJ, Plunkett BS, Walsh WV, Kastan MB. Wild‐type p53 is a cell cycle checkpoint determinant following irradiation. Proc Natl Acad Sci U S A 89: 7491‐7495, 1992.
 266.Kuhn HG, Winkler J, Kempermann G, Thal LJ, Gage FH. Epidermal growth factor and fibroblast growth factor‐2 have different effects on neural progenitors in the adult rat brain. J Neurosci 17: 5820‐5829, 1997.
 267.Kumagai A, Dunphy WG. Regulation of the cdc25 protein during the cell cycle in Xenopus extracts. Cell 70: 139‐151, 1992.
 268.Kunze A, Grass S, Witte OW, Yamaguchi M, Kempermann G, Redecker C. Proliferative response of distinct hippocampal progenitor cell populations after cortical infarcts in the adult brain. Neurobiol Dis 21: 324‐332, 2006.
 269.Kwon JS, Everetts NJ, Wang X, Wang W, Della Croce K, Xing J, Yao G. Controlling depth of cellular quiescence by an Rb‐E2F network switch. Cell Rep 20: 3223‐3235, 2017.
 270.La Thangue NB. DP and E2F proteins: Components of a heterodimeric transcription factor implicated in cell cycle control. Curr Opin Cell Biol 6: 443‐450, 1994.
 271.La Thangue NB. DRTF1/E2F: An expanding family of heterodimeric transcription factors implicated in cell‐cycle control. Trends Biochem Sci 19: 108‐114, 1994.
 272.Labib K, Diffley JF, Kearsey SE. G1‐phase and B‐type cyclins exclude the DNA‐replication factor Mcm4 from the nucleus. Nat Cell Biol 1: 415‐422, 1999.
 273.Ladha MH, Lee KY, Upton TM, Reed MF, Ewen ME. Regulation of exit from quiescence by p27 and cyclin D1‐CDK4. Mol Cell Biol 18: 6605‐6615, 1998.
 274.Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 149: 274‐293, 2012.
 275.Lee LA, Orr‐Weaver TL. Regulation of cell cycles in Drosophila development: Intrinsic and extrinsic cues. Annu Rev Genet 37: 545‐578, 2003.
 276.Lee MH, Reynisdottir I, Massague J. Cloning of p57KIP2, a cyclin‐dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev 9: 639‐649, 1995.
 277.Lee Y, Grill S, Sanchez A, Murphy‐Ryan M, Poss KD. Fgf signaling instructs position‐dependent growth rate during zebrafish fin regeneration. Development 132: 5173‐5183, 2005.
 278.Legesse‐Miller A, Raitman I, Haley EM, Liao A, Sun LL, Wang DJ, Krishnan N, Lemons JM, Suh EJ, Johnson EL, Lund BA, Coller HA. Quiescent fibroblasts are protected from proteasome inhibition‐mediated toxicity. Mol Biol Cell 23: 3566‐3581, 2012.
 279.Lei M, Tye BK. Initiating DNA synthesis: From recruiting to activating the MCM complex. J Cell Sci 114: 1447‐1454, 2001.
 280.Lemons JM, Feng XJ, Bennett BD, Legesse‐Miller A, Johnson EL, Raitman I, Pollina EA, Rabitz HA, Rabinowitz JD, Coller HA. Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8: e1000514, 2010.
 281.Leone DP, Relvas JB, Campos LS, Hemmi S, Brakebusch C, Fassler R, Ffrench‐Constant C, Suter U. Regulation of neural progenitor proliferation and survival by beta1 integrins. J Cell Sci 118: 2589‐2599, 2005.
 282.Lepousez G, Valley MT, Lledo PM. The impact of adult neurogenesis on olfactory bulb circuits and computations. Annu Rev Physiol 75: 339‐363, 2013.
 283.Lew DJ, Kornbluth S. Regulatory roles of cyclin dependent kinase phosphorylation in cell cycle control. Curr Opin Cell Biol 8: 795‐804, 1996.
 284.Li L, Clevers H. Coexistence of quiescent and active adult stem cells in mammals. Science 327: 542‐545, 2010.
 285.Li R, Murray AW. Feedback control of mitosis in budding yeast. Cell 66: 519‐531, 1991.
 286.Liggett WH Jr, Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 16: 1197‐1206, 1998.
 287.Liku ME, Nguyen VQ, Rosales AW, Irie K, Li JJ. CDK phosphorylation of a novel NLS‐NES module distributed between two subunits of the Mcm2‐7 complex prevents chromosomal rereplication. Mol Biol Cell 16: 5026‐5039, 2005.
 288.Lim DA, Alvarez‐Buylla A. Adult neural stem cells stake their ground. Trends Neurosci 37: 563‐571, 2014.
 289.Lim S, Kaldis P. Cdks, cyclins and CKIs: Roles beyond cell cycle regulation. Development 140: 3079‐3093, 2013.
 290.Lin BT, Gruenwald S, Morla AO, Lee WH, Wang JY. Retinoblastoma cancer suppressor gene product is a substrate of the cell cycle regulator cdc2 kinase. EMBO J 10: 857‐864, 1991.
 291.Lindsay HD, Griffiths DJ, Edwards RJ, Christensen PU, Murray JM, Osman F, Walworth N, Carr AM. S‐phase‐specific activation of Cds1 kinase defines a subpathway of the checkpoint response in Schizosaccharomyces pombe. Genes Dev 12: 382‐395, 1998.
 292.Lisztwan J, Marti A, Sutterluty H, Gstaiger M, Wirbelauer C, Krek W. Association of human CUL‐1 and ubiquitin‐conjugating enzyme CDC34 with the F‐box protein p45(SKP2): Evidence for evolutionary conservation in the subunit composition of the CDC34‐SCF pathway. EMBO J 17: 368‐383, 1998.
 293.Llorens‐Bobadilla E, Zhao S, Baser A, Saiz‐Castro G, Zwadlo K, Martin‐Villalba A. Single‐cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17: 329‐340, 2015.
 294.Loeb KR, Kostner H, Firpo E, Norwood T, D Tsuchiya K, Clurman BE, Roberts JM. A mouse model for cyclin E‐dependent genetic instability and tumorigenesis. Cancer Cell 8: 35‐47, 2005.
 295.Lohka MJ, Hayes MK, Maller JL. Purification of maturation‐promoting factor, an intracellular regulator of early mitotic events. Proc Natl Acad Sci U S A 85: 3009‐3013, 1988.
 296.Lorca T, Castro A, Martinez AM, Vigneron S, Morin N, Sigrist S, Lehner C, Doree M, Labbe JC. Fizzy is required for activation of the APC/cyclosome in Xenopus egg extracts. EMBO J 17: 3565‐3575, 1998.
 297.Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Gotz M, Haas CA, Kempermann G, Taylor V, Giachino C. Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6: 445‐456, 2010.
 298.Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120: 237‐248, 2005.
 299.Lundberg AS, Weinberg RA. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin‐cdk complexes. Mol Cell Biol 18: 753‐761, 1998.
 300.Lundgren K, Walworth N, Booher R, Dembski M, Kirschner M, Beach D. mik1 and wee1 cooperate in the inhibitory tyrosine phosphorylation of cdc2. Cell 64: 1111‐1122, 1991.
 301.Lyapina SA, Correll CC, Kipreos ET, Deshaies RJ. Human CUL1 forms an evolutionarily conserved ubiquitin ligase complex (SCF) with SKP1 and an F‐box protein. Proc Natl Acad Sci U S A 95: 7451‐7456, 1998.
 302.Ma DK, Bonaguidi MA, Ming GL, Song H. Adult neural stem cells in the mammalian central nervous system. Cell Res 19: 672‐682, 2009.
 303.Ma DK, Jang MH, Guo JU, Kitabatake Y, Chang ML, Pow‐Anpongkul N, Flavell RA, Lu B, Ming GL, Song H. Neuronal activity‐induced Gadd45b promotes epigenetic DNA demethylation and adult neurogenesis. Science 323: 1074‐1077, 2009.
 304.Ma DK, Kim WR, Ming GL, Song H. Activity‐dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci 1170: 664‐673, 2009.
 305.Ma DK, Ponnusamy K, Song MR, Ming GL, Song H. Molecular genetic analysis of FGFR1 signalling reveals distinct roles of MAPK and PLCgamma1 activation for self‐renewal of adult neural stem cells. Mol Brain 2: 16, 2009.
 306.Magavi SS, Mitchell BD, Szentirmai O, Carter BS, Macklis JD. Adult‐born and preexisting olfactory granule neurons undergo distinct experience‐dependent modifications of their olfactory responses in vivo. J Neurosci 25: 10729‐10739, 2005.
 307.Mailand N, Diffley JF. CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C‐dependent proteolysis. Cell 122: 915‐926, 2005.
 308.Malumbres M. Cyclin‐dependent kinases. Genome Biol 15: 122, 2014.
 309.Malumbres M, Barbacid M. Mammalian cyclin‐dependent kinases. Trends Biochem Sci 30: 630‐641, 2005.
 310.Mao JH, Perez‐Losada J, Wu D, Delrosario R, Tsunematsu R, Nakayama KI, Brown K, Bryson S, Balmain A. Fbxw7/Cdc4 is a p53‐dependent, haploinsufficient tumour suppressor gene. Nature 432: 775‐779, 2004.
 311.Maric D, Maric I, Chang YH, Barker JL. Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self‐renewal and differentiation. J Neurosci 23: 240‐251, 2003.
 312.Marshall C. How do small GTPase signal transduction pathways regulate cell cycle entry? Curr Opin Cell Biol 11: 732‐736, 1999.
 313.Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The muscle stem cell niche in health and disease. Curr Top Dev Biol 126: 23‐65, 2018.
 314.Mason JM, Morrison DJ, Basson MA, Licht JD. Sprouty proteins: Multifaceted negative‐feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16: 45‐54, 2006.
 315.Massague J. G1 cell‐cycle control and cancer. Nature 432: 298‐306, 2004.
 316.Matson JP, Cook JG. Cell cycle proliferation decisions: The impact of single cell analyses. FEBS J 284: 362‐375, 2017.
 317.Matsumoto Y, Maller JL. A centrosomal localization signal in cyclin E required for Cdk2‐independent S phase entry. Science 306: 885‐888, 2004.
 318.Matsuoka M, Kato JY, Fisher RP, Morgan DO, Sherr CJ. Activation of cyclin‐dependent kinase 4 (cdk4) by mouse MO15‐associated kinase. Mol Cell Biol 14: 7265‐7275, 1994.
 319.Matsuoka S, Edwards MC, Bai C, Parker S, Zhang P, Baldini A, Harper JW, Elledge SJ. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev 9: 650‐662, 1995.
 320.Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 9: 493‐495, 1961.
 321.McAdams HH, Arkin A. Stochastic mechanisms in gene expression. Proc Natl Acad Sci U S A 94: 814‐819, 1997.
 322.McGowan CH, Russell P. Cell cycle regulation of human WEE1. EMBO J 14: 2166‐2175, 1995.
 323.McKinney JD, Chang F, Heintz N, Cross FR. Negative regulation of FAR1 at the Start of the yeast cell cycle. Genes Dev 7: 833‐843, 1993.
 324.Meloche S, Seuwen K, Pages G, Pouyssegur J. Biphasic and synergistic activation of p44mapk (ERK1) by growth factors: Correlation between late phase activation and mitogenicity. Mol Endocrinol 6: 845‐854, 1992.
 325.Mercier F, Kitasako JT, Hatton GI. Anatomy of the brain neurogenic zones revisited: Fractones and the fibroblast/macrophage network. J Comp Neurol 451: 170‐188, 2002.
 326.Merkle FT, Mirzadeh Z, Alvarez‐Buylla A. Mosaic organization of neural stem cells in the adult brain. Science 317: 381‐384, 2007.
 327.Merkle FT, Tramontin AD, Garcia‐Verdugo JM, Alvarez‐Buylla A. Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101: 17528‐17532, 2004.
 328.Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY, Johnson JE, Morrison SJ. Prospective identification of functionally distinct stem cells and neurosphere‐initiating cells in adult mouse forebrain. elife 3: e02669, 2014.
 329.Mihara K, Cao XR, Yen A, Chandler S, Driscoll B, Murphree AL, T'Ang A, Fung YK. Cell cycle‐dependent regulation of phosphorylation of the human retinoblastoma gene product. Science 246: 1300‐1303, 1989.
 330.Minella AC, Loeb KR, Knecht A, Welcker M, Varnum‐Finney BJ, Bernstein ID, Roberts JM, Clurman BE. Cyclin E phosphorylation regulates cell proliferation in hematopoietic and epithelial lineages in vivo. Genes Dev 22: 1677‐1689, 2008.
 331.Mira H, Andreu Z, Suh H, Lie DC, Jessberger S, Consiglio A, San Emeterio J, Hortiguela R, Marques‐Torrejon MA, Nakashima K, Colak D, Gotz M, Farinas I, Gage FH. Signaling through BMPR‐IA regulates quiescence and long‐term activity of neural stem cells in the adult hippocampus. Cell Stem Cell 7: 78‐89, 2010.
 332.Mirzadeh Z, Merkle FT, Soriano‐Navarro M, Garcia‐Verdugo JM, Alvarez‐Buylla A. Neural stem cells confer unique pinwheel architecture to the ventricular surface in neurogenic regions of the adult brain. Cell Stem Cell 3: 265‐278, 2008.
 333.Mittnacht S, Lees JA, Desai D, Harlow E, Morgan DO, Weinberg RA. Distinct sub‐populations of the retinoblastoma protein show a distinct pattern of phosphorylation. EMBO J 13: 118‐127, 1994.
 334.Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, Silva‐Vargas V, Sims PA, Doetsch F. Single‐cell analysis of regional differences in adult V‐SVZ neural stem cell lineages. Cell Rep 26, e395: 394‐406, 2019.
 335.Moberg KH, Bell DW, Wahrer DC, Haber DA, Hariharan IK. Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer cell lines. Nature 413: 311‐316, 2001.
 336.Mohrin M, Bourke E, Alexander D, Warr MR, Barry‐Holson K, Le Beau MM, Morrison CG, Passegue E. Hematopoietic stem cell quiescence promotes error‐prone DNA repair and mutagenesis. Cell Stem Cell 7: 174‐185, 2010.
 337.Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi‐1 dependence distinguishes neural stem cell self‐renewal from progenitor proliferation. Nature 425: 962‐967, 2003.
 338.Montarras D, Morgan J, Collins C, Relaix F, Zaffran S, Cumano A, Partridge T, Buckingham M. Direct isolation of satellite cells for skeletal muscle regeneration. Science 309: 2064‐2067, 2005.
 339.Moodie SA, Willumsen BM, Weber MJ, Wolfman A. Complexes of Ras. GTP with Raf‐1 and mitogen‐activated protein kinase kinase. Science 260: 1658‐1661, 1993.
 340.Moreno‐Jimenez EP, Flor‐Garcia M, Terreros‐Roncal J, Rabano A, Cafini F, Pallas‐Bazarra N, Avila J, Llorens‐Martin M. Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nat Med, 2019.
 341.Morgan DO. Cyclin‐dependent kinases: Engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13: 261‐291, 1997.
 342.Morgan DO. Regulation of the APC and the exit from mitosis. Nat Cell Biol 1: E47‐E53, 1999.
 343.Morgan DO. The Cell Cycle: Principles of Control. London, UK: New Science Press Ltd, 2007.
 344.Morizur L, Chicheportiche A, Gauthier LR, Daynac M, Boussin FD, Mouthon MA. Distinct molecular signatures of quiescent and activated adult neural stem cells reveal specific interactions with their microenvironment. Stem Cell Rep 11: 565‐577, 2018.
 345.Morrison RS, Kornblum HI, Leslie FM, Bradshaw RA. Trophic stimulation of cultured neurons from neonatal rat brain by epidermal growth factor. Science 238: 72‐75, 1987.
 346.Morshead CM, Reynolds BA, Craig CG, McBurney MW, Staines WA, Morassutti D, Weiss S, van der Kooy D. Neural stem cells in the adult mammalian forebrain: A relatively quiescent subpopulation of subependymal cells. Neuron 13: 1071‐1082, 1994.
 347.Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S. Cell‐autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development 139: 4536‐4548, 2012.
 348.Muller S, Chakrapani BP, Schwegler H, Hofmann HD, Kirsch M. Neurogenesis in the dentate gyrus depends on ciliary neurotrophic factor and signal transducer and activator of transcription 3 signaling. Stem Cells 27: 431‐441, 2009.
 349.Murray AW, Kirschner MW. Dominoes and clocks: The union of two views of the cell cycle. Science 246: 614‐621, 1989.
 350.Murray AW, Solomon MJ, Kirschner MW. The role of cyclin synthesis and degradation in the control of maturation promoting factor activity. Nature 339: 280‐286, 1989.
 351.Musacchio A, Salmon ED. The spindle‐assembly checkpoint in space and time. Nat Rev Mol Cell Biol 8: 379‐393, 2007.
 352.Nakatomi H, Kuriu T, Okabe S, Yamamoto S, Hatano O, Kawahara N, Tamura A, Kirino T, Nakafuku M. Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell 110: 429‐441, 2002.
 353.Nakayama K, Ishida N, Shirane M, Inomata A, Inoue T, Shishido N, Horii I, Loh DY, Nakayama K. Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85: 707‐720, 1996.
 354.Neufeld TP, de la Cruz AF, Johnston LA, Edgar BA. Coordination of growth and cell division in the Drosophila wing. Cell 93: 1183‐1193, 1998.
 355.Nguyen H, Gitig DM, Koff A. Cell‐free degradation of p27(kip1), a G1 cyclin‐dependent kinase inhibitor, is dependent on CDK2 activity and the proteasome. Mol Cell Biol 19: 1190‐1201, 1999.
 356.Nguyen VQ, Co C, Irie K, Li JJ. Clb/Cdc28 kinases promote nuclear export of the replication initiator proteins Mcm2‐7. Curr Biol 10: 195‐205, 2000.
 357.Nguyen VQ, Co C, Li JJ. Cyclin‐dependent kinases prevent DNA re‐replication through multiple mechanisms. Nature 411: 1068‐1073, 2001.
 358.Nishitani H, Lygerou Z. Control of DNA replication licensing in a cell cycle. Genes Cells 7: 523‐534, 2002.
 359.Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin‐dependent kinase‐4 inhibitor gene in multiple human cancers. Nature 368: 753‐756, 1994.
 360.Nurcombe V, Ford MD, Wildschut JA, Bartlett PF. Developmental regulation of neural response to FGF‐1 and FGF‐2 by heparan sulfate proteoglycan. Science 260: 103‐106, 1993.
 361.Nurse P. Genetic control of cell size at cell division in yeast. Nature 256: 547‐551, 1975.
 362.Nurse P. Universal control mechanism regulating onset of M‐phase. Nature 344: 503‐508, 1990.
 363.Nurse P. Ordering S phase and M phase in the cell cycle. Cell 79: 547‐550, 1994.
 364.Nurse P, Thuriaux P. Regulatory genes controlling mitosis in the fission yeast Schizosaccharomyces pombe. Genetics 96: 627‐637, 1980.
 365.Nyfeler Y, Kirch RD, Mantei N, Leone DP, Radtke F, Suter U, Taylor V. Jagged1 signals in the postnatal subventricular zone are required for neural stem cell self‐renewal. EMBO J 24: 3504‐3515, 2005.
 366.O'Donnell A, Odrowaz Z, Sharrocks AD. Immediate‐early gene activation by the MAPK pathways: What do and don't we know? Biochem Soc Trans 40: 58‐66, 2012.
 367.O'Farrell PH. Triggering the all‐or‐nothing switch into mitosis. Trends Cell Biol 11: 512‐519, 2001.
 368.Ohtsubo M, Roberts JM. Cyclin‐dependent regulation of G(1) in mammalian fibroblasts. Science 259: 1908‐1912, 1993.
 369.Ohtsubo M, Theodoras AM, Schumacher J, Roberts JM, Pagano M. Human cyclin E, a nuclear protein essential for the G1‐to‐S phase transition. Mol Cell Biol 15: 2612‐2624, 1995.
 370.Orford KW, Scadden DT. Deconstructing stem cell self‐renewal: Genetic insights into cell‐cycle regulation. Nat Rev Genet 9: 115‐128, 2008.
 371.Orlicky S, Tang X, Willems A, Tyers M, Sicheri F. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112: 243‐256, 2003.
 372.Ottone C, Krusche B, Whitby A, Clements M, Quadrato G, Pitulescu ME, Adams RH, Parrinello S. Direct cell‐cell contact with the vascular niche maintains quiescent neural stem cells. Nat Cell Biol 16: 1045‐1056, 2014.
 373.Oustanina S, Hause G, Braun T. Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23: 3430‐3439, 2004.
 374.Owen TA, Soprano DR, Soprano KJ. Analysis of the growth factor requirements for stimulation of WI‐38 cells after extended periods of density‐dependent growth arrest. J Cell Physiol 139: 424‐431, 1989.
 375.Paez‐Gonzalez P, Abdi K, Luciano D, Liu Y, Soriano‐Navarro M, Rawlins E, Bennett V, Garcia‐Verdugo JM, Kuo CT. Ank3‐dependent SVZ niche assembly is required for the continued production of new neurons. Neuron 71: 61‐75, 2011.
 376.Pagano M, Tam SW, Theodoras AM, Beer‐Romero P, Del Sal G, Chau V, Yew PR, Draetta GF, Rolfe M. Role of the ubiquitin‐proteasome pathway in regulating abundance of the cyclin‐dependent kinase inhibitor p27. Science 269: 682‐685, 1995.
 377.Palmer TD, Takahashi J, Gage FH. The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8: 389‐404, 1997.
 378.Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425: 479‐494, 2000.
 379.Papanikolaou T, Lennington JB, Betz A, Figueiredo C, Salamone JD, Conover JC. In vitro generation of dopaminergic neurons from adult subventricular zone neural progenitor cells. Stem Cells Dev 17: 157‐172, 2008.
 380.Pardee AB. A restriction point for control of normal animal cell proliferation. Proc Natl Acad Sci U S A 71: 1286‐1290, 1974.
 381.Paul A, Chaker Z, Doetsch F. Hypothalamic regulation of regionally distinct adult neural stem cells and neurogenesis. Science 356: 1383‐1386, 2017.
 382.Pavletich NP. Mechanisms of cyclin‐dependent kinase regulation: Structures of Cdks, their cyclin activators, and Cip and INK4 inhibitors. J Mol Biol 287: 821‐828, 1999.
 383.Perez‐Roger I, Solomon DL, Sewing A, Land H. Myc activation of cyclin E/Cdk2 kinase involves induction of cyclin E gene transcription and inhibition of p27(Kip1) binding to newly formed complexes. Oncogene 14: 2373‐2381, 1997.
 384.Peter M, Herskowitz I. Direct inhibition of the yeast cyclin‐dependent kinase Cdc28‐Cln by Far1. Science 265: 1228‐1231, 1994.
 385.Peters JM. Subunits and substrates of the anaphase‐promoting complex. Exp Cell Res 248: 339‐349, 1999.
 386.Peters JM. The anaphase‐promoting complex: Proteolysis in mitosis and beyond. Mol Cell 9: 931‐943, 2002.
 387.Peters JM. The anaphase promoting complex/cyclosome: A machine designed to destroy. Nat Rev Mol Cell Biol 7: 644‐656, 2006.
 388.Petersen BO, Wagener C, Marinoni F, Kramer ER, Melixetian M, Lazzerini Denchi E, Gieffers C, Matteucci C, Peters JM, Helin K. Cell cycle‐ and cell growth‐regulated proteolysis of mammalian CDC6 is dependent on APC‐CDH1. Genes Dev 14: 2330‐2343, 2000.
 389.Petryniak MA, Potter GB, Rowitch DH, Rubenstein JL. Dlx1 and Dlx2 control neuronal versus oligodendroglial cell fate acquisition in the developing forebrain. Neuron 55: 417‐433, 2007.
 390.Pisconti A, Banks GB, Babaeijandaghi F, Betta ND, Rossi FM, Chamberlain JS, Olwin BB. Loss of niche‐satellite cell interactions in syndecan‐3 null mice alters muscle progenitor cell homeostasis improving muscle regeneration. Skelet Muscle 6, 34, 2016.
 391.Pisconti A, Cornelison DD, Olguin HC, Antwine TL, Olwin BB. Syndecan‐3 and Notch cooperate in regulating adult myogenesis. J Cell Biol 190: 427‐441, 2010.
 392.Polyak K, Kato JY, Solomon MJ, Sherr CJ, Massague J, Roberts JM, Koff A. p27Kip1, a cyclin‐Cdk inhibitor, links transforming growth factor‐beta and contact inhibition to cell cycle arrest. Genes Dev 8: 9‐22, 1994.
 393.Polyak K, Lee MH, Erdjument‐Bromage H, Koff A, Roberts JM, Tempst P, Massague J. Cloning of p27Kip1, a cyclin‐dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78: 59‐66, 1994.
 394.Pomerening JR, Sontag ED, Ferrell JE Jr. Building a cell cycle oscillator: Hysteresis and bistability in the activation of Cdc2. Nat Cell Biol 5: 346‐351, 2003.
 395.Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez‐Buylla A. Cell cycle and lineage progression of neural progenitors in the ventricular‐subventricular zones of adult mice. Proc Natl Acad Sci U S A 110: E1045‐E1054, 2013.
 396.Poss KD, Shen J, Nechiporuk A, McMahon G, Thisse B, Thisse C, Keating MT. Roles for Fgf signaling during zebrafish fin regeneration. Dev Biol 222: 347‐358, 2000.
 397.Prinz S, Hwang ES, Visintin R, Amon A. The regulation of Cdc20 proteolysis reveals a role for APC components Cdc23 and Cdc27 during S phase and early mitosis. Curr Biol 8: 750‐760, 1998.
 398.Qiao R, Weissmann F, Yamaguchi M, Brown NG, VanderLinden R, Imre R, Jarvis MA, Brunner MR, Davidson IF, Litos G, Haselbach D, Mechtler K, Stark H, Schulman BA, Peters JM. Mechanism of APC/CCDC20 activation by mitotic phosphorylation. Proc Natl Acad Sci U S A 113: E2570‐E2578, 2016.
 399.Qiu J, Takagi Y, Harada J, Topalkara K, Wang Y, Sims JR, Zheng G, Huang P, Ling Y, Scadden DT, Moskowitz MA, Cheng T. p27Kip1 constrains proliferation of neural progenitor cells in adult brain under homeostatic and ischemic conditions. Stem Cells 27: 920‐927, 2009.
 400.Rakic P. DNA synthesis and cell division in the adult primate brain. Ann N Y Acad Sci 457: 193‐211, 1985.
 401.Rakic P. Limits of neurogenesis in primates. Science 227: 1054‐1056, 1985.
 402.Ramirez‐Castillejo C, Sanchez‐Sanchez F, Andreu‐Agullo C, Ferron SR, Aroca‐Aguilar JD, Sanchez P, Mira H, Escribano J, Farinas I. Pigment epithelium‐derived factor is a niche signal for neural stem cell renewal. Nat Neurosci 9: 331‐339, 2006.
 403.Randell JC, Bowers JL, Rodriguez HK, Bell SP. Sequential ATP hydrolysis by Cdc6 and ORC directs loading of the Mcm2‐7 helicase. Mol Cell 21: 29‐39, 2006.
 404.Rapraeger AC. Syndecan‐regulated receptor signaling. J Cell Biol 149: 995‐998, 2000.
 405.Rayman JB, Takahashi Y, Indjeian VB, Dannenberg JH, Catchpole S, Watson RJ, te Riele H, Dynlacht BD. E2F mediates cell cycle‐dependent transcriptional repression in vivo by recruitment of an HDAC1/mSin3B corepressor complex. Genes Dev 16: 933‐947, 2002.
 406.Relaix F, Montarras D, Zaffran S, Gayraud‐Morel B, Rocancourt D, Tajbakhsh S, Mansouri A, Cumano A, Buckingham M. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172: 91‐102, 2006.
 407.Ren B, Cam H, Takahashi Y, Volkert T, Terragni J, Young RA, Dynlacht BD. E2F integrates cell cycle progression with DNA repair, replication, and G(2)/M checkpoints. Genes Dev 16: 245‐256, 2002.
 408.Resnitzky D, Gossen M, Bujard H, Reed SI. Acceleration of the G(1)/S phase‐transition by expression of cyclin‐D1 and cyclin‐E with an inducible system. Mol Cell Biol 14: 1669‐1679, 1994.
 409.Reynisdottir I, Polyak K, Iavarone A, Massague J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF‐beta. Genes Dev 9: 1831‐1845, 1995.
 410.Rhind N, Furnari B, Russell P. Cdc2 tyrosine phosphorylation is required for the DNA damage checkpoint in fission yeast. Genes Dev 11: 504‐511, 1997.
 411.Riquelme PA, Drapeau E, Doetsch F. Brain micro‐ecologies: Neural stem cell niches in the adult mammalian brain. Philos Trans R Soc Lond Ser B Biol Sci 363: 123‐137, 2008.
 412.Robbins JA, Cross FR. Regulated degradation of the APC coactivator Cdc20. Cell Div 5: 23, 2010.
 413.Rocco JW, Sidransky D. p16(MTS‐1/CDKN2/INK4a) in cancer progression. Exp Cell Res 264: 42‐55, 2001.
 414.Rochefort C, Gheusi G, Vincent JD, Lledo PM. Enriched odor exposure increases the number of newborn neurons in the adult olfactory bulb and improves odor memory. J Neurosci 22: 2679‐2689, 2002.
 415.Rochlin K, Yu S, Roy S, Baylies MK. Myoblast fusion: When it takes more to make one. Dev Biol 341: 66‐83, 2010.
 416.Rodgers JT, King KY, Brett JO, Cromie MJ, Charville GW, Maguire KK, Brunson C, Mastey N, Liu L, Tsai CR, Goodell MA, Rando TA. mTORC1 controls the adaptive transition of quiescent stem cells from G0 to G(Alert). Nature 510: 393‐396, 2014.
 417.Roovers K, Davey G, Zhu X, Bottazzi ME, Assoian RK. Alpha5beta1 integrin controls cyclin D1 expression by sustaining mitogen‐activated protein kinase activity in growth factor‐treated cells. Mol Biol Cell 10: 3197‐3204, 1999.
 418.Rozo M, Li L, Fan CM. Targeting beta1‐integrin signaling enhances regeneration in aged and dystrophic muscle in mice. Nat Med 22: 889‐896, 2016.
 419.Rubin SM, Gall AL, Zheng N, Pavletich NP. Structure of the Rb C‐terminal domain bound to E2F1‐DP1: A mechanism for phosphorylation‐induced E2F release. Cell 123: 1093‐1106, 2005.
 420.Russell P, Nurse P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homolog. Cell 49: 559‐567, 1987.
 421.Russo AA, Jeffrey PD, Patten AK, Massague J, Pavletich NP. Crystal structure of the p27Kip1 cyclin‐dependent‐kinase inhibitor bound to the cyclin A‐Cdk2 complex. Nature 382: 325‐331, 1996.
 422.Russo AA, Tong L, Lee JO, Jeffrey PD, Pavletich NP. Structural basis for inhibition of the cyclin‐dependent kinase Cdk6 by the tumour suppressor p16INK4a. Nature 395: 237‐243, 1998.
 423.Sacco A, Doyonnas R, Kraft P, Vitorovic S, Blau HM. Self‐renewal and expansion of single transplanted muscle stem cells. Nature 456: 502‐506, 2008.
 424.Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B, Theodorou E, Jacks T. Targeted disruption of the three Rb‐related genes leads to loss of G(1) control and immortalization. Genes Dev 14: 3037‐3050, 2000.
 425.Sakamoto M, Ieki N, Miyoshi G, Mochimaru D, Miyachi H, Imura T, Yamaguchi M, Fishell G, Mori K, Kageyama R, Imayoshi I. Continuous postnatal neurogenesis contributes to formation of the olfactory bulb neural circuits and flexible olfactory associative learning. J Neurosci 34: 5788‐5799, 2014.
 426.Sang L, Coller HA, Roberts JM. Control of the reversibility of cellular quiescence by the transcriptional repressor HES1. Science 321: 1095‐1100, 2008.
 427.Sawamoto K, Wichterle H, Gonzalez‐Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia‐Verdugo JM, Marin O, Rubenstein JL, Tessier‐Lavigne M, Okano H, Alvarez‐Buylla A. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311: 629‐632, 2006.
 428.Scharner J, Zammit PS. The muscle satellite cell at 50: The formative years. Skelet Muscle 1: 28, 2011.
 429.Schlegel R, Pardee AB. Caffeine‐induced uncoupling of mitosis from the completion of DNA replication in mammalian cells. Science 232: 1264‐1266, 1986.
 430.Schmidt HD, Duman RS. The role of neurotrophic factors in adult hippocampal neurogenesis, antidepressant treatments and animal models of depressive‐like behavior. Behav Pharmacol 18: 391‐418, 2007.
 431.Schultz E. A quantitative study of the satellite cell population in postnatal mouse lumbrical muscle. Anat Rec 180: 589‐595, 1974.
 432.Schultz E, McCormick KM. Skeletal muscle satellite cells. Rev Physiol Biochem Pharmacol 123: 213‐257, 1994.
 433.Schwab M, Lutum AS, Seufert W. Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell 90: 683‐693, 1997.
 434.Schwob E, Bohm T, Mendenhall MD, Nasmyth K. The B‐type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79: 233‐244, 1994.
 435.Seale P, Sabourin LA, Girgis‐Gabardo A, Mansouri A, Gruss P, Rudnicki MA. Pax7 is required for the specification of myogenic satellite cells. Cell 102: 777‐786, 2000.
 436.Sears R, Ohtani K, Nevins JR. Identification of positively and negatively acting elements regulating expression of the E2F2 gene in response to cell growth signals. Mol Cell Biol 17: 5227‐5235, 1997.
 437.Sears RC, Nevins JR. Signaling networks that link cell proliferation and cell fate. J Biol Chem 277: 11617‐11620, 2002.
 438.Seri B, Garcia‐Verdugo JM, Collado‐Morente L, McEwen BS, Alvarez‐Buylla A. Cell types, lineage, and architecture of the germinal zone in the adult dentate gyrus. J Comp Neurol 478: 359‐378, 2004.
 439.Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, Brack AS. Sprouty1 regulates reversible quiescence of a self‐renewing adult muscle stem cell pool during regeneration. Cell Stem Cell 6: 117‐129, 2010.
 440.Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE. Cyclin E‐CDK2 is a regulator of p27Kip1. Genes Dev 11: 1464‐1478, 1997.
 441.Sheehan SM, Allen RE. Skeletal muscle satellite cell proliferation in response to members of the fibroblast growth factor family and hepatocyte growth factor. J Cell Physiol 181: 499‐506, 1999.
 442.Shen Q, Wang Y, Kokovay E, Lin G, Chuang SM, Goderie SK, Roysam B, Temple S. Adult SVZ stem cells lie in a vascular niche: A quantitative analysis of niche cell‐cell interactions. Cell Stem Cell 3: 289‐300, 2008.
 443.Sherr CJ, McCormick F. The RB and p53 pathways in cancer. Cancer Cell 2: 103‐112, 2002.
 444.Sherr CJ, Roberts JM. Inhibitors of mammalian G1 cyclin‐dependent kinases. Genes Dev 9: 1149‐1163, 1995.
 445.Sherr CJ, Roberts JM. CDK inhibitors: Positive and negative regulators of G1‐phase progression. Genes Dev 13: 1501‐1512, 1999.
 446.Shimizu K, Chiba S, Saito T, Kumano K, Hamada Y, Hirai H. Functional diversity among Notch1, Notch2, and Notch3 receptors. Biochem Biophys Res Commun 291: 775‐779, 2002.
 447.Shirayama M, Zachariae W, Ciosk R, Nasmyth K. The Polo‐like kinase Cdc5p and the WD‐repeat protein Cdc20p/fizzy are regulators and substrates of the anaphase promoting complex in Saccharomyces cerevisiae. EMBO J 17: 1336‐1349, 1998.
 448.Sigrist SJ, Lehner CF. Drosophila fizzy‐related down‐regulates mitotic cyclins and is required for cell proliferation arrest and entry into endocycles. Cell 90: 671‐681, 1997.
 449.Silva‐Vargas V, Maldonado‐Soto AR, Mizrak D, Codega P, Doetsch F. Age‐dependent niche signals from the choroid plexus regulate adult neural stem cells. Cell Stem Cell 19: 643‐652, 2016.
 450.Siu KT, Rosner MR, Minella AC. An integrated view of cyclin E function and regulation. Cell Cycle 11: 57‐64, 2012.
 451.Siu KT, Xu Y, Swartz KL, Bhattacharyya M, Gurbuxani S, Hua Y, Minella AC. Chromosome instability underlies hematopoietic stem cell dysfunction and lymphoid neoplasia associated with impaired Fbw7‐mediated cyclin E regulation. Mol Cell Biol 34: 3244‐3258, 2014.
 452.Snijder B, Pelkmans L. Origins of regulated cell‐to‐cell variability. Nat Rev Mol Cell Biol 12: 119‐125, 2011.
 453.Solomon MJ, Glotzer M, Lee TH, Philippe M, Kirschner MW. Cyclin activation of p34cdc2. Cell 63: 1013‐1024, 1990.
 454.Solomon MJ, Lee T, Kirschner MW. Role of phosphorylation in p34cdc2 activation: Identification of an activating kinase. Mol Biol Cell 3: 13‐27, 1992.
 455.Soprano KJ. WI‐38 cell long‐term quiescence model system: A valuable tool to study molecular events that regulate growth. J Cell Biochem 54: 405‐414, 1994.
 456.Sorensen CS, Lukas C, Kramer ER, Peters JM, Bartek J, Lukas J. Nonperiodic activity of the human anaphase‐promoting complex‐Cdh1 ubiquitin ligase results in continuous DNA synthesis uncoupled from mitosis. Mol Cell Biol 20: 7613‐7623, 2000.
 457.Sorrells SF, Paredes MF, Cebrian‐Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ, Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia‐Verdugo JM, Yang Z, Alvarez‐Buylla A. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555: 377‐381, 2018.
 458.Spalding KL, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner HB, Bostrom E, Westerlund I, Vial C, Buchholz BA, Possnert G, Mash DC, Druid H, Frisen J. Dynamics of hippocampal neurogenesis in adult humans. Cell 153: 1219‐1227, 2013.
 459.Spencer SL, Cappell SD, Tsai FC, Overton KW, Wang CL, Meyer T. The proliferation‐quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155: 369‐383, 2013.
 460.St Clair S, Giono L, Varmeh‐Ziaie S, Resnick‐Silverman L, Liu WJ, Padi A, Dastidar J, DaCosta A, Mattia M, Manfredi JJ. DNA damage‐induced downregulation of Cdc25C is mediated by p53 via two independent mechanisms: One involves direct binding to the cdc25C promoter. Mol Cell 16: 725‐736, 2004.
 461.Stevaux O, Dyson NJ. A revised picture of the E2F transcriptional network and RB function. Curr Opin Cell Biol 14: 684‐691, 2002.
 462.Strohmaier H, Spruck CH, Kaiser P, Won KA, Sangfelt O, Reed SI. Human F‐box protein hCdc4 targets cyclin E for proteolysis and is mutated in a breast cancer cell line. Nature 413: 316‐322, 2001.
 463.Sudakin V, Ganoth D, Dahan A, Heller H, Hershko J, Luca FC, Ruderman JV, Hershko A. The cyclosome, a large complex containing cyclin‐selective ubiquitin ligase activity, targets cyclins for destruction at the end of mitosis. Mol Biol Cell 6: 185‐197, 1995.
 464.Suh EJ, Remillard MY, Legesse‐Miller A, Johnson EL, Lemons JM, Chapman TR, Forman JJ, Kojima M, Silberman ES, Coller HA. A microRNA network regulates proliferative timing and extracellular matrix synthesis during cellular quiescence in fibroblasts. Genome Biol 13: R121, 2012.
 465.Suh H, Consiglio A, Ray J, Sawai T, D'Amour KA, Gage FH. In vivo fate analysis reveals the multipotent and self‐renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1: 515‐528, 2007.
 466.Suh Y, Obernier K, Holzl‐Wenig G, Mandl C, Herrmann A, Worner K, Eckstein V, Ciccolini F. Interaction between DLX2 and EGFR regulates proliferation and neurogenesis of SVZ precursors. Mol Cell Neurosci 42: 308‐314, 2009.
 467.Tajbakhsh S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med 266: 372‐389, 2009.
 468.Takahashi Y, Rayman JB, Dynlacht BD. Analysis of promoter binding by the E2F and pRB families in vivo: Distinct E2F proteins mediate activation and repression. Genes Dev 14: 804‐816, 2000.
 469.Tanaka S, Araki H. Regulation of the initiation step of DNA replication by cyclin‐dependent kinases. Chromosoma 119: 565‐574, 2010.
 470.Tanaka S, Diffley JF. Interdependent nuclear accumulation of budding yeast Cdt1 and Mcm2‐7 during G1 phase. Nat Cell Biol 4: 198‐207, 2002.
 471.Tavazoie M, Van der Veken L, Silva‐Vargas V, Louissaint M, Colonna L, Zaidi B, Garcia‐Verdugo JM, Doetsch F. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 3: 279‐288, 2008.
 472.Temin HM. Stimulation by serum of multiplication of stationary chicken cells. J Cell Physiol 78: 161‐170, 1971.
 473.Temple S. The development of neural stem cells. Nature 414: 112‐117, 2001.
 474.Tong CK, Chen J, Cebrian‐Silla A, Mirzadeh Z, Obernier K, Guinto CD, Tecott LH, Garcia‐Verdugo JM, Kriegstein A, Alvarez‐Buylla A. Axonal control of the adult neural stem cell niche. Cell Stem Cell 14: 500‐511, 2014.
 475.Toyoshima H, Hunter T. p27, a novel inhibitor of G1 cyclin‐Cdk protein kinase activity, is related to p21. Cell 78: 67‐74, 1994.
 476.Trimarchi JM, Lees JA. Sibling rivalry in the E2F family. Nat Rev Mol Cell Biol 3: 11‐20, 2002.
 477.Tropepe V, Craig CG, Morshead CM, van der Kooy D. Transforming growth factor‐alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 17: 7850‐7859, 1997.
 478.Tsvetkov LM, Yeh KH, Lee SJ, Sun H, Zhang H. p27(Kip1) ubiquitination and degradation is regulated by the SCF(Skp2) complex through phosphorylated Thr187 in p27. Curr Biol 9: 661‐664, 1999.
 479.Tuel‐Ahlgren L, Jun X, Waddick KG, Jin J, Bolen J, Uckun FM. Role of tyrosine phosphorylation in radiation‐induced cell cycle‐arrest of leukemic B‐cell precursors at the G2‐M transition checkpoint. Leuk Lymphoma 20: 417‐426, 1996.
 480.Tugendreich S, Tomkiel J, Earnshaw W, Hieter P. CDC27Hs colocalizes with CDC16Hs to the centrosome and mitotic spindle and is essential for the metaphase to anaphase transition. Cell 81: 261‐268, 1995.
 481.Tyson JJ, Chen KC, Novak B. Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell. Curr Opin Cell Biol 15: 221‐231, 2003.
 482.Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO. Targets of the cyclin‐dependent kinase Cdk1. Nature 425: 859‐864, 2003.
 483.Vaccarello G, Figliola R, Cramerotti S, Novelli F, Maione R. p57Kip2 is induced by MyoD through a p73‐dependent pathway. J Mol Biol 356: 578‐588, 2006.
 484.van Praag H, Kempermann G, Gage FH. Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2: 266‐270, 1999.
 485.Veeraraghavalu K, Choi SH, Zhang X, Sisodia SS. Presenilin 1 mutants impair the self‐renewal and differentiation of adult murine subventricular zone‐neuronal progenitors via cell‐autonomous mechanisms involving notch signaling. J Neurosci 30: 6903‐6915, 2010.
 486.Velez‐Cruz R, Johnson DG. The retinoblastoma (RB) tumor suppressor: Pushing back against genome instability on multiple fronts. Int J Mol Sci 18, 2017.
 487.Verma R, Feldman RM, Deshaies RJ. SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol Biol Cell 8: 1427‐1437, 1997.
 488.Visintin R, Craig K, Hwang ES, Prinz S, Tyers M, Amon A. The phosphatase Cdc14 triggers mitotic exit by reversal of Cdk‐dependent phosphorylation. Mol Cell 2: 709‐718, 1998.
 489.Visintin R, Prinz S, Amon A. CDC20 and CDH1: A family of substrate‐specific activators of APC‐dependent proteolysis. Science 278: 460‐463, 1997.
 490.Vlach J, Hennecke S, Amati B. Phosphorylation‐dependent degradation of the cyclin‐dependent kinase inhibitor p27. EMBO J 16: 5334‐5344, 1997.
 491.Vojtek AB, Hollenberg SM, Cooper JA. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205‐214, 1993.
 492.Walhout AJ, Gubbels JM, Bernards R, van der Vliet PC, Timmers HT. c‐Myc/Max heterodimers bind cooperatively to the E‐box sequences located in the first intron of the rat ornithine decarboxylase (ODC) gene. Nucleic Acids Res 25: 1493‐1501, 1997.
 493.Walter D, Hoffmann S, Komseli ES, Rappsilber J, Gorgoulis V, Sorensen CS. SCF(Cyclin F)‐dependent degradation of CDC6 suppresses DNA re‐replication. Nat Commun 7: 10530, 2016.
 494.Wang X, Fujimaki K, Mitchell GC, Kwon JS, Della Croce K, Langsdorf C, Zhang HH, Yao G. Exit from quiescence displays a memory of cell growth and division. Nat Commun 8: 321, 2017.
 495.Wang YX, Rudnicki MA. Satellite cells, the engines of muscle repair. Nat Rev Mol Cell Biol 13: 127‐133, 2011.
 496.Weber JD, Raben DM, Phillips PJ, Baldassare JJ. Sustained activation of extracellular‐signal‐regulated kinase 1 (ERK1) is required for the continued expression of cyclin D1 in G1 phase. Biochem J 326 (Pt 1): 61‐68, 1997.
 497.Weinert TA, Hartwell LH. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317‐322, 1988.
 498.Welcker M, Singer J, Loeb KR, Grim J, Bloecher A, Gurien‐West M, Clurman BE, Roberts JM. Multisite phosphorylation by Cdk2 and GSK3 controls cyclin E degradation. Mol Cell 12: 381‐392, 2003.
 499.Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S. Constitutive Notch activation upregulates Pax7 and promotes the self‐renewal of skeletal muscle satellite cells. Mol Cell Biol 32: 2300‐2311, 2012.
 500.White RB, Bierinx AS, Gnocchi VF, Zammit PS. Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol 10: 21, 2010.
 501.Won KA, Reed SI. Activation of cyclin E/CDK2 is coupled to site‐specific autophosphorylation and ubiquitin‐dependent degradation of cyclin E. EMBO J 15: 4182‐4193, 1996.
 502.Wu L, Timmers C, Maiti B, Saavedra HI, Sang L, Chong GT, Nuckolls F, Giangrande P, Wright FA, Field SJ, Greenberg ME, Orkin S, Nevins JR, Robinson ML, Leone G. The E2F1‐3 transcription factors are essential for cellular proliferation. Nature 414: 457‐462, 2001.
 503.Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D. p21 is a universal inhibitor of cyclin kinases. Nature 366: 701‐704, 1993.
 504.Yablonka‐Reuveni Z, Seger R, Rivera AJ. Fibroblast growth factor promotes recruitment of skeletal muscle satellite cells in young and old rats. J Histochem Cytochem 47: 23‐42, 1999.
 505.Yanez I, O'Farrell M. Variation in the length of the lag phase following serum restimulation of mouse 3T3 cells. Cell Biol Int Rep 13: 453‐462, 1989.
 506.Yang HW, Chung M, Kudo T, Meyer T. Competing memories of mitogen and p53 signalling control cell‐cycle entry. Nature 549: 404‐408, 2017.
 507.Yao G, Lee TJ, Mori S, Nevins JR, You L. A bistable Rb‐E2F switch underlies the restriction point. Nat Cell Biol 10: 476‐482, 2008.
 508.Ye X, Nalepa G, Welcker M, Kessler BM, Spooner E, Qin J, Ellege SJ, Clurman BE, Harper JW. Recognition of phosphodegron motifs in human cyclin E by the SCFFbw7 ubiquitin ligase. J Biol Chem 279: 50110‐50119, 2004.
 509.Yoshimura S, Takagi Y, Harada J, Teramoto T, Thomas SS, Waeber C, Bakowska JC, Breakefield XO, Moskowitz MA. FGF‐2 regulation of neurogenesis in adult hippocampus after brain injury. Proc Natl Acad Sci U S A 98: 5874‐5879, 2001.
 510.Yu ZK, Gervais JL, Zhang H. Human CUL‐1 associates with the SKP1/SKP2 complex and regulates p21(CIP1/WAF1) and cyclin D proteins. Proc Natl Acad Sci U S A 95: 11324‐11329, 1998.
 511.Yusuf I, Fruman DA. Regulation of quiescence in lymphocytes. Trends Immunol 24: 380‐386, 2003.
 512.Zachariae W, Nasmyth K. TPR proteins required for anaphase progression mediate ubiquitination of mitotic B‐type cyclins in yeast. Mol Biol Cell 7: 791‐801, 1996.
 513.Zachariae W, Schwab M, Nasmyth K, Seufert W. Control of cyclin ubiquitination by CDK‐regulated binding of Hct1 to the anaphase promoting complex. Science 282: 1721‐1724, 1998.
 514.Zeman MK, Cimprich KA. Causes and consequences of replication stress. Nat Cell Biol 16: 2‐9, 2014.
 515.Zetterberg A, Larsson O. Kinetic analysis of regulatory events in G1 leading to proliferation or quiescence of Swiss 3T3 cells. Proc Natl Acad Sci U S A 82: 5365‐5369, 1985.
 516.Zetterberg A, Larsson O, Wiman KG. What is the restriction point? Curr Opin Cell Biol 7: 835‐842, 1995.
 517.Zhang J, Fukuhara S, Sako K, Takenouchi T, Kitani H, Kume T, Koh GY, Mochizuki N. Angiopoietin‐1/Tie2 signal augments basal Notch signal controlling vascular quiescence by inducing delta‐like 4 expression through AKT‐mediated activation of beta‐catenin. J Biol Chem 286: 8055‐8066, 2011.
 518.Zhang P, Liegeois NJ, Wong C, Finegold M, Hou H, Thompson JC, Silverman A, Harper JW, DePinho RA, Elledge SJ. Altered cell differentiation and proliferation in mice lacking p57KIP2 indicates a role in Beckwith‐Wiedemann syndrome. Nature 387: 151‐158, 1997.
 519.Zhao C, Deng W, Gage FH. Mechanisms and functional implications of adult neurogenesis. Cell 132: 645‐660, 2008.
 520.Zhu X, Ohtsubo M, Bohmer RM, Roberts JM, Assoian RK. Adhesion‐dependent cell cycle progression linked to the expression of cyclin D1, activation of cyclin E‐cdk2, and phosphorylation of the retinoblastoma protein. J Cell Biol 133: 391‐403, 1996.
 521.Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N, Dracopoli NC. Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12: 97‐99, 1996.

Teaching Material

Hilary A. Coller. Regulation of cell cycle entry and exit: a single cell perspective. Compr Physiol 10 : 2020, 317-344.

Didactic Synopsis

Major Teaching Points:

• The restriction point is a point of no return in the cell cycle: after the restriction point, cells will continue to cycle even if pro-proliferative signals are withdrawn.

• Cyclin-dependent kinases are activated by cognate cyclins to phosphorylate target proteins.

• Cyclins are tagged with ubiquitins that mark them for degradation at the proteasome.

• The anaphase promoting complex and the SCF complex add ubiquitins to cell cycle proteins and regulate their degradation.

• Cyclin-dependent kinases are regulated by activating and inhibitory phosphorylation events.

• The CIP and INK4 families of cyclin-dependent kinase inhibitors arrest the cell cycle.

• The retinoblastoma protein is a substrate of cyclin-dependent kinases; when it is hyperphosphorylated, it releases E2F transcription factors that activate transcription of cell cycle-promoting target genes.

• Single cell analysis with E2F reporters reveals that E2F signaling is bimodal: some cells have low E2F activity and some cells have high activity, with few cells having intermediate levels.

• Single cell analysis reveals that E2F signaling demonstrates hysteresis: E2F signaling can be "on" or "off" when cells are stimulated with the same amount of serum depending on whether the cells were quiescent or proliferating prior to treatment.

• Real-time monitoring of a population of cycling cells revealed that cells with low CDK activity fail to divide, and the levels of cyclin-dependent kinase inhibitor p21 in each cell predicts whether that cell will continue to divide or arrest.

• The quiescent versus activated state of muscle stem cells is regulated by multiple signaling pathways including fibroblast growth factor, hepatocyte growth factor, ERK, notch and integrin signaling.

• Muscle stem cells can be in a G0 quiescent state or a Galert state depending on mTORC1 activity.

• Neural stem cells can be activated from a quiescent to an active state by signaling pathways that include FGF, EGF, and notch.

• Single cell sequencing analysis of neural stem cells revealed a continuum of activation states between quiescent and fully activated.

 


Related Articles:

Teaching Material

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Hilary A. Coller. Regulation of Cell Cycle Entry and Exit: A Single Cell Perspective. Compr Physiol 2019, 10: 317-344. doi: 10.1002/cphy.c190014