Comprehensive Physiology Wiley Online Library

Aldosterone: Renal Action and Physiological Effects

Full Article on Wiley Online Library



Abstract

Aldosterone exerts profound effects on renal and cardiovascular physiology. In the kidney, aldosterone acts to preserve electrolyte and acid‐base balance in response to changes in dietary sodium (Na+) or potassium (K+) intake. These physiological actions, principally through activation of mineralocorticoid receptors (MRs), have important effects particularly in patients with renal and cardiovascular disease as demonstrated by multiple clinical trials. Multiple factors, be they genetic, humoral, dietary, or otherwise, can play a role in influencing the rate of aldosterone synthesis and secretion from the adrenal cortex. Normally, aldosterone secretion and action respond to dietary Na+ intake. In the kidney, the distal nephron and collecting duct are the main targets of aldosterone and MR action, which stimulates Na+ absorption in part via the epithelial Na+ channel (ENaC), the principal channel responsible for the fine‐tuning of Na+ balance. Our understanding of the regulatory factors that allow aldosterone, via multiple signaling pathways, to function properly clearly implicates this hormone as central to many pathophysiological effects that become dysfunctional in disease states. Numerous pathologies that affect blood pressure (BP), electrolyte balance, and overall cardiovascular health are due to abnormal secretion of aldosterone, mutations in MR, ENaC, or effectors and modulators of their action. Study of the mechanisms of these pathologies has allowed researchers and clinicians to create novel dietary and pharmacological targets to improve human health. This article covers the regulation of aldosterone synthesis and secretion, receptors, effector molecules, and signaling pathways that modulate its action in the kidney. We also consider the role of aldosterone in disease and the benefit of mineralocorticoid antagonists. © 2023 American Physiological Society. Compr Physiol 13:4409‐4491, 2023.

Figure 1. Figure 1. Mineralocorticoid and glucocorticoid synthesis pathways. Enzymes involved in pathway reactions are in bold.
Figure 2. Figure 2. The adrenal gland. The adrenal cortex is made up of three layers: the outermost layer is known as the zona glomerulosa and is the main area for mineralocorticoid production. The middle layer of the cortex is called the zona fasciculata, and mainly synthesizes glucocorticoids. The inner layer of the cortex is known as the zona reticularis, and this section produces androgens. The core of the adrenal gland is known as the adrenal medulla, which is the site of catecholamine production.
Figure 3. Figure 3. The renin‐angiotensin aldosterone system (RAAS). In response to a decrease in blood volume, BP decreases, which elicits a response from the kidney to increase BP. This renal response is mediated by the production and secretion of renin by the juxtaglomerular cells in response to decreased arterial pressure sensed by renal baroreceptors and decreased luminal NaCl concentration sensed by the macula densa. The enzyme renin cleaves angiotensinogen, also known as renin substrate to produce angiotensin I, which is further processed into angiotensin II. Angiotensin II increases blood volume by two mechanisms: directly constricting systemic and renal arteries and arterioles, and by stimulating the production of aldosterone from the adrenal gland. The subsequent increase in vascular resistance and the NaCl and water reabsorption restores blood volume and BP toward normal and reduces RAAS activity.
Figure 4. Figure 4. Steroid‐binding properties of the human mineralocorticoid receptor (MR) expressed in cultured cells. (A) Scatchard analysis of tritiated aldosterone binding in extracts prepared from pRShMR‐transfected COS cells. (B and C) Competition of unlabeled steroids for binding with 5 nM [3H] aldosterone in transfected COS cell extracts. Abbreviations: Aldo, aldosterone; Doc, deoxycorticosterone; Dex, dexamethasone; Spiro, spironolactone; E2, 17β‐estradiol; CS, corticosterone; HC, hydrocortisone; Prog, progesterone. Adapted, with permission, from Arriza JL, et al., 1987 28.
Figure 5. Figure 5. Cellular mechanisms of Na+ and K+ transport in the aldosterone‐sensitive distal nephron (ASDN). The ASDN, consisting of the late distal convoluted tubule (DCT2), the connecting (CNT) and initial collecting tubule (ICT), and the collecting duct (CD), express the mineralocorticoid receptor (MR) and the high‐affinity enzyme 11β‐hydroxysteroid dehydrogenase type 2 (11β‐HSD2) which oxidizes cortisol to cortisone and is important in conferring mineralocorticoid specificity to the ASDN. Na+ reabsorption occurs predominantly by the electroneutral NaCl cotransporter in the DCT2, with progressive increasing the proportion of electrogenic Na+ absorption occurring in the CNT, ICT, and CD. K+ in the ASDN is secreted by two classes of K+ channels, inwardly‐rectifying K+ channels (Kir1.1; also known as the renal outer medullary channel or ROMK) and large conductance Ca2+‐activated K+ channels (also known as BK or Maxi‐K channels). The apical KCl cotransporter in principal cells is involved in nonconductive K+ secretion. K+ absorption is an active process driven by an apical HKα1 H+K+‐ATPase and basolateral K+ channels in intercalated cells and in the principal cells by HKα2 H+K+‐ATPase (not shown). The ∼ symbol indicates an ATPase.
Figure 6. Figure 6. Stimulation by aldosterone of active sodium transport across the toad bladder in vitro. Experiments performed on paired membranes. The serosal surface of one bladder half was exposed to aldosterone and the corresponding half served as control. Eight toads had been maintained in distilled water, eight in saline, prior to these incubations. Adapted, with permission, from Crabbe J, 1961 146.
Figure 7. Figure 7. Effect of aldosterone on urine Na excretion. Results of a representative clearance experiment. Urine sodium excretion (UNaV), urinary Na:K concentration ratio (Una/UK), and glomerular filtration rate (GFR) are graphed over time before and after intravenous aldosterone (arrow). Adapted, with permission, from Wingo CS, et al., 1985 905.
Figure 8. Figure 8. Effect of low versus high mineralocorticoid levels on paracellular chloride (Cl) permeability and conductance. The low tissue conductance in response to high mineralocorticoid stimulation correlates with a high resistance. At low mineralocorticoid levels, tissue conductance increases to modest levels.
Figure 9. Figure 9. The role of the renal aldosterone endothelin feedback system (RAEFS) on mineralocorticoid‐stimulated Na+ retention. Normal mice are shown in black lines and squares. Mice not expressing ET‐1 in the collecting duct (CD ET‐1 KO) are shown in dashed lines and open circles. Normal mice exhibit transient Na+ retention before escaping from progressive positive Na+ balance. CD ET‐1 KO fails to undergo aldosterone escape, with persistent positive daily Na+ balance. Daily Na+ balance over days 1 to 19. Solid lines are controls, and dotted lines are CD ET‐1 KO. Control, n = 9; CD ET‐1 KO, n = 6. Data are shown as means + SE. *P < 0.05 within control, day 1 versus days 2, 3, 6, and 7, Tukey's test; †P < 0.05 within control, day 11 versus days 9 to 12 and 14 to 19, Tukey's test; ‡P < 0.05, significant effect of genotype, repeated‐measures ANOVA. Adapted, with permission, from Lynch IJ, et al., 2015 503.
Figure 10. Figure 10. Diagram of a theoretical renal aldosterone‐endothelin feedback system (RAEFS) in the collecting duct. In response to a low Na+ intake, high aldosterone levels activate mineralocorticoid receptors (MR), but the production of endothelin‐1 (ET‐1) is attenuated by reduced distal luminal Na+ delivery and flow. Consequently, ET‐1‐mediated inhibition of ENaC in the collecting duct (CD) is reduced and the CD is poised to enhance Na+ absorption. When aldosterone is inappropriately high for the dietary Na+ content, high luminal Na and flow serve to enhance aldosterone‐mediated ET‐1 activity which reduces Na absorption. Evidence for a sex‐dependent natriuretic effect of ET‐1 via endothelin A (ETA) receptors has been shown previously by Nakano et al. 565. Dashed line indicates attenuation of pathway. UNaV, urinary sodium excretion; ETB, endothelin B receptors; NOS1, nitric oxide synthase 1; NO, nitric oxide.
Figure 11. Figure 11. Summary of principal results of simultaneous microperfusion experiments (distal tubular potassium secretion, JK, top) and clearance experiments (urinary flow rate, V, and potassium excretion, UKV, middle and lower, respectively) in each of the five experimental groups studied. The conditions prevailing in each group are shown at the bottom of the figure: N represents normal (for plasma K+), or basal (for hormone levels). ALDO, aldosterone; DEX, dexamethasone. Adapted, with permission, from Field MJ, et al., 1984 213.
Figure 12. Figure 12. Molecular pathways through which aldosterone can stimulate ENaC. Mineralocorticoid receptor (MR) activation by aldosterone leads to stimulation of the epidermal growth factor receptor (EGFR). Stimulation of EGFR leads to multiple cascading pathways, including the mitogen‐activated protein kinase (MAPK) and the phosphatidylinositol 3‐kinase (PI3‐K) pathways. The MAPK pathway leads to an inhibition of ENaC by the ERK1/2, reducing Na+ reabsorption and promoting urinary Na+ excretion. The PI3‐K pathway leads to the stimulation of ENaC through the synergistic inhibition of the ubiquitin ligase Nedd4‐2 by MR transcription products SGK1 and GILZ. GILZ can also inhibit the ability of the MAPK pathway to inhibit ENaC by inhibiting Raf1 (c‐Raf). Black arrows indicate direction of pathways. Blue arrows indicate aldosterone‐bound MR relocating to the nucleus. Green arrows indicate MR transcription products. ENaC, epithelial sodium channel; GILZ, glucocorticoid‐induced leucine zipper; SGK1, serum‐ and glucocorticoid‐induced kinase 1; PKB, protein kinase B (also known as Akt); PTEN, phosphatidylinositol‐3,4,5‐trisphosphate 3‐phosphatase; mTORC2, mammalian target of rapamycin complex 2; PDK1/2, phosphoinositide‐dependent kinases 1 and 2; ERK1/2, extracellular signal‐regulated kinases 1 and 2; MEK, MAPK/ERK kinase or mitogen‐activated protein kinase kinase (MAPKK).
Figure 13. Figure 13. Other pathways stimulated by aldosterone and mineralocorticoid receptor (MR) activation. MR activation by aldosterone leads to stimulation of the epidermal growth factor receptor (EGFR), either on its own or through activation of c‐Src. Stimulation of EGFR leads to multiple cascading pathways, including the MEK/ERK and PI3K pathways (Figure 12), along with the JNK/SAPK pathways. MR‐induced activation of c‐Src can also lead to the activation of p38MAPK, a kinase pathway commonly known to be induced by cell stress or inflammatory cytokines. MAPK, mitogen‐activated protein kinase; ERK, extracellular signal‐regulated kinase; MEK, MAPK/ERK kinase or mitogen‐activated protein kinase kinase (MAPKK, also known as MKK); MEKK, map kinase kinase kinase; PI3‐K, phosphatidylinositol 3‐kinase; JNK/SAPK, c‐Jun NH2‐terminal kinases/stress‐activated protein kinase; TGFβR, transforming growth factor β receptor.


Figure 1. Mineralocorticoid and glucocorticoid synthesis pathways. Enzymes involved in pathway reactions are in bold.


Figure 2. The adrenal gland. The adrenal cortex is made up of three layers: the outermost layer is known as the zona glomerulosa and is the main area for mineralocorticoid production. The middle layer of the cortex is called the zona fasciculata, and mainly synthesizes glucocorticoids. The inner layer of the cortex is known as the zona reticularis, and this section produces androgens. The core of the adrenal gland is known as the adrenal medulla, which is the site of catecholamine production.


Figure 3. The renin‐angiotensin aldosterone system (RAAS). In response to a decrease in blood volume, BP decreases, which elicits a response from the kidney to increase BP. This renal response is mediated by the production and secretion of renin by the juxtaglomerular cells in response to decreased arterial pressure sensed by renal baroreceptors and decreased luminal NaCl concentration sensed by the macula densa. The enzyme renin cleaves angiotensinogen, also known as renin substrate to produce angiotensin I, which is further processed into angiotensin II. Angiotensin II increases blood volume by two mechanisms: directly constricting systemic and renal arteries and arterioles, and by stimulating the production of aldosterone from the adrenal gland. The subsequent increase in vascular resistance and the NaCl and water reabsorption restores blood volume and BP toward normal and reduces RAAS activity.


Figure 4. Steroid‐binding properties of the human mineralocorticoid receptor (MR) expressed in cultured cells. (A) Scatchard analysis of tritiated aldosterone binding in extracts prepared from pRShMR‐transfected COS cells. (B and C) Competition of unlabeled steroids for binding with 5 nM [3H] aldosterone in transfected COS cell extracts. Abbreviations: Aldo, aldosterone; Doc, deoxycorticosterone; Dex, dexamethasone; Spiro, spironolactone; E2, 17β‐estradiol; CS, corticosterone; HC, hydrocortisone; Prog, progesterone. Adapted, with permission, from Arriza JL, et al., 1987 28.


Figure 5. Cellular mechanisms of Na+ and K+ transport in the aldosterone‐sensitive distal nephron (ASDN). The ASDN, consisting of the late distal convoluted tubule (DCT2), the connecting (CNT) and initial collecting tubule (ICT), and the collecting duct (CD), express the mineralocorticoid receptor (MR) and the high‐affinity enzyme 11β‐hydroxysteroid dehydrogenase type 2 (11β‐HSD2) which oxidizes cortisol to cortisone and is important in conferring mineralocorticoid specificity to the ASDN. Na+ reabsorption occurs predominantly by the electroneutral NaCl cotransporter in the DCT2, with progressive increasing the proportion of electrogenic Na+ absorption occurring in the CNT, ICT, and CD. K+ in the ASDN is secreted by two classes of K+ channels, inwardly‐rectifying K+ channels (Kir1.1; also known as the renal outer medullary channel or ROMK) and large conductance Ca2+‐activated K+ channels (also known as BK or Maxi‐K channels). The apical KCl cotransporter in principal cells is involved in nonconductive K+ secretion. K+ absorption is an active process driven by an apical HKα1 H+K+‐ATPase and basolateral K+ channels in intercalated cells and in the principal cells by HKα2 H+K+‐ATPase (not shown). The ∼ symbol indicates an ATPase.


Figure 6. Stimulation by aldosterone of active sodium transport across the toad bladder in vitro. Experiments performed on paired membranes. The serosal surface of one bladder half was exposed to aldosterone and the corresponding half served as control. Eight toads had been maintained in distilled water, eight in saline, prior to these incubations. Adapted, with permission, from Crabbe J, 1961 146.


Figure 7. Effect of aldosterone on urine Na excretion. Results of a representative clearance experiment. Urine sodium excretion (UNaV), urinary Na:K concentration ratio (Una/UK), and glomerular filtration rate (GFR) are graphed over time before and after intravenous aldosterone (arrow). Adapted, with permission, from Wingo CS, et al., 1985 905.


Figure 8. Effect of low versus high mineralocorticoid levels on paracellular chloride (Cl) permeability and conductance. The low tissue conductance in response to high mineralocorticoid stimulation correlates with a high resistance. At low mineralocorticoid levels, tissue conductance increases to modest levels.


Figure 9. The role of the renal aldosterone endothelin feedback system (RAEFS) on mineralocorticoid‐stimulated Na+ retention. Normal mice are shown in black lines and squares. Mice not expressing ET‐1 in the collecting duct (CD ET‐1 KO) are shown in dashed lines and open circles. Normal mice exhibit transient Na+ retention before escaping from progressive positive Na+ balance. CD ET‐1 KO fails to undergo aldosterone escape, with persistent positive daily Na+ balance. Daily Na+ balance over days 1 to 19. Solid lines are controls, and dotted lines are CD ET‐1 KO. Control, n = 9; CD ET‐1 KO, n = 6. Data are shown as means + SE. *P < 0.05 within control, day 1 versus days 2, 3, 6, and 7, Tukey's test; †P < 0.05 within control, day 11 versus days 9 to 12 and 14 to 19, Tukey's test; ‡P < 0.05, significant effect of genotype, repeated‐measures ANOVA. Adapted, with permission, from Lynch IJ, et al., 2015 503.


Figure 10. Diagram of a theoretical renal aldosterone‐endothelin feedback system (RAEFS) in the collecting duct. In response to a low Na+ intake, high aldosterone levels activate mineralocorticoid receptors (MR), but the production of endothelin‐1 (ET‐1) is attenuated by reduced distal luminal Na+ delivery and flow. Consequently, ET‐1‐mediated inhibition of ENaC in the collecting duct (CD) is reduced and the CD is poised to enhance Na+ absorption. When aldosterone is inappropriately high for the dietary Na+ content, high luminal Na and flow serve to enhance aldosterone‐mediated ET‐1 activity which reduces Na absorption. Evidence for a sex‐dependent natriuretic effect of ET‐1 via endothelin A (ETA) receptors has been shown previously by Nakano et al. 565. Dashed line indicates attenuation of pathway. UNaV, urinary sodium excretion; ETB, endothelin B receptors; NOS1, nitric oxide synthase 1; NO, nitric oxide.


Figure 11. Summary of principal results of simultaneous microperfusion experiments (distal tubular potassium secretion, JK, top) and clearance experiments (urinary flow rate, V, and potassium excretion, UKV, middle and lower, respectively) in each of the five experimental groups studied. The conditions prevailing in each group are shown at the bottom of the figure: N represents normal (for plasma K+), or basal (for hormone levels). ALDO, aldosterone; DEX, dexamethasone. Adapted, with permission, from Field MJ, et al., 1984 213.


Figure 12. Molecular pathways through which aldosterone can stimulate ENaC. Mineralocorticoid receptor (MR) activation by aldosterone leads to stimulation of the epidermal growth factor receptor (EGFR). Stimulation of EGFR leads to multiple cascading pathways, including the mitogen‐activated protein kinase (MAPK) and the phosphatidylinositol 3‐kinase (PI3‐K) pathways. The MAPK pathway leads to an inhibition of ENaC by the ERK1/2, reducing Na+ reabsorption and promoting urinary Na+ excretion. The PI3‐K pathway leads to the stimulation of ENaC through the synergistic inhibition of the ubiquitin ligase Nedd4‐2 by MR transcription products SGK1 and GILZ. GILZ can also inhibit the ability of the MAPK pathway to inhibit ENaC by inhibiting Raf1 (c‐Raf). Black arrows indicate direction of pathways. Blue arrows indicate aldosterone‐bound MR relocating to the nucleus. Green arrows indicate MR transcription products. ENaC, epithelial sodium channel; GILZ, glucocorticoid‐induced leucine zipper; SGK1, serum‐ and glucocorticoid‐induced kinase 1; PKB, protein kinase B (also known as Akt); PTEN, phosphatidylinositol‐3,4,5‐trisphosphate 3‐phosphatase; mTORC2, mammalian target of rapamycin complex 2; PDK1/2, phosphoinositide‐dependent kinases 1 and 2; ERK1/2, extracellular signal‐regulated kinases 1 and 2; MEK, MAPK/ERK kinase or mitogen‐activated protein kinase kinase (MAPKK).


Figure 13. Other pathways stimulated by aldosterone and mineralocorticoid receptor (MR) activation. MR activation by aldosterone leads to stimulation of the epidermal growth factor receptor (EGFR), either on its own or through activation of c‐Src. Stimulation of EGFR leads to multiple cascading pathways, including the MEK/ERK and PI3K pathways (Figure 12), along with the JNK/SAPK pathways. MR‐induced activation of c‐Src can also lead to the activation of p38MAPK, a kinase pathway commonly known to be induced by cell stress or inflammatory cytokines. MAPK, mitogen‐activated protein kinase; ERK, extracellular signal‐regulated kinase; MEK, MAPK/ERK kinase or mitogen‐activated protein kinase kinase (MAPKK, also known as MKK); MEKK, map kinase kinase kinase; PI3‐K, phosphatidylinositol 3‐kinase; JNK/SAPK, c‐Jun NH2‐terminal kinases/stress‐activated protein kinase; TGFβR, transforming growth factor β receptor.
References
 1.Abd El‐Aziz TM, Soares AG, Mironova E, Boiko N, Kaur A, Archer CR, Stockand JD, Berman JM. Mechanisms and consequences of casein kinase II and ankyrin‐3 regulation of the epithelial Na(+) channel. Sci Rep 11: 14600, 2021.
 2.Ackermann D, Gresko N, Carrel M, Loffing‐Cueni D, Habermehl D, Gomez‐Sanchez C, Rossier BC, Loffing J. In vivo nuclear translocation of mineralocorticoid and glucocorticoid receptors in rat kidney: Differential effect of corticosteroids along the distal tubule. Am J Physiol Renal Physiol 299: F1473‐F1485, 2010.
 3.Agarwal AK, Mune T, Monder C, White PC. NAD(+)‐dependent isoform of 11 beta‐hydroxysteroid dehydrogenase. Cloning and characterization of cDNA from sheep kidney. J Biol Chem 269: 25959‐25962, 1994.
 4.Agrawal S, He JC, Tharaux PL. Nuclear receptors in podocyte biology and glomerular disease. Nat Rev Nephrol 17: 185‐204, 2021.
 5.Aguilera G, Catt KJ. Participation of voltage‐dependent calcium channels in the regulation of adrenal glomerulosa function by angiotensin II and potassium. Endocrinology 118: 112‐118, 1986.
 6.Aguilera G, Fujita K, Catt KJ. Mechanisms of inhibition of aldosterone secretion by adrenocorticotropin. Endocrinology 108: 522‐528, 1981.
 7.Aguilera G, Hauger RL, Catt KJ. Control of aldosterone secretion during sodium restriction: Adrenal receptor regulation and increased adrenal sensitivity to angiotensin II. Proc Natl Acad Sci U S A 75: 975‐979, 1978.
 8.Ahn D, Ge Y, Stricklett PK, Gill P, Taylor D, Hughes AK, Yanagisawa M, Miller L, Nelson RD, Kohan DE. Collecting duct‐specific knockout of endothelin‐1 causes hypertension and sodium retention. J Clin Invest 114: 504‐511, 2004.
 9.Ahn KY, Kone BC. Expression and cellular localization of mRNA encoding the “gastric” isoform of H(+)‐K(+)‐ATPase alpha‐subunit in rat kidney. Am J Physiol 268: F99‐F109, 1995.
 10.Ahn KY, Park KY, Kim KK, Kone BC. Chronic hypokalemia enhances expression of the H(+)‐K(+)‐ATPase alpha 2‐subunit gene in renal medulla. Am J Physiol 271: F314‐F321, 1996.
 11.Ahn KY, Turner PB, Madsen KM, Kone BC. Effects of chronic hypokalemia on renal expression of the “gastric” H(+)‐K(+)‐ATPase alpha‐subunit gene. Am J Physiol 270: F557‐F566, 1996.
 12.Al‐Awqati Q, Norby LH, Mueller A, Steinmetz PR. Characteristics of stimulation of H+ transport by aldosterone in turtle urinary bladder. J Clin Invest 58: 351‐358, 1976.
 13.Al‐Baldawi NF, Stockand JD, Al‐Khalili OK, Yue G, Eaton DC. Aldosterone induces ras methylation in A6 epithelia. Am J Physiol Cell Physiol 279: C429‐C439, 2000.
 14.Albert V, Hall MN. mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 33: 55‐66, 2015.
 15.Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS. Cloning and tissue distribution of the human 11 beta‐hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol 105: R11‐R17, 1994.
 16.Alexander EA, Levinsky NG. An extrarenal mechanism of potassium adaptation. J Clin Invest 47: 740‐748, 1968.
 17.Allers WD, Nilson HW, Kendall EC. Studies on adrenalectomized dogs: The toxic action of potassium. Proceedings of Staff Meetings of the Mayo Clinic 1936, p. 283‐288.
 18.Alvarez de la Rosa D, Zhang P, Naray‐Fejes‐Toth A, Fejes‐Toth G, Canessa CM. The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 274: 37834‐37839, 1999.
 19.Alzamora R, Brown LR, Harvey BJ. Direct binding and activation of protein kinase C isoforms by aldosterone and 17beta‐estradiol. Mol Endocrinol 21: 2637‐2650, 2007.
 20.Amasheh S, Milatz S, Krug SM, Bergs M, Amasheh M, Schulzke JD, Fromm M. Na+ absorption defends from paracellular back‐leakage by claudin‐8 upregulation. Biochem Biophys Res Commun 378: 45‐50, 2009.
 21.Amazit L, Le BF, Kolkhof P, Lamribet K, Viengchareun S, Fay MR, Khan JA, Hillisch A, Lombes M, Rafestin‐Oblin ME, Fagart J. Finerenone impedes aldosterone‐dependent nuclear import of the mineralocorticoid receptor and prevents genomic recruitment of steroid receptor coactivator‐1. J Biol Chem 290: 21876‐21889, 2015.
 22.Arai K, Homma T, Morikawa Y, Ubukata N, Tsuruoka H, Aoki K, Ishikawa H, Mizuno M, Sada T. Pharmacological profile of CS‐3150, a novel, highly potent and selective non‐steroidal mineralocorticoid receptor antagonist. Eur J Pharmacol 761: 226‐234, 2015.
 23.Arai K, Morikawa Y, Ubukata N, Tsuruoka H, Homma T. CS‐3150, a novel nonsteroidal mineralocorticoid receptor antagonist, shows preventive and therapeutic effects on renal injury in deoxycorticosterone acetate/salt‐induced hypertensive rats. J Pharmacol Exp Ther 358: 548‐557, 2016.
 24.Arai K, Tsuruoka H, Homma T. CS‐3150, a novel non‐steroidal mineralocorticoid receptor antagonist, prevents hypertension and cardiorenal injury in Dahl salt‐sensitive hypertensive rats. Eur J Pharmacol 769: 266‐273, 2015.
 25.Armitage FE, Wingo CS. Luminal acidification in K‐replete OMCDi: Contributions of H‐K‐ATPase and bafilomycin‐A1‐sensitive H‐ATPase. Am J Physiol 267: F450‐F458, 1994.
 26.Armitage FE, Wingo CS. Luminal acidification in K‐replete OMCDi: Inhibition of bicarbonate absorption by K removal and luminal Ba. Am J Physiol 269: F116‐F124, 1995.
 27.Arrascue JF, Dobyan DC, Jamison RL. Potassium recycling in the renal medulla: Effects of acute potassium chloride administration to rats fed a potassium‐free diet. Kidney Int 20: 348‐352, 1981.
 28.Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM. Cloning of human mineralocorticoid receptor complementary DNA: Structural and functional kinship with the glucocorticoid receptor. Science 237: 268‐275, 1987.
 29.Arroyo JP, Kahle KT, Gamba G. The SLC12 family of electroneutral cation‐coupled chloride cotransporters. Mol Aspects Med 34: 288‐298, 2013.
 30.Arroyo JP, Lagnaz D, Ronzaud C, Vazquez N, Ko BS, Moddes L, Ruffieux‐Daidie D, Hausel P, Koesters R, Yang B, Stokes JB, Hoover RS, Gamba G, Staub O. Nedd4‐2 modulates renal Na+‐Cl‐ cotransporter via the aldosterone‐SGK1‐Nedd4‐2 pathway. J Am Soc Nephrol 22: 1707‐1719, 2011.
 31.Asher C, Moran A, Rossier BC, Garty H. Sodium channels in membrane vesicles from cultured toad bladder cells. Am J Physiol 254: C512‐C518, 1988.
 32.Asher C, Sinha I, Garty H. Characterization of the interactions between Nedd4‐2, ENaC, and sgk‐1 using surface plasmon resonance. Biochim Biophys Acta 1612: 59‐64, 2003.
 33.Asher C, Wald H, Rossier BC, Garty H. Aldosterone‐induced increase in the abundance of Na+ channel subunits. Am J Physiol 271: C605‐C611, 1996.
 34.August JT, Nelson DH, Thorn GW. Response of normal subjects to large amounts of aldosterone. J Clin Invest 37: 1549‐1555, 1958.
 35.Avruch J, Khokhlatchev A, Kyriakis JM, Luo Z, Tzivion G, Vavvas D, Zhang XF. Ras activation of the Raf kinase: Tyrosine kinase recruitment of the MAP kinase cascade. Recent Prog Horm Res 56: 127‐155, 2001.
 36.Ayasse N, Berg P, Andersen JF, Svendsen SL, Sorensen MV, Fedosova NU, Lynch IJ, Wingo CS, Leipziger J. Benzamil‐mediated urine alkalization is caused by the inhibition of H(+)‐K(+)‐ATPases. Am J Physiol Renal Physiol 320: F596‐F607, 2021.
 37.Bae EH, Kim IJ, Ma SK, Kim SW. Altered regulation of renal sodium transporters and natriuretic peptide system in DOCA‐salt hypertensive rats. Regul Pept 157: 76‐83, 2009.
 38.Bahr V, Bumke‐Vogt C, Gotze J, Pfeiffer AF, Diederich S. Function of human mineralocorticoid receptor splice variant. Eur J Endocrinol 151: 295, 2004.
 39.Bailey MA, Mullins JJ, Kenyon CJ. Mineralocorticoid and glucocorticoid receptors stimulate epithelial sodium channel activity in a mouse model of Cushing syndrome. Hypertension 54: 890‐896, 2009.
 40.Bailey MA, Paterson JM, Hadoke PW, Wrobel N, Bellamy CO, Brownstein DG, Seckl JR, Mullins JJ. A switch in the mechanism of hypertension in the syndrome of apparent mineralocorticoid excess. J Am Soc Nephrol 19: 47‐58, 2008.
 41.Bailey MA, Unwin RJ, Shirley DG. In vivo inhibition of renal 11beta‐hydroxysteroid dehydrogenase in the rat stimulates collecting duct sodium reabsorption. Clin Sci (Lond) 101: 195‐198, 2001.
 42.Bain DL, De Angelis RW, Connaghan KD, Yang Q, Degala GD, Lambert JR. Dissecting steroid receptor function by analytical ultracentrifugation. Methods Enzymol 562: 363‐389, 2015.
 43.Bakris G, Yang YF, Pitt B. Mineralocorticoid receptor antagonists for hypertension management in advanced chronic kidney disease: BLOCK‐CKD trial. Hypertension 76: 144‐149, 2020.
 44.Bakris GL, Agarwal R, Anker SD, Pitt B, Ruilope LM, Rossing P, Kolkhof P, Nowack C, Schloemer P, Joseph A, Filippatos G. Effect of finerenone on chronic kidney disease outcomes in type 2 diabetes. N Engl J Med 383: 2219‐2229, 2020.
 45.Bakris GL, Agarwal R, Chan JC, Cooper ME, Gansevoort RT, Haller H, Remuzzi G, Rossing P, Schmieder RE, Nowack C, Kolkhof P, Joseph A, Pieper A, Kimmeskamp‐Kirschbaum N, Ruilope LM. Effect of finerenone on albuminuria in patients with diabetic nephropathy: A randomized clinical trial. JAMA 314: 884‐894, 2015.
 46.Ballermann BJ, Bloch KD, Seidman JG, Brenner BM. Atrial natriuretic peptide transcription, secretion, and glomerular receptor activity during mineralocorticoid escape in the rat. J Clin Invest 78: 840‐843, 1986.
 47.Barger AC, Berlin RD, Tulenko JF. Infusion of aldosterone, 9‐a‐fluorohydrocortisone and antidiuretic hormone into the renal artery of normal and adrenalectomized, unanesthetized dogs. Endocrinology 62: 804‐815, 1958.
 48.Barrera‐Chimal J, Girerd S, Jaisser F. Mineralocorticoid receptor antagonists and kidney diseases: Pathophysiological basis. Kidney Int 96: 302‐319, 2019.
 49.Barrera‐Chimal J, Jaisser F. Vascular and inflammatory mineralocorticoid receptors in kidney disease. Acta Physiol (Oxf) 228: e13390, 2019.
 50.Barrera‐Chimal J, Jaisser F. Vascular mineralocorticoid receptor activation and disease. Exp Eye Res 188: 107796, 2019.
 51.Barrera‐Chimal J, Lima‐Posada I, Bakris GL, Jaisser F. Mineralocorticoid receptor antagonists in diabetic kidney disease ‐ mechanistic and therapeutic effects. Nat Rev Nephrol 18: 56‐70, 2022.
 52.Barrett PQ, Bollag WB, Isales CM, McCarthy RT, Rasmussen H. Role of calcium in angiotensin II‐mediated aldosterone secretion. Endocr Rev 10: 496‐518, 1989.
 53.Barrett PQ, Guagliardo NA, Bayliss DA. Ion channel function and electrical excitability in the zona glomerulosa: A network perspective on aldosterone regulation. Annu Rev Physiol 83: 451‐475, 2021.
 54.Barrett PQ, Lu HK, Colbran R, Czernik A, Pancrazio JJ. Stimulation of unitary T‐type Ca(2+) channel currents by calmodulin‐dependent protein kinase II. Am J Physiol Cell Physiol 279: C1694‐C1703, 2000.
 55.Barri YM, Wingo CS. The effects of potassium depletion and supplementation on blood pressure: A clinical review. Am J Med Sci 314: 37‐40, 1997.
 56.Batenburg WW, Jansen PM, van den Bogaerdt AJ, Ah JD. Angiotensin II‐aldosterone interaction in human coronary microarteries involves GPR30, EGFR, and endothelial NO synthase. Cardiovasc Res 94: 136‐143, 2012.
 57.Battilana CA, Dobyan DC, Lacy FB, Bhattacharya J, Johnston PA, Jamison RL. Effect of chronic potassium loading on potassium secretion by the pars recta or descending limb of the juxtamedullary nephron in the rat. J Clin Invest 62: 1093‐1103, 1978.
 58.Bender SB, DeMarco VG, Padilla J, Jenkins NT, Habibi J, Garro M, Pulakat L, Aroor AR, Jaffe IZ, Sowers JR. Mineralocorticoid receptor antagonism treats obesity‐associated cardiac diastolic dysfunction. Hypertension 65: 1082‐1088, 2015.
 59.Bender SB, McGraw AP, Jaffe IZ, Sowers JR. Mineralocorticoid receptor‐mediated vascular insulin resistance: An early contributor to diabetes‐related vascular disease? Diabetes 62: 313‐319, 2013.
 60.Benos DJ, Saccomani G, Sariban‐Sohraby S. The epithelial sodium channel. Subunit number and location of the amiloride binding site. J Biol Chem 262: 10613‐10618, 1987.
 61.Berger S, Bleich M, Schmid W, Cole TJ, Peters J, Watanabe H, Kriz W, Warth R, Greger R, Schutz G. Mineralocorticoid receptor knockout mice: Pathophysiology of Na+ metabolism. Proc Natl Acad Sci U S A 95: 9424‐9429, 1998.
 62.Berliner RW. Renal mechanisms of potassium excretion. In: Harvey Lecture, Series 55. New York: Academic Press, 1961, p. 141‐171.
 63.Berman JM, Mironova E, Stockand JD. Physiological regulation of the epithelial Na(+) channel by casein kinase II. Am J Physiol Renal Physiol 314: F367‐f372, 2018.
 64.Berrout J, Mamenko M, Zaika OL, Chen L, Zhang W, Pochynyuk O, O'Neil RG. Emerging role of the calcium‐activated, small conductance, SK3 K+ channel in distal tubule function: Regulation by TRPV4. PLoS One 9: e95149, 2014.
 65.Bertocchio JP, Warnock DG, Jaisser F. Mineralocorticoid receptor activation and blockade: An emerging paradigm in chronic kidney disease. Kidney Int 79: 1051‐1060, 2011.
 66.Bhalla V, Daidie D, Li H, Pao AC, LaGrange LP, Wang J, Vandewalle A, Stockand JD, Staub O, Pearce D. Serum‐ and glucocorticoid‐regulated kinase 1 regulates ubiquitin ligase neural precursor cell‐expressed, developmentally down‐regulated protein 4‐2 by inducing interaction with 14‐3‐3. Mol Endocrinol 19: 3073‐3084, 2005.
 67.Bhalla V, Soundararajan R, Pao AC, Li H, Pearce D. Disinhibitory pathways for control of sodium transport: Regulation of ENaC by SGK1 and GILZ. Am J Physiol Renal Physiol 291: F714‐F721, 2006.
 68.Bhargava A, Fullerton MJ, Myles K, Purdy TM, Funder JW, Pearce D, Cole TJ. The serum‐ and glucocorticoid‐induced kinase is a physiological mediator of aldosterone action. Endocrinology 142: 1587‐1594, 2001.
 69.Bhargava A, Pearce D. Mechanisms of mineralocorticoid action: Determinants of receptor specificity and actions of regulated gene products. Trends Endocrinol Metab 15: 147‐153, 2004.
 70.Bhuiyan AS, Rafiq K, Kobara H, Masaki T, Nakano D, Nishiyama A. Effect of a novel nonsteroidal selective mineralocorticoid receptor antagonist, esaxerenone (CS‐3150), on blood pressure and renal injury in high salt‐treated type 2 diabetic mice. Hypertens Res 42: 892‐902, 2019.
 71.Biglieri EG, Shambelan M, Slaton PE Jr. Effect of adrenocorticotropin on desoxycorticosterone, corticosterone and aldosterone excretion. J Clin Endocrinol Metab 29: 1090‐1101, 1969.
 72.Biller KJ, Unwin RJ, Shirley DG. Distal tubular electrolyte transport during inhibition of renal 11beta‐hydroxysteroid dehydrogenase. Am J Physiol Renal Physiol 280: F172‐F179, 2001.
 73.Bindels RJ, Engbersen AM, Hartog A, Blazer‐Yost BL. Aldosterone‐induced proteins in primary cultures of rabbit renal cortical collecting system. Biochim Biophys Acta 1284: 63‐68, 1996.
 74.Blachley JD, Crider BP, Johnson JH. Extrarenal potassium adaptation: Role of skeletal muscle. Am J Physiol 251: F313‐F318, 1986.
 75.Blair‐West JR, Coghlan JP, Denton DA, Goding JR, Munro JA, Peterson RE, Wintour M. Humoral stimulation of adrenal cortical secretion. J Clin Invest 41: 1606‐1627, 1962.
 76.Blazer‐Yost BL, Butterworth M, Hartman AD, Parker GE, Faletti CJ, Els WJ, Rhodes SJ. Characterization and imaging of A6 epithelial cell clones expressing fluorescently labeled ENaC subunits. Am J Physiol Cell Physiol 281: C624‐C632, 2001.
 77.Bledsoe RK, Madauss KP, Holt JA, Apolito CJ, Lambert MH, Pearce KH, Stanley TB, Stewart EL, Trump RP, Willson TM, Williams SP. A ligand‐mediated hydrogen bond network required for the activation of the mineralocorticoid receptor. J Biol Chem 280: 31283‐31293, 2005.
 78.Blocka K. Cortisol level test: Purpose, procedure, and risks. Healthline. https://www.healthline.com/health/cortisol‐urine#results. January 4, 2022.
 79.Bloem LJ, Guo C, Pratt JH. Identification of a splice variant of the rat and human mineralocorticoid receptor genes. J Steroid Biochem Mol Biol 55: 159‐162, 1995.
 80.Boase NA, Kumar S. NEDD4: The founding member of a family of ubiquitin‐protein ligases. Gene 557: 113‐122, 2015.
 81.Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van't Hoff W, Al Masri O, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos‐Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N Engl J Med 360: 1960‐1970, 2009.
 82.Boehmer C, Wilhelm V, Palmada M, Wallisch S, Henke G, Brinkmeier H, Cohen P, Pieske B, Lang F. Serum and glucocorticoid inducible kinases in the regulation of the cardiac sodium channel SCN5A. Cardiovasc Res 57: 1079‐1084, 2003.
 83.Bollag WB. Regulation of aldosterone synthesis and secretion. Compr Physiol 4: 1017‐1055, 2014.
 84.Bonny O, Chraibi A, Loffing J, Jaeger NF, Grunder S, Horisberger JD, Rossier BC. Functional expression of a pseudohypoaldosteronism type I mutated epithelial Na+ channel lacking the pore‐forming region of its alpha subunit. J Clin Invest 104: 967‐974, 1999.
 85.Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid‐sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 173: 2671‐2701, 2016.
 86.Bostanjoglo M, Reeves WB, Reilly RF, Velázquez H, Robertson N, Litwack G, Morsing P, Dørup J, Bachmann S, Ellison DH. 11Beta‐hydroxysteroid dehydrogenase, mineralocorticoid receptor, and thiazide‐sensitive Na‐Cl cotransporter expression by distal tubules. J Am Soc Nephrol 9: 1347‐1358, 1998.
 87.Brady KP, Dushkin H, Förnzler D, Koike T, Magner F, Her H, Gullans S, Segre GV, Green RM, Beier DR. A novel putative transporter maps to the osteosclerosis (oc) mutation and is not expressed in the oc mutant mouse. Genomics 56: 254‐261, 1999.
 88.Brixius‐Anderko S, Scott EE. Structural and functional insights into aldosterone synthase interaction with its redox partner protein adrenodoxin. J Biol Chem 296: 100794, 2021.
 89.Brown RD. Aldosterone metabolic clearance is normal in low‐renin essential hypertension. J Clin Endocrinol Metab 42: 661‐666, 1976.
 90.Brown RW, Chapman KE, Edwards CR, Seckl JR. Human placental 11 beta‐hydroxysteroid dehydrogenase: Evidence for and partial purification of a distinct NAD‐dependent isoform. Endocrinology 132: 2614‐2621, 1993.
 91.Bugaj V, Pochynyuk O, Mironova E, Vandewalle A, Medina JL, Stockand JD. Regulation of the epithelial Na+ channel by endothelin‐1 in rat collecting duct. Am J Physiol Renal Physiol 295: F1063‐F1070, 2008.
 92.Bugaj V, Sansom SC, Wen D, Hatcher LI, Stockand JD, Mironova E. Flow‐sensitive K+‐coupled ATP secretion modulates activity of the epithelial Na+ channel in the distal nephron. J Biol Chem 287: 38552‐38558, 2012.
 93.Buonafine M, Bonnard B, Jaisser F. Mineralocorticoid receptor and cardiovascular disease. Am J Hypertens 31: 1165‐1174, 2018.
 94.Burnay M, Crambert G, Kharoubi‐Hess S, Geering K, Horisberger JD. Bufo marinus bladder H‐K‐ATPase carries out electroneutral ion transport. Am J Physiol Renal Physiol 281: F869‐F874, 2001.
 95.Burnay M, Crambert G, Kharoubi‐Hess S, Geering K, Horisberger JD. Electrogenicity of Na,K‐ and H,K‐ATPase activity and presence of a positively charged amino acid in the fifth transmembrane segment. J Biol Chem 278: 19237‐19244, 2003.
 96.Burt VL, Whelton P, Roccella EJ, Brown C, Cutler JA, Higgins M, Horan MJ, Labarthe D. Prevalence of hypertension in the US adult population. Results from the Third National Health and Nutrition Examination Survey, 1988‐1991. Hypertension 25: 305‐313, 1995.
 97.Butterworth MB. MicroRNAs and the regulation of aldosterone signaling in the kidney. Am J Physiol Cell Physiol 308: C521‐C527, 2015.
 98.Butterworth MB. Role of microRNAs in aldosterone signaling. Curr Opin Nephrol Hypertens 27: 390‐394, 2018.
 99.Butterworth MB, Alvarez de la Rosa D. Regulation of aldosterone signaling by microRNAs. Vitam Horm 109: 69‐103, 2019.
 100.Cai Z, Xin J, Pollock DM, Pollock JS. Shear stress‐mediated NO production in inner medullary collecting duct cells. Am J Physiol Renal Physiol 279: F270‐F274, 2000.
 101.Callera GE, Touyz RM, Tostes RC, Yogi A, He Y, Malkinson S, Schiffrin EL. Aldosterone activates vascular p38MAP kinase and NADPH oxidase via c‐Src. Hypertension 45: 773‐779, 2005.
 102.Calò L, Borsatti A, Favaro S, Rabinowitz L. Kaliuresis in normal subjects following oral potassium citrate intake without increased plasma potassium concentration. Nephron 69: 253‐258, 1995.
 103.Campbell‐Thompson ML, Verlander JW, Curran KA, Campbell WG, Cain BD, Wingo CS, McGuigan JE. In situ hybridization of H‐K‐ATPase beta‐subunit mRNA in rat and rabbit kidney. Am J Physiol 269: F345‐F354, 1995.
 104.Canessa CM, Horisberger JD, Rossier BC. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361: 467‐470, 1993.
 105.Canessa CM, Merillat AM, Rossier BC. Membrane topology of the epithelial sodium channel in intact cells. Am J Physiol 267: C1682‐C1690, 1994.
 106.Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. Amiloride‐sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463‐467, 1994.
 107.Canonica J, Frateschi S, Boscardin E, Ebering A, Sergi C, Jäger Y, Peyrollaz T, Mérillat AM, Maillard M, Klusonova P, Odermatt A, Koesters R, Debonneville A, Staub O, Verouti SN, Hummler E. Lack of renal tubular glucocorticoid receptor decreases the thiazide‐sensitive Na(+)/Cl(−) cotransporter NCC and transiently affects sodium handling. Front Physiol 10: 989, 2019.
 108.Canonica J, Sergi C, Maillard M, Klusonova P, Odermatt A, Koesters R, Loffing‐Cueni D, Loffing J, Rossier B, Frateschi S, Hummler E. Adult nephron‐specific MR‐deficient mice develop a severe renal PHA‐1 phenotype. Pflugers Arch 468: 895‐908, 2016.
 109.Cantley LC. The phosphoinositide 3‐kinase pathway. Science 296: 1655‐1657, 2002.
 110.Cao R. mTOR signaling, translational control, and the circadian clock. Front Genet 9: 367, 2018.
 111.Caprio M, Newfell BG, la Sala A, Baur W, Fabbri A, Rosano G, Mendelsohn ME, Jaffe IZ. Functional mineralocorticoid receptors in human vascular endothelial cells regulate intercellular adhesion molecule‐1 expression and promote leukocyte adhesion. Circ Res 102: 1359‐1367, 2008.
 112.Caroccia B, Seccia TM, Campos AG, Gioco F, Kuppusamy M, Ceolotto G, Guerzoni E, Simonato F, Mareso S, Lenzini L, Fassina A, Rossi GP. GPER‐1 and estrogen receptor‐β ligands modulate aldosterone synthesis. Endocrinology 155: 4296‐4304, 2014.
 113.Carrisoza‐Gaytan R, Ray EC, Flores D, Marciszyn AL, Wu P, Liu L, Subramanya AR, Wang W, Sheng S, Nkashama LJ, Chen J, Jackson EK, Mutchler SM, Heja S, Kohan DE, Satlin LM, Kleyman TR. Intercalated cell BKα subunit is required for flow‐induced K+ secretion. JCI Insight 5: e130553, 2020.
 114.Castaneda‐Bueno M, Arroyo JP, Zhang J, Puthumana J, Yarborough O III, Shibata S, Rojas‐Vega L, Gamba G, Rinehart J, Lifton RP. Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4. Proc Natl Acad Sci U S A 114: E879‐E886, 2017.
 115.Castaneda‐Bueno M, Cervantes‐Perez LG, Vazquez N, Uribe N, Kantesaria S, Morla L, Bobadilla NA, Doucet A, Alessi DR, Gamba G. Activation of the renal Na+:Cl− cotransporter by angiotensin II is a WNK4‐dependent process. Proc Natl Acad Sci U S A 109: 7929‐7934, 2012.
 116.Castro H, Raij L. Potassium in hypertension and cardiovascular disease. Semin Nephrol 33: 277‐289, 2013.
 117.Chan JC. Control of aldosterone secretion. Nephron 23: 79‐83, 1979.
 118.Chang H, Tashiro K, Hirai M, Ikeda K, Kurokawa K, Fujita T. Identification of a cDNA encoding a thiazide‐sensitive sodium‐chloride cotransporter from the human and its mRNA expression in various tissues. Biochem Biophys Res Commun 223: 324‐328, 1996.
 119.Chang SS, Grunder S, Hanukoglu A, Rösler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson‐Williams C, Rossier BC, Lifton RP. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12: 248‐253, 1996.
 120.Chapman K, Holmes M, Seckl J. 11β‐hydroxysteroid dehydrogenases: Intracellular gate‐keepers of tissue glucocorticoid action. Physiol Rev 93: 1139‐1206, 2013.
 121.Chen C, Liang W, Jia J, van GH, Singhal PC, and Ding G. Aldosterone induces apoptosis in rat podocytes: Role of PI3‐K/Akt and p38MAPK signaling pathways. Nephron Exp Nephrol 113: e26‐e34, 2009.
 122.Chen CW, Jaffe IZ, Karumanchi SA. Pre‐eclampsia and cardiovascular disease. Cardiovasc Res 101: 579‐586, 2014.
 123.Chen SY, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D. Epithelial sodium channel regulated by aldosterone‐induced protein sgk. Proc Natl Acad Sci U S A 96: 2514‐2519, 1999.
 124.Chen XL, Bayliss DA, Fern RJ, Barrett PQ. A role for T‐type Ca2+ channels in the synergistic control of aldosterone production by ANG II and K+. Am J Physiol 276: F674‐F683, 1999.
 125.Chen Z, Vaughn DA, Blakely P, Fanestil DD. Adrenocortical steroids increase renal thiazide diuretic receptor density and response. J Am Soc Nephrol 5: 1361‐1368, 1994.
 126.Chen ZF, Vaughn DA, Beaumont K, Fanestil DD. Effects of diuretic treatment and of dietary sodium on renal binding of 3H‐metolazone. J Am Soc Nephrol 1: 91‐98, 1990.
 127.Cheng L, Poulsen SB, Wu Q, Esteva‐Font C, Olesen ETB, Peng L, Olde B, Leeb‐Lundberg LMF, Pisitkun T, Rieg T, Dimke H, Fenton RA. Rapid aldosterone‐mediated signaling in the DCT increases activity of the thiazide‐sensitive NaCl cotransporter. J Am Soc Nephrol 30: 1454‐1470, 2019.
 128.Cherney DZI, Dekkers CCJ, Barbour SJ, Cattran D, Abdul Gafor AH, Greasley PJ, Laverman GD, Lim SK, Di Tanna GL, Reich HN, Vervloet MG, Wong MG, Gansevoort RT, Heerspink HJL. Effects of the SGLT2 inhibitor dapagliflozin on proteinuria in non‐diabetic patients with chronic kidney disease (DIAMOND): A randomised, double‐blind, crossover trial. Lancet Diabetes Endocrinol 8: 582‐593, 2020.
 129.Cheval L, Morla L, Elalouf JM, Doucet A. Kidney collecting duct acid‐base “regulon”. Physiol Genomics 27: 271‐281, 2006.
 130.Chiu T, Santiskulvong C, Rozengurt E. EGF receptor transactivation mediates ANG II‐stimulated mitogenesis in intestinal epithelial cells through the PI3‐kinase/Akt/mTOR/p70S6K1 signaling pathway. Am J Physiol Gastrointest Liver Physiol 288: G182‐G194, 2005.
 131.Chobanian AV, Burrows BA, Hollander W. Body fluid and electrolyte composition in arterial hypertension. II. Studies in mineralocorticoid hypertension. J Clin Invest 40: 416‐422, 1961.
 132.Choi M, Scholl UI, Yue P, Bjorklund P, Zhao B, Nelson‐Williams C, Ji W, Cho Y, Patel A, Men CJ, Lolis E, Wisgerhof MV, Geller DS, Mane S, Hellman P, Westin G, Akerstrom G, Wang W, Carling T, Lifton RP. K+ channel mutations in adrenal aldosterone‐producing adenomas and hereditary hypertension. Science 331: 768‐772, 2011.
 133.Christ M, Meyer C, Sippel K, Wehling M. Rapid aldosterone signaling in vascular smooth muscle cells: Involvement of phospholipase C, diacylglycerol and protein kinase C alpha. Biochem Biophys Res Commun 213: 123‐129, 1995.
 134.Chrysostomou A, Becker G. Spironolactone in addition to ACE inhibition to reduce proteinuria in patients with chronic renal disease. N Engl J Med 345: 925‐926, 2001.
 135.Chrysostomou A, Pedagogos E, MacGregor L, Becker GJ. Double‐blind, placebo‐controlled study on the effect of the aldosterone receptor antagonist spironolactone in patients who have persistent proteinuria and are on long‐term angiotensin‐converting enzyme inhibitor therapy, with or without an angiotensin II receptor blocker. Clin J Am Soc Nephrol 1: 256‐262, 2006.
 136.Chu TS, Tsuganezawa H, Peng Y, Cano A, Yanagisawa M, Alpern RJ. Role of tyrosine kinase pathways in ETB receptor activation of NHE3. Am J Physiol 271: C763‐C771, 1996.
 137.Cicoira M, Zanolla L, Rossi A, Golia G, Franceschini L, Cabrini G, Bonizzato A, Graziani M, Anker SD, Coats AJ, Zardini P. Failure of aldosterone suppression despite angiotensin‐converting enzyme (ACE) inhibitor administration in chronic heart failure is associated with ACE DD genotype. J Am Coll Cardiol 37: 1808‐1812, 2001.
 138.Clark BA, Brown RS, Epstein FH. Effect of atrial natriuretic peptide on potassium‐stimulated aldosterone secretion: Potential relevance to hypoaldosteronism in man. J Clin Endocrinol Metab 75: 399‐403, 1992.
 139.Clawson H, Raney B, Kuhn R, Karolchik D, Heitner S. UCSC Genome Browser Univ. Calif. at Santa Cruz. https://genome.ucsc.edu/. December 2013 initial release; December 2017 patch release 12.
 140.Clemmer JS, Faulkner JL, Mullen AJ, Butler KR, Hester RL. Sex‐specific responses to mineralocorticoid receptor antagonism in hypertensive African American males and females. Biol Sex Differ 10: 24, 2019.
 141.Clyne CD, Chang CY, Safi R, Fuller PJ, McDonnell DP, Young MJ. Purification and characterization of recombinant human mineralocorticoid receptor. Mol Cell Endocrinol 302: 81‐85, 2009.
 142.Conn JW. Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome. J Lab Clin Med 45: 3‐17, 1955.
 143.Conn JW. Primary aldosteronism. J Lab Clin Med 45: 661‐664, 1955.
 144.Conn JW, Louis LH. Primary aldosteronism: A new clinical entity. Trans Assoc Am Physicians 68: 215‐231; discussion, 231‐213, 1955.
 145.Cooper J. What is an Aldosterone Test? WebMD. https://www.webmd.com/a‐to‐z‐guides/what‐is‐an‐aldosterone‐test. January 4, 2022.
 146.Crabbe J. Stimulation of active sodium transport by the isolated toad bladder with aldosterone in vitro. J Clin Invest 40: 2103‐2110, 1961.
 147.Craigie E, Evans LC, Mullins JJ, Bailey MA. Failure to downregulate the epithelial sodium channel causes salt sensitivity in Hsd11b2 heterozygote mice. Hypertension 60: 684‐690, 2012.
 148.Craigie E, Menzies RI, Larsen CK, Jacquillet G, Carrel M, Wildman SS, Loffing J, Leipziger J, Shirley DG, Bailey MA, Unwin RJ. The renal and blood pressure response to low sodium diet in P2X4 receptor knockout mice. Physiol Rep 6: e13899, 2018.
 149.Cuevas CA, Su XT, Wang MX, Terker AS, Lin DH, McCormick JA, Yang CL, Ellison DH, Wang WH. Potassium sensing by renal distal tubules requires Kir4.1. J Am Soc Nephrol 28: 1814‐1825, 2017.
 150.Curnow KM, Tusie‐Luna MT, Pascoe L, Natarajan R, Gu JL, Nadler JL, White PC. The product of the CYP11B2 gene is required for aldosterone biosynthesis in the human adrenal cortex. Mol Endocrinol 5: 1513‐1522, 1991.
 151.Currie G, Taylor AH, Fujita T, Ohtsu H, Lindhardt M, Rossing P, Boesby L, Edwards NC, Ferro CJ, Townend JN, van den Meiracker AH, Saklayen MG, Oveisi S, Jardine AG, Delles C, Preiss DJ, Mark PB. Effect of mineralocorticoid receptor antagonists on proteinuria and progression of chronic kidney disease: A systematic review and meta‐analysis. BMC Nephrol 17: 127, 2016.
 152.Czikora I, Alli AA, Sridhar S, Matthay MA, Pillich H, Hudel M, Berisha B, Gorshkov B, Romero MJ, Gonzales J, Wu G, Huo Y, Su Y, Verin AD, Fulton D, Chakraborty T, Eaton DC, Lucas R. Epithelial sodium channel‐α mediates the protective effect of the TNF‐derived TIP peptide in pneumolysin‐induced endothelial barrier dysfunction. Front Immunol 8: 842, 2017.
 153.Czirják G, Petheo GL, Spät A, Enyedi P. Inhibition of TASK‐1 potassium channel by phospholipase C. Am J Physiol Cell Physiol 281: C700‐C708, 2001.
 154.Czogalla J, Vohra T, Penton D, Kirschmann M, Craigie E, Loffing J. The mineralocorticoid receptor (MR) regulates ENaC but not NCC in mice with random MR deletion. Pflugers Arch 468: 849‐858, 2016.
 155.Dahl LK, Leitl G, Heine M. Influence of dietary potassium and sodium/potassium molar ratios on the development of salt hypertension. J Exp Med 136: 318‐330, 1972.
 156.Davel AP, Jaffe IZ, Tostes RC, Jaisser F, Belin de Chantemèle EJ. New roles of aldosterone and mineralocorticoid receptors in cardiovascular disease: Translational and sex‐specific effects. Am J Physiol Heart Circ Physiol 315: H989‐H999, 2018.
 157.Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 68: 357‐418, 2016.
 158.Davis JO. Some aspects of the physiology of aldosterone. J Natl Med Assoc 49: 42‐50, 1957.
 159.Davis JO, Carpenter CC, Ayers CR, Holman JE, Bahn RC. Evidence for secretion of an aldosterone‐stimulating hormone by the kidney. J Clin Invest 40: 684‐696, 1961.
 160.Davis JO, Urquhart J, Higgins JT Jr. The effects of alterations of plasma sodium and potassium concentration on aldosterone secretion. J Clin Invest 42: 597‐608, 1963.
 161.Dawborn JK, Ross EJ. The effect of prolonged administration of aldosterone on sodium and potassium turnover in the rabbit. Clin Sci 32: 559‐570, 1967.
 162.de Mello‐Aires M, Giebisch G, Malnic G. Kinetics of potassium transport across single distal tubules of rat kidney. J Physiol 232: 47‐70, 1973.
 163.Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Münster C, Chraïbi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O. Phosphorylation of Nedd4‐2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20: 7052‐7059, 2001.
 164.Deborde T, Amar L, Bobrie G, Postel‐Vinay N, Battaglia C, Tache A, Chedid A, Dhib MM, Chatellier G, Plouin PF, Burgun A, Azizi M, Jannot AS. Sex differences in antihypertensive treatment in France among 17 856 patients in a tertiary hypertension unit. J Hypertens 36: 939‐946, 2018.
 165.Deming QB, Luetscher JA Jr. Bioassay of desoxycorticosterone‐like material in urine. Proc Soc Exp Biol Med 73: 171‐175, 1950.
 166.Dijkink L, Hartog A, Deen PM, van Os CH, Bindels RJ. Time‐dependent regulation by aldosterone of the amiloride‐sensitive Na+ channel in rabbit kidney. Pflugers Arch 438: 354‐360, 1999.
 167.Dijkink L, Hartog A, Van Os CH, Bindels RJ. Modulation of aldosterone‐induced stimulation of ENaC synthesis by changing the rate of apical Na+ entry. Am J Physiol Renal Physiol 281: F687‐F692, 2001.
 168.Dinudom A, Harvey KF, Komwatana P, Young JA, Kumar S, Cook DI. Nedd4 mediates control of an epithelial Na+ channel in salivary duct cells by cytosolic Na+. Proc Natl Acad Sci U S A 95: 7169‐7173, 1998.
 169.Dluhy RG, Axelrod L, Underwood RH, Williams GH. Studies of the control of plasma aldosterone concentration in normal man. II. Effect of dietary potassium and acute potassium infusion. J Clin Invest 51: 1950‐1957, 1972.
 170.Dobyan DC, Lacy FB, Jamison RL. Suppression of potassium‐recycling in the renal medulla by short‐term potassium deprivation. Kidney Int 16: 704‐709, 1979.
 171.Doi M, Takahashi Y, Komatsu R, Yamazaki F, Yamada H, Haraguchi S, Emoto N, Okuno Y, Tsujimoto G, Kanematsu A, Ogawa O, Todo T, Tsutsui K, van der Horst GT, Okamura H. Salt‐sensitive hypertension in circadian clock‐deficient Cry‐null mice involves dysregulated adrenal Hsd3b6. Nat Med 16: 67‐74, 2010.
 172.Dooley R, Harvey BJ, Thomas W. Non‐genomic actions of aldosterone: From receptors and signals to membrane targets. Mol Cell Endocrinol 350: 223‐234, 2012.
 173.Doucet A, Katz AI. Mineralocorticoid receptors along the nephron: [3H]aldosterone binding in rabbit tubules. Am J Physiol 241: F605‐F611, 1981.
 174.Doucet A, Marsy S. Characterization of K‐ATPase activity in distal nephron: Stimulation by potassium depletion. Am J Physiol 253: F418‐F423, 1987.
 175.Douglas J, Aguilera G, Kondo T, Catt K. Angiotensin II receptors and aldosterone production in rat adrenal glomerulosa cells. Endocrinology 102: 685‐696, 1978.
 176.Drumm K, Kress TR, Gassner B, Krug AW, Gekle M. Aldosterone stimulates activity and surface expression of NHE3 in human primary proximal tubule epithelial cells (RPTEC). Cell Physiol Biochem 17: 21‐28, 2006.
 177.Drummond HA. The (F)low down on the endothelial epithelial sodium channel: Epithelial sodium channel as a brake on flow‐mediated vasodilation. Hypertension 53: 903‐904, 2009.
 178.Drummond HA, Price MP, Welsh MJ, Abboud FM. A molecular component of the arterial baroreceptor mechanotransducer. Neuron 21: 1435‐1441, 1998.
 179.Dubey RK, Oparil S, Imthurn B, Jackson EK. Sex hormones and hypertension. Cardiovasc Res 53: 688‐708, 2002.
 180.Duc C, Farman N, Canessa CM, Bonvalet JP, Rossier BC. Cell‐specific expression of epithelial sodium channel alpha, beta, and gamma subunits in aldosterone‐responsive epithelia from the rat: Localization by in situ hybridization and immunocytochemistry. J Cell Biol 127: 1907‐1921, 1994.
 181.Dumeige L, Storey C, Decourtye L, Nehlich M, Lhadj C, Viengchareun S, Kappeler L, Lombès M, Martinerie L. Sex‐specificity of mineralocorticoid target gene expression during renal development, and long‐term consequences. Int J Mol Sci 18: 457, 2017.
 182.Dunbar DR, Khaled H, Evans LC, Al‐Dujaili EA, Mullins LJ, Mullins JJ, Kenyon CJ, Bailey MA. Transcriptional and physiological responses to chronic ACTH treatment by the mouse kidney. Physiol Genomics 40: 158‐166, 2010.
 183.DuPont JJ, Hill MA, Bender SB, Jaisser F, Jaffe IZ. Aldosterone and vascular mineralocorticoid receptors: Regulators of ion channels beyond the kidney. Hypertension 63: 632‐637, 2014.
 184.DuPont JJ, Jaffe IZ. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: The role of the mineralocorticoid receptor in the vasculature. J Endocrinol 234: T67‐T82, 2017.
 185.DuPont JJ, Kenney RM, Patel AR, Jaffe IZ. Sex differences in mechanisms of arterial stiffness. Br J Pharmacol 176: 4208‐4225, 2019.
 186.Edelman ER, Butala NM, Avery LL, Lundquist AL, Dighe AS. Case 30‐2020: A 54‐year‐old man with sudden cardiac arrest. N Engl J Med 383: 1263‐1275, 2020.
 187.Edelman IS, Bogoroch R, Porter GA. On the mechanism of action of aldosterone on sodium transport: The role of protein synthesis. Proc Natl Acad Sci U S A 50: 1169‐1177, 1963.
 188.Edinger RS, Yospin J, Perry C, Kleyman TR, Johnson JP. Regulation of epithelial Na+ channels (ENaC) by methylation: A novel methyltransferase stimulates ENaC activity. J Biol Chem 281: 9110‐9117, 2006.
 189.Edwards CRW, Burt D, McIntyre MA, de Kloet ER, Stewart PM, Brett L, Sutanto WS, Monder C. Localisation of 11b‐hydroxysteroid dehydrogenase‐tissue specific protector of the mineralocorticoid receptor. Lancet October 29: 986‐989, 1988.
 190.Egfjord M, Dahl HB, Kayser C, Blaehr H. Aldosterone metabolism in cultures of rat renal cortical and medullary cells. Scand J Clin Lab Invest 59: 107‐113, 1999.
 191.Eguchi S, Iwasaki H, Ueno H, Frank GD, Motley ED, Eguchi K, Marumo F, Hirata Y, Inagami T. Intracellular signaling of angiotensin II‐induced p70 S6 kinase phosphorylation at Ser(411) in vascular smooth muscle cells. Possible requirement of epidermal growth factor receptor, Ras, extracellular signal‐regulated kinase, and Akt. J Biol Chem 274: 36843‐36851, 1999.
 192.El Moghrabi S, Houillier P, Picard N, Sohet F, Wootla B, Bloch‐Faure M, Leviel F, Cheval L, Frische S, Meneton P, Eladari D, Chambrey R. Tissue kallikrein permits early renal adaptation to potassium load. Proc Natl Acad Sci U S A 107: 13526‐13531, 2010.
 193.Ellison DH, Terker AS. Why your mother was right: How potassium intake reduces blood pressure. Trans Am Clin Climatol Assoc 126: 46‐55, 2015.
 194.Ellison DH, Terker AS, Gamba G. Potassium and its discontents: New insight, new treatments. J Am Soc Nephrol 27: 981‐989, 2016.
 195.Ellison DH, Velázquez H, Wright FS. Unidirectional potassium fluxes in renal distal tubule: Effects of chloride and barium. Am J Physiol 250: F885‐F894, 1986.
 196.Ellison DH, Velázquez H, Wright FS. Thiazide‐sensitive sodium chloride cotransport in early distal tubule. Am J Physiol 253: F546‐F554, 1987.
 197.Eraly SA, Vallon V, Vaughn DA, Gangoiti JA, Richter K, Nagle M, Monte JC, Rieg T, Truong DM, Long JM, Barshop BA, Kaler G, Nigam SK. Decreased renal organic anion secretion and plasma accumulation of endogenous organic anions in OAT1 knock‐out mice. J Biol Chem 281: 5072‐5083, 2006.
 198.Erlejman AG, Lagadari M, Toneatto J, Piwien‐Pilipuk G, Galigniana MD. Regulatory role of the 90‐kDa‐heat‐shock protein (Hsp90) and associated factors on gene expression. Biochim Biophys Acta 1839: 71‐87, 2014.
 199.Estilo G, Liu W, Pastor‐Soler N, Mitchell P, Carattino MD, Kleyman TR, Satlin LM. Effect of aldosterone on BK channel expression in mammalian cortical collecting duct. Am J Physiol Renal Physiol 295: F780‐F788, 2008.
 200.Evans LC, Ivy JR, Wyrwoll C, McNairn JA, Menzies RI, Christensen TH, Al‐Dujaili EA, Kenyon CJ, Mullins JJ, Seckl JR, Holmes MC, Bailey MA. Conditional deletion of Hsd11b2 in the brain causes salt appetite and hypertension. Circulation 133: 1360‐1370, 2016.
 201.Fagart J, Hillisch A, Huyet J, Barfacker L, Fay M, Pleiss U, Pook E, Schafer S, Rafestin‐Oblin ME, Kolkhof P. A new mode of mineralocorticoid receptor antagonism by a potent and selective nonsteroidal molecule. J Biol Chem 285: 29932‐29940, 2010.
 202.Fagart J, Huyet J, Pinon GM, Rochel M, Mayer C, Rafestin‐Oblin ME. Crystal structure of a mutant mineralocorticoid receptor responsible for hypertension. Nat Struct Mol Biol 12: 554‐555, 2005.
 203.Fakitsas P, Adam G, Daidie D, van Bemmelen MX, Fouladkou F, Patrignani A, Wagner U, Warth R, Camargo SM, Staub O, Verrey F. Early aldosterone‐induced gene product regulates the epithelial sodium channel by deubiquitylation. J Am Soc Nephrol 18: 1084‐1092, 2007.
 204.Falin R, Veizis IE, Cotton CU. A role for ERK1/2 in EGF‐ and ATP‐dependent regulation of amiloride‐sensitive sodium absorption. Am J Physiol Cell Physiol 288: C1003‐C1011, 2005.
 205.Faresse N, Ruffieux‐Daidie D, Salamin M, Gomez‐Sanchez CE, Staub O. Mineralocorticoid receptor degradation is promoted by Hsp90 inhibition and the ubiquitin‐protein ligase CHIP. Am J Physiol Renal Physiol 299: F1462‐F1472, 2010.
 206.Faresse N, Vitagliano JJ, Staub O. Differential ubiquitylation of the mineralocorticoid receptor is regulated by phosphorylation. FASEB J 26: 4373‐4382, 2012.
 207.Farman N, Oblin ME, Lombes M, Delahaye F, Westphal HM, Bonvalet JP, Gasc JM. Immunolocalization of gluco‐ and mineralocorticoid receptors in rabbit kidney. Am J Physiol 260: C226‐C233, 1991.
 208.Farman N, Talbot CR, Boucher R, Fay M, Canessa C, Rossier B, Bonvalet JP. Noncoordinated expression of alpha‐, beta‐, and gamma‐subunit mRNAs of epithelial Na+ channel along rat respiratory tract. Am J Physiol 272: C131‐C141, 1997.
 209.Farman N, Vandewalle A, Bonvalet JP. Aldosterone binding in isolated tubules I. Biochemical determination in proximal and distal parts of the rabbit nephron. Am J Physiol 242: F63‐F68, 1982.
 210.Farman N, Vandewalle A, Bonvalet JP. Autoradiographic study of aldosterone and dexamethasone binding in isolated glomeruli of rabbit kidney. Am J Physiol 243: F235‐F242, 1982.
 211.Faus H, Haendler B. Post‐translational modifications of steroid receptors. Biomed Pharmacother 60: 520‐528, 2006.
 212.Fernandes‐Rosa FL, Hubert EL, Fagart J, Tchitchek N, Gomes D, Jouanno E, Benecke A, Rafestin‐Oblin ME, Jeunemaitre X, Antonini SR, Zennaro MC. Mineralocorticoid receptor mutations differentially affect individual gene expression profiles in pseudohypoaldosteronism type 1. J Clin Endocrinol Metab 96: E519‐E527, 2011.
 213.Field MJ, Stanton BA, Giebisch GH. Differential acute effects of aldosterone, dexamethasone, and hyperkalemia on distal tubular potassium secretion in the rat kidney. J Clin Invest 74: 1792‐1802, 1984.
 214.Filippatos G, Anker SD, Bohm M, Gheorghiade M, Kober L, Krum H, Maggioni AP, Ponikowski P, Voors AA, Zannad F, Kim SY, Nowack C, Palombo G, Kolkhof P, Kimmeskamp‐Kirschbaum N, Pieper A, Pitt B. A randomized controlled study of finerenone vs. eplerenone in patients with worsening chronic heart failure and diabetes mellitus and/or chronic kidney disease. Eur Heart J 37: 2105‐2114, 2016.
 215.Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: A quantitative approach. Proc Natl Acad Sci U S A 93: 15370‐15375, 1996.
 216.Fischer K, Kelly SM, Watt K, Price NC, McEwan IJ. Conformation of the mineralocorticoid receptor N‐terminal domain: Evidence for induced and stable structure. Mol Endocrinol 24: 1935‐1948, 2010.
 217.Flores SY, Debonneville C, Staub O. The role of Nedd4/Nedd4‐like dependant ubiquitylation in epithelial transport processes. Pflugers Arch 446: 334‐338, 2003.
 218.Foster ES, Jones WJ, Hayslett JP, Binder HJ. Role of aldosterone and dietary potassium in potassium adaptation in the distal colon of the rat. Gastroenterology 88: 41‐46, 1985.
 219.Fourkiotis VG, Hanslik G, Hanusch F, Lepenies J, Quinkler M. Aldosterone and the kidney. Horm Metab Res 44: 194‐201, 2012.
 220.Fowler N, Giebisch G, Whittembury G. Distal tubular tracer microinjection study of renal tubular potassium transport. Am J Physiol 229: 1227‐1233, 1975.
 221.French IW, Manery JF. The effect of aldosterone on electrolytes in muscle, kidney cortex, and serum. Can J Biochem 42: 1459‐1476, 1964.
 222.Frindt G, Burg MB. Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int 1: 224‐231, 1972.
 223.Frindt G, Ergonul Z, Palmer LG. Surface expression of epithelial Na channel protein in rat kidney. J Gen Physiol 131: 617‐627, 2008.
 224.Frindt G, Masilamani S, Knepper MA, Palmer LG. Activation of epithelial Na channels during short‐term Na deprivation. Am J Physiol Renal Physiol 280: F112‐F118, 2001.
 225.Frindt G, Palmer LG. K+ secretion in the rat kidney: Na+ channel‐dependent and ‐independent mechanisms. Am J Physiol Renal Physiol 297: F389‐F396, 2009.
 226.Frindt G, Palmer LG. Regulation of epithelial Na+ channels by adrenal steroids: Mineralocorticoid and glucocorticoid effects. Am J Physiol Renal Physiol 302: F20‐F26, 2012.
 227.Frindt G, Palmer LG. Acute effects of aldosterone on the epithelial Na channel in rat kidney. Am J Physiol Renal Physiol 308: F572‐F578, 2015.
 228.Fuchs‐Hammoser R, Schweiger M, Oelkers W. The effect of chronic low‐dose infusion of ACTH (1‐24) on renin, renin‐substrate, aldosterone and other corticosteroids in sodium replete and deplete man. Acta Endocrinol (Copenh) 95: 198‐206, 1980.
 229.Fuller PJ. Novel interactions of the mineralocorticoid receptor. Mol Cell Endocrinol 408: 33‐37, 2015.
 230.Fuller PJ, Yao Y, Yang J, Young MJ. Mechanisms of ligand specificity of the mineralocorticoid receptor. J Endocrinol 213: 15‐24, 2012.
 231.Funder JW. GPR30, mineralocorticoid receptors, and the rapid vascular effects of aldosterone. Hypertension 57: 370‐372, 2011.
 232.Funder JW. The genetic basis of primary aldosteronism. Curr Hypertens Rep 14: 120‐124, 2012.
 233.Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: Target tissue specificity is enzyme, not receptor, mediated. Science 242: 583‐585, 1988.
 234.Gaeggeler HP, Gonzalez‐Rodriguez E, Jaeger NF, Loffing‐Cueni D, Norregaard R, Loffing J, Horisberger JD, Rossier BC. Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone‐stimulated sodium transport in a novel renal cell line. J Am Soc Nephrol 16: 878‐891, 2005.
 235.Galigniana MD, Erlejman AG, Monte M, Gomez‐Sanchez C, Piwien‐Pilipuk G. The hsp90‐FKBP52 complex links the mineralocorticoid receptor to motor proteins and persists bound to the receptor in early nuclear events. Mol Cell Biol 30: 1285‐1298, 2010.
 236.Galigniana NM, Ballmer LT, Toneatto J, Erlejman AG, Lagadari M, Galigniana MD. Regulation of the glucocorticoid response to stress‐related disorders by the Hsp90‐binding immunophilin FKBP51. J Neurochem 122: 4‐18, 2012.
 237.Galla JH, Bonduris DN, Luke RG. Effects of chloride and extracellular fluid volume on bicarbonate reabsorption along the nephron in metabolic alkalosis in the rat. Reassessment of the classical hypothesis of the pathogenesis of metabolic alkalosis. J Clin Invest 80: 41‐50, 1987.
 238.Gallo LI, Ghini AA, Piwien PG, Galigniana MD. Differential recruitment of tetratricorpeptide repeat domain immunophilins to the mineralocorticoid receptor influences both heat‐shock protein 90‐dependent retrotransport and hormone‐dependent transcriptional activity. Biochemistry 46: 14044‐14057, 2007.
 239.Gallolu Kankanamalage S, Lee AY, Wichaidit C, Lorente‐Rodriguez A, Shah AM, Stippec S, Whitehurst AW, Cobb MH. Multistep regulation of autophagy by WNK1. Proc Natl Acad Sci U S A 113: 14342‐14347, 2016.
 240.Gamba G. Molecular physiology and pathophysiology of electroneutral cation‐chloride cotransporters. Physiol Rev 85: 423‐493, 2005.
 241.Gamba G. The thiazide‐sensitive Na+‐Cl− cotransporter: Molecular biology, functional properties, and regulation by WNKs. Am J Physiol Renal Physiol 297: F838‐F848, 2009.
 242.Gamba G, Miyanoshita A, Lombardi M, Lytton J, Lee WS, Hediger MA, Hebert SC. Molecular cloning, primary structure, and characterization of two members of the mammalian electroneutral sodium‐(potassium)‐chloride cotransporter family expressed in kidney. J Biol Chem 269: 17713‐17722, 1994.
 243.Gamba G, Saltzberg SN, Lombardi M, Miyanoshita A, Lytton J, Hediger MA, Brenner BM, Hebert SC. Primary structure and functional expression of a cDNA encoding the thiazide‐sensitive, electroneutral sodium‐chloride cotransporter. Proc Natl Acad Sci U S A 90: 2749‐2753, 1993.
 244.Gann DS, Cruz JF, Casper AG, Bartter FC. Mechanism by which potassium increases aldosterone secretion in the dog. Am J Physiol 202: 991‐996, 1962.
 245.Ganong WF, Mulrow PJ. Rate of change in sodium and potassium excretion after injection of aldosterone into the aorta and renal artery of the dog. Am J Physiol 195: 337‐342, 1958.
 246.Ganong WF, Mulrow PJ. Evidence of secretion of an aldosterone‐stimulating substance by the kidney. Nature 190: 1115‐1116, 1961.
 247.Geering K, Claire M, Gaeggeler HP, Rossier BC. Receptor occupancy vs. induction of Na+‐K+‐ATPase and Na+ transport by aldosterone. Am J Physiol 248: C102‐C108, 1985.
 248.Geerling JC, Loewy AD. Aldosterone in the brain. Am J Physiol Renal Physiol 297: F559‐F576, 2009.
 249.Gekle M, Bretschneider M, Meinel S, Ruhs S, Grossmann C. Rapid mineralocorticoid receptor trafficking. Steroids 81: 103‐108, 2014.
 250.Gekle M, Freudinger R, Mildenberger S, Silbernagl S. Aldosterone interaction with epidermal growth factor receptor signaling in MDCK cells. Am J Physiol Renal Physiol 282: F669‐F679, 2002.
 251.Gekle M, Golenhofen N, Oberleithner H, Silbernagl S. Rapid activation of Na+/H+ exchange by aldosterone in renal epithelial cells requires Ca2+ and stimulation of a plasma membrane proton conductance. Proc Natl Acad Sci U S A 93: 10500‐10504, 1996.
 252.Geller DS, Farhi A, Pinkerton N, Fradley M, Moritz M, Spitzer A, Meinke G, Tsai FT, Sigler PB, Lifton RP. Activating mineralocorticoid receptor mutation in hypertension exacerbated by pregnancy. Science 289: 119‐123, 2000.
 253.Geller DS, Rodriguez‐Soriano J, Vallo BA, Schifter S, Bayer M, Chang SS, Lifton RP. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 19: 279‐281, 1998.
 254.Geller DS, Zhang J, Wisgerhof MV, Shackleton C, Kashgarian M, Lifton RP. A novel form of human mendelian hypertension featuring nonglucocorticoid‐remediable aldosteronism. J Clin Endocrinol Metab 93: 3117‐3123, 2008.
 255.Geserick C, Meyer HA, Haendler B. The role of DNA response elements as allosteric modulators of steroid receptor function. Mol Cell Endocrinol 236: 1‐7, 2005.
 256.Gharbi SI, Zvelebil MJ, Shuttleworth SJ, Hancox T, Saghir N, Timms JF, Waterfield MD. Exploring the specificity of the PI3K family inhibitor LY294002. Biochem J 404: 15‐21, 2007.
 257.Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek‐Gliszczynski MJ, Zhang L. Membrane transporters in drug development. Nat Rev Drug Discov 9: 215‐236, 2010.
 258.Gilbert KC, Brown NJ. Aldosterone and inflammation. Curr Opin Endocrinol Diabetes Obes 17: 199‐204, 2010.
 259.Gleason CE, Frindt G, Cheng CJ, Ng M, Kidwai A, Rashmi P, Lang F, Baum M, Palmer LG, Pearce D. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J Clin Invest 125: 117‐128, 2015.
 260.Gnionsahe A, Claire M, Koechlin N, Bonvalet JP, Farman N. Aldosterone binding sites along nephron of Xenopus and rabbit. Am J Physiol 257: R87‐R95, 1989.
 261.Gomez‐Sanchez CE, Kuppusamy M, Gomez‐Sanchez EP. Of mice and man and the regulation of aldosterone secretion. Hypertension 70: 240‐242, 2017.
 262.Gomez‐Sanchez CE, Oki K. Minireview: Potassium channels and aldosterone dysregulation: Is primary aldosteronism a potassium channelopathy? Endocrinology 155: 47‐55, 2014.
 263.Gomez‐Sanchez CE, Rossi GP, Fallo F, Mannelli M. Progress in primary aldosteronism: Present challenges and perspectives. Horm Metab Res 42: 374‐381, 2010.
 264.Gomez‐Sanchez E, Gomez‐Sanchez CE. The multifaceted mineralocorticoid receptor. Compr Physiol 4: 965‐994, 2014.
 265.Gomez‐Sanchez EP, Gomez‐Sanchez CE. Central hypertensinogenic effects of glycyrrhizic acid and carbenoxolone. Am J Physiol 263: E1125‐E1130, 1992.
 266.Gomez‐Sanchez EP, Gomez‐Sanchez CE. Effect of central amiloride infusion on mineralocorticoid hypertension. Am J Physiol 267: E754‐E758, 1994.
 267.Goncalves MD, Hopkins BD, Cantley LC. Phosphatidylinositol 3‐kinase, growth disorders, and cancer. N Engl J Med 379: 2052‐2062, 2018.
 268.Gonzalez‐Nunez D, Morales‐Ruiz M, Leivas A, Hebert SC, Poch E. In vitro characterization of aldosterone and cAMP effects in mouse distal convoluted tubule cells. Am J Physiol Renal Physiol 286: F936‐F944, 2004.
 269.Gonzalez‐Robayna IJ, Falender AE, Ochsner S, Firestone GL, Richards JS. Follicle‐stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid‐lnduced kinase (Sgk): Evidence for A kinase‐independent signaling by FSH in granulosa cells. Mol Endocrinol 14: 1283‐1300, 2000.
 270.Good DW, George T, Watts BA III. Aldosterone inhibits HCO absorption via a nongenomic pathway in medullary thick ascending limb. Am J Physiol Renal Physiol 283: F699‐F706, 2002.
 271.Good DW, George T, Watts BA III. Nongenomic regulation by aldosterone of the epithelial NHE3 Na(+)/H(+) exchanger. Am J Physiol Cell Physiol 290: C757‐C763, 2006.
 272.Good DW, Velázquez H, Wright FS. Luminal influences on potassium secretion: Low sodium concentration. Am J Physiol 246: F609‐F619, 1984.
 273.Good DW, Wright FS. Luminal influences on potassium secretion: Sodium concentration and fluid flow rate. Am J Physiol 236: F192‐F205, 1979.
 274.Good ME, Chiu YH, Poon IKH, Medina CB, Butcher JT, Mendu SK, DeLalio LJ, Lohman AW, Leitinger N, Barrett E, Lorenz UM, Desai BN, Jaffe IZ, Bayliss DA, Isakson BE, Ravichandran KS. Pannexin 1 channels as an unexpected new target of the anti‐hypertensive drug spironolactone. Circ Res 122: 606‐615, 2018.
 275.Goto J, Otsuka F, Yamashita M, Suzuki J, Otani H, Takahashi H, Miyoshi T, Mimura Y, Ogura T, Makino H. Enhancement of aldosterone‐induced catecholamine production by bone morphogenetic protein‐4 through activating Rho and SAPK/JNK pathway in adrenomedullar cells. Am J Physiol Endocrinol Metab 296: E904‐E916, 2009.
 276.Grahammer F, Nesterov V, Ahmed A, Steinhardt F, Sandner L, Arnold F, Cordts T, Negrea S, Bertog M, Ruegg MA, Hall MN, Walz G, Korbmacher C, Artunc F, Huber TB. mTORC2 critically regulates renal potassium handling. J Clin Invest 126: 1773‐1782, 2016.
 277.Greenlee M, Wingo CS, McDonough AA, Youn JH, Kone BC. Narrative review: Evolving concepts in potassium homeostasis and hypokalemia. Ann Intern Med 150: 619‐625, 2009.
 278.Greenlee MM, Lynch IJ, Gumz ML, Cain BD, Wingo CS. Mineralocorticoids stimulate the activity and expression of renal H+,K+‐ATPases. J Am Soc Nephrol 22: 49‐58, 2011.
 279.Grekin RJ, Terris JM, Bohr DF. Electrolyte and hormonal effects of deoxycorticosterone acetate in young pigs. Hypertension 2: 326‐332, 1980.
 280.Grimm PR, Coleman R, Delpire E, Welling PA. Constitutively active SPAK causes hyperkalemia by activating NCC and remodeling distal tubules. J Am Soc Nephrol 28: 2597‐2606, 2017.
 281.Grimm PR, Foutz RM, Brenner R, Sansom SC. Identification and localization of BK‐beta subunits in the distal nephron of the mouse kidney. Am J Physiol Renal Physiol 293: F350‐F359, 2007.
 282.Grimm PR, Irsik DL, Liu L, Holtzclaw JD, Sansom SC. Role of BKbeta1 in Na+ reabsorption by cortical collecting ducts of Na+‐deprived mice. Am J Physiol Renal Physiol 297: F420‐F428, 2009.
 283.Grimm PR, Irsik DL, Settles DC, Holtzclaw JD, Sansom SC. Hypertension of Kcnmb1−/− is linked to deficient K secretion and aldosteronism. Proc Natl Acad Sci U S A 106: 11800‐11805, 2009.
 284.Grimm PR, Lazo‐Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, Coleman R, Wade JB, Welling PA. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest 125: 2136‐2150, 2015.
 285.Grimm PR, Sansom SC. BK channels in the kidney. Curr Opin Nephrol Hypertens 16: 430‐436, 2007.
 286.Grimm PR, Sansom SC. BK channels and a new form of hypertension. Kidney Int 78: 956‐962, 2010.
 287.Gros R, Ding Q, Davis M, Shaikh R, Liu B, Chorazyczewski J, Pickering JG, Feldman RD. Delineating the receptor mechanisms underlying the rapid vascular contractile effects of aldosterone and estradiol. Can J Physiol Pharmacol 89: 655‐663, 2011.
 288.Gros R, Ding Q, Sklar LA, Prossnitz EE, Arterburn JB, Chorazyczewski J, Feldman RD. GPR30 expression is required for the mineralocorticoid receptor‐independent rapid vascular effects of aldosterone. Hypertension 57: 442‐451, 2011.
 289.Gross JB, Imai M, Kokko JP. A functional comparison of the cortical collecting tubule and the distal convoluted tubule. J Clin Invest 55: 1284‐1294, 1975.
 290.Gross JB, Kokko JP. Effects of aldosterone and potassium‐sparing diuretics on electrical potential differences across the distal nephron. J Clin Invest 59: 82‐89, 1977.
 291.Grossmann C, Benesic A, Krug AW, Freudinger R, Mildenberger S, Gassner B, Gekle M. Human mineralocorticoid receptor expression renders cells responsive for nongenotropic aldosterone actions. Mol Endocrinol 19: 1697‐1710, 2005.
 292.Grossmann C, Freudinger R, Mildenberger S, Krug AW, Gekle M. Evidence for epidermal growth factor receptor as negative‐feedback control in aldosterone‐induced Na+ reabsorption. Am J Physiol Renal Physiol 286: F1226‐F1231, 2004.
 293.Grossmann C, Husse B, Mildenberger S, Schreier B, Schuman K, Gekle M. Colocalization of mineralocorticoid and EGF receptor at the plasma membrane. Biochim Biophys Acta 1803: 584‐590, 2010.
 294.Grossmann C, Ruhs S, Langenbruch L, Mildenberger S, Strätz N, Schumann K, Gekle M. Nuclear shuttling precedes dimerization in mineralocorticoid receptor signaling. Chem Biol 19: 742‐751, 2012.
 295.Grossmann C, Wuttke M, Ruhs S, Seiferth A, Mildenberger S, Rabe S, Schwerdt G, Gekle M. Mineralocorticoid receptor inhibits CREB signaling by calcineurin activation. FASEB J 24: 2010‐2019, 2010.
 296.Gründer S, Firsov D, Chang SS, Jaeger NF, Gautschi I, Schild L, Lifton RP, Rossier BC. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J 16: 899‐907, 1997.
 297.Gründer S, Jaeger NF, Gautschi I, Schild L, Rossier BC. Identification of a highly conserved sequence at the N‐terminus of the epithelial Na+ channel alpha subunit involved in gating. Pflugers Arch 438: 709‐715, 1999.
 298.Gründer S, Zagato L, Yagil C, Yagil Y, Sassard J, Rossier BC. Polymorphisms in the carboxy‐terminus of the epithelial sodium channel in rat models for hypertension. J Hypertens 15: 173‐179, 1997.
 299.Gschwind A, Fischer OM, Ullrich A. The discovery of receptor tyrosine kinases: Targets for cancer therapy. Nat Rev Cancer 4: 361‐370, 2004.
 300.Guess A, Agrawal S, Wei CC, Ransom RF, Benndorf R, Smoyer WE. Dose‐ and time‐dependent glucocorticoid receptor signaling in podocytes. Am J Physiol Renal Physiol 299: F845‐F853, 2010.
 301.Guipponi M, Vuagniaux G, Wattenhofer M, Shibuya K, Vazquez M, Dougherty L, Scamuffa N, Guida E, Okui M, Rossier C, Hancock M, Buchet K, Reymond A, Hummler E, Marzella PL, Kudoh J, Shimizu N, Scott HS, Antonarakis SE, Rossier BC. The transmembrane serine protease (TMPRSS3) mutated in deafness DFNB8/10 activates the epithelial sodium channel (ENaC) in vitro. Hum Mol Genet 11: 2829‐2836, 2002.
 302.Gumz ML, Cheng KY, Lynch IJ, Stow LR, Greenlee MM, Cain BD, Wingo CS. Regulation of αENaC expression by the circadian clock protein Period 1 in mpkCCD(c14) cells. Biochim Biophys Acta 1799: 622‐629, 2010.
 303.Gumz ML, Lynch IJ, Greenlee MM, Cain BD, Wingo CS. The renal H+‐K+‐ATPases: Physiology, regulation, and structure. Am J Physiol Renal Physiol 298: F12‐F21, 2010.
 304.Gumz ML, Popp MP, Wingo CS, Cain BD. Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am J Physiol Renal Physiol 285: F664‐F673, 2003.
 305.Gumz ML, Rabinowitz L, Wingo CS. An integrated view of potassium homeostasis. N Engl J Med 373: 60‐72, 2015.
 306.Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Weaver DR, Wingo CS. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 119: 2423‐2434, 2009.
 307.Gupta P, Franco‐Saenz R, Mulrow PJ. Locally generated angiotensin II in the adrenal gland regulates basal, corticotropin‐, and potassium‐stimulated aldosterone secretion. Hypertension 25: 443‐448, 1995.
 308.Guyton AC, Coleman TG, Cowley AV Jr, Scheel KW, Manning RD Jr, Norman RA Jr. Arterial pressure regulation. Overriding dominance of the kidneys in long‐term regulation and in hypertension. Am J Med 52: 584‐594, 1972.
 309.Guyton AC, Coleman TG, Young DB, Lohmeier TE, DeClue JW. Salt balance and long‐term blood pressure control. Annu Rev Med 31: 15‐27, 1980.
 310.Hadchouel J, Ellison DH, Gamba G. Regulation of renal electrolyte transport by WNK and SPAK‐OSR1 kinases. Annu Rev Physiol 78: 367‐389, 2016.
 311.Hadchouel J, Soukaseum C, Büsst C, Zhou XO, Baudrie V, Zürrer T, Cambillau M, Elghozi JL, Lifton RP, Loffing J, Jeunemaitre X. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney‐specific isoform of WNK1 and prevents hypertension. Proc Natl Acad Sci U S A 107: 18109‐18114, 2010.
 312.Hadoke PW, Christy C, Kotelevtsev YV, Williams BC, Kenyon CJ, Seckl JR, Mullins JJ, Walker BR. Endothelial cell dysfunction in mice after transgenic knockout of type 2, but not type 1, 11beta‐hydroxysteroid dehydrogenase. Circulation 104: 2832‐2837, 2001.
 313.Hajnóczky G, Csordás G, Bagó A, Chiu AT, Spät A. Angiotensin II exerts its effect on aldosterone production and potassium permeability through receptor subtype AT1 in rat adrenal glomerulosa cells. Biochem Pharmacol 43: 1009‐1012, 1992.
 314.Hall JE, Granger JP, Smith MJ Jr, Premen AJ. Role of renal hemodynamics and arterial pressure in aldosterone “escape”. Hypertension 6: I183‐I192, 1984.
 315.Hamilton KL, Eaton DC. Single‐channel recordings from amiloride‐sensitive epithelial sodium channel. Am J Physiol 249: C200‐C207, 1985.
 316.Hamilton KL, Eaton DC. Regulation of single sodium channels in renal tissue: A role in sodium homeostasis. Fed Proc 45: 2713‐2717, 1986.
 317.Hamilton KL, Eaton DC. Single‐channel recordings from two types of amiloride‐sensitive epithelial Na+ channels. Membr Biochem 6: 149‐171, 1986.
 318.Hamm LL, Hering‐Smith KS, Nakhoul NL. Acid‐base and potassium homeostasis. Semin Nephrol 33: 257‐264, 2013.
 319.Hancock JF, Cadwallader K, Paterson H, Marshall CJ. A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. EMBO J 10: 4033‐4039, 1991.
 320.Hansson JH, Nelson‐Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP. Hypertension caused by a truncated epithelial sodium channel gamma subunit: Genetic heterogeneity of Liddle syndrome. Nat Genet 11: 76‐82, 1995.
 321.Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson‐Williams C, Rossier BC, Lifton RP. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline‐rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A 92: 11495‐11499, 1995.
 322.Hanstein B, Liu H, Yancisin MC, Brown M. Functional analysis of a novel estrogen receptor‐beta isoform. Mol Endocrinol 13: 129‐137, 1999.
 323.Hanukoglu I. ASIC and ENaC type sodium channels: Conformational states and the structures of the ion selectivity filters. FEBS J 284: 525‐545, 2017.
 324.Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure‐function, tissue distribution, and associated inherited diseases. Gene 579: 95‐132, 2016.
 325.Harris AN, Grimm PR, Lee HW, Delpire E, Fang L, Verlander JW, Welling PA, Weiner ID. Mechanism of hyperkalemia‐induced metabolic acidosis. J Am Soc Nephrol 29: 1411‐1425, 2018.
 326.Harvey BJ, Higgins M. Nongenomic effects of aldosterone on Ca2+ in M‐1 cortical collecting duct cells. Kidney Int 57: 1395‐1403, 2000.
 327.Hasui T, Matsunaga N, Ora T, Ohyabu N, Nishigaki N, Imura Y, Igata Y, Matsui H, Motoyaji T, Tanaka T, Habuka N, Sogabe S, Ono M, Siedem CS, Tang TP, Gauthier C, De Meese LA, Boyd SA, Fukumoto S. Identification of benzoxazin‐3‐one derivatives as novel, potent, and selective nonsteroidal mineralocorticoid receptor antagonists. J Med Chem 54: 8616‐8631, 2011.
 328.Hattangady NG, Olala LO, Bollag WB, Rainey WE. Acute and chronic regulation of aldosterone production. Mol Cell Endocrinol 350: 151‐162, 2012.
 329.Hauger RL, Aguilera G, Catt KJ. Angiotensin II regulates its receptor sites in the adrenal glomerulosa zone. Nature 271: 176‐178, 1978.
 330.Hayslett JP, Binder HJ. Mechanism of potassium adaptation. Am J Physiol 243: F103‐F112, 1982.
 331.Health Research Funding. Explanation of aldosterone blood test results. HealthResearchFunding.org. https://healthresearchfunding.org/explanation‐of‐aldosterone‐blood‐test‐results/. January 4, 2022.
 332.Health Research Funding. Renin blood test results interpreted. HealthResearchFunding.org. https://healthresearchfunding.org/renin‐blood‐test‐results‐interpreted/. January 4, 2022.
 333.Healthmatters. Aldosterone. Healthmatters. https://healthmatters.io/understand‐blood‐test‐results/aldosterone. January 4, 2022.
 334.Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 85: 319‐371, 2005.
 335.Heerspink HJL, Parving HH, Andress DL, Bakris G, Correa‐Rotter R, Hou FF, Kitzman DW, Kohan D, Makino H, McMurray JJV, Melnick JZ, Miller MG, Pergola PE, Perkovic V, Tobe S, Yi T, Wigderson M, de Zeeuw D. Atrasentan and renal events in patients with type 2 diabetes and chronic kidney disease (SONAR): A double‐blind, randomised, placebo‐controlled trial. Lancet 393: 1937‐1947, 2019.
 336.Hellal‐Levy C, Couette B, Fagart J, Souque A, Gomez‐Sanchez C, Rafestin‐Oblin M. Specific hydroxylations determine selective corticosteroid recognition by human glucocorticoid and mineralocorticoid receptors. FEBS Lett 464: 9‐13, 1999.
 337.Helman SI, O'Neil RG. Model of active transepithelial Na and K transport of renal collecting tubules. Am J Physiol 233: F559‐F571, 1977.
 338.Helms MN, Liu L, Liang YY, Al‐Khalili O, Vandewalle A, Saxena S, Eaton DC, Ma HP. Phosphatidylinositol 3,4,5‐trisphosphate mediates aldosterone stimulation of epithelial sodium channel (ENaC) and interacts with gamma‐ENaC. J Biol Chem 280: 40885‐40891, 2005.
 339.Helsen C, Claessens F. Looking at nuclear receptors from a new angle. Mol Cell Endocrinol 382: 97‐106, 2014.
 340.Henis YI, Hancock JF, Prior IA. Ras acylation, compartmentalization and signaling nanoclusters (review). Mol Membr Biol 26: 80‐92, 2009.
 341.Henry PC, Kanelis V, O'Brien CM, Kim B, Gautschi I, Forman‐Kay J, Schild L, Rotin D. Affinity and specificity of interactions between Nedd4 isoforms and the epithelial Na+ channel. J Biol Chem. 278: 20019‐20028, 2003.
 342.Henshall TL, Manning JA, Alfassy OS, Goel P, Boase NA, Kawabe H, Kumar S. Deletion of Nedd4‐2 results in progressive kidney disease in mice. Cell Death Differ 24: 2150‐2160, 2017.
 343.Herman JP, Spencer R. Regulation of hippocampal glucocorticoid receptor gene transcription and protein expression in vivo. J Neurosci 18: 7462‐7473, 1998.
 344.Hierholzer K, Schoneshofer M, Siebe H, Tsiakiras D, Weskamp P. Corticosteroid metabolism in isolated rat kidney in vitro. I. Formation of lipid soluble metabolites from corticosterone (B) in renal tissue from male rats. Pflugers Arch 400: 363‐371, 1984.
 345.Higashihara E, Kokko JP. Effects of aldosterone on potassium recycling in the kidney of adrenalectomized rats. Am J Physiol 248: F219‐F227, 1985.
 346.Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001: re19, 2001.
 347.Hirschberg D, Jagerbrink T, Samskog J, Gustafsson M, Stahlberg M, Alvelius G, Husman B, Carlquist M, Jornvall H, Bergman T. Detection of phosphorylated peptides in proteomic analyses using microfluidic compact disk technology. Anal Chem 76: 5864‐5871, 2004.
 348.Hobler A, Kagawa N, Hutter MC, Hartmann MF, Wudy SA, Hannemann F, Bernhardt R. Human aldosterone synthase: Recombinant expression in E. coli and purification enables a detailed biochemical analysis of the protein on the molecular level. J Steroid Biochem Mol Biol 132: 57‐65, 2012.
 349.Hofmeister MV, Damkier HH, Christensen BM, Olde B, Fredrik Leeb‐Lundberg LM, Fenton RA, Praetorius HA, Praetorius J. 17beta‐Estradiol induces nongenomic effects in renal intercalated cells through G protein‐coupled estrogen receptor 1. Am J Physiol Renal Physiol 302: F358‐F368, 2012.
 350.Hollenberg SM, Weinberger C, Ong ES, Cerelli G, Oro A, Lebo R, Thompson EB, Rosenfeld MG, Evans RM. Primary structure and expression of a functional human glucocorticoid receptor cDNA. Nature 318: 635‐641, 1985.
 351.Holmes MC, Kotelevtsev Y, Mullins JJ, Seckl JR. Phenotypic analysis of mice bearing targeted deletions of 11beta‐hydroxysteroid dehydrogenases 1 and 2 genes. Mol Cell Endocrinol 171: 15‐20, 2001.
 352.Holtzclaw JD, Cornelius RJ, Hatcher LI, Sansom SC. Coupled ATP and potassium efflux from intercalated cells. Am J Physiol Renal Physiol 300: F1319‐F1326, 2011.
 353.Holtzclaw JD, Grimm PR, Sansom SC. Intercalated cell BK‐alpha/beta4 channels modulate sodium and potassium handling during potassium adaptation. J Am Soc Nephrol 21: 634‐645, 2010.
 354.Holtzclaw JD, Grimm PR, Sansom SC. Role of BK channels in hypertension and potassium secretion. Curr Opin Nephrol Hypertens 20: 512‐517, 2011.
 355.Holzman JL, Liu L, Duke BJ, Kemendy AE, Eaton DC. Transactivation of the IGF‐1R by aldosterone. Am J Physiol Renal Physiol 292: F1219‐F1228, 2007.
 356.Hommes DW, Peppelenbosch MP, van Deventer SJ. Mitogen activated protein (MAP) kinase signal transduction pathways and novel anti‐inflammatory targets. Gut 52: 144‐151, 2003.
 357.Hoorn EJ, Gritter M, Cuevas CA, Fenton RA. Regulation of the renal NaCl cotransporter and its role in potassium homeostasis. Physiol Rev 100: 321‐356, 2020.
 358.Hoorn EJ, Nelson JH, McCormick JA, Ellison DH. The WNK kinase network regulating sodium, potassium, and blood pressure. J Am Soc Nephrol 22: 605‐614, 2011.
 359.Horisberger JD, Diezi J. Effects of mineralocorticoids on Na+ and K+ excretion in the adrenalectomized rat. Am J Physiol 245: F89‐F99, 1983.
 360.Hu C, Rusin CG, Tan Z, Guagliardo NA, Barrett PQ. Zona glomerulosa cells of the mouse adrenal cortex are intrinsic electrical oscillators. J Clin Invest 122: 2046‐2053, 2012.
 361.Huan Y, Deloach S, Keith SW, Goodfriend TL, Falkner B. Aldosterone and aldosterone: Renin ratio associations with insulin resistance and blood pressure in African Americans. J Am Soc Hypertens 6: 56‐65, 2012.
 362.Huang S, Zhang A, Ding G, Chen R. Aldosterone‐induced mesangial cell proliferation is mediated by EGF receptor transactivation. Am J Physiol Renal Physiol 296: F1323‐F1333, 2009.
 363.Hudson WH, Youn C, Ortlund EA. Crystal structure of the mineralocorticoid receptor DNA binding domain in complex with DNA. PLoS One 9: e107000, 2014.
 364.Hughey RP, Bruns JB, Kinlough CL, Harkleroad KL, Tong Q, Carattino MD, Johnson JP, Stockand JD, Kleyman TR. Epithelial sodium channels are activated by furin‐dependent proteolysis. J Biol Chem 279: 18111‐18114, 2004.
 365.Hulter HN, Licht JH, Sebastian A. K+ deprivation potentiates the renal acid excretory effect of mineralocorticoid: Obliteration by amiloride. Am J Physiol 236: F48‐F57, 1979.
 366.Hulter HN, Sigala JF, Sebastian A. K+ deprivation potentiates the renal alkalosis‐producing effect of mineralocorticoid. Am J Physiol 235: F298‐F309, 1978.
 367.Hultman ML, Krasnoperova NV, Li S, Du S, Xia C, Dietz JD, Lala DS, Welsch DJ, Hu X. The ligand‐dependent interaction of mineralocorticoid receptor with coactivator and corepressor peptides suggests multiple activation mechanisms. Mol Endocrinol 19: 1460‐1473, 2005.
 368.Hummler E, Barker P, Talbot C, Wang Q, Verdumo C, Grubb B, Gatzy J, Burnier M, Horisberger JD, Beermann F, Boucher R, Rossier BC. A mouse model for the renal salt‐wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci U S A 94: 11710‐11715, 1997.
 369.Hunter RW, Bailey MA. Hyperkalemia: Pathophysiology, risk factors and consequences. Nephrol Dial Transplant 34: iii2‐iii11, 2019.
 370.Hunter RW, Craigie E, Homer NZ, Mullins JJ, Bailey MA. Acute inhibition of NCC does not activate distal electrogenic Na+ reabsorption or kaliuresis. Am J Physiol Renal Physiol 306: F457‐F467, 2014.
 371.Hunter RW, Ivy JR, Flatman PW, Kenyon CJ, Craigie E, Mullins LJ, Bailey MA, Mullins JJ. Hypertrophy in the distal convoluted tubule of an 11beta‐hydroxysteroid dehydrogenase type 2 knockout model. J Am Soc Nephrol 26: 1537‐1548, 2015.
 372.Husted RF, Steinmetz PR. Mechanisms of K+ transport in isolated turtle urinary bladder. Induction of active K+ secretion in a K+‐absorbing epithelium. J Clin Invest 70: 832‐834, 1982.
 373.Huyet J, Pinon GM, Fay MR, Fagart J, Rafestin‐Oblin ME. Structural basis of spirolactone recognition by the mineralocorticoid receptor. Mol Pharmacol 72: 563‐571, 2007.
 374.Huyet J, Pinon GM, Fay MR, Rafestin‐Oblin ME, Fagart J. Structural determinants of ligand binding to the mineralocorticoid receptor. Mol Cell Endocrinol 350: 187‐195, 2012.
 375.Hyndman KA, Boesen EI, Elmarakby AA, Brands MW, Huang P, Kohan DE, Pollock DM, Pollock JS. Renal collecting duct NOS1 maintains fluid‐electrolyte homeostasis and blood pressure. Hypertension 62: 91‐98, 2013.
 376.Hyndman KA, Bugaj V, Mironova E, Stockand JD, Pollock JS. NOS1‐dependent negative feedback regulation of the epithelial sodium channel in the collecting duct. Am J Physiol Renal Physiol 308: F244‐F251, 2015.
 377.Hyndman KA, Ho DH, Sega MF, Pollock JS. Histone deacetylase 1 reduces NO production in endothelial cells via lysine deacetylation of NO synthase 3. Am J Physiol Heart Circ Physiol 307: H803‐H809, 2014.
 378.Hyndman KA, Pollock JS. Nitric oxide and the A and B of endothelin of sodium homeostasis. Curr Opin Nephrol Hypertens 22: 26‐31, 2013.
 379.Hyndman KA, Xue J, MacDonell A, Speed JS, Jin C, Pollock JS. Distinct regulation of inner medullary collecting duct nitric oxide production from mice and rats. Clin Exp Pharm Physiol 40: 233‐239, 2013.
 380.Igaki T, Itoh H, Suga SI, Hama N, Ogawa Y, Komatsu Y, Yamashita J, Doi K, Chun TH, Nakao K. Effects of intravenously administered C‐type natriuretic peptide in humans: Comparison with atrial natriuretic peptide. Hypertens Res 21: 7‐13, 1998.
 381.Ito S, Itoh H, Rakugi H, Okuda Y, Yamakawa S. Efficacy and safety of esaxerenone (CS‐3150) for the treatment of essential hypertension: A phase 2 randomized, placebo‐controlled, double‐blind study. J Hum Hypertens 33: 542‐551, 2019.
 382.Ito S, Itoh H, Rakugi H, Okuda Y, Yoshimura M, Yamakawa S. Double‐blind randomized phase 3 study comparing esaxerenone (CS‐3150) and eplerenone in patients with essential hypertension (ESAX‐HTN study). Hypertension 75: 51‐58, 2020.
 383.Ito S, Shikata K, Nangaku M, Okuda Y, Sawanobori T. Efficacy and safety of esaxerenone (CS‐3150) for the treatment of type 2 diabetes with microalbuminuria: A randomized, double‐blind, placebo‐controlled, phase II trial. Clin J Am Soc Nephrol 14: 1161‐1172, 2019.
 384.Ivy JR, Jones NK, Costello HM, Mansley MK, Peltz TS, Flatman PW, Bailey MA. Glucocorticoid receptor activation stimulates the sodium‐chloride cotransporter and influences the diurnal rhythm of its phosphorylation. Am J Physiol Renal Physiol 317: F1536‐F1548, 2019.
 385.Jacobs ME, Jeffers LA, Welch AK, Wingo CS, Cain BD. MicroRNA regulation of endothelin‐1 mRNA in renal collecting duct cells. Life Sci 118: 195‐199, 2014.
 386.Jaisser F, Escoubet B, Coutry N, Eugene E, Bonvalet JP, Farman N. Differential regulation of putative K(+)‐ATPase by low‐K+ diet and corticosteroids in rat distal colon and kidney. Am J Physiol 270: C679‐C687, 1996.
 387.Jaisser F, Farman N. Emerging roles of the mineralocorticoid receptor in pathology: Toward new paradigms in clinical pharmacology. Pharmacol Rev 68: 49‐75, 2016.
 388.Jaisser F, Horisberger JD, Geering K, Rossier BC. Mechanisms of urinary K+ and H+ excretion: Primary structure and functional expression of a novel H,K‐ATPase. J Cell Biol 123: 1421‐1429, 1993.
 389.Jaisser F, Horisberger JD, Rossier BC. Primary sequence and functional expression of a novel beta subunit of the P‐ATPase gene family. Pflugers Arch 425: 446‐452, 1993.
 390.Jamison RL. Potassium recycling. Kidney Int 31: 695‐703, 1987.
 391.Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid‐sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449: 316‐323, 2007.
 392.Jernigan NL, Speed J, LaMarca B, Granger JP, Drummond HA. Angiotensin II regulation of renal vascular ENaC proteins. Am J Hypertens 22: 593‐597, 2009.
 393.Ji H, Meng Y, Zhang X, Luo W, Wu P, Xiao B, Zhang Z, Li X. Aldosterone induction of hepatic stellate cell contraction through activation of RhoA/ROCK‐2 signaling pathway. Regul Pept 169: 13‐20, 2011.
 394.Ji HL, Benos DJ. Degenerin sites mediate proton activation of deltabetagamma‐epithelial sodium channel. J Biol Chem 279: 26939‐26947, 2004.
 395.Ji HL, Zhao RZ, Chen ZX, Shetty S, Idell S, Matalon S. δ ENaC: A novel divergent amiloride‐inhibitable sodium channel. Am J Physiol Lung Cell Mol Physiol 303: L1013‐L1026, 2012.
 396.Jia G, Habibi J, Aroor AR, Hill MA, Yang Y, Whaley‐Connell A, Jaisser F, Sowers JR. Epithelial sodium channel in aldosterone‐induced endothelium stiffness and aortic dysfunction. Hypertension 72: 731‐738, 2018.
 397.Jia Z, Aoyagi T, Kohan DE, Yang T. mPGES‐1 deletion impairs aldosterone escape and enhances sodium appetite. Am J Physiol Renal Physiol 299: F155‐F166, 2010.
 398.Jiménez‐Canino R, Fernandes MX, Alvarez de la Rosa D. Phosphorylation of mineralocorticoid receptor ligand binding domain impairs receptor activation and has a dominant negative effect over non‐phosphorylated receptors. J Biol Chem 291: 19068‐19078, 2016.
 399.Jiménez‐Canino R, Lorenzo‐Diaz F, Jaisser F, Farman N, Giraldez T, Alvarez de la Rosa D. Histone deacetylase 6‐controlled Hsp90 acetylation significantly alters mineralocorticoid receptor subcellular dynamics but not its transcriptional activity. Endocrinology 157: 2515‐2532, 2016.
 400.Jiménez‐Canino R, Lorenzo‐Díaz F, Odermatt A, Bailey MA, Livingstone DEW, Jaisser F, Farman N, Alvarez de la Rosa D. 11β‐HSD2 SUMOylation modulates cortisol‐induced mineralocorticoid receptor nuclear translocation independently of effects on transactivation. Endocrinology 158: 4047‐4063, 2017.
 401.Jin C, Speed JS, Hyndman KA, O'Connor PM, Pollock DM. Sex differences in ET‐1 receptor expression and Ca2+ signaling in the IMCD. Am J Physiol Renal Physiol 305: F1099‐F1104, 2013.
 402.Johnston JG, Speed JS, Jin C, Pollock DM. Loss of endothelin B receptor function impairs sodium excretion in a time‐ and sex‐dependent manner. Am J Physiol Renal Physiol 311: F991‐f998, 2016.
 403.Juurlink DN, Mamdani MM, Lee DS, Kopp A, Austin PC, Laupacis A, Redelmeier DA. Rates of hyperkalemia after publication of the Randomized Aldactone Evaluation Study. N Engl J Med 351: 543‐551, 2004.
 404.Kakiki M, Morohashi K, Nomura M, Omura T, Horie T. Expression of aldosterone synthase cytochrome P450 (P450aldo) mRNA in rat adrenal glomerulosa cells by angiotensin II type 1 receptor. Endocr Res 23: 277‐295, 1997.
 405.Kamynina E, Debonneville C, Bens M, Vandewalle A, Staub O. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J 15: 204‐214, 2001.
 406.Kamynina E, Staub O. Concerted action of ENaC, Nedd4‐2, and Sgk1 in transepithelial Na(+) transport. Am J Physiol Renal Physiol 283: F377‐F387, 2002.
 407.Kang SA, Pacold ME, Cervantes CL, Lim D, Lou HJ, Ottina K, Gray NS, Turk BE, Yaffe MB, Sabatini DM. mTORC1 phosphorylation sites encode their sensitivity to starvation and rapamycin. Science 341: 1236566, 2013.
 408.Karpushev AV, Levchenko V, Ilatovskaya DV, Pavlov TS, Staruschenko A. Novel role of Rac1/WAVE signaling mechanism in regulation of the epithelial Na+ channel. Hypertension 57: 996‐1002, 2011.
 409.Katz FH, Romfh P, Smith JA. Episodic secretion of aldosterone in supine man; relationship to cortisol. J Clin Endocrinol Metab 35: 178‐181, 1972.
 410.Katz FH, Romfh P, Smith JA. Diurnal variation of plasma aldosterone, cortisol and renin activity in supine man. J Clin Endocrinol Metab 40: 125‐134, 1975.
 411.Kawamoto T, Mitsuuchi Y, Toda K, Yokoyama Y, Miyahara K, Miura S, Ohnishi T, Ichikawa Y, Nakao K, Imura H, Ulick S, Shizuta Y. Role of steroid 11b‐hydroxylase and steroid 18‐hydroxylase in the biosynthesis of glucocorticoids and mineralocorticoids in humans. Proc Natl Acad Sci U S A 89: 1458‐1462, 1992.
 412.Keenan CR, Lew MJ, Stewart AG. Biased signalling from the glucocorticoid receptor: Renewed opportunity for tailoring glucocorticoid activity. Biochem Pharmacol 112: 6‐12, 2016.
 413.Kellenberger S, Gautschi I, Rossier BC, Schild L. Mutations causing Liddle syndrome reduce sodium‐dependent downregulation of the epithelial sodium channel in the Xenopus oocyte expression system. J Clin Invest 101: 2741‐2750, 1998.
 414.Kellner M, Peiter A, Hafner M, Feuring M, Christ M, Wehling M, Falkenstein E, Losel R. Early aldosterone up‐regulated genes: New pathways for renal disease? Kidney Int 64: 1199‐1207, 2003.
 415.Kemendy AE, Kleyman TR, Eaton DC. Aldosterone alters the open probability of amiloride‐blockable sodium channels in A6 epithelia. Am J Physiol 263: C825‐C837, 1992.
 416.Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler D. The human genome browser at UCSC. Genome Res 12: 996‐1006, 2002.
 417.Kim GH, Masilamani S, Turner R, Mitchell C, Wade JB, Knepper MA. The thiazide‐sensitive Na‐Cl cotransporter is an aldosterone‐induced protein. Proc Natl Acad Sci U S A 95: 14552‐14557, 1998.
 418.Kino T, Jaffe H, Amin ND, Chakrabarti M, Zheng YL, Chrousos GP, Pant HC. Cyclin‐dependent kinase 5 modulates the transcriptional activity of the mineralocorticoid receptor and regulates expression of brain‐derived neurotrophic factor. Mol Endocrinol 24: 941‐952, 2010.
 419.Kleyman TR, Carattino MD, Hughey RP. ENaC at the cutting edge: Regulation of epithelial sodium channels by proteases. J Biol Chem 284: 20447‐20451, 2009.
 420.Kleyman TR, Kashlan OB, Hughey RP. Epithelial Na(+) channel regulation by extracellular and intracellular factors. Annu Rev Physiol 80: 263‐281, 2018.
 421.Kleyman TR, Myerburg MM, Hughey RP. Regulation of ENaCs by proteases: An increasingly complex story. Kidney Int 70: 1391‐1392, 2006.
 422.Kleyman TR, Yulo T, Ashbaugh C, Landry D, Cragoe E Jr, Karlin A, Al‐Awqati Q. Photoaffinity labeling of the epithelial sodium channel. J Biol Chem 261: 2839‐2843, 1986.
 423.Knepper MA, Packer R, Good DW. Ammonium transport in the kidney. Physiol Rev 69: 179‐249, 1989.
 424.Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM. A pharmacological map of the PI3‐K family defines a role for p110alpha in insulin signaling. Cell 125: 733‐747, 2006.
 425.Ko B, Hoover RS. Molecular physiology of the thiazide‐sensitive sodium‐chloride cotransporter. Curr Opin Nephrol Hypertens 18: 421‐427, 2009.
 426.Ko B, Mistry AC, Hanson L, Mallick R, Wynne BM, Thai TL, Bailey JL, Klein JD, Hoover RS. Aldosterone acutely stimulates NCC activity via a SPAK‐mediated pathway. Am J Physiol Renal Physiol 305: F645‐F652, 2013.
 427.Kobayashi T, Cohen P. Activation of serum‐ and glucocorticoid‐regulated protein kinase by agonists that activate phosphatidylinositide 3‐kinase is mediated by 3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) and PDK2. Biochem J 339 (Pt 2): 319‐328, 1999.
 428.Koeppen BM, Biagi BA, Giebisch GH. Intracellular microelectrode characterization of the rabbit cortical collecting duct. Am J Physiol 244: F35‐F47, 1983.
 429.Koeppen BM, Giebisch GH. Mineralocorticoid regulation of sodium and potassium transport by the cortical collecting duct. Soc Gen Physiol Ser 39: 89‐104, 1985.
 430.Kohan DE. Endothelin, hypertension and chronic kidney disease: New insights. Curr Opin Nephrol Hypertens 19: 134‐139, 2010.
 431.Kohan DE, Inscho EW, Wesson D, Pollock DM. Physiology of endothelin and the kidney. Compr Physiol 1: 883‐919, 2011.
 432.Kohan DE, Knox FG. Localization of the nephron sites responsible for mineralocorticoid escape in rats. Am J Physiol 239: F149‐F153, 1980.
 433.Kohan DE, Rossi NF, Inscho EW, Pollock DM. Regulation of blood pressure and salt homeostasis by endothelin. Physiol Rev 91: 1‐77, 2011.
 434.Kohn OF, Mitchell PP, Steinmetz PR. Sch‐28080 inhibits bafilomycin‐sensitive H+ secretion in turtle bladder independently of luminal [K+]. Am J Physiol 265: F174‐F179, 1993.
 435.Kojima I, Kojima K, Rasmussen H. Role of calcium fluxes in the sustained phase of angiotensin II‐mediated aldosterone secretion from adrenal glomerulosa cells. J Biol Chem 260: 9177‐9184, 1985.
 436.Kojima R, Sekine T, Kawachi M, Cha SH, Suzuki Y, Endou H. Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney. J Am Soc Nephrol 13: 848‐857, 2002.
 437.Kolkhof P, Barfacker L. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Mineralocorticoid receptor antagonists: 60 years of research and development. J Endocrinol 234: T125‐T140, 2017.
 438.Konstas AA, Shearwin‐Whyatt LM, Fotia AB, Degger B, Riccardi D, Cook DI, Korbmacher C, Kumar S. Regulation of the epithelial sodium channel by N4WBP5A, a novel Nedd4/Nedd4‐2‐interacting protein. J Biol Chem 277: 29406‐29416, 2002.
 439.Kotelevtsev Y, Brown RW, Fleming S, Kenyon C, Edwards CR, Seckl JR, Mullins JJ. Hypertension in mice lacking 11beta‐hydroxysteroid dehydrogenase type 2. J Clin Invest 103: 683‐689, 1999.
 440.Krishna GG, Chusid P, Hoeldtke RD. Mild potassium depletion provokes renal sodium retention. J Lab Clin Med 109: 724‐730, 1987.
 441.Krishna GG, Miller E, Kapoor S. Increased blood pressure during potassium depletion in normotensive men. N Engl J Med 320: 1177‐1182, 1989.
 442.Krozowski ZS, Funder JW. Renal mineralocorticoid receptors and hippocampal corticosterone‐binding species have identical intrinsic steroid specificity. Proc Natl Acad Sci U S A 80: 6056‐6060, 1983.
 443.Krozowski ZS, Rundle SE, Wallace C, Castell MJ, Shen JH, Dowling J, Funder JW, Smith AI. Immunolocalization of renal mineralocorticoid receptors with an antiserum against a peptide deduced from the complementary deoxyribonucleic acid sequence. Endocrinology 125: 192‐198, 1989.
 444.Krug AW, Grossmann C, Schuster C, Freudinger R, Mildenberger S, Govindan MV, Gekle M. Aldosterone stimulates epidermal growth factor receptor expression. J Biol Chem 278: 43060‐43066, 2003.
 445.Krug AW, Papavassiliou F, Hopfer U, Ullrich KJ, Gekle M. Aldosterone stimulates surface expression of NHE3 in renal proximal brush borders. Pflugers Arch 446: 492‐496, 2003.
 446.Kumar R, Thompson EB. Folding of the glucocorticoid receptor N‐terminal transactivation function: Dynamics and regulation. Mol Cell Endocrinol 348: 450‐456, 2012.
 447.Kusche‐Vihrog K, Callies C, Fels J, Oberleithner H. The epithelial sodium channel (ENaC): Mediator of the aldosterone response in the vascular endothelium? Steroids 75: 544‐549, 2010.
 448.Kusche‐Vihrog K, Sobczak K, Bangel N, Wilhelmi M, Nechyporuk‐Zloy V, Schwab A, Schillers H, Oberleithner H. Aldosterone and amiloride alter ENaC abundance in vascular endothelium. Pflugers Arch 455: 849‐857, 2008.
 449.Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: A 10‐year update. Physiol Rev 92: 689‐737, 2012.
 450.Lachheb S, Cluzeaud F, Bens M, Genete M, Hibino H, Lourdel S, Kurachi Y, Vandewalle A, Teulon J, Paulais M. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am J Physiol Renal Physiol 294: F1398‐F1407, 2008.
 451.Lahav M, Dietz T, Edelman IS. The action of aldosterone on sodium transport: Further studies with inhibitors of RNA and protein synthesis. Endocrinology 92: 1685‐1699, 1973.
 452.Lang F, Henke G, Embark HM, Waldegger S, Palmada M, Bohmer C, Vallon V. Regulation of channels by the serum and glucocorticoid‐inducible kinase ‐ implications for transport, excitability and cell proliferation. Cell Physiol Biochem 13: 41‐50, 2003.
 453.Lang F, Pearce D. Regulation of the epithelial Na+ channel by the mTORC2/SGK1 pathway. Nephrol Dial Transplant 31: 200‐205, 2016.
 454.Lang F, Shumilina E. Regulation of ion channels by the serum‐ and glucocorticoid‐inducible kinase SGK1. FASEB J 27: 3‐12, 2013.
 455.Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell 149: 274‐293, 2012.
 456.Latouche C, Sainte‐Marie Y, Steenman M, Castro CP, Naray‐Fejes‐Toth A, Fejes‐Toth G, Farman N, Jaisser F. Molecular signature of mineralocorticoid receptor signaling in cardiomyocytes: From cultured cells to mouse heart. Endocrinology 151: 4467‐4476, 2010.
 457.Lavery DN, McEwan IJ. Structure and function of steroid receptor AF1 transactivation domains: Induction of active conformations. Biochem J 391: 449‐464, 2005.
 458.Lavery GG, Ronconi V, Draper N, Rabbitt EH, Lyons V, Chapman KE, Walker EA, McTernan CL, Giacchetti G, Mantero F, Seckl JR, Edwards CR, Connell JM, Hewison M, Stewart PM. Late‐onset apparent mineralocorticoid excess caused by novel compound heterozygous mutations in the HSD11B2 gene. Hypertension 42: 123‐129, 2003.
 459.Le Billan F, Amazit L, Bleakley K, Xue QY, Pussard E, Lhadj C, Kolkhof P, Viengchareun S, Fagart J, Lombès M. Corticosteroid receptors adopt distinct cyclical transcriptional signatures. FASEB J 32: 5626‐5639, 2018.
 460.Le Billan F, Khan JA, Lamribet K, Viengchareun S, Bouligand J, Fagart J, Lombès M. Cistrome of the aldosterone‐activated mineralocorticoid receptor in human renal cells. FASEB J 29: 3977‐3989, 2015.
 461.Le Moellic MC, Ouvrard‐Pascaud A, Capurro C, Cluzeaud F, Fay M, Jaisser F, Farman N, Blot‐Chabaud M. Early nongenomic events in aldosterone action in renal collecting duct cells: PKCalpha activation, mineralocorticoid receptor phosphorylation, and cross‐talk with the genomic response. J Am Soc Nephrol 15: 1145‐1160, 2004.
 462.Lee G, Makhanova N, Caron K, Lopez ML, Gomez RA, Smithies O, Kim HS. Homeostatic responses in the adrenal cortex to the absence of aldosterone in mice. Endocrinology 146: 2650‐2656, 2005.
 463.Lee HA, Lee DY, Cho HM, Kim SY, Iwasaki Y, Kim IK. Histone deacetylase inhibition attenuates transcriptional activity of mineralocorticoid receptor through its acetylation and prevents development of hypertension. Circ Res 112: 1004‐1012, 2013.
 464.Lee YJ, Shin SJ, Tan MS, Hsieh TJ, Tsai JH. Increased renal atrial natriuretic peptide synthesis in rats with deoxycorticosterone acetate‐salt treatment. Am J Physiol 271: F779‐F789, 1996.
 465.Lefranc C, Friederich‐Persson M, Palacios‐Ramirez R, Nguyen Dinh Cat A. Mitochondrial oxidative stress in obesity: Role of the mineralocorticoid receptor. J Endocrinol 238: R143‐R159, 2018.
 466.Leipziger J. Luminal nucleotides are tonic inhibitors of renal tubular transport. Curr Opin Nephrol Hypertens 20: 518‐522, 2011.
 467.Leipziger J, Praetorius H. Renal autocrine and paracrine signaling: A story of self‐protection. Physiol Rev 100: 1229‐1289, 2020.
 468.Leite‐Dellova DC, Malnic G, Mello‐Aires M. Genomic and nongenomic stimulatory effect of aldosterone on H+‐ATPase in proximal S3 segments. Am J Physiol Renal Physiol 300: F682‐F691, 2011.
 469.Lema I, Amazit L, Lamribet K, Fagart J, Blanchard A, Lombes M, Cherradi N, Viengchareun S. HuR‐dependent editing of a new mineralocorticoid receptor splice variant reveals an osmoregulatory loop for sodium homeostasis. Sci Rep 7: 4835, 2017.
 470.Leopold JA, Dam A, Maron BA, Scribner AW, Liao R, Handy DE, Stanton RC, Pitt B, Loscalzo J. Aldosterone impairs vascular reactivity by decreasing glucose‐6‐phosphate dehydrogenase activity. Nat Med 13: 189‐197, 2007.
 471.Lesage F, Lazdunski M. Molecular and functional properties of two‐pore‐domain potassium channels. Am J Physiol Renal Physiol 279: F793‐F801, 2000.
 472.Leviel F, Hübner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hassan H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D. The Na+‐dependent chloride‐bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120: 1627‐1635, 2010.
 473.Lewis EJ, Hunsicker LG, Bain RP, Rohde RD. The effect of angiotensin‐converting‐enzyme inhibition on diabetic nephropathy. The Collaborative Study Group. N Engl J Med 329: 1456‐1462, 1993.
 474.Li L, Guan Y, Kobori H, Morishita A, Kobara H, Masaki T, Nakano D, Nishiyama A. Effects of the novel nonsteroidal mineralocorticoid receptor blocker, esaxerenone (CS‐3150), on blood pressure and urinary angiotensinogen in low‐renin Dahl salt‐sensitive hypertensive rats. Hypertens Res 42: 769‐778, 2019.
 475.Li L, Wingo CS, Xia SL. Downregulation of SGK1 by nucleotides in renal tubular epithelial cells. Am J Physiol Renal Physiol 293: F1751‐F1757, 2007.
 476.Li Y, Suino K, Daugherty J, Xu HE. Structural and biochemical mechanisms for the specificity of hormone binding and coactivator assembly by mineralocorticoid receptor. Mol Cell 19: 367‐380, 2005.
 477.Lifton RP, Dluhy RG, Powers M, Rich GM, Cook S, Ulick S, Lalouel JM. A chimaeric 11 beta‐hydroxylase/aldosterone synthase gene causes glucocorticoid‐remediable aldosteronism and human hypertension. Nature 355: 262‐265, 1992.
 478.Limor R, Kaplan M, Sharon O, Knoll E, Naidich M, Weisinger G, Keidar S, Stern N. Aldosterone up‐regulates 12‐ and 15‐lipoxygenase expression and LDL oxidation in human vascular smooth muscle cells. J Cell Biochem 108: 1203‐1210, 2009.
 479.Lim‐Tio SS, Fuller PJ. Intracellular signaling pathways confer specificity of transactivation by mineralocorticoid and glucocorticoid receptors. Endocrinology 139: 1653‐1661, 1998.
 480.Lin DH, Sterling H, Yang B, Hebert SC, Giebisch G, Wang WH. Protein tyrosine kinase is expressed and regulates ROMK1 location in the cortical collecting duct. Am J Physiol Renal Physiol 286: F881‐F892, 2004.
 481.Lin DH, Yue P, Rinehart J, Sun P, Wang Z, Lifton R, Wang WH. Protein phosphatase 1 modulates the inhibitory effect of With‐no‐Lysine kinase 4 on ROMK channels. Am J Physiol Renal Physiol 303: F110‐F119, 2012.
 482.Linas SL, Peterson LN, Anderson RJ, Aisenbrey GA, Simon FR, Berl T. Mechanism of renal potassium conservation in the rat. Kidney Int 15: 601‐611, 1979.
 483.Lingueglia E, Renard S, Voilley N, Waldmann R, Chassande O, Lazdunski M, Barbry P. Molecular cloning and functional expression of different molecular forms of rat amiloride‐binding proteins. Eur J Biochem 216: 679‐687, 1993.
 484.Lingueglia E, Renard S, Waldmann R, Voilley N, Champigny G, Plass H, Lazdunski M, Barbry P. Different homologous subunits of the amiloride‐sensitive Na+ channel are differently regulated by aldosterone. J Biol Chem 269: 13736‐13739, 1994.
 485.Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P. Expression cloning of an epithelial amiloride‐sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett 318: 95‐99, 1993.
 486.Lipton JO, Yuan ED, Boyle LM, Ebrahimi‐Fakhari D, Kwiatkowski E, Nathan A, Guttler T, Davis F, Asara JM, Sahin M. The circadian protein BMAL1 regulates translation in response to S6K1‐mediated phosphorylation. Cell 161: 1138‐1151, 2015.
 487.Liu SL, Schmuck S, Chorazcyzewski JZ, Gros R, Feldman RD. Aldosterone regulates vascular reactivity: Short‐term effects mediated by phosphatidylinositol 3‐kinase‐dependent nitric oxide synthase activation. Circulation 108: 2400‐2406, 2003.
 488.Ljubojevic M, Herak‐Kramberger CM, Hagos Y, Bahn A, Endou H, Burckhardt G, Sabolic I. Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am J Physiol Renal Physiol 287: F124‐F138, 2004.
 489.Loffing J, Loffing‐Cueni D, Macher A, Hebert SC, Olson B, Knepper MA, Rossier BC, Kaissling B. Localization of epithelial sodium channel and aquaporin‐2 in rabbit kidney cortex. Am J Physiol Renal Physiol 278: F530‐F539, 2000.
 490.Loffing J, Pietri L, Aregger F, Bloch‐Faure M, Ziegler U, Meneton P, Rossier BC, Kaissling B. Differential subcellular localization of ENaC subunits in mouse kidney in response to high‐ and low‐Na diets. Am J Physiol Renal Physiol 279: F252‐F258, 2000.
 491.Loffing J, Summa V, Zecevic M, Verrey F. Mediators of aldosterone action in the renal tubule. Curr Opin Nephrol Hypertens 10: 667‐675, 2001.
 492.Lombard WE, Kokko JP, Jacobson HR. Bicarbonate transport in cortical and outer medullary collecting tubules. Am J Physiol 244: F289‐F296, 1983.
 493.Lombes M, Farman N, Oblin ME, Baulieu EE, Bonvalet JP, Erlanger BF, Gasc JM. Immunohistochemical localization of renal mineralocorticoid receptor by using an anti‐idiotypic antibody that is an internal image of aldosterone. Proc Natl Acad Sci U S A 87: 1086‐1088, 1990.
 494.Lombès M, Oblin ME, Gasc JM, Baulieu EE, Farman N, Bonvalet JP. Immunohistochemical and biochemical evidence for a cardiovascular mineralocorticoid receptor. Circ Res 71: 503‐510, 1992.
 495.Lopez‐Nieto CE, You G, Bush KT, Barros EJ, Beier DR, Nigam SK. Molecular cloning and characterization of NKT, a gene product related to the organic cation transporter family that is almost exclusively expressed in the kidney. J Biol Chem 272: 6471‐6478, 1997.
 496.Lotshaw DP. Characterization of angiotensin II‐regulated K+ conductance in rat adrenal glomerulosa cells. J Membr Biol 156: 261‐277, 1997.
 497.Lotshaw DP. Role of membrane depolarization and T‐type Ca2+ channels in angiotensin II and K+ stimulated aldosterone secretion. Mol Cell Endocrinol 175: 157‐171, 2001.
 498.Lotshaw DP, Li F. Angiotensin II activation of Ca(2+)‐permeant nonselective cation channels in rat adrenal glomerulosa cells. Am J Physiol 271: C1705‐C1715, 1996.
 499.Lu HK, Fern RJ, Luthin D, Linden J, Liu LP, Cohen CJ, Barrett PQ. Angiotensin II stimulates T‐type Ca2+ channel currents via activation of a G protein, Gi. Am J Physiol 271: C1340‐C1349, 1996.
 500.Lu M, Wang J, Ives HE, Pearce D. mSIN1 protein mediates SGK1 protein interaction with mTORC2 protein complex and is required for selective activation of the epithelial sodium channel. J Biol Chem 286: 30647‐30654, 2011.
 501.Lu M, Wang J, Jones KT, Ives HE, Feldman ME, Yao LJ, Shokat KM, Ashrafi K, Pearce D. mTOR complex‐2 activates ENaC by phosphorylating SGK1. J Am Soc Nephrol 21: 811‐818, 2010.
 502.Luetscher JA, Dowdy A, Lew W, Callaghan AM. Comparison of effects of d‐ and l‐aldosterone on excretion of sodium and potassium by the adrenalectomized rat. Endocrinology 70: 445‐447, 1962.
 503.Lumbers ER. Angiotensin and aldosterone. Regul Pept 80: 91‐100, 1999.
 504.Lynch IJ, Welch AK, Gumz ML, Kohan DE, Cain BD, Wingo CS. Effect of mineralocorticoid treatment in mice with collecting duct‐specific knockout of endothelin‐1. Am J Physiol Renal Physiol 309: F1026‐F1034, 2015.
 505.Lynch IJ, Welch AK, Kohan DE, Cain BD, Wingo CS. Endothelin‐1 inhibits sodium reabsorption by ET(A) and ET(B) receptors in the mouse cortical collecting duct. Am J Physiol Renal Physiol 305: F568‐F573, 2013.
 506.Macova M, Armando I, Zhou J, Baiardi G, Tyurmin D, Larrayoz‐Roldan IM, Saavedra JM. Estrogen reduces aldosterone, upregulates adrenal angiotensin II AT2 receptors and normalizes adrenomedullary Fra‐2 in ovariectomized rats. Neuroendocrinology 88: 276‐286, 2008.
 507.Madsen KM, Tisher CC. Structural‐functional relationship along the distal nephron. Am J Physiol 250: F1‐F15, 1986.
 508.Makara JK, Koncz P, Petheö GL, Spät A. Role of cell volume in K+‐induced Ca2+ signaling by rat adrenal glomerulosa cells. Endocrinology 144: 4916‐4922, 2003.
 509.Makhanova N, Lee G, Takahashi N, Sequeira Lopez ML, Gomez RA, Kim HS, Smithies O. Kidney function in mice lacking aldosterone. Am J Physiol Renal Physiol 290: F61‐F69, 2006.
 510.Malbert‐Colas L, Nicolas G, Galand C, Lecomte MC, Dhermy D. Identification of new partners of the epithelial sodium channel alpha subunit. C R Biol 326: 615‐624, 2003.
 511.Malnic G, Klose RM, Giebisch G. Micropuncture study of renal potassium excretion in the rat. Am J Physiol 206: 674‐686, 1964.
 512.Mamenko MV, Boukelmoune N, Tomilin VN, Zaika OL, Jensen VB, O'Neil RG, Pochynyuk OM. The renal TRPV4 channel is essential for adaptation to increased dietary potassium. Kidney Int 91: 1398‐1409, 2017.
 513.Manning BD, Cantley LC. AKT/PKB signaling: Navigating downstream. Cell 129: 1261‐1274, 2007.
 514.Mansley MK, Roe AJ, Francis SL, Gill JH, Bailey MA, Wilson SM. Trichostatin A blocks aldosterone‐induced Na(+) transport and control of serum‐ and glucocorticoid‐inducible kinase 1 in cortical collecting duct cells. Br J Pharmacol 176: 4708‐4719, 2019.
 515.Markos F, Healy V, Harvey BJ. Aldosterone rapidly activates Na+/H+ exchange in M‐1 cortical collecting duct cells via a PKC‐MAPK pathway. Nephron Physiol 99: 1‐9, 2005.
 516.Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk BC, Delafontaine P, Bernstein KE. Direct stimulation of Jak/STAT pathway by the angiotensin II AT1 receptor. Nature 375: 247‐250, 1995.
 517.Marver D. Regulation of Na+,K(+)‐ATPase by aldosterone. Semin Nephrol 12: 56‐61, 1992.
 518.Masilamani S, Castro L, Baylis C. Pregnant rats are refractory to the natriuretic actions of atrial natriuretic peptide. Am J Physiol 36: R1611‐R1616, 1994.
 519.Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone‐mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104: R19‐R23, 1999.
 520.Massaad C, Houard N, Lombes M, Barouki R. Modulation of human mineralocorticoid receptor function by protein kinase A. Mol Endocrinol 13: 57‐65, 1999.
 521.Mastroberardino L, Spindler B, Forster I, Loffing J, Assandri R, May A, Verrey F. Ras pathway activates epithelial Na+ channel and decreases its surface expression in Xenopus oocytes. Mol Biol Cell 9: 3417‐3427, 1998.
 522.Mastroianni N, Bettinelli A, Bianchetti M, Colussi G, De FM, Sereni F, Ballabio A, Casari G. Novel molecular variants of the Na‐Cl cotransporter gene are responsible for Gitelman syndrome. Am J Hum Genet 59: 1019‐1026, 1996.
 523.Mastroianni N, De FM, Zollo M, Arrigo G, Zuffardi O, Bettinelli A, Ballabio A, Casari G. Molecular cloning, expression pattern, and chromosomal localization of the human Na‐Cl thiazide‐sensitive cotransporter (SLC12A3). Genomics 35: 486‐493, 1996.
 524.Matsukawa N, Nonaka Y, Ying Z, Higaki J, Ogihara T, Okamoto M. Molecular cloning and expression of cDNAS encoding rat aldosterone synthase: Variants of cytochrome P‐450(11 beta). Biochem Biophys Res Commun 169: 245‐252, 1990.
 525.Mayo Clinic Laboratories. CORT ‐ Overview: Cortisol, Serum. Mayo Foundation for Medical Education and Research. https://www.mayocliniclabs.com/test‐catalog/overview/8545#Clinical‐and‐Interpretive. January 4, 2022.
 526.Mayo Clinic Laboratories. PRA ‐ Overview: Renin Activity, Plasma. Mayo Foundation for Medical Education and Research. https://www.mayocliniclabs.com/test‐catalog/overview/8060#Clinical‐and‐Interpretive. January 4, 2022.
 527.McCabe RD, Bakarich MA, Srivastava K, Young DB. Potassium inhibits free radical formation. Hypertension 24: 77‐82, 1994.
 528.McCabe RD, Smith MJ, Dwyer TM. Aldosterone secretion and the mechanism of potassium adaptation in rats. Steroids 58: 305‐313, 1993.
 529.McCarthy RT, Isales C, Rasmussen H. T‐type calcium channels in adrenal glomerulosa cells: GTP‐dependent modulation by angiotensin II. Proc Natl Acad Sci U S A 90: 3260‐3264, 1993.
 530.McCurley A, Jaffe IZ. Mineralocorticoid receptors in vascular function and disease. Mol Cell Endocrinol 350: 256‐265, 2012.
 531.McDonald FJ, Snyder PM, McCray PB Jr, Welsh MJ. Cloning, expression, and tissue distribution of a human amiloride‐sensitive Na+ channel. Am J Physiol 266: L728‐L734, 1994.
 532.McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB Jr, Stokes JB, Welsh MJ, Williamson RA. Disruption of the beta subunit of the epithelial Na+ channel in mice: Hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 96: 1727‐1731, 1999.
 533.McDonough AA, Youn JH. Potassium homeostasis: The knowns, the unknowns, and the health benefits. Physiology (Bethesda) 32: 100‐111, 2017.
 534.McDowell IC, Barrera A, D'Ippolito AM, Vockley CM, Hong LK, Leichter SM, Bartelt LC, Majoros WH, Song L, Safi A, Koçak DD, Gersbach CA, Hartemink AJ, Crawford GE, Engelhardt BE, Reddy TE. Glucocorticoid receptor recruits to enhancers and drives activation by motif‐directed binding. Genome Res 28: 1272‐1284, 2018.
 535.McEneaney V, Dooley R, Harvey BJ, Thomas W. Protein kinase D stabilizes aldosterone‐induced ERK1/2 MAP kinase activation in M1 renal cortical collecting duct cells to promote cell proliferation. J Steroid Biochem Mol Biol 118: 18‐28, 2010.
 536.McEneaney V, Dooley R, Yusef YR, Keating N, Quinn U, Harvey BJ, Thomas W. Protein kinase D1 modulates aldosterone‐induced ENaC activity in a renal cortical collecting duct cell line. Mol Cell Endocrinol 325: 8‐17, 2010.
 537.McEneaney V, Harvey BJ, Thomas W. Aldosterone regulates rapid trafficking of epithelial sodium channel subunits in renal cortical collecting duct cells via protein kinase D activation. Mol Endocrinol 22: 881‐892, 2008.
 538.MedlinePlus. Renin Blood Test. National Library of Medicine. https://medlineplus.gov/ency/article/003698.htm. January 4, 2022.
 539.Meijer OC, Buurstede JC, Schaaf MJM. Corticosteroid receptors in the brain: Transcriptional mechanisms for specificity and context‐dependent effects. Cell Mol Neurobiol 39: 539‐549, 2019.
 540.Meijsing SH, Pufall MA, So AY, Bates DL, Chen L, Yamamoto KR. DNA binding site sequence directs glucocorticoid receptor structure and activity. Science 324: 407‐410, 2009.
 541.Menzies RI, Zhao X, Mullins LJ, Mullins JJ, Cairns C, Wrobel N, Dunbar DR, Bailey MA, Kenyon CJ. Transcription controls growth, cell kinetics and cholesterol supply to sustain ACTH responses. Endocr Connect 6: 446‐457, 2017.
 542.Merkulov VM, Merkulova TI. Structural variants of glucocorticoid receptor binding sites and different versions of positive glucocorticoid responsive elements: Analysis of GR‐TRRD database. J Steroid Biochem Mol Biol 115: 1‐8, 2009.
 543.Michael AK, Asimgil H, Partch CL. Cytosolic BMAL1 moonlights as a translation factor. Trends Biochem Sci 40: 489‐490, 2015.
 544.Michell AR, Debnam ES, Unwin RJ. Regulation of renal function by the gastrointestinal tract: Potential role of gut‐derived peptides and hormones. Annu Rev Physiol 70: 379‐403, 2008.
 545.Mick VE, Itani OA, Loftus RW, Husted RF, Schmidt TJ, Thomas CP. The alpha‐subunit of the epithelial sodium channel is an aldosterone‐induced transcript in mammalian collecting ducts, and this transcriptional response is mediated via distinct cis‐elements in the 5′‐flanking region of the gene. Mol Endocrinol 15: 575‐588, 2001.
 546.Mihailidou AS, Ashton AW. Cardiac effects of aldosterone: Does gender matter? Steroids 91: 32‐37, 2014.
 547.Miller AH, Spencer RL, Husain A, Rhee R, McEwen BS, Stein M. Differential expression of type‐I adrenal steroid receptors in immune tissues is associated with tissue‐specific regulation of type‐II receptors by aldosterone. Endocrinology 133: 2133‐2140, 1993.
 548.Miller JA, Anacta LA, Cattran DC. Impact of gender on the renal response to angiotensin II. Kidney Int 55: 278‐285, 1999.
 549.Mills NJ, Sharma K, Haque M, Moore M, Teruyama R. Aldosterone mediated regulation of epithelial sodium channel (ENaC) subunits in the rat hypothalamus. Neuroscience 390: 278‐292, 2018.
 550.Min LJ, Mogi M, Li JM, Iwanami J, Iwai M, Horiuchi M. Aldosterone and angiotensin II synergistically induce mitogenic response in vascular smooth muscle cells. Circ Res 97: 434‐442, 2005.
 551.Mironova E, Lynch IJ, Berman JM, Gumz ML, Stockand JD, Wingo CS. ENaC activity in the cortical collecting duct of HKalpha1 H(+),K(+)‐ATPase knockout mice is uncoupled from Na(+) intake. Am J Physiol Renal Physiol 312: F1073‐F1080, 2017.
 552.Mironova E, Peti‐Peterdi J, Bugaj V, Stockand JD. Diminished paracrine regulation of the epithelial Na+ channel by purinergic signaling in mice lacking connexin 30. J Biol Chem 286: 1054‐1060, 2011.
 553.Mironova E, Suliman F, Stockand JD. Renal Na(+) excretion consequent to pharmacogenetic activation of Gq‐DREADD in principal cells. Am J Physiol Renal Physiol 316: F758‐f767, 2019.
 554.Mistry AC, Wynne BM, Yu L, Tomilin V, Yue Q, Zhou Y, Al‐Khalili O, Mallick R, Cai H, Alli AA, Ko B, Mattheyses A, Bao HF, Pochynyuk O, Theilig F, Eaton DC, Hoover RS. The sodium chloride cotransporter (NCC) and epithelial sodium channel (ENaC) associate. Biochem J 473: 3237‐3252, 2016.
 555.Miyahara K, Kawamoto T, Mitsuuchi Y, Toda K, Imura H, Gordon RD, Shizuta Y. The chimeric gene linked to glucocorticoid‐suppressible hyperaldosteronism encodes a fused P‐450 protein possessing aldosterone synthase activity. Biochem Biophys Res Commun 189: 885‐891, 1992.
 556.Morita H, Fujiki N, Miyahara T, Lee K, Tanaka K. Hepatoportal bumetanide‐sensitive K(+)‐sensor mechanism controls urinary K(+) excretion. Am J Physiol Regul Integr Comp Physiol 278: R1134‐R1139, 2000.
 557.Morla L, Brideau G, Fila M, Crambert G, Cheval L, Houillier P, Ramakrishnan S, Imbert‐Teboul M, Doucet A. Renal proteinase‐activated receptor 2, a new actor in the control of blood pressure and plasma potassium level. J Biol Chem 288: 10124‐10131, 2013.
 558.Morris RC Jr, Sebastian A, Forman A, Tanaka M, Schmidlin O. Normotensive salt sensitivity: Effects of race and dietary potassium. Hypertension 33: 18‐23, 1999.
 559.Moss ME, Jaffe IZ. Mineralocorticoid receptors in the pathophysiology of vascular inflammation and atherosclerosis. Front Endocrinol (Lausanne) 6: 153, 2015.
 560.Murai‐Takeda A, Shibata H, Kurihara I, Kobayashi S, Yokota K, Suda N, Mitsuishi Y, Jo R, Kitagawa H, Kato S, Saruta T, Itoh H. NF‐YC functions as a corepressor of agonist‐bound mineralocorticoid receptor. J Biol Chem 285: 8084‐8093, 2010.
 561.Muto S, Sansom S, Giebisch G. Effects of a high potassium diet on electrical properties of cortical collecting ducts from adrenalectomized rabbits. J Clin Invest 81: 376‐380, 1988.
 562.Mutoh A, Isshiki M, Fujita T. Aldosterone enhances ligand‐stimulated nitric oxide production in endothelial cells. Hypertens Res 31: 1811‐1820, 2008.
 563.Nagai Y, Miyata K, Sun GP, Rahman M, Kimura S, Miyatake A, Kiyomoto H, Kohno M, Abe Y, Yoshizumi M, Nishiyama A. Aldosterone stimulates collagen gene expression and synthesis via activation of ERK1/2 in rat renal fibroblasts. Hypertension 46: 1039‐1045, 2005.
 564.Nagoshi T, Date T, Fujisaki M, Yoshino T, Sekiyama H, Ogawa K, Kayama Y, Minai K, Komukai K, Ogawa T, Yoshimura M. Biphasic action of aldosterone on Akt signaling in cardiomyocytes. Horm Metab Res 44: 931‐937, 2012.
 565.Nakamura T, Kawaguchi A. Phase 1 studies to define the safety, tolerability, and pharmacokinetic and pharmacodynamic profiles of the nonsteroidal mineralocorticoid receptor antagonist apararenone in healthy volunteers. Clin Pharmacol Drug Dev 10: 353‐365, 2021.
 566.Nakano D, Pollock DM. Contribution of endothelin A receptors in endothelin 1‐dependent natriuresis in female rats. Hypertension 53: 324‐330, 2009.
 567.Namsolleck P, Unger T. Aldosterone synthase inhibitors in cardiovascular and renal diseases. Nephrol Dial Transplant 29 (Suppl 1): i62‐i68, 2014.
 568.Naray‐Fejes‐Toth A, Boyd C, Fejes‐Toth G. Regulation of epithelial sodium transport by promyelocytic leukemia zinc finger protein. Am J Physiol Renal Physiol 295: F18‐F26, 2008.
 569.Naray‐Fejes‐Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes‐Toth G. sgk is an aldosterone‐induced kinase in the renal collecting duct. Effects on epithelial Na+ channels. J Biol Chem 274: 16973‐16978, 1999.
 570.New MI, Levine LS, Biglieri EG, Pareira J, Ulick S. Evidence for an unidentified steroid in a child with apparent mineralocorticoid hypertension. J Clin Endocrinol Metab 44: 924‐933, 1977.
 571.Newton MA, Laragh JH. Effect of corticotropin on aldosterone excretion and plasma renin in normal subjects, in essential hypertension and in primary aldosteronism. J Clin Endocrinol Metab 28: 1006‐1013, 1968.
 572.Ng KP, Arnold J, Sharif A, Gill P, Townend JN, Ferro CJ. Cardiovascular actions of mineralocorticoid receptor antagonists in patients with chronic kidney disease: A systematic review and meta‐analysis of randomized trials. J Renin Angiotensin Aldosterone Syst 16: 599‐613, 2015.
 573.Nguyen Dinh CA, Jaisser F. Extrarenal effects of aldosterone. Curr Opin Nephrol Hypertens 21: 147‐156, 2012.
 574.Nguyen Dinh CA, Ouvrard‐Pascaud A, Tronche F, Clemessy M, Gonzalez‐Nunez D, Farman N, Jaisser F. Conditional transgenic mice for studying the role of the glucocorticoid receptor in the renal collecting duct. Endocrinology 150: 2202‐2210, 2009.
 575.Nigam SK, Bush KT, Martovetsky G, Ahn SY, Liu HC, Richard E, Bhatnagar V, Wu W. The organic anion transporter (OAT) family: A systems biology perspective. Physiol Rev 95: 83‐123, 2015.
 576.Niisato N, Ohta M, Eaton DC, Marunaka Y. Hypotonic stress upregulates β‐ and γ‐ENaC expression through suppression of ERK by inducing MKP‐1. Am J Physiol Renal Physiol 303: F240‐F252, 2012.
 577.Nikolaeva S, Pradervand S, Centeno G, Zavadova V, Tokonami N, Maillard M, Bonny O, Firsov D. The circadian clock modulates renal sodium handling. J Am Soc Nephrol 23: 1019‐1026, 2012.
 578.Nishi M, Kawata M. Dynamics of glucocorticoid receptor and mineralocorticoid receptor: Implications from live cell imaging studies. Neuroendocrinology 85: 186‐192, 2007.
 579.Nishiyama A, Yao L, Fan Y, Kyaw M, Kataoka N, Hashimoto K, Nagai Y, Nakamura E, Yoshizumi M, Shokoji T, Kimura S, Kiyomoto H, Tsujioka K, Kohno M, Tamaki T, Kajiya F, Abe Y. Involvement of aldosterone and mineralocorticoid receptors in rat mesangial cell proliferation and deformability. Hypertension 45: 710‐716, 2005.
 580.Noda S, Aoyama K, Kondo Y, Okamura J, Suzuki A, Yamaguchi N, Yoshida A, Miyake Y. An infant case of pseudohypoaldosteronism type1A caused by a novel NR3C2 variant. Hum Genome Var 8: 41, 2021.
 581.Noreng S, Bharadwaj A, Posert R, Yoshioka C, Baconguis I. Structure of the human epithelial sodium channel by cryo‐electron microscopy. Elife 7: e39340, 2018.
 582.Oakley RH, Ramamoorthy S, Foley JF, Busada JT, Lu NZ, Cidlowski JA. Glucocorticoid receptor isoform‐specific regulation of development, circadian rhythm, and inflammation in mice. FASEB J 32: 5258‐5271, 2018.
 583.Oberleithner H. Aldosterone makes human endothelium stiff and vulnerable. Kidney Int 67: 1680‐1682, 2005.
 584.Oberleithner H, Steigner W, Silbernagl S, Vogel U, Gstraunthaler G, Pfaller W. Madin‐Darby canine kidney cells. III. Aldosterone stimulates an apical H+/K+ pump. Pflugers Arch 416: 540‐547, 1990.
 585.Oberleithner H, Vogel U, Kersting U. Madin‐Darby canine kidney cells. I. Aldosterone‐induced domes and their evaluation as a model system. Pflugers Arch 416: 526‐532, 1990.
 586.Oberleithner H, Vogel U, Kersting U, Steigner W. Madin‐Darby canine kidney cells. II. Aldosterone stimulates Na+/H+ and Cl−/HCO3− exchange. Pflugers Arch 416: 533‐539, 1990.
 587.Oelkers W. Prolonged ACTH infusion suppresses aldosterone secretion in spite of high renin activity. Acta Endocrinol (Copenh) 108: 91‐97, 1985.
 588.Oelkers W, Köhler A, Belkien L, Fuchs‐Hammoser R, Maiga M, Scherer B, Weber PC. ACTH stimulates plasma renin and angiotensin II in man. Clin Sci (Lond) 61 (Suppl 7): 273s‐275s, 1981.
 589.Oelkers W, Köhler A, Belkien L, Fuchs‐Hammoser R, Maiga M, Scherer B, Weber PC. Studies on the mechanism by which ACTH stimulates renin activity and angiotensin II formation in man. Acta Endocrinol (Copenh) 100: 573‐580, 1982.
 590.Oh YT, Kim J, Youn JH. Role of pituitary in K+ homeostasis: Impaired renal responses to altered K+ intake in hypophysectomized rats. Am J Physiol Regul Integr Comp Physiol 304: R1166‐R1174, 2013.
 591.Okusa MD, Unwin RJ, Velázquez H, Giebisch G, Wright FS. Active potassium absorption by the renal distal tubule. Am J Physiol 262: F488‐F493, 1992.
 592.O'Neil RG, Helman SI. Transport characteristics of renal collecting tubules: Influences of DOCA and diet. Am J Physiol 233: F544‐F558, 1977.
 593.Ostrosky‐Frid M, Castaneda‐Bueno M, Gamba G. Regulation of the renal NaCl cotransporter by the WNK/SPAK pathway: Lessons learned from genetically altered animals. Am J Physiol Renal Physiol 316: F146‐F158, 2019.
 594.Ozolua RI, Omogbai EK, Famodu AB, Ebeigbe AB, Ajayi OI. Haematological influences of potassium adaptation in normotensive and renally‐hypertensive Wistar rats. Br J Biomed Sci 59: 80‐84, 2002.
 595.Palmer LG. Ion selectivity of the apical membrane Na channel in the toad urinary bladder. J Membr Biol 67: 91‐98, 1982.
 596.Palmer LG. Na+ transport and flux ratio through apical Na+ channels in toad bladder. Nature 297: 688‐690, 1982.
 597.Palmer LG. Modulation of apical Na permeability of the toad urinary bladder by intracellular Na, Ca, and H. J Membr Biol 83: 57‐69, 1985.
 598.Palmer LG. Ion selectivity of epithelial Na channels. J Membr Biol 96: 97‐106, 1987.
 599.Palmer LG. Epithelial Na channels: Function and diversity. Annu Rev Physiol 54: 51‐66, 1992.
 600.Palmer LG, Antonian L, Frindt G. Regulation of apical K and Na channels and Na/K pumps in rat cortical collecting tubule by dietary K. J Gen Physiol 104: 693‐710, 1994.
 601.Palmer LG, Corthesy‐Theulaz I, Gaeggeler HP, Kraehenbuhl JP, Rossier B. Expression of epithelial Na channels in Xenopus oocytes. J Gen Physiol 96: 23‐46, 1990.
 602.Palmer LG, Edelman IS. Control of apical sodium permeability in the toad urinary bladder by aldosterone. Ann N Y Acad Sci 372: 1‐14, 1981.
 603.Palmer LG, Frindt G. Amiloride‐sensitive Na channels from the apical membrane of the rat cortical collecting tubule. Proc Natl Acad Sci U S A 83: 2767‐2770, 1986.
 604.Palmer LG, Frindt G. Regulation of apical K channels in rat cortical collecting tubule during changes in dietary K intake. Am J Physiol 277: F805‐F812, 1999.
 605.Palmer LG, Frindt G. Aldosterone and potassium secretion by the cortical collecting duct. Kidney Int 57: 1324‐1328, 2000.
 606.Palmer LG, Li JH, Lindemann B, Edelman IS. Aldosterone control of the density of sodium channels in the toad urinary bladder. J Membr Biol 64: 91‐102, 1982.
 607.Palmer LG, Patel A, Frindt G. Regulation and dysregulation of epithelial Na+ channels. Clin Exp Nephrol 16: 35‐43, 2012.
 608.Palmer LG, Speez N. Stimulation of apical Na permeability and basolateral Na pump of toad urinary bladder by aldosterone. Am J Physiol 250: F273‐F281, 1986.
 609.Pan YJ, Young DB. Experimental aldosterone hypertension in the dog. Hypertension 4: 279‐287, 1982.
 610.Park J, Leong ML, Buse P, Maiyar AC, Firestone GL, Hemmings BA. Serum and glucocorticoid‐inducible kinase (SGK) is a target of the PI 3‐kinase‐stimulated signaling pathway. EMBO J 18: 3024‐3033, 1999.
 611.Parker MD, Boron WF. The divergence, actions, roles, and relatives of sodium‐coupled bicarbonate transporters. Physiol Rev 93: 803‐959, 2013.
 612.Pascoe L, Curnow KM, Slutsker L, Connell JMC, Speiser PW, New MI, White PC. Glucocorticoid‐suppressible hyperaldosteronism results from hybrid genes created by unequal crossovers between CYP11B1 and CYP11B2. Proc Natl Acad Sci U S A 89: 8327‐8331, 1992.
 613.Pascual‐Le TL, Demange C, Lombes M. Human mineralocorticoid receptor A and B protein forms produced by alternative translation sites display different transcriptional activities. Eur J Endocrinol 150: 585‐590, 2004.
 614.Pascual‐Le TL, Lombes M. The mineralocorticoid receptor: A journey exploring its diversity and specificity of action. Mol Endocrinol 19: 2211‐2221, 2005.
 615.Passero CJ, Mueller GM, Myerburg MM, Carattino MD, Hughey RP, Kleyman TR. TMPRSS4‐dependent activation of the epithelial sodium channel requires cleavage of the gamma‐subunit distal to the furin cleavage site. Am J Physiol Renal Physiol 302: F1‐F8, 2012.
 616.Patel AB, Frindt G, Palmer LG. Feedback inhibition of ENaC during acute sodium loading in vivo. Am J Physiol Renal Physiol 304: F222‐F232, 2013.
 617.Pavlov TS, Ilatovskaya DV, Levchenko V, Li L, Ecelbarger CM, Staruschenko A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. FASEB J 27: 2723‐2732, 2013.
 618.Pearce D. The role of SGK1 in hormone‐regulated sodium transport. Trends Endocrinol Metab 12: 341‐347, 2001.
 619.Pearce D. SGK1 regulation of epithelial sodium transport. Cell Physiol Biochem 13: 13‐20, 2003.
 620.Pearce D, Soundararajan R, Trimpert C, Kashlan OB, Deen PM, Kohan DE. Collecting duct principal cell transport processes and their regulation. Clin J Am Soc Nephrol 10: 135‐146, 2015.
 621.Peng Y, Moe OW, Chu T, Preisig PA, Yanagisawa M, Alpern RJ. ETB receptor activation leads to activation and phosphorylation of NHE3. Am J Physiol 276: C938‐C945, 1999.
 622.Penton D, Bandulik S, Schweda F, Haubs S, Tauber P, Reichold M, Cong LD, El WA, Budde T, Lesage F, Lalli E, Zennaro MC, Warth R, Barhanin J. Task3 potassium channel gene invalidation causes low renin and salt‐sensitive arterial hypertension. Endocrinology 153: 4740‐4748, 2012.
 623.Perrier R, Boscardin E, Malsure S, Sergi C, Maillard MP, Loffing J, Loffing‐Cueni D, Sorensen MV, Koesters R, Rossier BC, Frateschi S, Hummler E. Severe salt‐losing syndrome and hyperkalemia induced by adult nephron‐specific knockout of the epithelial sodium channel alpha‐subunit. J Am Soc Nephrol 27(8): 2309‐2318, 2016.
 624.Perrotti N, He RA, Phillips SA, Haft CR, Taylor SI. Activation of serum‐ and glucocorticoid‐induced protein kinase (Sgk) by cyclic AMP and insulin. J Biol Chem 276: 9406‐9412, 2001.
 625.Peti‐Peterdi J, Warnock DG, Bell PD. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J Am Soc Nephrol 13: 1131‐1135, 2002.
 626.Petty KJ, Kokko JP, Marver D. Secondary effect of aldosterone on Na‐KATPase activity in the rabbit cortical collecting tubule. J Clin Invest 68: 1514‐1521, 1981.
 627.Pfeiffer R, Beron J, Verrey F. Regulation of Na+ pump function by aldosterone is alpha‐subunit isoform specific. J Physiol 516 (Pt 3): 647‐655, 1999.
 628.Piala AT, Moon TM, Akella R, He H, Cobb MH, Goldsmith EJ. Chloride sensing by WNK1 involves inhibition of autophosphorylation. Sci Signal 7: ra41, 2014.
 629.Pinelli L, Nissant A, Edwards A, Lourdel S, Teulon J, Paulais M. Dual regulation of the native ClC‐K2 chloride channel in the distal nephron by voltage and pH. J Gen Physiol 148: 213‐226, 2016.
 630.Pippal JB, Yao Y, Rogerson FM, Fuller PJ. Structural and functional characterization of the interdomain interaction in the mineralocorticoid receptor. Mol Endocrinol 23: 1360‐1370, 2009.
 631.Pitt B. Effect of aldosterone blockade in patients with systolic left ventricular dysfunction: Implications of the RALES and EPHESUS studies. Mol Cell Endocrinol 217: 53‐58, 2004.
 632.Pitt B, Kober L, Ponikowski P, Gheorghiade M, Filippatos G, Krum H, Nowack C, Kolkhof P, Kim SY, Zannad F. Safety and tolerability of the novel non‐steroidal mineralocorticoid receptor antagonist BAY 94‐8862 in patients with chronic heart failure and mild or moderate chronic kidney disease: A randomized, double‐blind trial. Eur Heart J 34: 2453‐2463, 2013.
 633.Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, Clausell N, Desai AS, Diaz R, Fleg JL, Gordeev I, Harty B, Heitner JF, Kenwood CT, Lewis EF, O'Meara E, Probstfield JL, Shaburishvili T, Shah SJ, Solomon SD, Sweitzer NK, Yang S, McKinlay SM. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med 370: 1383‐1392, 2014.
 634.Pitt B, Remme W, Zannad F, Neaton J, Martinez F, Roniker B, Bittman R, Hurley S, Kleiman J, Gatlin M. Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348: 1309‐1321, 2003.
 635.Pitt B, Zannad F, Remme WJ, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341: 709‐717, 1999.
 636.Platia MP, Catt KJ, Hodgen GD, Aguilera G. Regulation of primate angiotensin II receptors during altered sodium intake. Hypertension 8: 1121‐1126, 1986.
 637.Plato CF, Pollock DM, Garvin JL. Endothelin inhibits thick ascending limb chloride flux via ET(B) receptor‐mediated NO release. Am J Physiol Renal Physiol 279: F326‐F333, 2000.
 638.Pluznick JL, Sansom SC. BK channels in the kidney: Role in K(+) secretion and localization of molecular components. Am J Physiol Renal Physiol 291: F517‐F529, 2006.
 639.Pluznick JL, Wei P, Grimm PR, Sansom SC. BK‐{beta}1 subunit: Immunolocalization in the mammalian connecting tubule and its role in the kaliuretic response to volume expansion. Am J Physiol Renal Physiol 288: F846‐F854, 2005.
 640.Pochynyuk O, Bugaj V, Stockand JD. Physiologic regulation of the epithelial sodium channel by phosphatidylinositides. Curr Opin Nephrol Hypertens 17: 533‐540, 2008.
 641.Pochynyuk O, Tong Q, Medina J, Vandewalle A, Staruschenko A, Bugaj V, Stockand JD. Molecular determinants of PI(4,5)P2 and PI(3,4,5)P3 regulation of the epithelial Na+ channel. J Gen Physiol 130: 399‐413, 2007.
 642.Pollock DM. Renal endothelin in hypertension. Curr Opin Nephrol Hypertens 9: 157‐164, 2000.
 643.Pollock DM, Allcock GH, Krishnan A, Dayton BD, Pollock JS. Upregulation of endothelin B receptors in kidneys of DOCA‐salt hypertensive rats. Am J Physiol Renal Physiol 278: F279‐F286, 2000.
 644.Pollock DM, Keith TL, Highsmith RF. Endothelin receptors and calcium signaling. FASEB J 9: 1196‐1204, 1995.
 645.Pollock DM, Pollock JS. Evidence for endothelin involvement in the response to high salt. Am J Physiol Renal Physiol 281: F144‐F150, 2001.
 646.Pralong WF, Hunyady L, Várnai P, Wollheim CB, Spät A. Pyridine nucleotide redox state parallels production of aldosterone in potassium‐stimulated adrenal glomerulosa cells. Proc Natl Acad Sci U S A 89: 132‐136, 1992.
 647.Pratt JH, Dale SL, Melby JC. The effect of administered ACTH on aldosterone metabolism and secretion. J Clin Endocrinol Metab 42: 355‐360, 1976.
 648.Pratt JH, Luft FC, Parkinson CA, Rankin LI. The effect of sodium on aldosterone metabolic clearance. Steroids 37: 1‐6, 1981.
 649.Preston RA, Afshartous D, Rodco R, Alonso AB, Garg D. Evidence for a gastrointestinal‐renal kaliuretic signaling axis in humans. Kidney Int 88: 1383‐1391, 2015.
 650.Primary Aldosteronism Foundation. Step 1: Aldosterone Renin Ratio (ARR). Primary Aldosteronism Foundation. https://www.primaryaldosteronism.org/step‐1‐aldosterone‐renin‐ratio‐arr/. January 4, 2022.
 651.Pruthi D, McCurley A, Aronovitz M, Galayda C, Karumanchi SA, Jaffe IZ. Aldosterone promotes vascular remodeling by direct effects on smooth muscle cell mineralocorticoid receptors. Arterioscler Thromb Vasc Biol 34: 355‐364, 2014.
 652.Quinn SJ, Brauneis U, Tillotson DL, Cornwall MC, Williams GH. Calcium channels and control of cytosolic calcium in rat and bovine zona glomerulosa cells. Am J Physiol 262: C598‐C606, 1992.
 653.Quinn SJ, Cornwall MC, Williams GH. Electrophysiological responses to angiotensin II of isolated rat adrenal glomerulosa cells. Endocrinology 120: 1581‐1589, 1987.
 654.Quinn SJ, Williams GH. Regulation of aldosterone secretion. Annu Rev Physiol 50: 409‐426, 1988.
 655.Quinn SJ, Williams GH, Tillotson DL. Calcium oscillations in single adrenal glomerulosa cells stimulated by angiotensin II. Proc Natl Acad Sci U S A 85: 5754‐5758, 1988.
 656.Quinn SJ, Williams GH, Tillotson DL. Calcium response of single adrenal glomerulosa cells to external potassium. Am J Physiol 255: E488‐E495, 1988.
 657.Rabelink TJ, Koomans HA, Hené RJ, Dorhout Mees EJ. Early and late adjustment to potassium loading in humans. Kidney Int 38: 942‐947, 1990.
 658.Rabinowitz L. Aldosterone and potassium homeostasis. Kidney Int 49: 1738‐1742, 1996.
 659.Rabinowitz L, Aizman RI. The central nervous system in potassium homeostasis. Front Neuroendocrinol 14: 1‐26, 1993.
 660.Rabinowitz L, Jackson CA. Rapid potassium adaptation in the rat. Kidney Int 37: 569‐569, 1990.
 661.Rabinowitz L, Sarason RL, Yamauchi H. Effects of KCl infusion on potassium excretion in sheep. Am J Physiol 249: F263‐F271, 1985.
 662.Rashmi P, Colussi G, Ng M, Wu X, Kidwai A, Pearce D. Glucocorticoid‐induced leucine zipper protein regulates sodium and potassium balance in the distal nephron. Kidney Int 91: 1159‐1177, 2017.
 663.Reddish MJ, Guengerich FP. Human cytochrome P450 11B2 produces aldosterone by a processive mechanism due to the lactol form of the intermediate 18‐hydroxycorticosterone. J Biol Chem 294: 12975‐12991, 2019.
 664.Reisenauer MR, Anderson M, Huang L, Zhang Z, Zhou Q, Kone BC, Morris AP, Lesage GD, Dryer SE, Zhang W. AF17 competes with AF9 for binding to Dot1a to up‐regulate transcription of epithelial Na+ channel alpha. J Biol Chem 284: 35659‐35669, 2009.
 665.Reisenauer MR, Wang SW, Xia Y, Zhang W. Dot1a contains three nuclear localization signals and regulates the epithelial Na+ channel (ENaC) at multiple levels. Am J Physiol Renal Physiol 299: F63‐F76, 2010.
 666.Renard S, Voilley N, Bassilana F, Lazdunski M, Barbry P. Localization and regulation by steroids of the alpha, beta and gamma subunits of the amiloride‐sensitive Na+ channel in colon, lung and kidney. Pflugers Arch 430: 299‐307, 1995.
 667.Richards J, All S, Skopis G, Cheng KY, Compton B, Srialluri N, Stow L, Jeffers LA, Gumz ML. Opposing actions of Per1 and Cry2 in the regulation of Per1 target gene expression in the liver and kidney. Am J Physiol Regul Integr Comp Physiol 305: R735‐R747, 2013.
 668.Richards J, Jeffers LA, All SC, Cheng KY, Gumz ML. Role of Per1 and the mineralocorticoid receptor in the coordinate regulation of αENaC in renal cortical collecting duct cells. Front Physiol 4: 253, 2013.
 669.Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA, Vallon V. Mice lacking P2Y2 receptors have salt‐resistant hypertension and facilitated renal Na+ and water reabsorption. FASEB J 21: 3717‐3726, 2007.
 670.Rivers C, Flynn A, Qian X, Matthews L, Lightman S, Ray D, Norman M. Characterization of conserved tandem donor sites and intronic motifs required for alternative splicing in corticosteroid receptor genes. Endocrinology 150: 4958‐4967, 2009.
 671.Robert‐Nicoud M, Flahaut M, Elalouf JM, Nicod M, Salinas M, Bens M, Doucet A, Wincker P, Artiguenave F, Horisberger JD, Vandewalle A, Rossier BC, Firsov D. Transcriptome of a mouse kidney cortical collecting duct cell line: Effects of aldosterone and vasopressin. Proc Natl Acad Sci U S A 98: 2712‐2716, 2001.
 672.Robertson NM, Schulman G, Karnik S, Alnemri E, Litwack G. Demonstration of nuclear translocation of the mineralocorticoid receptor (MR) using an anti‐MR antibody and confocal laser scanning microscopy. Mol Endocrinol 7: 1226‐1239, 1993.
 673.Robins GG, Sandle GI. Liddle‐mutation of the beta‐subunit, but not the gamma‐subunit, attenuates protein kinase C‐mediated inhibition of human epithelial sodium channels (hENaC). J Membr Biol 249: 271‐279, 2016.
 674.Roesch DM, Tian Y, Zheng W, Shi M, Verbalis JG, Sandberg K. Estradiol attenuates angiotensin‐induced aldosterone secretion in ovariectomized rats. Endocrinology 141: 4629‐4636, 2000.
 675.Rogerson FM, Brennan FE, Fuller PJ. Dissecting mineralocorticoid receptor structure and function. J Steroid Biochem Mol Biol 85: 389‐396, 2003.
 676.Rogerson FM, Yao YZ, Young MJ, Fuller PJ. Identification and characterization of a ligand‐selective mineralocorticoid receptor coactivator. FASEB J 28: 4200‐4210, 2014.
 677.Ronconi V, Turchi F, Appolloni G, di Tizio V, Boscaro M, Giacchetti G. Aldosterone, mineralocorticoid receptor and the metabolic syndrome: Role of the mineralocorticoid receptor antagonists. Curr Vasc Pharmacol 10: 238‐246, 2012.
 678.Ronzaud C, Loffing‐Cueni D, Hausel P, Debonneville A, Malsure SR, Fowler‐Jaeger N, Boase NA, Perrier R, Maillard M, Yang B, Stokes JB, Koesters R, Kumar S, Hummler E, Loffing J, Staub O. Renal tubular NEDD4‐2 deficiency causes NCC‐mediated salt‐dependent hypertension. J Clin Invest 123: 657‐665, 2013.
 679.Ross EJ, Hurst PE. Effect of prolonged administration of aldosterone and corticosterone on plasma and urinary electrolytes in man. Clin Sci 28: 91‐98, 1965.
 680.Rossier BC. Role of RNA in the action of aldosterone on Na+ transport. J Membr Biol 40 Spec No: 187‐197, 1978.
 681.Rossier MF, Pagano S, Python M, Maturana AD, James RW, Mach F, Roux‐Lombard P, Vuilleumier N. Antiapolipoprotein A‐1 IgG chronotropic effects require nongenomic action of aldosterone on L‐type calcium channels. Endocrinology 153: 1269‐1278, 2012.
 682.Rotin D, Bar‐Sagi D, O'Brodovich H, Merilainen J, Lehto VP, Canessa CM, Rossier BC, Downey GP. An SH3 binding region in the epithelial Na+ channel (alpha rENaC) mediates its localization at the apical membrane. EMBO J 13: 4440‐4450, 1994.
 683.Rotin D, Schild L. ENaC and its regulatory proteins as drug targets for blood pressure control. Curr Drug Targets 9: 709‐716, 2008.
 684.Rozansky DJ, Cornwall T, Subramanya AR, Rogers S, Yang YF, David LL, Zhu X, Yang CL, Ellison DH. Aldosterone mediates activation of the thiazide‐sensitive Na‐Cl cotransporter through an SGK1 and WNK4 signaling pathway. J Clin Invest 119: 2601‐2612, 2009.
 685.Rubera I, Loffing J, Palmer LG, Frindt G, Fowler‐Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC. Collecting duct‐specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112: 554‐565, 2003.
 686.Ruhs S, Nolze A, Hubschmann R, Grossmann C. 30 YEARS OF THE MINERALOCORTICOID RECEPTOR: Nongenomic effects via the mineralocorticoid receptor. J Endocrinol 234: T107‐T124, 2017.
 687.Rundle SE, Smith AI, Stockman D, Funder JW. Immunocytochemical demonstration of mineralocorticoid receptors in rat and human kidney. J Steroid Biochem 33: 1235‐1242, 1989.
 688.Rusvai E, Naray‐Fejes‐Toth A. A new isoform of 11 á‐hydroxysteroid dehydrogenase in aldosterone target cells. J Biol Chem 268: 10717‐10720, 1993.
 689.Sachs G, Spenney JG, Lewin M. H+ transport: Regulation and mechanism in gastric mucosa and membrane vesicles. Physiol Rev 58: 106‐173, 1978.
 690.Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, Obarzanek E, Conlin PR, Miller ER 3rd, Simons‐Morton DG, Karanja N, Lin PH. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH‐Sodium Collaborative Research Group. N Engl J Med 344: 3‐10, 2001.
 691.Salyer SA, Parks J, Barati MT, Lederer ED, Clark BJ, Klein JD, Khundmiri SJ. Aldosterone regulates Na(+), K(+) ATPase activity in human renal proximal tubule cells through mineralocorticoid receptor. Biochim Biophys Acta 1833: 2143‐2152, 2013.
 692.San‐Cristobal P, Pacheco‐Alvarez D, Richardson C, Ring AM, Vazquez N, Rafiqi FH, Chari D, Kahle KT, Leng Q, Bobadilla NA, Hebert SC, Alessi DR, Lifton RP, Gamba G. Angiotensin II signaling increases activity of the renal Na‐Cl cotransporter through a WNK4‐SPAK‐dependent pathway. Proc Natl Acad Sci U S A 106: 4384‐4389, 2009.
 693.Sansom SC. Reemergence of the maxi K+ as a K+ secretory channel. Kidney Int 71: 1322‐1324; author reply 1324‐1325, 2007.
 694.Sansom SC, Agulian S, Muto S, Illig V, Giebisch G. K activity of CCD principal cells from normal and DOCA‐treated rabbits. Am J Physiol 256: F136‐F142, 1989.
 695.Sansom SC, Welling PA. Two channels for one job. Kidney Int 72: 529‐530, 2007.
 696.Saraf A, Luo J, Morris DR, Storm DR. Phosphorylation of eukaryotic translation initiation factor 4E and eukaryotic translation initiation factor 4E‐binding protein (4EBP) and their upstream signaling components undergo diurnal oscillation in the mouse hippocampus: Implications for memory persistence. J Biol Chem 289: 20129‐20138, 2014.
 697.Sariban‐Sohraby S, Burg M, Wiesmann WP, Chiang PK, Johnson JP. Methylation increases sodium transport into A6 apical membrane vesicles: Possible mode of aldosterone action. Science 225: 745‐746, 1984.
 698.Sariban‐Sohraby S, Fisher RS. Guanine nucleotide‐dependent carboxymethylation: A pathway for aldosterone modulation of apical Na+ permeability in epithelia. Kidney Int 48: 965‐969, 1995.
 699.Sariban‐Sohraby S, Fisher RS, Abramow M. Aldosterone‐induced and GTP‐stimulated methylation of a 90‐kDa polypeptide in the apical membrane of A6 epithelia. J Biol Chem 268: 26613‐26617, 1993.
 700.Sarzani R, Opocher G, Paci MV, Belloni AS, Mantero F, Dessi‐Fulgheri P, Rappelli A. Natriuretic peptides receptors in human aldosterone‐secreting adenomas. J Endocrinol Invest 22: 514‐518, 1999.
 701.Sasano H, Fukushima K, Sasaki I, Matsuno S, Nagura H, Krozowski ZS. Immunolocalization of mineralocorticoid receptor in human kidney, pancreas, salivary, mammary and sweat glands: A light and electron microscopic immunohistochemical study. J Endocrinol 132: 305‐310, 1992.
 702.Sasser JM, Pollock JS, Pollock DM. Renal endothelin in chronic angiotensin II hypertension. Am J Physiol Regul Integr Comp Physiol 283: R243‐R248, 2002.
 703.Sassi A, Wang Y, Chassot A, Komarynets O, Roth I, Olivier V, Crambert G, Dizin E, Boscardin E, Hummler E, Feraille E. Interaction between epithelial sodium channel γ‐subunit and claudin‐8 modulates paracellular sodium permeability in renal collecting duct. J Am Soc Nephrol 31: 1009‐1023, 2020.
 704.Satlin LM, Sheng S, Woda CB, Kleyman TR. Epithelial Na(+) channels are regulated by flow. Am J Physiol Renal Physiol 280: F1010‐F1018, 2001.
 705.Sato N, Ajioka M, Yamada T, Kato M, Myoishi M, Yamada T, Kim SY, Nowack C, Kolkhof P, Shiga T. A randomized controlled study of finerenone vs. eplerenone in Japanese patients with worsening chronic heart failure and diabetes and/or chronic kidney disease. Circ J 80: 1113‐1122, 2016.
 706.Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit‐Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P. Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel‐deficient mice. Circulation 112: 60‐68, 2005.
 707.Savory JG, Prefontaine GG, Lamprecht C, Liao M, Walther RF, Lefebvre YA, Hache RJ. Glucocorticoid receptor homodimers and glucocorticoid‐mineralocorticoid receptor heterodimers form in the cytoplasm through alternative dimerization interfaces. Mol Cell Biol 21: 781‐793, 2001.
 708.Saxton RA, Sabatini DM. mTOR signaling in growth, metabolism, and disease. Cell 168: 960‐976, 2017.
 709.Sayegh R, Auerbach SD, Li X, Loftus RW, Husted RF, Stokes JB, Thomas CP. Glucocorticoid induction of epithelial sodium channel expression in lung and renal epithelia occurs via trans‐activation of a hormone response element in the 5′‐flanking region of the human epithelial sodium channel alpha subunit gene. J Biol Chem 274: 12431‐12437, 1999.
 710.Schiebinger RJ, Kem DC, Brown RD. Effect of atrial natriuretic peptide on ACTH, dibutyryl cAMP, angiotensin II and potassium‐stimulated aldosterone secretion by rat adrenal glomerulosa cells. Life Sci 42: 919‐926, 1988.
 711.Schild L, Canessa CM, Shimkets RA, Gautschi I, Lifton RP, Rossier BC. A mutation in the epithelial sodium channel causing Liddle disease increases channel activity in the Xenopus laevis oocyte expression system. Proc Natl Acad Sci U S A 92: 5699‐5703, 1995.
 712.Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15: 2381‐2387, 1996.
 713.Schjoedt KJ, Rossing K, Juhl TR, Boomsma F, Tarnow L, Rossing P, Parving HH. Beneficial impact of spironolactone on nephrotic range albuminuria in diabetic nephropathy. Kidney Int 70: 536‐542, 2006.
 714.Schlessinger J. Ligand‐induced, receptor‐mediated dimerization and activation of EGF receptor. Cell 110: 669‐672, 2002.
 715.Schmitz B, Brand SM, Brand E. Aldosterone signaling and soluble adenylyl cyclase‐a nexus for the kidney and vascular endothelium. Biochim Biophys Acta 1842: 2601‐2609, 2014.
 716.Schneider MP, Boesen EI, Pollock DM. Contrasting actions of endothelin ET(A) and ET(B) receptors in cardiovascular disease. Annu Rev Pharmacol Toxicol 47: 731‐759, 2007.
 717.Schneider MP, Ge Y, Pollock DM, Pollock JS, Kohan DE. Collecting duct‐derived endothelin regulates arterial pressure and Na excretion via nitric oxide. Hypertension 51: 1605‐1610, 2008.
 718.Scholl UI, Choi M, Liu T, Ramaekers VT, Häusler MG, Grimmer J, Tobe SW, Farhi A, Nelson‐Williams C, Lifton RP. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc Natl Acad Sci U S A 106: 5842‐5847, 2009.
 719.Scholl UI, Goh G, Stolting G, de Oliveira RC, Choi M, Overton JD, Fonseca AL, Korah R, Starker LF, Kunstman JW, Prasad ML, Hartung EA, Mauras N, Benson MR, Brady T, Shapiro JR, Loring E, Nelson‐Williams C, Libutti SK, Mane S, Hellman P, Westin G, Akerstrom G, Bjorklund P, Carling T, Fahlke C, Hidalgo P, Lifton RP. Somatic and germline CACNA1D calcium channel mutations in aldosterone‐producing adenomas and primary aldosteronism. Nat Genet 45: 1050‐1054, 2013.
 720.Scholl UI, Healy JM, Thiel A, Fonseca AL, Brown TC, Kunstman JW, Horne MJ, Dietrich D, Riemer J, Kucukkoylu S, Reimer EN, Reis AC, Goh G, Kristiansen G, Mahajan A, Korah R, Lifton RP, Prasad ML, Carling T. Novel somatic mutations in primary hyperaldosteronism are related to the clinical, radiological and pathological phenotype. Clin Endocrinol (Oxf) 83: 779‐789, 2015.
 721.Scholl UI, Lifton RP. New insights into aldosterone‐producing adenomas and hereditary aldosteronism: Mutations in the K+ channel KCNJ5. Curr Opin Nephrol Hypertens 22: 141‐147, 2013.
 722.Scholl UI, Stolting G, Schewe J, Thiel A, Tan H, Nelson‐Williams C, Vichot AA, Jin SC, Loring E, Untiet V, Yoo T, Choi J, Xu S, Wu A, Kirchner M, Mertins P, Rump LC, Onder AM, Gamble C, McKenney D, Lash RW, Jones DP, Chune G, Gagliardi P, Choi M, Gordon R, Stowasser M, Fahlke C, Lifton RP. CLCN2 chloride channel mutations in familial hyperaldosteronism type II. Nat Genet 50: 349‐354, 2018.
 723.Schulz C, Fork C, Bauer T, Golz S, Geerts A, Schomig E, Grundemann D. SLC22A13 catalyses unidirectional efflux of aspartate and glutamate at the basolateral membrane of type A intercalated cells in the renal collecting duct. Biochem J 457: 243‐251, 2014.
 724.Schunkert H, Danser AH, Hense HW, Derkx FH, Kurzinger S, Riegger GA. Effects of estrogen replacement therapy on the renin‐angiotensin system in postmenopausal women. Circulation 95: 39‐45, 1997.
 725.Schwartz GJ, Burg MB. Mineralocorticoid effects on cation transport by cortical collecting tubules in vitro. Am J Physiol 235: F576‐F585, 1978.
 726.Schwartz WB. Potassium and the kidney. N Engl J Med 253: 601‐608, 1955.
 727.Seely EW, Conlin PR, Brent GA, Dluhy RG. Adrenocorticotropin stimulation of aldosterone: Prolonged continuous versus pulsatile infusion. J Clin Endocrinol Metab 69: 1028‐1032, 1989.
 728.Seidel E, Schewe J, Scholl UI. Genetic causes of primary aldosteronism. Exp Mol Med 51: 1‐12, 2019.
 729.Sengupta S, Lorente‐Rodriguez A, Earnest S, Stippec S, Guo X, Trudgian DC, Mirzaei H, Cobb MH. Regulation of OSR1 and the sodium, potassium, two chloride cotransporter by convergent signals. Proc Natl Acad Sci U S A 110: 18826‐18831, 2013.
 730.Sennels HP, Jorgensen HL, Goetze JP, Fahrenkrug J. Rhythmic 24‐hour variations of frequently used clinical biochemical parameters in healthy young males – the Bispebjerg study of diurnal variations. Scand J Clin Lab Invest 72: 287‐295, 2012.
 731.Seok YM, Lee HA, Park KM, Hwangbo MH, Kim IK. Lysine deacetylase inhibition attenuates hypertension and is accompanied by acetylation of mineralocorticoid receptor instead of histone acetylation in spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 389: 799‐808, 2016.
 732.Shi H, Asher C, Chigaev A, Yung Y, Reuveny E, Seger R, Garty H. Interactions of beta and gamma ENaC with Nedd4 can be facilitated by an ERK‐mediated phosphorylation. J Biol Chem 277: 13539‐13547, 2002.
 733.Shi H, Asher C, Yung Y, Kligman L, Reuveny E, Seger R, Garty H. Casein kinase 2 specifically binds to and phosphorylates the carboxy termini of ENaC subunits. Eur J Biochem 269: 4551‐4558, 2002.
 734.Shi S, Carattino MD, Hughey RP, Kleyman TR. ENaC regulation by proteases and shear stress. Curr Mol Pharmacol 6: 28‐34, 2013.
 735.Shibata H, Ogishima T, Mitani F, Suzuki H, Murakami M, Saruta T, Ishimura Y. Regulation of aldosterone synthase cytochrome P‐450 in rat adrenals by angiotensin II and potassium. Endocrinology 128: 2534‐2539, 1991.
 736.Shibata S, Arroyo JP, Castaneda‐Bueno M, Puthumana J, Zhang J, Uchida S, Stone KL, Lam TT, Lifton RP. Angiotensin II signaling via protein kinase C phosphorylates Kelch‐like 3, preventing WNK4 degradation. Proc Natl Acad Sci U S A 111: 15556‐15561, 2014.
 737.Shibata S, Ishizawa K, Wang Q, Xu N, Fujita T, Uchida S, Lifton RP. ULK1 phosphorylates and regulates mineralocorticoid receptor. Cell Rep 24: 569‐576, 2018.
 738.Shibata S, Nagase M, Yoshida S, Kawarazaki W, Kurihara H, Tanaka H, Miyoshi J, Takai Y, Fujita T. Modification of mineralocorticoid receptor function by Rac1 GTPase: Implication in proteinuric kidney disease. Nat Med 14: 1370‐1376, 2008.
 739.Shibata S, Rinehart J, Zhang J, Moeckel G, Castaneda‐Bueno M, Stiegler AL, Boggon TJ, Gamba G, Lifton RP. Mineralocorticoid receptor phosphorylation regulates ligand binding and renal response to volume depletion and hyperkalemia. Cell Metab 18: 660‐671, 2013.
 740.Shigaev A, Asher C, Latter H, Garty H, Reuveny E. Regulation of sgk by aldosterone and its effects on the epithelial Na(+) channel. Am J Physiol Renal Physiol 278: F613‐F619, 2000.
 741.Shimkets RA, Lifton R, Canessa CM. In vivo phosphorylation of the epithelial sodium channel. Proc Natl Acad Sci U S A 95: 3301‐3305, 1998.
 742.Shimkets RA, Warnock DG, Bositis CM, Nelson‐Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW, Canessa CM, Rossier BC, Lifton RP. Liddle's syndrome: Heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79: 407‐414, 1994.
 743.Shrestha A, Che RC, Zhang AH. Role of aldosterone in renal fibrosis. Adv Exp Med Biol 1165: 325‐346, 2019.
 744.Silver RB, Choe H, Frindt G. Low NaCl diet increases H‐K‐ATPase in intercalated cells from rat cortical collecting duct. Am J Physiol 44: F94‐F102, 1998.
 745.Silver RB, Frindt G. Functional identification of H‐K‐ATPase in intercalated cells of cortical collecting tubule. Am J Physiol 264: F259‐F266, 1993.
 746.Simpson SA, Tait JF, Wettstein A, Neher R, Von Euw J, Reichstein T. Isolation from the adrenals of a new crystalline hormone with especially high effectiveness on mineral metabolism. Experientia 9: 333‐335, 1953.
 747.Simpson SA, Tait JF, Wettstein A, Neher R, Von Euw J, Schindler O, Reichstein T. Constitution of aldosterone, a new mineralocorticoid. Experientia 10: 132‐133, 1954.
 748.Sinphitukkul K, Eiam‐Ong S, Manotham K. Nongenomic effects of aldosterone on renal protein expressions of pEGFR and pERK1/2 in rat kidney. Am J Nephrol 33: 111‐120, 2011.
 749.Snyder PM, McDonald FJ, Stokes JB, Welsh MJ. Membrane topology of the amiloride‐sensitive epithelial sodium channel. J Biol Chem 269: 24379‐24383, 1994.
 750.Snyder PM, Olson DR, Thomas BC. Serum and glucocorticoid‐regulated kinase modulates Nedd4‐2‐mediated inhibition of the epithelial Na+ channel. J Biol Chem 277: 5‐8, 2002.
 751.Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, Ziegler U, Odermatt A, Loffing‐Cueni D, Loffing J. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83: 811‐824, 2013.
 752.Sorensen MV, Saha B, Jensen IS, Wu P, Ayasse N, Gleason CE, Svendsen SL, Wang WH, Pearce D. Potassium acts through mTOR to regulate its own secretion. JCI Insight 5: e126910, 2019.
 753.Soundararajan R, Lu M, Pearce D. Organization of the ENaC‐regulatory machinery. Crit Rev Biochem Mol Biol 47: 349‐359, 2012.
 754.Soundararajan R, Melters D, Shih IC, Wang J, Pearce D. Epithelial sodium channel regulated by differential composition of a signaling complex. Proc Natl Acad Sci U S A 106: 7804‐7809, 2009.
 755.Soundararajan R, Pearce D, Hughey RP, Kleyman TR. Role of epithelial sodium channels and their regulators in hypertension. J Biol Chem 285: 30363‐30369, 2010.
 756.Soundararajan R, Pearce D, Ziera T. The role of the ENaC‐regulatory complex in aldosterone‐mediated sodium transport. Mol Cell Endocrinol 350: 242‐247, 2012.
 757.Soundararajan R, Wang J, Melters D, Pearce D. Glucocorticoid‐induced Leucine zipper 1 stimulates the epithelial sodium channel by regulating serum‐ and glucocorticoid‐induced kinase 1 stability and subcellular localization. J Biol Chem 285: 39905‐39913, 2010.
 758.Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D. A novel role for glucocorticoid‐induced leucine zipper protein in epithelial sodium channel‐mediated sodium transport. J Biol Chem 280: 39970‐39981, 2005.
 759.Spät A. Glomerulosa cell – a unique sensor of extracellular K+ concentration. Mol Cell Endocrinol 217: 23‐26, 2004.
 760.Spät A, Hunyady L. Control of aldosterone secretion: A model for convergence in cellular signaling pathways. Physiol Rev 84: 489‐539, 2004.
 761.Speed JS, Fox BM, Johnston JG, Pollock DM. Endothelin and renal ion and water transport. Semin Nephrol 35: 137‐144, 2015.
 762.Spindler B, Mastroberardino L, Custer M, Verrey F. Characterization of early aldosterone‐induced RNAs identified in A6 kidney epithelia. Pflugers Arch 434: 323‐331, 1997.
 763.Spindler B, Verrey F. Aldosterone action: Induction of p21(ras) and fra‐2 and transcription‐ independent decrease in myc, jun, and fos. Am J Physiol 276: C1154‐C1161, 1999.
 764.Spital A, Sterns RH. Paradoxical potassium depletion: A renal mechanism for extrarenal potassium adaptation. Kidney Int 30: 532‐537, 1986.
 765.Spyroglou A, Sabrautzki S, Rathkolb B, Bozoglu T, de Hrabe AM, Reincke M, Bidlingmaier M, Beuschlein F. Gender‐, strain‐, and inheritance‐dependent variation in aldosterone secretion in mice. J Endocrinol 215: 375‐381, 2012.
 766.Stanton B, Janzen A, Klein‐Robbenhaar G, DeFronzo R, Giebisch G, Wade J. Ultrastructure of rat initial collecting tubule. Effect of adrenal corticosteroid treatment. J Clin Invest 75: 1327‐1334, 1985.
 767.Stanton B, Pan L, Deetjen H, Guckian V, Giebisch G. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J Clin Invest 79: 198‐206, 1987.
 768.Stanton BA. Regulation of Na+ and K+ transport by mineralocorticoids. Semin Nephrol 7: 82‐90, 1987.
 769.Stanton BA, Giebisch GH. Potassium transport by the renal distal tubule: Effects of potassium loading. Am J Physiol 243: F487‐F493, 1982.
 770.Staruschenko A, Adams E, Booth RE, Stockand JD. Epithelial Na+ channel subunit stoichiometry. Biophys J 88: 3966‐3975, 2005.
 771.Staruschenko A, Patel P, Tong Q, Medina JL, Stockand JD. Ras activates the epithelial Na(+) channel through phosphoinositide 3‐OH kinase signaling. J Biol Chem 279: 37771‐37778, 2004.
 772.Staruschenko A, Pochynyuk O, Vandewalle A, Bugaj V, Stockand JD. Acute regulation of the epithelial Na+ channel by phosphatidylinositide 3‐OH kinase signaling in native collecting duct principal cells. J Am Soc Nephrol 18: 1652‐1661, 2007.
 773.Staruschenko A, Pochynyuk OM, Tong Q, Stockand JD. Ras couples phosphoinositide 3‐OH kinase to the epithelial Na+ channel. Biochim Biophys Acta 1669: 108‐115, 2005.
 774.Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D. WW domains of Nedd4 bind to the proline‐rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15: 2371‐2380, 1996.
 775.Steinmetz PR, Husted RF, Mueller A, Beauwens R. Coupling between H+ transport and anaerobic glycolysis in turtle urinary bladder: Effect of inhibitors of H+ ATPase. J Membr Biol 59: 27‐34, 1981.
 776.Steward PM, Edwards CR. Specificity of the mineralocorticoid receptor: Crucial role of 11beta‐hydroxysteroid dehydrogenase. Trends Endocrinol Metab 1: 225‐230, 1990.
 777.Stewart PM, Corrie JE, Shackleton CH, Edwards CR. Syndrome of apparent mineralocorticoid excess. A defect in the cortisol‐cortisone shuttle. J Clin Invest 82: 340‐349, 1988.
 778.Stockand JD, Mironova E, Bugaj V, Rieg T, Insel PA, Vallon V, Peti‐Peterdi J, Pochynyuk O. Purinergic inhibition of ENaC produces aldosterone escape. J Am Soc Nephrol 21: 1903‐1911, 2010.
 779.Stokes JB, Sigmund RD. Regulation of rENaC mRNA by dietary NaCl and steroids: Organ, tissue, and steroid heterogeneity. Am J Physiol 274: C1699‐C1707, 1998.
 780.Stone DK, Seldin DW, Kokko JP, Jacobson HR. Anion dependence of rabbit medullary collecting duct acidification. J Clin Invest 71: 1505‐1508, 1983.
 781.Stone DK, Seldin DW, Kokko JP, Jacobson HR. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. A sodium‐independent effect. J Clin Invest 72: 77‐83, 1983.
 782.Stone DK, Xie XS, Racker E. An ATP‐driven proton pump in clathrin‐coated vesicles. J Biol Chem 258: 4059‐4062, 1983.
 783.Stow LR, Gumz ML, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Wingo CS. Aldosterone modulates steroid receptor binding to the endothelin‐1 gene (edn1). J Biol Chem 284: 30087‐30096, 2009.
 784.Stow LR, Richards J, Cheng KY, Lynch IJ, Jeffers LA, Greenlee MM, Cain BD, Wingo CS, Gumz ML. The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension 59: 1151‐1156, 2012.
 785.Stow LR, Voren GE, Gumz ML, Wingo CS, Cain BD. Dexamethasone stimulates endothelin‐1 gene expression in renal collecting duct cells. Steroids 77: 360‐366, 2012.
 786.Stowasser M, Ahmed AH, Pimenta E, Taylor PJ, Gordon RD. Factors affecting the aldosterone/renin ratio. Horm Metab Res 44: 170‐176, 2012.
 787.Stowasser M, Gordon RD. Primary aldosteronism: Changing definitions and new concepts of physiology and pathophysiology both inside and outside the kidney. Physiol Rev 96: 1327‐1384, 2016.
 788.Su XT, Ellison DH, Wang WH. Kir4.1/Kir5.1 in the DCT plays a role in the regulation of renal K(+) excretion. Am J Physiol Renal Physiol 316: F582‐F586, 2019.
 789.Su XT, Wang WH. The expression, regulation, and function of Kir4.1 (Kcnj10) in the mammalian kidney. Am J Physiol Renal Physiol 311: F12‐F15, 2016.
 790.Su XT, Zhang C, Wang L, Gu R, Lin DH, Wang WH. Disruption of KCNJ10 (Kir4.1) stimulates the expression of ENaC in the collecting duct. Am J Physiol Renal Physiol 310: F985‐F993, 2016.
 791.Sueta D, Yamamoto E, Tsujita K. Mineralocorticoid receptor blockers: Novel selective nonsteroidal mineralocorticoid receptor antagonists. Curr Hypertens Rep 22: 21, 2020.
 792.Sullivan JC, Goodchild TT, Cai Z, Pollock DM, Pollock JS. Endothelin(A) (ET(A)) and ET(B) receptor‐mediated regulation of nitric oxide synthase 1 (NOS1) and NOS3 isoforms in the renal inner medulla. Acta Physiol (Oxf) 191: 329‐336, 2007.
 793.Svenningsen P, Andersen H, Nielsen LH, Jensen BL. Urinary serine proteases and activation of ENaC in kidney‐implications for physiological renal salt handling and hypertensive disorders with albuminuria. Pflugers Arch 467(3): 531‐542, 2015.
 794.Svenningsen P, Friis UG, Bistrup C, Buhl KB, Jensen BL, Skott O. Physiological regulation of epithelial sodium channel by proteolysis. Curr Opin Nephrol Hypertens 20: 529‐533, 2011.
 795.Szerlip HM, Weisberg L, Clayman M, Neilson E, Wade JB, Cox M. Aldosterone‐induced proteins: Purification and localization of GP65,70. Am J Physiol 256: C865‐C872, 1989.
 796.Szerlip HM, Weisberg L, Geering K, Rossier BC, Cox M. Aldosterone‐induced glycoproteins: Electrophysiological‐biochemical correlation. Biochim Biophys Acta 940: 1‐9, 1988.
 797.Tait JF, Tait SA, Little B, Laumas KR. The disappearance of 7‐H‐3‐d‐aldosterone in the plasma of normal subjects. J Clin Invest 40: 72‐80, 1961.
 798.Takuwa N, Takuwa Y, Yanagisawa M, Yamashita K, Masaki T. A novel vasoactive peptide endothelin stimulates mitogenesis through inositol lipid turnover in Swiss 3T3 fibroblasts. J Biol Chem 264: 7856‐7861, 1989.
 799.Talati G, Ohta A, Rai T, Sohara E, Naito S, Vandewalle A, Sasaki S, Uchida S. Effect of angiotensin II on the WNK‐OSR1/SPAK‐NCC phosphorylation cascade in cultured mpkDCT cells and in vivo mouse kidney. Biochem Biophys Res Commun 393: 844‐848, 2010.
 800.Tallec LP, Kirsh O, Lecomte MC, Viengchareun S, Zennaro MC, Dejean A, Lombes M. Protein inhibitor of activated signal transducer and activator of transcription 1 interacts with the N‐terminal domain of mineralocorticoid receptor and represses its transcriptional activity: Implication of small ubiquitin‐related modifier 1 modification. Mol Endocrinol 17: 2529‐2542, 2003.
 801.Tamura H, Schild L, Enomoto N, Matsui N, Marumo F, Rossier BC. Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest 97: 1780‐1784, 1996.
 802.Tanaka K, Ashizawa N, Kawano H, Sato O, Seto S, Nishihara E, Terazono H, Isomoto S, Shinohara K, Yano K. Aldosterone induces circadian gene expression of clock genes in H9c2 cardiomyoblasts. Heart Vessels 22: 254‐260, 2007.
 803.Tchepichev S, Ueda J, Canessa C, Rossier BC, O'Brodovich H. Lung epithelial Na channel subunits are differentially regulated during development and by steroids. Am J Physiol 269: C805‐C812, 1995.
 804.Terada Y, Kobayashi T, Kuwana H, Tanaka H, Inoshita S, Kuwahara M, Sasaki S. Aldosterone stimulates proliferation of mesangial cells by activating mitogen‐activated protein kinase 1/2, cyclin D1, and cyclin A. J Am Soc Nephrol 16: 2296‐2305, 2005.
 805.Terker AS, Ellison DH. Renal mineralocorticoid receptor and electrolyte homeostasis. Am J Physiol Regul Integr Comp Physiol 309: R1068‐R1070, 2015.
 806.Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, Park HJ, McCormick JA, Yang CL, Ellison DH. Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol 27: 2436‐2445, 2016.
 807.Terker AS, Zhang C, McCormick JA, Lazelle RA, Meermeier NP, Siler DA, Park HJ, Fu Y, Cohen DM, Weinstein AM, Wang WH, Yang CL, Ellison DH. Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab 21: 39‐50, 2015.
 808.Thai TL, Yu L, Eaton DC, Duke BJ, Al‐Khalili O, Lam HY, Ma H, Bao HF. Basolateral P2X4 channels stimulate ENaC activity in Xenopus cortical collecting duct A6 cells. Am J Physiol Renal Physiol 307: F806‐F813, 2014.
 809.Thai TL, Yu L, Galarza‐Paez L, Wu MM, Lam HY, Bao HF, Duke BJ, Al‐Khalili O, Ma HP, Liu B, Eaton DC. The polarized effect of intracellular calcium on the renal epithelial sodium channel occurs as a result of subcellular calcium signaling domains maintained by mitochondria. J Biol Chem 290: 28805‐28811, 2015.
 810.Thatcher JS, Radike AW. Tolerance to potassium intoxication in the albino rat. Am J Physiol 151: 138‐146, 1947.
 811.Thomas CP, Auerbach S, Stokes JB, Volk KA. 5′ heterogeneity in epithelial sodium channel alpha‐subunit mRNA leads to distinct NH2‐terminal variant proteins. Am J Physiol Cell Physiol 274: C1312‐C1323, 1998.
 812.Thomas CP, Auerbach SD, Zhang C, Stokes JB. The structure of the rat amiloride‐sensitive epithelial sodium channel gamma subunit gene and functional analysis of its promoter. Gene 228: 111‐122, 1999.
 813.Thomas CP, Campbell JR, Wright PJ, Husted RF. cAMP‐stimulated Na+ transport in H441 distal lung epithelial cells: Role of PKA, phosphatidylinositol 3‐kinase, and sgk1. Am J Physiol Lung Cell Mol Physiol 287: L843‐L851, 2004.
 814.Thomas CP, Doggett NA, Fisher R, Stokes JB. Genomic organization and the 5′ flanking region of the gamma subunit of the human amiloride‐sensitive epithelial sodium channel. J Biol Chem 271: 26062‐26066, 1996.
 815.Thomas CP, Itani OA. New insights into epithelial sodium channel function in the kidney: Site of action, regulation by ubiquitin ligases, serum‐ and glucocorticoid‐inducible kinase and proteolysis. Curr Opin Nephrol Hypertens 13: 541‐548, 2004.
 816.Tirard M, Almeida OF, Hutzler P, Melchior F, Michaelidis TM. Sumoylation and proteasomal activity determine the transactivation properties of the mineralocorticoid receptor. Mol Cell Endocrinol 268: 20‐29, 2007.
 817.Tirard M, Jasbinsek J, Almeida OF, Michaelidis TM. The manifold actions of the protein inhibitor of activated STAT proteins on the transcriptional activity of mineralocorticoid and glucocorticoid receptors in neural cells. J Mol Endocrinol 32: 825‐841, 2004.
 818.Tobian L, Lange J, Ulm K, Wold L, Iwai J. Potassium reduces cerebral hemorrhage and death rate in hypertensive rats, even when blood pressure is not lowered. Hypertension 7: I110‐I114, 1985.
 819.Todkar A, Picard N, Loffing‐Cueni D, Sorensen MV, Mihailova M, Nesterov V, Makhanova N, Korbmacher C, Wagner CA, Loffing J. Mechanisms of renal control of potassium homeostasis in complete aldosterone deficiency. J Am Soc Nephrol 26: 425‐438, 2015.
 820.Togawa A, Miyoshi J, Ishizaki H, Tanaka M, Takakura A, Nishioka H, Yoshida H, Doi T, Mizoguchi A, Matsuura N, Niho Y, Nishimune Y, Nishikawa S, Takai Y. Progressive impairment of kidneys and reproductive organs in mice lacking Rho GDIalpha. Oncogene 18: 5373‐5380, 1999.
 821.Tokonami N, Mordasini D, Pradervand S, Centeno G, Jouffe C, Maillard M, Bonny O, Gachon F, Gomez RA, Sequeira‐Lopez ML, Firsov D. Local renal circadian clocks control fluid‐electrolyte homeostasis and BP. J Am Soc Nephrol 25: 1430‐1439, 2014.
 822.Tokonami N, Morla L, Centeno G, Mordasini D, Ramakrishnan SK, Nikolaeva S, Wagner CA, Bonny O, Houillier P, Doucet A, Firsov D. alpha‐Ketoglutarate regulates acid‐base balance through an intrarenal paracrine mechanism. J Clin Invest 123: 3166‐3171, 2013.
 823.Tomilin V, Mamenko M, Zaika O, Wingo CS, Pochynyuk O. TRPV4 deletion protects against hypokalemia during systemic K(+) deficiency. Am J Physiol Renal Physiol 316: F948‐f956, 2019.
 824.Tomilin VN, Zaika O, Subramanya AR, Pochynyuk O. Dietary K(+) and Cl(−) independently regulate basolateral conductance in principal and intercalated cells of the collecting duct. Pflugers Arch 470: 339‐353, 2017.
 825.Toney GM, Vallon V, Stockand JD. Intrinsic control of sodium excretion in the distal nephron by inhibitory purinergic regulation of the epithelial Na(+) channel. Curr Opin Nephrol Hypertens 21: 52‐60, 2012.
 826.Tong Q, Booth RE, Worrell RT, Stockand JD. Regulation of Na+ transport by aldosterone: Signaling convergence and cross talk between the PI3‐K and MAPK1/2 cascades. Am J Physiol Renal Physiol 286: F1232‐F1238, 2004.
 827.Trac PT, Thai TL, Linck V, Zou L, Greenlee M, Yue Q, Al‐Khalili O, Alli AA, Eaton AF, Eaton DC. Alveolar nonselective channels are ASIC1a/α‐ENaC channels and contribute to AFC. Am J Physiol Lung Cell Mol Physiol 312: L797‐l811, 2017.
 828.Tsuchiya Y, Nakashima S, Banno Y, Suzuki Y, Morita H. Effect of high‐NaCl or high‐KCl diet on hepatic Na+‐ and K+‐receptor sensitivity and NKCC1 expression in rats. Am J Physiol Regul Integr Comp Physiol 286: R591‐R596, 2004.
 829.Tsugita M, Iwasaki Y, Nishiyama M, Taguchi T, Shinahara M, Taniguchi Y, Kambayashi M, Nishiyama A, Gomez‐Sanchez CE, Terada Y, Hashimoto K. Glucocorticoid receptor plays an indispensable role in mineralocorticoid receptor‐dependent transcription in GR‐deficient BE(2)C and T84 cells in vitro. Mol Cell Endocrinol 302: 18‐25, 2009.
 830.Tsuruoka S, Schwartz GJ. Adaptation of rabbit cortical collecting duct HCO3− transport to metabolic acidosis in vitro. J Clin Invest 97: 1076‐1084, 1996.
 831.Turban S, Wang XY, Knepper MA. Regulation of NHE3, NKCC2, and NCC abundance in kidney during aldosterone escape phenomenon: Role of NO. Am J Physiol Renal Physiol 285: F843‐F851, 2003.
 832.Uchimura K, Kakizoe Y, Onoue T, Hayata M, Morinaga J, Yamazoe R, Ueda M, Mizumoto T, Adachi M, Miyoshi T, Shiraishi N, Sakai Y, Tomita K, Kitamura K. In vivo contribution of serine proteases to the proteolytic activation of gammaENaC in aldosterone‐infused rats. Am J Physiol Renal Physiol 303: F939‐F943, 2012.
 833.Ueda K, Fujiki K, Shirahige K, Gomez‐Sanchez CE, Fujita T, Nangaku M, Nagase M. Genome‐wide analysis of murine renal distal convoluted tubular cells for the target genes of mineralocorticoid receptor. Biochem Biophys Res Commun 445: 132‐137, 2014.
 834.Ulick S. Stereospecificity in the metabolism of aldosterone in man. J Biol Chem 236: 680‐684, 1961.
 835.Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirez LC, Rauh W, Rosler A, Bradlow HL, New MI. A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab 49: 757‐764, 1979.
 836.Valinsky WC, Touyz RM, Shrier A. Aldosterone and ion channels. Vitam Horm 109: 105‐131, 2019.
 837.Vallet V, Chraibi A, Gaeggeler HP, Horisberger JD, Rossier BC. An epithelial serine protease activates the amiloride‐sensitive sodium channel. Nature 389: 607‐610, 1997.
 838.Vallon V, Eraly SA, Wikoff WR, Rieg T, Kaler G, Truong DM, Ahn SY, Mahapatra NR, Mahata SK, Gangoiti JA, Wu W, Barshop BA, Siuzdak G, Nigam SK. Organic anion transporter 3 contributes to the regulation of blood pressure. J Am Soc Nephrol 19: 1732‐1740, 2008.
 839.Vallon V, Rieg T. Regulation of renal NaCl and water transport by the ATP/UTP/P2Y2 receptor system. Am J Physiol Renal Physiol 301: F463‐F475, 2011.
 840.Vallon V, Unwin R, Inscho EW, Leipziger J, Kishore BK. Extracellular nucleotides and P2 receptors in renal function. Physiol Rev 100: 211‐269, 2020.
 841.Vanhaesebroeck B, Waterfield MD. Signaling by distinct classes of phosphoinositide 3‐kinases. Exp Cell Res 253: 239‐254, 1999.
 842.Várnai P, Petheö GL, Makara JK, Spät A. Electrophysiological study on the high K+ sensitivity of rat glomerulosa cells. Pflugers Arch 435: 429‐431, 1998.
 843.Vasquez MM, Castro R, Seidner SR, Henson BM, Ashton DJ, Mustafa SB. Induction of serum‐ and glucocorticoid‐induced kinase‐1 (SGK1) by cAMP regulates increases in alpha‐ENaC. J Cell Physiol 217: 632‐642, 2008.
 844.Vassileva I, Mountain C, Pollock DM. Functional role of ETB receptors in the renal medulla. Hypertension 41: 1359‐1363, 2003.
 845.Velázquez H, Bartiss A, Bernstein P, Ellison DH. Adrenal steroids stimulate thiazide‐sensitive NaCl transport by rat renal distal tubules. Am J Physiol 270: F211‐F219, 1996.
 846.Velázquez H, Ellison DH, Wright FS. Chloride‐dependent potassium secretion in early and late renal distal tubules. Am J Physiol 253: F555‐F562, 1987.
 847.Venema RC, Ju H, Venema VJ, Schieffer B, Harp JB, Ling BN, Eaton DC, Marrero MB. Angiotensin II‐induced association of phospholipase Cgamma1 with the G‐protein‐coupled AT1 receptor. J Biol Chem 273: 7703‐7708, 1998.
 848.Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: Role of pendrin in mineralocorticoid‐induced hypertension. Hypertension 42: 356‐362, 2003.
 849.Verlander JW, Moudy RM, Campbell WG, Cain BD, Wingo CS. Immunohistochemical localization of H‐K‐ATPase alpha(2c)‐subunit in rabbit kidney. Am J Physiol Renal Physiol 281: F357‐F365, 2001.
 850.Verrey F, Fakitsas P, Adam G, Staub O. Early transcriptional control of ENaC (de)ubiquitylation by aldosterone. Kidney Int 73: 691‐696, 2008.
 851.Verrey F, Kraehenbuhl JP, Rossier BC. Aldosterone induces a rapid increase in the rate of Na,K‐ATPase gene transcription in cultured kidney cells. Mol Endocrinol 3: 1369‐1376, 1989.
 852.Verrey F, Schaerer E, Zoerkler P, Paccolat MP, Geering K, Kraehenbuhl JP, Rossier BC. Regulation by aldosterone of Na+,K+‐ATPase mRNAs, protein synthesis, and sodium transport in cultured kidney cells. J Cell Biol 104: 1231‐1237, 1987.
 853.Viengchareun S, Le MD, Martinerie L, Munier M, Pascual‐Le TL, Lombes M. The mineralocorticoid receptor: Insights into its molecular and (patho)physiological biology. Nucl Recept Signal 5: e012, 2007.
 854.Vitari AC, Deak M, Morrice NA, Alessi DR. The WNK1 and WNK4 protein kinases that are mutated in Gordon's hypertension syndrome phosphorylate and activate SPAK and OSR1 protein kinases. Biochem J 391: 17‐24, 2005.
 855.Vitellius G, Trabado S, Bouligand J, Delemer B, Lombes M. Pathophysiology of glucocorticoid signaling. Ann Endocrinol (Paris) 79: 98‐106, 2018.
 856.Voilley N, Lingueglia E, Champigny G, Mattéi MG, Waldmann R, Lazdunski M, Barbry P. The lung amiloride‐sensitive Na+ channel: Biophysical properties, pharmacology, ontogenesis, and molecular cloning. Proc Natl Acad Sci U S A 91: 247‐251, 1994.
 857.Volk KA, Sigmund RD, Snyder PM, McDonald FJ, Welsh MJ, Stokes JB. rENaC is the predominant Na+ channel in the apical membrane of the rat renal inner medullary collecting duct. J Clin Invest 96: 2748‐2757, 1995.
 858.Volpe M, Rubattu S, Gigante B, Ganten D, Porcellini A, Russo R, Romano M, Enea I, Lee MA, Trimarco B. Regulation of aldosterone biosynthesis by adrenal renin is mediated through AT1 receptors in renin transgenic rats. Circ Res 77: 73‐79, 1995.
 859.Vuagniaux G, Vallet V, Jaeger NF, Hummler E, Rossier BC. Synergistic activation of ENaC by three membrane‐bound channel‐activating serine proteases (mCAP1, mCAP2, and mCAP3) and serum‐ and glucocorticoid‐regulated kinase (Sgk1) in Xenopus oocytes. J Gen Physiol 120: 191‐201, 2002.
 860.Wade JB, O'Neil RG, Pryor JL, Boulpaep EL. Modulation of cell membrane area in renal collecting tubules by corticosteroid hormones. J Cell Biol 81: 439‐445, 1979.
 861.Wagner CA, Ott M, Klingel K, Beck S, Melzig J, Friedrich B, Wild KN, Broer S, Moschen I, Albers A, Waldegger S, Tummler B, Egan ME, Geibel JP, Kandolf R, Lang F. Effects of the serine/threonine kinase SGK1 on the epithelial Na(+) channel (ENaC) and CFTR: Implications for cystic fibrosis. Cell Physiol Biochem 11: 209‐218, 2001.
 862.Wald H, Goldstein O, Asher C, Yagil Y, Garty H. Aldosterone induction and epithelial distribution of CHIF. Am J Physiol 271: F322‐F329, 1996.
 863.Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M. Molecular cloning and functional expression of a novel amiloride‐sensitive Na+ channel. J Biol Chem 270: 27411‐27414, 1995.
 864.Wall SM, Mehta P, DuBose TD Jr. Dietary K+ restriction upregulates total and Sch‐28080‐sensitive bicarbonate absorption in rat tIMCD. Am J Physiol 275: F543‐F549, 1998.
 865.Wall SM, Truong AV, DuBose TD Jr. H(+)‐K(+)‐ATPase mediates net acid secretion in rat terminal inner medullary collecting duct. Am J Physiol 271: F1037‐F1044, 1996.
 866.Wan N, Rahman A, Nishiyama A. Esaxerenone, a novel nonsteroidal mineralocorticoid receptor blocker (MRB) in hypertension and chronic kidney disease. J Hum Hypertens 35: 148‐156, 2021.
 867.Wang H, Huang BS, Leenen FH. Brain sodium channels and ouabainlike compounds mediate central aldosterone‐induced hypertension. Am J Physiol Heart Circ Physiol 285: H2516‐H2523, 2003.
 868.Wang HX, Yang H, Han QY, Li N, Jiang X, Tian C, Du J, Li HH. NADPH oxidases mediate a cellular “memory” of angiotensin II stress in hypertensive cardiac hypertrophy. Free Radic Biol Med 65: 897‐907, 2013.
 869.Wang MX, Cuevas CA, Su XT, Wu P, Gao ZX, Lin DH, McCormick JA, Yang CL, Wang WH, Ellison DH. Potassium intake modulates the thiazide‐sensitive sodium‐chloride cotransporter (NCC) activity via the Kir4.1 potassium channel. Kidney Int 93: 893‐902, 2018.
 870.Wang Q, Maillard M, Schibler U, Burnier M, Gachon F. Cardiac hypertrophy, low blood pressure, and low aldosterone levels in mice devoid of the three circadian PAR bZip transcription factors DBP, HLF, and TEF. Am J Physiol Regul Integr Comp Physiol 299: R1013‐R1019, 2010.
 871.Wang WH, Giebisch G. Regulation of potassium (K) handling in the renal collecting duct. Pflugers Arch 458: 157‐168, 2009.
 872.Wang XY, Masilamani S, Nielsen J, Kwon TH, Brooks HL, Nielsen S, Knepper MA. The renal thiazide‐sensitive Na‐Cl cotransporter as mediator of the aldosterone‐escape phenomenon. J Clin Invest 108: 215‐222, 2001.
 873.Warnock DG, Kusche‐Vihrog K, Tarjus A, Sheng S, Oberleithner H, Kleyman TR, Jaisser F. Blood pressure and amiloride‐sensitive sodium channels in vascular and renal cells. Nat Rev Nephrol 10: 146‐157, 2014.
 874.Watts BA III, George T, Good DW. Aldosterone inhibits apical NHE3 and HCO3− absorption via a nongenomic ERK‐dependent pathway in medullary thick ascending limb. Am J Physiol Renal Physiol 291: F1005‐F1013, 2006.
 875.Webb DJ, Monge JC, Rabelink TJ, Yanagisawa M. Endothelin: New discoveries and rapid progress in the clinic. Trends Pharmacol Sci 19: 5‐8, 1998.
 876.Webster MK, Goya L, Ge Y, Maiyar AC, Firestone GL. Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol 13: 2031‐2040, 1993.
 877.Wehling M, Spes CH, Win N, Janson CP, Schmidt BM, Theisen K, Christ M. Rapid cardiovascular action of aldosterone in man. J Clin Endocrinol Metab 83: 3517‐3522, 1998.
 878.Wei Y, Whaley‐Connell AT, Habibi J, Rehmer J, Rehmer N, Patel K, Hayden M, DeMarco V, Ferrario CM, Ibdah JA, Sowers JR. Mineralocorticoid receptor antagonism attenuates vascular apoptosis and injury via rescuing protein kinase B activation. Hypertension 53: 158‐165, 2009.
 879.Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: Precision and plasticity via allostery. Nat Rev Mol Cell Biol 18: 159‐174, 2017.
 880.Weiner ID. Endocrine and hypertensive disorders of potassium regulation: Primary aldosteronism. Semin Nephrol 33: 265‐276, 2013.
 881.Weiner ID, Verlander JW. Ammonia transporters and their role in acid‐base balance. Physiol Rev 97: 465‐494, 2017.
 882.Weiner ID, Wingo CS. Endocrine causes of hypertension ‐ aldosterone. In: Freehally J, Johnson RJ, Floege J, editors. Comprehensive Clinical Nephrology. St. Louis: Saunders, 2014, p. 469‐476.
 883.Weinstein AM. Potassium excretion during antinatriuresis: Perspective from a distal nephron model. Am J Physiol Renal Physiol 302: F658‐F673, 2012.
 884.Welch AK, Lynch IJ, Gumz ML, Cain BD, Wingo CS. Aldosterone alters the chromatin structure of the murine endothelin‐1 gene. Life Sci 159: 121‐126, 2016.
 885.Weldon SM, Brown NF. Inhibitors of aldosterone synthase. Vitam Horm 109: 211‐239, 2019.
 886.Welling PA. Regulation of renal potassium secretion: Molecular mechanisms. Semin Nephrol 33: 215‐228, 2013.
 887.Welling PA. Rare mutations in renal sodium and potassium transporter genes exhibit impaired transport function. Curr Opin Nephrol Hypertens 23: 1‐8, 2014.
 888.Welling PA. Roles and regulation of renal K channels. Annu Rev Physiol 78: 415‐435, 2016.
 889.Welling PA, Ho K. A comprehensive guide to the ROMK potassium channel: Form and function in health and disease. Am J Physiol Renal Physiol 297: F849‐F863, 2009.
 890.Wen D, Cornelius RJ, Sansom SC. Interacting influence of diuretics and diet on BK channel‐regulated K homeostasis. Curr Opin Pharmacol 15: 28‐32, 2014.
 891.Wen D, Cornelius RJ, Yuan Y, Sansom SC. Regulation of BK‐α expression in the distal nephron by aldosterone and urine pH. Am J Physiol Renal Physiol 305: F463‐F476, 2013.
 892.Wendler A, Albrecht C, Wehling M. Nongenomic actions of aldosterone and progesterone revisited. Steroids 77: 1002‐1006, 2012.
 893.White PC. 11beta‐hydroxysteroid dehydrogenase and its role in the syndrome of apparent mineralocorticoid excess. Am J Med Sci 322: 308‐315, 2001.
 894.Whitman M, Kaplan DR, Schaffhausen B, Cantley L, Roberts TM. Association of phosphatidylinositol kinase activity with polyoma middle‐T competent for transformation. Nature 315: 239‐242, 1985.
 895.Wichmann L, Vowinkel KS, Perniss A, Manzini I, Althaus M. Incorporation of the delta‐subunit into the epithelial sodium channel (ENaC) generates protease‐resistant ENaCs in Xenopus laevis. J Biol Chem 293: 6647‐6658, 2018.
 896.Wickert L, Selbig J, Watzka M, Stoffel‐Wagner B, Schramm J, Bidlingmaier F, Ludwig M. Differential mRNA expression of the two mineralocorticoid receptor splice variants within the human brain: Structure analysis of their different DNA binding domains. J Neuroendocrinol 12: 867‐873, 2000.
 897.Wildman SS, Kang ES, King BF. ENaC, renal sodium excretion and extracellular ATP. Purinergic Signal 5: 481‐489, 2009.
 898.Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, Ford I, Cruickshank JK, Caulfield MJ, Salsbury J, Mackenzie I, Padmanabhan S, Brown MJ, British Hypertension Society's PATHWAY Studies Group. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug‐resistant hypertension (PATHWAY‐2): A randomised, double‐blind, crossover trial. Lancet 386: 2059‐2068, 2015.
 899.Williams B, MacDonald TM, Morant SV, Webb DJ, Sever P, McInnes GT, Ford I, Cruickshank JK, Caulfield MJ, Padmanabhan S, Mackenzie IS, Salsbury J, Brown MJ. Endocrine and haemodynamic changes in resistant hypertension, and blood pressure responses to spironolactone or amiloride: The PATHWAY‐2 mechanisms substudies. Lancet Diabetes Endocrinol 6: 464‐475, 2018.
 900.Williams GH. Aldosterone biosynthesis, regulation, and classical mechanism of action. Heart Fail Rev 10: 7‐13, 2005.
 901.Wilson FH, Disse‐Nicodeme S, Choate KA, Ishikawa K, Nelson‐Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science 293: 1107‐1112, 2001.
 902.Wilson FH, Kahle KT, Sabath E, Lalioti MD, Rapson AK, Hoover RS, Hebert SC, Gamba G, Lifton RP. Molecular pathogenesis of inherited hypertension with hyperkalemia: The Na‐Cl cotransporter is inhibited by wild‐type but not mutant WNK4. Proc Natl Acad Sci U S A 100: 680‐684, 2003.
 903.Wingo CS. Potassium secretion by the cortical collecting tubule: Effect of Cl gradients and ouabain. Am J Physiol 256: F306‐F313, 1989.
 904.Wingo CS. Reversible chloride‐dependent potassium flux across the rabbit cortical collecting tubule. Am J Physiol 256: F697‐F704, 1989.
 905.Wingo CS, Cain BD. The renal H‐K‐ATPase: Physiological significance and role in potassium homeostasis. Annu Rev Physiol 55: 323‐347, 1993.
 906.Wingo CS, Kokko JP, Jacobson HR. Effects of in vitro aldosterone on the rabbit cortical collecting tubule. Kidney Int 28: 51‐57, 1985.
 907.Wingo CS, Madsen KM, Smolka A, Tisher CC. H‐K‐ATPase immunoreactivity in cortical and outer medullary collecting duct. Kidney Int 38: 985‐990, 1990.
 908.Wingo CS, Seldin DW, Kokko JP, Jacobson HR. Dietary modulation of active potassium secretion in the cortical collecting tubule of adrenalectomized rabbits. J Clin Invest 70: 579‐586, 1982.
 909.Winter C, Kampik NB, Vedovelli L, Rothenberger F, Paunescu TG, Stehberger PA, Brown D, John H, Wagner CA. Aldosterone stimulates vacuolar H(+)‐ATPase activity in renal acid‐secretory intercalated cells mainly via a protein kinase C‐dependent pathway. Am J Physiol Cell Physiol 301: C1251‐C1261, 2011.
 910.Winter C, Schulz N, Giebisch G, Geibel JP, Wagner CA. Nongenomic stimulation of vacuolar H+‐ATPases in intercalated renal tubule cells by aldosterone. Proc Natl Acad Sci U S A 101: 2636‐2641, 2004.
 911.Witham MD, Gillespie ND, Struthers AD. Hyperkalemia after the publication of RALES. N Engl J Med 351: 2448‐2450; author reply 2448‐2450, 2004.
 912.Woda CB, Bragin A, Kleyman TR, Satlin LM. Flow‐dependent K+ secretion in the cortical collecting duct is mediated by a maxi‐K channel. Am J Physiol Renal Physiol 280: F786‐F793, 2001.
 913.Wong S, Brennan FE, Young MJ, Fuller PJ, Cole TJ. A direct effect of aldosterone on endothelin‐1 gene expression in vivo. Endocrinology 148: 1511‐1517, 2007.
 914.Wright FS, Knox FG, Howards SS, Berliner RW. Reduced sodium reabsorption by the proximal tubule of Doca‐escaped dogs. Am J Physiol 216: 869‐875, 1969.
 915.Wu H, Chen L, Zhou Q, Zhang W. AF17 facilitates Dot1a nuclear export and upregulates ENaC‐mediated Na+ transport in renal collecting duct cells. PLoS One 6: e27429, 2011.
 916.Wu P, Gao ZX, Su XT, Wang MX, Wang WH, Lin DH. Kir4.1/Kir5.1 activity is essential for dietary sodium intake‐induced modulation of Na‐Cl cotransporter. J Am Soc Nephrol 30: 216‐227, 2019.
 917.Wu P, Gao ZX, Zhang DD, Su XT, Wang WH, Lin DH. Deletion of Kir5.1 impairs renal ability to excrete potassium during increased dietary potassium intake. J Am Soc Nephrol 30: 1425‐1438, 2019.
 918.Wu R, Dang F, Li P, Wang P, Xu Q, Liu Z, Li Y, Wu Y, Chen Y, Liu Y. The circadian protein Period2 suppresses mTORC1 activity via recruiting Tsc1 to mTORC1 complex. Cell Metab 29 (3): 653‐667, 2019.
 919.Wynne BM, Zou L, Linck V, Hoover RS, Ma HP, Eaton DC. Regulation of lung epithelial sodium channels by cytokines and chemokines. Front Immunol 8: 766, 2017.
 920.Xia SL, Noh SH, Verlander JW, Gelband CH, Wingo CS. Apical membrane of native OMCD(i) cells has nonselective cation channels. Am J Physiol Renal Physiol 281: F48‐F55, 2001.
 921.Yamamura H, Ugawa S, Ueda T, Nagao M, Joh T, Shimada S. Epithelial Na+ channel delta subunit is an acid sensor in the human oesophagus. Eur J Pharmacol 600: 32‐36, 2008.
 922.Yamamura H, Ugawa S, Ueda T, Nagao M, Shimada S. Protons activate the delta‐subunit of the epithelial Na+ channel in humans. J Biol Chem 279: 12529‐12534, 2004.
 923.Yamamura H, Ugawa S, Ueda T, Shimada S. Expression analysis of the epithelial Na+ channel delta subunit in human melanoma G‐361 cells. Biochem Biophys Res Commun 366: 489‐492, 2008.
 924.Yanagisawa M, Inoue A, Takuwa Y, Mitsui Y, Kobayashi M, Masaki T. The human preproendothelin‐1 gene: Possible regulation by endothelial phosphoinositide turnover signaling. J Cardiovasc Pharmacol 13 (Suppl 5): S13‐S17; discussion S18.: S13‐S17, 1989.
 925.Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332: 411‐415, 1988.
 926.Yang CL, Angell J, Mitchell R, Ellison DH. WNK kinases regulate thiazide‐sensitive Na‐Cl cotransport. J Clin Invest 111: 1039‐1045, 2003.
 927.Yang CT, Kor CT, Hsieh YP. Long‐term effects of spironolactone on kidney function and hyperkalemia‐associated hospitalization in patients with chronic kidney disease. J Clin Med 7: 459, 2018.
 928.Yang J, Fuller PJ. Interactions of the mineralocorticoid receptor – within and without. Mol Cell Endocrinol 350: 196‐205, 2012.
 929.Yang J, Fuller PJ, Morgan J, Shibata H, McDonnell DP, Clyne CD, Young MJ. Use of phage display to identify novel mineralocorticoid receptor‐interacting proteins. Mol Endocrinol 28: 1571‐1584, 2014.
 930.Yang J, Young MJ. The mineralocorticoid receptor and its coregulators. J Mol Endocrinol 43: 53‐64, 2009.
 931.Yang L, Frindt G, Xu Y, Uchida S, Palmer LG. Aldosterone‐dependent and ‐independent regulation of Na(+) and K(+) excretion and ENaC in mouse kidneys. Am J Physiol Renal Physiol 319: F323‐f334, 2020.
 932.Yang LM, Rinke R, Korbmacher C. Stimulation of the epithelial sodium channel (ENaC) by cAMP involves putative ERK phosphorylation sites in the C termini of the channel's beta‐ and gamma‐subunit. J Biol Chem 281: 9859‐9868, 2006.
 933.Yang P, Shen W, Chen X, Zhu D, Xu X, Wu T, Xu G, Wu Q. Comparative efficacy and safety of mineralocorticoid receptor antagonists in heart failure: A network meta‐analysis of randomized controlled trials. Heart Fail Rev 24: 637‐646, 2019.
 934.Yokota K, Shibata H, Kobayashi S, Suda N, Murai A, Kurihara I, Saito I, Saruta T. Proteasome‐mediated mineralocorticoid receptor degradation attenuates transcriptional response to aldosterone. Endocr Res 30: 611‐616, 2004.
 935.Yokota K, Shibata H, Kurihara I, Kobayashi S, Suda N, Murai‐Takeda A, Saito I, Kitagawa H, Kato S, Saruta T, Itoh H. Coactivation of the N‐terminal transactivation of mineralocorticoid receptor by Ubc9. J Biol Chem 282: 1998‐2010, 2007.
 936.Yokota N, Bruneau BG, Kuroski de Bold ML, de Bold AJ. Atrial natriuretic factor significantly contributes to the mineralocorticoid escape phenomenon. Evidence for a guanylate cyclase‐mediated pathway. J Clin Invest 94: 1938‐1946, 1994.
 937.Yoo D, Fang L, Mason A, Kim BY, Welling PA. A phosphorylation‐dependent export structure in ROMK (Kir 1.1) channel overrides an endoplasmic reticulum localization signal. J Biol Chem 280: 35281‐35289, 2005.
 938.Yoo D, Flagg TP, Olsen O, Raghuram V, Foskett JK, Welling PA. Assembly and trafficking of a multiprotein ROMK (Kir 1.1) channel complex by PDZ interactions. J Biol Chem 279: 6863‐6873, 2004.
 939.Yoshimoto T, Hirata Y. Aldosterone as a cardiovascular risk hormone. Endocr J 54: 359‐370, 2007.
 940.Youmans SJ, Barry CR. Effects of valinomycin on vanadate‐sensitive and vanadate‐resistant H+ transport in vesicles from turtle bladder epithelium: Evidence for a K+/H+ exchanger. Biochem Biophys Res Commun 176: 1285‐1290, 1991.
 941.Youmans SJ, Barry CR. Physiological role for vanadate‐inhibitable active H+ transport: A new model for distal urinary acidification. Biochem Biophys Res Commun 180: 1505‐1512, 1991.
 942.Youmans SJ, Barry CR. Bafilomycin A1 at nanomolar concentrations saturably inhibits a portion of turtle bladder acidification current. J Exp Biol 204: 2911‐2919, 2001.
 943.Youn JH. Gut sensing of potassium intake and its role in potassium homeostasis. Semin Nephrol 33: 248‐256, 2013.
 944.Youn JH, McDonough AA. Recent advances in understanding integrative control of potassium homeostasis. Annu Rev Physiol 71: 381‐401, 2009.
 945.Young DB. Relationship between plasma potassium concentration and renal potassium excretion. Am J Physiol 242: F599‐F603, 1982.
 946.Young DB. Analysis of long‐term potassium regulation. Endocr Rev 6: 24‐44, 1985.
 947.Young DB. Quantitative analysis of aldosterone's role in potassium regulation. Am J Physiol 255: F811‐F822, 1988.
 948.Young DB, Guyton AC. Steady state aldosterone dose‐response relationships. Circ Res 40: 138‐142, 1977.
 949.Young DB, Jackson TE. Effects of aldosterone on potassium distribution. Am J Physiol 243: R526‐R530, 1982.
 950.Young DB, Jackson TE, Tipayamontri U, Scott RC. Effects of sodium intake on steady‐state potassium excretion. Am J Physiol 246: F772‐F778, 1984.
 951.Young DB, Lin H, McCabe RD. Potassium's cardiovascular protective mechanisms. Am J Physiol 268: R825‐R837, 1995.
 952.Young DB, Ma G. Vascular protective effects of potassium. Semin Nephrol 19: 477‐486, 1999.
 953.Young DB, McCaa RE, Pan YJ, Guyton AC. The natriuretic and hypotensive effects of potassium. Circ Res 38: 84‐89, 1976.
 954.Young DB, Paulsen AW. Interrelated effects of aldosterone and plasma potassium on potassium excretion. Am J Physiol 244: F28‐F34, 1983.
 955.Yu L, Helms MN, Yue Q, Eaton DC. Single‐channel analysis of functional epithelial sodium channel (ENaC) stability at the apical membrane of A6 distal kidney cells. Am J Physiol Renal Physiol 295: F1519‐F1527, 2008.
 956.Yuan Y, Zhang A, Huang S, Ding G, Chen R. A PPARgamma agonist inhibits aldosterone‐induced mesangial cell proliferation by blocking ROS‐dependent EGFR intracellular signaling. Am J Physiol Renal Physiol 300: F393‐F402, 2011.
 957.Yue G, Malik B, Yue G, Eaton DC. Phosphatidylinositol 4,5‐bisphosphate (PIP2) stimulates epithelial sodium channel activity in A6 cells. J Biol Chem 277: 11965‐11969, 2002.
 958.Zachar RM, Skjodt K, Marcussen N, Walter S, Toft A, Nielsen MR, Jensen BL, Svenningsen P. The epithelial sodium channel gamma‐subunit is processed proteolytically in human kidney. J Am Soc Nephrol 26: 95‐106, 2015.
 959.Zaika O, Palygin O, Tomilin V, Mamenko M, Staruschenko A, Pochynyuk O. Insulin and IGF‐1 activate Kir4.1/5.1 channels in cortical collecting duct principal cells to control basolateral membrane voltage. Am J Physiol Renal Physiol 310: F311‐F321, 2016.
 960.Zeidel ML. Renal actions of atrial natriuretic peptide: Regulation of collecting duct sodium and water transport. Annu Rev Physiol 52: 747‐759, 1990.
 961.Zeng F, Singh AB, Harris RC. The role of the EGF family of ligands and receptors in renal development, physiology and pathophysiology. Exp Cell Res 315: 602‐610, 2009.
 962.Zeniya M, Sohara E, Kita S, Iwamoto T, Susa K, Mori T, Oi K, Chiga M, Takahashi D, Yang SS, Lin SH, Rai T, Sasaki S, Uchida S. Dietary salt intake regulates WNK3‐SPAK‐NKCC1 phosphorylation cascade in mouse aorta through angiotensin II. Hypertension 62: 872‐878, 2013.
 963.Zennaro MC, Caprio M, Feve B. Mineralocorticoid receptors in the metabolic syndrome. Trends Endocrinol Metab 20: 444‐451, 2009.
 964.Zennaro MC, Souque A, Viengchareun S, Poisson E, Lombes M. A new human MR splice variant is a ligand‐independent transactivator modulating corticosteroid action. Mol Endocrinol 15: 1586‐1598, 2001.
 965.Zhang DD, Duan XP, Xiao Y, Wu P, Gao ZX, Wang WH, Lin DH. Deletion of renal Nedd4‐2 abolishes the effect of high sodium intake (HS) on Kir4.1, ENaC, and NCC and causes hypokalemia during high HS. Am J Physiol Renal Physiol 320: F883‐F896, 2021.
 966.Zhang W, Xia X, Jalal DI, Kuncewicz T, Xu W, Lesage GD, Kone BC. Aldosterone‐sensitive repression of ENaCalpha transcription by a histone H3 lysine‐79 methyltransferase. Am J Physiol Cell Physiol 290: C936‐C946, 2006.
 967.Zhang W, Xia X, Reisenauer MR, Hemenway CS, Kone BC. Dot1a‐AF9 complex mediates histone H3 Lys‐79 hypermethylation and repression of ENaCalpha in an aldosterone‐sensitive manner. J Biol Chem 281: 18059‐18068, 2006.
 968.Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, Kuhl D, Vallon V, Kone BC. Aldosterone‐induced Sgk1 relieves Dot1a‐Af9‐mediated transcriptional repression of epithelial Na+ channel alpha. J Clin Invest 117: 773‐783, 2007.
 969.Zhang X, Zhou Q, Chen L, Berger S, Wu H, Xiao Z, Pearce D, Zhou X, Zhang W. Mineralocorticoid receptor antagonizes Dot1a‐Af9 complex to increase alphaENaC transcription. Am J Physiol Renal Physiol 305: F1436‐F1444, 2013.
 970.Zhao M, Valamanesh F, Celerier I, Savoldelli M, Jonet L, Jeanny JC, Jaisser F, Farman N, Behar‐Cohen F. The neuroretina is a novel mineralocorticoid target: Aldosterone up‐regulates ion and water channels in Müller glial cells. FASEB J 24: 3405‐3415, 2010.
 971.Zhou X, Xia SL, Wingo CS. Chloride transport by the rabbit cortical collecting duct: Dependence on H,K‐ATPase. J Am Soc Nephrol 9: 2194‐2202, 1998.
 972.Ziera T, Irlbacher H, Fromm A, Latouche C, Krug SM, Fromm M, Jaisser F, Borden SA. Cnksr3 is a direct mineralocorticoid receptor target gene and plays a key role in the regulation of the epithelial sodium channel. FASEB J 23: 3936‐3946, 2009.
 973.Zipser RD, LeBoff M, Meidar V, Duke R, Horton R. Deoxycorticosterone and aldosterone clearance and binding in normal and hypertensive man. J Clin Endocrinol Metab 51: 1085‐1088, 1980.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jermaine G. Johnston, Amanda K. Welch, Brian D. Cain, Peter P. Sayeski, Michelle L. Gumz, Charles S. Wingo. Aldosterone: Renal Action and Physiological Effects. Compr Physiol 2023, 13: 4409-4491. doi: 10.1002/cphy.c190043