Comprehensive Physiology Wiley Online Library

Function and Regulation of the Epithelial Na+ Channel ENaC

Full Article on Wiley Online Library



Abstract

The Epithelial Na+ Channel, ENaC, comprised of 3 subunits (αβγ, or sometimes δβγENaC), plays a critical role in regulating salt and fluid homeostasis in the body. It regulates fluid reabsorption into the blood stream from the kidney to control blood volume and pressure, fluid absorption in the lung to control alveolar fluid clearance at birth and maintenance of normal airway surface liquid throughout life, and fluid absorption in the distal colon and other epithelial tissues. Moreover, recent studies have also revealed a role for sodium movement via ENaC in nonepithelial cells/tissues, such as endothelial cells in blood vessels and neurons. Over the past 25 years, major advances have been made in our understanding of ENaC structure, function, regulation, and role in human disease. These include the recently solved three‐dimensional structure of ENaC, ENaC function in various tissues, and mutations in ENaC that cause a hereditary form of hypertension (Liddle syndrome), salt‐wasting hypotension (PHA1), or polymorphism in ENaC that contributes to other diseases (such as cystic fibrosis). Moreover, great strides have been made in deciphering the regulation of ENaC by hormones (e.g., the mineralocorticoid aldosterone, glucocorticoids, vasopressin), ions (e.g., Na+), proteins (e.g., the ubiquitin‐protein ligase NEDD4‐2, the kinases SGK1, AKT, AMPK, WNKs & mTORC2, and proteases), and posttranslational modifications [e.g., (de)ubiquitylation, glycosylation, phosphorylation, acetylation, palmitoylation]. Characterization of ENaC structure, function, regulation, and role in human disease, including using animal models, are described in this article, with a special emphasis on recent advances in the field. © 2021 American Physiological Society. Compr Physiol 11:2017‐2045, 2021.

Figure 1. Figure 1. ENaC structure and stoichiometry. Cryo‐EM map of inactive αβγENaC, with each subunit lacking its intracellular C‐terminal region, and bearing inactivating mutations in its ectodomain (ΔENaC). Two Fab fragments (Fv 7B1&10D4) are attached to the α and β subunits to stabilize the complex, which is collectively called the ΔENaC‐7B1/10D4 complex. (A) The complex is viewed parallel (Left), and perpendicular (Right), to the plasma membrane. The α, β, and γ subunits are colored blue, red, and magenta, respectively. The 7B1 and 10D4 Fv densities are colored green and wheat, respectively. (B) Cartoon (ribbon diagram) representation of the ΔENaC‐7B1/10D4 complex viewed and colored as in (A). (C) Schematic secondary structure elements of the ENaC extracellular domain. Knuckle: cyan; Palm: yellow; Finger: purple; GRIP: blue; β‐ball: orange; Thumb: green. The dimensions of the complex and ΔENaC alone are indicated. Reproduced, with permission, from Noreng S, et al., 2018 251. Licenced under CC BY 4.0.
Figure 2. Figure 2. ENaC activation by proteases. (A) Un‐cleaved ENaC exhibits low channel activity (Left). The ectodomain of α and γ ENaC contain proteases cleavage sites (arrowheads), and upon their cleavage by Furin at the Golgi (black arrowheads), which releases an inhibitory track in αENaC, the channel becomes partially active (Middle). Once at the plasma membrane, a second extracellular protease (such as prostasin, Kallikrein, Matriptase, and others—green arrowhead) cleaves γENaC and releases a second inhibitory fragment, leading to full channel activation (Right). Modified, with permission, from Kleyman TR and Eaton DC, 2020 179. (B) Schematic representation of the mechanism of protease‐dependent gating in a single ENaC subunit. Removal of the protease‐sensitive segments of the GRIP domain (Left) induces conformational changes in the finger and thumb domains (Right), which is predicted to couple to ion channel gating through the wrist. Reproduced, with permission, from Noreng S, et al., 2018 251. Licenced under CC BY 4.0.
Figure 3. Figure 3. Regulation of ENaC by NEDD4‐2 and by ubiquitylation. (A) The ubiquitin ligase NEDD4‐2 (Nedd4‐2) binds, via its WW domains, to the PY motifs of the ENaC subunits, leading to ENaC ubiquitylation and endocytosis, hence reduced Na+ entry into cells. (B) Several kinases (activated by specific hormones or inflammation) phosphorylate Nedd4‐2, leading to binding of 14‐3‐3 proteins to the phosphorylated sites and thus impaired ability of Nedd4‐2 to bind ENaC and ubiquitylate it, causing ENaC retention at the plasma membrane and elevated Na+ influx. (C) Metabolic stress that activates AMPK leads to binding of β1‐Pix to 14‐3‐3, preventing 14‐3‐3 from blocking the access of Nedd4‐2 to ENaC, thus resulting in enhanced ENaC ubiquitylation and endocytosis. (D) Specific DUBs oppose the effect of Nedd4‐2 on ENaC by either deubiquitylating the channel at the plasma membrane (Usp‐45) or by deubiquitylating the channel in early/sorting endosomes after endocytosis (Uch‐L3, Usp8), leading to channel recycling back to the plasma membrane instead of its degradation by the lysosomes. (E) In Liddle syndrome, where the PY motif of β (or γ) ENaC is mutated or deleted, the ability of Nedd4‐2 to bind ENaC is impaired, resulting in channel retention at the cell surface and increased Na+ entry into cells.


Figure 1. ENaC structure and stoichiometry. Cryo‐EM map of inactive αβγENaC, with each subunit lacking its intracellular C‐terminal region, and bearing inactivating mutations in its ectodomain (ΔENaC). Two Fab fragments (Fv 7B1&10D4) are attached to the α and β subunits to stabilize the complex, which is collectively called the ΔENaC‐7B1/10D4 complex. (A) The complex is viewed parallel (Left), and perpendicular (Right), to the plasma membrane. The α, β, and γ subunits are colored blue, red, and magenta, respectively. The 7B1 and 10D4 Fv densities are colored green and wheat, respectively. (B) Cartoon (ribbon diagram) representation of the ΔENaC‐7B1/10D4 complex viewed and colored as in (A). (C) Schematic secondary structure elements of the ENaC extracellular domain. Knuckle: cyan; Palm: yellow; Finger: purple; GRIP: blue; β‐ball: orange; Thumb: green. The dimensions of the complex and ΔENaC alone are indicated. Reproduced, with permission, from Noreng S, et al., 2018 251. Licenced under CC BY 4.0.


Figure 2. ENaC activation by proteases. (A) Un‐cleaved ENaC exhibits low channel activity (Left). The ectodomain of α and γ ENaC contain proteases cleavage sites (arrowheads), and upon their cleavage by Furin at the Golgi (black arrowheads), which releases an inhibitory track in αENaC, the channel becomes partially active (Middle). Once at the plasma membrane, a second extracellular protease (such as prostasin, Kallikrein, Matriptase, and others—green arrowhead) cleaves γENaC and releases a second inhibitory fragment, leading to full channel activation (Right). Modified, with permission, from Kleyman TR and Eaton DC, 2020 179. (B) Schematic representation of the mechanism of protease‐dependent gating in a single ENaC subunit. Removal of the protease‐sensitive segments of the GRIP domain (Left) induces conformational changes in the finger and thumb domains (Right), which is predicted to couple to ion channel gating through the wrist. Reproduced, with permission, from Noreng S, et al., 2018 251. Licenced under CC BY 4.0.


Figure 3. Regulation of ENaC by NEDD4‐2 and by ubiquitylation. (A) The ubiquitin ligase NEDD4‐2 (Nedd4‐2) binds, via its WW domains, to the PY motifs of the ENaC subunits, leading to ENaC ubiquitylation and endocytosis, hence reduced Na+ entry into cells. (B) Several kinases (activated by specific hormones or inflammation) phosphorylate Nedd4‐2, leading to binding of 14‐3‐3 proteins to the phosphorylated sites and thus impaired ability of Nedd4‐2 to bind ENaC and ubiquitylate it, causing ENaC retention at the plasma membrane and elevated Na+ influx. (C) Metabolic stress that activates AMPK leads to binding of β1‐Pix to 14‐3‐3, preventing 14‐3‐3 from blocking the access of Nedd4‐2 to ENaC, thus resulting in enhanced ENaC ubiquitylation and endocytosis. (D) Specific DUBs oppose the effect of Nedd4‐2 on ENaC by either deubiquitylating the channel at the plasma membrane (Usp‐45) or by deubiquitylating the channel in early/sorting endosomes after endocytosis (Uch‐L3, Usp8), leading to channel recycling back to the plasma membrane instead of its degradation by the lysosomes. (E) In Liddle syndrome, where the PY motif of β (or γ) ENaC is mutated or deleted, the ability of Nedd4‐2 to bind ENaC is impaired, resulting in channel retention at the cell surface and increased Na+ entry into cells.
References
 1.Abriel H, Loffing J, Rebhun JF, Pratt JH, Schild L, Horisberger JD, Rotin D, Staub O. Defective regulation of the epithelial Na+ channel by Nedd4 in Liddle's syndrome. J Clin Invest 103: 667‐673, 1999.
 2.Ackermann TF, Boini KM, Beier N, Scholz W, Fuchss T, Lang F. EMD638683, a novel SGK inhibitor with antihypertensive potency. Cell Physiol Biochem 28: 137‐146, 2011.
 3.Adachi M, Tachibana K, Asakura Y, Abe S, Nakae J, Tajima T, Fujieda K. Compound heterozygous mutations in the gamma subunit gene of ENaC (1627delG and 1570‐1G→A) in one sporadic Japanese patient with a systemic form of pseudohypoaldosteronism type 1. J Clin Endocrinol Metab 86: 9‐12, 2001.
 4.Agrawal PB, Wang R, Li HL, Schmitz‐Abe K, Simone‐Roach C, Chen J, Shi J, Louie T, Sheng S, Towne MC, Brainson CF, Matthay MA, Kim CF, Bamshad M, Emond MJ, Gerard NP, Kleyman TR, Gerard C. The epithelial sodium channel is a modifier of the long‐term nonprogressive phenotype associated with F508del CFTR mutations. Am J Respir Cell Mol Biol 57: 711‐720, 2017.
 5.Alli AA, Bao HF, Alli AA, Aldrugh Y, Song JZ, Ma HP, Yu L, Al‐Khalili O, Eaton DC. Phosphatidylinositol phosphate‐dependent regulation of Xenopus ENaC by MARCKS protein. Am J Physiol Renal Physiol 303: F800‐F811, 2012.
 6.Alli AA, Bao HF, Liu BC, Yu L, Aldrugh S, Montgomery DS, Ma HP, Eaton DC. Calmodulin and CaMKII modulate ENaC activity by regulating the association of MARCKS and the cytoskeleton with the apical membrane. Am J Physiol Renal Physiol 309: F456‐F463, 2015.
 7.Almaca J, Kongsuphol P, Hieke B, Ousingsawat J, Viollet B, Schreiber R, Amaral MD, Kunzelmann K. AMPK controls epithelial Na(+) channels through Nedd4‐2 and causes an epithelial phenotype when mutated. Pflugers Arch 458: 713‐721, 2009.
 8.Al‐Qusairi L, Basquin D, Roy A, Stifanelli M, Rajaram RD, Debonneville A, Nita I, Maillard M, Loffing J, Subramanya AR, Staub O. Renal tubular SGK1 deficiency causes impaired K+ excretion via loss of regulation of NEDD4‐2/WNK1 and ENaC. Am J Physiol Renal Physiol 311: F330‐F342, 2016.
 9.Anand P, Puranik A, Aravamudan M, Venkatakrishnan AJ, Soundararajan V. SARS‐CoV‐2 strategically mimics proteolytic activation of human ENaC. Elife 9: e58603, 2020.
 10.Araki N, Umemura M, Miyagi Y, Yabana M, Miki Y, Tamura K, Uchino K, Aoki R, Goshima Y, Umemura S, Ishigami T. Expression, transcription, and possible antagonistic interaction of the human Nedd4L gene variant: Implications for essential hypertension. Hypertension 51: 773‐777, 2008.
 11.Arroyo JP, Lagnaz D, Ronzaud C, Vazquez N, Ko BS, Moddes L, Ruffieux‐Daidie D, Hausel P, Koesters R, Yang B, Stokes JB, Hoover RS, Gamba G, Staub O. Nedd4‐2 modulates renal Na+‐Cl− cotransporter via the aldosterone‐SGK1‐Nedd4‐2 pathway. J Am Soc Nephrol 22: 1707‐1719, 2011.
 12.Arroyo JP, Ronzaud C, Lagnaz D, Staub O, Gamba G. Aldosterone paradox: Differential regulation of ion transport in distal nephron. Physiology (Bethesda) 26: 115‐123, 2011.
 13.Asher C, Wald H, Rossier BC, Garty H. Aldosterone‐induced increase in the abundance of Na+ channel subunits. Am J Physiol 271: C605‐C611, 1996.
 14.Azad AK, Rauh R, Vermeulen F, Jaspers M, Korbmacher J, Boissier B, Bassinet L, Fichou Y, des Georges M, Stanke F, De Boeck K, Dupont L, Balascakova M, Hjelte L, Lebecque P, Radojkovic D, Castellani C, Schwartz M, Stuhrmann M, Schwarz M, Skalicka V, de Monestrol I, Girodon E, Ferec C, Claustres M, Tummler B, Cassiman JJ, Korbmacher C, Cuppens H. Mutations in the amiloride‐sensitive epithelial sodium channel in patients with cystic fibrosis‐like disease. Hum Mutat 30: 1093‐1103, 2009.
 15.Baconguis I, Bohlen CJ, Goehring A, Julius D, Gouaux E. X‐ray structure of acid‐sensing ion channel 1‐snake toxin complex reveals open state of a Na(+)‐selective channel. Cell 156: 717‐729, 2014.
 16.Barker PM, Nguyen MS, Gatzy JT, Grubb B, Norman H, Hummler E, Rossier B, Boucher RC, Koller B. Role of gammaENaC subunit in lung liquid clearance and electrolyte balance in newborn mice. Insights into perinatal adaptation and pseudohypoaldosteronism. J Clin Invest 102: 1634‐1640, 1998.
 17.Baxendale‐Cox LM, Duncan RL. Insulin increases sodium (Na+) channel density in A6 epithelia: Implications for expression of hypertension. Biol Res Nurs 1: 20‐29, 1999.
 18.Berthiaume Y, Matthay MA. Alveolar edema fluid clearance and acute lung injury. Respir Physiol Neurobiol 159: 350‐359, 2007.
 19.Bertog M, Cuffe JE, Pradervand S, Hummler E, Hartner A, Porst M, Hilgers KF, Rossier BC, Korbmacher C. Aldosterone responsiveness of the epithelial sodium channel (ENaC) in colon is increased in a mouse model for Liddle's syndrome. J Physiol 586: 459‐475, 2008.
 20.Bhalla V, Daidie D, Li H, Pao AC, LaGrange LP, Wang J, Vandewalle A, Stockand JD, Staub O, Pearce D. Serum‐ and glucocorticoid‐regulated kinase 1 regulates ubiquitin ligase neural precursor cell‐expressed, developmentally down‐regulated protein 4‐2 by inducing interaction with 14‐3‐3. Mol Endocrinol 19: 3073‐3084, 2005.
 21.Bhalla V, Hallows KR. Mechanisms of ENaC regulation and clinical implications. J Am Soc Nephrol 19: 1845‐1854, 2008.
 22.Biasio W, Chang T, McIntosh CJ, McDonald FJ. Identification of Murr1 as a regulator of the human delta epithelial sodium channel. J Biol Chem 279: 5429‐5434, 2003.
 23.Blazer‐Yost BL, Esterman MA, Vlahos CJ. Insulin‐stimulated trafficking of ENaC in renal cells requires PI 3‐kinase activity. Am J Physiol Cell Physiol 284: C1645‐C1653, 2003.
 24.Blazer‐Yost BL, Liu X, Helman SI. Hormonal regulation of ENaCs: Insulin and aldosterone. Am J Physiol 274: C1373‐C1379, 1998.
 25.Blobner BM, Wang XP, Kashlan OB. Conserved cysteines in the finger domain of the epithelial Na(+) channel alpha and gamma subunits are proximal to the dynamic finger‐thumb domain interface. J Biol Chem 293: 4928‐4939, 2018.
 26.Boase NA, Rychkov GY, Townley SL, Dinudom A, Candi E, Voss AK, Tsoutsman T, Semsarian C, Melino G, Koentgen F, Cook DI, Kumar S. Respiratory distress and perinatal lethality in Nedd4‐2‐deficient mice. Nat Commun 2: 287, 2011.
 27.Bohnert BN, Menacher M, Janessa A, Worn M, Schork A, Daiminger S, Kalbacher H, Haring HU, Daniel C, Amann K, Sure F, Bertog M, Haerteis S, Korbmacher C, Artunc F. Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. Kidney Int 93: 159‐172, 2018.
 28.Boiko N, Kucher V, Stockand JD. Pseudohypoaldosteronism type 1 and Liddle's syndrome mutations that affect the single‐channel properties of the epithelial Na+ channel. Physiol Rep 3: e12600, 2015.
 29.Bonny O, Chraibi A, Loffing J, Jaeger NF, Grunder S, Horisberger JD, Rossier BC. Functional expression of a pseudohypoaldosteronism type I mutated epithelial Na+ channel lacking the pore‐forming region of its alpha subunit. J Clin Invest 104: 967‐974, 1999.
 30.Boscardin E, Alijevic O, Hummler E, Frateschi S, Kellenberger S. The function and regulation of acid‐sensing ion channels (ASICs) and the epithelial Na(+) channel (ENaC): IUPHAR Review 19. Br J Pharmacol 173: 2671‐2701, 2016.
 31.Boscardin E, Perrier R, Sergi C, Maillard M, Loffing J, Loffing‐Cueni D, Koesters R, Rossier BC, Hummler E. Severe hyperkalemia is rescued by low‐potassium diet in renal betaENaC‐deficient mice. Pflugers Arch 469: 1387‐1399, 2017.
 32.Boscardin E, Perrier R, Sergi C, Maillard MP, Loffing J, Loffing‐Cueni D, Koesters R, Rossier BC, Hummler E. Plasma potassium determines NCC abundance in adult kidney‐specific gammaENaC knockout. J Am Soc Nephrol 29: 977‐990, 2018.
 33.Botero‐Velez M, Curtis JJ, Warnock DG. Brief report: Liddle's syndrome revisited—a disorder of sodium reabsorption in the distal tubule. N Engl J Med 330: 178‐181, 1994.
 34.Boucher RC. Airway surface dehydration in cystic fibrosis: Pathogenesis and therapy. Annu Rev Med 58: 157‐170, 2007.
 35.Boulkroun S, Ruffieux‐Daidie D, Vitagliano JJ, Poirot O, Charles RP, Lagnaz D, Firsov D, Kellenberger S, Staub O. Vasopressin‐inducible ubiquitin‐specific protease 10 increases ENaC cell surface expression by deubiquitylating and stabilizing sorting nexin 3. Am J Physiol Renal Physiol 295: F889‐F900, 2008.
 36.Brand JD, Lazrak A, Trombley JE, Shei RJ, Adewale AT, Tipper JL, Yu Z, Ashtekar AR, Rowe SM, Matalon S, Harrod KS. Influenza‐mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight 3: e123467, 2018.
 37.Brooks HL, Allred AJ, Beutler KT, Coffman TM, Knepper MA. Targeted proteomic profiling of renal Na(+) transporter and channel abundances in angiotensin II type 1a receptor knockout mice. Hypertension 39: 470‐473, 2002.
 38.Brouard M, Casado M, Djelidi S, Barrandon Y, Farman N. Epithelial sodium channel in human epidermal keratinocytes: Expression of its subunits and relation to sodium transport and differentiation. J Cell Sci 112 (Pt 19): 3343‐3352, 1999.
 39.Bruns JB, Carattino MD, Sheng S, Maarouf AB, Weisz OA, Pilewski JM, Hughey RP, Kleyman TR. Epithelial Na+ channels are fully activated by furin‐ and prostasin‐ dependent release of an inhibitory peptide from the g‐subunit. J Biol Chem 282: 6153‐6160, 2007.
 40.Buck TM, Brodsky JL. Epithelial sodium channel biogenesis and quality control in the early secretory pathway. Curr Opin Nephrol Hypertens 27: 364‐372, 2018.
 41.Butler PL, Staruschenko A, Snyder PM. Acetylation stimulates the epithelial sodium channel by reducing its ubiquitination and degradation. J Biol Chem 290: 12497‐12503, 2015.
 42.Butterworth MB, Alvarez de la Rosa D. Regulation of aldosterone signaling by MicroRNAs. Vitam Horm 109: 69‐103, 2019.
 43.Butterworth MB, Edinger RS, Johnson JP, Frizzell RA. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool. J Gen Physiol 125: 81‐101, 2005.
 44.Butterworth MB, Edinger RS, Ovaa H, Burg D, Johnson JP, Frizzell RA. The deubiquitinating enzyme UCH‐L3 regulates the apical membrane recycling of the epithelial sodium channel. J Biol Chem 282: 37885‐37893, 2007.
 45.Canessa CM, Horisberger JD, Rossier BC. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361: 467‐470, 1993.
 46.Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, Horisberger JD, Rossier BC. Amiloride‐sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367: 463‐467, 1994.
 47.Canonica J, Sergi C, Maillard M, Klusonova P, Odermatt A, Koesters R, Loffing‐Cueni D, Loffing J, Rossier B, Frateschi S, Hummler E. Adult nephron‐specific MR‐ deficient mice develop a severe renal PHA‐1 phenotype. Pflugers Arch 468: 895‐908, 2016.
 48.Carattino MD, Edinger RS, Grieser HJ, Wise R, Neumann D, Schlattner U, Johnson JP, Kleyman TR, Hallows KR. Epithelial sodium channel inhibition by AMP‐activated protein kinase in oocytes and polarized renal epithelial cells. J Biol Chem 280: 17608‐17616, 2005.
 49.Carattino MD, Passero CJ, Steren CA, Maarouf AB, Pilewski JM, Myerburg MM, Hughey RP, Kleyman TR. Defining an inhibitory domain in the alpha‐subunit of the epithelial sodium channel. Am J Physiol Renal Physiol 294: F47‐F52, 2008.
 50.Carattino MD, Sheng S, Bruns JB, Pilewski JM, Hughey RP, Kleyman TR. The epithelial Na+ channel is inhibited by a peptide derived from proteolytic processing of its alpha subunit. J Biol Chem 281: 18901‐18907, 2006.
 51.Cayir A, Demirelli Y, Yildiz D, Kahveci H, Yarali O, Kurnaz E, Vuralli D, Demirbilek H. Systemic pseudohypoaldosteronism type 1 due to 3 novel mutations in SCNN1Aand SCNN1BGenes. Horm Res Paediatr 91: 175‐185, 2019.
 52.Chandran S, Li H, Dong W, Krasinska K, Adams C, Alexandrova L, Chien A, Hallows KR, Bhalla V. Neural precursor cell‐expressed developmentally down‐regulated protein 4‐2 (Nedd4‐2) regulation by 14‐3‐3 protein binding at canonical serum and glucocorticoid kinase 1 (SGK1) phosphorylation sites. J Biol Chem 286: 37830‐37840, 2011.
 53.Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E, Ryba NJ, Zuker CS. The cells and peripheral representation of sodium taste in mice. Nature 464: 297‐301, 2010.
 54.Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, Lu Y, Shimkets RA, Nelson‐Williams C, Rossier BC, Lifton RP. Mutations in subunits of the epithelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12: 248‐253, 1996.
 55.Chapman K, Holmes M, Seckl J. 11beta‐hydroxysteroid dehydrogenases: Intracellular gate‐keepers of tissue glucocorticoid action. Physiol Rev 93: 1139‐1206, 2013.
 56.Charles RP, Guitard M, Leyvraz C, Breiden B, Haftek M, Haftek‐Terreau Z, Stehle JC, Sandhoff K, Hummler E. Postnatal requirement of the epithelial sodium channel for maintenance of epidermal barrier function. J Biol Chem 283: 2622‐2630, 2008.
 57.Chen S, Bhargava A, Mastroberardino L, Meijer OC, Wang J, Buse P, Firestone GL, Verrey F, Pearce D. Epithelial sodium channel regulated by aldosterone‐induced protein sgk. Proc Natl Acad Sci U S A 96: 2514‐2519, 1999.
 58.Chen XJ, Seth S, Yue G, Kamat P, Compans RW, Guidot D, Brown LA, Eaton DC, Jain L. Influenza virus inhibits ENaC and lung fluid clearance. Am J Physiol Lung Cell Mol Physiol 287: L366‐L373, 2004.
 59.Chraibi A, Vallet V, Firsov D, Hess SK, Horisberger JD. Protease modulation of the activity of the epithelial sodium channel expressed in Xenopus oocytes. J Gen Physiol 111: 127‐138, 1998.
 60.Christensen BM, Perrier R, Wang Q, Zuber AM, Maillard M, Mordasini D, Malsure S, Ronzaud C, Stehle JC, Rossier BC, Hummler E. Sodium and potassium balance depends on alphaENaC expression in connecting tubule. J Am Soc Nephrol 21: 1942‐1951, 2010.
 61.Clevers H. Modeling development and disease with organoids. Cell 165: 1586‐1597, 2016.
 62.Counillon L, Scholz W, Lang HJ, Pouyssegur J. Pharmacological characterization of stably transfected Na+/H+ antiporter isoforms using amiloride analogs and a new inhibitor exhibiting anti‐ischemic properties. Mol Pharmacol 44: 1041‐1045, 1993.
 63.Crosby JR, Zhao C, Jiang C, Bai D, Katz M, Greenlee S, Kawabe H, McCaleb M, Rotin D, Guo S, Monia BP. Inhaled ENaC antisense oligonucleotide ameliorates cystic fibrosis‐like lung disease in mice. J Cyst Fibros 16: 671‐680, 2017.
 64.Dahlberg J, Melander O. Genetic variation in NEDD4L, salt sensitivity, and hypertension: Human NEDD4L rs4149601 G allele generates evolutionary new isoform I with C2 domain. J Hypertens 32: 1905‐1906, 2014.
 65.Dahlberg J, Nilsson LO, von Wowern F, Melander O. Polymorphism in NEDD4L is associated with increased salt sensitivity, reduced levels of P‐renin and increased levels of Nt‐ proANP. PLoS One 2: e432, 2007.
 66.Dahlberg J, Sjogren M, Hedblad B, Engstrom G, Melander O. Genetic variation in NEDD4L, an epithelial sodium channel regulator, is associated with cardiovascular disease and cardiovascular death. J Hypertens 32: 294‐299, 2014.
 67.Debonneville C, Flores SY, Kamynina E, Plant PJ, Tauxe C, Thomas MA, Munster C, Chraibi A, Pratt JH, Horisberger JD, Pearce D, Loffing J, Staub O. Phosphorylation of Nedd4‐2 by Sgk1 regulates epithelial Na(+) channel cell surface expression. EMBO J 20: 7052‐7059, 2001.
 68.Deshpande V, Kao A, Raghuram V, Datta A, Chou CL, Knepper MA. Phosphoproteomic identification of vasopressin V2 receptor‐dependent signaling in the renal collecting duct. Am J Physiol Renal Physiol 317: F789‐F804, 2019.
 69.Diakov A, Korbmacher C. A novel pathway of epithelial sodium channel activation involves a serum‐ and glucocorticoid‐inducible kinase consensus motif in the C terminus of the channel's alpha‐subunit. J Biol Chem 279: 38134‐38142, 2004.
 70.Ding X, Jia N, Zhao C, Zhong Y, Dai D, Zhao Y, Xu C, Cai J, Wang Q, He Q. A family with Liddle's syndrome caused by a new c.1721 deletion mutation in the epithelial sodium channel beta‐subunit. Exp Ther Med 17: 2777‐2784, 2019.
 71.Djelidi S, Fay M, Cluzeaud F, Escoubet B, Eugene E, Capurro C, Bonvalet JP, Farman N, Blot‐Chabaud M. Transcriptional regulation of sodium transport by vasopressin in renal cells. J Biol Chem 272: 32919‐32924, 1997.
 72.Douma LG, Holzworth MR, Solocinski K, Masten SH, Miller AH, Cheng KY, Lynch IJ, Cain BD, Wingo CS, Gumz ML. Renal Na‐handling defect associated with PER1‐dependent nondipping hypertension in male mice. Am J Physiol Renal Physiol 314: F1138‐F1144, 2018.
 73.Duc C, Farman N, Canessa CM, Bonvalet J‐P, Rossier BC. Cell‐specific expression of epithelial sodium channel α, β, and γ subunits in aldosterone‐responsive epithelia from the rat: Localization by in situ hybridization and immunocytochemistry. J Cell Biol 127: 1907‐1921, 1994.
 74.Duerr J, Leitz DHW, Szczygiel M, Dvornikov D, Fraumann SG, Kreutz C, Zadora PK, Seyhan Agircan A, Konietzke P, Engelmann TA, Hegermann J, Mulugeta S, Kawabe H, Knudsen L, Ochs M, Rotin D, Muley T, Kreuter M, Herth FJF, Wielputz MO, Beers MF, Klingmuller U, Mall MA. Conditional deletion of Nedd4‐2 in lung epithelial cells causes progressive pulmonary fibrosis in adult mice. Nat Commun 11: 2012, 2020.
 75.Dunn DM, Ishigami T, Pankow J, Von Niederhausern A, Alder J, Hunt SC, Leppert MF, Lalouel JM, Weiss RB. Common variant of human NEDD4L activates a cryptic splice site to form a frameshifted transcript. J Hum Genet 47: 665‐676, 2002.
 76.Eaton DC, Helms MN, Koval M, Bao HF, Jain L. The contribution of epithelial sodium channels to alveolar function in health and disease. Annu Rev Physiol 71: 403‐423, 2009.
 77.Ecelbarger CA, Kim GH, Terris J, Masilamani S, Mitchell C, Reyes I, Verbalis JG, Knepper MA. Vasopressin‐mediated regulation of epithelial sodium channel abundance in rat kidney. Am J Physiol Renal Physiol 279: F46‐F53, 2000.
 78.Edinger RS, Coronnello C, Bodnar AJ, Labarca M, Bhalla V, LaFramboise WA, Benos PV, Ho J, Johnson JP, Butterworth MB. Aldosterone regulates microRNAs in the cortical collecting duct to alter sodium transport. J Am Soc Nephrol 25: 2445‐2457, 2014.
 79.Edinger RS, Lebowitz J, Li H, Alzamora R, Wang H, Johnson JP, Hallows KR. Functional regulation of the epithelial Na+ channel by IkappaB kinase‐beta occurs via phosphorylation of the ubiquitin ligase Nedd4‐2. J Biol Chem 284: 150‐157, 2009.
 80.Elias N, Rafii B, Rahman M, Otulakowski G, Cutz E, O'Brodovich H. The role of alpha‐, beta‐, and gamma‐ENaC subunits in distal lung epithelial fluid absorption induced by pulmonary edema fluid. Am J Physiol Lung Cell Mol Physiol 293: L537‐L545, 2007.
 81.Elvira‐Matelot E, Zhou XO, Farman N, Beaurain G, Henrion‐Caude A, Hadchouel J, Jeunemaitre X. Regulation of WNK1 expression by miR‐192 and aldosterone. J Am Soc Nephrol 21: 1724‐1731, 2010.
 82.Epple HJ, Amasheh S, Mankertz J, Goltz M, Schulzke JD, Fromm M. Early aldosterone effect in distal colon by transcriptional regulation of ENaC subunits. Am J Physiol Gastrointest Liver Physiol 278: G718‐G724, 2000.
 83.Ergonul Z, Frindt G, Palmer LG. Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol Renal Physiol 291: F683‐F693, 2006.
 84.Faletti CJ, Perrotti N, Taylor SI, Blazer‐Yost BL. sgk: An essential convergence point for peptide and steroid hormone regulation of ENaC‐mediated Na+ transport. Am J Physiol 282: C494‐C500, 2002.
 85.Falin RA, Cotton CU. Acute downregulation of ENaC by EGF involves the PY motif and putative ERK phosphorylation site. J Gen Physiol 130: 313‐328, 2007.
 86.Fan P, Lu CX, Yang KQ, Lu PP, Hao SF, Luo F, Zhang HM, Song L, Wu HY, Cai J, Zhang X, Zhou XL. Truncated epithelial sodium channel beta subunit responsible for Liddle syndrome in a Chinese Family. Kidney Blood Press Res 44: 942‐949, 2019.
 87.Fan P, Zhao YM, Zhang D, Liao Y, Yang KQ, Tian T, Lou Y, Luo F, Ma WJ, Zhang HM, Song L, Cai J, Liu YX, Zhou XL. A novel frameshift mutation of SCNN1G causing Liddle syndrome with normokalemia. Am J Hypertens 32: 752‐758, 2019.
 88.Faresse N, Lagnaz D, Debonneville A, Ismailji A, Maillard M, Fejes‐Toth G, Naray‐Fejes‐Toth A, Staub O. Inducible kidney‐specific Sgk1 knockout mice show a salt‐losing phenotype. Am J Physiol Renal Physiol 302: F977‐F985, 2012.
 89.Fava C, von Wowern F, Berglund G, Carlson J, Hedblad B, Rosberg L, Burri P, Almgren P, Melander O. 24‐h ambulatory blood pressure is linked to chromosome 18q21‐22 and genetic variation of NEDD4L associates with cross‐sectional and longitudinal blood pressure in Swedes. Kidney Int 70: 562‐569, 2006.
 90.Fejes‐Toth G, Frindt G, Naray‐Fejes‐Toth A, Palmer LG. Epithelial Na+ channel activation and processing in mice lacking SGK1. Am J Physiol Renal Physiol 294: F1298‐F1305, 2008.
 91.Fels B, Kusche‐Vihrog K. It takes more than two to tango: Mechanosignaling of the endothelial surface. Pflugers Arch 472: 419‐433, 2020.
 92.Fels J, Jeggle P, Kusche‐Vihrog K, Oberleithner H. Cortical actin nanodynamics determines nitric oxide release in vascular endothelium. PLoS One 7: e41520, 2012.
 93.Fels J, Oberleithner H, Kusche‐Vihrog K. Menage a trois: Aldosterone, sodium and nitric oxide in vascular endothelium. Biochim Biophys Acta 1802: 1193‐1202, 2010.
 94.Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). EMBO J 17: 344‐352, 1998.
 95.Firsov D, Robert‐Nicoud M, Gruender S, Schild L, Rossier BC. Mutational analysis of cysteine‐rich domains of the epithelium sodium channel (ENaC). Identification of cysteines essential for channel expression at the cell surface. J Biol Chem 274: 2743‐2749, 1999.
 96.Firsov D, Schild L, Gautschi I, Merillat AM, Schneeberger E, Rossier BC. Cell surface expression of the epithelial Na channel and a mutant causing Liddle syndrome: A quantitative approach. Proc Natl Acad Sci U S A 93: 15370‐15375, 1996.
 97.Fouladkou F, Alikhani‐Koopaei R, Vogt B, Flores SY, Malbert‐Colas L, Lecomte MC, Loffing J, Frey FJ, Frey BM, Staub O. A naturally occurring human Nedd4‐2 variant displays impaired ENaC regulation in Xenopus laevis oocytes. Am J Physiol Renal Physiol 287: F550‐F561, 2004.
 98.Frindt G, Bertog M, Korbmacher C, Palmer LG. Ubiquitination of renal ENaC subunits in vivo. Am J Physiol Renal Physiol 318: F1113‐F1121, 2020.
 99.Frindt G, Burg MB. Effect of vasopressin on sodium transport in renal cortical collecting tubules. Kidney Int 1: 224‐231, 1972.
 100.Frindt G, Palmer LG. Na channels in the rat connecting tubule. Am J Physiol Renal Physiol 286: F669‐F674, 2004.
 101.Frindt G, Palmer LG. K+ secretion in rat kidney: Na+‐channel‐dependent and independent mechanisms. Am J Physiol Renal Physiol 297: F389‐F396, 2009.
 102.Frindt G, Palmer LG. Effects of insulin on Na and K transporters in the rat CCD. Am J Physiol Renal Physiol 302: F1227‐F1233, 2012.
 103.Frindt G, Yang L, Bamberg K, Palmer LG. Na restriction activates epithelial Na channels in rat kidney through two mechanisms and decreases distal Na(+) delivery. J Physiol 596: 3585‐3602, 2018.
 104.Frindt G, Yang L, Uchida S, Weinstein AM, Palmer LG. Responses of distal nephron Na(+) transporters to acute volume depletion and hyperkalemia. Am J Physiol Renal Physiol 313: F62‐F73, 2017.
 105.Fronius M. Treatment of pulmonary edema by ENaC activators/stimulators. Curr Mol Pharmacol 6: 13‐27, 2013.
 106.Fruman DA, Chiu H, Hopkins BD, Bagrodia S, Cantley LC, Abraham RT. The PI3K pathway in human disease. Cell 170: 605‐635, 2017.
 107.Fu Y, Vallon V. Mineralocorticoid‐induced sodium appetite and renal salt retention: Evidence for common signaling and effector mechanisms. Nephron Physiol 128: 8‐16, 2014.
 108.Fuller PJ, Brennan FE, Burgess JS. Acute differential regulation by corticosteroids of epithelial sodium channel subunit and Nedd4 mRNA levels in the distal colon. Pflugers Arch 441: 94‐101, 2000.
 109.Gabriel SE, Brigman KN, Koller BH, Boucher RC, Stutts MJ. Cystic fibrosis heterozygote resistance to cholera toxin in the cystic fibrosis mouse model. Science 266: 107‐109, 1994.
 110.Gaeggeler HP, Gonzalez‐Rodriguez E, Jaeger NF, Loffing‐Cueni D, Norregaard R, Loffing J, Horisberger JD, Rossier BC. Mineralocorticoid versus glucocorticoid receptor occupancy mediating aldosterone‐stimulated sodium transport in a novel renal cell line. J Am Soc Nephrol 16: 878‐891, 2005.
 111.Garty H, Palmer LG. Epithelial sodium channels: Function, structure, and regulation. Physiol Rev 77: 359‐396, 1997.
 112.Geller DS, Rodriguez‐Soriano J, Vallo Boado A, Schifter S, Bayer M, Chang SS, Lifton RP. Mutations in the mineralocorticoid receptor gene cause autosomal dominant pseudohypoaldosteronism type I. Nat Genet 19: 279‐281, 1998.
 113.Giraldez T, Afonso‐Oramas D, Cruz‐Muros I, Garcia‐Marin V, Pagel P, Gonzalez‐Hernandez T, Alvarez de la Rosa D. Cloning and functional expression of a new epithelial sodium channel delta subunit isoform differentially expressed in neurons of the human and monkey telencephalon. J Neurochem 102: 1304‐1315, 2007.
 114.Giraldez T, Rojas P, Jou J, Flores C, Alvarez de la Rosa D. The epithelial sodium channel delta‐subunit: New notes for an old song. Am J Physiol Renal Physiol 303: F328‐F338, 2012.
 115.Gleason CE, Frindt G, Cheng CJ, Ng M, Kidwai A, Rashmi P, Lang F, Baum M, Palmer LG, Pearce D. mTORC2 regulates renal tubule sodium uptake by promoting ENaC activity. J Clin Invest 125: 117‐128, 2015.
 116.Gonzalez‐Rodriguez E, Gaeggeler HP, Rossier BC. IGF‐1 vs insulin: Respective roles in modulating sodium transport via the PI‐3 kinase/Sgk1 pathway in a cortical collecting duct cell line. Kidney Int 71: 116‐125, 2007.
 117.Grimm PR, Lazo‐Fernandez Y, Delpire E, Wall SM, Dorsey SG, Weinman EJ, Coleman R, Wade JB, Welling PA. Integrated compensatory network is activated in the absence of NCC phosphorylation. J Clin Invest 125: 2136‐2150, 2015.
 118.Grunder S, Firsov D, Chang SS, Jaeger NF, Gautschi I, Schild L, Lifton RP, Rossier BC. A mutation causing pseudohypoaldosteronism type 1 identifies a conserved glycine that is involved in the gating of the epithelial sodium channel. EMBO J 16: 899‐907, 1997.
 119.Grunder S, Jaeger NF, Gautschi I, Schild L, Rossier BC. Identification of a highly conserved sequence at the N‐terminus of the epithelial Na+ channel alpha subunit involved in gating. Pflugers Arch 438: 709‐715, 1999.
 120.Guitard M, Leyvraz C, Hummler E. A nonconventional look at ionic fluxes in the skin: Lessons from genetically modified mice. News Physiol Sci 19: 75‐79, 2004.
 121.Gumz ML, Cheng KY, Lynch IJ, Stow LR, Greenlee MM, Cain BD, Wingo CS. Regulation of alphaENaC expression by the circadian clock protein Period 1 in mpkCCD(c14) cells. Biochim Biophys Acta 1799: 622‐629, 2010.
 122.Gumz ML, Stow LR, Lynch IJ, Greenlee MM, Rudin A, Cain BD, Weaver DR, Wingo CS. The circadian clock protein Period 1 regulates expression of the renal epithelial sodium channel in mice. J Clin Invest 119: 2423‐2434, 2009.
 123.Guo D, Liang S, Wang S, Tang C, Yao B, Wan W, Zhang H, Jiang H, Ahmed A, Zhang Z, Gu Y. Role of epithelial Na+ channels in endothelial function. J Cell Sci 129: 290‐297, 2016.
 124.Hadchouel J, Soukaseum C, Busst C, Zhou XO, Baudrie V, Zurrer T, Cambillau M, Elghozi JL, Lifton RP, Loffing J, Jeunemaitre X. Decreased ENaC expression compensates the increased NCC activity following inactivation of the kidney‐specific isoform of WNK1 and prevents hypertension. Proc Natl Acad Sci U S A 107: 18109‐18114, 2010.
 125.Haerteis S, Krueger B, Korbmacher C, Rauh R. The delta‐subunit of the epithelial sodium channel (ENaC) enhances channel activity and alters proteolytic ENaC activation. J Biol Chem 284: 29024‐29040, 2009.
 126.Hamilton KL, Eaton DC. Single‐channel recordings from amiloride‐sensitive epithelial sodium channel. Am J Physiol 249: C200‐C207, 1985.
 127.Hansson JH, Nelson‐Williams C, Suzuki H, Schild L, Shimkets R, Lu Y, Canessa C, Iwasaki T, Rossier B, Lifton RP. Hypertension caused by a truncated epithelial sodium channel gamma subunit: Genetic heterogeneity of Liddle syndrome. Nat Genet 11: 76‐82, 1995.
 128.Hansson JH, Schild L, Lu Y, Wilson TA, Gautschi I, Shimkets R, Nelson‐Williams C, Rossier BC, Lifton RP. A de novo missense mutation of the beta subunit of the epithelial sodium channel causes hypertension and Liddle syndrome, identifying a proline‐rich segment critical for regulation of channel activity. Proc Natl Acad Sci U S A 92: 11495‐11499, 1995.
 129.Hanukoglu I, Boggula VR, Vaknine H, Sharma S, Kleyman T, Hanukoglu A. Expression of epithelial sodium channel (ENaC) and CFTR in the human epidermis and epidermal appendages. Histochem Cell Biol 147: 733‐748, 2017.
 130.Hanukoglu I, Hanukoglu A. Epithelial sodium channel (ENaC) family: Phylogeny, structure‐function, tissue distribution, and associated inherited diseases. Gene 579: 95‐132, 2016.
 131.Harrison‐Bernard LM, Navar LG, Ho MM, Vinson GP, el‐Dahr SS. Immunohistochemical localization of ANG II AT1 receptor in adult rat kidney using a monoclonal antibody. Am J Physiol 273: F170‐F177, 1997.
 132.Harvey KF, Dinudom A, Cook DI, Kumar S. The Nedd4‐like protein KIAA0439 is a potential regulator of the epithelial sodium channel. J Biol Chem 276: 8597‐8601, 2001.
 133.Heise CJ, Xu BE, Deaton SL, Cha SK, Cheng CJ, Earnest S, Sengupta S, Juang YC, Stippec S, Xu Y, Zhao Y, Huang CL, Cobb MH. Serum and glucocorticoid‐induced kinase (SGK) 1 and the epithelial sodium channel are regulated by multiple with no lysine (WNK) family members. J Biol Chem 285: 25161‐25167, 2010.
 134.Helms MN, Liu L, Liang YY, Al‐Khalili O, Vandewalle A, Saxena S, Eaton DC, Ma HP. Phosphatidylinositol 3,4,5‐trisphosphate mediates aldosterone stimulation of epithelial sodium channel (ENaC) and interacts with gamma‐ENaC. J Biol Chem 280: 40885‐40891, 2005.
 135.Henshall TL, Manning JA, Alfassy OS, Goel P, Boase NA, Kawabe H, Kumar S. Deletion of Nedd4‐2 results in progressive kidney disease in mice. Cell Death Differ 24: 2150‐2160, 2017.
 136.Hernandez‐Diaz I, Giraldez T, Morales S, Hernandez G, Salido E, Canessa CM, Alvarez de la Rosa D. Heterogeneous nuclear ribonucleoprotein A2/B1 is a tissue‐specific aldosterone target gene with prominent induction in the rat distal colon. Am J Physiol Gastrointest Liver Physiol 304: G122‐G131, 2013.
 137.Hinrichs GR, Jensen BL, Svenningsen P. Mechanisms of sodium retention in nephrotic syndrome. Curr Opin Nephrol Hypertens 29: 207‐212, 2020.
 138.Ho PY, Li H, Cheng L, Bhalla V, Fenton RA, Hallows KR. AMPK phosphorylation of the beta1Pix exchange factor regulates the assembly and function of an ENaC inhibitory complex in kidney epithelial cells. Am J Physiol Renal Physiol 317: F1513‐F1525, 2019.
 139.Ho PY, Li H, Pavlov TS, Tuerk RD, Tabares D, Brunisholz R, Neumann D, Staruschenko A, Hallows KR. beta1Pix exchange factor stabilizes the ubiquitin ligase Nedd4‐2 and plays a critical role in ENaC regulation by AMPK in kidney epithelial cells. J Biol Chem 293: 11612‐11624, 2018.
 140.Hopkins BD, Goncalves MD, Cantley LC. Insulin‐PI3K signalling: An evolutionarily insulated metabolic driver of cancer. Nat Rev Endocrinol 16: 276‐283, 2020.
 141.Huang DY, Boini KM, Friedrich B, Metzger M, Just L, Osswald H, Wulff P, Kuhl D, Vallon V, Lang F. Blunted hypertensive effect of combined fructose and high‐salt diet in gene‐targeted mice lacking functional serum‐ and glucocorticoid‐inducible kinase SGK1. Am J Physiol Regul Integr Comp Physiol 290: R935‐R944, 2006.
 142.Huang DY, Boini KM, Osswald H, Friedrich B, Artunc F, Ullrich S, Rajamanickam J, Palmada M, Wulff P, Kuhl D, Vallon V, Lang F. Resistance of mice lacking the serum‐ and glucocorticoid‐inducible kinase SGK1 against salt‐sensitive hypertension induced by a high‐ fat diet. Am J Physiol Renal Physiol 291: F1264‐F1273, 2006.
 143.Huang DY, Wulff P, Volkl H, Loffing J, Richter K, Kuhl D, Lang F, Vallon V. Impaired regulation of renal K+ elimination in the sgk1‐knockout mouse. J Am Soc Nephrol 15: 885‐891, 2004.
 144.Huber R, Krueger B, Diakov A, Korbmacher J, Haerteis S, Einsiedel J, Gmeiner P, Azad AK, Cuppens H, Cassiman JJ, Korbmacher C, Rauh R. Functional characterization of a partial loss‐of‐function mutation of the epithelial sodium channel (ENaC) associated with atypical cystic fibrosis. Cell Physiol Biochem 25: 145‐158, 2010.
 145.Hughey RP, Mueller GM, Bruns JB, Kinlough CL, Poland PA, Harkleroad KL, Carattino MD, Kleyman TR. Maturation of the epithelial Na+ channel involves proteolytic processing of the alpha‐ and gamma‐subunits. J Biol Chem 278: 37073‐37082, 2003.
 146.Hummler E, Barker P, Gatzy J, Beermann F, Verdumo C, Schmidt A, Boucher R, Rossier BC. Early death due to defective neonatal lung liquid clearance in alpha‐ENaC‐ deficient mice. Nat Genet 12: 325‐328, 1996.
 147.Hummler E, Barker P, Talbot C, Wang Q, Verdumo C, Grubb BR, Gatzy J, Burnier M, Horisberger JD, Beermann F, Boucher R, Rossier BC. A mouse model for the renal salt‐wasting syndrome pseudohypoaldosteronism. Proc Natl Acad Sci U S A 94: 11710‐11715, 1997.
 148.Hummler E, Planes C. Importance of ENaC‐mediated sodium transport in alveolar fluid clearance using genetically‐engineered mice. Cell Physiol Biochem 25: 63‐70, 2010.
 149.Ichimura T, Yamamura H, Sasamoto K, Tominaga Y, Taoka M, Kakiuchi K, Shinkawa T, Takahashi N, Shimada S, Isobe T. 14‐3‐3 proteins modulate the expression of epithelial Na+ channels by phosphorylation‐dependent interaction with Nedd4‐2 ubiquitin ligase. J Biol Chem 280: 13187‐13194, 2005.
 150.Inoue J, Iwaoka T, Tokunaga H, Takamune K, Naomi S, Araki M, Takahama K, Yamaguchi K, Tomita K. A family with Liddle's syndrome caused by a new missense mutation in the β subunit of the epithelial sodium channel. J Clin Endocrinol Metab 83: 2210‐2213, 1998.
 151.Itani OA, Chen JH, Karp PH, Ernst S, Keshavjee S, Parekh K, Klesney‐Tait J, Zabner J, Welsh MJ. Human cystic fibrosis airway epithelia have reduced Cl‐ conductance but not increased Na+ conductance. Proc Natl Acad Sci U S A 108: 10260‐10265, 2011.
 152.Jasti J, Furukawa H, Gonzales EB, Gouaux E. Structure of acid‐sensing ion channel 1 at 1.9 A resolution and low pH. Nature 449: 316‐323, 2007.
 153.Jeggle P, Callies C, Tarjus A, Fassot C, Fels J, Oberleithner H, Jaisser F, Kusche‐Vihrog K. Epithelial sodium channel stiffens the vascular endothelium in vitro and in Liddle mice. Hypertension 61: 1053‐1059, 2013.
 154.Jeunemaitre X, Bassilana F, Persu A, Dumont C, Champigny G, Lazdunski M, Corvol P, Barbry P. Genotype‐phenotype analysis of a newly discovered family with liddles‐ syndrome. J Hypertens 15: 1091‐1100, 1997.
 155.Ji HL, Song W, Gao Z, Su XF, Nie HG, Jiang Y, Peng JB, He YX, Liao Y, Zhou YJ, Tousson A, Matalon S. SARS‐CoV proteins decrease levels and activity of human ENaC via activation of distinct PKC isoforms. Am J Physiol Lung Cell Mol Physiol 296: L372‐L383, 2009.
 156.Ji HL, Su XF, Kedar S, Li J, Barbry P, Smith PR, Matalon S, Benos DJ. {delta}‐subunit confers novel biophysical features to {alpha}beta{gamma}‐human epithelial sodium channel (ENaC) via a physical interaction. J Biol Chem 281: 8233‐8241, 2006.
 157.Ji HL, Zhao RZ, Chen ZX, Shetty S, Idell S, Matalon S. delta ENaC: A novel divergent amiloride‐inhibitable sodium channel. Am J Physiol Lung Cell Mol Physiol 303: L1013‐L1026, 2012.
 158.Jiang C, Kawabe H, Rotin D. The ubiquitin ligase Nedd4L regulates the Na/K/2Cl co‐transporter NKCC1/SLC12A2 in the colon. J Biol Chem 292: 3137‐3145, 2017.
 159.Kabra R, Knight KK, Zhou R, Snyder PM. Nedd4‐2 induces endocytosis and degradation of proteolytically cleaved epithelial Na+ channels. J Biol Chem 283: 6033‐6039, 2008.
 160.Kamynina E, Debonneville C, Bens M, Vandewalle A, Staub O. A novel mouse Nedd4 protein suppresses the activity of the epithelial Na+ channel. FASEB J 15: 204‐214, 2001.
 161.Kamynina E, Staub O. Concerted action of ENaC, Nedd4‐2, and Sgk1 in transepithelial Na(+) transport. Am J Physiol 283: F377‐F387, 2002.
 162.Kamynina E, Tauxe C, Staub O. Distinct characteristics of two human Nedd4 proteins with respect to epithelial Na(+) channel regulation. Am J Physiol Renal Physiol 281: F469‐F477, 2001.
 163.Kanelis V, Bruce MC, Skrynnikov NR, Rotin D, Forman‐Kay JD. Structural determinants for high‐affinity binding in a Nedd4 WW3* domain‐Comm PY motif complex. Structure 14: 543‐553, 2006.
 164.Kanelis V, Rotin D, Forman‐Kay JD. Solution structure of a Nedd4 WW domain‐ ENaC peptide complex. Nat Struct Biol 8: 407‐412, 2001.
 165.Kashlan OB, Blobner BM, Zuzek Z, Tolino M, Kleyman TR. Na+ inhibits the epithelial Na+ channel by binding to a site in an extracellular acidic cleft. J Biol Chem 290: 568‐576, 2015.
 166.Kashlan OB, Boyd CR, Argyropoulos C, Okumura S, Hughey RP, Grabe M, Kleyman TR. Allosteric inhibition of the epithelial Na+ channel through peptide binding at peripheral finger and thumb domains. J Biol Chem 285: 35216‐35223, 2010.
 167.Kashlan OB, Kinlough CL, Myerburg MM, Shi S, Chen J, Blobner BM, Buck TM, Brodsky JL, Hughey RP, Kleyman TR. N‐linked glycans are required on epithelial Na(+) channel subunits for maturation and surface expression. Am J Physiol Renal Physiol 314: F483‐F492, 2018.
 168.Kashlan OB, Kleyman TR. ENaC structure and function in the wake of a resolved structure of a family member. Am J Physiol Renal Physiol 301: F684‐F696, 2011.
 169.Kellenberger S, Gautschi I, Rossier BC, Schild L. Mutations causing liddle‐ syndrome reduce sodium‐dependent downregulation of the epithelial sodium channel in the xenopus oocyte expression system. J Clin Invest 101: 2741‐2750, 1998.
 170.Kellenberger S, Schild L. Epithelial sodium channel/degenerin family of ion channels: A variety of functions for a shared structure. Physiol Rev 82: 735‐767, 2002.
 171.Kellenberger S, Schild L. International union of basic and clinical pharmacology. XCI. structure, function, and pharmacology of acid‐sensing ion channels and the epithelial Na+ channel. Pharmacol Rev 67: 1‐35, 2015.
 172.Kerem E, Bistritzer T, Hanukoglu A, Hofmann T, Zhou Z, Bennett W, MacLaughlin E, Barker P, Nash M, Quittell L, Boucher R, Knowles MR. Pulmonary epithelial sodium‐ channel dysfunction and excess airway liquid in pseudohypoaldosteronism. N Engl J Med 341: 156‐162, 1999.
 173.Kim CS, Ahmad S, Wu T, Walton WG, Redinbo MR, Tarran R. SPLUNC1 is an allosteric modulator of the epithelial sodium channel. FASEB J 32: 2478‐2491, 2018.
 174.Kim SH, Marcus DC. Regulation of sodium transport in the inner ear. Hear Res 280: 21‐29, 2011.
 175.Kim YH, Pech V, Spencer KB, Beierwaltes WH, Everett LA, Green ED, Shin W, Verlander JW, Sutliff RL, Wall SM. Reduced ENaC protein abundance contributes to the lower blood pressure observed in pendrin‐null mice. Am J Physiol Renal Physiol 293: F1314‐F1324, 2007.
 176.Kimura T, Kawabe H, Jiang C, Zhang W, Xiang YY, Lu C, Salter MW, Brose N, Lu WY, Rotin D. Deletion of the ubiquitin ligase Nedd4L in lung epithelia causes cystic fibrosis‐like disease. Proc Natl Acad Sci U S A 108: 3216‐3221, 2011.
 177.Klemens CA, Brands MW, Staruschenko A. Postprandial effects on electrolyte homeostasis in the kidney. Am J Physiol Renal Physiol 317: F1405‐F1408, 2019.
 178.Kleyman TR, Carattino MD, Hughey RP. ENaC at the cutting edge: Regulation of epithelial sodium channels by proteases. J Biol Chem 284: 20447‐20451, 2009.
 179.Kleyman TR, Eaton DC. Regulating ENaC's gate. Am J Physiol Cell Physiol 318: C150‐C162, 2020.
 180.Kleyman TR, Kashlan OB, Hughey RP. Epithelial Na(+) channel regulation by extracellular and intracellular factors. Annu Rev Physiol 80: 263‐281, 2018.
 181.Knowles MR, Church NL, Waltner WE, Yankaskas JR, Gilligan P, King M, Edwards LJ, Helms RW, Boucher RC. A pilot study of aerosolized amiloride for the treatment of lung disease in cystic fibrosis. 322: 1189‐1194, 1990.
 182.Kobayashi T, Cohen P. Activation of serum‐ and glucocorticoid‐regulated protein kinase by agonists that activate phosphatidylinositide 3‐kinase is mediated by 3‐phosphoinositide‐dependent protein kinase‐1 (PDK1) and PDK2. Biochem J 339: 319‐328, 1999.
 183.Kouzarides T. Acetylation: A regulatory modification to rival phosphorylation? EMBO J 19: 1176‐1179, 2000.
 184.Kozina AA, Trofimova TA, Okuneva EG, Baryshnikova NV, Obuhova VA, Krasnenko AY, Tsukanov KY, Klimchuk OI, Surkova EI, Shatalov PA, Ilinsky VV. Liddle syndrome due to a novel mutation in the gamma subunit of the epithelial sodium channel (ENaC) in family from Russia: A case report. BMC Nephrol 20: 389, 2019.
 185.Krueger B, Schlotzer‐Schrehardt U, Haerteis S, Zenkel M, Chankiewitz VE, Amann KU, Kruse FE, Korbmacher C. Four subunits (alphabetagammadelta) of the epithelial sodium channel (ENaC) are expressed in the human eye in various locations. Invest Ophthalmol Vis Sci 53: 596‐604, 2012.
 186.Krueger B, Yang L, Korbmacher C, Rauh R. The phosphorylation site T613 in the beta‐subunit of rat epithelial Na(+) channel (ENaC) modulates channel inhibition by Nedd4‐2. Pflugers Arch 470: 649‐660, 2018.
 187.Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: Mechanisms and implications for disease. Physiol Rev 82: 245‐289, 2002.
 188.Kunzelmann K, Sun J, Meanger J, King NJ, Cook DI. Inhibition of airway Na+ transport by respiratory syncytial virus. J Virol 81: 3714‐3720, 2007.
 189.Kusche‐Vihrog K, Callies C, Fels J, Oberleithner H. The epithelial sodium channel (ENaC): Mediator of the aldosterone response in the vascular endothelium? Steroids 75: 544‐549, 2010.
 190.Kusche‐Vihrog K, Jeggle P, Oberleithner H. The role of ENaC in vascular endothelium. Pflugers Arch 466: 851‐859, 2014.
 191.Kusche‐Vihrog K, Oberleithner H. An emerging concept of vascular salt sensitivity. F1000 Biol Rep 4: 20, 2012.
 192.Kusche‐Vihrog K, Schmitz B, Brand E. Salt controls endothelial and vascular phenotype. Pflugers Arch 467: 499‐512, 2015.
 193.Lang F, Pearce D. Regulation of the epithelial Na+ channel by the mTORC2/SGK1 pathway. Nephrol Dial Transplant 31: 200‐205, 2016.
 194.Lee IH, Dinudom A, Sanchez‐Perez A, Kumar S, Cook DI. Akt mediates the effect of insulin on epithelial sodium channels by inhibiting Nedd4‐2. J Biol Chem 282: 29866‐29873, 2007.
 195.Levchenko V, Zheleznova NN, Pavlov TS, Vandewalle A, Wilson PD, Staruschenko A. EGF and its related growth factors mediate sodium transport in mpkCCDc14 cells via ErbB2 (neu/HER‐2) receptor. J Cell Physiol 223: 252‐259, 2010.
 196.Li L, Garikepati RM, Tsukerman S, Kohan D, Wade JB, Tiwari S, Ecelbarger CM. Reduced ENaC activity and blood pressure in mice with genetic knockout of the insulin receptor in the renal collecting duct. Am J Physiol Renal Physiol 304: F279‐F288, 2013.
 197.Li T, Koshy S, Folkesson HG. Involvement of {alpha}ENaC and Nedd4‐2 in the conversion from lung fluid secretion to fluid absorption at birth in the rat as assayed by RNA interference analysis. Am J Physiol Lung Cell Mol Physiol 293: L1069‐L1078, 2007.
 198.Liang X, Butterworth MB, Peters KW, Walker WH, Frizzell RA. An obligatory heterodimer of 14‐3‐3beta and 14‐3‐3epsilon is required for aldosterone regulation of the epithelial sodium channel. J Biol Chem 283: 27418‐27425, 2008.
 199.Liang X, Peters KW, Butterworth MB, Frizzell RA. 14‐3‐3 isoforms are induced by aldosterone and participate in its regulation of epithelial sodium channels. J Biol Chem 281: 16323‐16332, 2006.
 200.Liddle GW, Bledsoe T, Coppage WS Jr. A familial renal disorder simulating primary aldosteronism but with negligible aldosterone secretion. Trans Assoc Am Physicians 76: 199‐213, 1963.
 201.Lienhard D, Lauterburg M, Escher G, Frey FJ, Frey BM. High salt intake down‐ regulates colonic mineralocorticoid receptors, epithelial sodium channels and 11beta‐ hydroxysteroid dehydrogenase type 2. PLoS One 7: e37898, 2012.
 202.Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 104: 545‐556, 2001.
 203.Limbutara K, Kelleher A, Yang CR, Raghuram V, Knepper MA. Phosphorylation changes in response to kinase inhibitor H89 in PKA‐null cells. Sci Rep 9: 2814, 2019.
 204.Lingueglia E, Voilley N, Waldmann R, Lazdunski M, Barbry P. Expression cloning of an epithelial amiloride‐sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett 318: 95‐99, 1993.
 205.Little MH, Kumar SV, Forbes T. Recapitulating kidney development: Progress and challenges. Semin Cell Dev Biol 91: 153‐168, 2019.
 206.Liu X, Edinger RS, Klemens CA, Phua YL, Bodnar AJ, LaFramboise WA, Ho J, Butterworth MB. A microRNA cluster miR‐23‐24‐27 is upregulated by aldosterone in the distal kidney nephron where it alters sodium transport. J Cell Physiol 232: 1306‐1317, 2017.
 207.Loffing J, Flores SY, Staub O. Sgk kinases and their role in epithelial transport. Annu Rev Physiol 68: 461‐490, 2006.
 208.Loffing J, Loffing‐Cueni D, Valderrabano V, Klausli L, Hebert SC, Rossier BC, Hoenderop JG, Bindels RJ, Kaissling B. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron. Am J Physiol Renal Physiol 281: F1021‐F1027, 2001.
 209.Loffing J, Pietri L, Aregger F, Bloch‐Faure M, Ziegler U, Meneton P, Rossier BC, Kaissling B. Differential subcellular localization of ENaC subunits in mouse kidney in response to high‐ and low‐Na diets. Am J Physiol Renal Physiol 279: F252‐F258, 2000.
 210.Loffing J, Zecevic M, Feraille E, Kaissling B, Asher C, Rossier BC, Firestone GL, Pearce D, Verrey F. Aldosterone induces rapid apical translocation of ENaC in early portion of renal collecting system: Possible role of SGK. Am J Physiol Renal Physiol 280: F675‐F682, 2001.
 211.Loffing‐Cueni D, Flores SY, Sauter D, Daidie D, Siegrist N, Meneton P, Staub O, Loffing J. Dietary sodium intake regulates the ubiquitin‐protein ligase nedd4‐2 in the renal collecting system. J Am Soc Nephrol 17: 1264‐1274, 2006.
 212.Low JH, Li P, Chew EGY, Zhou B, Suzuki K, Zhang T, Lian MM, Liu M, Aizawa E, Rodriguez Esteban C, Yong KSM, Chen Q, Campistol JM, Fang M, Khor CC, Foo JN, Izpisua Belmonte JC, Xia Y. Generation of human PSC‐derived kidney organoids with patterned nephron segments and a de novo vascular network. Cell Stem Cell 25: 373‐387 e379, 2019.
 213.Lu C, Pribanic S, Debonneville A, Jiang C, Rotin D. The PY Motif of ENaC, mutated in liddle syndrome, regulates channel internalization, sorting and mobilization from subapical pool. Traffic 8: 1246‐1264, 2007.
 214.Lu M, Wang J, Jones KT, Ives HE, Feldman ME, Yao LJ, Shokat KM, Ashrafi K, Pearce D. mTOR complex‐2 activates ENaC by phosphorylating SGK1. J Am Soc Nephrol 21: 811‐818, 2010.
 215.Luo F, Wang Y, Wang X, Sun K, Zhou X, Hui R. A functional variant of NEDD4L is associated with hypertension, antihypertensive response, and orthostatic hypotension. Hypertension 54: 796‐801, 2009.
 216.Ma HP, Eaton DC. Acute regulation of epithelial sodium channel by anionic phospholipids. J Am Soc Nephrol 16: 3182‐3187, 2005.
 217.Ma HP, Saxena S, Warnock DG. Anionic phospholipids regulate native and expressed epithelial sodium channel (ENaC). J Biol Chem 277: 7641‐7644, 2002.
 218.Mall M, Grubb BR, Harkema JR, O'Neal WK, Boucher RC. Increased airway epithelial Na+ absorption produces cystic fibrosis‐like lung disease in mice. Nat Med 10: 487‐493, 2004.
 219.Mall MA, Button B, Johannesson B, Zhou Z, Livraghi A, Caldwell RA, Schubert SC, Schultz C, O'Neal WK, Pradervand S, Hummler E, Rossier BC, Grubb BR, Boucher RC. Airway surface liquid volume regulation determines different airway phenotypes in liddle compared with betaENaC‐overexpressing mice. J Biol Chem 285: 26945‐26955, 2010.
 220.Malsure S, Wang Q, Charles RP, Sergi C, Perrier R, Christensen BM, Maillard M, Rossier BC, Hummler E. Colon‐specific deletion of epithelial sodium channel causes sodium loss and aldosterone resistance. J Am Soc Nephrol 25: 1453‐1464, 2014.
 221.Mamenko M, Zaika O, Ilatovskaya DV, Staruschenko A, Pochynyuk O. Angiotensin II increases activity of the epithelial Na+ channel (ENaC) in distal nephron additively to aldosterone. J Biol Chem 287: 660‐671, 2012.
 222.Mamenko M, Zaika O, Prieto MC, Jensen VB, Doris PA, Navar LG, Pochynyuk O. Chronic angiotensin II infusion drives extensive aldosterone‐independent epithelial Na+ channel activation. Hypertension 62: 1111‐1122, 2013.
 223.Manning JA, Henshall TL, Kumar S. NEDD4‐2‐dependent control of Na+ homeostasis and renal disease. Cell Cycle 17: 1‐2, 2018.
 224.Manning JA, Shah SS, Henshall TL, Nikolic A, Finnie J, Kumar S. Dietary sodium modulates nephropathy in Nedd4‐2‐deficient mice. Cell Death Differ 27: 1832‐1843, 2020.
 225.Mansley MK, Watt GB, Francis SL, Walker DJ, Land SC, Bailey MA, Wilson SM. Dexamethasone and insulin activate serum and glucocorticoid‐inducible kinase 1 (SGK1) via different molecular mechanisms in cortical collecting duct cells. Physiol Rep 4: e12792, 2016.
 226.Mansley MK, Wilson SM. Dysregulation of epithelial Na(+) absorption induced by inhibition of the kinases TORC1 and TORC2. Br J Pharmacol 161: 1778‐1792, 2010.
 227.Masilamani S, Kim GH, Mitchell C, Wade JB, Knepper MA. Aldosterone‐ mediated regulation of ENaC alpha, beta, and gamma subunit proteins in rat kidney. J Clin Invest 104: R19‐R23, 1999.
 228.Maubec E, Laouenan C, Deschamps L, Nguyen VT, Scheer‐Senyarich I, Wackenheim‐Jacobs AC, Steff M, Duhamel S, Tubiana S, Brahimi N, Leclerc‐Mercier S, Crickx B, Perret C, Aractingi S, Escoubet B, Duval X, Arnaud P, Jaisser F, Mentre F, Farman N. Topical mineralocorticoid receptor blockade limits glucocorticoid‐induced epidermal atrophy in human skin. J Invest Dermatol 135: 1781‐1789, 2015.
 229.Mauro T, Guitard M, Behne M, Oda Y, Crumrine D, Komuves L, Rassner U, Elias PM, Hummler E. The ENaC channel is required for normal epidermal differentiation. J Invest Dermatol 118: 589‐594, 2002.
 230.May A, Puoti A, Gaeggeler H‐P, Horisberger J‐D, Rossier BC. Early effect of aldosterone on the rate of synthesis of the epithelial sodium channel a subunit in A6 renal cells. J Am Soc Nephrol 8: 1813‐1822, 1997.
 231.McCormick JA, Ellison DH. The WNKs: Atypical protein kinases with pleiotropic actions. Physiol Rev 91: 177‐219, 2011.
 232.McDonald FJ, Yang B, Hrstka RF, Drummond HA, Tarr DE, McCray PB Jr, Stokes JB, Welsh MJ, Williamson RA. Disruption of the beta subunit of the epithelial Na+ channel in mice: Hyperkalemia and neonatal death associated with a pseudohypoaldosteronism phenotype. Proc Natl Acad Sci U S A 96: 1727‐1731, 1999.
 233.Minegishi S, Ishigami T, Kino T, Chen L, Nakashima‐Sasaki R, Araki N, Yatsu K, Fujita M, Umemura S. An isoform of Nedd4‐2 is critically involved in the renal adaptation to high salt intake in mice. Sci Rep 6: 27137, 2016.
 234.Miyata N, Park F, Li XF, Cowley AW Jr. Distribution of angiotensin AT1 and AT2 receptor subtypes in the rat kidney. Am J Physiol 277: F437‐F446, 1999.
 235.Montgomery DS, Yu L, Ghazi ZM, Thai TL, Al‐Khalili O, Ma HP, Eaton DC, Alli AA. ENaC activity is regulated by calpain‐2 proteolysis of MARCKS proteins. Am J Physiol Cell Physiol 313: C42‐C53, 2017.
 236.Morizane R, Lam AQ, Freedman BS, Kishi S, Valerius MT, Bonventre JV. Nephron organoids derived from human pluripotent stem cells model kidney development and injury. Nat Biotechnol 33: 1193‐1200, 2015.
 237.Mueller GM, Maarouf AB, Kinlough CL, Sheng N, Kashlan OB, Okumura S, Luthy S, Kleyman TR, Hughey RP. Cys palmitoylation of the beta subunit modulates gating of the epithelial sodium channel. J Biol Chem 285: 30453‐30462, 2010.
 238.Mukherjee A, Mueller GM, Kinlough CL, Sheng N, Wang Z, Mustafa SA, Kashlan OB, Kleyman TR, Hughey RP. Cysteine palmitoylation of the gamma subunit has a dominant role in modulating activity of the epithelial sodium channel. J Biol Chem 289: 14351‐14359, 2014.
 239.Mukherjee A, Wang Z, Kinlough CL, Poland PA, Marciszyn AL, Montalbetti N, Carattino MD, Butterworth MB, Kleyman TR, Hughey RP. Specific palmitoyltransferases associate with and activate the epithelial sodium channel. J Biol Chem 292: 4152‐4163, 2017.
 240.Mulder J, Sharmin S, Chow T, Rodrigues DC, Hildebrandt MR, D'Cruz R, Rogers I, Ellis J, Rosenblum ND. Generation of infant‐ and pediatric‐derived urinary induced pluripotent stem cells competent to form kidney organoids. Pediatr Res 87: 647‐655, 2020.
 241.Muller OG, Parnova RG, Centeno G, Rossier BC, Firsov D, Horisberger JD. Mineralocorticoid effects in the kidney: Correlation between alphaENaC, GILZ, and Sgk‐1 mRNA expression and urinary excretion of Na(+) and K(+). J Am Soc Nephrol 14: 1107‐1115, 2003.
 242.Mutchler SM, Kleyman TR. New insights regarding epithelial Na+ channel regulation and its role in the kidney, immune system and vasculature. Curr Opin Nephrol Hypertens 28: 113‐119, 2019.
 243.Nagaki K, Yamamura H, Shimada S, Saito T, Hisanaga S, Taoka M, Isobe T, Ichimura T. 14‐3‐3 Mediates phosphorylation‐dependent inhibition of the interaction between the ubiquitin E3 ligase Nedd4‐2 and epithelial Na+ channels. Biochemistry 45: 6733‐6740, 2006.
 244.Naray‐Fejes‐Toth A, Canessa CM, Cleaveland ES, Aldrich G, Fejes‐Toth G. sgk is an aldosterone‐induced kinase in the renal collecting duct. J Biol Chem 274: 16973‐16978, 1999.
 245.Naray‐Fejes‐Toth A, Snyder PM, Fejes‐Toth G. The kidney‐specific WNK1 isoform is induced by aldosterone and stimulates epithelial sodium channel‐mediated Na+ transport. Proc Natl Acad Sci U S A 101: 17434‐17439, 2004.
 246.Nesterov V, Dahlmann A, Krueger B, Bertog M, Loffing J, Korbmacher C. Aldosterone‐dependent and ‐independent regulation of the epithelial sodium channel (ENaC) in mouse distal nephron. Am J Physiol Renal Physiol 303: F1289‐F1299, 2012.
 247.Nicco C, Bankir L, Bouby N. Effect of salt and water intake on epithelial sodium channel mRNA abundance in the kidney of salt‐sensitive Sabra rats. Clin Exp Pharmacol Physiol 30: 963‐965, 2003.
 248.Nicco C, Wittner M, DiStefano A, Jounier S, Bankir L, Bouby N. Chronic exposure to vasopressin upregulates ENaC and sodium transport in the rat renal collecting duct and lung. Hypertension 38: 1143‐1149, 2001.
 249.Nishinakamura R. Human kidney organoids: Progress and remaining challenges. Nat Rev Nephrol 15: 613‐624, 2019.
 250.Nobel YR, Lodish MB, Raygada M, Rivero JD, Faucz FR, Abraham SB, Lyssikatos C, Belyavskaya E, Stratakis CA, Zilbermint M. Pseudohypoaldosteronism type 1 due to novel variants of SCNN1B gene. Endocrinol Diabetes Metab Case Rep 2016: 150104, 2016.
 251.Noreng S, Bharadwaj A, Posert R, Yoshioka C, Baconguis I. Structure of the human epithelial sodium channel by cryo‐electron microscopy. elife 7: e39340, 2018.
 252.Noreng S, Posert R, Bharadwaj A, Houser A, Baconguis I. Molecular principles of assembly, activation, and inhibition in epithelial sodium channel. elife 9: e59038, 2020.
 253.O'Brodovich HM. The role of active Na+ transport by lung epithelium in the clearance of airspace fluid. New Horiz 3: 240‐247, 1995.
 254.Oberfeld B, Ruffieux‐Daidie D, Vitagliano JJ, Pos KM, Verrey F, Staub O. Ubiquitin‐specific protease 2‐45 (Usp2‐45) binds to epithelial Na+ channel (ENaC) ubiquitylating enzyme Nedd4‐2. Am J Physiol Renal Physiol 301: F189‐F196, 2011.
 255.Oda Y, Imanzahrai A, Kwong A, Komuves L, Elias PM, Largman C, Mauro T. Epithelial sodium channels are upregulated during epidermal differentiation. J Invest Dermatol 113: 796‐801, 1999.
 256.Olivier R, Scherrer U, Horisberger JD, Rossier BC, Hummler E. Selected contribution: Limiting Na(+) transport rate in airway epithelia from alpha‐ENaC transgenic mice: A model for pulmonary edema. J Appl Physiol (1985) 93: 1881‐1887, 2002.
 257.Orce GG, Castillo GA, Margolius HS. Inhibition of short‐circuit current in toad urinary bladder by inhibitors of glandular kallikrein. Am J Physiol 239: F459‐F465, 1980.
 258.Palmer LG, Frindt G. Epithelial sodium channel: Characterization by using the patch‐clamp technique. Fed Proc 45: 2708‐2712, 1986.
 259.Pao AC. There and back again: Insulin, ENaC, and the cortical collecting duct. Physiol Rep 4: e12809, 2016.
 260.Park J, Leon MLL, Buse P, Maiyar AC, Firestone GL, Hemmings BA. Serum and glucocorticoid‐inducible kinase (SGK) is a target of the PI 3‐kinase‐stimulated signaling pathway. EMBO J 18: 3024‐3033, 1999.
 261.Passero CJ, Carattino MD, Kashlan OB, Myerburg MM, Hughey RP, Kleyman TR. Defining an inhibitory domain in the gamma subunit of the epithelial sodium channel. Am J Physiol Renal Physiol 299: F854‐F861, 2010.
 262.Passero CJ, Mueller GM, Myerburg MM, Carattino MD, Hughey RP, Kleyman TR. TMPRSS4‐dependent activation of the epithelial sodium channel requires cleavage of the gamma‐subunit distal to the furin cleavage site. Am J Physiol Renal Physiol 302: F1‐F8, 2012.
 263.Patel AB, Chao J, Palmer LG. Tissue kallikrein activation of the epithelial Na channel. Am J Physiol Renal Physiol 303: F540‐F550, 2012.
 264.Pavlov TS, Chahdi A, Ilatovskaya DV, Levchenko V, Vandewalle A, Pochynyuk O, Sorokin A, Staruschenko A. Endothelin‐1 inhibits the epithelial Na+ channel through betaPix/14‐3‐3/Nedd4‐2. J Am Soc Nephrol 21: 833‐843, 2010.
 265.Pavlov TS, Ilatovskaya DV, Levchenko V, Li L, Ecelbarger CM, Staruschenko A. Regulation of ENaC in mice lacking renal insulin receptors in the collecting duct. FASEB J 27: 2723‐2732, 2013.
 266.Pearce D. The role of SGK1 in hormone‐regulated sodium transport. Trends Endocrinol Metab 12: 341‐347, 2001.
 267.Pech V, Pham TD, Hong S, Weinstein AM, Spencer KB, Duke BJ, Walp E, Kim YH, Sutliff RL, Bao HF, Eaton DC, Wall SM. Pendrin modulates ENaC function by changing luminal HCO3. J Am Soc Nephrol 21: 1928‐1941, 2010.
 268.Pech V, Wall SM, Nanami M, Bao HF, Kim YH, Lazo‐Fernandez Y, Yue Q, Pham TD, Eaton DC, Verlander JW. Pendrin gene ablation alters ENaC subcellular distribution and open probability. Am J Physiol Renal Physiol 309: F154‐F163, 2015.
 269.Penton D, Czogalla J, Loffing J. Dietary potassium and the renal control of salt balance and blood pressure. Pflugers Arch 467: 513‐530, 2015.
 270.Perrier R, Boscardin E, Malsure S, Sergi C, Maillard MP, Loffing J, Loffing‐Cueni D, Sorensen MV, Koesters R, Rossier BC, Frateschi S, Hummler E. Severe salt‐losing syndrome and hyperkalemia induced by adult nephron‐specific knockout of the epithelial sodium channel alpha‐subunit. J Am Soc Nephrol 27: 2309‐2318, 2016.
 271.Persaud A, Alberts P, Mari S, Tong J, Murchie R, Maspero E, Safi F, Moran MF, Polo S, Rotin D. Tyrosine phosphorylation of NEDD4 activates its ubiquitin ligase activity. Sci Signal 7: ra95, 2014.
 272.Peti‐Peterdi J, Warnock DG, Bell PD. Angiotensin II directly stimulates ENaC activity in the cortical collecting duct via AT(1) receptors. J Am Soc Nephrol 13: 1131‐1135, 2002.
 273.Picard N, Trompf K, Yang CL, Miller RL, Carrel M, Loffing‐Cueni D, Fenton RA, Ellison DH, Loffing J. Protein phosphatase 1 inhibitor‐1 deficiency reduces phosphorylation of renal NaCl cotransporter and causes arterial hypotension. J Am Soc Nephrol 25: 511‐522, 2014.
 274.Planes C, Randrianarison NH, Charles RP, Frateschi S, Cluzeaud F, Vuagniaux G, Soler P, Clerici C, Rossier BC, Hummler E. ENaC‐mediated alveolar fluid clearance and lung fluid balance depend on the channel‐activating protease 1. EMBO Mol Med 2: 26‐37, 2010.
 275.Plant P, Lafont F, Lecat S, Verkade P, Simons K, Rotin D. Apical membrane localization of Nedd4 is mediated by an association of its C2 domain with annexin XIIIb. J Cell Biol 149: 1473‐1483, 2000.
 276.Plant P, Yeger H, Staub O, Howard P, Rotin D. The C2 domain of the ubiquitin protein ligase Nedd4 mediates Ca2+‐dependent plasma membrane localization. J Biol Chem 272: 32329‐32336, 1997.
 277.Pollmächer J, Timme S, Schuster S, Brakhage AA, Zipfel PF, Figge MT. Deciphering the counterplay of Aspergillus fumigatus infection and host inflammation by evolutionary games on graphs. Sci Rep 6: 27807, 2016. DOI: 10.1038/srep27807; colon: ADAM (https://medlineplus.gov/ency/presentations/100089_1.htm)
 278.Pouly D, Debonneville A, Ruffieux‐Daidie D, Maillard M, Abriel H, Loffing J, Staub O. Mice carrying ubiquitin‐specific protease 2 (Usp2) gene inactivation maintain normal sodium balance and blood pressure. Am J Physiol Renal Physiol 305: F21‐F30, 2013.
 279.Pradervand S, Barker PM, Wang Q, Ernst SA, Beerman F, Grubb BR, Burnier M, Schmidt A, Bindels RJM, Rossier BC, Hummler E. Salt restriction induces pseudohypoaldosteronism type 1 in mice expressing low levels of the a‐subunit of the amiloride‐sensitive epithelial sodium channel. Proc Natl Acad Sci U S A 96: 1732‐1737, 1999.
 280.Pradervand S, Vandewalle A, Bens M, Gautschi I, Loffing J, Hummler E, Schild L, Rossier BC. Dysfunction of the epithelial sodium channel expressed in the kidney of a mouse model for Liddle syndrome. J Am Soc Nephrol 14: 2219‐2228, 2003.
 281.Pradervand S, Wang Q, Burnier M, Beermann F, Horisberger JD, Hummler E, Rossier BC. A mouse model for Liddle's syndrome. J Am Soc Nephrol 10: 2527‐2533, 1999.
 282.Randrianarison N, Escoubet B, Ferreira C, Fontayne A, Fowler‐Jaeger N, Clerici C, Hummler E, Rossier BC, Planes C. beta‐Liddle mutation of the epithelial sodium channel increases alveolar fluid clearance and reduces the severity of hydrostatic pulmonary oedema in mice. J Physiol 582: 777‐788, 2007.
 283.Rashmi P, Colussi G, Ng M, Wu X, Kidwai A, Pearce D. Glucocorticoid‐induced leucine zipper protein regulates sodium and potassium balance in the distal nephron. Kidney Int 91: 1159‐1177, 2017.
 284.Rauh R, Diakov A, Tzschoppe A, Korbmacher J, Azad AK, Cuppens H, Cassiman JJ, Dotsch J, Sticht H, Korbmacher C. A mutation of the epithelial sodium channel associated with atypical cystic fibrosis increases channel open probability and reduces Na+ self inhibition. J Physiol 588: 1211‐1225, 2010.
 285.Rauh R, Soell D, Haerteis S, Diakov A, Nesterov V, Krueger B, Sticht H, Korbmacher C. A mutation in the beta‐subunit of ENaC identified in a patient with cystic fibrosis‐like symptoms has a gain‐of‐function effect. Am J Physiol Lung Cell Mol Physiol 304: L43‐L55, 2013.
 286.Record RD, Johnson M, Lee S, Blazer‐Yost BL. Aldosterone and insulin stimulate amiloride‐sensitive sodium transport in A6 cells by additive mechanisms. Am J Physiol 271: C1079‐C1084, 1996.
 287.Reddy MM, Quinton PM. Functional interaction of CFTR and ENaC in sweat glands. Pflugers Arch 445: 499‐503, 2003.
 288.Renard S, Voilley N, Bassilana F, Lazdunski M, Barbry P. Localization and regulation by steroids of the α, β and γ subunits of the amiloride‐sensitive Na+ channel in colon, lung and kidney. Pflugers Arch 430: 299‐307, 1995.
 289.Rexhepaj R, Artunc F, Grahammer F, Nasir O, Sandu C, Friedrich B, Kuhl D, Lang F. SGK1 is not required for regulation of colonic ENaC activity. Pflugers Arch 453: 97‐105, 2006.
 290.Richards J, Greenlee MM, Jeffers LA, Cheng KY, Guo L, Eaton DC, Gumz ML. Inhibition of alphaENaC expression and ENaC activity following blockade of the circadian clock‐ regulatory kinases CK1delta/epsilon. Am J Physiol Renal Physiol 303: F918‐F927, 2012.
 291.Richards J, Jeffers LA, All SC, Cheng KY, Gumz ML. Role of Per1 and the mineralocorticoid receptor in the coordinate regulation of alphaENaC in renal cortical collecting duct cells. Front Physiol 4: 253, 2013.
 292.Riepe FG, van Bemmelen MX, Cachat F, Plendl H, Gautschi I, Krone N, Holterhus PM, Theintz G, Schild L. Revealing a subclinical salt‐losing phenotype in heterozygous carriers of the novel S562P mutation in the alpha subunit of the epithelial sodium channel. Clin Endocrinol (Oxf) 70: 252‐258, 2009.
 293.Ring AM, Cheng SX, Leng Q, Kahle KT, Rinehart J, Lalioti MD, Volkman HM, Wilson FH, Hebert SC, Lifton RP. WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc Natl Acad Sci U S A 104: 4020‐4024, 2007.
 294.Ring AM, Leng Q, Rinehart J, Wilson FH, Kahle KT, Hebert SC, Lifton RP. An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc Natl Acad Sci U S A 104: 4025‐4029, 2007.
 295.Rizzo F, Staub O. NEDD4‐2 and salt‐sensitive hypertension. Curr Opin Nephrol Hypertens 24: 111‐116, 2015.
 296.Robert‐Nicoud M, Flahaut M, Elalouf JM, Nicod M, Salinas M, Bens M, Doucet A, Wincker P, Artiguenave F, Horisberger JD, Vandewalle A, Rossier BC, Firsov D. Transcriptome of a mouse kidney cortical collecting duct cell line: Effects of aldosterone and vasopressin. Proc Natl Acad Sci U S A 98: 2712‐2716, 2001.
 297.Ronzaud C, Loffing‐Cueni D, Hausel P, Debonneville A, Malsure SR, Fowler‐Jaeger N, Boase NA, Perrier R, Maillard M, Yang B, Stokes JB, Koesters R, Kumar S, Hummler E, Loffing J, Staub O. Renal tubular NEDD4‐2 deficiency causes NCC‐mediated salt‐dependent hypertension. J Clin Invest 123: 657‐665, 2013.
 298.Roos KP, Bugaj V, Mironova E, Stockand JD, Ramkumar N, Rees S, Kohan DE. Adenylyl cyclase VI mediates vasopressin‐stimulated ENaC activity. J Am Soc Nephrol 24: 218‐227, 2013.
 299.Rossi E, Farnetti E, Debonneville A, Nicoli D, Grasselli C, Regolisti G, Negro A, Perazzoli F, Casali B, Mantero F, Staub O. Liddle's syndrome caused by a novel missense mutation (P617L) of the epithelial sodium channel beta subunit. J Hypertens 26: 921‐927, 2008.
 300.Rossier BC, Baker ME, Studer RA. Epithelial sodium transport and its control by aldosterone: The story of our internal environment revisited. Physiol Rev 95: 297‐340, 2015.
 301.Rossier BC, Pradervand S, Schild L, Hummler E. Epithelial sodium channel and the control of sodium balance: Interaction between genetic and environmental factors. Annu Rev Physiol 64: 877‐897, 2002.
 302.Rossier BC, Staub O, Hummler E. Genetic dissection of sodium and potassium transport along the aldosterone‐sensitive distal nephron: Importance in the control of blood pressure and hypertension. FEBS Lett 587: 1929‐1941, 2013.
 303.Rotin D, Kumar S. Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10: 398‐409, 2009.
 304.Rotin D, Staub O. Nedd4‐2 and the regulation of epithelial sodium transport. Front Physiol 3: 212, 2012.
 305.Roudier‐Pujol C, Rochat A, Escoubet B, Eugene E, Barrandon Y, Bonvalet JP, Farman N. Differential expression of epithelial sodium channel subunit mRNAs in rat skin. J Cell Sci 109: 379‐385, 1996.
 306.Rubera I, Loffing J, Palmer LG, Frindt G, Fowler‐Jaeger N, Sauter D, Carroll T, McMahon A, Hummler E, Rossier BC. Collecting duct‐specific gene inactivation of aENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 112: 554‐565, 2003.
 307.Ruffieux‐Daidie D, Poirot O, Boulkroun S, Verrey F, Kellenberger S, Staub O. Deubiquitylation regulates activation and proteolytic cleavage of ENaC. J Am Soc Nephrol 19: 2170‐2180, 2008.
 308.Ruffieux‐Daidie D, Staub O. Intracellular ubiquitylation of the epithelial Na+ channel controls extracellular proteolytic channel activation via conformational change. J Biol Chem 286: 2416‐2424, 2011.
 309.Russo CJ, Melista E, Cui J, DeStefano AL, Bakris GL, Manolis AJ, Gavras H, Baldwin CT. Association of NEDD4L ubiquitin ligase with essential hypertension. Hypertension 46: 488‐491, 2005.
 310.Salhadar K, Matthews A, Raghuram V, Limbutara K, Yang CR, Datta A, Chou CL, Knepper MA. Phosphoproteomic identification of vasopressin/cAMP/PKA‐dependent signaling in kidney. Mol Pharmacol, 2020.
 311.Salih M, Gautschi I, van Bemmelen MX, Di Benedetto M, Brooks AS, Lugtenberg D, Schild L, Hoorn EJ. A missense mutation in the extracellular domain of alphaENaC causes Liddle syndrome. J Am Soc Nephrol 28: 3291‐3299, 2017.
 312.Sanchez‐Perez A, Kumar S, Cook DI. GRK2 interacts with and phosphorylates Nedd4 and Nedd4‐2. Biochem Biophys Res Commun 359: 611‐615, 2007.
 313.Sato T, Clevers H. SnapShot: Growing organoids from stem cells. Cell 161: 1700 e1701, 2015.
 314.Sato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M, Clevers H. Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469: 415‐418, 2011.
 315.Sauter D, Fernandes S, Goncalves‐Mendes N, Boulkroun S, Bankir L, Loffing J, Bouby N. Long‐term effects of vasopressin on the subcellular localization of ENaC in the renal collecting system. Kidney Int 69: 1024‐1032, 2006.
 316.Schaedel C, Marthinsen L, Kristoffersson AC, Kornfalt R, Nilsson KO, Orlenius B, Holmberg L. Lung symptoms in pseudohypoaldosteronism type 1 are associated with deficiency of the alpha‐subunit of the epithelial sodium channel. J Pediatr 135: 739‐745, 1999.
 317.Schild L, Lu Y, Gautschi I, Schneeberger E, Lifton RP, Rossier BC. Identification of a PY motif in the epithelial Na channel subunits as a target sequence for mutations causing channel activation found in Liddle syndrome. EMBO J 15: 2381‐2387, 1996.
 318.Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C, Jansen J, Gijzen L, Vormann M, Vonk A, Viveen M, Yengej FY, Derakhshan S, de Winter‐de Groot KM, Artegiani B, van Boxtel R, Cuppen E, Hendrickx APA, van den Heuvel‐Eibrink MM, Heitzer E, Lanz H, Beekman J, Murk JL, Masereeuw R, Holstege F, Drost J, Verhaar MC, Clevers H. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 37: 303‐313, 2019.
 319.Sesma JI, Wu B, Stuhlmiller TJ, Scott DW. SPX‐101 is stable in and retains function after exposure to cystic fibrosis sputum. J Cyst Fibros 18: 244‐250, 2019.
 320.Sheng S, Carattino MD, Bruns JB, Hughey RP, Kleyman TR. Furin cleavage activates the epithelial Na+ channel by relieving Na+ self‐inhibition. Am J Physiol Renal Physiol 290: F1488‐F1496, 2006.
 321.Sheridan MB, Fong P, Groman JD, Conrad C, Flume P, Diaz R, Harris C, Knowles M, Cutting GR. Mutations in the beta‐subunit of the epithelial Na+ channel in patients with a cystic fibrosis‐like syndrome. Hum Mol Genet 14: 3493‐3498, 2005.
 322.Shi PP, Cao XR, Sweezer EM, Kinney TS, Williams NR, Husted RF, Nair R, Weiss RM, Williamson RA, Sigmund CD, Snyder PM, Staub O, Stokes JB, Yang B. Salt‐sensitive hypertension and cardiac hypertrophy in mice deficient in the ubiquitin ligase Nedd4‐2. Am J Physiol Renal Physiol 295: F462‐F470, 2008.
 323.Shigaev A, Asher C, Latter H, Garty H, Reuveny E. Regulation of sgk by aldosterone and its effects on the epithelial Na(+) channel. Am J Physiol 278: F613‐F619, 2000.
 324.Shimkets RA, Lifton RP, Canessa CM. In vivo phosphorylation of the epithelial sodium channel. Proc Natl Acad Sci U S A 95: 3301‐3305, 1998.
 325.Shimkets RA, Warnock DG, Bositis CM, Nelson‐Williams C, Hansson JH, Schambelan M, Gill JR Jr, Ulick S, Milora RV, Findling JW, Canessa CM, Rossier BC, Lifton RP. Liddle's syndrome: Heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 79: 407‐414, 1994.
 326.Smith DE, Otulakowski G, Yeger H, Post M, Cutz E, O'Brodovich HM. Epithelial Na(+) channel (ENaC) expression in the developing normal and abnormal human perinatal lung. Am J Respir Crit Care Med 161: 1322‐1331, 2000.
 327.Snyder PM, Olson DR, Kabra R, Zhou R, Steines JC. cAMP and serum and glucocorticoid‐inducible kinase (SGK) regulate the epithelial Na(+) channel through convergent phosphorylation of Nedd4‐2. J Biol Chem 279: 45753‐45758, 2004.
 328.Snyder PM, Olson DR, Thomas BC. Serum and glucocorticoid‐regulated kinase modulates Nedd4‐2‐mediated inhibition of the epithelial Na+ channel. J Biol Chem 277: 5‐8, 2002.
 329.Soleimani M, Barone S, Xu J, Shull GE, Siddiqui F, Zahedi K, Amlal H. Double knockout of pendrin and Na‐Cl cotransporter (NCC) causes severe salt wasting, volume depletion, and renal failure. Proc Natl Acad Sci U S A 109: 13368‐13373, 2012.
 330.Song C, Yue Q, Moseley A, Al‐Khalili O, Wynne BM, Ma H, Wang L, Eaton DC. MARCKS‐like protein‐1(MLP‐1) regulates ENaC activity in renal distal convoluted tubule cells. Am J Physiol Cell Physiol 319: C589‐C604, 2020.
 331.Song J, Hu X, Riazi S, Tiwari S, Wade JB, Ecelbarger CA. Regulation of blood pressure, the epithelial sodium channel (ENaC), and other key renal sodium transporters by chronic insulin infusion in rats. Am J Physiol Renal Physiol 290: F1055‐F1064, 2006.
 332.Sorensen MV, Grossmann S, Roesinger M, Gresko N, Todkar AP, Barmettler G, Ziegler U, Odermatt A, Loffing‐Cueni D, Loffing J. Rapid dephosphorylation of the renal sodium chloride cotransporter in response to oral potassium intake in mice. Kidney Int 83: 811‐824, 2013.
 333.Sorensen MV, Saha B, Jensen IS, Wu P, Ayasse N, Gleason CE, Svendsen SL, Wang WH, Pearce D. Potassium acts through mTOR to regulate its own secretion. JCI Insight 5: e126910, 2019.
 334.Sotak M, Polidarova L, Musilkova J, Hock M, Sumova A, Pacha J. Circadian regulation of electrolyte absorption in the rat colon. Am J Physiol Gastrointest Liver Physiol 301: G1066‐G1074, 2011.
 335.Soundararajan R, Melters D, Shih IC, Wang J, Pearce D. Epithelial sodium channel regulated by differential composition of a signaling complex. Proc Natl Acad Sci U S A 106: 7804‐7809, 2009.
 336.Soundararajan R, Wang J, Melters D, Pearce D. Glucocorticoid‐induced Leucine zipper 1 stimulates the epithelial sodium channel by regulating serum‐ and glucocorticoid‐induced kinase 1 stability and subcellular localization. J Biol Chem 285: 39905‐39913, 2010.
 337.Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D. A novel role for glucocorticoid‐induced leucine zipper protein in epithelial sodium channel‐mediated sodium transport. J Biol Chem 280: 39970‐39981, 2005.
 338.Spindler B, Mastroberardino L, Custer M, Verrey F. Characterization of early aldosterone‐induced RNAs identified in A6 kidney epithelia. Pflugers Arch 434: 323‐331, 1997.
 339.Spirli A, Cheval L, Debonneville A, Penton D, Ronzaud C, Maillard M, Doucet A, Loffing J, Staub O. The serine‐threonine kinase PIM3 is an aldosterone‐regulated protein in the distal nephron. Physiol Rep 7: e14177, 2019.
 340.Staub O, Dho S, Henry P, Correa J, Ishikawa T, McGlade J, Rotin D. WW domains of Nedd4 bind to the proline‐rich PY motifs in the epithelial Na+ channel deleted in Liddle's syndrome. EMBO J 15: 2371‐2380, 1996.
 341.Staub O, Gautschi I, Ishikawa T, Breitschopf K, Ciechanover A, Schild L, Rotin D. Regulation of stability and function of the epithelial Na+ channel (ENaC) by ubiquitination. EMBO J 16: 6325‐6336, 1997.
 342.Staub O, Loffing J. Mineralocorticoid action in the aldosterone sensitive distal nephron. In: Alpern RJ, Caplan MJ, Moe OW, editors. The Kidney: Physiology and Pathophysiology. San Diego: Elsevier Inc., 2013, p. 1181‐1211.
 343.Staub O, Rotin D. WW domains. Structure 4: 495‐499, 1996.
 344.Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med 372: 1574‐1575, 2015.
 345.Stow LR, Richards J, Cheng KY, Lynch IJ, Jeffers LA, Greenlee MM, Cain BD, Wingo CS, Gumz ML. The circadian protein period 1 contributes to blood pressure control and coordinately regulates renal sodium transport genes. Hypertension 59: 1151‐1156, 2012.
 346.Stow LR, Voren GE, Gumz ML, Wingo CS, Cain BD. Dexamethasone stimulates endothelin‐1 gene expression in renal collecting duct cells. Steroids 77: 360‐366, 2012.
 347.Strautnieks SS, Thompson RJ, Gardiner RM, Chung E. A novel splice‐site mutation in the gamma subunit of the epithelial sodium channel gene in three pseudohypoaldosteronism type 1 families. Nat Genet 13: 248‐250, 1996.
 348.Strautnieks SS, Thompson RJ, Hanukoglu A, Dillon MJ, Hanukoglu I, Kuhnle U, Seckl J, Gardiner RM, Chung E. Localisation of pseudohypoaldosteronism genes to chromosome 16p12.2‐13.11 and 12p13.1‐pter by homozygosity mapping. Hum Mol Genet 5: 293‐299, 1996.
 349.Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC. CFTR as a cAMP‐dependent regulator of sodium channels. Science 269: 847‐850, 1995.
 350.Sun P, Yue P, Wang WH. Angiotensin II stimulates epithelial sodium channels in the cortical collecting duct of the rat kidney. Am J Physiol Renal Physiol 302: F679‐F687, 2012.
 351.Svenningsen P, Bistrup C, Friis UG, Bertog M, Haerteis S, Krueger B, Stubbe J, Jensen ON, Thiesson HC, Uhrenholt TR, Jespersen B, Jensen BL, Korbmacher C, Skott O. Plasmin in nephrotic urine activates the epithelial sodium channel. J Am Soc Nephrol 20: 299‐310, 2009.
 352.Svenningsen P, Friis UG, Versland JB, Buhl KB, Moller Frederiksen B, Andersen H, Zachar RM, Bistrup C, Skott O, Jorgensen JS, Andersen RF, Jensen BL. Mechanisms of renal NaCl retention in proteinuric disease. Acta Physiol (Oxf) 207: 536‐545, 2013.
 353.Svenningsen P, Uhrenholt TR, Palarasah Y, Skjodt K, Jensen BL, Skott O. Prostasin‐dependent activation of epithelial Na+ channels by low plasmin concentrations. Am J Physiol Regul Integr Comp Physiol 297: R1733‐R1741, 2009.
 354.Svensson‐Farbom P, Wahlstrand B, Almgren P, Dahlberg J, Fava C, Kjeldsen S, Hedner T, Melander O. A functional variant of the NEDD4L gene is associated with beneficial treatment response with beta‐blockers and diuretics in hypertensive patients. J Hypertens 29: 388‐395, 2011.
 355.Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14: 53‐67, 2014.
 356.Taguchi A, Nishinakamura R. Higher‐order kidney organogenesis from pluripotent stem cells. Cell Stem Cell 21: 730‐746 e736, 2017.
 357.Takasato M, Er PX, Chiu HS, Maier B, Baillie GJ, Ferguson C, Parton RG, Wolvetang EJ, Roost MS, Chuva de Sousa Lopes SM, Little MH. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis. Nature 526: 564‐568, 2015.
 358.Tamura H, Schild L, Enomoto N, Matsui N, Marumo F, Rossier BC. Liddle disease caused by a missense mutation of beta subunit of the epithelial sodium channel gene. J Clin Invest 97: 1780‐1784, 1996.
 359.Tarjus A, Maase M, Jeggle P, Martinez‐Martinez E, Fassot C, Loufrani L, Henrion D, Hansen PBL, Kusche‐Vihrog K, Jaisser F. The endothelial alphaENaC contributes to vascular endothelial function in vivo. PLoS One 12: e0185319, 2017.
 360.Terker AS, Yarbrough B, Ferdaus MZ, Lazelle RA, Erspamer KJ, Meermeier NP, Park HJ, McCormick JA, Yang CL, Ellison DH. Direct and indirect mineralocorticoid effects determine distal salt transport. J Am Soc Nephrol 27: 2436‐2445, 2016.
 361.Tiwari S, Nordquist L, Halagappa VK, Ecelbarger CA. Trafficking of ENaC subunits in response to acute insulin in mouse kidney. Am J Physiol Renal Physiol 293: F178‐F185, 2007.
 362.Tong Q, Gamper N, Medina JL, Shapiro MS, Stockand JD. Direct activation of the epithelial Na(+) channel by phosphatidylinositol 3,4,5‐trisphosphate and phosphatidylinositol 3,4‐bisphosphate produced by phosphoinositide 3‐OH kinase. J Biol Chem 279: 22654‐22663, 2004.
 363.Tuna KM, Liu BC, Yue Q, Ghazi ZM, Ma HP, Eaton DC, Alli AA. Mal protein stabilizes luminal membrane PLC‐beta3 and negatively regulates ENaC in mouse cortical collecting duct cells. Am J Physiol Renal Physiol 317: F986‐F995, 2019.
 364.Vallet V, Chraibi A, Gaeggeler H‐P, Horisberger J‐D, Rossier BC. An epithelial serine protease activates the amiloride‐sensitive sodium channel. Nature 389: 607‐610, 1997.
 365.Verlander JW, Hassell KA, Royaux IE, Glapion DM, Wang ME, Everett LA, Green ED, Wall SM. Deoxycorticosterone upregulates PDS (Slc26a4) in mouse kidney: Role of pendrin in mineralocorticoid‐induced hypertension. Hypertension 42: 356‐362, 2003.
 366.Verlander JW, Kim YH, Shin W, Pham TD, Hassell KA, Beierwaltes WH, Green ED, Everett L, Matthews SW, Wall SM. Dietary Cl(‐) restriction upregulates pendrin expression within the apical plasma membrane of type B intercalated cells. Am J Physiol Renal Physiol 291: F833‐F839, 2006.
 367.Viel M, Leroy C, Hubert D, Fajac I, Bienvenu T. ENaCbeta and gamma genes as modifier genes in cystic fibrosis. J Cyst Fibros 7: 23‐29, 2008.
 368.Waldmann R, Champigny G, Bassilana F, Voilley N, Lazdunski M. Molecular cloning and functional expression of a novel amiloride‐sensitive Na+ channel. J Biol Chem 270: 27411‐27414, 1995.
 369.Walker MP, Cowlen M, Christensen D, Miyamoto M, Barley P, Crowder T. Nonclinical safety assessment of SPX‐101, a novel peptide promoter of epithelial sodium channel internalization for the treatment of cystic fibrosis. Inhal Toxicol 29: 356‐365, 2017.
 370.Wang J, Barbry P, Maiyar AC, Rozansky DJ, Bhargava A, Leong M, Firestone GL, Pearce D. SGK integrates insulin and mineralocorticoid regulation of epithelial sodium transport. Am J Physiol 280: F303‐F313, 2001.
 371.Wang J, Peng Q, Lin Q, Childress C, Carey D, Yang W. Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain‐mediated auto‐inhibition. J Biol Chem 285: 12279‐12288, 2010.
 372.Wang S, Meng F, Mohan S, Champaneri B, Gu Y. Functional ENaC channels expressed in endothelial cells: A new candidate for mediating shear force. Microcirculation 16: 276‐287, 2009.
 373.Webster MJ, Reidel B, Tan CD, Ghosh A, Alexis NE, Donaldson SH, Kesimer M, Ribeiro CMP, Tarran R. SPLUNC1 degradation by the cystic fibrosis mucosal environment drives airway surface liquid dehydration. Eur Respir J 52: 1800668, 2018.
 374.Welsh MJ, Smith AE. Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73: 1251‐1254, 1993.
 375.Wichmann L, Vowinkel KS, Perniss A, Manzini I, Althaus M. Incorporation of the delta‐subunit into the epithelial sodium channel (ENaC) generates protease‐resistant ENaCs in Xenopus laevis. J Biol Chem 293: 6647‐6658, 2018.
 376.Wiesner S, Ogunjimi AA, Wang HR, Rotin D, Sicheri F, Wrana JL, Forman‐Kay JD. Autoinhibition of the HECT‐type ubiquitin ligase Smurf2 through its C2 domain. Cell 130: 651‐662, 2007.
 377.Wu P, Gao ZX, Zhang DD, Duan XP, Terker AS, Lin DH, Ellison DH, Wang WH. Effect of angiotensin II on ENaC in the distal convoluted tubule and in the cortical collecting duct of mineralocorticoid receptor deficient mice. J Am Heart Assoc 9: e014996, 2020.
 378.Wulff P, Vallon V, Huang DY, Volkl H, Yu F, Richter K, Jansen M, Schlunz M, Klingel K, Loffing J, Kauselmann G, Bosl MR, Lang F, Kuhl D. Impaired renal Na(+) retention in the sgk1‐knockout mouse. J Clin Invest 110: 1263‐1268, 2002.
 379.Xu BE, Stippec S, Chu PY, Lazrak A, Li XJ, Lee BH, English JM, Ortega B, Huang CL, Cobb MH. WNK1 activates SGK1 to regulate the epithelial sodium channel. Proc Natl Acad Sci U S A 102: 10315‐10320, 2005.
 380.Xu N, Hirohama D, Ishizawa K, Chang WX, Shimosawa T, Fujita T, Uchida S, Shibata S. Hypokalemia and pendrin induction by aldosterone. Hypertension 69: 855‐862, 2017.
 381.Yamamura H, Ugawa S, Ueda T, Nagao M, Shimada S. Protons activate the delta‐subunit of the epithelial Na+ channel in humans. J Biol Chem 279: 12529‐12534, 2004.
 382.Yamamura H, Ugawa S, Ueda T, Nagao M, Shimada S. Epithelial Na+ channel delta subunit mediates acid‐induced ATP release in the human skin. Biochem Biophys Res Commun 373: 155‐158, 2008.
 383.Yamashita Y, Koga M, Takeda Y, Enomoto N, Uchida S, Hashimoto K, Yamano S, Dohi K, Marumo F, Sasaki S. Two sporadic cases of Liddle's syndrome caused by De novo ENaC mutations. Am J Kidney Dis 37: 499‐504, 2001.
 384.Yang B, Kumar S. Nedd4 and Nedd4‐2: Closely related ubiquitin‐protein ligases with distinct physiological functions. Cell Death Differ 17: 68‐77, 2010.
 385.Yang HY, Charles RP, Hummler E, Baines DL, Isseroff RR. The epithelial sodium channel mediates the directionality of galvanotaxis in human keratinocytes. J Cell Sci 126: 1942‐1951, 2013.
 386.Yang L, Frindt G, Lang F, Kuhl D, Vallon V, Palmer LG. SGK1‐dependent ENaC processing and trafficking in mice with high dietary K intake and elevated aldosterone. Am J Physiol Renal Physiol 312: F65‐F76, 2017.
 387.Yang L, Palmer LG. Determinants of selective ion permeation in the epithelial Na(+) channel. J Gen Physiol 150: 1397‐1407, 2018.
 388.Yoder N, Gouaux E. The His‐Gly motif of acid‐sensing ion channels resides in a reentrant ‘loop’ implicated in gating and ion selectivity. elife 9: e56527, 2020.
 389.Yu L, Cai H, Yue Q, Alli AA, Wang D, Al‐Khalili O, Bao HF, Eaton DC. WNK4 inhibition of ENaC is independent of Nedd4‐2‐mediated ENaC ubiquitination. Am J Physiol Renal Physiol 305: F31‐F41, 2013.
 390.Zhang J, Gong WY, Liu M, Zhou W, Rao J, Li YQ, Wu JH, Luo D, Wang C, Peng H. A variant in the NEDD4L gene associates with hypertension in chronic kidney disease in the Southeastern Han Chinese Population. Am J Hypertens 33: 341‐349, 2020.
 391.Zhang W, Wu KP, Sartori MA, Kamadurai HB, Ordureau A, Jiang C, Mercredi PY, Murchie R, Hu J, Persaud A, Mukherjee M, Li N, Doye A, Walker JR, Sheng Y, Hao Z, Li Y, Brown KR, Lemichez E, Chen J, Tong Y, Harper JW, Moffat J, Rotin D, Schulman BA, Sidhu SS. System‐wide modulation of HECT E3 ligases with selective ubiquitin variant probes. Mol Cell 62: 121‐136, 2016.
 392.Zhang W, Xia X, Reisenauer MR, Rieg T, Lang F, Kuhl D, Vallon V, Kone BC. Aldosterone‐induced Sgk1 relieves Dot1a‐Af9‐mediated transcriptional repression of epithelial Na channel alpha. J Clin Invest 117: 773‐783, 2007.
 393.Zhao C, Crosby J, Lv T, Bai D, Monia BP, Guo S. Antisense oligonucleotide targeting of mRNAs encoding ENaC subunits alpha, beta, and gamma improves cystic fibrosis‐like disease in mice. J Cyst Fibros 18: 334‐341, 2019.
 394.Zhao RZ, Nie HG, Su XF, Han DY, Lee A, Huang Y, Chang Y, Matalon S, Ji HL. Characterization of a novel splice variant of delta ENaC subunit in human lungs. Am J Physiol Lung Cell Mol Physiol 302: L1262‐L1272, 2012.
 395.Zhou R, Patel SV, Snyder PM. Nedd4‐2 catalyzes ubiquitination and degradation of cell surface ENaC. J Biol Chem 282: 20207‐20212, 2007.
 396.Zhou R, Tomkovicz VR, Butler PL, Ochoa LA, Peterson ZJ, Snyder PM. Ubiquitin‐specific peptidase 8 (USP8) regulates endosomal trafficking of the epithelial Na+ channel. J Biol Chem 288: 5389‐5397, 2013.
 397.Zhou Z, Duerr J, Johannesson B, Schubert SC, Treis D, Harm M, Graeber SY, Dalpke A, Schultz C, Mall MA. The ENaC‐overexpressing mouse as a model of cystic fibrosis lung disease. J Cyst Fibros 10 (Suppl 2): S172‐S182, 2011.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Daniela Rotin, Olivier Staub. Function and Regulation of the Epithelial Na+ Channel ENaC. Compr Physiol 2021, 11: 2017-2045. doi: 10.1002/cphy.c200012