Comprehensive Physiology Wiley Online Library

Leptin and the Blood‐Brain Barrier: Curiosities and Controversies

Full Article on Wiley Online Library



Abstract

Leptin for over 25 years has been a central theme in the study of appetite, obesity, and starvation. As the major site of leptin production is peripheral, and the site of action of greatest interest is the hypothalamus, how leptin accesses the central nervous system (CNS) and crosses the blood‐brain barrier (BBB) has been of great interest. We review here the ongoing research that addresses fundamental questions such as the sites of leptin resistances in obesity and other conditions, the causes of resistances and their relations to one another, the three barrier sites of entry into the CNS, why recent studies using suprapharmacological doses cannot address these questions but give insight into nonsaturable entry of leptin into the CNS, and how that might be useful in using leptin therapeutically. The current status of the controversy of whether the short form of the leptin receptor acts as the BBB leptin transporter and how obesity may transform leptin transport is reviewed. Review of these and other topics summarizes in a new appreciation of what leptin may have actually evolved to do and what physiological role leptin resistance may play. © 2021 American Physiological Society. Compr Physiol 11:2351‐2369, 2021.

Figure 1. Figure 1. Relation of mean levels of serum leptin and BMI from six classic studies. Data is fitted to an exponential growth curve: Serum leptin = Y0k(BMI), where Y = 0.0195 and k = 0.238 (n = 10, r2 = 0.847). Reused, with permission, from Arnulf I, et al., 2006 4; Caro JF, et al., 1996 32; Koistinen HA, et al., 1998 85; Mantzoros C, et al., 1997 100; Schwartz MW, et al., 1996 143; Wiedenhoft A, et al., 1999 163.
Figure 2. Figure 2. Classic negative feedback loops. (A) The classic negative feedback loop is illustrated. Effector hormone released from the effector tissue stimulates the target tissue to secrete the controlled substance. The controlled substance suppresses release of the effector hormone. Thus, the system is self‐regulated at a steady‐state value. (B) The negative feedback controlling thyroid hormone levels. (C) The negative feedback loop controlling calcium levels. (D) The negative feedback loop controlling glucose levels. (E) The leptin‐adipose tissue feedback loop as an adipostat. (F) The leptin negative feedback loop with two points of resistance in series: the BBB and the arcuate nucleus.
Figure 3. Figure 3. Blood and CSF leptin levels from six classic leptin studies. (A) Relation of mean leptin levels for CSF vs. blood fitted to a one‐site hyperbolic model. These six studies evaluated levels in several categories besides obese and lean, including children, anorexia nervosa, and narcolepsy. The Kd of the hyperbola (the x value at which 50% of the maximum Y value is achieved) is shown by the vertical dashed line and is 3.74 ng/mL. (B) The CSF/serum ratios from these six studies plotted against their respective values for blood leptin levels. The horizontal dashed line is at the ratio of 0.005 (or 0.5%), the approximate brain/serum ratio for albumin in young healthy individuals. Reused, with permission, from Arnulf I, et al., 2006 4; Caro JF, et al., 1996 32; Koistinen HA, et al., 1998 85; Mantzoros C, et al., 1997 100; Schwartz MW, et al., 1996 143; Wiedenhoft A, et al., 1999 163.
Figure 4. Figure 4. Comparison of brain vs. blood and CSF vs. blood relations. CSF data from the six studies of Figure 3 plotted with a perfusion study done in mice correlating vascular leptin levels with brain levels of leptin. Both fit a hyperbolic pattern although the curve for CSF is shifted to the left, indicating saturation at a lower vascular level of leptin. Reused, with permission, from Banks WA, et al., 2000 11.
Figure 5. Figure 5. A strong correlation exists between the mean CSF levels of the six classic studies and BMI (r2 = 0.685, P = 0.003). Modeling demonstrates that an elevation in CSF levels of leptin is consistent with resistance at the leptin receptor. This is both because CSF is proximal to the receptor and so reflects resistance at the receptor and also because resistance at only the BBB would result in normal CSF leptin levels (but elevated blood and decreased CSF/serum ratios of leptin).
Figure 6. Figure 6. Modeling of one vs. two sites of impairment. Although both are nonlinear, the two‐site model is obviously much more so. This explains the apparent linearity of CSF leptin levels vs. BMI, which reflects resistance at one site vs. the hyperbolic increase in serum leptin levels at the same range of BMI's as serum reflects resistance at two sites: the BBB and the CNS receptor.
Figure 7. Figure 7. Comparison of leptin vascular levels and CSF/serum levels achieved by suprapharmacological leptin doses. The left hand portion of the graph shows the values measured in the six classic studies plus the controls from the 1 mg/kg study. All values in the left‐hand portion have vascular levels less than 50 ng/mL (the vertical dashed line) and CSF/serum ratios greater than 0.005 (or 0.5%). The right‐hand portion of the figure shows values in animals treated with 1 or 2.5 mg/kg. Blood values are typically 10 to 30 times greater than those seen in obesity, and CSF/serum rations less than 0.005. At the suprapharmacological levels, entry into the CNS is likely by way of the nonsaturable extracellular pathways as the transporters across the barriers are saturated.
Figure 8. Figure 8. Substances and conditions that modulate the transport of leptin at the BBB. Conditions that increase leptin transport across the BBB are shown in the green trapezoid, and substances in the green rectangle. Conditions that inhibit leptin transport across the BBB are shown in the red trapezoid. Triglycerides and leptin inhibit BBB transport of leptin and also cross the BBB to induce resistance at the leptin receptor in the arcuate nucleus.


Figure 1. Relation of mean levels of serum leptin and BMI from six classic studies. Data is fitted to an exponential growth curve: Serum leptin = Y0k(BMI), where Y = 0.0195 and k = 0.238 (n = 10, r2 = 0.847). Reused, with permission, from Arnulf I, et al., 2006 4; Caro JF, et al., 1996 32; Koistinen HA, et al., 1998 85; Mantzoros C, et al., 1997 100; Schwartz MW, et al., 1996 143; Wiedenhoft A, et al., 1999 163.


Figure 2. Classic negative feedback loops. (A) The classic negative feedback loop is illustrated. Effector hormone released from the effector tissue stimulates the target tissue to secrete the controlled substance. The controlled substance suppresses release of the effector hormone. Thus, the system is self‐regulated at a steady‐state value. (B) The negative feedback controlling thyroid hormone levels. (C) The negative feedback loop controlling calcium levels. (D) The negative feedback loop controlling glucose levels. (E) The leptin‐adipose tissue feedback loop as an adipostat. (F) The leptin negative feedback loop with two points of resistance in series: the BBB and the arcuate nucleus.


Figure 3. Blood and CSF leptin levels from six classic leptin studies. (A) Relation of mean leptin levels for CSF vs. blood fitted to a one‐site hyperbolic model. These six studies evaluated levels in several categories besides obese and lean, including children, anorexia nervosa, and narcolepsy. The Kd of the hyperbola (the x value at which 50% of the maximum Y value is achieved) is shown by the vertical dashed line and is 3.74 ng/mL. (B) The CSF/serum ratios from these six studies plotted against their respective values for blood leptin levels. The horizontal dashed line is at the ratio of 0.005 (or 0.5%), the approximate brain/serum ratio for albumin in young healthy individuals. Reused, with permission, from Arnulf I, et al., 2006 4; Caro JF, et al., 1996 32; Koistinen HA, et al., 1998 85; Mantzoros C, et al., 1997 100; Schwartz MW, et al., 1996 143; Wiedenhoft A, et al., 1999 163.


Figure 4. Comparison of brain vs. blood and CSF vs. blood relations. CSF data from the six studies of Figure 3 plotted with a perfusion study done in mice correlating vascular leptin levels with brain levels of leptin. Both fit a hyperbolic pattern although the curve for CSF is shifted to the left, indicating saturation at a lower vascular level of leptin. Reused, with permission, from Banks WA, et al., 2000 11.


Figure 5. A strong correlation exists between the mean CSF levels of the six classic studies and BMI (r2 = 0.685, P = 0.003). Modeling demonstrates that an elevation in CSF levels of leptin is consistent with resistance at the leptin receptor. This is both because CSF is proximal to the receptor and so reflects resistance at the receptor and also because resistance at only the BBB would result in normal CSF leptin levels (but elevated blood and decreased CSF/serum ratios of leptin).


Figure 6. Modeling of one vs. two sites of impairment. Although both are nonlinear, the two‐site model is obviously much more so. This explains the apparent linearity of CSF leptin levels vs. BMI, which reflects resistance at one site vs. the hyperbolic increase in serum leptin levels at the same range of BMI's as serum reflects resistance at two sites: the BBB and the CNS receptor.


Figure 7. Comparison of leptin vascular levels and CSF/serum levels achieved by suprapharmacological leptin doses. The left hand portion of the graph shows the values measured in the six classic studies plus the controls from the 1 mg/kg study. All values in the left‐hand portion have vascular levels less than 50 ng/mL (the vertical dashed line) and CSF/serum ratios greater than 0.005 (or 0.5%). The right‐hand portion of the figure shows values in animals treated with 1 or 2.5 mg/kg. Blood values are typically 10 to 30 times greater than those seen in obesity, and CSF/serum rations less than 0.005. At the suprapharmacological levels, entry into the CNS is likely by way of the nonsaturable extracellular pathways as the transporters across the barriers are saturated.


Figure 8. Substances and conditions that modulate the transport of leptin at the BBB. Conditions that increase leptin transport across the BBB are shown in the green trapezoid, and substances in the green rectangle. Conditions that inhibit leptin transport across the BBB are shown in the red trapezoid. Triglycerides and leptin inhibit BBB transport of leptin and also cross the BBB to induce resistance at the leptin receptor in the arcuate nucleus.
References
 1.Ahima RS, Prabakaran D, Mantzoros C, Qu D, Lowell B, Maratos‐Flier E, Flier JS. Role of leptin in the neuroendocrine response to feeding. Nature 382: 250‐252, 1996.
 2.Albright F, Burnett CH, Smith PH, Parson W. Pseudohypoparathyroidism ‐ an example of “Seabright‐Bantam syndrome”. Endocrinology 30: 922‐932, 1942.
 3.Anderson BM, Jacobson L, Novakovic ZM, Grasso P. Oral delivery of [D‐Leu‐4]‐OB3 and MA‐[D‐Leu‐4]‐OB3, synthetic peptide leptin mimetics: Immunofluorescent localization in the mouse hypothalamus. Brain Res 1664: 1‐8, 2017.
 4.Arnulf I, Lin L, Zhang J, Russell IJ, Ripley B, Einen M, Nevsimalova S, Bassetti C, Bourgin P, Nishino S, Mignot E. CSF versus serum leptin in narcolepsy: Is there an effect of hypocretin deficiency? Sleep 29: 1017‐1024, 2006.
 5.Banks WA. Leptin transport across the blood‐brain barrier: Implications for the cause and treatment of obesity. Curr Pharm Des 7: 125‐133, 2001.
 6.Banks WA. Enhanced leptin transport across the blood‐brain barrier by alpha1‐adrenergic agents. Brain Res 899: 209‐217, 2001.
 7.Banks WA. Are the extracellular pathways a conduit for the delivery of therapeutics to the brain? Curr Pharm Des 10: 1365‐1370, 2004.
 8.Banks WA. The blood‐brain barrier as a cause of obesity. Curr Pharm Des 14: 1606‐1614, 2008.
 9.Banks WA. The blood‐brain barrier as an endocrine tissue. Nat Rev Endocrinol 15: 444‐455, 2019.
 10.Banks WA, Burney BO, Robinson SM. Effects of triglycerides, obesity, and starvation on ghrelin transport across the blood‐brain barrier. Peptides 29: 2061‐2065, 2008.
 11.Banks WA, Clever CM, Farrell CL. Partial saturation and regional variation in the blood to brain transport of leptin in normal weight mice. Am J Physiol 278: E1158‐E1165, 2000.
 12.Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE. Triglycerides induce leptin resistance at the blood‐brain barrier. Diabetes 53: 1253‐1260, 2004.
 13.Banks WA, DiPalma CR, Farrell CL. Impaired transport of leptin across the blood‐brain barrier in obesity. Peptides 20: 1341‐1345, 1999.
 14.Banks WA, Farr SA, Salameh TS, Niehoff ML, Rhea EM, Morley JE, HAnson AJ, Hansen KM, Craft S. Triglycerides cross the blood‐brain barrier and induce central leptin and insulin receptor resistance. Int J Obes 42: 391‐397, 2018.
 15.Banks WA, Farrell CL. Impaired transport of leptin across the blood‐brain barrier in obesity is acquired and reversible. Am J Physiol 285: E10‐E15, 2003.
 16.Banks WA, Kastin AJ, Broadwell RD. Passage of cytokines across the blood‐brain barrier. Neuroimmunomodulation 2: 241‐248, 1995.
 17.Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides 17: 305‐311, 1996.
 18.Banks WA, Kastin AJ, Michals EA. Tyr‐MIF‐1 and met‐enkephalin share a saturable blood‐brain barrier transport system. Peptides 8: 899‐903, 1987.
 19.Banks WA, McLay RN, Kastin AJ, Sarmiento U, Scully S. Passage of leptin across the blood‐testis barrier. Am J Physiol 276: E1099‐E1104, 1999.
 20.Banks WA, Niehoff ML, Martin D, Farrell CL. Leptin transport across the blood‐brain barrier of the Koletsky rat is not mediated by a product of the leptin receptor gene. Brain Res 950: 130‐136, 2002.
 21.Banks WA, Reed MJ, Logsdon AF, Rhea EM, Erickson MA. Healthy aging and the blood‐brain barrier. Nat Aging 1: 243‐254, 2021.
 22.Banks WA, Willoughby LM, Thomas DR, Morley JE. Insulin resistance syndrome in the elderly. Diabetes Care 30: 2369‐2373, 2007.
 23.Barash IA, Cheung CC, Weigle DS, Ren H, Kabigting EB, Kuijper JL, Clifton DK, Steiner RA. Leptin is a metabolic signal to the reproductive system. Endocrinology 137: 3144‐3147, 1996.
 24.Bartolome F, Antequera D, de la Cueva M, Rubio‐Fernandez M, Castro N, Pascual C, Camins A, Carro E. Endothelial‐specific deficiency of megalin in the brain protects mice against high‐fat diet challenge. J Neuroinflammation 17: 22, 2020.
 25.Begriche K, Lettéron P, Abbey‐Toby A, Vadrot N, Robin MA, Bado A, Pessayre D, Fromenty B. Partial leptin deficiency favors diet‐induced obesity and related metabolic disorders in mice. Am J Physiol Endocrinol Metab 294: E939‐E951, 2008.
 26.Berger S, Pho H, Fleury‐Curado T, Bevans‐Fonti S, Younas H, Shin MK, Jun JC, Anokye‐Danso F, Ahima RS, Enquist LW, Mendelowitz D, Schwartz AR, Polotsky VY. Intranasal leptin relieves sleep‐disordered breathing in mice with diet‐induced obesity. Am J Respir Crit Care Med 199: 773‐783, 2019.
 27.Broadwell RD, Sofroniew MV. Serum proteins bypass the blood‐brain barrier for extracellular entry to the central nervous system. Exp Neurol 120: 245‐263, 1993.
 28.Brown RS, Wyatt AK, Herbison RE, Knowles PJ, Ladyman SR, Binart N, Banks WA, Grattan DR. Prolactin transport into mouse brain is independent of prolactin receptor. FASEB J 30: 1002‐1010, 2016.
 29.Burguera B, Couce ME, Curran GL, Jensen MD, Lloyd RV, Cleary MP, Poduslo JF. Obesity is associated with a decreased leptin transport across the blood‐brain barrier in rats. Diabetes 49: 1219‐1223, 2000.
 30.Cano V, Merino B, Ezquerra L, Somoza B, Ruiz‐Gayo M. A cholecystokinin‐1 receptor agonist (CCK‐8) mediates increased permeability of brain barriers to leptin. Br J Pharmacol 154: 1009‐1015, 2008.
 31.Cao GY, Considine RV, Lynn RB. Leptin receptors in the adrenal medulla of the rat. Am J Physiol 273: E448‐E452, 1997.
 32.Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, Lynn RB, Zhang PL, Sinha MD, Considine RV. Decreased cerebrospinal‐fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet 348: 159‐161, 1996.
 33.Chen H, Chatlat O, Tartaglia LA, Woolf EA, Weng X, Ellis SJ, Lakey ND, Culpepper J, Moore KH, Breitbart RE, Duyk GM, Tepper RI, Morgenstern JP. Evidence that the diabetes gene encodes the leptin receptor: Identificaton of a mutation in the leptin receptor gene in db/db mice. Cell 84: 491‐495, 1996.
 34.Cheung CC, Thornton JE, Kuijper JL, Weigle DS, Clifton DK, Steiner RA. Leptin is a metabolic gate for the onset of puberty in the female rat. Endocrinology 138: 855‐858, 1997.
 35.Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, Ohannesian JP, Marco CC, McKee LJ, Bauer TL, Caro JF. Serum immunoreactive‐leptin concentrations in normal‐weight and obese humans. N Engl J Med 334: 292‐295, 1996.
 36.Craft S, Newcomer J, Kanne S, Dagogo‐Jack S, Cryer P, Sheline Y, Luby J, Dagogo‐Jack A, Alderson A. Memory improvement following induced hyperinsulinemia in Alzheimer's disease. Neurobiol Aging 17: 123‐130, 1996.
 37.Crouch M, Al‐Shaer A, Shaikh SR. Hormonal dysregulation and unbalanced specialized pro‐resolving mediator biosynthesis contribute toward impaired B cell outcomes in obesity. Mol Nutr Food Res 65: e1900924, 2020.
 38.DeGeorge JJ, Noronha JG, Bell J, Robinson P, Rapoport SI. Intravenous injection of [1‐14 C]arachidonate to examine regional brain lipid metabolism in unanesthetized rats. J Neurosci Res 24: 413‐423, 1989.
 39.Devos R, Richards GJ, Campfield LA, Tartaglia LA, Guisez Y, van der Heyden J, Travernier J, Plaetinck G, Burn P. OB protein binds specifically to the choroid plexus of mice and rats. Proc Natl Acad Sci USA 93: 5668‐5673, 1996.
 40.Di Spiezio A, Sandin ES, Dore R, Müller‐Fielitz H, Storck SE, Bernau M, Mier W, Oster H, Jöhren O, Pietrzik CU, Lehnert H, Schwaninger M. The LepR‐mediated leptin transport across brain barriers controls food reward. Mol Metab 8: 13‐22, 2018.
 41.Diano S, Farr SA, Benoit SE, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschop MH, Horvath TL. Ghrelin controls hippocampal spine synapse density and memory performance. Nat Neurosci 9: 381‐388, 2006.
 42.Dietrich MO, Spuch C, Antequera D, Rodal I, de Yébenes JG, Molina JA, Bermejo F, Carro E. Megalin mediates the transport of leptin across the blood‐CSF barrier. Neurobiol Aging 29: 902‐912, 2008.
 43.Dogrukol‐Ak D, Kumar VB, Ryerse JS, Farr SA, Verma S, Nonaka K, Nakamachi T, Ohtaki H, Niehoff ML, Edwards JC, Shioda S, Morley JE, Banks WA. Isolation of peptide transport system‐6 from brain endothelial cells: Therapeutic effects with antisense inhibition in Alzheimer's and stroke models. J Cereb Blood Flow Metab 29: 411‐422, 2009.
 44.Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Bell FT, Shen J, Vinson C, Rueger JM, Karsenty G. Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 100: 197‐207, 2000.
 45.Elias CF, Aschkenasi C, Lee C, Kelly J, Ahima RS, Bjorbaek C, Flier JS, Saper CB, Elmquist JK. Leptin differentially regulates NPY and POMC neurons projecting to the lateral hypothalamic area. Neuron 23: 775‐786, 1999.
 46.Elinav E, Niv‐Spector L, Katz M, Price TO, Ali M, Yacobovitz M, Solomon G, Reicher S, Lynch JL, Halpern Z, Banks WA, Gertler A. Pegylated leptin antagonist is a potent orexigenic agent: Preparation and mechanism of activity. Endocrinology 150: 3083‐3091, 2009.
 47.Faggioni R, Moser A, Feingold KR, Grunfeld C. Reduced leptin levels in starvation increase susceptibility to endotoxic shock. Am J Pathol 156: 1781‐1787, 2000.
 48.Fischer AW, Hoefig CS, Abreu‐Vieira G, de Jong JMA, Petrovic N, Mittag J, Cannon B, Nedergaard J. Leptin raises defended body temperature without activating thermogenesis. Cell Rep 14: 1621‐1631, 2016.
 49.Fleegal‐DeMotta MA, Dohgu S, Banks WA. Angiotensin II modulates BBB permeability via activation of the AT1 receptor in brain endothelial cells. J Cereb Blood Flow Metab 29: 640‐647, 2009.
 50.Fliedner S, Schulz C, Lehnert H. Brain uptake of intranasally applied radioiodinated leptin in Wistar rats. Endocrinology 147: 2088‐2094, 2006.
 51.Flier JS, Maratos‐Flier E. Leptin's physiologic role: Does the emperor of energy balance have no clothes? Cell Metab 26: 24‐26, 2017.
 52.Fogteloo AJ, Pijl H, Frölich M, McCamish M, Meinders AE. Effects of recombinant human leptin treatment as an adjunct of moderate energy restriction on body weight, resting energy expenditure and energy intake in obese humans. Diabetes Nutr Metab 16: 109‐114, 2003.
 53.Francis J, MohnaKumar PS, MonhanKumar SM, Quadri SK. Systemic administration of lipopolysaccharide increases plasma leptin levels: Blockade by soluble interleukin‐1 receptor. Endocr J 10: 291‐295, 1999.
 54.Frasca D, Ferracci F, Diaz A, Romero M, Lechner S, Blomberg BB. Obesity decreases B cell responses in young and elderly individuals. Obesity (Silver Spring) 24: 615‐625, 2016.
 55.Frolich L, Kornhuber J, Ihl R, Fritze J, Maurer K, Riederer P. Integrity of the blood‐CSF barrier in dementia of Alzheimer type: CSF/serum ratios of albumin and IgG. Eur Arch Psychiatry Clin Neurosci 240: 363‐366, 1991.
 56.Fujioka K, Patane J, Lubina J, Lau D. CSF leptin levels after exogenous administration of recombinant methionyl human leptin. J Am Med Assoc 282: 1517‐1518, 1999.
 57.Funahashi H, Yada T, Muroya S, Takigawa M, Ryushi T, Horie S, Nakai Y, Shioda S. The effect of leptin on feeding‐regulating neurons in the rat hypothalamus. Neurosci Lett 264: 117‐120, 1999.
 58.Goiot H, Attoub S, Kermorgant S, Laigneau JP, Lardeux B, Lehy T, Lewin MJ, Bado A. Antral mucosa expresses functional leptin receptors coupled to STAT‐3 signaling, which is involved in the control of gastric secretions in the rat. Gastroenterology 121: 1417‐1427, 2001.
 59.Gonzalez‐Carter D, Goode AE, Fiammengo R, Dunlop IE, Dexter DT, Porter AE. Inhibition of leptin‐ObR interaction does not prevent leptin translocation across a human blood‐brain barrier model. J Neuroendocrinol 28, 2016.
 60.Greco SJ, Bryan KJ, Sarkar S, Zhu X, Smith MA, Ashford JW, Johnston JM, Tezapsidis N, Casadesus G. Leptin reduces pathology and improves memory in a transgenic mouse modelof Alzheimer's disease. J Alzheimers Dis 19: 1155‐1167, 2010.
 61.Guan XM, Hess JF, Yu H, Hey PJ, van der Ploeg LH. Differential expression of mRNA for leptin receptor isoforms in the rat brain. Mol Cell Endocrinol 133: 1‐7, 1997.
 62.Guillot FL, Audus KL. Angiotensin peptide regulation of fluid‐phase endocytosis in brain microvessel endothelial cell monolayers. J Cereb Blood Flow Metab 10: 827‐834, 1990.
 63.Guillot FL, Audus KL. Some characteristics of specific angiotensin II binding sites on bovine brain microvessel endothelial cell monolayers. Peptides 12: 535‐540, 1991.
 64.Gustafson P, Ladyman SR, Brown RSE. Suppression of leptin transport into the brain contributes to leptin resistance during pregnancy in the mouse. Endocrinology 160: 880‐890, 2019.
 65.Hackl MT, Fürnsinn C, Schuh CM, Krssak M, Carli F, Guerra S, Freudenthaler A, Baumgartner‐Parzer S, Helbich TH, Luger A, Zeyda M, Gastaldelli A, Buettner C, Scherer T. Brain leptin reduces liver lipids by increasing hepatic triglyceride secretion and lowering lipogenesis. Nat Commun 10: 2717, 2019.
 66.Halaas JL, Boozer C, Blair‐West J, Fidahusein N, Denton DA, Friedman JM. Physiological response to long‐term peripheral and central leptin infusion in lean and obese mice. Proc Natl Acad Sci USA 94: 8878‐8883, 1997.
 67.Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM. Weight‐reducing effects of the plasma protein encoded by the obese gene. Science (Washington DC) 269: 543‐546, 1995.
 68.Harrison L, Schriever SC, Feuchtinger A, Kyriakou E, Baumann P, Pfuhlmann K, Messias AC, Walch A, Tschöp MH, Pfluger PT. Fluorescent blood‐brain barrier tracing shows intact leptin transport in obese mice. Int J Obes 43: 1305‐1318, 2019.
 69.Hayden MR, Banks WA. Deficient leptin cellular signaling plays a key role in brain ultrastructural remodeling in obesity and type 2 diabetes mellitus. Int J Mol Sci 22: 5427, 2021.
 70.Henson MC, Castracane VD, O'Neil JS, Gimpel T, Swan KF, Green AE, Shi W. Serum leptin concentrations and expression of leptin transcripts in placental trophoblast with advancing baboon pregnancy. J Clin Endocrinol Metab 84: 2543‐2549, 1999.
 71.Heymsfield SB, Greenberg AS, Fujioka K, Dixon RM, Kushner R, Hunt T, Lubina JA, Patane J, Self B, Hunt P, McCamish M. Recombinant leptin for weight loss in obese and lean adults: A randomized, controlled, dose‐escalation trial. J Am Med Assoc 282: 1568‐1575, 1999.
 72.Hileman SM, Pierroz DD, Masuzaki H, Bjorbaek C, El Haschimi K, Banks WA, Flier JS. Characterization of short isoforms of the leptin receptor in rat cerebral microvessels and of brain uptake of leptin in mouse models of obesity. Endocrinology 143: 775‐783, 2002.
 73.Hileman SM, Torne J, Flier JS, Bjorbaek C. Transcellular transport of leptin by the short leptin receptor isoform ObRa in Madin‐Darby canine kidney cells. Endocrinology 141: 1955‐1961, 2000.
 74.Hofman F, Chen P, Incardona F, Zidovetzki R, Hinton DR. HIV‐tat protein induces the production of interleukin‐8 by human brain‐derived endothelial cells. J Neuroimmunol 94: 28‐39, 1999.
 75.Ingalls AM, Dickie MM, Snell GD. Obese, a new mutation in the house mouse. J Hered 41: 317‐318, 1950.
 76.Janelidze S, Hertze J, Nagga K, Nilsson K, Nilsson C, Swedish Bio FSG, Wennstrom M, van Westen D, Blennow K, Zetterberg H, Hansson O. Increased blood‐brain barrier permeability is associated with dementia and diabetes but not amyloid pathology or APOE genotype. Neurobiol Aging 51: 104‐112, 2017.
 77.Kastin AJ, Akerstrom V. Glucose and insulin increase the transport of leptin through the blood‐brain barrier in normal mice but not in streptozotocin‐diabetic mice. Neuroendocrinology 73: 237‐242, 2001.
 78.Kastin AJ, Akerstrom V, Pan W. Validity of multiple‐time regression analysis in measurement of tritiated and iodinated leptin crossing the blood‐brain barrier: Meaningful controls. Peptides 22: 2127‐2136, 2001.
 79.Kastin AJ, Pan W, Maness LM, Koletsky RJ, Ernsberger P. Decreased transport of leptin across the blood‐brain barrier in rats lacking the short form of the leptin receptor. Peptides 20: 1449‐1453, 1999.
 80.Kay AD, May C, Papadopoulos NM, Costello R, Atack JR, Luxenberg JS, Cutler NR, Rapoport SI. CSF and serum concentrations of albumin and IgG in Alzheimer's disease. Neurobiol Aging 8: 21‐25, 1987.
 81.Kim SY, Lim JH, Choi SW, Kim M, Kim ST, Kim MS, Cho YS, Chun E, Lee KY. Preferential effects of leptin on CD4 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor. Biochem Biophys Res Commun 394: 562‐568, 2010.
 82.Kleinert M, Kotzbeck P, Altendorfer‐Kroath T, Birngruber T, Tschöp MH, Clemmensen C. Time‐resolved hypothalamic open flow micro‐perfusion reveals normal leptin transport across the blood‐brain barrier in leptin resistant mice. Mol Metab 13: 77‐82, 2018.
 83.Knight ZA, Hannan KS, Greenberg ML, Friedman JM. Hyperleptinemia is required for the development of leptin resistance. PLoS One 5: e11376, 2010.
 84.Koch CE, Lowe C, Pretz D, Steger J, Williams LM, Tups A. High‐fat diet induces leptin resistance in leptin‐deficient mice. J Neuroendocrinol 26: 58‐67, 2014.
 85.Koistinen HA, Karonen SL, Iivanainen M, Koivisto VA. Circulating leptin has saturable transport into intrathecal space in humans. Eur J Clin Investig 28: 894‐897, 1998.
 86.Kono S, Kurata T, Sato K, Omote Y, Hishikawa N, Yamashita T, Deguchi K, Abe K. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke‐resistant spontaneously hypertensive rat brain after ischemic stroke. J Stroke Cerebrovasc Dis 24: 537‐547, 2015.
 87.Korbut AI, Klimontov VV, Orlov NB, Khotskina AS, Zav'yalov EL. Relationships between body composition and plasma levels of pancreatic, gut, and adipose tissue hormones in db/db mice, a model of Type 2 diabetes mellitus. Bull Exp Biol Med 167: 325‐328, 2019.
 88.Kovalszky I, Surmacz E, Scolaro L, Cassone M, Ferla R, Sztodola A, Olah J, Hatfield MP, Lovas S, Otvos L Jr. Leptin‐based glycopeptide induces weight loss and simultaneously restores fertility in animal models. Diabetes Obes Metab 12: 393‐402, 2010.
 89.Kulcsár M, Dankó G, Magdy HG, Reiczigel J, Forgach T, Proháczik A, Delavaud C, Magyar K, Chilliard Y, Solti L, Huszenicza G. Pregnancy stage and number of fetuses may influence maternal plasma leptin in ewes. Acta Vet Hung 54: 221‐234, 2006.
 90.Kwon B, Lee HK, Querfurth HW. Oleate prevents palmitate‐induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim Biophys Acta 1843: 1402‐1413, 2014.
 91.Lammert A, Brockmann G, Renne U, Kiess W, Böttner A, Thiery J, Kratzsch J. Different isoforms of the soluble leptin receptor in non‐pregnant and pregnant mice. Biochem Biophys Res Commun 298: 798‐804, 2002.
 92.Langlet F, Mullier A, Bouret SG, Prevot V, Dehouck B. Tanycyte‐like cells from a blood‐cerebrospinal fluid barrier in the circumventricular organs of the mouse brain. J Comp Neurol 521: 3389‐3405, 2013.
 93.Levin BE, Dunn‐Meynell AA, Banks WA. Obesity‐prone rats have normal blood‐brain barrier transport but defective central leptin signaling before obesity onset. Am J Physiol 286: R143‐R150, 2004.
 94.Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64: 614‐628, 2012.
 95.Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, Lechler RI. Leptin modulates the T‐cell immune response and reverses starvation‐induced immunosuppression. Nature 394: 897‐901, 1999.
 96.MacDonnell MF. Cerebrospinal fluid contacting and supraependymal mesencephalic trigeminal cells in the blud and mako sharks. A scanning electron microscopic study. Brain Behav Evol 17: 164‐177, 1980.
 97.Maness LM, Banks WA, Kastin AJ. Persistence of blood‐to brain transport of leptin in obese leptin‐deficient and leptin receptor‐deficient mice. Brain Res 873: 165‐167, 2000.
 98.Maness LM, Banks WA, Zadina JE, Kastin AJ. Periventricular penetration and disappearance of icv Tyr‐MIF‐1, DAMGO, tyrosine, and albumin. Peptides 17: 247‐250, 1996.
 99.Maness LM, Kastin AJ, Farrell CL, Banks WA. Fate of leptin after intracerebroventricular injection into the mouse brain. Endocrinology 139: 4556‐4562, 1998.
 100.Mantzoros C, Flier JS, Lesem MD, Brewerton TD, Jimerson DC. Cerebrospinal fluid leptin in anorexia nervosa: Correlation with nutritional status and potential role in resistance to weight gain. J Clin Endocrinol Metab 82: 1845‐1851, 1997.
 101.Maresh GA, Kastin AJ, Terry TT, Zadina JE, Banks WA. Peptide transport system‐1 (PTS‐1) for Tyr‐MIF‐1 and Met‐enkephalin differs from the receptors for either. Brain Res 839: 336‐340, 1999.
 102.Maresh GA, Maness LM, Zadina JE, Kastin AJ. In Vitro demonstration of a saturable transport system for leptin across the blood‐brain barrier. Life Sci 69: 67‐73, 2001.
 103.Martin‐Romero C, Sanchez‐Margalet V. Human leptin activated P13K and MAPK pathways in human peripheral blood mononuclear cells: Possible role of Sam68. Cell Immunol 212: 83‐91, 2002.
 104.Mastronardi CV, Yu WH, Rettori V, McCann SM. Lipopolysaccharide‐induced leptin release is not mediated by nitric oxide, but is blocked by dexamethasone. Neuroimmunomodulation 8: 91‐97, 2000.
 105.Mastronardi CV, Yu WH, Srivastava VK, Dees WL, McCann SM. Lipopolysaccharide‐induced leptin release is neurally controlled. Proc Natl Acad Sci USA 98: 14720‐14725, 2004.
 106.Merino B, Díez‐Fernández C, Ruiz‐Gayo M, Somoza B. Choroid plexus epithelial cells co‐express the long and short form of the leptin receptor. Neurosci Lett 393: 269‐272, 2006.
 107.Mishra PK, Hsuchou H, Ouyang S, Kastin AJ, Wu X, Pan W. Loss of astrocytic leptin signaling worsens experimental autoimmune encephalomyelitis. Brain Behav Immun 34: 98‐107, 2013.
 108.Müller‐Fielitz H, Lau M, Geißler C, Werner L, Winkler M, Raasch W. Preventing leptin resistance by blocking angiotensin II AT1 receptors in diet‐induced obese rats. Br J Pharmacol 172: 857‐868, 2015.
 109.Münzberg H, Flier JS, Bjørbaek C. Region‐specific leptin resistance within the hypothalamus of diet‐induced obese mice. Endocrinology 145: 4880‐4889, 2004.
 110.Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70: 537‐556, 2008.
 111.Nonaka N, Hileman SM, Shioda S, Vo P, Banks WA. Effects of lipopolysaccharide on leptin transport across the blood‐brain barrier. Brain Res 1016: 58‐65, 2004.
 112.Novakovic ZM, Anderson BM, Grasso P. Myristic acid conjugation of [D‐Leu‐4]‐OB3, a biologically active leptin‐related synthetic peptide amide, significantly improves its pharmacokinetic profile and efficacy. Peptides 62: 176‐182, 2014.
 113.O'Donnell CP, Schaub CD, Haines AS, Berkowitz DE, Tankersley CG, Schwartz AR, Smith PL. Leptin prevents respiratory depression in obesity. Am J Respir Crit Care Med 159: 1477‐1484, 1999.
 114.Ogus S, Ke Y, Qiu J, Wang B, Chehab FF. Hyperleptinemia precipitates diet‐induced obesity in transgenic mice overexpressing leptin. Endocrinology 144: 2865‐2869, 2003.
 115.Ottaway N, Mahbod P, Rivero B, Norman LA, Gertler A, D'Alessio DA, Perez‐Tilve D. Diet‐induced obese mice retain endogenous leptin action. Cell Metab 21: 877‐882, 2015.
 116.Pan W, Barron M, Hsuchou H, Tu H, Kastin AJ. Increased leptin permeation across the blood‐brain barrier after chronic alcohol ingestion. Neuropsychopharmacology 33: 859‐866, 2008.
 117.Pan W, Csernus B, Kastin AJ. Upregulation of p55 and p75 receptors mediating TNF‐alpha transport across the injured blood‐spinal cord barrier. J Mol Neurosci 21: 173‐184, 2003.
 118.Pan W, Hsuchou H, Tu H, Kastin AJ. Developmental changes of leptin receptors in cerebral microvessels: Unexpected relation to leptin transport. Endocrinology 149: 877‐885, 2008.
 119.Pan W, Kastin AJ. Entry of EGF into brain is rapid and saturable. Peptides 20: 1091‐1098, 1999.
 120.Pan W, Kastin AJ. Diurnal variation of leptin entry form blood to brain involving partial saturation of the transport system. Life Sci 68: 2705‐2414, 2001.
 121.Pan W, Kastin AJ. TNF alpha transport across the blood‐brain barrier is abolished in receptor knockout mice. Exp Neurol 174: 193‐200, 2002.
 122.Paz‐Filho G, Wong ML, Licinio J. Ten years of leptin replacement therapy. Obes Rev 12: e315‐e323, 2011.
 123.Peruzzo B, Pastor FE, Blazquez JL, Schobitz K, Pelaez B, Amat P, Rodriguez EM. A second look at the barriers of the medial basal hypothalamus. Exp Brain Res 132: 10‐26, 2000.
 124.Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The versatile tanycyte: A hypothalamic integrator of reproduction and energy metabolism. Endocr Rev 39: 333‐368, 2018.
 125.Price TO, Farr SA, Yi X, Vinogradov SV, Batrakova E, Banks WA, Kabanov AV. Transport across the blood‐brain barrier of pluronic leptin. J Phamacol Exp Ther 333: 253‐263, 2010.
 126.Rahmouni K, Haynes WG, Morgan DA, Mark AL. Selective resistance to central neural administration of leptin in agouti obese mice. Hypertension 39: 486‐490, 2002.
 127.Ramsey JJ, Kemnitz JW, Colman RJ, Cunningham D, Swick AG. Different central and peripheral responses to leptin in rhesus monkeys: Brain transport may be limited. J Clin Endocrinol Metab 83: 3230‐3235, 1998.
 128.Rasmussen H. Organization and control of endocrine systems. In: Williams RH, editor. Textbook of Endocrinology. Philadelphia: W.B. Saunders, 1974, p. 1‐30.
 129.Rawish E, Nickel L, Schuster F, Stölting I, Frydrychowicz A, Saar K, Hübner N, Othman A, Kuerschner L, Raasch W. Telmisartan prevents development of obesity and normalizes hypothalamic lipid droplets. J Endocrinol 244: 95‐110, 2020.
 130.Refetoff S. Syndromes of thyroid hormone resistance. Am J Physiol 243: E88‐E98, 1982.
 131.Ren J, Zhu BH, Relling CP, Esberg LB, Ceylan‐Isik AF. High‐fat diet‐induced obesity leads to resistance to leptin‐induced cardiomyocyte contractile response. Obesity 16: 2417‐2423, 2008.
 132.Rethelyi M. Diffusional barrier around the hypothalamic arcuate nucleus in the rat. Brain Res 307: 355‐358, 1984.
 133.Reyes TM, Fabry Z, Coe CL. Brain endothelial cell production of a neuroprotective cytokine, interleukin‐6, in response to noxious stimuli. Brain Res 851: 215‐220, 1999.
 134.Rhea EM, Rask‐Madsen C, Banks WA. Insulin transport across the blood‐brain barrier can occur independently of the insulin receptor. J Physiol 596: 4753‐4765, 2018.
 135.Rhea EM, Salameh TS, Gray S, Niu J, Banks WA, Tong J. Ghrelin transport across the blood‐brain barrier can occur independently of the growth hormone secretagogue receptor. Mol Metab 18: 88‐96, 2018.
 136.Rodriguez EM, Blazquez JL, Guerra M. The design of barriers in the hypothalamus allows the median eminence and the arcuate nucleus to enjoy private milieus: The former opens to the portal blood and the latter to the cerebrospinal fluid. Peptides 31: 757‐776, 2010.
 137.Rozhavskaya‐Arena M, Lee DW, Leinung MC, Grasso P. Design of synthetic leptin agonist: Effects on energy balance, glucose homeostasis, and thermoregulation. Endocrinology 141: 2501‐2507, 2000.
 138.Saaresranta T, Polo O. Does leptin link sleep loss and breathing disturbances with major public diseases? Ann Med 36: 172‐183, 2004.
 139.Saunders NR, Dziegielewska KM, Mollgard K, Habgood MD. Markers for blood‐brain barrier integrity: How appropriate is Evans blue in the twenty‐first century and what are the alternatives? Front Neurosci 9: 1‐15, 2015.
 140.Schulz C, Paulus K, Jöhren O, Lehnert H. Intranasal leptin reduces appetite and induces weight loss in rats with diet‐induced obesity (DIO). Endocrinology 153: 143‐153, 2012.
 141.Schulz C, Paulus K, Lehnert H. Central nervous and metabolic effects of intranasally applied leptin. Endocrinology 145: 2696‐2701, 2004.
 142.Schuster F, Huber G, Stölting I, Wing EE, Saar K, Hübner N, Banks WA, Raasch W. Telmisartan prevents diet‐induced obesity and preserves leptin transport across the blood‐brain barrier in high‐fat diet‐fed mice. Pflugers Arch 470: 1673‐1689, 2018.
 143.Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte D Jr. Cerebrospinal fluid leptin levels: Relationship to plasma levels and adiposity in humans. Nat Med 2: 589‐593, 1996.
 144.Schwartz MW, Seeley RJ, Woods SC, Weigle DS, Campfield LA, Burn P, Baskin DG. Leptin increases hypothalamic pro‐opiomelanocortin mRNA expression in the rostral arcuate nucleus. Diabetes 46: 2119‐2123, 1997.
 145.Shi Z, Hansen KM, Bullock KM, Morofuji Y, Banks WA, Brooks VL. Resistance to the sympathoexcitatory effects of insulin and leptin in late pregnant rats. J Physiol 597: 4087‐4100, 2019.
 146.Smith PM, Ferguson AV. Metabolic signaling to the central nervous system: Routes across the blood brain barrier. Curr Pharm Des 20: 1392‐1399, 2014.
 147.Spiegelman BM, Flier JS. Adipogenesis and obesity: Rounding out the big picture. Cell 87: 377‐389, 1996.
 148.Stucchi P, Guzmán‐Ruiz R, Gil‐Ortega M, Merino B, Somoza B, Cano V, de Castro J, Sevillano J, Ramos MP, Fernández‐Alfonso MS, Ruiz‐Gayo M. Leptin resistance develops spontaneously in mice during adult life in a tissue‐specific manner. Consequences for hepatic steatosis. Biochimie 93: 1779‐1785, 2011.
 149.Suzuki M, Ding Q, Muranaka S, Kigure M, Kojima M, Terada M, Kataoka N, Hagiwara A, Kromkhun P, Moritani N, Hashimoto H, Yokosuka M, Sakurai F, Tanaka M, Saito TR. Correlation between body weight (epididymal fat) and permeation rate of serum leptin through the blood‐brain barrier (BBB) in male rats aged 8 months. Exp Anim 57: 485‐488, 2008.
 150.Szczesna M, Zieba DA. Phenomenon of leptin resistance in seasonal animals: The failure of leptin action in the brain. Domest Anim Endocrinol 52: 60‐70, 2015.
 151.Tabata H, Bell JM, Miller JC, Rapoport SI. Incorporation of plasma palmitate into the brain of the rat during development. Dev Brain Res 29: 1‐8, 1986.
 152.Thaler JP, Schwartz MW. Minireview: Inflammation and obesity pathogenesis: The hypothalamus heats up. Endocrinology 151: 4109‐4115, 2010.
 153.Thomas SA, Preston JE, Wilson MR, Farrell CL, Segal MB. Leptin transport at the blood‐cerebrospinal fluid barrier using the perfused sheep choroid plexus model. Brain Res 895: 283‐290, 2001.
 154.Tibbling G, Link H, Thman S. Principles of albumin and IgG analyses in neurological disorders. I. Establishment of reference values. Scand J clin Lab Invest 37: 385‐390, 1977.
 155.Toscano R, Millan‐Linares MC, Lemus‐Conejo A, Claro C, Sanchez‐Margalet V, Montserrat‐de la Paz S. Postprandial triglyceride‐rich lipoproteins promote M1/M2 microglia polarization in a fatty‐acid‐dependent manner. J Nutr Biochem 75: 108248, 2020.
 156.Trujillo ML, Spuch C, Carro E, Señarís R. Hyperphagia and central mechanisms for leptin resistance during pregnancy. Endocrinology 152: 1355‐1365, 2011.
 157.van Heek M, Compton DS, France CF, Tedesco RP, Fawzi AB, Graziano MP, Sybertz EJ, Strader CD, Davis J. Diet‐induced obese mice develop peripheral, but not central, resistance to leptin. J Clin Investig 99: 385‐390, 1997.
 158.Verhoeven GF, Wilson JD. The syndromes of primary hormone resistance. N Engl J Med 28: 253‐289, 1979.
 159.Wada H. Blood‐brain barrier permeability of the demented elderly as studied by cerebrospinal fluid‐serum albumin ratio. Intern Med 37: 509‐513, 1998.
 160.Wang A, Anderson BM, Novakovic ZM, Grasso P. [D‐Leu‐4]‐OB3 and MA‐[D‐Leu‐4]‐OB3, small molecule synthetic peptide leptin mimetics, improve glycemic control in diet‐induced obese (DIO) mice. Peptides 101: 51‐59, 2018.
 161.Washizaki K, Purdon D, DeGeorge J, Robinson PJ, Rapoport SI, Smith QR. Fatty acid uptake and esterification by the in situ perfused rat brain. Soc Neurosci Abstr 17: 864, 1991.
 162.Weindl A. Neuroendocrine aspects of circumventricular organs. In: Ganong WF, Martini L, editors. Frontiers in Neuroendocrinology. New York: Oxford University Press, 1973, p. 3‐32.
 163.Wiedenhoft A, Muller C, Stenger R, Blum WF, Fusch C. Lack of sex difference in cerebrospinal fluid (CSF) leptin levels and contribution of CSF/plasma ratios to variations in body mass index in children. J Clin Endocrinol Metab 84: 3021‐3024, 1999.
 164.Winkler M, Schuchard J, Stölting I, Vogt FM, Barkhausen J, Thorns C, Bader M, Raasch W. The brain renin‐angiotensin system plays a crucial role in regulating body weight in diet‐induced obesity in rats. Br J Pharmacol 173: 1602‐1617, 2016.
 165.Woodhouse NJ, Mohamedally SM, Saed‐Nejad F, Martin TJ. Development and significance of antibodies to salmon calcitonin in patients with Paget's disease on long‐term treatment. Br Med J 2: 927‐929, 1977.
 166.Wu‐Peng XS, Chua SC Jr, Okada N, Liu SM, Nicolson M, Leibel RL. Phenotype of the obese Koletsky (f) rat due to Tyr796Stop mutation in the extracellular domain of the leptin receptor (Lepr): Evidence for deficient plasma‐to‐CSF transport of leptin in both the Zucker and Koletsky obese rat. Diabetes 46: 513‐518, 1997.
 167.Yoo S, Cha D, Kim S, Jiang L, Cooke P, Adebesin M, Wolfe A, Riddle R, Aja S, Blackshaw S. Tanycyte ablation in the arcuate nucleus and median eminence increases obesity susceptibility by increasing body fat content in male mice. Glia 68: 1987‐2000, 2020.
 168.Zamorano PL, Mahesh VB, De Sevilla LM, Chorich LP, Bhat GK, Brann DW. Expression and localization of the leptin receptor in endocrine and neuroendocrine tissues of the rat. Neuroendocrinology 65: 223‐228, 1997.
 169.Zaric BL, Obradovic M, Sudar‐Milovanovic E, Nedeljkovic J, Lazic V, Isenovic ER. Drug delivery systems for diabetes treatment. Curr Pharm Des 25: 166‐173, 2019.
 170.Zelissen PM, Stenlof K, Lean ME, Fogteloo J, Keulen ET, Wilding J, Finer N, Rössner S, Lawrence E, Fletcher C, McCamish M. Effect of three treatment schedules of recombinant methionyl human leptin on body weight in obese adults: A randomized, placebo‐controlled trial. Diabetes Obes Metab 7: 755‐761, 2005.
 171.Zhang Y, Proenca R, Maffel M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 372: 425‐432, 1994.
 172.Zhao S, Li N, Zhu Y, Straub L, Zhang Z, Wang MY, Zhu Q, Kusminski CM, Elmquist JK, Scherer PE. Partial leptin deficiency confers resistance to diet‐induced obesity in mice. Mol Metab 37: 100995, 2020.
 173.Zhao S, Zhu Y, Schultz RD, Li N, He Z, Zhang Z, Caron A, Zhu Q, Sun K, Xiong W, Deng H, Sun J, Deng Y, Kim M, Lee CE, Gordillo R, Liu T, Odle AK, Childs GV, Zhang N, Kusminski CM, Elmquist JK, Williams KW, An Z, Scherer PE. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab 30: 706‐719.e706, 2019.
 174.Zlokovic BV, Jovanovic S, Miao W, Samara S, Verma S, Farrell CL. Differential regulation of leptin transport by the choroid plexus and blood‐brain barrier and high affinity transport systems for entry into hypothalamus and across the blood‐cerebrospinal fluid barrier. Endocrinology 141: 1434‐1441, 2000.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

William A. Banks. Leptin and the Blood‐Brain Barrier: Curiosities and Controversies. Compr Physiol 2021, 11: 2351-2369. doi: 10.1002/cphy.c200017