Comprehensive Physiology Wiley Online Library

The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells

Full Article on Wiley Online Library



Abstract

The contractile state of resistance arteries and arterioles is a crucial determinant of blood pressure and blood flow. Physiological regulation of arterial contractility requires constant communication between endothelial and smooth muscle cells. Various Ca2+ signals and Ca2+‐sensitive targets ensure dynamic control of intercellular communications in the vascular wall. The functional effect of a Ca2+ signal on arterial contractility depends on the type of Ca2+‐sensitive target engaged by that signal. Recent studies using advanced imaging methods have identified the spatiotemporal signatures of individual Ca2+ signals that control arterial and arteriolar contractility. Broadly speaking, intracellular Ca2+ is increased by ion channels and transporters on the plasma membrane and endoplasmic reticular membrane. Physiological roles for many vascular Ca2+ signals have already been confirmed, while further investigation is needed for other Ca2+ signals. This article focuses on endothelial and smooth muscle Ca2+ signaling mechanisms in resistance arteries and arterioles. We discuss the Ca2+ entry pathways at the plasma membrane, Ca2+ release signals from the intracellular stores, the functional and physiological relevance of Ca2+ signals, and their regulatory mechanisms. Finally, we describe the contribution of abnormal endothelial and smooth muscle Ca2+ signals to the pathogenesis of vascular disorders. © 2021 American Physiological Society. Compr Physiol 11:1831‐1869, 2021.

Figure 1. Figure 1. The contrasting effects of smooth muscle cell (SMC) and endothelial cell (EC) Ca2+ on vascular contractility. Mechanical and neurohumoral stimuli can increase intracellular Ca2+ in SMCs and ECs. Intracellular Ca2+ in SMCs and ECs, in general, has opposite effects on vascular resistance. Increase in SMC Ca2+ activates the contractile machinery in SMCs (myosin light chain kinase or MLCK/Actin‐Myosin). In contrast, an increase in EC Ca2+ inhibits SMC contractile mechanisms. The dotted red line indicates inhibition of SMC contractility.
Figure 2. Figure 2. Regulation of vascular smooth muscle cell (SMC) contractility by voltage‐gated Ca2+ channels. Ca2+ entry through CaV1.2 and CaV3.1 channels promotes SMC contraction. Ca2+ influx through CaV3.2 channels activates ryanodine receptors (RyRs), triggering Ca2+ release from the sarcoplasmic reticulum (SR) in the vicinity of large conductance, Ca2+‐activated K+ (BK) channels. BK channel activation results in SMC hyperpolarization and vasodilation. The dotted line indicates the deactivation of CaV1.2 and CaV3.1 channels.
Figure 3. Figure 3. Regulation of vascular smooth muscle cell (SMC) contractility by non‐voltage‐gated Ca2+ entry mechanisms. (A) Activation of purinergic P2X receptor, TRPV4, TRPV1, TRPP1, TRPC3, and TRPC6 channels, and NCX in reverse mode increases SMC intracellular Ca2+, leading to vasoconstriction. (B) Ca2+ release from endo‐lysosome via TRPML1 channel, or Ca2+ entry through TRPV4 channel at the plasma membrane activates ryanodine receptors (RyRs), triggering Ca2+ release signals (Ca2+ sparks) from the sarcoplasmic reticulum (SR). Ca2+ sparks activate large‐conductance Ca2+‐activated potassium (BK) channels. BK channels hyperpolarize the SMC membrane and cause vasodilation. Ca2+ release through IP3R induces SMC contraction. Sarco‐endoplasmic reticulum Ca2+‐ATPase (SERCA), by sequestering cytoplasmic Ca2+ back into the SR, maintains low cytosolic Ca2+ concentration. TRPV, TRPP, TRPC, TRPML, members of transient receptor potential channel family; NCX, Na+/Ca2+ exchanger.
Figure 4. Figure 4. Sarco‐endoplasmic reticulum Ca2+‐ATPase (SERCA) transporting cycle. E1 indicates SERCA conformation characterized by a high affinity for Ca2+. E1‐E2 represents a transient high energy state. E2 represents SERCA conformation characterized by a low affinity for Ca2+. Two cytosolic Ca2+ ions bind to SERCA in E1 conformation. ATP tethers to the nucleotide (N) domain and phosphorylates the (P) domain. The phosphorylated (P) domain interacts with the (A) domain resulting in two sequential conformational changes (E1‐E2, and E2). SERCA in E2 conformation releases Ca2+ into the SR lumen. Pi, inorganic phosphate; ADP, adenosine diphosphate; H+, proton.
Figure 5. Figure 5. Ca2+ signaling networks at myoendothelial projections (MEPs). Ca2+ influx via TRPV4/TRPV3/TRPA1/TRPC3 channels or Ca2+ release from the ER via IP3Rs at MEPs activates nearby small (SK) and intermediate (IK) conductance Ca2+‐activated K+ channels. IK/SK channel activation hyperpolarizes endothelial cells (EC) membrane and results in vasodilation. TRPV/TRPA/TRPC, members of transient receptor potential channel family.
Figure 6. Figure 6. Signaling mechanisms at myoendothelial projections (MEPs) that control the communication between endothelial cells (ECs) and smooth muscle cells (SMCs) and SMC contractility. Stimulation of Gq‐protein coupled receptors (GqPCRs) on SMC membrane leads to the formation of inositol triphosphate (IP3) and diacylglycerol (DAG). DAG activates protein kinase C (PKC), which phosphorylates voltage‐gated Ca2+ (CaV1.2) channel, leading to an increase in SMC Ca2+ and vasoconstriction. IP3 and Ca2+ can diffuse to ECs through myoendothelial gap junctions (MEGJ). Elevation of IP3 and Ca2+ at MEPs limits vasoconstriction by activating TRPV4‐IK/SK channel and IP3R‐IK/SK channel signaling. TRPV4, transient receptor potential vanilloid channel 4 (TRPV4); SK and IK, small (SK) and intermediate (IK) conductance Ca2+‐activated K+ channels.
Figure 7. Figure 7. The molecular mechanism underlying selective activation of IK/SK channels in mesenteric arteries versus eNOS in pulmonary arteries. In mesenteric arteries, Ca2+ entry through the TRPV4 channel at the myoendothelial projections (MEPs) determines vasodilation via activation of nearby small (SK) and intermediate (IK) conductance Ca2+‐activated K+ channels. Co‐localization of endothelial nitric oxide synthase (eNOS) with hemoglobin alpha (Hbα), a nitric oxide (NO) scavenging protein, prevents TRPV4‐eNOS signaling. On the contrary, in pulmonary arteries, IK/SK channels and Hbα do not localize at MEPs. Therefore, Ca2+ influx via TRPV4 channel activates eNOS causing NO‐dependent vasodilation. EC, endothelial cell.
Figure 8. Figure 8. The contribution of endothelial P2X purinergic receptor, PIEZO1, TRPP1, and TRPV4 channels to flow‐induced vasodilation. Sheer stress‐dependent activation of P2X, PIEZO1, TRPP1, and TRPV4 channels increases endothelial Ca2+. Shear stress‐induced increase in endothelial Ca2+ can cause vasodilation via one of the two pathways (i) activation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO)‐mediated vasodilation; and (ii) activation of IK/SK channels, leading to endothelium‐dependent hyperpolarization and vasodilation. TRPP1, transient receptor potential polycystic 1 channel; TRPV4, transient receptor potential vanilloid 4 channel.


Figure 1. The contrasting effects of smooth muscle cell (SMC) and endothelial cell (EC) Ca2+ on vascular contractility. Mechanical and neurohumoral stimuli can increase intracellular Ca2+ in SMCs and ECs. Intracellular Ca2+ in SMCs and ECs, in general, has opposite effects on vascular resistance. Increase in SMC Ca2+ activates the contractile machinery in SMCs (myosin light chain kinase or MLCK/Actin‐Myosin). In contrast, an increase in EC Ca2+ inhibits SMC contractile mechanisms. The dotted red line indicates inhibition of SMC contractility.


Figure 2. Regulation of vascular smooth muscle cell (SMC) contractility by voltage‐gated Ca2+ channels. Ca2+ entry through CaV1.2 and CaV3.1 channels promotes SMC contraction. Ca2+ influx through CaV3.2 channels activates ryanodine receptors (RyRs), triggering Ca2+ release from the sarcoplasmic reticulum (SR) in the vicinity of large conductance, Ca2+‐activated K+ (BK) channels. BK channel activation results in SMC hyperpolarization and vasodilation. The dotted line indicates the deactivation of CaV1.2 and CaV3.1 channels.


Figure 3. Regulation of vascular smooth muscle cell (SMC) contractility by non‐voltage‐gated Ca2+ entry mechanisms. (A) Activation of purinergic P2X receptor, TRPV4, TRPV1, TRPP1, TRPC3, and TRPC6 channels, and NCX in reverse mode increases SMC intracellular Ca2+, leading to vasoconstriction. (B) Ca2+ release from endo‐lysosome via TRPML1 channel, or Ca2+ entry through TRPV4 channel at the plasma membrane activates ryanodine receptors (RyRs), triggering Ca2+ release signals (Ca2+ sparks) from the sarcoplasmic reticulum (SR). Ca2+ sparks activate large‐conductance Ca2+‐activated potassium (BK) channels. BK channels hyperpolarize the SMC membrane and cause vasodilation. Ca2+ release through IP3R induces SMC contraction. Sarco‐endoplasmic reticulum Ca2+‐ATPase (SERCA), by sequestering cytoplasmic Ca2+ back into the SR, maintains low cytosolic Ca2+ concentration. TRPV, TRPP, TRPC, TRPML, members of transient receptor potential channel family; NCX, Na+/Ca2+ exchanger.


Figure 4. Sarco‐endoplasmic reticulum Ca2+‐ATPase (SERCA) transporting cycle. E1 indicates SERCA conformation characterized by a high affinity for Ca2+. E1‐E2 represents a transient high energy state. E2 represents SERCA conformation characterized by a low affinity for Ca2+. Two cytosolic Ca2+ ions bind to SERCA in E1 conformation. ATP tethers to the nucleotide (N) domain and phosphorylates the (P) domain. The phosphorylated (P) domain interacts with the (A) domain resulting in two sequential conformational changes (E1‐E2, and E2). SERCA in E2 conformation releases Ca2+ into the SR lumen. Pi, inorganic phosphate; ADP, adenosine diphosphate; H+, proton.


Figure 5. Ca2+ signaling networks at myoendothelial projections (MEPs). Ca2+ influx via TRPV4/TRPV3/TRPA1/TRPC3 channels or Ca2+ release from the ER via IP3Rs at MEPs activates nearby small (SK) and intermediate (IK) conductance Ca2+‐activated K+ channels. IK/SK channel activation hyperpolarizes endothelial cells (EC) membrane and results in vasodilation. TRPV/TRPA/TRPC, members of transient receptor potential channel family.


Figure 6. Signaling mechanisms at myoendothelial projections (MEPs) that control the communication between endothelial cells (ECs) and smooth muscle cells (SMCs) and SMC contractility. Stimulation of Gq‐protein coupled receptors (GqPCRs) on SMC membrane leads to the formation of inositol triphosphate (IP3) and diacylglycerol (DAG). DAG activates protein kinase C (PKC), which phosphorylates voltage‐gated Ca2+ (CaV1.2) channel, leading to an increase in SMC Ca2+ and vasoconstriction. IP3 and Ca2+ can diffuse to ECs through myoendothelial gap junctions (MEGJ). Elevation of IP3 and Ca2+ at MEPs limits vasoconstriction by activating TRPV4‐IK/SK channel and IP3R‐IK/SK channel signaling. TRPV4, transient receptor potential vanilloid channel 4 (TRPV4); SK and IK, small (SK) and intermediate (IK) conductance Ca2+‐activated K+ channels.


Figure 7. The molecular mechanism underlying selective activation of IK/SK channels in mesenteric arteries versus eNOS in pulmonary arteries. In mesenteric arteries, Ca2+ entry through the TRPV4 channel at the myoendothelial projections (MEPs) determines vasodilation via activation of nearby small (SK) and intermediate (IK) conductance Ca2+‐activated K+ channels. Co‐localization of endothelial nitric oxide synthase (eNOS) with hemoglobin alpha (Hbα), a nitric oxide (NO) scavenging protein, prevents TRPV4‐eNOS signaling. On the contrary, in pulmonary arteries, IK/SK channels and Hbα do not localize at MEPs. Therefore, Ca2+ influx via TRPV4 channel activates eNOS causing NO‐dependent vasodilation. EC, endothelial cell.


Figure 8. The contribution of endothelial P2X purinergic receptor, PIEZO1, TRPP1, and TRPV4 channels to flow‐induced vasodilation. Sheer stress‐dependent activation of P2X, PIEZO1, TRPP1, and TRPV4 channels increases endothelial Ca2+. Shear stress‐induced increase in endothelial Ca2+ can cause vasodilation via one of the two pathways (i) activation of endothelial nitric oxide synthase (eNOS) and nitric oxide (NO)‐mediated vasodilation; and (ii) activation of IK/SK channels, leading to endothelium‐dependent hyperpolarization and vasodilation. TRPP1, transient receptor potential polycystic 1 channel; TRPV4, transient receptor potential vanilloid 4 channel.
References
 1.Abd El‐Rahman RR, Harraz OF, Brett SE, Anfinogenova Y, Mufti RE, Goldman D, Welsh DG. Identification of L‐ and T‐type Ca2+ channels in rat cerebral arteries: Role in myogenic tone development. Am J Physiol Heart Circ Physiol 304: H58‐H71, 2013.
 2.Abou‐Saleh H, Pathan AR, Daalis A, Hubrack S, Abou‐Jassoum H, Al‐Naeimi H, Rusch NJ, Machaca K. Inositol 1,4,5‐trisphosphate (IP3) receptor up‐regulation in hypertension is associated with sensitization of Ca2+ release and vascular smooth muscle contractility. J Biol Chem 288: 32941‐32951, 2013.
 3.Adapala RK, Talasila PK, Bratz IN, Zhang DX, Suzuki M, Meszaros JG, Thodeti CK. PKCalpha mediates acetylcholine‐induced activation of TRPV4‐dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 301: H757‐H765, 2011.
 4.Adebiyi A, Thomas‐Gatewood CM, Leo MD, Kidd MW, Neeb ZP, Jaggar JH. An elevation in physical coupling of type 1 inositol 1,4,5‐trisphosphate (IP3) receptors to transient receptor potential 3 (TRPC3) channels constricts mesenteric arteries in genetic hypertension. Hypertension 60: 1213‐1219, 2012.
 5.Adebiyi A, Zhao G, Narayanan D, Thomas‐Gatewood CM, Bannister JP, Jaggar JH. Isoform‐selective physical coupling of TRPC3 channels to IP3 receptors in smooth muscle cells regulates arterial contractility. Circ Res 106: 1603‐1612, 2010.
 6.Adelman JP, Maylie J, Sah P. Small‐conductance Ca2+‐activated K+ channels: Form and function. Annu Rev Physiol 74: 245‐269, 2012.
 7.Ahn DS, Kim YB, Lee YH, Kang BS, Kang DH. Fatty acids directly increase the activity of Ca(2+)‐activated K+ channels in rabbit coronary smooth muscle cells. Yonsei Med J 35: 10‐24, 1994.
 8.Aiello LP, Bursell SE, Clermont A, Duh E, Ishii H, Takagi C, Mori F, Ciulla TA, Ways K, Jirousek M, Smith LE, King GL. Vascular endothelial growth factor‐induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta‐isoform‐selective inhibitor. Diabetes 46: 1473‐1480, 1997.
 9.Akbarali HI, Goyal RK. Effect of sodium nitroprusside on Ca2+ currents in opossum esophageal circular muscle cells. Am J Physiol 266: G1036‐G1042, 1994.
 10.Albert AP, Large WA. Store‐operated Ca2+‐permeable non‐selective cation channels in smooth muscle cells. Cell Calcium 33: 345‐356, 2003.
 11.Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function and inhibition. Biochem J 357: 593‐615, 2001.
 12.Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI. Transient receptor potential vanilloid 4‐mediated disruption of the alveolar septal barrier: A novel mechanism of acute lung injury. Circ Res 99: 988‐995, 2006.
 13.Alvarez J, Montero M. Measuring [Ca2+] in the endoplasmic reticulum with aequorin. Cell Calcium 32: 251‐260, 2002.
 14.Alzayady KJ, Wang L, Chandrasekhar R, Wagner LE 2nd, Van Petegem F, Yule DI. Defining the stoichiometry of inositol 1,4,5‐trisphosphate binding required to initiate Ca2+ release. Sci Signal 9: ra35, 2016.
 15.Amberg GC, Bonev AD, Rossow CF, Nelson MT, Santana LF. Modulation of the molecular composition of large conductance, Ca(2+) activated K(+) channels in vascular smooth muscle during hypertension. J Clin Invest 112: 717‐724, 2003.
 16.Amberg GC, Rossow CF, Navedo MF, Santana LF. NFATc3 regulates Kv2.1 expression in arterial smooth muscle. J Biol Chem 279: 47326‐47334, 2004.
 17.Andrea JE, Walsh MP. Protein kinase C of smooth muscle. Hypertension 20: 585‐595, 1992.
 18.Archer SL, Huang JM, Hampl V, Nelson DP, Shultz PJ, Weir EK. Nitric oxide and cGMP cause vasorelaxation by activation of a charybdotoxin‐sensitive K channel by cGMP‐dependent protein kinase. Proc Natl Acad Sci USA 91: 7583‐7587, 1994.
 19.Artamonov M, Momotani K, Utepbergenov D, Franke A, Khromov A, Derewenda ZS, Somlyo AV. The p90 ribosomal S6 kinase (RSK) is a mediator of smooth muscle contractility. PLoS One 8: e58703, 2013.
 20.Bagher P, Beleznai T, Kansui Y, Mitchell R, Garland CJ, Dora KA. Low intravascular pressure activates endothelial cell TRPV4 channels, local Ca2+ events, and IKCa channels, reducing arteriolar tone. Proc Natl Acad Sci USA 109: 18174‐18179, 2012.
 21.Bagher P, Davis MJ, Segal SS. Visualizing calcium responses to acetylcholine convection along endothelium of arteriolar networks in Cx40BAC‐GCaMP2 transgenic mice. Am J Physiol Heart Circ Physiol 301: H794‐H802, 2011.
 22.Bai Y, Yu X, Chen H, Horne D, White R, Wu X, Lee P, Gu Y, Ghimire‐Rijal S, Lin DC, Huang X. Structural basis for pharmacological modulation of the TRPC6 channel. Elife 9: e53311, 2020.
 23.Baker MR, Fan G, Serysheva II. Structure of IP3R channel: High‐resolution insights from cryo‐EM. Curr Opin Struct Biol 46: 38‐47, 2017.
 24.Ball CJ, Wilson DP, Turner SP, Saint DA, Beltrame JF. Heterogeneity of L‐ and T‐channels in the vasculature: Rationale for the efficacy of combined L‐ and T‐blockade. Hypertension 53: 654‐660, 2009.
 25.Bannister JP, Bulley S, Narayanan D, Thomas‐Gatewood C, Luzny P, Pachuau J, Jaggar JH. Transcriptional upregulation of alpha2delta‐1 elevates arterial smooth muscle cell voltage‐dependent Ca2+ channel surface expression and cerebrovascular constriction in genetic hypertension. Hypertension 60: 1006‐1015, 2012.
 26.Barman SA, Zhu S, White RE. Protein kinase C inhibits BKCa channel activity in pulmonary arterial smooth muscle. Am J Physiol Lung Cell Mol Physiol 286: L149‐L155, 2004.
 27.Bayliss WM. On the local reactions of the arterial wall to changes of internal pressure. J Physiol 28: 220‐231, 1902.
 28.Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51: 367‐384, 1989.
 29.Bean BP, Sturek M, Puga A, Hermsmeyer K. Calcium channels in muscle cells isolated from rat mesenteric arteries: Modulation by dihydropyridine drugs. Circ Res 59: 229‐235, 1986.
 30.Bergdahl A, Gomez MF, Dreja K, Xu SZ, Adner M, Beech DJ, Broman J, Hellstrand P, Sward K. Cholesterol depletion impairs vascular reactivity to endothelin‐1 by reducing store‐operated Ca2+ entry dependent on TRPC1. Circ Res 93: 839‐847, 2003.
 31.Berridge MJ, Lipp P, Bootman MD. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1: 11‐21, 2000.
 32.Beyer EC, Berthoud VM. Gap junction structure: Unraveled, but not fully revealed. F1000Res 6: 568, 2017.
 33.Bezprozvanny I, Watras J, Ehrlich BE. Bell‐shaped calcium‐response curves of Ins(1,4,5)P3‐ and calcium‐gated channels from endoplasmic reticulum of cerebellum. Nature 351: 751‐754, 1991.
 34.Bi D, Toyama K, Lemaitre V, Takai J, Fan F, Jenkins DP, Wulff H, Gutterman DD, Park F, Miura H. The intermediate conductance calcium‐activated potassium channel KCa3.1 regulates vascular smooth muscle cell proliferation via controlling calcium‐dependent signaling. J Biol Chem 288: 15843‐15853, 2013.
 35.Billaud M, Chiu YH, Lohman AW, Parpaite T, Butcher JT, Mutchler SM, DeLalio LJ, Artamonov MV, Sandilos JK, Best AK, Somlyo AV, Thompson RJ, Le TH, Ravichandran KS, Bayliss DA, Isakson BE. A molecular signature in the pannexin1 intracellular loop confers channel activation by the alpha1 adrenoreceptor in smooth muscle cells. Sci Signal 8: ra17, 2015.
 36.Bisaillon JM, Motiani RK, Gonzalez‐Cobos JC, Potier M, Halligan KE, Alzawahra WF, Barroso M, Singer HA, Jourd'heuil D, Trebak M. Essential role for STIM1/Orai1‐mediated calcium influx in PDGF‐induced smooth muscle migration. Am J Physiol Cell Physiol 298: C993‐C1005, 2010.
 37.Biwer LA, Good ME, Hong K, Patel RK, Agrawal N, Looft‐Wilson R, Sonkusare SK, Isakson BE. Non‐endoplasmic reticulum‐based Calr (calreticulin) can coordinate heterocellular calcium signaling and vascular function. Arterioscler Thromb Vasc Biol 38: 120‐130, 2018.
 38.Bjorling K, Morita H, Olsen MF, Prodan A, Hansen PB, Lory P, Holstein‐Rathlou NH, Jensen LJ. Myogenic tone is impaired at low arterial pressure in mice deficient in the low‐voltage‐activated CaV 3.1 T‐type Ca(2+) channel. Acta Physiol (Oxf) 207: 709‐720, 2013.
 39.Blatter LA, Wier WG. Nitric oxide decreases [Ca2+]i in vascular smooth muscle by inhibition of the calcium current. Cell Calcium 15: 122‐131, 1994.
 40.Blaustein MP. Physiological effects of endogenous ouabain: Control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 264: C1367‐C1387, 1993.
 41.Blaustein MP, Lederer WJ. Sodium/calcium exchange: Its physiological implications. Physiol Rev 79: 763‐854, 1999.
 42.Blaustein MP, Santiago EM. Effects of internal and external cations and of ATP on sodium‐calcium and calcium‐calcium exchange in squid axons. Biophys J 20: 79‐111, 1977.
 43.Blue EK, Goeckeler ZM, Jin Y, Hou L, Dixon SA, Herring BP, Wysolmerski RB, Gallagher PJ. 220‐ and 130‐kDa MLCKs have distinct tissue distributions and intracellular localization patterns. Am J Physiol Cell Physiol 282: C451‐C460, 2002.
 44.Boittin FX, Macrez N, Halet G, Mironneau J. Norepinephrine‐induced Ca(2+) waves depend on InsP(3) and ryanodine receptor activation in vascular myocytes. Am J Physiol 277: C139‐C151, 1999.
 45.Bolotina VM, Najibi S, Palacino JJ, Pagano PJ, Cohen RA. Nitric oxide directly activates calcium‐dependent potassium channels in vascular smooth muscle. Nature 368: 850‐853, 1994.
 46.Bratz IN, Dick GM, Tune JD, Edwards JM, Neeb ZP, Dincer UD, Sturek M. Impaired capsaicin‐induced relaxation of coronary arteries in a porcine model of the metabolic syndrome. Am J Physiol Heart Circ Physiol 294: H2489‐H2496, 2008.
 47.Braunstein TH, Inoue R, Cribbs L, Oike M, Ito Y, Holstein‐Rathlou NH, Jensen LJ. The role of L‐ and T‐type calcium channels in local and remote calcium responses in rat mesenteric terminal arterioles. J Vasc Res 46: 138‐151, 2009.
 48.Brenner R, Perez GJ, Bonev AD, Eckman DM, Kosek JC, Wiler SW, Patterson AJ, Nelson MT, Aldrich RW. Vasoregulation by the beta1 subunit of the calcium‐activated potassium channel. Nature 407: 870‐876, 2000.
 49.Bulley S, Fernandez‐Pena C, Hasan R, Leo MD, Muralidharan P, Mackay CE, Evanson KW, Moreira‐Junior L, Mata‐Daboin A, Burris SK, Wang Q, Kuruvilla KP, Jaggar JH. Arterial smooth muscle cell PKD2 (TRPP1) channels regulate systemic blood pressure. Elife 7: e42628, 2018.
 50.Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 66: 102‐192, 2014.
 51.Cao DS, Yu SQ, Premkumar LS. Modulation of transient receptor potential Vanilloid 4‐mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 5: 5, 2009.
 52.Carvajal JA, Germain AM, Huidobro‐Toro JP, Weiner CP. Molecular mechanism of cGMP‐mediated smooth muscle relaxation. J Cell Physiol 184: 409‐420, 2000.
 53.Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y. Direct activation of calcium‐activated, phospholipid‐dependent protein kinase by tumor‐promoting phorbol esters. J Biol Chem 257: 7847‐7851, 1982.
 54.Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. The capsaicin receptor: A heat‐activated ion channel in the pain pathway. Nature 389: 816‐824, 1997.
 55.Catterall WA. Voltage‐gated calcium channels. Cold Spring Harb Perspect Biol 3: a003947, 2011.
 56.Catterall WA, Perez‐Reyes E, Snutch TP, Striessnig J. International Union of Pharmacology. XLVIII. Nomenclature and structure‐function relationships of voltage‐gated calcium channels. Pharmacol Rev 57: 411‐425, 2005.
 57.Cavanaugh DJ, Chesler AT, Jackson AC, Sigal YM, Yamanaka H, Grant R, O'Donnell D, Nicoll RA, Shah NM, Julius D, Basbaum AI. Trpv1 reporter mice reveal highly restricted brain distribution and functional expression in arteriolar smooth muscle cells. J Neurosci 31: 5067‐5077, 2011.
 58.Cayouette S, Lussier MP, Mathieu EL, Bousquet SM, Boulay G. Exocytotic insertion of TRPC6 channel into the plasma membrane upon Gq protein‐coupled receptor activation. J Biol Chem 279: 7241‐7246, 2004.
 59.Chen CA, De Pascali F, Basye A, Hemann C, Zweier JL. Redox modulation of endothelial nitric oxide synthase by glutaredoxin‐1 through reversible oxidative post‐translational modification. Biochemistry 52: 6712‐6723, 2013.
 60.Chen CA, Wang TY, Varadharaj S, Reyes LA, Hemann C, Talukder MA, Chen YR, Druhan LJ, Zweier JL. S‐glutathionylation uncouples eNOS and regulates its cellular and vascular function. Nature 468: 1115‐1118, 2010.
 61.Chen F, Kumar S, Yu Y, Aggarwal S, Gross C, Wang Y, Chakraborty T, Verin AD, Catravas JD, Lucas R, Black SM, Fulton DJ. PKC‐dependent phosphorylation of eNOS at T495 regulates eNOS coupling and endothelial barrier function in response to G+‐toxins. PLoS One 9: e99823, 2014.
 62.Chen M, Zhang W, Lu X, Hoggatt AM, Gunst SJ, Kassab GS, Tune JD, Herring BP. Regulation of 130‐kDa smooth muscle myosin light chain kinase expression by an intronic CArG element. J Biol Chem 288: 34647‐34657, 2013.
 63.Chen YL, Sonkusare SK. Endothelial TRPV4 channels and vasodilator reactivity. Curr Top Membr 85: 89‐117, 2020.
 64.Cheng D, Zhu X, Barchiesi F, Gillespie DG, Dubey RK, Jackson EK. Receptor for activated protein kinase C1 regulates cell proliferation by modulating calcium signaling. Hypertension 58: 689‐695, 2011.
 65.Cheng D, Zhu X, Gillespie DG, Jackson EK. Role of RACK1 in the differential proliferative effects of neuropeptide Y(1‐36) and peptide YY(1‐36) in SHR vs. WKY preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 304: F770‐F780, 2013.
 66.Cheng H, Lederer MR, Lederer WJ, Cannell MB. Calcium sparks and [Ca2+]i waves in cardiac myocytes. Am J Physiol 270: C148‐C159, 1996.
 67.Cheng H, Lederer WJ. Calcium sparks. Physiol Rev 88: 1491‐1545, 2008.
 68.Cheng X, Shen D, Samie M, Xu H. Mucolipins: Intracellular TRPML1‐3 channels. FEBS Lett 584: 2013‐2021, 2010.
 69.Cheong A, Bingham AJ, Li J, Kumar B, Sukumar P, Munsch C, Buckley NJ, Neylon CB, Porter KE, Beech DJ, Wood IC. Downregulated REST transcription factor is a switch enabling critical potassium channel expression and cell proliferation. Mol Cell 20: 45‐52, 2005.
 70.Chidgey J, Fraser PA, Aaronson PI. Reactive oxygen species facilitate the EDH response in arterioles by potentiating intracellular endothelial Ca(2+) release. Free Radic Biol Med 97: 274‐284, 2016.
 71.Church PJ, Stanley EF. Single L‐type calcium channel conductance with physiological levels of calcium in chick ciliary ganglion neurons. J Physiol 496 (Pt 1): 59‐68, 1996.
 72.Clapham DE. Calcium signaling. Cell 131: 1047‐1058, 2007.
 73.Collier DM, Villalba N, Sackheim A, Bonev AD, Miller ZD, Moore JS, Shui B, Lee JC, Lee FK, Reining S, Kotlikoff MI, Nelson MT, Freeman K. Extracellular histones induce calcium signals in the endothelium of resistance‐sized mesenteric arteries and cause loss of endothelium‐dependent dilation. Am J Physiol Heart Circ Physiol 316: H1309‐H1322, 2019.
 74.Conti MA, Adelstein RS. The relationship between calmodulin binding and phosphorylation of smooth muscle myosin kinase by the catalytic subunit of 3':5' cAMP‐dependent protein kinase. J Biol Chem 256: 3178‐3181, 1981.
 75.Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ, Dubin AE, Patapoutian A. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330: 55‐60, 2010.
 76.Coste B, Xiao B, Santos JS, Syeda R, Grandl J, Spencer KS, Kim SE, Schmidt M, Mathur J, Dubin AE, Montal M, Patapoutian A. Piezo proteins are pore‐forming subunits of mechanically activated channels. Nature 483: 176‐181, 2012.
 77.Couchonnal LF, Anderson ME. The role of calmodulin kinase II in myocardial physiology and disease. Physiology (Bethesda) 23: 151‐159, 2008.
 78.Covington ED, Wu MM, Lewis RS. Essential role for the CRAC activation domain in store‐dependent oligomerization of STIM1. Mol Biol Cell 21: 1897‐1907, 2010.
 79.Cox DH, Cui J, Aldrich RW. Allosteric gating of a large conductance Ca‐activated K+ channel. J Gen Physiol 110: 257‐281, 1997.
 80.Cox RH, Lozinskaya I, Matsuda K, Dietz NJ. Ramipril treatment alters Ca(2+) and K(+) channels in small mesenteric arteries from Wistar‐Kyoto and spontaneously hypertensive rats. Am J Hypertens 15: 879‐890, 2002.
 81.Cozart MA, Phelan KD, Wu H, Mu S, Birnbaumer L, Rusch NJ, Zheng F. Vascular smooth muscle TRPC3 channels facilitate the inverse hemodynamic response during status epilepticus. Sci Rep 10: 812, 2020.
 82.Darby WG, Potocnik S, Ramachandran R, Hollenberg MD, Woodman OL, McIntyre P. Shear stress sensitizes TRPV4 in endothelium‐dependent vasodilatation. Pharmacol Res 133: 152‐159, 2018.
 83.Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79: 387‐423, 1999.
 84.DeLalio LJ, Keller AS, Chen J, Boyce AKJ, Artamonov MV, Askew‐Page HR, Stevenson Keller TC, Johnstone SR, Weaver RB, Good ME, Murphy SA, Best AK, Mintz EL, Penuela S, Greenwood IA, Machado RF, Somlyo AV, Swayne LA, Minshall RD, Isakson BE. Interaction between pannexin 1 and caveolin‐1 in smooth muscle can regulate blood pressure. Arterioscler Thromb Vasc Biol 38: 2065‐2078, 2018.
 85.Deng Z, Paknejad N, Maksaev G, Sala‐Rabanal M, Nichols CG, Hite RK, Yuan P. Cryo‐EM and X‐ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat Struct Mol Biol 25: 252‐260, 2018.
 86.Denninger JW, Marletta MA. Guanylate cyclase and the .NO/cGMP signaling pathway. Biochim Biophys Acta 1411: 334‐350, 1999.
 87.Derler I, Jardin I, Romanin C. Molecular mechanisms of STIM/Orai communication. Am J Physiol Cell Physiol 310: C643‐C662, 2016.
 88.Dessy C, Feron O, Balligand JL. The regulation of endothelial nitric oxide synthase by caveolin: A paradigm validated in vivo and shared by the 'endothelium‐derived hyperpolarizing factor'. Pflugers Arch 459: 817‐827, 2010.
 89.Dessy C, Matsuda N, Hulvershorn J, Sougnez CL, Sellke FW, Morgan KG. Evidence for involvement of the PKC‐alpha isoform in myogenic contractions of the coronary microcirculation. Am J Physiol Heart Circ Physiol 279: H916‐H923, 2000.
 90.Di Virgilio F, Steinberg TH, Silverstein SC. Organic‐anion transport inhibitors to facilitate measurement of cytosolic free Ca2+ with fura‐2. Methods Cell Biol 31: 453‐462, 1989.
 91.Dietrich A, Kalwa H, Storch U, Mederos y Schnitzler M, Salanova B, Pinkenburg O, Dubrovska G, Essin K, Gollasch M, Birnbaumer L, Gudermann T. Pressure‐induced and store‐operated cation influx in vascular smooth muscle cells is independent of TRPC1. Pflugers Arch 455: 465‐477, 2007.
 92.Dora KA, Doyle MP, Duling BR. Elevation of intracellular calcium in smooth muscle causes endothelial cell generation of NO in arterioles. Proc Natl Acad Sci USA 94: 6529‐6534, 1997.
 93.Douguet D, Patel A, Xu A, Vanhoutte PM, Honore E. Piezo ion channels in cardiovascular mechanobiology. Trends Pharmacol Sci 40: 956‐970, 2019.
 94.Dudek SM, Garcia JG. Cytoskeletal regulation of pulmonary vascular permeability. J Appl Physiol (1985) 91: 1487‐1500, 2001.
 95.Earley S. Vanilloid and melastatin transient receptor potential channels in vascular smooth muscle. Microcirculation 17: 237‐249, 2010.
 96.Earley S. Endothelium‐dependent cerebral artery dilation mediated by transient receptor potential and Ca2+‐activated K+ channels. J Cardiovasc Pharmacol 57: 148‐153, 2011.
 97.Earley S. TRPA1 channels in the vasculature. Br J Pharmacol 167: 13‐22, 2012.
 98.Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev 95: 645‐690, 2015.
 99.Earley S, Gonzales AL, Crnich R. Endothelium‐dependent cerebral artery dilation mediated by TRPA1 and Ca2+‐activated K+ channels. Circ Res 104: 987‐994, 2009.
 100.Earley S, Gonzales AL, Garcia ZI. A dietary agonist of transient receptor potential cation channel V3 elicits endothelium‐dependent vasodilation. Mol Pharmacol 77: 612‐620, 2010.
 101.Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE. TRPV4‐dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol 297: H1096‐H1102, 2009.
 102.Earley S, Straub SV, Brayden JE. Protein kinase C regulates vascular myogenic tone through activation of TRPM4. Am J Physiol Heart Circ Physiol 292: H2613‐H2622, 2007.
 103.Earley S, Waldron BJ, Brayden JE. Critical role for transient receptor potential channel TRPM4 in myogenic constriction of cerebral arteries. Circ Res 95: 922‐929, 2004.
 104.Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: Role in vasomotor control. Circ Res 87: 474‐479, 2000.
 105.Emerson GG, Segal SS. Endothelial cell pathway for conduction of hyperpolarization and vasodilation along hamster feed artery. Circ Res 86: 94‐100, 2000.
 106.Erler I, Hirnet D, Wissenbach U, Flockerzi V, Niemeyer BA. Ca2+‐selective transient receptor potential V channel architecture and function require a specific ankyrin repeat. J Biol Chem 279: 34456‐34463, 2004.
 107.Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez‐Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA. Nomenclature of voltage‐gated calcium channels. Neuron 25: 533‐535, 2000.
 108.Ertel SI, Ertel EA, Clozel JP. T‐type Ca2+ channels and pharmacological blockade: Potential pathophysiological relevance. Cardiovasc Drugs Ther 11: 723‐739, 1997.
 109.Esfandiarei M, Fameli N, Choi YY, Tehrani AY, Hoskins JG, van Breemen C. Waves of calcium depletion in the sarcoplasmic reticulum of vascular smooth muscle cells: An inside view of spatiotemporal Ca2+ regulation. PLoS One 8: e55333, 2013.
 110.Fakler B, Adelman JP. Control of K(Ca) channels by calcium nano/microdomains. Neuron 59: 873‐881, 2008.
 111.Fan HC, Zhang X, McNaughton PA. Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284: 27884‐27891, 2009.
 112.Fernandez‐Fernandez JM, Tomas M, Vazquez E, Orio P, Latorre R, Senti M, Marrugat J, Valverde MA. Gain‐of‐function mutation in the KCNMB1 potassium channel subunit is associated with low prevalence of diastolic hypertension. J Clin Invest 113: 1032‐1039, 2004.
 113.Feske S. CRAC channelopathies. Pflugers Arch 460: 417‐435, 2010.
 114.Fisslthaler B, Loot AE, Mohamed A, Busse R, Fleming I. Inhibition of endothelial nitric oxide synthase activity by proline‐rich tyrosine kinase 2 in response to fluid shear stress and insulin. Circ Res 102: 1520‐1528, 2008.
 115.Fleming I. Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459: 793‐806, 2010.
 116.Forstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 33: 829‐837, 837a‐837d, 2012.
 117.Foskett JK, White C, Cheung KH, Mak DO. Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87: 593‐658, 2007.
 118.Fowler BC, Carmines PK, Nelson LD, Bell PD. Characterization of sodium‐calcium exchange in rabbit renal arterioles. Kidney Int 50: 1856‐1862, 1996.
 119.Fulton D, Church JE, Ruan L, Li C, Sood SG, Kemp BE, Jennings IG, Venema RC. Src kinase activates endothelial nitric‐oxide synthase by phosphorylating Tyr‐83. J Biol Chem 280: 35943‐35952, 2005.
 120.Furchgott RF, Vanhoutte PM. Endothelium‐derived relaxing and contracting factors. FASEB J 3: 2007‐2018, 1989.
 121.Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288: 373‐376, 1980.
 122.Gabani M, Liu J, Ait‐Aissa K, Koval O, Kim YR, Castaneda D, Vikram A, Jacobs JS, Grumbach I, Trebak M, Irani K, Kassan M. MiR‐204 regulates type 1 IP3R to control vascular smooth muscle cell contractility and blood pressure. Cell Calcium 80: 18‐24, 2019.
 123.Gallagher PJ, Herring BP. The carboxyl terminus of the smooth muscle myosin light chain kinase is expressed as an independent protein, telokin. J Biol Chem 266: 23945‐23952, 1991.
 124.Gao L, Blair LA, Marshall J. CaMKII‐independent effects of KN93 and its inactive analog KN92: Reversible inhibition of L‐type calcium channels. Biochem Biophys Res Commun 345: 1606‐1610, 2006.
 125.Gao T, Yatani A, Dell'Acqua ML, Sako H, Green SA, Dascal N, Scott JD, Hosey MM. cAMP‐dependent regulation of cardiac L‐type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 19: 185‐196, 1997.
 126.Garland CJ, Bagher P, Powell C, Ye X, Lemmey HAL, Borysova L, Dora KA. Voltage‐dependent Ca(2+) entry into smooth muscle during contraction promotes endothelium‐mediated feedback vasodilation in arterioles. Sci Signal 10: eaal3806, 2017.
 127.Ge J, Li W, Zhao Q, Li N, Chen M, Zhi P, Li R, Gao N, Xiao B, Yang M. Architecture of the mammalian mechanosensitive Piezo1 channel. Nature 527: 64‐69, 2015.
 128.Ghosh D, Syed AU, Prada MP, Nystoriak MA, Santana LF, Nieves‐Cintron M, Navedo MF. Calcium channels in vascular smooth muscle. Adv Pharmacol 78: 49‐87, 2017.
 129.Girardin NC, Antigny F, Frieden M. Electrophysiological characterization of store‐operated and agonist‐induced Ca2+ entry pathways in endothelial cells. Pflugers Arch 460: 109‐120, 2010.
 130.Glass R, Townsend‐Nicholson A, Burnstock G. P2 receptors in the thymus: Expression of P2X and P2Y receptors in adult rats, an immunohistochemical and in situ hybridisation study. Cell Tissue Res 300: 295‐306, 2000.
 131.Gole HK, Tharp DL, Bowles DK. Upregulation of intermediate‐conductance Ca2+‐activated K+ channels (KCNN4) in porcine coronary smooth muscle requires NADPH oxidase 5 (NOX5). PLoS One 9: e105337, 2014.
 132.Gonzales AL, Amberg GC, Earley S. Ca2+ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 299: C279‐C288, 2010.
 133.Gonzales AL, Yang Y, Sullivan MN, Sanders L, Dabertrand F, Hill‐Eubanks DC, Nelson MT, Earley S. A PLCgamma1‐dependent, force‐sensitive signaling network in the myogenic constriction of cerebral arteries. Sci Signal 7: ra49, 2014.
 134.Gonzalez Bosc LV, Plomaritas DR, Herbert LM, Giermakowska W, Browning C, Jernigan NL. ASIC1‐mediated calcium entry stimulates NFATc3 nuclear translocation via PICK1 coupling in pulmonary arterial smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 311: L48‐L58, 2016.
 135.Gordon‐Shaag A, Zagotta WN, Gordon SE. Mechanism of Ca(2+)‐dependent desensitization in TRP channels. Channels (Austin) 2: 125‐129, 2008.
 136.Goto Y, Miura M, Iijima T. Extrusion mechanisms of intracellular Ca2+ in human aortic endothelial cells. Eur J Pharmacol 314: 185‐192, 1996.
 137.Grayson TH, Haddock RE, Murray TP, Wojcikiewicz RJ, Hill CE. Inositol 1,4,5‐trisphosphate receptor subtypes are differentially distributed between smooth muscle and endothelial layers of rat arteries. Cell Calcium 36: 447‐458, 2004.
 138.Greenberg HZE, Carlton‐Carew SRE, Khan DM, Zargaran AK, Jahan KS, Vanessa Ho WS, Albert AP. Heteromeric TRPV4/TRPC1 channels mediate calcium‐sensing receptor‐induced nitric oxide production and vasorelaxation in rabbit mesenteric arteries. Vascul Pharmacol 96‐98: 53‐62, 2017.
 139.Greenstein AS, Kadir S, Csato V, Sugden SA, Baylie RA, Eisner DA, Nelson MT. Disruption of pressure‐induced Ca(2+) spark vasoregulation of resistance arteries, rather than endothelial dysfunction, underlies obesity‐related hypertension. Hypertension 75: 539‐548, 2020.
 140.Grynkiewicz G, Poenie M, Tsien RY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260: 3440‐3450, 1985.
 141.Gustafsson F, Andreasen D, Salomonsson M, Jensen BL, Holstein‐Rathlou N. Conducted vasoconstriction in rat mesenteric arterioles: Role for dihydropyridine‐insensitive Ca(2+) channels. Am J Physiol Heart Circ Physiol 280: H582‐H590, 2001.
 142.Haack JA, Rosenberg RL. Calcium‐dependent inactivation of L‐type calcium channels in planar lipid bilayers. Biophys J 66: 1051‐1060, 1994.
 143.Haddock RE, Grayson TH, Brackenbury TD, Meaney KR, Neylon CB, Sandow SL, Hill CE. Endothelial coordination of cerebral vasomotion via myoendothelial gap junctions containing connexins 37 and 40. Am J Physiol Heart Circ Physiol 291: H2047‐H2056, 2006.
 144.Hadri L, Bobe R, Kawase Y, Ladage D, Ishikawa K, Atassi F, Lebeche D, Kranias EG, Leopold JA, Lompre AM, Lipskaia L, Hajjar RJ. SERCA2a gene transfer enhances eNOS expression and activity in endothelial cells. Mol Ther 18: 1284‐1292, 2010.
 145.Hamada K, Miyatake H, Terauchi A, Mikoshiba K. IP3‐mediated gating mechanism of the IP3 receptor revealed by mutagenesis and X‐ray crystallography. Proc Natl Acad Sci USA 114: 4661‐4666, 2017.
 146.Hamlyn JM, Hamilton BP, Manunta P. Endogenous ouabain, sodium balance and blood pressure: A review and a hypothesis. J Hypertens 14: 151‐167, 1996.
 147.Hannah RM, Dunn KM, Bonev AD, Nelson MT. Endothelial SK(Ca) and IK(Ca) channels regulate brain parenchymal arteriolar diameter and cortical cerebral blood flow. J Cereb Blood Flow Metab 31: 1175‐1186, 2011.
 148.Hansen PB, Jensen BL, Andreasen D, Skott O. Differential expression of T‐ and L‐type voltage‐dependent calcium channels in renal resistance vessels. Circ Res 89: 630‐638, 2001.
 149.Harhun MI, Povstyan OV, Gordienko DV. Purinoreceptor‐mediated current in myocytes from renal resistance arteries. Br J Pharmacol 160: 987‐997, 2010.
 150.Harraz OF, Abd El‐Rahman RR, Bigdely‐Shamloo K, Wilson SM, Brett SE, Romero M, Gonzales AL, Earley S, Vigmond EJ, Nygren A, Menon BK, Mufti RE, Watson T, Starreveld Y, Furstenhaupt T, Muellerleile PR, Kurjiaka DT, Kyle BD, Braun AP, Welsh DG. Ca(V)3.2 channels and the induction of negative feedback in cerebral arteries. Circ Res 115: 650‐661, 2014.
 151.Harraz OF, Brett SE, Welsh DG. Nitric oxide suppresses vascular voltage‐gated T‐type Ca2+ channels through cGMP/PKG signaling. Am J Physiol Heart Circ Physiol 306: H279‐H285, 2014.
 152.Harraz OF, Brett SE, Zechariah A, Romero M, Puglisi JL, Wilson SM, Welsh DG. Genetic ablation of CaV3.2 channels enhances the arterial myogenic response by modulating the RyR‐BKCa axis. Arterioscler Thromb Vasc Biol 35: 1843‐1851, 2015.
 153.Harraz OF, Longden TA, Hill‐Eubanks D, Nelson MT. PIP2 depletion promotes TRPV4 channel activity in mouse brain capillary endothelial cells. Elife 7: e38689, 2018.
 154.Harraz OF, Visser F, Brett SE, Goldman D, Zechariah A, Hashad AM, Menon BK, Watson T, Starreveld Y, Welsh DG. CaV1.2/CaV3.x channels mediate divergent vasomotor responses in human cerebral arteries. J Gen Physiol 145: 405‐418, 2015.
 155.Harraz OF, Welsh DG. Protein kinase A regulation of T‐type Ca2+ channels in rat cerebral arterial smooth muscle. J Cell Sci 126: 2944‐2954, 2013.
 156.Harrington LS, Evans RJ, Wray J, Norling L, Swales KE, Vial C, Ali F, Carrier MJ, Mitchell JA. Purinergic 2X1 receptors mediate endothelial dependent vasodilation to ATP. Mol Pharmacol 72: 1132‐1136, 2007.
 157.Harrington LS, Mitchell JA. Novel role for P2X receptor activation in endothelium‐dependent vasodilation. Br J Pharmacol 143: 611‐617, 2004.
 158.Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C, Liedtke W, Hoyer J, Kohler R. Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One 2: e827, 2007.
 159.Hasan R, Zhang X. Ca(2+) regulation of TRP ion channels. Int J Mol Sci 19: 1256, 2018.
 160.Hasegawa T, Masugi F, Ogihara T, Kumahara Y. Increase in plasma ouabainlike inhibitor of Na+, K+‐ATPase with high sodium intake in patients with essential hypertension. J Clin Hypertens 3: 419‐429, 1987.
 161.Hashad AM, Harraz OF, Brett SE, Romero M, Kassmann M, Puglisi JL, Wilson SM, Gollasch M, Welsh DG. Caveolae link CaV3.2 channels to BKCa‐mediated feedback in vascular smooth muscle. Arterioscler Thromb Vasc Biol 38: 2371‐2381, 2018.
 162.Hashad AM, Mazumdar N, Romero M, Nygren A, Bigdely‐Shamloo K, Harraz OF, Puglisi JL, Vigmond EJ, Wilson SM, Welsh DG. Interplay among distinct Ca(2+) conductances drives Ca(2+) sparks/spontaneous transient outward currents in rat cerebral arteries. J Physiol 595: 1111‐1126, 2017.
 163.Hashad AM, Sancho M, Brett SE, Welsh DG. Reactive oxygen species mediate the suppression of arterial smooth muscle T‐type Ca(2+) channels by angiotensin II. Sci Rep 8: 3445, 2018.
 164.He WQ, Qiao YN, Zhang CH, Peng YJ, Chen C, Wang P, Gao YQ, Chen C, Chen X, Tao T, Su XH, Li CJ, Kamm KE, Stull JT, Zhu MS. Role of myosin light chain kinase in regulation of basal blood pressure and maintenance of salt‐induced hypertension. Am J Physiol Heart Circ Physiol 301: H584‐H591, 2011.
 165.He Z, Feng S, Tong Q, Hilgemann DW, Philipson KD. Interaction of PIP(2) with the XIP region of the cardiac Na/Ca exchanger. Am J Physiol Cell Physiol 278: C661‐C666, 2000.
 166.Heathcote HR, Lee MD, Zhang X, Saunter CD, Wilson C, McCarron JG. Endothelial TRPV4 channels modulate vascular tone by Ca(2+) ‐induced Ca(2+) release at inositol 1,4,5‐trisphosphate receptors. Br J Pharmacol 176: 3297‐3317, 2019.
 167.Heiss EH, Dirsch VM. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 20: 3503‐3513, 2014.
 168.Herbert LM, Nitta CH, Yellowhair TR, Browning C, Gonzalez Bosc LV, Resta TC, Jernigan NL. PICK1/calcineurin suppress ASIC1‐mediated Ca2+ entry in rat pulmonary arterial smooth muscle cells. Am J Physiol Cell Physiol 310: C390‐C400, 2016.
 169.Herring BP, El‐Mounayri O, Gallagher PJ, Yin F, Zhou J. Regulation of myosin light chain kinase and telokin expression in smooth muscle tissues. Am J Physiol Cell Physiol 291: C817‐C827, 2006.
 170.Hilgemann DW. Regulation and deregulation of cardiac Na(+)‐Ca2+ exchange in giant excised sarcolemmal membrane patches. Nature 344: 242‐245, 1990.
 171.Hilgemann DW, Nicoll DA, Philipson KD. Charge movement during Na+ translocation by native and cloned cardiac Na+/Ca2+ exchanger. Nature 352: 715‐718, 1991.
 172.Hill MA, Davis MJ, Meininger GA, Potocnik SJ, Murphy TV. Arteriolar myogenic signalling mechanisms: Implications for local vascular function. Clin Hemorheol Microcirc 34: 67‐79, 2006.
 173.Hill MA, Falcone JC, Meininger GA. Evidence for protein kinase C involvement in arteriolar myogenic reactivity. Am J Physiol 259: H1586‐H1594, 1990.
 174.Hirenallur SD, Haworth ST, Leming JT, Chang J, Hernandez G, Gordon JB, Rusch NJ. Upregulation of vascular calcium channels in neonatal piglets with hypoxia‐induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 295: L915‐L924, 2008.
 175.Hirschberg B, Maylie J, Adelman JP, Marrion NV. Gating of recombinant small‐conductance Ca‐activated K+ channels by calcium. J Gen Physiol 111: 565‐581, 1998.
 176.Hockerman GH, Peterson BZ, Johnson BD, Catterall WA. Molecular determinants of drug binding and action on L‐type calcium channels. Annu Rev Pharmacol Toxicol 37: 361‐396, 1997.
 177.Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 397: 259‐263, 1999.
 178.Hong K, Cope EL, DeLalio LJ, Marziano C, Isakson BE, Sonkusare SK. TRPV4 (transient receptor potential vanilloid 4) channel‐dependent negative feedback mechanism regulates Gq protein‐coupled receptor‐induced vasoconstriction. Arterioscler Thromb Vasc Biol 38: 542‐554, 2018.
 179.Horiuchi T, Dietrich HH, Hongo K, Dacey RG Jr. Mechanism of extracellular K+‐induced local and conducted responses in cerebral penetrating arterioles. Stroke 33: 2692‐2699, 2002.
 180.Horn R. How S4 segments move charge. Let me count the ways. J Gen Physiol 123: 1‐4, 2004.
 181.Hoshi T, Wissuwa B, Tian Y, Tajima N, Xu R, Bauer M, Heinemann SH, Hou S. Omega‐3 fatty acids lower blood pressure by directly activating large‐conductance Ca(2)(+)‐dependent K(+) channels. Proc Natl Acad Sci USA 110: 4816‐4821, 2013.
 182.Hoth M, Penner R. Calcium release‐activated calcium current in rat mast cells. J Physiol 465: 359‐386, 1993.
 183.House C, Kemp BE. Protein kinase C contains a pseudosubstrate prototope in its regulatory domain. Science 238: 1726‐1728, 1987.
 184.House C, Kemp BE. Protein kinase C pseudosubstrate prototope: Structure‐function relationships. Cell Signal 2: 187‐190, 1990.
 185.Howitt L, Kuo IY, Ellis A, Chaston DJ, Shin HS, Hansen PB, Hill CE. Chronic deficit in nitric oxide elicits oxidative stress and augments T‐type calcium‐channel contribution to vascular tone of rodent arteries and arterioles. Cardiovasc Res 98: 449‐457, 2013.
 186.Hruska‐Hageman AM, Wemmie JA, Price MP, Welsh MJ. Interaction of the synaptic protein PICK1 (protein interacting with C kinase 1) with the non‐voltage gated sodium channels BNC1 (brain Na+ channel 1) and ASIC (acid‐sensing ion channel). Biochem J 361: 443‐450, 2002.
 187.Huang Q, Xu W, Ustinova E, Wu M, Childs E, Hunter F, Yuan S. Myosin light chain kinase‐dependent microvascular hyperpermeability in thermal injury. Shock 20: 363‐368, 2003.
 188.Ignarro LJ. Biosynthesis and metabolism of endothelium‐derived nitric oxide. Annu Rev Pharmacol Toxicol 30: 535‐560, 1990.
 189.Ignarro LJ. Signal transduction mechanisms involving nitric oxide. Biochem Pharmacol 41: 485‐490, 1991.
 190.Iino M. Biphasic Ca2+ dependence of inositol 1,4,5‐trisphosphate‐induced Ca release in smooth muscle cells of the guinea pig taenia caeci. J Gen Physiol 95: 1103‐1122, 1990.
 191.Ikebe M, Maruta S, Reardon S. Location of the inhibitory region of smooth muscle myosin light chain kinase. J Biol Chem 264: 6967‐6971, 1989.
 192.Inoue R, Jensen LJ, Jian Z, Shi J, Hai L, Lurie AI, Henriksen FH, Salomonsson M, Morita H, Kawarabayashi Y, Mori M, Mori Y, Ito Y. Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega‐hydroxylase/20‐HETE pathways. Circ Res 104: 1399‐1409, 2009.
 193.Inoue R, Okada T, Onoue H, Hara Y, Shimizu S, Naitoh S, Ito Y, Mori Y. The transient receptor potential protein homologue TRP6 is the essential component of vascular alpha(1)‐adrenoceptor‐activated Ca(2+)‐permeable cation channel. Circ Res 88: 325‐332, 2001.
 194.Irvine JC, Favaloro JL, Kemp‐Harper BK. NO‐ activates soluble guanylate cyclase and Kv channels to vasodilate resistance arteries. Hypertension 41: 1301‐1307, 2003.
 195.Isacson CK, Lu Q, Karas RH, Cox DH. RACK1 is a BKCa channel binding protein. Am J Physiol Cell Physiol 292: C1459‐C1466, 2007.
 196.Isakson BE, Best AK, Duling BR. Incidence of protein on actin bridges between endothelium and smooth muscle in arterioles demonstrates heterogeneous connexin expression and phosphorylation. Am J Physiol Heart Circ Physiol 294: H2898‐H2904, 2008.
 197.Ishikawa T, Hume JR, Keef KD. Regulation of Ca2+ channels by cAMP and cGMP in vascular smooth muscle cells. Circ Res 73: 1128‐1137, 1993.
 198.Ito I, Jarajapu YP, Grant MB, Knot HJ. Characteristics of myogenic tone in the rat ophthalmic artery. Am J Physiol Heart Circ Physiol 292: H360‐H368, 2007.
 199.Iwamoto T, Kita S, Zhang J, Blaustein MP, Arai Y, Yoshida S, Wakimoto K, Komuro I, Katsuragi T. Salt‐sensitive hypertension is triggered by Ca2+ entry via Na+/Ca2+ exchanger type‐1 in vascular smooth muscle. Nat Med 10: 1193‐1199, 2004.
 200.Iwasaki Y, Tanabe M, Kobata K, Watanabe T. TRPA1 agonists‐‐allyl isothiocyanate and cinnamaldehyde‐‐induce adrenaline secretion. Biosci Biotechnol Biochem 72: 2608‐2614, 2008.
 201.Jackson WF. Potassium channels in regulation of vascular smooth muscle contraction and growth. Adv Pharmacol 78: 89‐144, 2017.
 202.Jaggar JH, Nelson MT. Differential regulation of Ca(2+) sparks and Ca(2+) waves by UTP in rat cerebral artery smooth muscle cells. Am J Physiol Cell Physiol 279: C1528‐C1539, 2000.
 203.Jaggar JH, Porter VA, Lederer WJ, Nelson MT. Calcium sparks in smooth muscle. Am J Physiol Cell Physiol 278: C235‐C256, 2000.
 204.Jaggar JH, Stevenson AS, Nelson MT. Voltage dependence of Ca2+ sparks in intact cerebral arteries. Am J Physiol 274: C1755‐C1761, 1998.
 205.Jankowski J, Perry HM, Medina CB, Huang L, Yao J, Bajwa A, Lorenz UM, Rosin DL, Ravichandran KS, Isakson BE, Okusa MD. Epithelial and endothelial pannexin1 channels mediate AKI. J Am Soc Nephrol 29: 1887‐1899, 2018.
 206.Joiner WJ, Khanna R, Schlichter LC, Kaczmarek LK. Calmodulin regulates assembly and trafficking of SK4/IK1 Ca2+‐activated K+ channels. J Biol Chem 276: 37980‐37985, 2001.
 207.Juhaszova M, Ambesi A, Lindenmayer GE, Bloch RJ, Blaustein MP. Na(+)‐Ca2+ exchanger in arteries: Identification by immunoblotting and immunofluorescence microscopy. Am J Physiol 266: C234‐C242, 1994.
 208.Kamm KE, Stull JT. The function of myosin and myosin light chain kinase phosphorylation in smooth muscle. Annu Rev Pharmacol Toxicol 25: 593‐620, 1985.
 209.Kamm KE, Stull JT. Dedicated myosin light chain kinases with diverse cellular functions. J Biol Chem 276: 4527‐4530, 2001.
 210.Kamouchi M, Philipp S, Flockerzi V, Wissenbach U, Mamin A, Raeymaekers L, Eggermont J, Droogmans G, Nilius B. Properties of heterologously expressed hTRP3 channels in bovine pulmonary artery endothelial cells. J Physiol 518 (Pt 2): 345‐358, 1999.
 211.Kanashiro CA, Khalil RA. Isoform‐specific protein kinase C activity at variable Ca2+ entry during coronary artery contraction by vasoactive eicosanoids. Can J Physiol Pharmacol 76: 1110‐1119, 1998.
 212.Kansui Y, Garland CJ, Dora KA. Enhanced spontaneous Ca2+ events in endothelial cells reflect signalling through myoendothelial gap junctions in pressurized mesenteric arteries. Cell Calcium 44: 135‐146, 2008.
 213.Karashima Y, Prenen J, Talavera K, Janssens A, Voets T, Nilius B. Agonist‐induced changes in Ca(2+) permeation through the nociceptor cation channel TRPA1. Biophys J 98: 773‐783, 2010.
 214.Kark T, Bagi Z, Lizanecz E, Pasztor ET, Erdei N, Czikora A, Papp Z, Edes I, Porszasz R, Toth A. Tissue‐specific regulation of microvascular diameter: opposite functional roles of neuronal and smooth muscle located vanilloid receptor‐1. Mol Pharmacol 73: 1405‐1412, 2008.
 215.Kassmann M, Szijarto IA, Garcia‐Prieto CF, Fan G, Schleifenbaum J, Anistan YM, Tabeling C, Shi Y, le Noble F, Witzenrath M, Huang Y, Marko L, Nelson MT, Gollasch M. Role of ryanodine type 2 receptors in elementary Ca(2+) signaling in arteries and vascular adaptive responses. J Am Heart Assoc 8: e010090, 2019.
 216.Kawate T, Michel JC, Birdsong WT, Gouaux E. Crystal structure of the ATP‐gated P2X(4) ion channel in the closed state. Nature 460: 592‐598, 2009.
 217.Kecskes M, Jacobs G, Kerselaers S, Syam N, Menigoz A, Vangheluwe P, Freichel M, Flockerzi V, Voets T, Vennekens R. The Ca(2+)‐activated cation channel TRPM4 is a negative regulator of angiotensin II‐induced cardiac hypertrophy. Basic Res Cardiol 110: 43, 2015.
 218.Keef KD, Hume JR, Zhong J. Regulation of cardiac and smooth muscle Ca(2+) channels (Ca(V)1.2a,b) by protein kinases. Am J Physiol Cell Physiol 281: C1743‐C1756, 2001.
 219.Khan I, Sandhu V, Misquitta CM, Grover AK. SERCA pump isoform expression in endothelium of veins and arteries: Every endothelium is not the same. Mol Cell Biochem 203: 11‐15, 2000.
 220.Khananshvili D. Distinction between the two basic mechanisms of cation transport in the cardiac Na(+)‐Ca2+ exchange system. Biochemistry 29: 2437‐2442, 1990.
 221.Kharade SV, Sonkusare SK, Srivastava AK, Thakali KM, Fletcher TW, Rhee SW, Rusch NJ. The beta3 subunit contributes to vascular calcium channel upregulation and hypertension in angiotensin II‐infused C57BL/6 mice. Hypertension 61: 137‐142, 2013.
 222.Khavandi K, Baylie RA, Sugden SA, Ahmed M, Csato V, Eaton P, Hill‐Eubanks DC, Bonev AD, Nelson MT, Greenstein AS. Pressure‐induced oxidative activation of PKG enables vasoregulation by Ca2+ sparks and BK channels. Sci Signal 9: ra100, 2016.
 223.Kim HR, Gallant C, Morgan KG. Regulation of PKC autophosphorylation by calponin in contractile vascular smooth muscle tissue. Biomed Res Int 2013: 358643, 2013.
 224.Kishimoto A, Mikawa K, Hashimoto K, Yasuda I, Tanaka S, Tominaga M, Kuroda T, Nishizuka Y. Limited proteolysis of protein kinase C subspecies by calcium‐dependent neutral protease (calpain). J Biol Chem 264: 4088‐4092, 1989.
 225.Kitazawa T, Takizawa N, Ikebe M, Eto M. Reconstitution of protein kinase C‐induced contractile Ca2+ sensitization in triton X‐100‐demembranated rabbit arterial smooth muscle. J Physiol 520 (Pt 1): 139‐152, 1999.
 226.Knot HJ, Standen NB, Nelson MT. Ryanodine receptors regulate arterial diameter and wall [Ca2+] in cerebral arteries of rat via Ca2+‐dependent K+ channels. J Physiol 508 (Pt 1): 211‐221, 1998.
 227.Kochukov MY, Balasubramanian A, Abramowitz J, Birnbaumer L, Marrelli SP. Activation of endothelial transient receptor potential C3 channel is required for small conductance calcium‐activated potassium channel activation and sustained endothelial hyperpolarization and vasodilation of cerebral artery. J Am Heart Assoc 3: e000913, 2014.
 228.Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J. Evidence for a functional role of endothelial transient receptor potential V4 in shear stress‐induced vasodilatation. Arterioscler Thromb Vasc Biol 26: 1495‐1502, 2006.
 229.Kohler R, Wulff H, Eichler I, Kneifel M, Neumann D, Knorr A, Grgic I, Kampfe D, Si H, Wibawa J, Real R, Borner K, Brakemeier S, Orzechowski HD, Reusch HP, Paul M, Chandy KG, Hoyer J. Blockade of the intermediate‐conductance calcium‐activated potassium channel as a new therapeutic strategy for restenosis. Circulation 108: 1119‐1125, 2003.
 230.Kohout SC, Corbalan‐Garcia S, Torrecillas A, Gomez‐Fernandez JC, Falke JJ. C2 domains of protein kinase C isoforms alpha, beta, and gamma: Activation parameters and calcium stoichiometries of the membrane‐bound state. Biochemistry 41: 11411‐11424, 2002.
 231.Koida S, Ohyanagi M, Ueda A, Mori Y, Iwasaka T. Mechanism of increased alpha‐adrenoceptor‐mediated contraction in small resistance arteries of rats with heart failure. Clin Exp Pharmacol Physiol 33: 47‐52, 2006.
 232.Kolisek M, Beck A, Fleig A, Penner R. Cyclic ADP‐ribose and hydrogen peroxide synergize with ADP‐ribose in the activation of TRPM2 channels. Mol Cell 18: 61‐69, 2005.
 233.Krishnamoorthy G, Sonkusare SK, Heppner TJ, Nelson MT. Opposing roles of smooth muscle BK channels and ryanodine receptors in the regulation of nerve‐evoked constriction of mesenteric resistance arteries. Am J Physiol Heart Circ Physiol 306: H981‐H988, 2014.
 234.Kumar B, Dreja K, Shah SS, Cheong A, Xu SZ, Sukumar P, Naylor J, Forte A, Cipollaro M, McHugh D, Kingston PA, Heagerty AM, Munsch CM, Bergdahl A, Hultgardh‐Nilsson A, Gomez MF, Porter KE, Hellstrand P, Beech DJ. Upregulated TRPC1 channel in vascular injury in vivo and its role in human neointimal hyperplasia. Circ Res 98: 557‐563, 2006.
 235.Kunichika N, Yu Y, Remillard CV, Platoshyn O, Zhang S, Yuan JX. Overexpression of TRPC1 enhances pulmonary vasoconstriction induced by capacitative Ca2+ entry. Am J Physiol Lung Cell Mol Physiol 287: L962‐L969, 2004.
 236.Kuo IY, Ellis A, Seymour VA, Sandow SL, Hill CE. Dihydropyridine‐insensitive calcium currents contribute to function of small cerebral arteries. J Cereb Blood Flow Metab 30: 1226‐1239, 2010.
 237.Lacerda AE, Kim HS, Ruth P, Perez‐Reyes E, Flockerzi V, Hofmann F, Birnbaumer L, Brown AM. Normalization of current kinetics by interaction between the alpha 1 and beta subunits of the skeletal muscle dihydropyridine‐sensitive Ca2+ channel. Nature 352: 527‐530, 1991.
 238.Lamont C, Vainorius E, Wier WG. Purinergic and adrenergic Ca2+ transients during neurogenic contractions of rat mesenteric small arteries. J Physiol 549: 801‐808, 2003.
 239.Lamont C, Wier WG. Evoked and spontaneous purinergic junctional Ca2+ transients (jCaTs) in rat small arteries. Circ Res 91: 454‐456, 2002.
 240.Lange A, Gebremedhin D, Narayanan J, Harder D. 20‐Hydroxyeicosatetraenoic acid‐induced vasoconstriction and inhibition of potassium current in cerebral vascular smooth muscle is dependent on activation of protein kinase C. J Biol Chem 272: 27345‐27352, 1997.
 241.Launay P, Fleig A, Perraud AL, Scharenberg AM, Penner R, Kinet JP. TRPM4 is a Ca2+‐activated nonselective cation channel mediating cell membrane depolarization. Cell 109: 397‐407, 2002.
 242.Ledoux J, Bonev AD, Nelson MT. Ca2+‐activated K+ channels in murine endothelial cells: Block by intracellular calcium and magnesium. J Gen Physiol 131: 125‐135, 2008.
 243.Ledoux J, Chartier D, Leblanc N. Inhibitors of calmodulin‐dependent protein kinase are nonspecific blockers of voltage‐dependent K+ channels in vascular myocytes. J Pharmacol Exp Ther 290: 1165‐1174, 1999.
 244.Ledoux J, Taylor MS, Bonev AD, Hannah RM, Solodushko V, Shui B, Tallini Y, Kotlikoff MI, Nelson MT. Functional architecture of inositol 1,4,5‐trisphosphate signaling in restricted spaces of myoendothelial projections. Proc Natl Acad Sci USA 105: 9627‐9632, 2008.
 245.Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium‐activated potassium channels and the regulation of vascular tone. Physiology (Bethesda) 21: 69‐78, 2006.
 246.Lee MD, Wilson C, Saunter CD, Kennedy C, Girkin JM, McCarron JG. Spatially structured cell populations process multiple sensory signals in parallel in intact vascular endothelium. Sci Signal 11: eaar4411, 2018.
 247.Lee SL, Yu AS, Lytton J. Tissue‐specific expression of Na(+)‐Ca2+ exchanger isoforms. J Biol Chem 269: 14849‐14852, 1994.
 248.Leo MD, Bannister JP, Narayanan D, Nair A, Grubbs JE, Gabrick KS, Boop FA, Jaggar JH. Dynamic regulation of beta1 subunit trafficking controls vascular contractility. Proc Natl Acad Sci USA 111: 2361‐2366, 2014.
 249.Levitsky DO, Nicoll DA, Philipson KD. Identification of the high affinity Ca(2+)‐binding domain of the cardiac Na(+)‐Ca2+ exchanger. J Biol Chem 269: 22847‐22852, 1994.
 250.Lhomme A, Gilbert G, Pele T, Deweirdt J, Henrion D, Baudrimont I, Campagnac M, Marthan R, Guibert C, Ducret T, Savineau JP, Quignard JF. Stretch‐activated piezo1 channel in endothelial cells relaxes mouse intrapulmonary arteries. Am J Respir Cell Mol Biol 60: 650‐658, 2019.
 251.Li C, Ma Q, Toan S, Wang J, Zhou H, Liang J. SERCA overexpression reduces reperfusion‐mediated cardiac microvascular damage through inhibition of the calcium/MCU/mPTP/necroptosis signaling pathways. Redox Biol 36: 101659, 2020.
 252.Li YH, Zhang N, Wang YN, Shen Y, Wang Y. Multiple faces of protein interacting with C kinase 1 (PICK1): Structure, function, and diseases. Neurochem Int 98: 115‐121, 2016.
 253.Li Z, Nicoll DA, Collins A, Hilgemann DW, Filoteo AG, Penniston JT, Weiss JN, Tomich JM, Philipson KD. Identification of a peptide inhibitor of the cardiac sarcolemmal Na(+)‐Ca2+ exchanger. J Biol Chem 266: 1014‐1020, 1991.
 254.Liao J, Li H, Zeng W, Sauer DB, Belmares R, Jiang Y. Structural insight into the ion‐exchange mechanism of the sodium/calcium exchanger. Science 335: 686‐690, 2012.
 255.Lillo MA, Gaete PS, Puebla M, Ardiles NM, Poblete I, Becerra A, Simon F, Figueroa XF. Critical contribution of Na(+)‐Ca(2+) exchanger to the Ca(2+)‐mediated vasodilation activated in endothelial cells of resistance arteries. FASEB J 32: 2137‐2147, 2018.
 256.Liman ER. The Ca(2+)‐activated TRP channels: TRPM4 and TRPM5. In: Liedtke WB, Heller S, editors. Frontiers in Neuroscience. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, Chapter 15. Boca Raton, FL: Taylor & Francis Group, LLC, 2007, p. 203.
 257.Lin Q, Zhao L, Jing R, Trexler C, Wang H, Li Y, Tang H, Huang F, Zhang F, Fang X, Liu J, Jia N, Chen J, Ouyang K. Inositol 1,4,5‐trisphosphate receptors in endothelial cells play an essential role in vasodilation and blood pressure regulation. J Am Heart Assoc 8: e011704, 2019.
 258.Lincoln TM. Myosin phosphatase regulatory pathways: Different functions or redundant functions? Circ Res 100: 10‐12, 2007.
 259.Lipskaia L, del Monte F, Capiod T, Yacoubi S, Hadri L, Hours M, Hajjar RJ, Lompre AM. Sarco/endoplasmic reticulum Ca2+‐ATPase gene transfer reduces vascular smooth muscle cell proliferation and neointima formation in the rat. Circ Res 97: 488‐495, 2005.
 260.Lishko PV, Procko E, Jin X, Phelps CB, Gaudet R. The ankyrin repeats of TRPV1 bind multiple ligands and modulate channel sensitivity. Neuron 54: 905‐918, 2007.
 261.Liu CL, Huang Y, Ngai CY, Leung YK, Yao XQ. TRPC3 is involved in flow‐ and bradykinin‐induced vasodilation in rat small mesenteric arteries. Acta Pharmacol Sin 27: 981‐990, 2006.
 262.Liu J, Garcia‐Cardena G, Sessa WC. Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: Implications for caveolae localization. Biochemistry 35: 13277‐13281, 1996.
 263.Liu LH, Paul RJ, Sutliff RL, Miller ML, Lorenz JN, Pun RY, Duffy JJ, Doetschman T, Kimura Y, MacLennan DH, Hoying JB, Shull GE. Defective endothelium‐dependent relaxation of vascular smooth muscle and endothelial cell Ca2+ signaling in mice lacking sarco(endo)plasmic reticulum Ca2+‐ATPase isoform 3. J Biol Chem 272: 30538‐30545, 1997.
 264.Liu X, Vien T, Duan J, Sheu SH, DeCaen PG, Clapham DE. Polycystin‐2 is an essential ion channel subunit in the primary cilium of the renal collecting duct epithelium. Elife 7: e33183, 2018.
 265.Lizanecz E, Bagi Z, Pasztor ET, Papp Z, Edes I, Kedei N, Blumberg PM, Toth A. Phosphorylation‐dependent desensitization by anandamide of vanilloid receptor‐1 (TRPV1) function in rat skeletal muscle arterioles and in Chinese hamster ovary cells expressing TRPV1. Mol Pharmacol 69: 1015‐1023, 2006.
 266.Lohn M, Jessner W, Furstenau M, Wellner M, Sorrentino V, Haller H, Luft FC, Gollasch M. Regulation of calcium sparks and spontaneous transient outward currents by RyR3 in arterial vascular smooth muscle cells. Circ Res 89: 1051‐1057, 2001.
 267.Lohn M, Lauterbach B, Haller H, Pongs O, Luft FC, Gollasch M. beta(1)‐Subunit of BK channels regulates arterial wall[Ca(2+)] and diameter in mouse cerebral arteries. J Appl Physiol (1985) 91: 1350‐1354, 2001.
 268.Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I. Role of cytochrome P450‐dependent transient receptor potential V4 activation in flow‐induced vasodilatation. Cardiovasc Res 80: 445‐452, 2008.
 269.Lozinskaya IM, Cox RH. Effects of age on Ca2+ currents in small mesenteric artery myocytes from Wistar–Kyoto and spontaneously hypertensive rats. Hypertension 29: 1329‐1336, 1997.
 270.Lucchesi PA, Belmadani S, Matrougui K. Hydrogen peroxide acts as both vasodilator and vasoconstrictor in the control of perfused mouse mesenteric resistance arteries. J Hypertens 23: 571‐579, 2005.
 271.Lukas TJ, Burgess WH, Prendergast FG, Lau W, Watterson DM. Calmodulin binding domains: Characterization of a phosphorylation and calmodulin binding site from myosin light chain kinase. Biochemistry 25: 1458‐1464, 1986.
 272.Ma X, Du J, Zhang P, Deng J, Liu J, Lam FF, Li RA, Huang Y, Jin J, Yao X. Functional role of TRPV4‐KCa2.3 signaling in vascular endothelial cells in normal and streptozotocin‐induced diabetic rats. Hypertension 62: 134‐139, 2013.
 273.Ma X, Qiu S, Luo J, Ma Y, Ngai CY, Shen B, Wong CO, Huang Y, Yao X. Functional role of vanilloid transient receptor potential 4‐canonical transient receptor potential 1 complex in flow‐induced Ca2+ influx. Arterioscler Thromb Vasc Biol 30: 851‐858, 2010.
 274.MacKay CE, Leo MD, Fernandez‐Pena C, Hasan R, Yin W, Mata‐Daboin A, Bulley S, Gammons J, Mancarella S, Jaggar JH. Intravascular flow stimulates PKD2 (polycystin‐2) channels in endothelial cells to reduce blood pressure. Elife 9: e56655, 2020.
 275.MacLennan DH, Kranias EG. Phospholamban: A crucial regulator of cardiac contractility. Nat Rev Mol Cell Biol 4: 566‐577, 2003.
 276.Macpherson LJ, Geierstanger BH, Viswanath V, Bandell M, Eid SR, Hwang S, Patapoutian A. The pungency of garlic: Activation of TRPA1 and TRPV1 in response to allicin. Curr Biol 15: 929‐934, 2005.
 277.Mak DO, Foskett JK. Single‐channel kinetics, inactivation, and spatial distribution of inositol trisphosphate (IP3) receptors in Xenopus oocyte nucleus. J Gen Physiol 109: 571‐587, 1997.
 278.Mak DO, McBride S, Foskett JK. Inositol 1,4,5‐trisphosphate [correction of tris‐phosphate] activation of inositol trisphosphate [correction of tris‐phosphate] receptor Ca2+ channel by ligand tuning of Ca2+ inhibition. Proc Natl Acad Sci USA 95: 15821‐15825, 1998.
 279.Mapp PI, McWilliams DF, Turley MJ, Hargin E, Walsh DA. A role for the sensory neuropeptide calcitonin gene‐related peptide in endothelial cell proliferation in vivo. Br J Pharmacol 166: 1261‐1271, 2012.
 280.Marshall NJ, Liang L, Bodkin J, Dessapt‐Baradez C, Nandi M, Collot‐Teixeira S, Smillie SJ, Lalgi K, Fernandes ES, Gnudi L, Brain SD. A role for TRPV1 in influencing the onset of cardiovascular disease in obesity. Hypertension 61: 246‐252, 2013.
 281.Martin E, Dahan D, Cardouat G, Gillibert‐Duplantier J, Marthan R, Savineau JP, Ducret T. Involvement of TRPV1 and TRPV4 channels in migration of rat pulmonary arterial smooth muscle cells. Pflugers Arch 464: 261‐272, 2012.
 282.Marziano C, Hong K, Cope EL, Kotlikoff MI, Isakson BE, Sonkusare SK. Nitric oxide‐dependent feedback loop regulates transient receptor potential vanilloid 4 (TRPV4) channel cooperativity and endothelial function in small pulmonary arteries. J Am Heart Assoc 6: e007157, 2017.
 283.Mathar I, Vennekens R, Meissner M, Kees F, Van der Mieren G, Camacho Londono JE, Uhl S, Voets T, Hummel B, van den Bergh A, Herijgers P, Nilius B, Flockerzi V, Schweda F, Freichel M. Increased catecholamine secretion contributes to hypertension in TRPM4‐deficient mice. J Clin Invest 120: 3267‐3279, 2010.
 284.Mather S, Dora KA, Sandow SL, Winter P, Garland CJ. Rapid endothelial cell‐selective loading of connexin 40 antibody blocks endothelium‐derived hyperpolarizing factor dilation in rat small mesenteric arteries. Circ Res 97: 399‐407, 2005.
 285.Matsuoka S, Nicoll DA, He Z, Philipson KD. Regulation of cardiac Na(+)‐Ca2+ exchanger by the endogenous XIP region. J Gen Physiol 109: 273‐286, 1997.
 286.Matsuoka S, Nicoll DA, Hryshko LV, Levitsky DO, Weiss JN, Philipson KD. Regulation of the cardiac Na(+)‐Ca2+ exchanger by Ca2+. Mutational analysis of the Ca(2+)‐binding domain. J Gen Physiol 105: 403‐420, 1995.
 287.McCarron JG, Chalmers S, MacMillan D, Olson ML. Agonist‐evoked Ca(2+) wave progression requires Ca(2+) and IP(3). J Cell Physiol 224: 334‐344, 2010.
 288.McCarron JG, Halpern W. Potassium dilates rat cerebral arteries by two independent mechanisms. Am J Physiol 259: H902‐H908, 1990.
 289.McDonald TF, Pelzer S, Trautwein W, Pelzer DJ. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 74: 365‐507, 1994.
 290.Mellor H, Parker PJ. The extended protein kinase C superfamily. Biochem J 332 (Pt 2): 281‐292, 1998.
 291.Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX. TRPV4‐mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298: H466‐H476, 2010.
 292.Mercado J, Baylie R, Navedo MF, Yuan C, Scott JD, Nelson MT, Brayden JE, Santana LF. Local control of TRPV4 channels by AKAP150‐targeted PKC in arterial smooth muscle. J Gen Physiol 143: 559‐575, 2014.
 293.Michel T, Vanhoutte PM. Cellular signaling and NO production. Pflugers Arch 459: 807‐816, 2010.
 294.Minta A, Kao JP, Tsien RY. Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264: 8171‐8178, 1989.
 295.Mistry DK, Garland CJ. Nitric oxide (NO)‐induced activation of large conductance Ca2+‐dependent K+ channels (BK(Ca)) in smooth muscle cells isolated from the rat mesenteric artery. Br J Pharmacol 124: 1131‐1140, 1998.
 296.Mochizuki T, Wu G, Hayashi T, Xenophontos SL, Veldhuisen B, Saris JJ, Reynolds DM, Cai Y, Gabow PA, Pierides A, Kimberling WJ, Breuning MH, Deltas CC, Peters DJ, Somlo S. PKD2, a gene for polycystic kidney disease that encodes an integral membrane protein. Science 272: 1339‐1342, 1996.
 297.Moitra J, Evenoski C, Sammani S, Wadgaonkar R, Turner JR, Ma SF, Garcia JG. A transgenic mouse with vascular endothelial over‐expression of the non‐muscle myosin light chain kinase‐2 isoform is susceptible to inflammatory lung injury: Role of sexual dimorphism and age. Transl Res 151: 141‐153, 2008.
 298.Moncada S. Nitric oxide in the vasculature: Physiology and pathophysiology. Ann N Y Acad Sci 811: 60‐67; discussion 67‐69, 1997.
 299.Montero M, Brini M, Marsault R, Alvarez J, Sitia R, Pozzan T, Rizzuto R. Monitoring dynamic changes in free Ca2+ concentration in the endoplasmic reticulum of intact cells. EMBO J 14: 5467‐5475, 1995.
 300.Moosmang S, Schulla V, Welling A, Feil R, Feil S, Wegener JW, Hofmann F, Klugbauer N. Dominant role of smooth muscle L‐type calcium channel Cav1.2 for blood pressure regulation. EMBO J 22: 6027‐6034, 2003.
 301.Moreno‐Dominguez A, El‐Yazbi AF, Zhu HL, Colinas O, Zhong XZ, Walsh EJ, Cole DM, Kargacin GJ, Walsh MP, Cole WC. Cytoskeletal reorganization evoked by Rho‐associated kinase‐ and protein kinase C‐catalyzed phosphorylation of cofilin and heat shock protein 27, respectively, contributes to myogenic constriction of rat cerebral arteries. J Biol Chem 289: 20939‐20952, 2014.
 302.Most P, Koch WJ. S100A1: A calcium‐modulating inotropic prototype for future clinical heart failure therapy. Future Cardiol 3: 5‐11, 2007.
 303.Most P, Remppis A, Pleger ST, Katus HA, Koch WJ. S100A1: A novel inotropic regulator of cardiac performance. Transition from molecular physiology to pathophysiological relevance. Am J Physiol Regul Integr Comp Physiol 293: R568‐R577, 2007.
 304.Mountian II, Baba‐Aissa F, Jonas JC, De Humbert S, Wuytack F, Parys JB. Expression of Ca(2+) transport genes in platelets and endothelial cells in hypertension. Hypertension 37: 135‐141, 2001.
 305.Mufti RE, Brett SE, Tran CH, Abd El‐Rahman R, Anfinogenova Y, El‐Yazbi A, Cole WC, Jones PP, Chen SR, Welsh DG. Intravascular pressure augments cerebral arterial constriction by inducing voltage‐insensitive Ca2+ waves. J Physiol 588: 3983‐4005, 2010.
 306.Murad F. Discovery of some of the biological effects of nitric oxide and its role in cell signaling. Biosci Rep 24: 452‐474, 2004.
 307.Murthy S, Koval OM, Ramiro Diaz JM, Kumar S, Nuno D, Scott JA, Allamargot C, Zhu LJ, Broadhurst K, Santhana V, Kutschke WJ, Irani K, Lamping KG, Grumbach IM. Endothelial CaMKII as a regulator of eNOS activity and NO‐mediated vasoreactivity. PLoS One 12: e0186311, 2017.
 308.Musicki B, Kramer MF, Becker RE, Burnett AL. Inactivation of phosphorylated endothelial nitric oxide synthase (Ser‐1177) by O‐GlcNAc in diabetes‐associated erectile dysfunction. Proc Natl Acad Sci USA 102: 11870‐11875, 2005.
 309.Nagata K, Duggan A, Kumar G, Garcia‐Anoveros J. Nociceptor and hair cell transducer properties of TRPA1, a channel for pain and hearing. J Neurosci 25: 4052‐4061, 2005.
 310.Naik JS, Osmond JM, Walker BR, Kanagy NL. Hydrogen sulfide‐induced vasodilation mediated by endothelial TRPV4 channels. Am J Physiol Heart Circ Physiol 311: H1437‐H1444, 2016.
 311.Naik JS, Walker BR. Endothelial‐dependent dilation following chronic hypoxia involves TRPV4‐mediated activation of endothelial BK channels. Pflugers Arch 470: 633‐648, 2018.
 312.Narayanan D, Adebiyi A, Jaggar JH. Inositol trisphosphate receptors in smooth muscle cells. Am J Physiol Heart Circ Physiol 302: H2190‐H2210, 2012.
 313.Nausch LW, Bonev AD, Heppner TJ, Tallini Y, Kotlikoff MI, Nelson MT. Sympathetic nerve stimulation induces local endothelial Ca2+ signals to oppose vasoconstriction of mouse mesenteric arteries. Am J Physiol Heart Circ Physiol 302: H594‐H602, 2012.
 314.Navedo MF, Amberg GC, Nieves M, Molkentin JD, Santana LF. Mechanisms underlying heterogeneous Ca2+ sparklet activity in arterial smooth muscle. J Gen Physiol 127: 611‐622, 2006.
 315.Navedo MF, Amberg GC, Votaw VS, Santana LF. Constitutively active L‐type Ca2+ channels. Proc Natl Acad Sci USA 102: 11112‐11117, 2005.
 316.Navedo MF, Nieves‐Cintron M, Amberg GC, Yuan C, Votaw VS, Lederer WJ, McKnight GS, Santana LF. AKAP150 is required for stuttering persistent Ca2+ sparklets and angiotensin II‐induced hypertension. Circ Res 102: e1‐e11, 2008.
 317.Navedo MF, Takeda Y, Nieves‐Cintron M, Molkentin JD, Santana LF. Elevated Ca2+ sparklet activity during acute hyperglycemia and diabetes in cerebral arterial smooth muscle cells. Am J Physiol Cell Physiol 298: C211‐C220, 2010.
 318.Nelson MT, Cheng H, Rubart M, Santana LF, Bonev AD, Knot HJ, Lederer WJ. Relaxation of arterial smooth muscle by calcium sparks. Science 270: 633‐637, 1995.
 319.Newton AC, Keranen LM. Phosphatidyl‐L‐serine is necessary for protein kinase C's high‐affinity interaction with diacylglycerol‐containing membranes. Biochemistry 33: 6651‐6658, 1994.
 320.Neylon CB. Potassium channels and vascular proliferation. Vascul Pharmacol 38: 35‐41, 2002.
 321.Neylon CB, Richards SM, Larsen MA, Agrotis A, Bobik A. Multiple types of ryanodine receptor/Ca2+ release channels are expressed in vascular smooth muscle. Biochem Biophys Res Commun 215: 814‐821, 1995.
 322.Ng LC, McCormack MD, Airey JA, Singer CA, Keller PS, Shen XM, Hume JR. TRPC1 and STIM1 mediate capacitative Ca2+ entry in mouse pulmonary arterial smooth muscle cells. J Physiol 587: 2429‐2442, 2009.
 323.Nieves‐Cintron M, Amberg GC, Navedo MF, Molkentin JD, Santana LF. The control of Ca2+ influx and NFATc3 signaling in arterial smooth muscle during hypertension. Proc Natl Acad Sci USA 105: 15623‐15628, 2008.
 324.Nieves‐Cintron M, Amberg GC, Nichols CB, Molkentin JD, Santana LF. Activation of NFATc3 down‐regulates the beta1 subunit of large conductance, calcium‐activated K+ channels in arterial smooth muscle and contributes to hypertension. J Biol Chem 282: 3231‐3240, 2007.
 325.Nieves‐Cintron M, Syed AU, Buonarati OR, Rigor RR, Nystoriak MA, Ghosh D, Sasse KC, Ward SM, Santana LF, Hell JW, Navedo MF. Impaired BKCa channel function in native vascular smooth muscle from humans with type 2 diabetes. Sci Rep 7: 14058, 2017.
 326.Niggli E, Lederer WJ. Molecular operations of the sodium‐calcium exchanger revealed by conformation currents. Nature 349: 621‐624, 1991.
 327.Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero‐Morales JF, Vasquez V, Laver DR, Martinac B. Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 132: jcs238360, 2019.
 328.Nilius B, Prenen J, Tang J, Wang C, Owsianik G, Janssens A, Voets T, Zhu MX. Regulation of the Ca2+ sensitivity of the nonselective cation channel TRPM4. J Biol Chem 280: 6423‐6433, 2005.
 329.Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science 258: 607‐614, 1992.
 330.North RA. P2X receptors. Philos Trans R Soc Lond B Biol Sci 371: 20150427, 2016.
 331.Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440‐443, 1985.
 332.Numaga‐Tomita T, Shimauchi T, Oda S, Tanaka T, Nishiyama K, Nishimura A, Birnbaumer L, Mori Y, Nishida M. TRPC6 regulates phenotypic switching of vascular smooth muscle cells through plasma membrane potential‐dependent coupling with PTEN. FASEB J 33: 9785‐9796, 2019.
 333.Numazaki M, Tominaga T, Takeuchi K, Murayama N, Toyooka H, Tominaga M. Structural determinant of TRPV1 desensitization interacts with calmodulin. Proc Natl Acad Sci USA 100: 8002‐8006, 2003.
 334.Numazaki M, Tominaga T, Toyooka H, Tominaga M. Direct phosphorylation of capsaicin receptor VR1 by protein kinase Cepsilon and identification of two target serine residues. J Biol Chem 277: 13375‐13378, 2002.
 335.Nystoriak MA, Nieves‐Cintron M, Nygren PJ, Hinke SA, Nichols CB, Chen CY, Puglisi JL, Izu LT, Bers DM, Dell'acqua ML, Scott JD, Santana LF, Navedo MF. AKAP150 contributes to enhanced vascular tone by facilitating large‐conductance Ca2+‐activated K+ channel remodeling in hyperglycemia and diabetes mellitus. Circ Res 114: 607‐615, 2014.
 336.Nystoriak MA, O'Connor KP, Sonkusare SK, Brayden JE, Nelson MT, Wellman GC. Fundamental increase in pressure‐dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization. Am J Physiol Heart Circ Physiol 300: H803‐H812, 2011.
 337.Olesen C, Picard M, Winther AM, Gyrup C, Morth JP, Oxvig C, Moller JV, Nissen P. The structural basis of calcium transport by the calcium pump. Nature 450: 1036‐1042, 2007.
 338.Ondrias K, Brillantes AM, Scott A, Ehrlich BE, Marks AR. Single channel properties and calcium conductance of the cloned expressed ryanodine receptor/calcium‐release channel. Soc Gen Physiol Ser 51: 29‐45, 1996.
 339.Ono Y, Fujii T, Igarashi K, Kuno T, Tanaka C, Kikkawa U, Nishizuka Y. Phorbol ester binding to protein kinase C requires a cysteine‐rich zinc‐finger‐like sequence. Proc Natl Acad Sci USA 86: 4868‐4871, 1989.
 340.Orestes P, Bojadzic D, Lee J, Leach E, Salajegheh R, Digruccio MR, Nelson MT, Todorovic SM. Free radical signalling underlies inhibition of CaV3.2 T‐type calcium channels by nitrous oxide in the pain pathway. J Physiol 589: 135‐148, 2011.
 341.Ottolini M, Daneva Z, Chen YL, Cope EL, Kasetti RB, Zode GS, Sonkusare SK. Mechanisms underlying selective coupling of endothelial Ca(2+) signals with eNOS vs. IK/SK channels in systemic and pulmonary arteries. J Physiol 598 (17): 3577‐3596, 2020.
 342.Ottolini M, Hong K, Cope EL, Daneva Z, DeLalio LJ, Sokolowski JD, Marziano C, Nguyen NY, Altschmied J, Haendeler J, Johnstone SR, Kalani MY, Park MS, Patel RP, Liedtke W, Isakson BE, Sonkusare SK. Local peroxynitrite impairs endothelial transient receptor potential vanilloid 4 channels and elevates blood pressure in obesity. Circulation 141: 1318‐1333, 2020.
 343.Ottolini M, Hong K, Cope EL, Daneva Z, DeLalio LJ, Sokolowski JD, Marziano C, Nguyen NY, Altschmied J, Haendeler J, Johnstone SR, Kalani MY, Park MS, Patel RP, Liedtke W, Isakson BE, Sonkusare SK. Local peroxynitrite impairs endothelial TRPV4 channels and elevates blood pessure in obesity. Circulation 141 (16): 1318‐1333, 2020.
 344.Ottolini M, Hong K, Sonkusare SK. Calcium signals that determine vascular resistance. Wiley Interdiscip Rev Syst Biol Med 11: e1448, 2019.
 345.Park CY, Hoover PJ, Mullins FM, Bachhawat P, Covington ED, Raunser S, Walz T, Garcia KC, Dolmetsch RE, Lewis RS. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 136: 876‐890, 2009.
 346.Park WS, Kim N, Youm JB, Warda M, Ko JH, Kim SJ, Earm YE, Han J. Angiotensin II inhibits inward rectifier K+ channels in rabbit coronary arterial smooth muscle cells through protein kinase Calpha. Biochem Biophys Res Commun 341: 728‐735, 2006.
 347.Patel S, Joseph SK, Thomas AP. Molecular properties of inositol 1,4,5‐trisphosphate receptors. Cell Calcium 25: 247‐264, 1999.
 348.Paterno R, Faraci FM, Heistad DD. Role of Ca(2+)‐dependent K+ channels in cerebral vasodilatation induced by increases in cyclic GMP and cyclic AMP in the rat. Stroke 27: 1603‐1607; discussion 1607‐1608, 1996.
 349.Patterson RL, van Rossum DB, Barrow RK, Snyder SH. RACK1 binds to inositol 1,4,5‐trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci USA 101: 2328‐2332, 2004.
 350.Pearson RB, Kemp BE. Protein kinase phosphorylation site sequences and consensus specificity motifs: Tabulations. Methods Enzymol 200: 62‐81, 1991.
 351.Pellicena P, Schulman H. CaMKII inhibitors: From research tools to therapeutic agents. Front Pharmacol 5: 21, 2014.
 352.Perez GJ, Bonev AD, Nelson MT. Micromolar Ca(2+) from sparks activates Ca(2+)‐sensitive K(+) channels in rat cerebral artery smooth muscle. Am J Physiol Cell Physiol 281: C1769‐C1775, 2001.
 353.Perez GJ, Bonev AD, Patlak JB, Nelson MT. Functional coupling of ryanodine receptors to KCa channels in smooth muscle cells from rat cerebral arteries. J Gen Physiol 113: 229‐238, 1999.
 354.Perez‐Reyes E, Kim HS, Lacerda AE, Horne W, Wei XY, Rampe D, Campbell KP, Brown AM, Birnbaumer L. Induction of calcium currents by the expression of the alpha 1‐subunit of the dihydropyridine receptor from skeletal muscle. Nature 340: 233‐236, 1989.
 355.Periasamy M, Kalyanasundaram A. SERCA pump isoforms: Their role in calcium transport and disease. Muscle Nerve 35: 430‐442, 2007.
 356.Periasamy M, Reed TD, Liu LH, Ji Y, Loukianov E, Paul RJ, Nieman ML, Riddle T, Duffy JJ, Doetschman T, Lorenz JN, Shull GE. Impaired cardiac performance in heterozygous mice with a null mutation in the sarco(endo)plasmic reticulum Ca2+‐ATPase isoform 2 (SERCA2) gene. J Biol Chem 274: 2556‐2562, 1999.
 357.Peterson BZ, DeMaria CD, Adelman JP, Yue DT. Calmodulin is the Ca2+ sensor for Ca2+ ‐dependent inactivation of L‐type calcium channels. Neuron 22: 549‐558, 1999.
 358.Phelps CB, Wang RR, Choo SS, Gaudet R. Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285: 731‐740, 2010.
 359.Pires PW, Earley S. Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke. Elife 7: e35316, 2018.
 360.Pires PW, Sullivan MN, Pritchard HA, Robinson JJ, Earley S. Unitary TRPV3 channel Ca2+ influx events elicit endothelium‐dependent dilation of cerebral parenchymal arterioles. Am J Physiol Heart Circ Physiol 309: H2031‐H2041, 2015.
 361.Planells‐Cases R, Valente P, Ferrer‐Montiel A, Qin F, Szallasi A. Complex regulation of TRPV1 and related thermo‐TRPs: Implications for therapeutic intervention. Adv Exp Med Biol 704: 491‐515, 2011.
 362.Plant TD, Strotmann R. TRPV4: A multifunctional nonselective cation channel with complex regulation. In: Liedtke WB, Heller S, editors. Frontiers in Neuroscience. TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades, Chapter 9. Boca Raton, FL: Taylor & Francis Group, LLC, 2007, p. 125.
 363.Pleger ST, Harris DM, Shan C, Vinge LE, Chuprun JK, Berzins B, Pleger W, Druckman C, Volkers M, Heierhorst J, Oie E, Remppis A, Katus HA, Scalia R, Eckhart AD, Koch WJ, Most P. Endothelial S100A1 modulates vascular function via nitric oxide. Circ Res 102: 786‐794, 2008.
 364.Pluger S, Faulhaber J, Furstenau M, Lohn M, Waldschutz R, Gollasch M, Haller H, Luft FC, Ehmke H, Pongs O. Mice with disrupted BK channel beta1 subunit gene feature abnormal Ca(2+) spark/STOC coupling and elevated blood pressure. Circ Res 87: E53‐E60, 2000.
 365.Porszasz R, Porkolab A, Ferencz A, Pataki T, Szilvassy Z, Szolcsanyi J. Capsaicin‐induced nonneural vasoconstriction in canine mesenteric arteries. Eur J Pharmacol 441: 173‐175, 2002.
 366.Porter VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, Lederer WJ, Nelson MT. Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol 274: C1346‐C1355, 1998.
 367.Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K. TRPC3 and TRPC4 associate to form a redox‐sensitive cation channel. Evidence for expression of native TRPC3‐TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281: 13588‐13595, 2006.
 368.Potier M, Gonzalez JC, Motiani RK, Abdullaev IF, Bisaillon JM, Singer HA, Trebak M. Evidence for STIM1‐ and Orai1‐dependent store‐operated calcium influx through ICRAC in vascular smooth muscle cells: Role in proliferation and migration. FASEB J 23: 2425‐2437, 2009.
 369.Povstyan OV, Harhun MI, Gordienko DV. Ca2+ entry following P2X receptor activation induces IP3 receptor‐mediated Ca2+ release in myocytes from small renal arteries. Br J Pharmacol 162: 1618‐1638, 2011.
 370.Pragnell M, De Waard M, Mori Y, Tanabe T, Snutch TP, Campbell KP. Calcium channel beta‐subunit binds to a conserved motif in the I‐II cytoplasmic linker of the alpha 1‐subunit. Nature 368: 67‐70, 1994.
 371.Prasad AM, Ketsawatsomkron P, Nuno DW, Koval OM, Dibbern ME, Venema AN, Sigmund CD, Lamping KG, Grumbach IM. Role of CaMKII in Ang‐II‐dependent small artery remodeling. Vascul Pharmacol 87: 172‐179, 2016.
 372.Prasad AM, Nuno DW, Koval OM, Ketsawatsomkron P, Li W, Li H, Shen FY, Joiner ML, Kutschke W, Weiss RM, Sigmund CD, Anderson ME, Lamping KG, Grumbach IM. Differential control of calcium homeostasis and vascular reactivity by Ca2+/calmodulin‐dependent kinase II. Hypertension 62: 434‐441, 2013.
 373.Pritchard HAT, Gonzales AL, Pires PW, Drumm BT, Ko EA, Sanders KM, Hennig GW, Earley S. Microtubule structures underlying the sarcoplasmic reticulum support peripheral coupling sites to regulate smooth muscle contractility. Sci Signal 10: eaan2694, 2017.
 374.Pritchard HAT, Pires PW, Yamasaki E, Thakore P, Earley S. Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy. Proc Natl Acad Sci USA 115: E9745‐E9752, 2018.
 375.Qian X, Francis M, Solodushko V, Earley S, Taylor MS. Recruitment of dynamic endothelial Ca2+ signals by the TRPA1 channel activator AITC in rat cerebral arteries. Microcirculation 20: 138‐148, 2013.
 376.Raguimova ON, Smolin N, Bovo E, Bhayani S, Autry JM, Zima AV, Robia SL. Redistribution of SERCA calcium pump conformers during intracellular calcium signaling. J Biol Chem 293: 10843‐10856, 2018.
 377.Raina H, Ella SR, Hill MA. Decreased activity of the smooth muscle Na+/Ca2+ exchanger impairs arteriolar myogenic reactivity. J Physiol 586: 1669‐1681, 2008.
 378.Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 68: 619‐647, 2006.
 379.Ravi K, Brennan LA, Levic S, Ross PA, Black SM. S‐nitrosylation of endothelial nitric oxide synthase is associated with monomerization and decreased enzyme activity. Proc Natl Acad Sci USA 101: 2619‐2624, 2004.
 380.Reading SA, Brayden JE. Central role of TRPM4 channels in cerebral blood flow regulation. Stroke 38: 2322‐2328, 2007.
 381.Retailleau K, Duprat F, Arhatte M, Ranade SS, Peyronnet R, Martins JR, Jodar M, Moro C, Offermanns S, Feng Y, Demolombe S, Patel A, Honore E. Piezo1 in smooth muscle cells is involved in hypertension‐dependent arterial remodeling. Cell Rep 13: 1161‐1171, 2015.
 382.Reuter H, Blaustein MP, Haeusler G. Na‐Ca exchange and tension development in arterial smooth muscle. Philos Trans R Soc Lond B Biol Sci 265: 87‐94, 1973.
 383.Reynoso R, Perrin RM, Breslin JW, Daines DA, Watson KD, Watterson DM, Wu MH, Yuan S. A role for long chain myosin light chain kinase (MLCK‐210) in microvascular hyperpermeability during severe burns. Shock 28: 589‐595, 2007.
 384.Rezazadeh S, Claydon TW, Fedida D. KN‐93 (2‐[N‐(2‐hydroxyethyl)]‐N‐(4‐methoxybenzenesulfonyl)amino‐N‐(4‐chlorocinnamyl)‐N ‐methylbenzylamine), a calcium/calmodulin‐dependent protein kinase II inhibitor, is a direct extracellular blocker of voltage‐gated potassium channels. J Pharmacol Exp Ther 317: 292‐299, 2006.
 385.Rhoads AR, Friedberg F. Sequence motifs for calmodulin recognition. FASEB J 11: 331‐340, 1997.
 386.Ringvold HC, Khalil RA. Protein kinase C as regulator of vascular smooth muscle function and potential target in vascular disorders. Adv Pharmacol 78: 203‐301, 2017.
 387.Robertson BE, Schubert R, Hescheler J, Nelson MT. cGMP‐dependent protein kinase activates Ca‐activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265: C299‐C303, 1993.
 388.Rohacs T. Phosphoinositide regulation of TRP channels. Handb Exp Pharmacol 223: 1143‐1176, 2014.
 389.Rosenbaum T, Gordon‐Shaag A, Munari M, Gordon SE. Ca2+/calmodulin modulates TRPV1 activation by capsaicin. J Gen Physiol 123: 53‐62, 2004.
 390.Rosse C, Linch M, Kermorgant S, Cameron AJ, Boeckeler K, Parker PJ. PKC and the control of localized signal dynamics. Nat Rev Mol Cell Biol 11: 103‐112, 2010.
 391.Rudiger S, Jung P, Shuai JW. Termination of Ca(2)+ release for clustered IP(3)R channels. PLoS Comput Biol 8: e1002485, 2012.
 392.Rueda A, Fernandez‐Velasco M, Benitah JP, Gomez AM. Abnormal Ca2+ spark/STOC coupling in cerebral artery smooth muscle cells of obese type 2 diabetic mice. PLoS One 8: e53321, 2013.
 393.Ruiz‐Velasco V, Zhong J, Hume JR, Keef KD. Modulation of Ca2+ channels by cyclic nucleotide cross activation of opposing protein kinases in rabbit portal vein. Circ Res 82: 557‐565, 1998.
 394.Sachs F. Stretch‐activated ion channels: What are they? Physiology (Bethesda) 25: 50‐56, 2010.
 395.Saleh SN, Albert AP, Peppiatt CM, Large WA. Angiotensin II activates two cation conductances with distinct TRPC1 and TRPC6 channel properties in rabbit mesenteric artery myocytes. J Physiol 577: 479‐495, 2006.
 396.Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O, Balligand JL, Dessy C. Role of caveolar compartmentation in endothelium‐derived hyperpolarizing factor‐mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117: 1065‐1074, 2008.
 397.Samways DS, Egan TM. Calcium‐dependent decrease in the single‐channel conductance of TRPV1. Pflugers Arch 462: 681‐691, 2011.
 398.Samways DS, Li Z, Egan TM. Principles and properties of ion flow in P2X receptors. Front Cell Neurosci 8: 6, 2014.
 399.Sanchez‐Bautista S, Marin‐Vicente C, Gomez‐Fernandez JC, Corbalan‐Garcia S. The C2 domain of PKCalpha is a Ca2+ ‐dependent PtdIns(4,5)P2 sensing domain: A new insight into an old pathway. J Mol Biol 362: 901‐914, 2006.
 400.Sandow SL, Neylon CB, Chen MX, Garland CJ. Spatial separation of endothelial small‐ and intermediate‐conductance calcium‐activated potassium channels (K(Ca)) and connexins: Possible relationship to vasodilator function? J Anat 209: 689‐698, 2006.
 401.Sano Y, Inamura K, Miyake A, Mochizuki S, Yokoi H, Matsushime H, Furuichi K. Immunocyte Ca2+ influx system mediated by LTRPC2. Science 293: 1327‐1330, 2001.
 402.Schlossmann J, Ammendola A, Ashman K, Zong X, Huber A, Neubauer G, Wang GX, Allescher HD, Korth M, Wilm M, Hofmann F, Ruth P. Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404: 197‐201, 2000.
 403.Schlossmann J, Desch M. IRAG and novel PKG targeting in the cardiovascular system. Am J Physiol Heart Circ Physiol 301: H672‐H682, 2011.
 404.Schneider H, Schubert KM, Blodow S, Kreutz CP, Erdogmus S, Wiedenmann M, Qiu J, Fey T, Ruth P, Lubomirov LT, Pfitzer G, Mederos YSM, Hardie DG, Gudermann T, Pohl U. AMPK dilates resistance arteries via activation of SERCA and BKCa channels in smooth muscle. Hypertension 66: 108‐116, 2015.
 405.Schneider JC, El Kebir D, Chereau C, Mercier JC, Dall'Ava‐Santucci J, Dinh‐Xuan AT. Involvement of Na(+)/Ca(2+) exchanger in endothelial NO production and endothelium‐dependent relaxation. Am J Physiol Heart Circ Physiol 283: H837‐H844, 2002.
 406.Schubert R, Noack T, Serebryakov VN. Protein kinase C reduces the KCa current of rat tail artery smooth muscle cells. Am J Physiol 276: C648‐C658, 1999.
 407.Schumacher MA, Rivard AF, Bachinger HP, Adelman JP. Structure of the gating domain of a Ca2+‐activated K+ channel complexed with Ca2+/calmodulin. Nature 410: 1120‐1124, 2001.
 408.Seki T, Goto K, Kiyohara K, Kansui Y, Murakami N, Haga Y, Ohtsubo T, Matsumura K, Kitazono T. Downregulation of endothelial transient receptor potential vanilloid type 4 channel and small‐conductance of Ca2+‐activated K+ channels underpins impaired endothelium‐dependent hyperpolarization in hypertension. Hypertension 69: 143‐153, 2017.
 409.Senadheera S, Kim Y, Grayson TH, Toemoe S, Kochukov MY, Abramowitz J, Housley GD, Bertrand RL, Chadha PS, Bertrand PP, Murphy TV, Tare M, Birnbaumer L, Marrelli SP, Sandow SL. Transient receptor potential canonical type 3 channels facilitate endothelium‐derived hyperpolarization‐mediated resistance artery vasodilator activity. Cardiovasc Res 95: 439‐447, 2012.
 410.Shannon TR, Bers DM. Assessment of intra‐SR free [Ca] and buffering in rat heart. Biophys J 73: 1524‐1531, 1997.
 411.Sharif‐Naeini R, Folgering JH, Bichet D, Duprat F, Lauritzen I, Arhatte M, Jodar M, Dedman A, Chatelain FC, Schulte U, Retailleau K, Loufrani L, Patel A, Sachs F, Delmas P, Peters DJ, Honore E. Polycystin‐1 and ‐2 dosage regulates pressure sensing. Cell 139: 587‐596, 2009.
 412.Sharma AK, Charles EJ, Zhao Y, Narahari AK, Baderdinni PK, Good ME, Lorenz UM, Kron IL, Bayliss DA, Ravichandran KS, Isakson BE, Laubach VE. Pannexin‐1 channels on endothelial cells mediate vascular inflammation during lung ischemia‐reperfusion injury. Am J Physiol Lung Cell Mol Physiol 315: L301‐L312, 2018.
 413.Shen Q, Rigor RR, Pivetti CD, Wu MH, Yuan SY. Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc Res 87: 272‐280, 2010.
 414.Shesely EG, Maeda N, Kim HS, Desai KM, Krege JH, Laubach VE, Sherman PA, Sessa WC, Smithies O. Elevated blood pressures in mice lacking endothelial nitric oxide synthase. Proc Natl Acad Sci USA 93: 13176‐13181, 1996.
 415.Shi J, Birnbaumer L, Large WA, Albert AP. Myristoylated alanine‐rich C kinase substrate coordinates native TRPC1 channel activation by phosphatidylinositol 4,5‐bisphosphate and protein kinase C in vascular smooth muscle. FASEB J 28: 244‐255, 2014.
 416.Shi J, Ju M, Abramowitz J, Large WA, Birnbaumer L, Albert AP. TRPC1 proteins confer PKC and phosphoinositol activation on native heteromeric TRPC1/C5 channels in vascular smooth muscle: comparative study of wild‐type and TRPC1‐/‐ mice. FASEB J 26: 409‐419, 2012.
 417.Shi J, Miralles F, Birnbaumer L, Large WA, Albert AP. Store depletion induces Galphaq‐mediated PLCbeta1 activity to stimulate TRPC1 channels in vascular smooth muscle cells. FASEB J 30: 702‐715, 2016.
 418.Shi J, Mori E, Mori Y, Mori M, Li J, Ito Y, Inoue R. Multiple regulation by calcium of murine homologues of transient receptor potential proteins TRPC6 and TRPC7 expressed in HEK293 cells. J Physiol 561: 415‐432, 2004.
 419.Shimokawa H, Yasutake H, Fujii K, Owada MK, Nakaike R, Fukumoto Y, Takayanagi T, Nagao T, Egashira K, Fujishima M, Takeshita A. The importance of the hyperpolarizing mechanism increases as the vessel size decreases in endothelium‐dependent relaxations in rat mesenteric circulation. J Cardiovasc Pharmacol 28: 703‐711, 1996.
 420.Shorofsky SR, Izu L, Wier WG, Balke CW. Ca2+ sparks triggered by patch depolarization in rat heart cells. Circ Res 82: 424‐429, 1998.
 421.Shui B, Lee JC, Reining S, Lee FK, Kotlikoff MI. Optogenetic sensors and effectors: CHROMus‐the Cornell Heart Lung Blood Institute Resource for Optogenetic Mouse Signaling. Front Physiol 5: 428, 2014.
 422.Sienaert I, Missiaen L, De Smedt H, Parys JB, Sipma H, Casteels R. Molecular and functional evidence for multiple Ca2+‐binding domains in the type 1 inositol 1,4,5‐trisphosphate receptor. J Biol Chem 272: 25899‐25906, 1997.
 423.Simard JM, Li X, Tewari K. Increase in functional Ca2+ channels in cerebral smooth muscle with renal hypertension. Circ Res 82: 1330‐1337, 1998.
 424.Slater SJ, Ho C, Kelly MB, Larkin JD, Taddeo FJ, Yeager MD, Stubbs CD. Protein kinase Calpha contains two activator binding sites that bind phorbol esters and diacylglycerols with opposite affinities. J Biol Chem 271: 4627‐4631, 1996.
 425.Slish DF, Welsh DG, Brayden JE. Diacylglycerol and protein kinase C activate cation channels involved in myogenic tone. Am J Physiol Heart Circ Physiol 283: H2196‐H2201, 2002.
 426.Snoek GT, Rosenberg I, de Laat SW, Gitler C. The interaction of protein kinase C and other specific cytoplasmic proteins with phospholipid bilayers. Biochim Biophys Acta 860: 336‐344, 1986.
 427.Snutch TP, Reiner PB. Ca2+ channels: Diversity of form and function. Curr Opin Neurobiol 2: 247‐253, 1992.
 428.Soboloff J, Rothberg BS, Madesh M, Gill DL. STIM proteins: Dynamic calcium signal transducers. Nat Rev Mol Cell Biol 13: 549‐565, 2012.
 429.Somlyo AP, Somlyo AV. Ca2+ sensitivity of smooth muscle and nonmuscle myosin II: Modulated by G proteins, kinases, and myosin phosphatase. Physiol Rev 83: 1325‐1358, 2003.
 430.Song S, Yamamura A, Yamamura H, Ayon RJ, Smith KA, Tang H, Makino A, Yuan JX. Flow shear stress enhances intracellular Ca2+ signaling in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Cell Physiol 307: C373‐C383, 2014.
 431.Song Y, Simard JM. beta‐Adrenoceptor stimulation activates large‐conductance Ca2+‐activated K+ channels in smooth muscle cells from basilar artery of guinea pig. Pflugers Arch 430: 984‐993, 1995.
 432.Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill‐Eubanks DC, Nelson MT. Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336: 597‐601, 2012.
 433.Sonkusare SK, Dalsgaard T, Bonev AD, Hill‐Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT. AKAP150‐dependent cooperative TRPV4 channel gating is central to endothelium‐dependent vasodilation and is disrupted in hypertension. Sci Signal 7: ra66, 2014.
 434.Sowa G, Pypaert M, Sessa WC. Distinction between signaling mechanisms in lipid rafts vs. caveolae. Proc Natl Acad Sci USA 98: 14072‐14077, 2001.
 435.Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL. A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103: 16586‐16591, 2006.
 436.Spyridopoulos I, Luedemann C, Chen D, Kearney M, Chen D, Murohara T, Principe N, Isner JM, Losordo DW. Divergence of angiogenic and vascular permeability signaling by VEGF: Inhibition of protein kinase C suppresses VEGF‐induced angiogenesis, but promotes VEGF‐induced, NO‐dependent vascular permeability. Arterioscler Thromb Vasc Biol 22: 901‐906, 2002.
 437.Stathopulos PB, Zheng L, Li GY, Plevin MJ, Ikura M. Structural and mechanistic insights into STIM1‐mediated initiation of store‐operated calcium entry. Cell 135: 110‐122, 2008.
 438.Stauss HM, Godecke A, Mrowka R, Schrader J, Persson PB. Enhanced blood pressure variability in eNOS knockout mice. Hypertension 33: 1359‐1363, 1999.
 439.Steinberg SF. Structural basis of protein kinase C isoform function. Physiol Rev 88: 1341‐1378, 2008.
 440.Straub AC, Lohman AW, Billaud M, Johnstone SR, Dwyer ST, Lee MY, Bortz PS, Best AK, Columbus L, Gaston B, Isakson BE. Endothelial cell expression of haemoglobin alpha regulates nitric oxide signalling. Nature 491: 473‐477, 2012.
 441.Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2: 695‐702, 2000.
 442.Strotmann R, Schultz G, Plant TD. Ca2+‐dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C‐terminal calmodulin binding site. J Biol Chem 278: 26541‐26549, 2003.
 443.Strotmann R, Semtner M, Kepura F, Plant TD, Schoneberg T. Interdomain interactions control Ca2+‐dependent potentiation in the cation channel TRPV4. PLoS One 5: e10580, 2010.
 444.Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29: 645‐655, 2001.
 445.Stull JT, Lin PJ, Krueger JK, Trewhella J, Zhi G. Myosin light chain kinase: Functional domains and structural motifs. Acta Physiol Scand 164: 471‐482, 1998.
 446.Sugimoto M, Nakayama M, Goto TM, Amano M, Komori K, Kaibuchi K. Rho‐kinase phosphorylates eNOS at threonine 495 in endothelial cells. Biochem Biophys Res Commun 361: 462‐467, 2007.
 447.Sullivan MN, Francis M, Pitts NL, Taylor MS, Earley S. Optical recording reveals novel properties of GSK1016790A‐induced vanilloid transient receptor potential channel TRPV4 activity in primary human endothelial cells. Mol Pharmacol 82: 464‐472, 2012.
 448.Sullivan MN, Gonzales AL, Pires PW, Bruhl A, Leo MD, Li W, Oulidi A, Boop FA, Feng Y, Jaggar JH, Welsh DG, Earley S. Localized TRPA1 channel Ca2+ signals stimulated by reactive oxygen species promote cerebral artery dilation. Sci Signal 8: ra2, 2015.
 449.Sun XP, Callamaras N, Marchant JS, Parker I. A continuum of InsP3‐mediated elementary Ca2+ signalling events in Xenopus oocytes. J Physiol 509 (Pt 1): 67‐80, 1998.
 450.Suresh K, Servinsky L, Jiang H, Bigham Z, Yun X, Kliment C, Huetsch J, Damarla M, Shimoda LA. Reactive oxygen species induced Ca(2+) influx via TRPV4 and microvascular endothelial dysfunction in the SU5416/hypoxia model of pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 314: L893‐L907, 2018.
 451.Suresh K, Servinsky L, Reyes J, Baksh S, Undem C, Caterina M, Pearse DB, Shimoda LA. Hydrogen peroxide‐induced calcium influx in lung microvascular endothelial cells involves TRPV4. Am J Physiol Lung Cell Mol Physiol 309: L1467‐L1477, 2015.
 452.Surks HK, Mochizuki N, Kasai Y, Georgescu SP, Tang KM, Ito M, Lincoln TM, Mendelsohn ME. Regulation of myosin phosphatase by a specific interaction with cGMP‐ dependent protein kinase Ialpha. Science 286: 1583‐1587, 1999.
 453.Suzuma K, Takahara N, Suzuma I, Isshiki K, Ueki K, Leitges M, Aiello LP, King GL. Characterization of protein kinase C beta isoform's action on retinoblastoma protein phosphorylation, vascular endothelial growth factor‐induced endothelial cell proliferation, and retinal neovascularization. Proc Natl Acad Sci USA 99: 721‐726, 2002.
 454.Swillens S, Dupont G, Combettes L, Champeil P. From calcium blips to calcium puffs: Theoretical analysis of the requirements for interchannel communication. Proc Natl Acad Sci USA 96: 13750‐13755, 1999.
 455.Swulius MT, Waxham MN. Ca(2+)/calmodulin‐dependent protein kinases. Cell Mol Life Sci 65: 2637‐2657, 2008.
 456.Taberner FJ, Fernandez‐Ballester G, Fernandez‐Carvajal A, Ferrer‐Montiel A. TRP channels interaction with lipids and its implications in disease. Biochim Biophys Acta 1848: 1818‐1827, 2015.
 457.Taguchi K, Kaneko K, Kubo T. Protein kinase C modulates Ca2+‐activated K+ channels in cultured rat mesenteric artery smooth muscle cells. Biol Pharm Bull 23: 1450‐1454, 2000.
 458.Tajada S, Cidad P, Colinas O, Santana LF, Lopez‐Lopez JR, Perez‐Garcia MT. Down‐regulation of CaV1.2 channels during hypertension: How fewer CaV1.2 channels allow more Ca(2+) into hypertensive arterial smooth muscle. J Physiol 591: 6175‐6191, 2013.
 459.Tajada S, Moreno CM, O'Dwyer S, Woods S, Sato D, Navedo MF, Santana LF. Distance constraints on activation of TRPV4 channels by AKAP150‐bound PKCalpha in arterial myocytes. J Gen Physiol 149: 639‐659, 2017.
 460.Takahashi M, Seagar MJ, Jones JF, Reber BF, Catterall WA. Subunit structure of dihydropyridine‐sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 84: 5478‐5482, 1987.
 461.Takahashi N, Hamada‐Nakahara S, Itoh Y, Takemura K, Shimada A, Ueda Y, Kitamata M, Matsuoka R, Hanawa‐Suetsugu K, Senju Y, Mori MX, Kiyonaka S, Kohda D, Kitao A, Mori Y, Suetsugu S. TRPV4 channel activity is modulated by direct interaction of the ankyrin domain to PI(4,5)P(2). Nat Commun 5: 4994, 2014.
 462.Takahashi Y, Watanabe H, Murakami M, Ohba T, Radovanovic M, Ono K, Iijima T, Ito H. Involvement of transient receptor potential canonical 1 (TRPC1) in angiotensin II‐induced vascular smooth muscle cell hypertrophy. Atherosclerosis 195: 287‐296, 2007.
 463.Takai Y, Kishimoto A, Kikkawa U, Mori T, Nishizuka Y. Unsaturated diacylglycerol as a possible messenger for the activation of calcium‐activated, phospholipid‐dependent protein kinase system. Biochem Biophys Res Commun 91: 1218‐1224, 1979.
 464.Takeda Y, Nystoriak MA, Nieves‐Cintron M, Santana LF, Navedo MF. Relationship between Ca2+ sparklets and sarcoplasmic reticulum Ca2+ load and release in rat cerebral arterial smooth muscle. Am J Physiol Heart Circ Physiol 301: H2285‐H2294, 2011.
 465.Takeshima H, Iino M, Takekura H, Nishi M, Kuno J, Minowa O, Takano H, Noda T. Excitation‐contraction uncoupling and muscular degeneration in mice lacking functional skeletal muscle ryanodine‐receptor gene. Nature 369: 556‐559, 1994.
 466.Takeshima H, Komazaki S, Hirose K, Nishi M, Noda T, Iino M. Embryonic lethality and abnormal cardiac myocytes in mice lacking ryanodine receptor type 2. EMBO J 17: 3309‐3316, 1998.
 467.Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339: 439‐445, 1989.
 468.Tallini YN, Brekke JF, Shui B, Doran R, Hwang SM, Nakai J, Salama G, Segal SS, Kotlikoff MI. Propagated endothelial Ca2+ waves and arteriolar dilation in vivo: Measurements in Cx40BAC GCaMP2 transgenic mice. Circ Res 101: 1300‐1309, 2007.
 469.Talukder G, Aldrich RW. Complex voltage‐dependent behavior of single unliganded calcium‐sensitive potassium channels. Biophys J 78: 761‐772, 2000.
 470.Tansey MG, Luby‐Phelps K, Kamm KE, Stull JT. Ca(2+)‐dependent phosphorylation of myosin light chain kinase decreases the Ca2+ sensitivity of light chain phosphorylation within smooth muscle cells. J Biol Chem 269: 9912‐9920, 1994.
 471.Tansey MG, Word RA, Hidaka H, Singer HA, Schworer CM, Kamm KE, Stull JT. Phosphorylation of myosin light chain kinase by the multifunctional calmodulin‐dependent protein kinase II in smooth muscle cells. J Biol Chem 267: 12511‐12516, 1992.
 472.Taylor MS, Bonev AD, Gross TP, Eckman DM, Brayden JE, Bond CT, Adelman JP, Nelson MT. Altered expression of small‐conductance Ca2+‐activated K+ (SK3) channels modulates arterial tone and blood pressure. Circ Res 93: 124‐131, 2003.
 473.Tewari K, Simard JM. Sodium nitroprusside and cGMP decrease Ca2+ channel availability in basilar artery smooth muscle cells. Pflugers Arch 433: 304‐311, 1997.
 474.Thakore P, Pritchard HAT, Griffin CS, Yamasaki E, Drumm BT, Lane C, Sanders KM, Feng Earley Y, Earley S. TRPML1 channels initiate Ca(2+) sparks in vascular smooth muscle cells. Sci Signal 13: eaba1015, 2020.
 475.Tharp DL, Wamhoff BR, Turk JR, Bowles DK. Upregulation of intermediate‐conductance Ca2+‐activated K+ channel (IKCa1) mediates phenotypic modulation of coronary smooth muscle. Am J Physiol Heart Circ Physiol 291: H2493‐H2503, 2006.
 476.Tharp DL, Wamhoff BR, Wulff H, Raman G, Cheong A, Bowles DK. Local delivery of the KCa3.1 blocker, TRAM‐34, prevents acute angioplasty‐induced coronary smooth muscle phenotypic modulation and limits stenosis. Arterioscler Thromb Vasc Biol 28: 1084‐1089, 2008.
 477.Thomas D, Tovey SC, Collins TJ, Bootman MD, Berridge MJ, Lipp P. A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28: 213‐223, 2000.
 478.Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian MY, Costell M, Maniscalco‐Hauk K, Krawiec JA, Olzinski A, Gordon E, Lozinskaya I, Elefante L, Qin P, Matasic DS, James C, Tunstead J, Donovan B, Kallal L, Waszkiewicz A, Vaidya K, Davenport EA, Larkin J, Burgert M, Casillas LN, Marquis RW, Ye G, Eidam HS, Goodman KB, Toomey JR, Roethke TJ, Jucker BM, Schnackenberg CG, Townsley MI, Lepore JJ, Willette RN. An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4: 159ra148, 2012.
 479.Tinsley JH, De Lanerolle P, Wilson E, Ma W, Yuan SY. Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability. Am J Physiol Cell Physiol 279: C1285‐C1289, 2000.
 480.Tinsley JH, Yuan SY, Wilson E. Isoform‐specific knockout of endothelial myosin light chain kinase: Closing the gap on inflammatory lung disease. Trends Pharmacol Sci 25: 64‐66, 2004.
 481.Tobimatsu T, Fujisawa H. Tissue‐specific expression of four types of rat calmodulin‐dependent protein kinase II mRNAs. J Biol Chem 264: 17907‐17912, 1989.
 482.Toro L, Amador M, Stefani E. ANG II inhibits calcium‐activated potassium channels from coronary smooth muscle in lipid bilayers. Am J Physiol 258: H912‐H915, 1990.
 483.Torres‐Narvaez JC, Mondragon Ldel V, Varela Lopez E, Perez‐Torres I, Diaz Juarez JA, Suarez J, Hernandez GP. Role of the transient receptor potential vanilloid type 1 receptor and stretch‐activated ion channels in nitric oxide release from endothelial cells of the aorta and heart in rats. Exp Clin Cardiol 17: 89‐94, 2012.
 484.Toth A, Czikora A, Pasztor ET, Dienes B, Bai P, Csernoch L, Rutkai I, Csato V, Manyine IS, Porszasz R, Edes I, Papp Z, Boczan J. Vanilloid receptor‐1 (TRPV1) expression and function in the vasculature of the rat. J Histochem Cytochem 62: 129‐144, 2014.
 485.Toussaint F, Charbel C, Allen BG, Ledoux J. Vascular CaMKII: Heart and brain in your arteries. Am J Physiol Cell Physiol 311: C462‐C478, 2016.
 486.Toyama K, Wulff H, Chandy KG, Azam P, Raman G, Saito T, Fujiwara Y, Mattson DL, Das S, Melvin JE, Pratt PF, Hatoum OA, Gutterman DD, Harder DR, Miura H. The intermediate‐conductance calcium‐activated potassium channel KCa3.1 contributes to atherogenesis in mice and humans. J Clin Invest 118: 3025‐3037, 2008.
 487.Toyoshima C, Nakasako M, Nomura H, Ogawa H. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 A resolution. Nature 405: 647‐655, 2000.
 488.Tran CH, Taylor MS, Plane F, Nagaraja S, Tsoukias NM, Solodushko V, Vigmond EJ, Furstenhaupt T, Brigdan M, Welsh DG. Endothelial Ca2+ wavelets and the induction of myoendothelial feedback. Am J Physiol Cell Physiol 302: C1226‐C1242, 2012.
 489.Trebak M, St JBG, McKay RR, Birnbaumer L, Putney JW Jr. Signaling mechanism for receptor‐activated canonical transient receptor potential 3 (TRPC3) channels. J Biol Chem 278: 16244‐16252, 2003.
 490.Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andre E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P. 4‐Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci USA 104: 13519‐13524, 2007.
 491.Tsien RY, Pozzan T, Rink TJ. Calcium homeostasis in intact lymphocytes: Cytoplasmic free calcium monitored with a new, intracellularly trapped fluorescent indicator. J Cell Biol 94: 325‐334, 1982.
 492.Urakami‐Harasawa L, Shimokawa H, Nakashima M, Egashira K, Takeshita A. Importance of endothelium‐derived hyperpolarizing factor in human arteries. J Clin Invest 100: 2793‐2799, 1997.
 493.Vaithianathan T, Bukiya A, Liu J, Liu P, Asuncion‐Chin M, Fan Z, Dopico A. Direct regulation of BK channels by phosphatidylinositol 4,5‐bisphosphate as a novel signaling pathway. J Gen Physiol 132: 13‐28, 2008.
 494.Van Vliet BN, Chafe LL, Montani JP. Characteristics of 24 h telemetered blood pressure in eNOS‐knockout and C57Bl/6J control mice. J Physiol 549: 313‐325, 2003.
 495.VanBavel E, Sorop O, Andreasen D, Pfaffendorf M, Jensen BL. Role of T‐type calcium channels in myogenic tone of skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 283: H2239‐H2243, 2002.
 496.Vanhoutte PM, Zhao Y, Xu A, Leung SW. Thirty years of saying no: Sources, fate, actions, and misfortunes of the endothelium‐derived vasodilator mediator. Circ Res 119: 375‐396, 2016.
 497.Vazquez G, Wedel BJ, Aziz O, Trebak M, Putney JW Jr. The mammalian TRPC cation channels. Biochim Biophys Acta 1742: 21‐36, 2004.
 498.Verin AD, Lazar V, Torry RJ, Labarrere CA, Patterson CE, Garcia JG. Expression of a novel high molecular‐weight myosin light chain kinase in endothelium. Am J Respir Cell Mol Biol 19: 758‐766, 1998.
 499.Vial C, Evans RJ. P2X(1) receptor‐deficient mice establish the native P2X receptor and a P2Y6‐like receptor in arteries. Mol Pharmacol 62: 1438‐1445, 2002.
 500.Voets T, Nilius B. TRPCs, GPCRs and the Bayliss effect. EMBO J 28: 4‐5, 2009.
 501.Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B. Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277: 33704‐33710, 2002.
 502.Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B. Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101: 396‐401, 2004.
 503.Wainwright MS, Rossi J, Schavocky J, Crawford S, Steinhorn D, Velentza AV, Zasadzki M, Shirinsky V, Jia Y, Haiech J, Van Eldik LJ, Watterson DM. Protein kinase involved in lung injury susceptibility: Evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc Natl Acad Sci USA 100: 6233‐6238, 2003.
 504.Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 209: 107497, 2020.
 505.Wang RX, Chai Q, Lu T, Lee HC. Activation of vascular BK channels by docosahexaenoic acid is dependent on cytochrome P450 epoxygenase activity. Cardiovasc Res 90: 344‐352, 2011.
 506.Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, Offermanns S. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow‐induced ATP release. J Clin Invest 126: 4527‐4536, 2016.
 507.Wang S, Joseph J, Ro JY, Chung MK. Modality‐specific mechanisms of protein kinase C‐induced hypersensitivity of TRPV1: S800 is a polymodal sensitization site. Pain 156: 931‐941, 2015.
 508.Wang WL, Yeh SF, Chang YI, Hsiao SF, Lian WN, Lin CH, Huang CY, Lin WJ. PICK1, an anchoring protein that specifically targets protein kinase Calpha to mitochondria selectively upon serum stimulation in NIH 3T3 cells. J Biol Chem 278: 37705‐37712, 2003.
 509.Wang Y, Chen L, Li M, Cha H, Iwamoto T, Zhang J. Conditional knockout of smooth muscle sodium calcium exchanger type‐1 lowers blood pressure and attenuates Angiotensin II‐salt hypertension. Physiol Rep 3: e12273, 2015.
 510.Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B. Activation of TRPV4 channels (hVRL‐2/mTRP12) by phorbol derivatives. J Biol Chem 277: 13569‐13577, 2002.
 511.Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B. Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424: 434‐438, 2003.
 512.Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B. Heat‐evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277: 47044‐47051, 2002.
 513.Wellman GC, Santana LF, Bonev AD, Nelson MT. Role of phospholamban in the modulation of arterial Ca(2+) sparks and Ca(2+)‐activated K(+) channels by cAMP. Am J Physiol Cell Physiol 281: C1029‐C1037, 2001.
 514.Wellner M, Maasch C, Kupprion C, Lindschau C, Luft FC, Haller H. The proliferative effect of vascular endothelial growth factor requires protein kinase C‐alpha and protein kinase C‐zeta. Arterioscler Thromb Vasc Biol 19: 178‐185, 1999.
 515.Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90: 248‐250, 2002.
 516.Westcott EB, Jackson WF. Heterogeneous function of ryanodine receptors, but not IP3 receptors, in hamster cremaster muscle feed arteries and arterioles. Am J Physiol Heart Circ Physiol 300: H1616‐H1630, 2011.
 517.White RE, Kryman JP, El‐Mowafy AM, Han G, Carrier GO. cAMP‐dependent vasodilators cross‐activate the cGMP‐dependent protein kinase to stimulate BK(Ca) channel activity in coronary artery smooth muscle cells. Circ Res 86: 897‐905, 2000.
 518.Wilkerson MK, Heppner TJ, Bonev AD, Nelson MT. Inositol trisphosphate receptor calcium release is required for cerebral artery smooth muscle cell proliferation. Am J Physiol Heart Circ Physiol 290: H240‐H247, 2006.
 519.Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, Turner GH, Ju H, Thomas H, Fishman CE, Sulpizio A, Behm DJ, Hoffman S, Lin Z, Lozinskaya I, Casillas LN, Lin M, Trout RE, Votta BJ, Thorneloe K, Lashinger ES, Figueroa DJ, Marquis R, Xu X. Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326: 443‐452, 2008.
 520.Wilson C, Zhang X, Lee MD, MacDonald M, Heathcote HR, Alorfi NMN, Buckley C, Dolan S, McCarron JG. Disrupted endothelial cell heterogeneity and network organization impair vascular function in prediabetic obesity. Metabolism 111: 154340, 2020.
 521.Woodsome TP, Eto M, Everett A, Brautigan DL, Kitazawa T. Expression of CPI‐17 and myosin phosphatase correlates with Ca(2+) sensitivity of protein kinase C‐induced contraction in rabbit smooth muscle. J Physiol 535: 553‐564, 2001.
 522.Wooldridge AA, MacDonald JA, Erdodi F, Ma C, Borman MA, Hartshorne DJ, Haystead TA. Smooth muscle phosphatase is regulated in vivo by exclusion of phosphorylation of threonine 696 of MYPT1 by phosphorylation of Serine 695 in response to cyclic nucleotides. J Biol Chem 279: 34496‐34504, 2004.
 523.Wu KD, Bungard D, Lytton J. Regulation of SERCA Ca2+ pump expression by cytoplasmic Ca2+ in vascular smooth muscle cells. Am J Physiol Cell Physiol 280: C843‐C851, 2001.
 524.Wu LW, Mayo LD, Dunbar JD, Kessler KM, Baerwald MR, Jaffe EA, Wang D, Warren RS, Donner DB. Utilization of distinct signaling pathways by receptors for vascular endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J Biol Chem 275: 5096‐5103, 2000.
 525.Xi Q, Adebiyi A, Zhao G, Chapman KE, Waters CM, Hassid A, Jaggar JH. IP3 constricts cerebral arteries via IP3 receptor‐mediated TRPC3 channel activation and independently of sarcoplasmic reticulum Ca2+ release. Circ Res 102: 1118‐1126, 2008.
 526.Xia P, Aiello LP, Ishii H, Jiang ZY, Park DJ, Robinson GS, Takagi H, Newsome WP, Jirousek MR, King GL. Characterization of vascular endothelial growth factor's effect on the activation of protein kinase C, its isoforms, and endothelial cell growth. J Clin Invest 98: 2018‐2026, 1996.
 527.Xia XM, Fakler B, Rivard A, Wayman G, Johnson‐Pais T, Keen JE, Ishii T, Hirschberg B, Bond CT, Lutsenko S, Maylie J, Adelman JP. Mechanism of calcium gating in small‐conductance calcium‐activated potassium channels. Nature 395: 503‐507, 1998.
 528.Xia Y, Fu Z, Hu J, Huang C, Paudel O, Cai S, Liedtke W, Sham JS. TRPV4 channel contributes to serotonin‐induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol 305: C704‐C715, 2013.
 529.Xiong L, Zhang JZ, He R, Hamilton SL. A Ca2+‐binding domain in RyR1 that interacts with the calmodulin binding site and modulates channel activity. Biophys J 90: 173‐182, 2006.
 530.Xu H, Delling M, Jun JC, Clapham DE. Oregano, thyme and clove‐derived flavors and skin sensitizers activate specific TRP channels. Nat Neurosci 9: 628‐635, 2006.
 531.Xu H, Ramsey IS, Kotecha SA, Moran MM, Chong JA, Lawson D, Ge P, Lilly J, Silos‐Santiago I, Xie Y, DiStefano PS, Curtis R, Clapham DE. TRPV3 is a calcium‐permeable temperature‐sensitive cation channel. Nature 418: 181‐186, 2002.
 532.Xu SZ, Beech DJ. TrpC1 is a membrane‐spanning subunit of store‐operated Ca(2+) channels in native vascular smooth muscle cells. Circ Res 88: 84‐87, 2001.
 533.Xu X, Best PM. Postnatal changes in T‐type calcium current density in rat atrial myocytes. J Physiol 454: 657‐672, 1992.
 534.Yamamoto K, Sokabe T, Matsumoto T, Yoshimura K, Shibata M, Ohura N, Fukuda T, Sato T, Sekine K, Kato S, Isshiki M, Fujita T, Kobayashi M, Kawamura K, Masuda H, Kamiya A, Ando J. Impaired flow‐dependent control of vascular tone and remodeling in P2X4‐deficient mice. Nat Med 12: 133‐137, 2006.
 535.Yang D, Luo Z, Ma S, Wong WT, Ma L, Zhong J, He H, Zhao Z, Cao T, Yan Z, Liu D, Arendshorst WJ, Huang Y, Tepel M, Zhu Z. Activation of TRPV1 by dietary capsaicin improves endothelium‐dependent vasorelaxation and prevents hypertension. Cell Metab 12: 130‐141, 2010.
 536.Yang H, Hu L, Shi J, Delaloye K, Horrigan FT, Cui J. Mg2+ mediates interaction between the voltage sensor and cytosolic domain to activate BK channels. Proc Natl Acad Sci USA 104: 18270‐18275, 2007.
 537.Yang H, Zhang G, Cui J. BK channels: Multiple sensors, one activation gate. Front Physiol 6: 29, 2015.
 538.Yang XR, Lin AH, Hughes JM, Flavahan NA, Cao YN, Liedtke W, Sham JS. Upregulation of osmo‐mechanosensitive TRPV4 channel facilitates chronic hypoxia‐induced myogenic tone and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302: L555‐L568, 2012.
 539.Yao Y, Choi J, Parker I. Quantal puffs of intracellular Ca2+ evoked by inositol trisphosphate in Xenopus oocytes. J Physiol 482 (Pt 3): 533‐553, 1995.
 540.Yin J, Hoffmann J, Kaestle SM, Neye N, Wang L, Baeurle J, Liedtke W, Wu S, Kuppe H, Pries AR, Kuebler WM. Negative‐feedback loop attenuates hydrostatic lung edema via a cGMP‐dependent regulation of transient receptor potential vanilloid 4. Circ Res 102: 966‐974, 2008.
 541.Yoshikawa F, Morita M, Monkawa T, Michikawa T, Furuichi T, Mikoshiba K. Mutational analysis of the ligand binding site of the inositol 1,4,5‐trisphosphate receptor. J Biol Chem 271: 18277‐18284, 1996.
 542.Yu Y, Fantozzi I, Remillard CV, Landsberg JW, Kunichika N, Platoshyn O, Tigno DD, Thistlethwaite PA, Rubin LJ, Yuan JX. Enhanced expression of transient receptor potential channels in idiopathic pulmonary arterial hypertension. Proc Natl Acad Sci USA 101: 13861‐13866, 2004.
 543.Yuan P, Leonetti MD, Pico AR, Hsiung Y, MacKinnon R. Structure of the human BK channel Ca2+‐activation apparatus at 3.0 A resolution. Science 329: 182‐186, 2010.
 544.Yuan Y, Huang Q, Wu HM. Myosin light chain phosphorylation: Modulation of basal and agonist‐stimulated venular permeability. Am J Physiol 272: H1437‐H1443, 1997.
 545.Zalk R, Clarke OB, des Georges A, Grassucci RA, Reiken S, Mancia F, Hendrickson WA, Frank J, Marks AR. Structure of a mammalian ryanodine receptor. Nature 517: 44‐49, 2015.
 546.Zeng XH, Xia XM, Lingle CJ. Divalent cation sensitivity of BK channel activation supports the existence of three distinct binding sites. J Gen Physiol 125: 273‐286, 2005.
 547.Zenisek D, Davila V, Wan L, Almers W. Imaging calcium entry sites and ribbon structures in two presynaptic cells. J Neurosci 23: 2538‐2548, 2003.
 548.Zhang B, Naik JS, Jernigan NL, Walker BR, Resta TC. Reduced membrane cholesterol limits pulmonary endothelial Ca(2+) entry after chronic hypoxia. Am J Physiol Heart Circ Physiol 312: H1176‐H1184, 2017.
 549.Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge ZD, Li R, Warltier DC, Suzuki M, Gutterman DD. Transient receptor potential vanilloid type 4‐deficient mice exhibit impaired endothelium‐dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53: 532‐538, 2009.
 550.Zhang J, Ren C, Chen L, Navedo MF, Antos LK, Kinsey SP, Iwamoto T, Philipson KD, Kotlikoff MI, Santana LF, Wier WG, Matteson DR, Blaustein MP. Knockout of Na+/Ca2+ exchanger in smooth muscle attenuates vasoconstriction and L‐type Ca2+ channel current and lowers blood pressure. Am J Physiol Heart Circ Physiol 298: H1472‐H1483, 2010.
 551.Zhang J, Wang Y, Chen L, Wier WG, Blaustein MP. Na(+)/Ca(2+) exchanger overexpression in smooth muscle augments cytosolic Ca(2+) in femoral arteries of living mice. Am J Physiol Heart Circ Physiol 316: H298‐H310, 2019.
 552.Zhang L, Papadopoulos P, Hamel E. Endothelial TRPV4 channels mediate dilation of cerebral arteries: Impairment and recovery in cerebrovascular pathologies related to Alzheimer's disease. Br J Pharmacol 170: 661‐670, 2013.
 553.Zhang T, Chi S, Jiang F, Zhao Q, Xiao B. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat Commun 8: 1797, 2017.
 554.Zhang W, Halligan KE, Zhang X, Bisaillon JM, Gonzalez‐Cobos JC, Motiani RK, Hu G, Vincent PA, Zhou J, Barroso M, Singer HA, Matrougui K, Trebak M. Orai1‐mediated I (CRAC) is essential for neointima formation after vascular injury. Circ Res 109: 534‐542, 2011.
 555.Zhang Z, Li M, Lu R, Alioua A, Stefani E, Toro L. The angiotensin II type 1 receptor (AT1R) closely interacts with large conductance voltage‐ and Ca2+‐activated K+ (BK) channels and inhibits their activity independent of G‐protein activation. J Biol Chem 289: 25678‐25689, 2014.
 556.Zhao G, Adebiyi A, Blaskova E, Xi Q, Jaggar JH. Type 1 inositol 1,4,5‐trisphosphate receptors mediate UTP‐induced cation currents, Ca2+ signals, and vasoconstriction in cerebral arteries. Am J Physiol Cell Physiol 295: C1376‐C1384, 2008.
 557.Zhao Q, Wu K, Geng J, Chi S, Wang Y, Zhi P, Zhang M, Xiao B. Ion permeation and mechanotransduction mechanisms of mechanosensitive piezo channels. Neuron 89: 1248‐1263, 2016.
 558.Zhao X, Falck JR, Gopal VR, Inscho EW, Imig JD. P2X receptor‐stimulated calcium responses in preglomerular vascular smooth muscle cells involves 20‐hydroxyeicosatetraenoic acid. J Pharmacol Exp Ther 311: 1211‐1217, 2004.
 559.Zhao X, Inscho EW, Bondlela M, Falck JR, Imig JD. The CYP450 hydroxylase pathway contributes to P2X receptor‐mediated afferent arteriolar vasoconstriction. Am J Physiol Heart Circ Physiol 281: H2089‐H2096, 2001.
 560.Zheng J. Molecular mechanism of TRP channels. Compr Physiol 3: 221‐242, 2013.
 561.Zhong B, Ma S, Wang DH. Ablation of TRPV1 elevates nocturnal blood pressure in western diet‐fed mice. Curr Hypertens Rev 15: 144‐153, 2019.
 562.Zhu MX. Multiple roles of calmodulin and other Ca(2+)‐binding proteins in the functional regulation of TRP channels. Pflugers Arch 451: 105‐115, 2005.
 563.Zhu X, Jackson EK. RACK1 regulates angiotensin II‐induced contractions of SHR preglomerular vascular smooth muscle cells. Am J Physiol Renal Physiol 312: F565‐F576, 2017.
 564.Zorzato F, Fujii J, Otsu K, Phillips M, Green NM, Lai FA, Meissner G, MacLennan DH. Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265: 2244‐2256, 1990.
 565.Zuhlke RD, Pitt GS, Deisseroth K, Tsien RW, Reuter H. Calmodulin supports both inactivation and facilitation of L‐type calcium channels. Nature 399: 159‐162, 1999.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Matteo Ottolini, Swapnil K. Sonkusare. The Calcium Signaling Mechanisms in Arterial Smooth Muscle and Endothelial Cells. Compr Physiol 2021, 11: 1831-1869. doi: 10.1002/cphy.c200030