Comprehensive Physiology Wiley Online Library

Genomics and Inflammation in Cardiovascular Disease

Full Article on Wiley Online Library



Abstract

Chronic cardiovascular diseases are associated with inflammatory responses within the blood vessels and end organs. The origin of this inflammation has not been certain, and neither is its relationship to disease clear. There is a need to determine whether this association is causal or coincidental to the processes leading to cardiovascular disease. These processes are themselves complex: many cardiovascular diseases arise in conjunction with the presence of sustained elevation of blood pressure. Inflammatory processes have been linked to hypertension, and causality has been suggested. Evidence of causality poses the difficult challenge of linking the integrated and multifaceted biology of blood pressure regulation with vascular function and complex elements of immune system function. These include both, innate and adaptive immunity, as well as interactions between the host immune system and the omnipresent microorganisms that are encountered in the environment and that colonize and exist in commensal relationship with the host. Progress has been made in this task and has drawn on experimental approaches in animals, much of which have focused on hypertension occurring with prolonged infusion of angiotensin II. These laboratory studies are complemented by studies that seek to inform disease mechanism by examining the genomic basis of heritable disease susceptibility in human populations. In this realm too, evidence has emerged that implicates genetic variation affecting immunity in disease pathogenesis. In this article, we survey the genetic and genomic evidence linking high blood pressure and its end‐organ injuries to immune system function and examine evidence that genomic factors can influence disease risk. © 2021 American Physiological Society. Compr Physiol 11:2433‐2454, 2021.

Figure 1. Figure 1. The innate and adaptive immune system. Illustration of the components of the immune system which is broadly divided into the “innate” and “adaptive” arms. Innate immunity provides immediate but nonspecific responses against pathogens, whereas the adaptive immune system provides a delayed but more specific response to antigens and is characterized by a long‐term “memory” to recognize prior‐antigen exposures. DCs, dendritic cells; Macs, macrophages; NK cells, natural killer cells; NKT cells, natural killer T cells; γδT cells, gamma delta T cells.
Figure 2. Figure 2. Angiotensin II (AII) and immune signaling pathways. Illustration of the proposed signaling pathways by which AII can modulate immune function. Ang II, angiotensin II; AP‐1, activator protein‐1; AT1R, angiotensin type I receptor; ATF‐2, activated transcription factor‐2; DAG, diacylglycerol; ER, endoplasmic reticulum; ERK 1/2, extracellular signal‐regulated kinase 1/2; IP3, inositol 1,4,5‐trisphosphate; JAK, Janus kinase; JNK, c‐Jun N‐terminal kinase; MEK 1/2, mitogen‐activated/ERK kinase 1/2; NADPH, nicotinamide adenine dinucleotide‐reduced; NFAT, nuclear factor of activated T cells; NF‐κB, nuclear factor kappa‐light‐chain enhancer of activated B cells; PKC, protein kinase C; PLC, phospholipase C; ROS, reactive oxygen species; SP‐1, specific protein‐1; STATs, signal transducers and activators of transcriptions.
Figure 3. Figure 3. V(D)J recombination in lymphocyte development. Illustration of the mechanism of V(D)J recombination that is essential for the creation of T‐ and B‐cell receptors. Recombination‐activating genes 1 and 2 (encoded by RAG1 and RAG2) and DNA‐dependent protein kinase (DNA‐PK, encoded by PRKDC) shown in red are key enzymes that facilitate recombination and lymphocyte maturation.
Figure 4. Figure 4. Effect of angiotensin II (AII) infusion on blood pressure (BP) in Rag1−/− mice. Conflicting reports from studies examining the pressor effects of AII (490 ng/kg/min) in Rag1−/− mice, with Guzik et al. demonstrating that lack of T and B cells rendered mice resistant to AII‐hypertension, while Seniuk et al. report that there was no difference in pressor response to AII in Rag1−/− mice and wild‐type C57BL6 controls. Bottom: Reused, with permission, from Seniuk A, et al., 2020 99, © 2020, Wolters Kluwer. Top: Reused, with permission, from Guzik TJ, et al., 2007 38, © 2007, Rockfeller University Press.
Figure 5. Figure 5. Zinc finger nuclease (ZNF) technology to create knockout rats. Illustration of the application of ZFN to introduce double‐stranded nicks at precise regions in DNA in fertilized embryos to create targeted gene‐deleted rats. NHEJ: non‐homologous end joining.
Figure 6. Figure 6. Servo control of renal perfusion pressure (RPP). Illustration of the functional components of a servo‐control setup for maintaining baseline renal perfusion pressure in the left kidney, while allowing the right kidney to be exposed to the pressor effects of AII infusion in rats. The upper panel was taken from: Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, Mattson DL, Sorokin A, Lombard JH, Cowley AW Jr, Staruschenko A. Deficiency of renal cortical EGF increases ENaC activity and contributes to salt‐sensitive hypertension. J Am Soc Nephrol. 2013 Jun;24(7): 1053‐62. DOI: 10.1681/ASN.2012080839. Epub 2013 Apr 18. PMID: 23599382; PMCID: PMC3699826. The lower panel was from: Mori T, Cowley AW Jr. Role of pressure in angiotensin II‐induced renal injury: chronic servo‐control of renal perfusion pressure in rats. Hypertension. 2004 Apr;43(4): 752‐9. DOI: 10.1161/01.HYP.0000120971.49659.6a. Epub 2004 Feb 23. PMID: 14981064.
Figure 7. Figure 7. Effect of high salt on immune signaling. Illustration of the effects of high sodium concentration, via ENaC activation, on downstream signaling cascades in T cells and macrophages. Activation of p38 by high salt results in p38 MAPK activation, leading to serum glucocorticoid kinase 1 (SGK1) and nuclear factor of activated T cells 5 (NFAT5) in both T cells and macrophages, leading to activation of specific transcription profiles. High salt is associated with a pathogenic TH17 phenotype and skews macrophages to a pro‐inflammatory M1 phenotype.
Figure 8. Figure 8. Risk alleles for autoimmune disease. A Manhattan plot illustrating the genome‐wide distribution of risk alleles for autoimmune disease with variants on the X‐axis plotted against statistical strength of association (−Log10P) on the Y‐axis. This genetic risk is distributed largely among genes involved in T‐ and B‐cell interactions, and a cluster of variants can influence disease risk for multiple pathological conditions involving immune function. Petersone L, Edner NM, Ovcinnikovs V, Heuts F, Ross EM, Ntavli E, Wang CJ, Walker LSK. T cell/B cell collaboration and autoimmunity:An intimate relationship. Front Immunol 9: 1941, 2018. DOI: 10.3389/fimmu.2018.01941.
Figure 9. Figure 9. PTPN22/PTPN2 in immune signaling pathways. Illustration of the T‐cell receptor (TCR)‐mediated signaling pathways negatively regulated by the protein tyrosine phosphatase nonreceptor type 22 and 2 (PTPN22/PTPN2). Allelic variants, notably the R620W allele, result in gain‐of‐function phenotypes that predispose to autoimmune disease.


Figure 1. The innate and adaptive immune system. Illustration of the components of the immune system which is broadly divided into the “innate” and “adaptive” arms. Innate immunity provides immediate but nonspecific responses against pathogens, whereas the adaptive immune system provides a delayed but more specific response to antigens and is characterized by a long‐term “memory” to recognize prior‐antigen exposures. DCs, dendritic cells; Macs, macrophages; NK cells, natural killer cells; NKT cells, natural killer T cells; γδT cells, gamma delta T cells.


Figure 2. Angiotensin II (AII) and immune signaling pathways. Illustration of the proposed signaling pathways by which AII can modulate immune function. Ang II, angiotensin II; AP‐1, activator protein‐1; AT1R, angiotensin type I receptor; ATF‐2, activated transcription factor‐2; DAG, diacylglycerol; ER, endoplasmic reticulum; ERK 1/2, extracellular signal‐regulated kinase 1/2; IP3, inositol 1,4,5‐trisphosphate; JAK, Janus kinase; JNK, c‐Jun N‐terminal kinase; MEK 1/2, mitogen‐activated/ERK kinase 1/2; NADPH, nicotinamide adenine dinucleotide‐reduced; NFAT, nuclear factor of activated T cells; NF‐κB, nuclear factor kappa‐light‐chain enhancer of activated B cells; PKC, protein kinase C; PLC, phospholipase C; ROS, reactive oxygen species; SP‐1, specific protein‐1; STATs, signal transducers and activators of transcriptions.


Figure 3. V(D)J recombination in lymphocyte development. Illustration of the mechanism of V(D)J recombination that is essential for the creation of T‐ and B‐cell receptors. Recombination‐activating genes 1 and 2 (encoded by RAG1 and RAG2) and DNA‐dependent protein kinase (DNA‐PK, encoded by PRKDC) shown in red are key enzymes that facilitate recombination and lymphocyte maturation.


Figure 4. Effect of angiotensin II (AII) infusion on blood pressure (BP) in Rag1−/− mice. Conflicting reports from studies examining the pressor effects of AII (490 ng/kg/min) in Rag1−/− mice, with Guzik et al. demonstrating that lack of T and B cells rendered mice resistant to AII‐hypertension, while Seniuk et al. report that there was no difference in pressor response to AII in Rag1−/− mice and wild‐type C57BL6 controls. Bottom: Reused, with permission, from Seniuk A, et al., 2020 99, © 2020, Wolters Kluwer. Top: Reused, with permission, from Guzik TJ, et al., 2007 38, © 2007, Rockfeller University Press.


Figure 5. Zinc finger nuclease (ZNF) technology to create knockout rats. Illustration of the application of ZFN to introduce double‐stranded nicks at precise regions in DNA in fertilized embryos to create targeted gene‐deleted rats. NHEJ: non‐homologous end joining.


Figure 6. Servo control of renal perfusion pressure (RPP). Illustration of the functional components of a servo‐control setup for maintaining baseline renal perfusion pressure in the left kidney, while allowing the right kidney to be exposed to the pressor effects of AII infusion in rats. The upper panel was taken from: Pavlov TS, Levchenko V, O'Connor PM, Ilatovskaya DV, Palygin O, Mori T, Mattson DL, Sorokin A, Lombard JH, Cowley AW Jr, Staruschenko A. Deficiency of renal cortical EGF increases ENaC activity and contributes to salt‐sensitive hypertension. J Am Soc Nephrol. 2013 Jun;24(7): 1053‐62. DOI: 10.1681/ASN.2012080839. Epub 2013 Apr 18. PMID: 23599382; PMCID: PMC3699826. The lower panel was from: Mori T, Cowley AW Jr. Role of pressure in angiotensin II‐induced renal injury: chronic servo‐control of renal perfusion pressure in rats. Hypertension. 2004 Apr;43(4): 752‐9. DOI: 10.1161/01.HYP.0000120971.49659.6a. Epub 2004 Feb 23. PMID: 14981064.


Figure 7. Effect of high salt on immune signaling. Illustration of the effects of high sodium concentration, via ENaC activation, on downstream signaling cascades in T cells and macrophages. Activation of p38 by high salt results in p38 MAPK activation, leading to serum glucocorticoid kinase 1 (SGK1) and nuclear factor of activated T cells 5 (NFAT5) in both T cells and macrophages, leading to activation of specific transcription profiles. High salt is associated with a pathogenic TH17 phenotype and skews macrophages to a pro‐inflammatory M1 phenotype.


Figure 8. Risk alleles for autoimmune disease. A Manhattan plot illustrating the genome‐wide distribution of risk alleles for autoimmune disease with variants on the X‐axis plotted against statistical strength of association (−Log10P) on the Y‐axis. This genetic risk is distributed largely among genes involved in T‐ and B‐cell interactions, and a cluster of variants can influence disease risk for multiple pathological conditions involving immune function. Petersone L, Edner NM, Ovcinnikovs V, Heuts F, Ross EM, Ntavli E, Wang CJ, Walker LSK. T cell/B cell collaboration and autoimmunity:An intimate relationship. Front Immunol 9: 1941, 2018. DOI: 10.3389/fimmu.2018.01941.


Figure 9. PTPN22/PTPN2 in immune signaling pathways. Illustration of the T‐cell receptor (TCR)‐mediated signaling pathways negatively regulated by the protein tyrosine phosphatase nonreceptor type 22 and 2 (PTPN22/PTPN2). Allelic variants, notably the R620W allele, result in gain‐of‐function phenotypes that predispose to autoimmune disease.
References
 1.Abais‐Battad JM, Lund H, Fehrenbach DJ, Dasinger JH, Mattson DL. Rag1‐null Dahl SS rats reveal that adaptive immune mechanisms exacerbate high protein‐induced hypertension and renal injury. Am J Physiol Regul Integr Comp Physiol 315: R28‐R35, 2018. DOI: 10.1152/ajpregu.00201.2017.
 2.Abel HJ, Larson DE, Regier AA, Chiang C, Das I, Kanchi KL, Layer RM, Neale BM, Salerno WJ, Reeves C, Buyske S, NHGRI Centers for Common Disease Genomics, Matise TC, Muzny DM, Zody MC, Lander ES, Dutcher SK, Stitziel NO, Hall IM. Mapping and characterization of structural variation in 17,795 human genomes. Nature 583: 83‐89, 2020. DOI: 10.1038/s41586‐020‐2371‐0.
 3.Adnan S, Nelson JW, Ajami NJ, Venna VR, Petrosino JF, Bryan RM Jr, Durgan DJ. Alterations in the gut microbiota can elicit hypertension in rats. Physiol Genomics 49: 96‐104, 2017. DOI: 10.1152/physiolgenomics.00081.2016.
 4.Alonge M, Wang X, Benoit M, Soyk S, Pereira L, Zhang L, Suresh H, Ramakrishnan S, Maumus F, Ciren D, Levy Y, Harel TH, Shalev‐Schlosser G, Amsellem Z, Razifard H, Caicedo AL, Tieman DM, Klee H, Kirsche M, Aganezov S, Ranallo‐Benavidez TR, Lemmon ZH, Kim J, Robitaille G, Kramer M, Goodwin S, McCombie WR, Hutton S, Van Eck J, Gillis J, Eshed Y, Sedlazeck FJ, van der Knaap E, Schatz MC, Lippman ZB. Major impacts of widespread structural variation on gene expression and crop improvement in tomato. Cell 182: 145‐161.e23, 2020.
 5.An P, Kirk GD, Limou S, Binns‐Roemer E, Kopp JB, Winkler CA. Impact of APOL1 genetic variants on HIV‐1 infection and disease progression. Front Immunol 10: 53, 2019. DOI: 10.3389/fimmu.2019.00053.
 6.Audano PA, Sulovari A, Graves‐Lindsay TA, Cantsilieris S, Sorensen M, Welch AE, Dougherty ML, Nelson BJ, Shah A, Dutcher SK, Warren WC, Magrini V, McGrath SD, Li YI, Wilson RK, Eichler EE. Characterizing the major structural variant alleles of the human genome. Cell 176: 663‐675.e19, 2019. DOI: 10.1016/j.cell.2018.12.019.
 7.Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C‐reactive protein, interleukin‐6, and TNF‐alpha) and essential hypertension. J Hum Hypertens 19: 149‐154, 2005. DOI: 10.1038/sj.jhh.1001785.
 8.Brusco A, Cinque F, Saviozzi S, Boccazzi C, DeMarchi M, Carbonara AO. The G4 gene is duplicated in 44% of human immunoglobulin heavy chain constant region haplotypes. Hum Genet 100: 84‐89, 1997. DOI: 10.1007/s004390050470.
 9.Burke M, Pabbidi MR, Farley J, Roman RJ. Molecular mechanisms of renal blood flow autoregulation. Curr Vasc Pharmacol 12: 845‐858, 2014.
 10.Bush E, Maeda N, Kuziel WA, Dawson TC, Wilcox JN, DeLeon H, Taylor WR. CC chemokine receptor 2 is required for macrophage infiltration and vascular hypertrophy in angiotensin II‐induced hypertension. Hypertens Dallas Tex 1979 36: 360‐363, 2000. DOI: 10.1161/01.hyp.36.3.360.
 11.Cabrera CP, Ng FL, Nicholls HL, Gupta A, Barnes MR, Munroe PB, Caulfield MJ. Over 1000 genetic loci influencing blood pressure with multiple systems and tissues implicated. Hum Mol Genet 28: R151‐R161, 2019. DOI: 10.1093/hmg/ddz197.
 12.Caillon A, Mian MOR, Fraulob‐Aquino JC, Huo K‐G, Barhoumi T, Ouerd S, Sinnaeve PR, Paradis P, Schiffrin EL. γδ T cells mediate angiotensin II‐induced hypertension and vascular injury. Circulation 135: 2155‐2162, 2017. DOI: 10.1161/CIRCULATIONAHA.116.027058.
 13.Campbell N, LaMarca B, Cunningham MW. The role of agonistic autoantibodies to the angiotensin II type 1 receptor (AT1‐AA) in pathophysiology of preeclampsia. Curr Pharm Biotechnol 19: 781‐785, 2018. DOI: 10.2174/1389201019666180925121254.
 14.Carty CL, Keene KL, Cheng Y‐C, Meschia JF, Chen W‐M, Nalls M, Bis JC, Kittner SJ, Rich SS, Tajuddin S, Zonderman AB, Evans MK, Langefeld CD, Gottesman R, Mosley TH, Shahar E, Woo D, Yaffe K, Liu Y, Sale MM, Dichgans M, Malik R, Longstreth WT, Mitchell BD, Psaty BM, Kooperberg C, Reiner A, Worrall BB, Fornage M, COMPASS and METASTROKE Consortia. Meta‐analysis of genome‐wide association studies identifies genetic risk factors for stroke in African Americans. Stroke 46: 2063‐2068, 2015. DOI: 10.1161/STROKEAHA.115.009044.
 15.Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, Gardner EJ, Rodriguez OL, Guo L, Collins RL, Fan X, Wen J, Handsaker RE, Fairley S, Kronenberg ZN, Kong X, Hormozdiari F, Lee D, Wenger AM, Hastie AR, Antaki D, Anantharaman T, Audano PA, Brand H, Cantsilieris S, Cao H, Cerveira E, Chen C, Chen X, Chin C‐S, Chong Z, Chuang NT, Lambert CC, Church DM, Clarke L, Farrell A, Flores J, Galeev T, Gorkin DU, Gujral M, Guryev V, Heaton WH, Korlach J, Kumar S, Kwon JY, Lam ET, Lee JE, Lee J, Lee W‐P, Lee SP, Li S, Marks P, Viaud‐Martinez K, Meiers S, Munson KM, Navarro FCP, Nelson BJ, Nodzak C, Noor A, Kyriazopoulou‐Panagiotopoulou S, Pang AWC, Qiu Y, Rosanio G, Ryan M, Stütz A, Spierings DCJ, Ward A, Welch AE, Xiao M, Xu W, Zhang C, Zhu Q, Zheng‐Bradley X, Lowy E, Yakneen S, McCarroll S, Jun G, Ding L, Koh CL, Ren B, Flicek P, Chen K, Gerstein MB, Kwok P‐Y, Lansdorp PM, Marth GT, Sebat J, Shi X, Bashir A, Ye K, Devine SE, Talkowski ME, Mills RE, Marschall T, Korbel JO, Eichler EE, Lee C. Multi‐platform discovery of haplotype‐resolved structural variation in human genomes. Nat Commun 10: 1784, 2019. DOI: 10.1038/s41467‐018‐08148‐z.
 16.Chan CT, Moore JP, Budzyn K, Guida E, Diep H, Vinh A, Jones ES, Widdop RE, Armitage JA, Sakkal S, Ricardo SD, Sobey CG, Drummond GR. Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt‐treated mice. Hypertens Dallas Tex 1979 60: 1207‐1212, 2012. DOI: 10.1161/HYPERTENSIONAHA.112.201251.
 17.Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, Kim HA, Krishnan SM, Lewis CV, Salimova E, Tipping P, Vinh A, Samuel CS, Peter K, Guzik TJ, Kyaw TS, Toh B‐H, Bobik A, Drummond GR. Obligatory role for B cells in the development of angiotensin II‐dependent hypertension. Hypertens Dallas Tex 1979 66: 1023‐1033, 2015. DOI: 10.1161/HYPERTENSIONAHA.115.05779.
 18.Costea PI, Coelho LP, Sunagawa S, Munch R, Huerta‐Cepas J, Forslund K, Hildebrand F, Kushugulova A, Zeller G, Bork P. Subspecies in the global human gut microbiome. Mol Syst Biol 13: 960, 2017. DOI: 10.15252/msb.20177589.
 19.Crowley SD, Song Y‐S, Lin EE, Griffiths R, Kim H‐S, Ruiz P. Lymphocyte responses exacerbate angiotensin II‐dependent hypertension. Am J Physiol Regul Integr Comp Physiol 298: R1089‐R1097, 2010. DOI: 10.1152/ajpregu.00373.2009.
 20.Crowley SD, Song Y‐S, Sprung G, Griffiths R, Sparks M, Yan M, Burchette JL, Howell DN, Lin EE, Okeiyi B, Stegbauer J, Yang Y, Tharaux P‐L, Ruiz P. A role for angiotensin II type 1 receptors on bone marrow‐derived cells in the pathogenesis of angiotensin II‐dependent hypertension. Hypertens Dallas Tex 1979 55: 99‐108, 2010. DOI: 10.1161/HYPERTENSIONAHA.109.144964.
 21.Danobeitia JS, Djamali A, Fernandez LA. The role of complement in the pathogenesis of renal ischemia‐reperfusion injury and fibrosis. Fibrogenesis Tissue Repair 7: 16, 2014. DOI: 10.1186/1755‐1536‐7‐16.
 22.De Ciuceis C, Amiri F, Brassard P, Endemann DH, Touyz RM, Schiffrin EL. Reduced vascular remodeling, endothelial dysfunction, and oxidative stress in resistance arteries of angiotensin II‐infused macrophage colony‐stimulating factor‐deficient mice: Evidence for a role in inflammation in angiotensin‐induced vascular injury. Arterioscler Thromb Vasc Biol 25: 2106‐2113, 2005. DOI: 10.1161/01.ATV.0000181743.28028.57.
 23.De Miguel C, Das S, Lund H, Mattson DL. T lymphocytes mediate hypertension and kidney damage in Dahl salt‐sensitive rats. Am J Physiol Regul Integr Comp Physiol 298: R1136‐R1142, 2010. DOI: 10.1152/ajpregu.00298.2009.
 24.Duan X, Liu J, Mu Y, Liu T, Chen Y, Yu R, Xiong X, Wu T. A systematic review and meta‐analysis of the association between psoriasis and hypertension with adjustment for covariates. Medicine (Baltimore) 99: e19303, 2020. DOI: 10.1097/MD.0000000000019303.
 25.Durgan DJ. Obstructive sleep apnea‐induced hypertension: Role of the gut microbiota. Curr Hypertens Rep 19: 35, 2017. DOI: 10.1007/s11906‐017‐0732‐3.
 26.Ebringer A, Doyle AE. Raised serum IgG levels in hypertension. Br Med J 2: 146‐148, 1970. DOI: 10.1136/bmj.2.5702.146.
 27.Ehret GB, Ferreira T, Chasman DI, Jackson AU, Schmidt EM, Johnson T, Thorleifsson G, Luan J, Donnelly LA, Kanoni S, Petersen A‐K, Pihur V, Strawbridge RJ, Shungin D, Hughes MF, Meirelles O, Kaakinen M, Bouatia‐Naji N, Kristiansson K, Shah S, Kleber ME, Guo X, Lyytikäinen L‐P, Fava C, Eriksson N, Nolte IM, Magnusson PK, Salfati EL, Rallidis LS, Theusch E, Smith AJP, Folkersen L, Witkowska K, Pers TH, Joehanes R, Kim SK, Lataniotis L, Jansen R, Johnson AD, Warren H, Kim YJ, Zhao W, Wu Y, Tayo BO, Bochud M, CHARGE‐EchoGen consortium, CHARGE‐HF consortium, Wellcome Trust Case Control Consortium, Absher D, Adair LS, Amin N, Arking DE, Axelsson T, Baldassarre D, Balkau B, Bandinelli S, Barnes MR, Barroso I, Bevan S, Bis JC, Bjornsdottir G, Boehnke M, Boerwinkle E, Bonnycastle LL, Boomsma DI, Bornstein SR, Brown MJ, Burnier M, Cabrera CP, Chambers JC, Chang I‐S, Cheng C‐Y, Chines PS, Chung R‐H, Collins FS, Connell JM, Döring A, Dallongeville J, Danesh J, de Faire U, Delgado G, Dominiczak AF, Doney ASF, Drenos F, Edkins S, Eicher JD, Elosua R, Enroth S, Erdmann J, Eriksson P, Esko T, Evangelou E, Evans A, Fall T, Farrall M, Felix JF, Ferrières J, Ferrucci L, Fornage M, Forrester T, Franceschini N, Duran OHF, Franco‐Cereceda A, Fraser RM, Ganesh SK, Gao H, Gertow K, Gianfagna F, Gigante B, Giulianini F, Goel A, Goodall AH, Goodarzi MO, Gorski M, Gräßler J, Groves C, Gudnason V, Gyllensten U, Hallmans G, Hartikainen A‐L, Hassinen M, Havulinna AS, Hayward C, Hercberg S, Herzig K‐H, Hicks AA, Hingorani AD, Hirschhorn JN, Hofman A, Holmen J, Holmen OL, Hottenga J‐J, Howard P, Hsiung CA, Hunt SC, Ikram MA, Illig T, Iribarren C, Jensen RA, Kähönen M, Kang H, Kathiresan S, Keating BJ, Khaw K‐T, Kim YK, Kim E, Kivimaki M, Klopp N, Kolovou G, Komulainen P, Kooner JS, Kosova G, Krauss RM, Kuh D, Kutalik Z, Kuusisto J, Kvaløy K, Lakka TA, Lee NR, Lee I‐T, Lee W‐J, Levy D, Li X, Liang K‐W, Lin H, Lin L, Lindström J, Lobbens S, Männistö S, Müller G, Müller‐Nurasyid M, Mach F, Markus HS, Marouli E, McCarthy MI, McKenzie CA, Meneton P, Menni C, Metspalu A, Mijatovic V, Moilanen L, Montasser ME, Morris AD, Morrison AC, Mulas A, Nagaraja R, Narisu N, Nikus K, O'Donnell CJ, O'Reilly PF, Ong KK, Paccaud F, Palmer CD, Parsa A, Pedersen NL, Penninx BW, Perola M, Peters A, Poulter N, Pramstaller PP, Psaty BM, Quertermous T, Rao DC, Rasheed A, Rayner NWNWR, Renström F, Rettig R, Rice KM, Roberts R, Rose LM, Rossouw J, Samani NJ, Sanna S, Saramies J, Schunkert H, Sebert S, Sheu WH‐H, Shin Y‐A, Sim X, Smit JH, Smith AV, Sosa MX, Spector TD, Stančáková A, Stanton A, Stirrups KE, Stringham HM, Sundstrom J, Swift AJ, Syvänen A‐C, Tai E‐S, Tanaka T, Tarasov KV, Teumer A, Thorsteinsdottir U, Tobin MD, Tremoli E, Uitterlinden AG, Uusitupa M, Vaez A, Vaidya D, van Duijn CM, van Iperen EPA, Vasan RS, Verwoert GC, Virtamo J, Vitart V, Voight BF, Vollenweider P, Wagner A, Wain LV, Wareham NJ, Watkins H, Weder AB, Westra H‐J, Wilks R, Wilsgaard T, Wilson JF, Wong TY, Yang T‐P, Yao J, Yengo L, Zhang W, Zhao JH, Zhu X, Bovet P, Cooper RS, Mohlke KL, Saleheen D, Lee J‐Y, Elliott P, Gierman HJ, Willer CJ, Franke L, Hovingh GK, Taylor KD, Dedoussis G, Sever P, Wong A, Lind L, Assimes TL, Njølstad I, Schwarz PE, Langenberg C, Snieder H, Caulfield MJ, Melander O, Laakso M, Saltevo J, Rauramaa R, Tuomilehto J, Ingelsson E, Lehtimäki T, Hveem K, Palmas W, März W, Kumari M, Salomaa V, Chen Y‐DI, Rotter JI, Froguel P, Jarvelin M‐R, Lakatta EG, Kuulasmaa K, Franks PW, Hamsten A, Wichmann H‐E, Palmer CNA, Stefansson K, Ridker PM, Loos RJF, Chakravarti A, Deloukas P, Morris AP, Newton‐Cheh C, Munroe PB. The genetics of blood pressure regulation and its target organs from association studies in 342,415 individuals. Nat Genet 48: 1171‐1184, 2016. DOI: 10.1038/ng.3667.
 28.Eichler EE. Genetic variation, comparative genomics, and the diagnosis of disease. N Engl J Med 381: 64‐74, 2019. DOI: 10.1056/NEJMra1809315.
 29.Evangelou E, Warren HR, Mosen‐Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, Ng FL, Evangelou M, Witkowska K, Tzanis E, Hellwege JN, Giri A, Velez Edwards DR, Sun YV, Cho K, Gaziano JM, Wilson PWF, Tsao PS, Kovesdy CP, Esko T, Mägi R, Milani L, Almgren P, Boutin T, Debette S, Ding J, Giulianini F, Holliday EG, Jackson AU, Li‐Gao R, Lin W‐Y, Luan J, Mangino M, Oldmeadow C, Prins BP, Qian Y, Sargurupremraj M, Shah N, Surendran P, Thériault S, Verweij N, Willems SM, Zhao J‐H, Amouyel P, Connell J, de Mutsert R, Doney ASF, Farrall M, Menni C, Morris AD, Noordam R, Paré G, Poulter NR, Shields DC, Stanton A, Thom S, Abecasis G, Amin N, Arking DE, Ayers KL, Barbieri CM, Batini C, Bis JC, Blake T, Bochud M, Boehnke M, Boerwinkle E, Boomsma DI, Bottinger EP, Braund PS, Brumat M, Campbell A, Campbell H, Chakravarti A, Chambers JC, Chauhan G, Ciullo M, Cocca M, Collins F, Cordell HJ, Davies G, de Borst MH, de Geus EJ, Deary IJ, Deelen J, Del Greco MF, Demirkale CY, Dörr M, Ehret GB, Elosua R, Enroth S, Erzurumluoglu AM, Ferreira T, Frånberg M, Franco OH, Gandin I, Gasparini P, Giedraitis V, Gieger C, Girotto G, Goel A, Gow AJ, Gudnason V, Guo X, Gyllensten U, Hamsten A, Harris TB, Harris SE, Hartman CA, Havulinna AS, Hicks AA, Hofer E, Hofman A, Hottenga J‐J, Huffman JE, Hwang S‐J, Ingelsson E, James A, Jansen R, Jarvelin M‐R, Joehanes R, Johansson Å, Johnson AD, Joshi PK, Jousilahti P, Jukema JW, Jula A, Kähönen M, Kathiresan S, Keavney BD, Khaw K‐T, Knekt P, Knight J, Kolcic I, Kooner JS, Koskinen S, Kristiansson K, Kutalik Z, Laan M, Larson M, Launer LJ, Lehne B, Lehtimäki T, Liewald DCM, Lin L, Lind L, Lindgren CM, Liu Y, Loos RJF, Lopez LM, Lu Y, Lyytikäinen L‐P, Mahajan A, Mamasoula C, Marrugat J, Marten J, Milaneschi Y, Morgan A, Morris AP, Morrison AC, Munson PJ, Nalls MA, Nandakumar P, Nelson CP, Niiranen T, Nolte IM, Nutile T, Oldehinkel AJ, Oostra BA, O'Reilly PF, Org E, Padmanabhan S, Palmas W, Palotie A, Pattie A, Penninx BWJH, Perola M, Peters A, Polasek O, Pramstaller PP, Nguyen QT, Raitakari OT, Ren M, Rettig R, Rice K, Ridker PM, Ried JS, Riese H, Ripatti S, Robino A, Rose LM, Rotter JI, Rudan I, Ruggiero D, Saba Y, Sala CF, Salomaa V, Samani NJ, Sarin A‐P, Schmidt R, Schmidt H, Shrine N, Siscovick D, Smith AV, Snieder H, Sõber S, Sorice R, Starr JM, Stott DJ, Strachan DP, Strawbridge RJ, Sundström J, Swertz MA, Taylor KD, Teumer A, Tobin MD, Tomaszewski M, Toniolo D, Traglia M, Trompet S, Tuomilehto J, Tzourio C, Uitterlinden AG, Vaez A, van der Most PJ, van Duijn CM, Vergnaud A‐C, Verwoert GC, Vitart V, Völker U, Vollenweider P, Vuckovic D, Watkins H, Wild SH, Willemsen G, Wilson JF, Wright AF, Yao J, Zemunik T, Zhang W, Attia JR, Butterworth AS, Chasman DI, Conen D, Cucca F, Danesh J, Hayward C, Howson JMM, Laakso M, Lakatta EG, Langenberg C, Melander O, Mook‐Kanamori DO, Palmer CNA, Risch L, Scott RA, Scott RJ, Sever P, Spector TD, van der Harst P, Wareham NJ, Zeggini E, Levy D, Munroe PB, Newton‐Cheh C, Brown MJ, Metspalu A, Hung AM, O'Donnell CJ, Edwards TL, Psaty BM, Tzoulaki I, Barnes MR, Wain LV, Elliott P, Caulfield MJ, Million Veteran Program. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nat Genet 50: 1412‐1425, 2018. DOI: 10.1038/s41588‐018‐0205‐x.
 30.Evans LC, Petrova G, Kurth T, Yang C, Bukowy JD, Mattson DL, Cowley AW. Increased perfusion pressure drives renal T‐cell infiltration in the Dahl salt‐sensitive rat. Hypertens Dallas Tex 1979 70: 543‐551, 2017. DOI: 10.1161/HYPERTENSIONAHA.117.09208.
 31.Farez MF, Fiol MP, Gaitán MI, Quintana FJ, Correale J. Sodium intake is associated with increased disease activity in multiple sclerosis. J Neurol Neurosurg Psychiatry 86: 26‐31, 2015. DOI: 10.1136/jnnp‐2014‐307928.
 32.Farries TC, Atkinson JP. Evolution of the complement system. Immunol Today 12: 295‐300, 1991. DOI: 10.1016/0167‐5699(91)90002‐B.
 33.Fitzgerald KC, Munger KL, Ascherio A. Reply to “Stratified analyses are necessary to verify the influence of salt intake in multiple sclerosis”. Ann Neurol 82: 649, 2017. DOI: 10.1002/ana.25055.
 34.Fitzgerald KC, Munger KL, Hartung H‐P, Freedman MS, Montalbán X, Edan G, Wicklein E‐M, Radue E‐W, Kappos L, Pohl C, Ascherio A, BENEFIT Study Group. Sodium intake and multiple sclerosis activity and progression in BENEFIT. Ann Neurol 82: 20‐29, 2017. DOI: 10.1002/ana.24965.
 35.Florey HW, Jennings MA, Gilliver K, Sanders AG. Mycophenolic acid; an antibiotic from Penicillium brevicompactum Dlerckx. Lancet 1: 46‐49, 1946.
 36.Galla S, Chakraborty S, Cheng X, Yeo J, Mell B, Zhang H, Mathew AV, Vijay‐Kumar M, Joe B. Disparate effects of antibiotics on hypertension. Physiol Genomics 50: 837‐845, 2018. DOI: 10.1152/physiolgenomics.00073.2018.
 37.Ganesh SK, Tragante V, Guo W, Guo Y, Lanktree MB, Smith EN, Johnson T, Castillo BA, Barnard J, Baumert J, Chang Y‐PC, Elbers CC, Farrall M, Fischer ME, Franceschini N, Gaunt TR, Guo JMIH, Gieger C, Gong Y, Isaacs A, Kleber ME, Mateo Leach I, McDonough CW, Meijs MFL, Mellander O, Molony CM, Nolte IM, Padmanabhan S, Price TS, Rajagopalan R, Shaffer J, Shah S, Shen H, Soranzo N, van der Most PJ, Van Iperen EPA, Van Setten J, Van Setten JA, Vonk JM, Zhang L, Beitelshees AL, Berenson GS, Bhatt DL, Boer JMA, Boerwinkle E, Burkley B, Burt A, Chakravarti A, Chen W, Cooper‐Dehoff RM, Curtis SP, Dreisbach A, Duggan D, Ehret GB, Fabsitz RR, Fornage M, Fox E, Furlong CE, Gansevoort RT, Hofker MH, Hovingh GK, Kirkland SA, Kottke‐Marchant K, Kutlar A, Lacroix AZ, Langaee TY, Li YR, Lin H, Liu K, Maiwald S, Malik R, CARDIOGRAM, METASTROKE, Murugesan G, Newton‐Cheh C, O'Connell JR, Onland‐Moret NC, Ouwehand WH, Palmas W, Penninx BW, Pepine CJ, Pettinger M, Polak JF, Ramachandran VS, Ranchalis J, Redline S, Ridker PM, Rose LM, Scharnag H, Schork NJ, Shimbo D, Shuldiner AR, Srinivasan SR, Stolk RP, Taylor HA, Thorand B, Trip MD, van Duijn CM, Verschuren WM, Wijmenga C, Winkelmann BR, Wyatt S, Young JH, Boehm BO, Caulfield MJ, Chasman DI, Davidson KW, Doevendans PA, Fitzgerald GA, Gums JG, Hakonarson H, Hillege HL, Illig T, Jarvik GP, Johnson JA, Kastelein JJP, Koenig W, LifeLines Cohort Study, März W, Mitchell BD, Murray SS, Oldehinkel AJ, Rader DJ, Reilly MP, Reiner AP, Schadt EE, Silverstein RL, Snieder H, Stanton AV, Uitterlinden AG, van der Harst P, van der Schouw YT, Samani NJ, Johnson AD, Munroe PB, de Bakker PIW, Zhu X, Levy D, Keating BJ, Asselbergs FW. Loci influencing blood pressure identified using a cardiovascular gene‐centric array. Hum Mol Genet 22: 1663‐1678, 2013. DOI: 10.1093/hmg/dds555.
 38.Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204: 2449‐2460, 2007. DOI: 10.1084/jem.20070657.
 39.Han X, Wang C, Tang D, Shi Y, Gao M. Association of genetic polymorphisms in chromosome 9p21 with risk of ischemic stroke. Cytokine 127: 154921, 2020. DOI: 10.1016/j.cyto.2019.154921.
 40.Hernandez AL, Kitz A, Wu C, Lowther DE, Rodriguez DM, Vudattu N, Deng S, Herold KC, Kuchroo VK, Kleinewietfeld M, Hafler DA. Sodium chloride inhibits the suppressive function of FOXP3+ regulatory T cells. J Clin Invest 125: 4212‐4222, 2015. DOI: 10.1172/JCI81151.
 41.Hilme E, Herlitz H, Söderström T, Hansson L. Increased secretion of immunoglobulins in malignant hypertension. J Hypertens 7: 91‐95, 1989.
 42.Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 284: 1313‐1318, 1999. DOI: 10.1126/science.284.5418.1313.
 43.Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, Graves‐Lindsay TA, Munson KM, Kronenberg ZN, Vives L, Peluso P, Boitano M, Chin C‐S, Korlach J, Wilson RK, Eichler EE. Discovery and genotyping of structural variation from long‐read haploid genome sequence data. Genome Res 27: 677‐685, 2017. DOI: 10.1101/gr.214007.116.
 44.Ikeda T. Stratified analyses are necessary to verify the influence of salt intake in multiple sclerosis. Ann Neurol 82: 648‐649, 2017. DOI: 10.1002/ana.25057.
 45.International Consortium for Blood Pressure Genome‐Wide Association Studies, Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD, Verwoert GC, Hwang S‐J, Pihur V, Vollenweider P, O'Reilly PF, Amin N, Bragg‐Gresham JL, Teumer A, Glazer NL, Launer L, Zhao JH, Aulchenko Y, Heath S, Sõber S, Parsa A, Luan J, Arora P, Dehghan A, Zhang F, Lucas G, Hicks AA, Jackson AU, Peden JF, Tanaka T, Wild SH, Rudan I, Igl W, Milaneschi Y, Parker AN, Fava C, Chambers JC, Fox ER, Kumari M, Go MJ, van der Harst P, Kao WHL, Sjögren M, Vinay DG, Alexander M, Tabara Y, Shaw‐Hawkins S, Whincup PH, Liu Y, Shi G, Kuusisto J, Tayo B, Seielstad M, Sim X, Nguyen K‐DH, Lehtimäki T, Matullo G, Wu Y, Gaunt TR, Onland‐Moret NC, Cooper MN, Platou CGP, Org E, Hardy R, Dahgam S, Palmen J, Vitart V, Braund PS, Kuznetsova T, Uiterwaal CSPM, Adeyemo A, Palmas W, Campbell H, Ludwig B, Tomaszewski M, Tzoulaki I, Palmer ND, CARDIoGRAM consortium, CKDGen Consortium, KidneyGen Consortium, EchoGen consortium, CHARGE‐HF consortium, Aspelund T, Garcia M, Chang Y‐PC, O'Connell JR, Steinle NI, Grobbee DE, Arking DE, Kardia SL, Morrison AC, Hernandez D, Najjar S, McArdle WL, Hadley D, Brown MJ, Connell JM, Hingorani AD, Day INM, Lawlor DA, Beilby JP, Lawrence RW, Clarke R, Hopewell JC, Ongen H, Dreisbach AW, Li Y, Young JH, Bis JC, Kähönen M, Viikari J, Adair LS, Lee NR, Chen M‐H, Olden M, Pattaro C, Bolton JAH, Köttgen A, Bergmann S, Mooser V, Chaturvedi N, Frayling TM, Islam M, Jafar TH, Erdmann J, Kulkarni SR, Bornstein SR, Grässler J, Groop L, Voight BF, Kettunen J, Howard P, Taylor A, Guarrera S, Ricceri F, Emilsson V, Plump A, Barroso I, Khaw K‐T, Weder AB, Hunt SC, Sun YV, Bergman RN, Collins FS, Bonnycastle LL, Scott LJ, Stringham HM, Peltonen L, Perola M, Vartiainen E, Brand S‐M, Staessen JA, Wang TJ, Burton PR, Soler Artigas M, Dong Y, Snieder H, Wang X, Zhu H, Lohman KK, Rudock ME, Heckbert SR, Smith NL, Wiggins KL, Doumatey A, Shriner D, Veldre G, Viigimaa M, Kinra S, Prabhakaran D, Tripathy V, Langefeld CD, Rosengren A, Thelle DS, Corsi AM, Singleton A, Forrester T, Hilton G, McKenzie CA, Salako T, Iwai N, Kita Y, Ogihara T, Ohkubo T, Okamura T, Ueshima H, Umemura S, Eyheramendy S, Meitinger T, Wichmann H‐E, Cho YS, Kim H‐L, Lee J‐Y, Scott J, Sehmi JS, Zhang W, Hedblad B, Nilsson P, Smith GD, Wong A, Narisu N, Stančáková A, Raffel LJ, Yao J, Kathiresan S, O'Donnell CJ, Schwartz SM, Ikram MA, Longstreth WT, Mosley TH, Seshadri S, Shrine NRG, Wain LV, Morken MA, Swift AJ, Laitinen J, Prokopenko I, Zitting P, Cooper JA, Humphries SE, Danesh J, Rasheed A, Goel A, Hamsten A, Watkins H, Bakker SJL, van Gilst WH, Janipalli CS, Mani KR, Yajnik CS, Hofman A, Mattace‐Raso FUS, Oostra BA, Demirkan A, Isaacs A, Rivadeneira F, Lakatta EG, Orru M, Scuteri A, Ala‐Korpela M, Kangas AJ, Lyytikäinen L‐P, Soininen P, Tukiainen T, Würtz P, Ong RT‐H, Dörr M, Kroemer HK, Völker U, Völzke H, Galan P, Hercberg S, Lathrop M, Zelenika D, Deloukas P, Mangino M, Spector TD, Zhai G, Meschia JF, Nalls MA, Sharma P, Terzic J, Kumar MVK, Denniff M, Zukowska‐Szczechowska E, Wagenknecht LE, Fowkes FGR, Charchar FJ, Schwarz PEH, Hayward C, Guo X, Rotimi C, Bots ML, Brand E, Samani NJ, Polasek O, Talmud PJ, Nyberg F, Kuh D, Laan M, Hveem K, Palmer LJ, van der Schouw YT, Casas JP, Mohlke KL, Vineis P, Raitakari O, Ganesh SK, Wong TY, Tai ES, Cooper RS, Laakso M, Rao DC, Harris TB, Morris RW, Dominiczak AF, Kivimaki M, Marmot MG, Miki T, Saleheen D, Chandak GR, Coresh J, Navis G, Salomaa V, Han B‐G, Zhu X, Kooner JS, Melander O, Ridker PM, Bandinelli S, Gyllensten UB, Wright AF, Wilson JF, Ferrucci L, Farrall M, Tuomilehto J, Pramstaller PP, Elosua R, Soranzo N, Sijbrands EJG, Altshuler D, Loos RJF, Shuldiner AR, Gieger C, Meneton P, Uitterlinden AG, Wareham NJ, Gudnason V, Rotter JI, Rettig R, Uda M, Strachan DP, Witteman JCM, Hartikainen A‐L, Beckmann JS, Boerwinkle E, Vasan RS, Boehnke M, Larson MG, Järvelin M‐R, Psaty BM, Abecasis GR, Chakravarti A, Elliott P, van Duijn CM, Newton‐Cheh C, Levy D, Caulfield MJ, Johnson T. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478: 103‐109, 2011. DOI: 10.1038/nature10405.
 46.Ji H, Pai AV, West CA, Wu X, Speth RC, Sandberg K. Loss of resistance to angiotensin II‐induced hypertension in the Jackson Laboratory recombination‐activating gene null mouse on the C57BL/6J background. Hypertens Dallas Tex 1979 69: 1121‐1127, 2017. DOI: 10.1161/HYPERTENSIONAHA.117.09063.
 47.Juanola O, Piñero P, Gómez‐Hurtado I, Caparrós E, García‐Villalba R, Marín A, Zapater P, Tarín F, González‐Navajas JM, Tomás‐Barberán FA, Francés R. Regulatory T cells restrict permeability to bacterial antigen translocation and preserve short‐chain fatty acids in experimental cirrhosis. Hepatol Commun 2: 1610‐1623, 2018. DOI: 10.1002/hep4.1268.
 48.Kao WHL, Klag MJ, Meoni LA, Reich D, Berthier‐Schaad Y, Li M, Coresh J, Patterson N, Tandon A, Powe NR, Fink NE, Sadler JH, Weir MR, Abboud HE, Adler SG, Divers J, Iyengar SK, Freedman BI, Kimmel PL, Knowler WC, Kohn OF, Kramp K, Leehey DJ, Nicholas SB, Pahl MV, Schelling JR, Sedor JR, Thornley‐Brown D, Winkler CA, Smith MW, Parekh RS, Family Investigation of Nephropathy and Diabetes Research Group. MYH9 is associated with nondiabetic end‐stage renal disease in African Americans. Nat Genet 40: 1185‐1192, 2008. DOI: 10.1038/ng.232.
 49.Keefe JA, Hwang S‐J, Huan T, Mendelson M, Yao C, Courchesne P, Saleh MA, Madhur MS, Levy D. Evidence for a causal role of the SH2B3‐β2M axis in blood pressure regulation. Hypertens Dallas Tex 1979 73: 497‐503, 2019. DOI: 10.1161/HYPERTENSIONAHA.118.12094.
 50.Kim HS, Krege JH, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, Jennette JC, Coffman TM, Maeda N, Smithies O. Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci U S A 92: 2735‐2739, 1995. DOI: 10.1073/pnas.92.7.2735.
 51.Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N, Linker RA, Muller DN, Hafler DA. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496: 518‐522, 2013. DOI: 10.1038/nature11868.
 52.Kopp JB, Heymann J, Winkler CA. APOL1 renal risk variants: Fertile soil for HIV‐associated nephropathy. Semin Nephrol 37: 514‐519, 2017. DOI: 10.1016/j.semnephrol.2017.07.004.
 53.Kopp JB, Smith MW, Nelson GW, Johnson RC, Freedman BI, Bowden DW, Oleksyk T, McKenzie LM, Kajiyama H, Ahuja TS, Berns JS, Briggs W, Cho ME, Dart RA, Kimmel PL, Korbet SM, Michel DM, Mokrzycki MH, Schelling JR, Simon E, Trachtman H, Vlahov D, Winkler CA. MYH9 is a major‐effect risk gene for focal segmental glomerulosclerosis. Nat Genet 40: 1175‐1184, 2008. DOI: 10.1038/ng.226.
 54.Krementsov DN, Case LK, Hickey WF, Teuscher C. Exacerbation of autoimmune neuroinflammation by dietary sodium is genetically controlled and sex specific. FASEB J Off Publ Fed Am Soc Exp Biol 29: 3446‐3457, 2015. DOI: 10.1096/fj.15‐272542.
 55.Lang F, Eylenstein A, Shumilina E. Regulation of Orai1/STIM1 by the kinases SGK1 and AMPK. Cell Calcium 52: 347‐354, 2012. DOI: 10.1016/j.ceca.2012.05.005.
 56.Levy D, Ehret GB, Rice K, Verwoert GC, Launer LJ, Dehghan A, Glazer NL, Morrison AC, Johnson AD, Aspelund T, Aulchenko Y, Lumley T, Köttgen A, Vasan RS, Rivadeneira F, Eiriksdottir G, Guo X, Arking DE, Mitchell GF, Mattace‐Raso FUS, Smith AV, Taylor K, Scharpf RB, Hwang S‐J, Sijbrands EJG, Bis J, Harris TB, Ganesh SK, O'Donnell CJ, Hofman A, Rotter JI, Coresh J, Benjamin EJ, Uitterlinden AG, Heiss G, Fox CS, Witteman JCM, Boerwinkle E, Wang TJ, Gudnason V, Larson MG, Chakravarti A, Psaty BM, van Duijn CM. Genome‐wide association study of blood pressure and hypertension. Nat Genet 41: 677‐687, 2009. DOI: 10.1038/ng.384.
 57.Liu C, Luo R, Elliott SE, Wang W, Parchim NF, Iriyama T, Daugherty PS, Blackwell SC, Sibai BM, Kellems RE, Xia Y. Elevated transglutaminase activity triggers angiotensin receptor activating autoantibody production and pathophysiology of preeclampsia. J Am Heart Assoc 4, 2015. DOI: 10.1161/JAHA.115.002323.
 58.Lloyd‐Price J, Mahurkar A, Rahnavard G, Crabtree J, Orvis J, Hall AB, Brady A, Creasy HH, McCracken C, Giglio MG, McDonald D, Franzosa EA, Knight R, White O, Huttenhower C. Strains, functions and dynamics in the expanded Human Microbiome Project. Nature 550: 61‐66, 2017. DOI: 10.1038/nature23889.
 59.Loffing J, Summa V, Zecevic M, Verrey F. Mediators of aldosterone action in the renal tubule. Curr Opin Nephrol Hypertens 10: 667‐675, 2001. DOI: 10.1097/00041552‐200109000‐00019.
 60.Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral‐Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger K‐P, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of autoantibody‐induced pathology. Front Immunol 8: 603, 2017. DOI: 10.3389/fimmu.2017.00603.
 61.Ma Y, Liu Y, Zhang Z, Yang G‐Y. Significance of complement system in ischemic stroke: A comprehensive review. Aging Dis 10: 429‐462, 2019. DOI: 10.14336/AD.2019.0119.
 62.Machado LR, Ottolini B. An evolutionary history of defensins: A role for copy number variation in maximizing host innate and adaptive immune responses. Front Immunol 6: 115, 2015. DOI: 10.3389/fimmu.2015.00115.
 63.Macpherson AJ, Yilmaz B, Limenitakis JP, Ganal‐Vonarburg SC. IgA function in relation to the intestinal microbiota. Annu Rev Immunol 36: 359‐381, 2018. DOI: 10.1146/annurev‐immunol‐042617‐053238.
 64.Marvar PJ, Vinh A, Thabet S, Lob HE, Geem D, Ressler KJ, Harrison DG. T lymphocytes and vascular inflammation contribute to stress‐dependent hypertension. Biol Psychiatry 71: 774‐782, 2012. DOI: 10.1016/j.biopsych.2012.01.017.
 65.Mattson DL, Lund H, Guo C, Rudemiller N, Geurts AM, Jacob H. Genetic mutation of recombination activating gene 1 in Dahl salt‐sensitive rats attenuates hypertension and renal damage. Am J Physiol Regul Integr Comp Physiol 304: R407‐R414, 2013. DOI: 10.1152/ajpregu.00304.2012.
 66.Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 12: 991‐1045, 1994. DOI: 10.1146/annurev.iy.12.040194.005015.
 67.McMaster WG, Kirabo A, Madhur MS, Harrison DG. Inflammation, immunity, and hypertensive end‐organ damage. Circ Res 116: 1022‐1033, 2015. DOI: 10.1161/CIRCRESAHA.116.303697.
 68.Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, Sagan A, Wu J, Vinh A, Marvar PJ, Guzik B, Podolec J, Drummond G, Lob HE, Harrison DG, Guzik TJ. Role of chemokine RANTES in the regulation of perivascular inflammation, T‐cell accumulation, and vascular dysfunction in hypertension. FASEB J Off Publ Fed Am Soc Exp Biol 30: 1987‐1999, 2016. DOI: 10.1096/fj.201500088R.
 69.Mishra AK, Mariuzza RA. Insights into the structural basis of antibody affinity maturation from next‐generation sequencing. Front Immunol 9: 117, 2018. DOI: 10.3389/fimmu.2018.00117.
 70.Montani J‐P, Van Vliet BN. Understanding the contribution of Guyton's large circulatory model to long‐term control of arterial pressure. Exp Physiol 94: 382‐388, 2009. DOI: 10.1113/expphysiol.2008.043299.
 71.Mori T, Polichnowski A, Glocka P, Kaldunski M, Ohsaki Y, Liang M, Cowley AW. High perfusion pressure accelerates renal injury in salt‐sensitive hypertension. J Am Soc Nephrol JASN 19: 1472‐1482, 2008. DOI: 10.1681/ASN.2007121271.
 72.Munzenmaier DH, Greene AS. Chronic angiotensin II AT1 receptor blockade increases cerebral cortical microvessel density. Am J Physiol Heart Circ Physiol 290: H512‐H516, 2006. DOI: 10.1152/ajpheart.01136.2004.
 73.Newton‐Cheh C, Johnson T, Gateva V, Tobin MD, Bochud M, Coin L, Najjar SS, Zhao JH, Heath SC, Eyheramendy S, Papadakis K, Voight BF, Scott LJ, Zhang F, Farrall M, Tanaka T, Wallace C, Chambers JC, Khaw K‐T, Nilsson P, van der Harst P, Polidoro S, Grobbee DE, Onland‐Moret NC, Bots ML, Wain LV, Elliott KS, Teumer A, Luan J, Lucas G, Kuusisto J, Burton PR, Hadley D, McArdle WL, Wellcome Trust Case Control Consortium, Brown M, Dominiczak A, Newhouse SJ, Samani NJ, Webster J, Zeggini E, Beckmann JS, Bergmann S, Lim N, Song K, Vollenweider P, Waeber G, Waterworth DM, Yuan X, Groop L, Orho‐Melander M, Allione A, Di Gregorio A, Guarrera S, Panico S, Ricceri F, Romanazzi V, Sacerdote C, Vineis P, Barroso I, Sandhu MS, Luben RN, Crawford GJ, Jousilahti P, Perola M, Boehnke M, Bonnycastle LL, Collins FS, Jackson AU, Mohlke KL, Stringham HM, Valle TT, Willer CJ, Bergman RN, Morken MA, Döring A, Gieger C, Illig T, Meitinger T, Org E, Pfeufer A, Wichmann HE, Kathiresan S, Marrugat J, O'Donnell CJ, Schwartz SM, Siscovick DS, Subirana I, Freimer NB, Hartikainen A‐L, McCarthy MI, O'Reilly PF, Peltonen L, Pouta A, de Jong PE, Snieder H, van Gilst WH, Clarke R, Goel A, Hamsten A, Peden JF, Seedorf U, Syvänen A‐C, Tognoni G, Lakatta EG, Sanna S, Scheet P, Schlessinger D, Scuteri A, Dörr M, Ernst F, Felix SB, Homuth G, Lorbeer R, Reffelmann T, Rettig R, Völker U, Galan P, Gut IG, Hercberg S, Lathrop GM, Zelenika D, Deloukas P, Soranzo N, Williams FM, Zhai G, Salomaa V, Laakso M, Elosua R, Forouhi NG, Völzke H, Uiterwaal CS, van der Schouw YT, Numans ME, Matullo G, Navis G, Berglund G, Bingham SA, Kooner JS, Connell JM, Bandinelli S, Ferrucci L, Watkins H, Spector TD, Tuomilehto J, Altshuler D, Strachan DP, Laan M, Meneton P, Wareham NJ, Uda M, Jarvelin M‐R, Mooser V, Melander O, Loos RJF, Elliott P, Abecasis GR, Caulfield M, Munroe PB. Genome‐wide association study identifies eight loci associated with blood pressure. Nat Genet 41: 666‐676, 2009. DOI: 10.1038/ng.361.
 74.Nichols B, Jog P, Lee JH, Blackler D, Wilmot M, D'Agati V, Markowitz G, Kopp JB, Alper SL, Pollak MR, Friedman DJ. Innate immunity pathways regulate the nephropathy gene Apolipoprotein L1. Kidney Int 87: 332‐342, 2015. DOI: 10.1038/ki.2014.270.
 75.Norlander AE, Madhur MS, Harrison DG. The immunology of hypertension. J Exp Med 215: 21‐33, 2018. DOI: 10.1084/jem.20171773.
 76.Nourbakhsh B, Graves J, Casper TC, Lulu S, Waldman A, Belman A, Greenberg B, Weinstock‐Guttman B, Aaen G, Tillema J‐M, Hart J, Ness J, Rubin J, Krupp L, Gorman M, Benson L, Rodriguez M, Chitnis T, Rose J, Barcellos L, Waubant E, Network of Pediatric Multiple Sclerosis Centers. Dietary salt intake and time to relapse in paediatric multiple sclerosis. J Neurol Neurosurg Psychiatry 87: 1350‐1353, 2016. DOI: 10.1136/jnnp‐2016‐313410.
 77.Ohlin M, Scheepers C, Corcoran M, Lees WD, Busse CE, Bagnara D, Thörnqvist L, Bürckert J‐P, Jackson KJL, Ralph D, Schramm CA, Marthandan N, Breden F, Scott J, Matsen Iv FA, Greiff V, Yaari G, Kleinstein SH, Christley S, Sherkow JS, Kossida S, Lefranc M‐P, van Zelm MC, Watson CT, Collins AM. Inferred allelic variants of immunoglobulin receptor genes: A system for their evaluation, documentation, and naming. Front Immunol 10: 435, 2019. DOI: 10.3389/fimmu.2019.00435.
 78.Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rats. Jpn Circ J 27: 282‐293, 1963.
 79.Olden M, Teumer A, Bochud M, Pattaro C, Köttgen A, Turner ST, Rettig R, Chen M‐H, Dehghan A, Bastardot F, Schmidt R, Vollenweider P, Schunkert H, Reilly MP, Fornage M, Launer LJ, Verwoert GC, Mitchell GF, Bis JC, O'Donnell CJ, Cheng C‐Y, Sim X, Siscovick DS, Coresh J, Kao WHL, Fox CS, O'Seaghdha CM, AortaGen, CARDIoGRAM, CHARGE Eye, CHARGE IMT, ICBP, NeuroCHARGE, CKDGen Consortia. Overlap between common genetic polymorphisms underpinning kidney traits and cardiovascular disease phenotypes: The CKDGen consortium. Am J Kidney Dis Off J Natl Kidney Found 61: 889‐898, 2013. DOI: 10.1053/j.ajkd.2012.12.024.
 80.Panoulas VF, Metsios GS, Pace AV, John H, Treharne GJ, Banks MJ, Kitas GD. Hypertension in rheumatoid arthritis. Rheumatol Oxf Engl 47: 1286‐1298, 2008. DOI: 10.1093/rheumatology/ken159.
 81.Parra G, Quiroz Y, Salazar J, Bravo Y, Pons H, Chavez M, Johnson RJ, Rodriguez‐Iturbe B. Experimental induction of salt‐sensitive hypertension is associated with lymphocyte proliferative response to HSP70. Kidney Int Suppl: S55‐S59, 2008. DOI: 10.1038/ki.2008.513.
 82.Paz Ocaranza M, Riquelme JA, García L, Jalil JE, Chiong M, Santos RAS, Lavandero S. Counter‐regulatory renin‐angiotensin system in cardiovascular disease. Nat Rev Cardiol 17: 116‐129, 2020. DOI: 10.1038/s41569‐019‐0244‐8.
 83.Petersone L, Edner NM, Ovcinnikovs V, Heuts F, Ross EM, Ntavli E, Wang CJ, Walker LSK. T cell/B cell collaboration and autoimmunity: An intimate relationship. Front Immunol 9: 1941, 2018. DOI: 10.3389/fimmu.2018.01941.
 84.Piqueras L, Sanz M‐J. Angiotensin II and leukocyte trafficking: New insights for an old vascular mediator. Role of redox‐signaling pathways. Free Radic Biol Med 157: 38‐54, 2020. DOI: 10.1016/j.freeradbiomed.2020.02.002.
 85.Pockley AG, De Faire U, Kiessling R, Lemne C, Thulin T, Frostegård J. Circulating heat shock protein and heat shock protein antibody levels in established hypertension. J Hypertens 20: 1815‐1820, 2002. DOI: 10.1097/00004872‐200209000‐00027.
 86.Ponnuswamy P, Joffre J, Herbin O, Esposito B, Laurans L, Binder CJ, Tedder TF, Zeboudj L, Loyer X, Giraud A, Zhang Y, Tedgui A, Mallat Z, Ait‐Oufella H. Angiotensin II synergizes with BAFF to promote atheroprotective regulatory B cells. Sci Rep 7: 4111, 2017. DOI: 10.1038/s41598‐017‐04438‐6.
 87.Pons H, Ferrebuz A, Quiroz Y, Romero‐Vasquez F, Parra G, Johnson RJ, Rodriguez‐Iturbe B. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt‐sensitive hypertension. Am J Physiol Renal Physiol 304: F289‐F299, 2013. DOI: 10.1152/ajprenal.00517.2012.
 88.Rabbani H, Bottaro A, Carbonara AO, Brusco A, Cariota U, Olsson PG, Smith CI, Hammarström L. The influence of gene duplications in the human immunoglobulin heavy chain constant locus on serum levels of immunoglobulin. Immunodeficiency 4: 237‐241, 1993.
 89.Rabbani H, Kondo N, Smith CI, Hammarström L. The influence of gene deletions and duplications within the IGHC locus on serum immunoglobulin subclass levels. Clin Immunol Immunopathol 76: S214‐S218, 1995. DOI: 10.1016/s0090‐1229(95)90270‐8.
 90.Rabbani H, Pan Q, Kondo N, Smith CI, Hammarström L. Duplications and deletions of the human IGHC locus: Evolutionary implications. Immunogenetics 45: 136‐141, 1996. DOI: 10.1007/s002510050181.
 91.Rao F, Wessel J, Wen G, Zhang L, Rana BK, Kennedy BP, Greenwood TA, Salem RM, Chen Y, Khandrika S, Hamilton BA, Smith DW, Holstein‐Rathlou N‐H, Ziegler MG, Schork NJ, O'Connor DT. Renal albumin excretion: Twin studies identify influences of heredity, environment, and adrenergic pathway polymorphism. Hypertens Dallas Tex 1979 49: 1015‐1031, 2007. DOI: 10.1161/HYPERTENSIONAHA.106.081679.
 92.Roberts JM, Gammill HS. Preeclampsia: Recent insights. Hypertens Dallas Tex 1979 46: 1243‐1249, 2005. DOI: 10.1161/01.HYP.0000188408.49896.c5.
 93.Rodriguez‐Iturbe B, Lanaspa MA, Johnson RJ. The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. Br J Pharmacol 176: 1829‐1838, 2019.
 94.Rodríguez‐Iturbe B, Quiroz Y, Nava M, Bonet L, Chávez M, Herrera‐Acosta J, Johnson RJ, Pons HA. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol 282: F191‐F201, 2002. DOI: 10.1152/ajprenal.0197.2001.
 95.Saleh MA, McMaster WG, Wu J, Norlander AE, Funt SA, Thabet SR, Kirabo A, Xiao L, Chen W, Itani HA, Michell D, Huan T, Zhang Y, Takaki S, Titze J, Levy D, Harrison DG, Madhur MS. Lymphocyte adaptor protein LNK deficiency exacerbates hypertension and end‐organ inflammation. J Clin Invest 125: 1189‐1202, 2015. DOI: 10.1172/JCI76327.
 96.Salfati E, Morrison AC, Boerwinkle E, Chakravarti A. Direct estimates of the genomic contributions to blood pressure heritability within a population‐based cohort (ARIC). PloS One 10: e0133031, 2015. DOI: 10.1371/journal.pone.0133031.
 97.Santisteban MM, Qi Y, Zubcevic J, Kim S, Yang T, Shenoy V, Cole‐Jeffrey CT, Lobaton GO, Stewart DC, Rubiano A, Simmons CS, Garcia‐Pereira F, Johnson RD, Pepine CJ, Raizada MK. Hypertension‐linked pathophysiological alterations in the gut. Circ Res 120: 312‐323, 2017. DOI: 10.1161/CIRCRESAHA.116.309006.
 98.Scrivo R, Perricone C, Altobelli A, Castellani C, Tinti L, Conti F, Valesini G. Dietary habits bursting into the complex pathogenesis of autoimmune diseases: The emerging role of salt from experimental and clinical studies. Nutrients 11, 2019. DOI: 10.3390/nu11051013.
 99.Seniuk A, Thiele JL, Stubbe A, Oser P, Rosendahl A, Bode M, Meyer‐Schwesinger C, Wenzel UO, Ehmke H. B6.Rag1 knockout mice generated at the Jackson Laboratory in 2009 show a robust wild‐type hypertensive phenotype in response to Ang II (Angiotensin II). Hypertens Dallas Tex 1979 75: 1110‐1116, 2020. DOI: 10.1161/HYPERTENSIONAHA.119.13773.
 100.Shao J, Nangaku M, Miyata T, Inagi R, Yamada K, Kurokawa K, Fujita T. Imbalance of T‐cell subsets in angiotensin II‐infused hypertensive rats with kidney injury. Hypertens Dallas Tex 1979 42: 31‐38, 2003. DOI: 10.1161/01.HYP.0000075082.06183.4E.
 101.Shimada S, Abais‐Battad JM, Alsheikh AJ, Yang C, Stumpf M, Kurth T, Mattson DL, Cowley AW. Renal perfusion pressure determines infiltration of leukocytes in the kidney of rats with angiotensin II‐induced hypertension. Hypertens Dallas Tex 1979 76: 849‐858, 2020. DOI: 10.1161/HYPERTENSIONAHA.120.15295.
 102.Siedlinski M, Jozefczuk E, Xu X, Teumer A, Evangelou E, Schnabel RB, Welsh P, Maffia P, Erdmann J, Tomaszewski M, Caulfield MJ, Sattar N, Holmes MV, Guzik TJ. White blood cells and blood pressure: A Mendelian Randomization Study. Circulation 141: 1307‐1317, 2020. DOI: 10.1161/CIRCULATIONAHA.119.045102.
 103.Smith CI, Hammarström L, Henter JI, de Lange GG. Molecular and serologic analysis of IgG1 deficiency caused by new forms of the constant region of the Ig H chain gene deletions. J Immunol Baltim Md 1950 142: 4514‐4519, 1989.
 104.Suryaprabha P, Padma T, Rao UB. Increased serum IgG levels in essential hypertension. Immunol Lett 8: 143‐145, 1984. DOI: 10.1016/0165‐2478(84)90067‐1.
 105.Tang AT, Choi JP, Kotzin JJ, Yang Y, Hong CC, Hobson N, Girard R, Zeineddine HA, Lightle R, Moore T, Cao Y, Shenkar R, Chen M, Mericko P, Yang J, Li L, Tanes C, Kobuley D, Vosa U, Whitehead KJ, Li DY, Franke L, Hart B, Schwaninger M, Henao‐Mejia J, Morrison L, Kim H, Awad IA, Zheng X, Kahn ML. Endothelial TLR4 and the microbiome drive cerebral cavernous malformations. Nature 545: 305‐310, 2017. DOI: 10.1038/nature22075.
 106.Tang AT, Sullivan KR, Hong CC, Goddard LM, Mahadevan A, Ren A, Pardo H, Peiper A, Griffin E, Tanes C, Mattei LM, Yang J, Li L, Mericko‐Ishizuka P, Shen L, Hobson N, Girard R, Lightle R, Moore T, Shenkar R, Polster SP, Roedel CJ, Li N, Zhu Q, Whitehead KJ, Zheng X, Akers A, Morrison L, Kim H, Bittinger K, Lengner CJ, Schwaninger M, Velcich A, Augenlicht L, Abdelilah‐Seyfried S, Min W, Marchuk DA, Awad IA, Kahn ML. Distinct cellular roles for PDCD10 define a gut‐brain axis in cerebral cavernous malformation. Sci Transl Med 11, 2019. DOI: 10.1126/scitranslmed.aaw3521.
 107.Tin A, Astor BC, Boerwinkle E, Hoogeveen RC, Coresh J, Kao WHL. Genome‐wide association study identified the human leukocyte antigen region as a novel locus for plasma beta‐2 microglobulin. Hum Genet 132: 619‐627, 2013. DOI: 10.1007/s00439‐013‐1274‐7.
 108.Torres‐Aguila NP, Carrera C, Giese A‐K, Cullell N, Muiño E, Cárcel‐Márquez J, Gallego‐Fabrega C, González‐Sánchez J, Del Mar Freijo M, Álvarez‐Sabín J, Molina C, Ribó M, Jimenez‐Conde J, Roquer J, Sobrino T, Campos F, Castillo J, Muñoz‐Narbona L, Lopez‐Cancio E, Dàvalos A, Diaz‐Navarro R, Tur S, Vives‐Bauza C, Serrano‐Heras G, Segura T, Krupinski J, Delgado‐Mederos R, Martí‐Fàbregas J, Heitsch L, Ibañez L, Cruchaga C, Rost NS, Montaner J, Lee J‐M, Fernandez‐Cadenas I. Genome‐Wide Association Study of white blood cell counts in patients with ischemic stroke. Stroke 50: 3618‐3621, 2019. DOI: 10.1161/STROKEAHA.119.026593.
 109.Toussirot E, Béreau M, Vauchy C, Saas P. Could sodium chloride be an environmental trigger for immune‐mediated diseases? An overview of the experimental and clinical evidence. Front Physiol 9: 440, 2018. DOI: 10.3389/fphys.2018.00440.
 110.Uchimura Y, Fuhrer T, Li H, Lawson MA, Zimmermann M, Yilmaz B, Zindel J, Ronchi F, Sorribas M, Hapfelmeier S, Ganal‐Vonarburg SC, Gomez de Agüero M, McCoy KD, Sauer U, Macpherson AJ. Antibodies set boundaries limiting microbial metabolite penetration and the resultant mammalian host response. Immunity 49: 545‐559.e5, 2018. DOI: 10.1016/j.immuni.2018.08.004.
 111.van Eden W. Immune tolerance therapies for autoimmune diseases based on heat shock protein T‐cell epitopes. Philos Trans R Soc Lond B Biol Sci 373, 2018. DOI: 10.1098/rstb.2016.0531.
 112.Vollger MR, Dishuck PC, Sorensen M, Welch AE, Dang V, Dougherty ML, Graves‐Lindsay TA, Wilson RK, Chaisson MJP, Eichler EE. Long‐read sequence and assembly of segmental duplications. Nat Methods 16: 88‐94, 2019. DOI: 10.1038/s41592‐018‐0236‐3.
 113.Wade B, Petrova G, Mattson DL. Role of immune factors in angiotensin II‐induced hypertension and renal damage in Dahl salt‐sensitive rats. Am J Physiol Regul Integr Comp Physiol 314: R323‐R333, 2018. DOI: 10.1152/ajpregu.00044.2017.
 114.Wallukat G, Homuth V, Fischer T, Lindschau C, Horstkamp B, Jüpner A, Baur E, Nissen E, Vetter K, Neichel D, Dudenhausen JW, Haller H, Luft FC. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J Clin Invest 103: 945‐952, 1999. DOI: 10.1172/JCI4106.
 115.Watson CT, Breden F. The immunoglobulin heavy chain locus: Genetic variation, missing data, and implications for human disease. Genes Immun 13: 363‐373, 2012. DOI: 10.1038/gene.2012.12.
 116.Watson CT, Glanville J, Marasco WA. The Individual and Population Genetics of Antibody Immunity. Trends Immunol 38: 459‐470, 2017. DOI: 10.1016/j.it.2017.04.003.
 117.Watson CT, Matsen FA 4th, Jackson KJL, Bashir A, Smith ML, Glanville J, Breden F, Kleinstein SH, Collins AM, Busse CE. Comment on “A database of human immune receptor alleles recovered from population sequencing data”. J Immunol 198: 3371‐3373, 2017. DOI: 10.4049/jimmunol.1700306.
 118.Wieten L, Broere F, van der Zee R, Koerkamp EK, Wagenaar J, van Eden W. Cell stress induced HSP are targets of regulatory T cells: A role for HSP inducing compounds as anti‐inflammatory immuno‐modulators? FEBS Lett 581: 3716‐3722, 2007. DOI: 10.1016/j.febslet.2007.04.082.
 119.Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KRC, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ, Madhur MS, Harrison DG. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126: 50‐67, 2016. DOI: 10.1172/JCI80761.
 120.Xia Y, Kellems RE. Angiotensin receptor agonistic autoantibodies and hypertension: Preeclampsia and beyond. Circ Res 113: 78‐87, 2013. DOI: 10.1161/CIRCRESAHA.113.300752.
 121.Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM, Zadeh M, Gong M, Qi Y, Zubcevic J, Sahay B, Pepine CJ, Raizada MK, Mohamadzadeh M. Gut dysbiosis is linked to hypertension. Hypertens Dallas Tex 1979 65: 1331‐1340, 2015. DOI: 10.1161/HYPERTENSIONAHA.115.05315.
 122.Zhang H, Sparks JB, Karyala SV, Settlage R, Luo XM. Host adaptive immunity alters gut microbiota. ISME J 9: 770‐781, 2015. DOI: 10.1038/ismej.2014.165.
 123.Zhang X, Xu Z, Zhou L, Chen Y, He M, Cheng L, Hu FB, Tanguay RM, Wu T. Plasma levels of Hsp70 and anti‐Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones 15: 675‐686, 2010. DOI: 10.1007/s12192‐010‐0180‐3.
 124.Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 30: 492‐506, 2020. DOI: 10.1038/s41422‐020‐0332‐7.
 125.Zhou Z, Tang AT, Wong W‐Y, Bamezai S, Goddard LM, Shenkar R, Zhou S, Yang J, Wright AC, Foley M, Arthur JSC, Whitehead KJ, Awad IA, Li DY, Zheng X, Kahn ML. Cerebral cavernous malformations arise from endothelial gain of MEKK3‐KLF2/4 signalling. Nature 532: 122‐126, 2016. DOI: 10.1038/nature17178.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Isha S. Dhande, Peter A. Doris. Genomics and Inflammation in Cardiovascular Disease. Compr Physiol 2021, 11: 2433-2454. doi: 10.1002/cphy.c200032