Comprehensive Physiology Wiley Online Library

Application of Artificial Intelligence in Cardiovascular Medicine

Full Article on Wiley Online Library


The advent of advances in machine learning (ML)‐based techniques has popularized wide applications of artificial intelligence (AI) in various fields ranging from robotics to medicine. In recent years, there has been a surge in the application of AI to research in cardiovascular medicine, which is largely driven by the availability of large‐scale clinical and multi‐omics datasets. Such applications are providing a new perspective for a better understanding of cardiovascular disease (CVD), which could be used to develop novel diagnostic and therapeutic strategies. For example, studies have shown that ML has a substantial potential for early diagnosis of different types of CVD, prediction of adverse disease outcomes such as heart failure, and development of newer and personalized treatments. In this article, we provide an overview and discuss the current status of a wide range of AI applications, including machine learning, reinforcement learning, and deep learning, in cardiovascular medicine. © 2021 American Physiological Society. Compr Physiol 11:2455‐2466, 2021.

Figure 1. Figure 1. Various algorithms of artificial intelligence applied in cardiovascular medicine.
Figure 2. Figure 2. Summarized applications of different artificial intelligence‐based approaches in cardiovascular medicine.
Figure 3. Figure 3. Bar chart showing the numbers of published articles (2010–2020) related to artificial intelligence and cardiovascular disease through PubMed search. The search keywords are shown on the right side. “Books and Documents,” “Meta‐analysis,” “Clinical trial,” and “Randomized controlled trial” filters were selected as the filters for searching. The search was conducted on December 8, 2020.

Figure 1. Various algorithms of artificial intelligence applied in cardiovascular medicine.

Figure 2. Summarized applications of different artificial intelligence‐based approaches in cardiovascular medicine.

Figure 3. Bar chart showing the numbers of published articles (2010–2020) related to artificial intelligence and cardiovascular disease through PubMed search. The search keywords are shown on the right side. “Books and Documents,” “Meta‐analysis,” “Clinical trial,” and “Randomized controlled trial” filters were selected as the filters for searching. The search was conducted on December 8, 2020.
 1.Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat 2: 433‐459, 2010.
 2.Abushariah MAM, Alqudah AAM, Adwan OY, Yousef RMM. Automatic heart disease diagnosis system based on artificial neural network (ANN) and adaptive neuro‐fuzzy inference systems (ANFIS) approaches. J Softw Eng Appl 7: 1055, 2014.
 3.Acharya UR, Fujita H, Oh SL, Hagiwara Y, Tan JH, Adam M, San Tan R. Deep convolutional neural network for the automated diagnosis of congestive heart failure using ECG signals. Appl Intell 49: 16‐27, 2019.
 4.Ali F, El‐Sappagh S, Islam SMR, Kwak D, Ali A, Imran M, Kwak K‐S. A smart healthcare monitoring system for heart disease prediction based on ensemble deep learning and feature fusion. Inf Fusion 63: 208‐222, 2020.
 5.Alimadadi A, Manandhar I, Aryal S, Munroe PB, Joe B, Cheng X. Machine learning‐based classification and diagnosis of clinical cardiomyopathies. Physiol Genomics 52: 391‐400, 2020.
 6.Alipanahi B, Delong A, Weirauch MT, Frey BJ. Predicting the sequence specificities of DNA‐and RNA‐binding proteins by deep learning. Nat Biotechnol 33: 831‐838, 2015.
 7.Aljaaf AJ, Al‐Jumeily D, Hussain AJ, Dawson T, Fergus P, Al‐Jumaily M. Predicting the likelihood of heart failure with a multi level risk assessment using decision tree. In: 2015 3rd International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE). IEEE, 2015, p. 101‐106.
 8.Almeida VG, Borba J, Pereira HC, Pereira T, Correia C, Pêgo M, Cardoso J. Cardiovascular risk analysis by means of pulse morphology and clustering methodologies. Comput Methods Prog Biomed 117: 257‐266, 2014.
 9.Aparna P, Sharma KM. Detection of a fib and its classification using SVM. In: 2020 2nd International Conference on Innovative Mechanisms for Industry Applications (ICIMIA). IEEE, 2020, p. 116‐120.
 10.Arif M, Malagore IA, Afsar FA. Detection and localization of myocardial infarction using k‐nearest neighbor classifier. J Med Syst 36: 279‐289, 2012.
 11.Aryal S, Alimadadi A, Manandhar I, Joe B, Cheng X. Machine learning strategy for gut microbiome‐based diagnostic screening of cardiovascular disease. Hypertension 76 (5): 1555‐1562, 2020.
 12.Atkov OY, Gorokhova SG, Sboev AG, Generozov EV, Muraseyeva EV, Moroshkina SY, Cherniy NN. Coronary heart disease diagnosis by artificial neural networks including genetic polymorphisms and clinical parameters. J Cardiol 59: 190‐194, 2012.
 13.Austin PC, Tu JV, Ho JE, Levy D, Lee DS. Using methods from the data‐mining and machine‐learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes. J Clin Epidemiol 66: 398‐407, 2013.
 14.Avendi MR, Kheradvar A, Jafarkhani H. A combined deep‐learning and deformable‐model approach to fully automatic segmentation of the left ventricle in cardiac MRI. Med Image Anal 30: 108‐119, 2016.
 15.Bai W, Sinclair M, Tarroni G, Oktay O, Rajchl M, Vaillant G, Lee AM, Aung N, Lukaschuk E, Sanghvi MM. Automated cardiovascular magnetic resonance image analysis with fully convolutional networks. J Cardiovasc Magn Reson 20: 65, 2018.
 16.Barman RK, Saha S, Das S. Prediction of interactions between viral and host proteins using supervised machine learning methods. PLoS One 9: e112034, 2014.
 17.Bashir S, Qamar U, Javed MY. An ensemble based decision support framework for intelligent heart disease diagnosis. In: International Conference on Information Society (i‐Society 2014). IEEE, 2014, p. 259‐264.
 18.Belavagi MC, Muniyal B. Performance evaluation of supervised machine learning algorithms for intrusion detection. Procedia Comput Sci 89: 117‐123, 2016.
 19.Betancur J, Commandeur F, Motlagh M, Sharir T, Einstein AJ, Bokhari S, Fish MB, Ruddy TD, Kaufmann P, Sinusas AJ. Deep learning for prediction of obstructive disease from fast myocardial perfusion SPECT: A multicenter study. JACC Cardiovasc Imaging 11: 1654‐1663, 2018.
 20.Bishop CM. Neural Networks for Pattern Recognition. Oxford: Oxford University Press, 1995.
 21.Bizopoulos P, Koutsouris D. Deep learning in cardiology. IEEE Rev Biomed Eng 12: 168‐193, 2018.
 22.Bonnefont‐Rousselot D. Resveratrol and cardiovascular diseases. Nutrients 8: 250, 2016.
 23.Bose E, Radhakrishnan K. Using unsupervised machine learning to identify subgroups among home health patients with heart failure using telehealth. Comput Inform Nurs 36: 242‐248, 2018.
 24.Brameier M, Wiuf C. Co‐clustering and visualization of gene expression data and gene ontology terms for Saccharomyces cerevisiae using self‐organizing maps. J Biomed Inform 40: 160‐173, 2007.
 25.Breiman L. Random forests. Mach Learn 45: 5‐32, 2001.
 26.Carreiro AV, Amaral PMT, Pinto S, Tomás P, de Carvalho M, Madeira SC. Prognostic models based on patient snapshots and time windows: Predicting disease progression to assisted ventilation in Amyotrophic Lateral Sclerosis. J Biomed Inform 58: 133‐144, 2015.
 27.Casaclang‐Verzosa G, Shrestha S, Khalil MJ, Cho JS, Tokodi M, Balla S, Alkhouli M, Badhwar V, Narula J, Miller JD. Network tomography for understanding phenotypic presentations in aortic stenosis. JACC Cardiovasc Imaging 12: 236‐248, 2019.
 28.Chang J, Ko A, Park SM, Choi S, Kim K, Kim SM, Yun JM, Kang U, Shin IH, Shin JY. Association of cardiovascular mortality and deep learning‐funduscopic atherosclerosis score derived from retinal fundus images. Am J Ophthalmol 217: 121‐130, 2020.
 29.Chanthong P, Lapphra K, Saihongthong S, Sricharoenchai S, Wittawatmongkol O, Phongsamart W, Rungmaitree S, Kongstan N, Chokephaibulkit K. Echocardiography and carotid initima‐media thickness among asymptomatic HIV‐infected adolescents in Thailand. AIDS 28: 2071, 2014.
 30.Chaurasia V, Pal S. Early prediction of heart diseases using data mining techniques. Caribb J Sci Technol 1: 208‐217, 2013.
 31.Chen T‐E, Yang S‐I, Ho L‐T, Tsai K‐H, Chen Y‐H, Chang Y‐F, Lai Y‐H, Wang S‐S, Tsao Y, Wu C‐C. S1 and S2 heart sound recognition using deep neural networks. IEEE Trans Biomed Eng 64: 372‐380, 2016.
 32.Cheriyan J, O'Shaughnessy KM, Brown MJ. Primary prevention of CVD: treating hypertension. BMJ Clin Evid 2010: 214, 2010.
 33.Chi W, Liu J, Abdelaziz MEMK, Dagnino G, Riga C, Bicknell C, Yang G‐Z. Trajectory optimization of robot‐assisted endovascular catheterization with reinforcement learning. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018, p. 3875‐3881.
 34.Cho K, Van Merriënboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, Bengio Y. Learning phrase representations using RNN encoder‐decoder for statistical machine translation. arXiv:1406.1078, 2014.
 35.Choi E, Schuetz A, Stewart WF, Sun J. Using recurrent neural network models for early detection of heart failure onset. J Am Med Inform Assoc 24: 361‐370, 2017.
 36.Cikes M, Sanchez‐Martinez S, Claggett B, Duchateau N, Piella G, Butakoff C, Pouleur AC, Knappe D, Biering‐Sørensen T, Kutyifa V. Machine learning‐based phenogrouping in heart failure to identify responders to cardiac resynchronization therapy. Eur J Heart Fail 21: 74‐85, 2019.
 37.Cios KJ, Pedrycz W, Swiniarski RW. Data mining and knowledge discovery. In: Data Mining Methods for Knowledge Discovery. New York: Springer, 1998, p. 1‐26.
 38.Ciregan D, Meier U, Schmidhuber J. Multi‐column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2012, p. 3642‐3649.
 39.Collobert R, Weston J. A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning. 2008, p. 160‐167.
 40.Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. J Mach Learn Res 12: 2493‐2537, 2011.
 41.Cuocolo R, Perillo T, De Rosa E, Ugga L, Petretta M. Current applications of big data and machine learning in cardiology. J Geriatr Cardiol 16: 601, 2019.
 42.Dai W, Brisimi TS, Adams WG, Mela T, Saligrama V, Paschalidis IC. Prediction of hospitalization due to heart diseases by supervised learning methods. Int J Med Inform 84: 189‐197, 2015.
 43.Das R, Turkoglu I, Sengur A. Effective diagnosis of heart disease through neural networks ensembles. Expert Syst Appl 36: 7675‐7680, 2009.
 44.Dekamin A, Sheibatolhamdi A. A data mining approach for coronary artery disease prediction in Iran. J Adv Med Sci Appl Technol 3: 29‐38, 2017.
 45.Dey L, Chakraborty S, Biswas A, Bose B, Tiwari S. Sentiment analysis of review datasets using Naive Bayes and k‐NN classifier. Int J Inf Eng Electron Business 8: 54‐62, 2016.
 46.Dilsizian ME, Siegel EL. Machine meets biology: A primer on artificial intelligence in cardiology and cardiac imaging. Curr Cardiol Rep 20: 139, 2018.
 47.Dinh A, Miertschin S, Young A, Mohanty SD. A data‐driven approach to predicting diabetes and cardiovascular disease with machine learning. BMC Med Inform Decis Mak 19: 211, 2019.
 48.Durant KT, Smith MD. Predicting the political sentiment of web log posts using supervised machine learning techniques coupled with feature selection. In: Nasraoui O, Spiliopoulou M, Srivastava J, Mobasher B, Masand B, editors. International Workshop on Knowledge Discovery on the Web. Springer, 2006, p. 187‐206.
 49.Elbasiony RM, Sallam EA, Eltobely TE, Fahmy MM. A hybrid network intrusion detection framework based on random forests and weighted k‐means. Ain Shams Eng J 4: 753‐762, 2013.
 50.Fan X, Yao Q, Cai Y, Miao F, Sun F, Li Y. Multiscaled fusion of deep convolutional neural networks for screening atrial fibrillation from single lead short ECG recordings. IEEE J Biomed Heal Inform 22: 1744‐1753, 2018.
 51.Feeny AK, Rickard J, Trulock KM, Patel D, Toro S, Moennich LA, Varma N, Niebauer MJ, Gorodeski EZ, Grimm RA. Machine learning of 12‐lead QRS waveforms to identify cardiac resynchronization therapy patients with differential outcomes. Circ Arrhythmia Electrophysiol 13: e008210, 2020.
 52.Fievet P, Gregoire I, Fournier A, Roth D, Siegenthaler G, Favre H, De AB. Ouabain‐like natriuretic factor and atrial natriuretic factor in pregnancy. Kidney Int Suppl 25: S89‐S92, 1988.
 53.Fodeh SJ, Brandt C, Luong TB, Haddad A, Schultz M, Murphy T, Krauthammer M. Complementary ensemble clustering of biomedical data. J Biomed Inform 46: 436‐443, 2013.
 54.Golpour P, Ghayour‐Mobarhan M, Saki A, Esmaily H, Taghipour A, Tajfard M, Ghazizadeh H, Moohebati M, Ferns GA. Comparison of support vector machine, Naïve Bayes and logistic regression for assessing the necessity for coronary angiography. Int J Environ Res Public Health 17: 6449, 2020.
 55.Gotlibovych I, Crawford S, Goyal D, Liu J, Kerem Y, Benaron D, Yilmaz D, Marcus G, Li Y. End‐to‐end deep learning from raw sensor data: Atrial fibrillation detection using wearables. arXiv:1807.10707, 2018.
 56.Guidi G, Pettenati MC, Melillo P, Iadanza E. A machine learning system to improve heart failure patient assistance. IEEE J Biomed Heal Inform 18: 1750‐1756, 2014.
 57.Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, Venugopalan S, Widner K, Madams T, Cuadros J. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316: 2402‐2410, 2016.
 58.Han J, Pei J, Kamber M. Data Mining: Concepts and Techniques. New York: Elsevier, 2011.
 59.Hannun AY, Rajpurkar P, Haghpanahi M, Tison GH, Bourn C, Turakhia MP, Ng AY. Cardiologist‐level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25: 65, 2019.
 60.Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500: 168‐174, 2013.
 61.Hinton G, Deng L, Yu D, Dahl GE, Mohamed A, Jaitly N, Senior A, Vanhoucke V, Nguyen P, Sainath TN. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Process Mag 29: 82‐97, 2012.
 62.Hosmer DW Jr, Lemeshow S, Sturdivant RX. Applied Logistic Regression. Hoboken, New Jersey: John Wiley & Sons, 2013.
 63.Howley T, Madden MG, O'Connell M‐L, Ryder AG. The effect of principal component analysis on machine learning accuracy with high dimensional spectral data. In: International Conference on Innovative Techniques and Applications of Artificial Intelligence. Springer, 2005, p. 209‐222.
 64.Iijima K, Hashimoto H, Hashimoto M, Son B‐K, Ota H, Ogawa S, Eto M, Akishita M, Ouchi Y. Aortic arch calcification detectable on chest X‐ray is a strong independent predictor of cardiovascular events beyond traditional risk factors. Atherosclerosis 210: 137‐144, 2010.
 65.Inza I, Calvo B, Armañanzas R, Bengoetxea E, Larrañaga P, Lozano JA. Machine learning: An indispensable tool in bioinformatics. In: Bioinformatics Methods in Clinical Research. Heidelberg, Germany: Springer, 2010, p. 25‐48.
 66.Isin A, Ozdalili S. Cardiac arrhythmia detection using deep learning. Procedia Comput Sci 120: 268‐275, 2017.
 67.İşler Y, Kuntalp M. Combining classical HRV indices with wavelet entropy measures improves to performance in diagnosing congestive heart failure. Comput Biol Med 37: 1502‐1510, 2007.
 68.Johnson KM, Johnson HE, Zhao Y, Dowe DA, Staib LH. Scoring of coronary artery disease characteristics on coronary CT angiograms by using machine learning. Radiology 292: 354‐362, 2019.
 69.Johnson KW, Shameer K, Glicksberg BS, Readhead B, Sengupta PP, Björkegren JLM, Kovacic JC, Dudley JT. Enabling precision cardiology through multiscale biology and systems medicine. JACC Basic Transl Sci 2: 311‐327, 2017.
 70.Johnson KW, Soto JT, Glicksberg BS, Shameer K, Miotto R, Ali M, Ashley E, Dudley JT. Artificial intelligence in cardiology. J Am Coll Cardiol 71: 2668‐2679, 2018.
 71.Kaelbling LP, Littman ML, Moore AW. Reinforcement learning: A survey. J Artif Intell Res 4: 237‐285, 1996.
 72.Kagiyama N, Shrestha S, Farjo PD, Sengupta PP. Artificial intelligence: Practical primer for clinical research in cardiovascular disease. J Am Heart Assoc 8: e012788, 2019.
 73.Kakadiaris IA, Vrigkas M, Yen AA, Kuznetsova T, Budoff M, Naghavi M. Machine learning outperforms ACC/AHA CVD risk calculator in MESA. J Am Heart Assoc 7: e009476, 2018.
 74.Karpathy A, Fei‐Fei L. Deep visual‐semantic alignments for generating image descriptions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015, p. 3128‐3137.
 75.Kassahun Y, Yu B, Tibebu AT, Stoyanov D, Giannarou S, Metzen JH, Vander Poorten E. Surgical robotics beyond enhanced dexterity instrumentation: A survey of machine learning techniques and their role in intelligent and autonomous surgical actions. Int J Comput Assist Radiol Surg 11: 553‐568, 2016.
 76.Katz DH, Deo RC, Aguilar FG, Selvaraj S, Martinez EE, Beussink‐Nelson L, Kim K‐YA, Peng J, Irvin MR, Tiwari H. Phenomapping for the identification of hypertensive patients with the myocardial substrate for heart failure with preserved ejection fraction. J Cardiovasc Transl Res 10: 275‐284, 2017.
 77.Khan SS, Quadri SMK. Prediction of angiographic disease status using rule based data mining techniques. Biol Forum Int 8: 103‐107, 2016.
 78.Khanna D, Sahu R, Baths V, Deshpande B. Comparative study of classification techniques (SVM, logistic regression and neural networks) to predict the prevalence of heart disease. Int J Mach Learn Comput 5: 414, 2015.
 79.Kilic A. Artificial intelligence and machine learning in cardiovascular health care. Ann Thorac Surg 109: 1323‐1329, 2020.
 80.Kim JH, Kohane IS, Ohno‐Machado L. Visualization and evaluation of clusters for exploratory analysis of gene expression data. J Biomed Inform 35: 25‐36, 2002.
 81.Kiranyaz S, Ince T, Gabbouj M. Real‐time patient‐specific ECG classification by 1‐D convolutional neural networks. IEEE Trans Biomed Eng 63: 664‐675, 2015.
 82.Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AA. The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care. Nat Med 24: 1716‐1720, 2018.
 83.Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai T. Artificial intelligence in precision cardiovascular medicine. J Am Coll Cardiol 69: 2657‐2664, 2017.
 84.Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. Commun ACM 60: 84‐90, 2017.
 85.Kukar M, Kononenko I, Grošelj C, Kralj K, Fettich J. Analysing and improving the diagnosis of ischaemic heart disease with machine learning. Artif Intell Med 16: 25‐50, 1999.
 86.Kusunose K, Haga A, Inoue M, Fukuda D, Yamada H, Sata M. Clinically feasible and accurate view classification of echocardiographic images using deep learning. Biomolecules 10: 665, 2020.
 87.Lancaster MC, Salem Omar AM, Narula S, Kulkarni H, Narula J, Sengupta PP. Phenotypic clustering of left ventricular diastolic function parameters: Patterns and prognostic relevance. JACC Cardiovasc Imaging 12: 1149‐1161, 2019.
 88.LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 521: 436‐444, 2015.
 89.Leung MKK, Xiong HY, Lee LJ, Frey BJ. Deep learning of the tissue‐regulated splicing code. Bioinformatics 30: i121‐i129, 2014.
 90.Levy O, Goldberg Y, Dagan I. Improving distributional similarity with lessons learned from word embeddings. Trans Assoc Comput Linguist 3: 211‐225, 2015.
 91.Li D, Zhang J, Zhang Q, Wei X. Classification of ECG signals based on 1D convolution neural network. In: 2017 IEEE 19th International Conference on e‐Health Networking, Applications and Services (Healthcom). IEEE, 2017, p. 1‐6.
 92.Li J, Zhang R, Shi L, Wang D. Automatic whole‐heart segmentation in congenital heart disease using deeply‐supervised 3D FCN. In: Reconstruction, Segmentation, and Analysis of Medical Images. Heidelberg, Germany: Springer, 2016, p. 111‐118.
 93.Li Y, Swift S, Tucker A. Modelling and analysing the dynamics of disease progression from cross‐sectional studies. J Biomed Inform 46: 266‐274, 2013.
 94.Liu G, Wang L, Wang Q, Zhou G, Wang Y, Jiang Q. A new approach to detect congestive heart failure using short‐term heart rate variability measures. PLoS One 9: e93399, 2014.
 95.Lucic M, Kurach K, Michalski M, Gelly S, Bousquet O. Are gans created equal? A large‐scale study. Adv Neural Inf Process Syst 31: 700‐709, 2018.
 96.Luo G, Dong S, Wang K, Zuo W, Cao S, Zhang H. Multi‐views fusion CNN for left ventricular volumes estimation on cardiac MR images. IEEE Trans Biomed Eng 65: 1924‐1934, 2017.
 97.Luo Z, Yetisgen‐Yildiz M, Weng C. Dynamic categorization of clinical research eligibility criteria by hierarchical clustering. J Biomed Inform 44: 927‐935, 2011.
 98.Lyon A, Ariga R, Mincholé A, Mahmod M, Ormondroyd E, Laguna P, de Freitas N, Neubauer S, Watkins H, Rodriguez B. Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers. Front Physiol 9: 213, 2018.
 99.Madani A, Arnaout R, Mofrad M, Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. NPJ Digit Med 1: 1‐8, 2018.
 100.Madani A, Ong JR, Tibrewal A, Mofrad MRK. Deep echocardiography: data‐efficient supervised and semi‐supervised deep learning towards automated diagnosis of cardiac disease. NPJ Digit Med 1: 1‐11, 2018.
 101.Mahmood AM, Kuppa MR. Early detection of clinical parameters in heart disease by improved decision tree algorithm. In: 2010 Second Vaagdevi International Conference on Information Technology for Real World Problems. IEEE, 2010, p. 24‐29.
 102.Mahmud M, Kaiser MS, Hussain A, Vassanelli S. Applications of deep learning and reinforcement learning to biological data. IEEE Trans Neural Netw Learn Syst 29: 2063‐2079, 2018.
 103.Martis RJ, Acharya UR, Mandana KM, Ray AK, Chakraborty C. Application of principal component analysis to ECG signals for automated diagnosis of cardiac health. Expert Syst Appl 39: 11792‐11800, 2012.
 104.Masetic Z, Subasi A. Congestive heart failure detection using random forest classifier. Comput Methods Prog Biomed 130: 54‐64, 2016.
 105.McKinley D, Moye‐Dickerson P, Davis S, Akil A. Impact of a pharmacist‐led intervention on 30‐day readmission and assessment of factors predictive of readmission in African American men with heart failure. Am J Mens Health 13: 1557988318814295, 2019.
 106.Medhekar DS, Bote MP, Deshmukh SD. Heart disease prediction system using naive Bayes. Int J Enhanc Res Sci Technol Eng 2: 1‐5, 2013.
 107.Mehta SS, Lingayat NS. SVM‐based algorithm for recognition of QRS complexes in electrocardiogram. IRBM 29: 310‐317, 2008.
 108.Melillo P, De Luca N, Bracale M, Pecchia L. Classification tree for risk assessment in patients suffering from congestive heart failure via long‐term heart rate variability. IEEE J Biomed Heal Inform 17: 727‐733, 2013.
 109.Mirizzi G, Giannoni A, Ripoli A, Iudice G, Bramanti F, Emdin M, Passino C. Prediction of the chemoreflex gain by common clinical variables in heart failure. PLoS One 11: e0153510, 2016.
 110.Moghaddasi H, Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med 73: 47‐55, 2016.
 111.Mohri M, Rostamizadeh A, Talwalkar A. Foundations of Machine Learning. London, England: MIT Press, 2018.
 112.Nahar J, Imam T, Tickle KS, Chen Y‐PP. Computational intelligence for heart disease diagnosis: A medical knowledge driven approach. Expert Syst Appl 40: 96‐104, 2013.
 113.Narendra KS, Wang Y, Mukhopadhay S. Fast reinforcement learning using multiple models. In: 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016, p. 7183‐7188.
 114.Narula S, Shameer K, Omar AMS, Dudley JT, Sengupta PP. Machine‐learning algorithms to automate morphological and functional assessments in 2D echocardiography. J Am Coll Cardiol 68: 2287‐2295, 2016.
 115.Nie F, Yuan J, Huang H. Optimal mean robust principal component analysis. In: International Conference on Machine Learning. 2014, p. 1062‐1070.
 116.Nirschl JJ, Janowczyk A, Peyster EG, Frank R, Margulies KB, Feldman MD, Madabhushi A. A deep‐learning classifier identifies patients with clinical heart failure using whole‐slide images of H&E tissue. PLoS One 13: e0192726, 2018.
 117.Pandey AK, Pandey P, Jaiswal KL, Sen AK. A heart disease prediction model using decision tree. IOSR J Comput Eng 12: 83‐86, 2013.
 118.Papaloukas C, Fotiadis DI, Likas A, Michalis LK. An ischemia detection method based on artificial neural networks. Artif Intell Med 24: 167‐178, 2002.
 119.Patidar S, Pachori RB, Acharya UR. Automated diagnosis of coronary artery disease using tunable‐Q wavelet transform applied on heart rate signals. Knowledge‐Based Syst 82: 1‐10, 2015.
 120.Peterson LE. K‐nearest neighbor. Scholarpedia 4: 1883, 2009.
 121.Ping Y, Chen C, Wu L, Wang Y, Shu M. Automatic detection of atrial fibrillation based on CNN‐LSTM and shortcut connection. In: Healthcare. Basel, Switzerland: Multidisciplinary Digital Publishing Institute, 2020, p. 139.
 122.Poh M‐Z, Poh YC, Chan P‐H, Wong C‐K, Pun L, Leung WW‐C, Wong Y‐F, Wong MM‐Y, Chu DW‐S, Siu C‐W. Diagnostic assessment of a deep learning system for detecting atrial fibrillation in pulse waveforms. Heart 104: 1921‐1928, 2018.
 123.Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, Peng L, Webster DR. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng 2: 158, 2018.
 124.Poudel RPK, Lamata P, Montana G. Recurrent fully convolutional neural networks for multi‐slice MRI cardiac segmentation. In: Zuluaga MA, Bhatia K, Kainz B, Moghari MH, Pace DF, editors. Reconstruction, Segmentation, and Analysis of Medical Images. Heidelberg, Germany: Springer, 2016, p. 83‐94.
 125.Pourbabaee B, Roshtkhari MJ, Khorasani K. Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients. IEEE Trans Syst Man Cybern Syst 48: 2095‐2104, 2018.
 126.Prasad N, Cheng L‐F, Chivers C, Draugelis M, Engelhardt BE. A reinforcement learning approach to weaning of mechanical ventilation in intensive care units. arXiv:1704.06300, 2017.
 127.Puyalnithi T, Viswanatham VM. Preliminary cardiac disease risk prediction based on medical and behavioural data set using supervised machine learning techniques. Indian J Sci Technol 9: 1‐5, 2016.
 128.Quesada JA, Lopez‐Pineda A, Gil‐Guillén VF, Durazo‐Arvizu R, Orozco‐Beltrán D, López‐Domenech A, Carratalá‐Munuera C. Machine learning to predict cardiovascular risk. Int J Clin Pract 73: e13389, 2019.
 129.Radivojac P, Chawla NV, Dunker AK, Obradovic Z. Classification and knowledge discovery in protein databases. J Biomed Inform 37: 224‐239, 2004.
 130.Raina R, Madhavan A, Ng AY. Large‐scale deep unsupervised learning using graphics processors. In: Proceedings of the 26th Annual International Conference on Machine Learning. 2009, p. 873‐880.
 131.Rajagopal R, Ranganathan V. Evaluation of effect of unsupervised dimensionality reduction techniques on automated arrhythmia classification. Biomed Signal Process Control 34: 1‐8, 2017.
 132.Rani Y, Rohil H. A study of hierarchical clustering algorithm. ter S Te SIT 2: 113, 2013.
 133.Rodríguez Galiano VF, Abarca Hernández F, Ghimire B, Chica Olmo M, Atkinson P, Jeganathan C. Incorporating spatial variability measures in land‐cover classification using random forest. Procedia Environ Sci 3: 44‐49, 2011.
 134.Rodriguez‐Galiano VF, Chica‐Olmo M, Abarca‐Hernandez F, Atkinson PM, Jeganathan C. Random forest classification of mediterranean land cover using multi‐seasonal imagery and multi‐seasonal texture. Remote Sens Environ 121: 93‐107, 2012.
 135.Romiti S, Vinciguerra M, Saade W, Anso Cortajarena I, Greco E. Artificial intelligence (AI) and cardiovascular diseases: An unexpected alliance. Cardiol Res Pract 2020: 4972346, 2020.
 136.Ronneberger O, Fischer P, Brox T. U‐net: Convolutional networks for biomedical image segmentation. In: International Conference on Medical Image Computing and Computer‐Assisted Intervention. Springer, 2015, p. 234‐241.
 137.Ruiz‐Fernández D, Torra AM, Soriano‐Payá A, Marín‐Alonso O, Palencia ET. Aid decision algorithms to estimate the risk in congenital heart surgery. Comput Methods Prog Biomed 126: 118‐127, 2016.
 138.Sainath TN, Kingsbury B, Saon G, Soltau H, Mohamed A, Dahl G, Ramabhadran B. Deep convolutional neural networks for large‐scale speech tasks. Neural Netw 64: 39‐48, 2015.
 139.Saini I, Singh D, Khosla A. QRS detection using K‐nearest neighbor algorithm (KNN) and evaluation on standard ECG databases. J Adv Res 4: 331‐344, 2013.
 140.Sakr S, Elshawi R, Ahmed A, Qureshi WT, Brawner C, Keteyian S, Blaha MJ, Al‐Mallah MH. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford ExercIse Testing (FIT) Project. PLoS One 13: e0195344, 2018.
 141.Sánchez AS, Iglesias‐Rodríguez FJ, Fernández PR, de Cos Juez FJ. Applying the K‐nearest neighbor technique to the classification of workers according to their risk of suffering musculoskeletal disorders. Int J Ind Ergon 52: 92‐99, 2016.
 142.Sandu C, Popescu D, Popescu C. Post cardiac surgery recovery process with reinforcement learning. In: 2015 19th International Conference on System Theory, Control and Computing (ICSTCC). IEEE, 2015, p. 658‐661.
 143.Segar MW, Patel KV, Ayers C, Basit M, Tang WHW, Willett D, Berry J, Grodin JL, Pandey A. Phenomapping of patients with heart failure with preserved ejection fraction using machine learning‐based unsupervised cluster analysis. Eur J Heart Fail 22: 148‐158, 2020.
 144.Sengupta PP, Huang Y‐M, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W, Dudley JT. Cognitive machine‐learning algorithm for cardiac imaging: A pilot study for differentiating constrictive pericarditis from restrictive cardiomyopathy. Circ Cardiovasc Imaging 9: e004330, 2016.
 145.Shah SJ, Katz DH, Selvaraj S, Burke MA, Yancy CW, Gheorghiade M, Bonow RO, Huang C‐C, Deo RC. Phenomapping for novel classification of heart failure with preserved ejection fraction. Circulation 131: 269‐279, 2015.
 146.Shameer K, Johnson KW, Glicksberg BS, Dudley JT, Sengupta PP. Machine learning in cardiovascular medicine: Are we there yet? Heart 104: 1156‐1164, 2018.
 147.Shashikumar SP, Shah AJ, Li Q, Clifford GD, Nemati S. A deep learning approach to monitoring and detecting atrial fibrillation using wearable technology. In: 2017 IEEE EMBS International Conference on Biomedical & Health Informatics (BHI). IEEE, 2017, p. 141‐144.
 148.Shouman M, Turner T, Stocker R. Integrating decision tree and k‐means clustering with different initial centroid selection methods in the diagnosis of heart disease patients. In: Proceedings of the International Conference on Data Science (ICDATA). The Steering Committee of The World Congress in Computer Science, Computer Engineering and Applied Computing WorldComp, 2012, p. 1.
 149.Singh YK, Sinha N, Singh SK. Heart disease prediction system using random forest. In: International Conference on Advances in Computing and Data Sciences. Springer, 2016, p. 613‐623.
 150.Sitar‐tăut A, Zdrenghea D, Pop D, Sitar‐tăut D. Using machine learning algorithms in cardiovascular disease risk evaluation. Age (Omaha) 1: 4, 2009.
 151.Son J, Shin JY, Chun EJ, Jung K‐H, Park KH, Park SJ. Predicting high coronary artery calcium score from retinal fundus images with deep learning algorithms. Transl Vis Sci Technol 9: 28, 2020.
 152.Srinivasan D. Innovations in Multi‐Agent Systems and Application–1. Berlin, Heidelberg: Springer, 2010.
 153.Tan LK, Liew YM, Lim E, McLaughlin RA. Cardiac left ventricle segmentation using convolutional neural network regression. In: 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). IEEE, 2016, p. 490‐493.
 154.Tan LK, Liew YM, Lim E, McLaughlin RA. Convolutional neural network regression for short‐axis left ventricle segmentation in cardiac cine MR sequences. Med Image Anal 39: 78‐86, 2017.
 155.Thuraisingham RA. A classification system to detect congestive heart failure using second‐order difference plot of RR intervals. Cardiol Res Pract 2009: 807379, 2009.
 156.Tison GH, Sanchez JM, Ballinger B, Singh A, Olgin JE, Pletcher MJ, Vittinghoff E, Lee ES, Fan SM, Gladstone RA. Passive detection of atrial fibrillation using a commercially available smartwatch. JAMA Cardiol 3: 409‐416, 2018.
 157.Tompson JJ, Jain A, LeCun Y, Bregler C. Joint training of a convolutional network and a graphical model for human pose estimation. In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in Neural Information Processing Systems,New York: Curran Associates, Inc. 2014, p. 1799‐1807.
 158.Uddin S, Khan A, Hossain ME, Moni MA. Comparing different supervised machine learning algorithms for disease prediction. BMC Med Inform Decis Mak 19: 1‐16, 2019.
 159.Unnikrishnan P, Kumar DK, Poosapadi Arjunan S, Kumar H, Mitchell P, Kawasaki R. Development of health parameter model for risk prediction of CVD using SVM. Comput Math Methods Med 2016: 3016245, 2016.
 160.Uppin SK, Anusuya MA. Expert system design to predict heart and diabetes diseases. Int J Sci Eng Technol 3: 1054‐1059, 2014.
 161.Vembandasamy K, Sasipriya R, Deepa E. Heart diseases detection using Naive Bayes algorithm. Int J Innov Sci Eng Technol 2: 441‐444, 2015.
 162.Wadhonkar BM, Tijare PA, Sawalkar SN. A data mining approach for classification of heart disease dataset using neural network. Int J Appl Innov Eng Manag 4: 426‐433, 2015.
 163.Wang X, Paliwal KK. Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition. Pattern Recogn 36: 2429‐2439, 2003.
 164.Wang X, Zeng D, Seale H, Li S, Cheng H, Luan R, He X, Pang X, Dou X, Wang Q. Comparing early outbreak detection algorithms based on their optimized parameter values. J Biomed Inform 43: 97‐103, 2010.
 165.Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, Antaki JF. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Hear Lung Transplant 31: 140‐149, 2012.
 166.Wang Z, Hu M, Zhai G. Application of deep learning architectures for accurate and rapid detection of internal mechanical damage of blueberry using hyperspectral transmittance data. Sensors 18: 1126, 2018.
 167.Wawre SV, Deshmukh SN. Sentiment classification using machine learning techniques. Int J Sci Res 5: 819‐821, 2016.
 168.Weng SF, Reps J, Kai J, Garibaldi JM, Qureshi N. Can machine‐learning improve cardiovascular risk prediction using routine clinical data? PLoS One 12: e0174944, 2017.
 169.Wiering M, Van Otterlo M. Reinforcement Learning. Springer, 2012.
 170.Wu J, Roy J, Stewart WF. Prediction modeling using EHR data: Challenges, strategies, and a comparison of machine learning approaches. Med Care 48: S106‐S113, 2010.
 171.Xia Y, Wulan N, Wang K, Zhang H. Detecting atrial fibrillation by deep convolutional neural networks. Comput Biol Med 93: 84‐92, 2018.
 172.Xiong Z, Nash MP, Cheng E, Fedorov VV, Stiles MK, Zhao J. ECG signal classification for the detection of cardiac arrhythmias using a convolutional recurrent neural network. Physiol Meas 39: 94006, 2018.
 173.Yıldırım Ö, Pławiak P, Tan R‐S, Acharya UR. Arrhythmia detection using deep convolutional neural network with long duration ECG signals. Comput Biol Med 102: 411‐420, 2018.
 174.Zaragoza C, Gomez‐Guerrero C, Martin‐Ventura JL, Blanco‐Colio L, Lavin B, Mallavia B, Tarin C, Mas S, Ortiz A, Egido J. Animal models of cardiovascular diseases. J Biomed Biotechnol 2011: 497841, 2011.
 175.Zhang B, Hsu M, Dayal U. K‐harmonic means‐a data clustering algorithm. Hewlett‐Packard Labs Technical Report HPL‐1999‐124 55, 1999.
 176.Zhang X‐D. Machine learning. In: A Matrix Algebra Approach to Artificial Intelligence. Singapore Pte, Ltd, Singapore: Springer, 2020, p. 223‐440.
 177.Zhao Z, Särkkä S, Rad AB. Spectro‐temporal ECG analysis for atrial fibrillation detection. In: 2018 IEEE 28th International Workshop on Machine Learning for Signal Processing (MLSP). IEEE, 2018, p. 1‐6.
 178.Zheng Q, Delingette H, Ayache N. Explainable cardiac pathology classification on cine MRI with motion characterization by semi‐supervised learning of apparent flow. Med Image Anal 56: 80‐95, 2019.
 179.Zheng Y, Guo X, Ding X. A novel hybrid energy fraction and entropy‐based approach for systolic heart murmurs identification. Expert Syst Appl 42: 2710‐2721, 2015.
 180.Zhu X, Goldberg AB. Introduction to semi‐supervised learning. Synth Lect Artif Intell Mach Learn 3: 1‐130, 2009.
 181.Zubair M, Kim J, Yoon C. An automated ECG beat classification system using convolutional neural networks. In: 2016 6th International Conference on IT Convergence and Security (ICITCS). IEEE, 2016, p. 1‐5.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Xi Cheng, Ishan Manandhar, Sachin Aryal, Bina Joe. Application of Artificial Intelligence in Cardiovascular Medicine. Compr Physiol 2021, 11: 2455-2466. doi: 10.1002/cphy.c200034