Comprehensive Physiology Wiley Online Library

Hydrogen Sulfide Actions in the Vasculature

Full Article on Wiley Online Library


Hydrogen sulfide (H2S) is a small, gaseous molecule with poor solubility in water that is generated by multiple pathways in many species including humans. It acts as a signaling molecule in many tissues with both beneficial and pathological effects. This article discusses its many actions in the vascular system and the growing evidence of its role to regulate vascular tone, angiogenesis, endothelial barrier function, redox, and inflammation. Alterations in some disease states are also discussed including potential roles in promoting tumor growth and contributions to the development of metabolic disease. © 2021 American Physiological Society. Compr Physiol 11:2467‐2488, 2021.

 1.Abe K, Kimura H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16: 1066‐1071, 1996. DOI: 10.1523/jneurosci.16‐03‐01066.1996.
 2.Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8: 464‐478, 2007. DOI: 10.1038/nrm2183.
 3.Aghagolzadeh P, Radpour R, Bachtler M, van Goor H, Smith ER, Lister A, Odermatt A, Feelisch M, Pasch A. Hydrogen sulfide attenuates calcification of vascular smooth muscle cells via KEAP1/NRF2/NQO1 activation. Atherosclerosis 265: 78‐86, 2017. DOI: 10.1016/j.atherosclerosis.2017.08.012.
 4.Ahmad FUD, Sattar MA, Rathore HA, Abdullah MH, Tan S, Abdullah NA, Johns EJ. Exogenous hydrogen sulfide (H2S) reduces blood pressure and prevents the progression of diabetic nephropathy in spontaneously hypertensive rats. Ren Fail 34: 203‐210, 2012. DOI: 10.3109/0886022X.2011.643365.
 5.Al‐Magableh MR, Kemp‐Harper BK, Hart JL. Hydrogen sulfide treatment reduces blood pressure and oxidative stress in angiotensin II‐induced hypertensive mice. Hypertens Res 38: 13‐20, 2014. DOI: 10.1038/hr.2014.125.
 6.Altaany Z, Ju Y, Yang G, Wang R. The coordination of S‐sulfhydration, S‐nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal 7: ra87, 2014. DOI: 10.1126/scisignal.2005478.
 7.Altaany Z, Moccia F, Munaron L, Mancardi D, Wang R. Hydrogen sulfide and endothelial dysfunction: Relationship with nitric oxide. Curr Med Chem 21: 3646‐3661, 2014. DOI: 10.2174/0929867321666140706142930.
 8.Altaany Z, Yang G, Wang R. Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J Cell Mol Med 17: 879‐888, 2013. DOI: 10.1111/jcmm.12077.
 9.Aminzadeh MA, Vaziri ND. Downregulation of the renal and hepatic hydrogen sulfide (H2S)‐producing enzymes and capacity in chronic kidney disease. Nephrol Dial Transplant 27: 498‐504, 2012. DOI: 10.1093/ndt/gfr560.
 10.Arab JP, Martin‐Mateos RM, Shah VH. Gut–liver axis, cirrhosis and portal hypertension: The chicken and the egg. Hepatol Int 12: 24‐33, 2018. DOI: 10.1007/s12072‐017‐9798‐x.
 11.Asimakopoulou A, Panopoulos P, Chasapis CT, Coletta C, Zhou Z, Cirino G, Giannis A, Szabo C, Spyroulias GA, Papapetropoulos A. Selectivity of commonly used pharmacological inhibitors for cystathionine β synthase (CBS) and cystathionine γ lyase (CSE). Br J Pharmacol 169: 922‐932, 2013. DOI: 10.1111/bph.12171.
 12.Bauer M, Zhang JX, Bauer I, Clemens MG. ET‐1 induced alterations of hepatic microcirculation: Sinusoidal and extrasinusoidal sites of action. Am J Physiol ‐ Gastrointest Liver Physiol 267: G143‐G149, 1994. DOI: 10.1152/ajpgi.1994.267.1.g143.
 13.Bełtowski J, Wójcicka G, Jamroz‐Wiśniewska A. Hydrogen sulfide in the regulation of insulin secretion and insulin sensitivity: Implications for the pathogenesis and treatment of diabetes mellitus. Biochem. Pharmacol. 149: 60‐76, 2018.
 14.Bhattacharyya S, Saha S, Giri K, Lanza IR, Nair KS, Jennings NB, Rodriguez‐Aguayo C, Lopez‐Berestein G, Basal E, Weaver AL, Visscher DW, Cliby W, Sood AK, Bhattacharya R, Mukherjee P. Cystathionine beta‐synthase (CBS) contributes to advanced ovarian cancer progression and drug resistance. PLoS One 8, 2013. DOI: 10.1371/journal.pone.0079167.
 15.Bibli SI, Hu J, Leisegang MS, Wittig J, Zukunft S, Kapasakalidi A, Fisslthaler B, Tsilimigras D, Zografos G, Filis K, Brandes RP, Papapetropoulos A, Sigala F, Fleming I. Shear stress regulates cystathionine γ lyase expression to preserve endothelial redox balance and reduce membrane lipid peroxidation: Regulation of CSE by KLF2 and miR‐27b. Redox Biol 28: 101379, 2020. DOI: 10.1016/j.redox.2019.101379.
 16.Bibli S‐I, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, Goymann P, Delgado Lagos F, Fisslthaler B, Zukunft S, Kyselova A, Justo AFO, Heidler J, Tsilimigras D, Brandes RP, Dimmeler S, Papapetropoulos A, Knapp S, Offermanns S, Wittig I, Nishimura SL, Sigala F, Fleming I. Mapping the endothelial cell S ‐sulfhydrome highlights the crucial role of integrin sulfhydration in vascular function. Circulation 143: 935‐948, 2021. DOI: 10.1161/CIRCULATIONAHA.120.051877.
 17.Bibli SI, Hu J, Sigala F, Wittig I, Heidler J, Zukunft S, Tsilimigras DI, Randriamboavonjy V, Wittig J, Kojonazarov B, Schürmann C, Siragusa M, Siuda D, Luck B, Abdel Malik R, Filis KA, Zografos G, Chen C, Wang DW, Pfeilschifter J, Brandes RP, Szabo C, Papapetropoulos A, Fleming I. Cystathionine γ lyase sulfhydrates the RNA binding protein human antigen R to preserve endothelial cell function and delay atherogenesis. Circulation 139: 101‐114, 2019. DOI: 10.1161/CIRCULATIONAHA.118.034757.
 18.Bieza SA, Boubeta F, Feis A, Smulevich G, Estrin DA, Boechi L, Bari SE. Reactivity of inorganic sulfide species toward a heme protein model. Inorg Chem 54: 527‐533, 2015. DOI: 10.1021/ic502294z.
 19.Bir SC, Kolluru GK, McCarthy P, Shen X, Pardue S, Pattillo CB, Kevil CG. Hydrogen sulfide stimulates ischemic vascular remodeling through nitric oxide synthase and nitrite reduction activity regulating hypoxia‐inducible factor‐1α and vascular endothelial growth factor‐dependent angiogenesis. J Am Heart Assoc 1: e004093, 2012. DOI: 10.1161/JAHA.112.004093.
 20.Birg A, Lin HC, Kanagy N. Portal venous flow is increased by Jejunal but not colonic hydrogen sulfide in a nitric oxide‐dependent fashion in rats. Dig Dis Sci 1: 3, 2020. DOI: 10.1007/s10620‐020‐06597‐5.
 21.Blachier F, Beaumont M, Kim E. Cysteine‐derived hydrogen sulfide and gut health: A matter of endogenous or bacterial origin. Curr Opin Clin Nutr Metab Care 22: 68‐75, 2019.
 22.Blom N, Gammeltoft S, Brunak S. Sequence and structure‐based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294: 1351‐1362, 1999. DOI: 10.1006/jmbi.1999.3310.
 23.Bos EM, Wang R, Snijder PM, Boersema M, Damman J, Fu M, Moser J, Hillebrands J‐L, Ploeg RJ, Yang G, Leuvenink HGD, van Goor H. Cystathionine γ‐lyase protects against renal ischemia/reperfusion by modulating oxidative stress. J Am Soc Nephrol 24: 759‐770, 2013. DOI: 10.1681/ASN.2012030268.
 24.Bosch‐Marcé M, Pola R, Wecker AB, Silver M, Weber A, Luedemann C, Curry C, Murayama T, Kearney M, Yoon YS, Malinow MR, Asahara T, Isner JM, Losordo DW. Hyperhomocyst(e)inemia impairs angiogenesis in a murine model of limb ischemia. Vasc Med 10: 15‐22, 2005. DOI: 10.1191/1358863x05vm585oa.
 25.Bourque C, Zhang Y, Fu M, Racine M, Greasley A, Pei Y, Wu L, Wang R, Yang G. H2S protects lipopolysaccharide‐induced inflammation by blocking NFκB transactivation in endothelial cells. Toxicol Appl Pharmacol 338: 20‐29, 2018. DOI: 10.1016/j.taap.2017.11.004.
 26.Bryan S, Yang G, Wang R, Khaper N. Cystathionine gamma‐lyase‐deficient smooth muscle cells exhibit redox imbalance and apoptosis under hypoxic stress conditions. [Online]. Exp Clin Cardiol 16: e36‐e41, 2011.
 27.Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high‐fat diet. Physiol Behav 176: 139‐148, 2017. DOI: 10.1016/j.physbeh.2017.03.040.
 28.Cai J, Shi X, Wang H, Fan J, Feng Y, Lin X, Yang J, Cui Q, Tang C, Xu G, Geng B. Cystathionine γ lyase‐hydrogen sulfide increases peroxisome proliferator‐activated receptor γ activity by sulfhydration at C139 site thereby promoting glucose uptake and lipid storage in adipocytes. Biochim Biophys Acta ‐ Mol Cell Biol Lipids 1861: 419‐429, 2016. DOI: 10.1016/j.bbalip.2016.03.001.
 29.Cai W‐J, Wang M‐J, Moore PK, Jin H‐M, Yao T, Zhu Y‐C. The novel proangiogenic effect of hydrogen sulfide is dependent on Akt phosphorylation. Cardiovasc Res 76: 29‐40, 2007. DOI: 10.1016/j.cardiores.2007.05.026.
 30.Carballal S, Trujillo M, Cuevasanta E, Bartesaghi S, Möller MN, Folkes LK, García‐Bereguiaín MA, Gutiérrez‐Merino C, Wardman P, Denicola A, Radi R, Alvarez B. Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radic Biol Med 50: 196‐205, 2011. DOI: 10.1016/j.freeradbiomed.2010.10.705.
 31.Castelblanco M, Lugrin J, Ehirchiou D, Nasi S, Ishii I, So A, Martinon F, Busso N. Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J Biol Chem 293: 2546‐2557, 2018. DOI: 10.1074/jbc.M117.806869.
 32.Chao C, Zatarain JR, Ding Y, Coletta C, Mrazek AA, Druzhyna N, Johnson P, Chen H, Hellmich JL, Asimakopoulou A, Yanagi K, Olah G, Szoleczky P, Törö G, Bohanon FJ, Cheema M, Lewis R, Eckelbarger D, Ahmad A, Módis K, Untereiner A, Szczesny B, Papapetropoulos A, Zhou J, Hellmich MR, Szabo C. Cystathionine‐β‐synthase inhibition for colon cancer: Enhancement of the efficacy of aminooxyacetic acid via the prodrug approach. Mol Med 22: 361‐379, 2016. DOI: 10.2119/molmed.2016.00102.
 33.Chassard C, Dapoigny M, Scott KP, Crouzet L, Del'Homme C, Marquet P, Martin JC, Pickering G, Ardid D, Eschalier A, Dubray C, Flint HJ, Bernalier‐Donadille A. Functional dysbiosis within the gut microbiota of patients with constipated‐irritable bowel syndrome. Aliment Pharmacol Ther 35: 828‐838, 2012. DOI: 10.1111/j.1365‐2036.2012.05007.x.
 34.Chattopadhyay M, Kodela R, Nath N, Barsegian A, Boring D, Kashfi K. Hydrogen sulfide‐releasing aspirin suppresses NF‐κB signaling in estrogen receptor negative breast cancer cells in vitro and in vivo. Biochem Pharmacol 83: 723‐732, 2012. DOI: 10.1016/j.bcp.2011.12.019.
 35.Chen P‐H, Fu Y‐S, Wang Y‐M, Yang K‐H, Wang DL, Huang B. Hydrogen sulfide increases nitric oxide production and subsequent S‐nitrosylation in endothelial cells. Sci World J 2014: 1‐8, 2014. DOI: 10.1155/2014/480387.
 36.Chen Q, Yu S, Zhang K, Zhang Z, Li C, Gao B, Zhang W, Wang Y. Exogenous H2S inhibits autophagy in unilateral ureteral obstruction mouse renal tubule cells by regulating the ROS‐AMPK signaling pathway. Cell Physiol Biochem 49: 2200‐2213, 2018. DOI: 10.1159/000493824.
 37.Chen X, Xu W, Wang Y, Luo H, Quan S, Zhou J, Yang N, Zhang T, Wu L, Liu J, Long X, Zhu N, Xie H, Luo Z. Hydrogen sulfide reduces kidney injury due to urinary‐derived sepsis by inhibiting NF‐κB expression, decreasing TNF‐α levels and increasing IL‐10 levels. Exp Ther Med 8: 464‐470, 2014. DOI: 10.3892/etm.2014.1781.
 38.Chen Y, Jin S, Teng X, Hu Z, Zhang Z, Qiu X, Tian D, Wu Y. Hydrogen Sulfide Attenuates LPS‐induced acute kidney injury by inhibiting inflammation and oxidative stress. Oxid Med Cell Longev, 2018: Article ID 6717212. DOI: 10.1155/2018/6717212.
 39.Cheng Y, Ndisang JF, Tang G, Cao K, Wang R. Hydrogen sulfide‐induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Circ Physiol 287: H2316‐H2323, 2004. DOI: 10.1152/ajpheart.00331.2004.
 40.Chiku T, Padovani D, Zhu W, Singh S, Vitvitsky V, Banerjee R. H2S biogenesis by human cystathionine γ‐lyase leads to the novel sulfur metabolites lanthionine and homolanthionine and is responsive to the grade of hyperhomocysteinemia. J Biol Chem 284: 11601‐11612, 2009. DOI: 10.1074/jbc.M808026200.
 41.Ci L, Yang X, Gu X, Li Q, Guo Y, Zhou Z, Zhang M, Shi J, Yang H, Wang Z, Fei J. Cystathionine γ‐lyase deficiency exacerbates CCl4‐induced acute hepatitis and fibrosis in the mouse liver. Antioxidants Redox Signal 27: 133‐149, 2017. DOI: 10.1089/ars.2016.6773.
 42.Corsello T, Komaravelli N, Casola A. Role of hydrogen sulfide in NRF2‐ and sirtuin‐dependent maintenance of cellular redox balance. Antioxidants 7: 129, 2018. DOI: 10.3390/antiox7100129.
 43.Cuevasanta E, Denicola A, Alvarez B, Möller MN. Solubility and permeation of hydrogen sulfide in lipid membranes. PLoS One 7: e34562, 2012. DOI: 10.1371/journal.pone.0034562.
 44.Cuevasanta E, Lange M, Bonanata J, Coitiño EL, Ferrer‐Sueta G, Filipovic MR, Alvarez B. Reaction of hydrogen sulfide with disulfide and Sulfenic acid to form the strongly nucleophilic persulfide. J Biol Chem 290: 26866‐26880, 2015. DOI: 10.1074/jbc.M115.672816.
 45.Cuevasanta E, Möller MN, Alvarez B. Biological chemistry of hydrogen sulfide and persulfides. Arch Biochem Biophys 617: 9‐25, 2017. DOI: 10.1016/
 46.Cui C, Fan J, Zeng Q, Cai J, Chen Y, Chen Z, Wang W, Li S yue, Cui Q, Yang J, Tang C, Xu G, Cai J, Geng B. CD4+T‐cell endogenous cystathionine γ lyase‐hydrogen sulfide attenuates hypertension by sulfhydrating liver kinase B1 to promote T regulatory cell differentiation and proliferation. Circulation 142: 1752‐1769, 2020. DOI: 10.1161/CIRCULATIONAHA.119.045344.
 47.Cui Y, Duan X, Li H, Dang B, Yin J, Wang Y, Gao A, Yu Z, Chen G. Hydrogen sulfide ameliorates early brain injury following subarachnoid hemorrhage in rats. Mol Neurobiol 53: 3646‐3657, 2016. DOI: 10.1007/s12035‐015‐9304‐1.
 48.Dai J, Kim OH, Cho TJ, Schmidt‐Rimpler M, Tonoki H, Takikawa K, Haga N, Miyoshi K, Kitoh H, Yoo WJ, Choi IH, Song HR, Jin DK, Kim HT, Kamasaki H, Bianchi P, Grigelioniene G, Nampoothiri S, Minagawa M, Miyagawa SI, Fukao T, Marcelis C, Jansweijer MCE, Hennekam RCM, Bedeschi F, Mustonen A, Jiang Q, Ohashi H, Furuichi T, Unger S, Zabel B, Lausch E, Superti‐Furga A, Nishimura G, Ikegawa S. Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J Med Genet 47: 704‐709, 2010. DOI: 10.1136/jmg.2009.075358.
 49.Das A, Henderson F, Lowe S, Wallace GC, Vandergrift WA, Lindhorst SM, Varma AK, Infinger LK, Giglio P, Banik NL, Patel SJ, Cachia D. Single agent efficacy of the HDAC inhibitor DATS in preclinical models of glioblastoma. Cancer Chemother Pharmacol 82: 945‐952, 2018. DOI: 10.1007/s00280‐018‐3684‐7.
 50.Das A, Huang GX, Bonkowski MS, Longchamp A, Li C, Schultz MB, Kim LJ, Osborne B, Joshi S, Lu Y, Treviño‐Villarreal JH, Kang MJ, Hung TT, Lee B, Williams EO, Igarashi M, Mitchell JR, Wu LE, Turner N, Arany Z, Guarente L, Sinclair DA. Impairment of an endothelial NAD+‐H2S signaling network is a reversible cause of vascular aging. Cell 173: 74‐89.e20, 2018. DOI: 10.1016/j.cell.2018.02.008.
 51.Deplancke B, Hristova KR, Oakley HA, McCracken VJ, Aminov R, Mackie RI, Gaskins HR. Molecular ecological analysis of the succession and diversity of sulfate‐reducing bacteria in the mouse gastrointestinal tract. Appl Environ Microbiol 66: 2166‐2174, 2000. DOI: 10.1128/AEM.66.5.2166‐2174.2000.
 52.Dilek N, Papapetropoulos A, Toliver‐Kinsky T, Szabo C. Hydrogen sulfide: An endogenous regulator of the immune system. Pharmacol Res 161: 105119, 2020. DOI: 10.1016/j.phrs.2020.105119.
 53.Dong Q, Yang B, Han JG, Zhang MM, Liu W, Zhang X, Yu HL, Liu ZG, Zhang SH, Li T, Wu DD, Ji XY, Duan SF. A novel hydrogen sulfide‐releasing donor, HA‐ADT, suppresses the growth of human breast cancer cells through inhibiting the PI3K/AKT/mTOR and Ras/Raf/MEK/ERK signaling pathways. Cancer Lett 455: 60‐72, 2019. DOI: 10.1016/j.canlet.2019.04.031.
 54.Drucker NA, Jensen AR, Ferkowicz M, Markel TA. Hydrogen sulfide provides intestinal protection during a murine model of experimental necrotizing enterocolitis. J Pediatr Surg 53: 1692‐1698, 2018. DOI: 10.1016/j.jpedsurg.2017.12.003.
 55.Du C, Lin X, Xu W, Zheng F, Cai J, Yang J, Cui Q, Tang C, Cai J, Xu G, Geng B. Sulfhydrated sirtuin‐1 increasing its deacetylation activity is an essential epigenetics mechanism of anti‐atherogenesis by hydrogen sulfide. Antioxidants Redox Signal 30: 184‐197, 2019. DOI: 10.1089/ars.2017.7195.
 56.Du J, Huang Y, Yan H, Zhang Q, Zhao M, Zhu M, Liu J, Chen SX, Bu D, Tang C, Jin H. Hydrogen sulfide suppresses oxidized low‐density lipoprotein (Ox‐LDL)‐stimulated monocyte chemoattractant protein 1 generation from macrophages via the nuclear factor κb (NF‐κB) pathway. J Biol Chem 289: 9741‐9753, 2014. DOI: 10.1074/jbc.M113.517995.
 57.Dugbartey GJ, Bouma HR, Saha MN, Lobb I, Henning RH, Sener A. A hibernation‐like state for transplantable organs: Is hydrogen sulfide therapy the future of organ preservation? Antioxid Redox Signal 28: 1503‐1515, 2018. DOI: 10.1089/ars.2017.7127.
 58.Ebrahimkhani MR, Mani AR, Moore K. Hydrogen sulphide and the hyperdynamic circulation in cirrhosis: A hypothesis. Gut 54: 1668‐1671, 2005. DOI: 10.1136/gut.2004.056556.
 59.Feng Y, Stams AJM, de Vos WM, Sánchez‐Andrea I. Enrichment of sulfidogenic bacteria from the human intestinal tract. FEMS Microbiol Lett 364: 1‐7, 2017. DOI: 10.1093/femsle/fnx028.
 60.Fiorucci S, Antonelli E, Mencarelli A, Orlandi S, Renga B, Rizzo G, Distrutti E, Shah V, Morelli A. The third gas: H2S regulates perfusion pressure in both the isolated and perfused normal rat liver and in cirrhosis. Hepatology 42: 539‐548, 2005. DOI: 10.1002/hep.20817.
 61.Francioso A, Baseggio Conrado A, Mosca L, Fontana M. Chemistry and biochemistry of sulfur natural compounds: Key intermediates of metabolism and redox biology. Oxid Med Cell Longev 2020: 1‐27, 2020. DOI: 10.1155/2020/8294158.
 62.Furne J, Springfield J, Koenig T, DeMaster E, Levitt MD. Oxidation of hydrogen sulfide and methanethiol to thiosulfate by rat tissues: A specialized function of the colonic mucosa. Biochem Pharmacol 62: 255‐259, 2001. DOI: 10.1016/S0006‐2952(01)00657‐8.
 63.Gao DD, Xu JW, Qin WB, Peng L, Qiu ZE, Wang LL, Lan CF, Cao XN, Xu JB, Zhu YX, Tang YG, Zhang YL, Zhou WL. Cellular mechanism underlying hydrogen sulfide mediated epithelial K+ secretion in rat epididymis. Front Physiol 10: 01886, 2019. DOI: 10.3389/fphys.2018.01886.
 64.George AK, Homme RP, Majumder A, Laha A, Metreveli N, Sandhu HS, Tyagi SC, Singh M. Hydrogen sulfide intervention in cystathionine‐β‐synthase mutant mouse helps restore ocular homeostasis. Int J Ophthalmol 12: 754‐764, 2019. DOI: 10.18240/ijo.2019.05.09.
 65.Gerő D, Torregrossa R, Perry A, Waters A, Le‐Trionnaire S, Whatmore JL, Wood M, Whiteman M. The novel mitochondria‐targeted hydrogen sulfide (H2S) donors AP123 and AP39 protect against hyperglycemic injury in microvascular endothelial cells in vitro. Pharmacol Res 113: 186‐198, 2016. DOI: 10.1016/j.phrs.2016.08.019.
 66.Gibson GR, Macfarlane GT, Cummings JH. Occurrence of sulphate‐reducing bacteria in human faeces and the relationship of dissimilatory sulphate reduction to methanogenesis in the large gut. J Appl Bacteriol 65: 103‐111, 1988. DOI: 10.1111/j.1365‐2672.1988.tb01498.x.
 67.Giuliani D, Ottani A, Zaffe D, Galantucci M, Strinati F, Lodi R, Guarini S. Hydrogen sulfide slows down progression of experimental Alzheimer's disease by targeting multiple pathophysiological mechanisms. Neurobiol Learn Mem 104: 82‐91, 2013. DOI: 10.1016/j.nlm.2013.05.006.
 68.Greaney JL, Kutz JL, Shank SW, Jandu S, Santhanam L, Alexander LM. Impaired hydrogen sulfide‐mediated vasodilation contributes to microvascular endothelial dysfunction in hypertensive adults. Hypertension 69: 902‐909, 2017. DOI: 10.1161/HYPERTENSIONAHA.116.08964.
 69.Guan Q, Wang X, Gao L, Chen J, Liu Y, Yu C, Zhang N, Zhang X, Zhao J. Hydrogen sulfide suppresses high glucose–induced expression of intercellular adhesion molecule‐1 in endothelial cells. J Cardiovasc Pharmacol 62: 278‐284, 2013. DOI: 10.1097/FJC.0b013e31829875ef.
 70.Guarner C, González‐Navajas JM, Sánchez E, Soriando G, Francés R, Chiva M, Zapater P, Benlloch S, Muñoz C, Pascual S, Balanzó J, Pérez‐Mateo M, Such J. The detection of bacterial DNA in blood of rats with CCl4‐induced cirrhosis with ascites represents episodes of bacterial translocation. Hepatology 44: 633‐639, 2006. DOI: 10.1002/hep.21286.
 71.Hassan MI, Boosen M, Schaefer L, Kozlowska J, Eisel F, Von Knethen A, Beck M, Hemeida RAM, El‐Moselhy MAM, Hamada FMA, Beck KF, Pfeilschifter J. Platelet‐derived growth factor‐BB induces cystathionine Iγ‐lyase expression in rat mesangial cells via a redox‐dependent mechanism. Br J Pharmacol 166: 2231‐2242, 2012. DOI: 10.1111/j.1476‐5381.2012.01949.x.
 72.Heiss E, Dirsch V. Regulation of eNOS enzyme activity by posttranslational modification. Curr Pharm Des 20: 3503‐3513, 2014. DOI: 10.2174/13816128113196660745.
 73.Hellmich MR, Coletta C, Chao C, Szabo C. The therapeutic potential of cystathionine β‐synthetase/hydrogen sulfide inhibition in cancer. Antioxid Redox Signal 22: 424‐448, 2015. DOI: 10.1089/ars.2014.5933.
 74.Henao‐Mejia J, Elinav E, Thaiss CA, Licona‐Limon P, Flavell RA. Role of the intestinal microbiome in liver disease. J Autoimmun 46: 66‐73, 2013. DOI: 10.1016/j.jaut.2013.07.001.
 75.Hernández C, Segura RM, Fonollosa A, Carrasco E, Francisco G, Simó R. Interleukin‐8, monocyte chemoattractant protein‐1 and IL‐10 in the vitreous fluid of patients with proliferative diabetic retinopathy. Diabet Med 22: 719‐722, 2005. DOI: 10.1111/j.1464‐5491.2005.01538.x.
 76.Hine C, Harputlugil E, Zhang Y, Ruckenstuhl C, Lee BC, Brace L, Longchamp A, Treviño‐Villarreal JH, Mejia P, Ozaki CK, Wang R, Gladyshev VN, Madeo F, Mair WB, Mitchell JR. Endogenous hydrogen sulfide production is essential for dietary restriction benefits. Cell 160: 132‐144, 2015. DOI: 10.1016/j.cell.2014.11.048.
 77.Hosoki R, Matsuki N, Kimura H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237: 527‐531, 1997. DOI: 10.1006/bbrc.1997.6878.
 78.Huang J, Yang B, Xiang T, Peng W, Qiu Z, Wan J, Zhang L, Li HH, Li HH, Ren G. Diallyl disulfide inhibits growth and metastatic potential of human triple‐negative breast cancer cells through inactivation of the β‐catenin signaling pathway. Mol Nutr Food Res 59: 1063‐1075, 2015. DOI: 10.1002/mnfr.201400668.
 79.Huc T, Jurkowska H, Wróbel M, Jaworska K, Onyszkiewicz M, Ufnal M. Colonic hydrogen sulfide produces portal hypertension and systemic hypotension in rats. Exp Biol Med 243: 96‐106, 2018. DOI: 10.1177/1535370217741869.
 80.Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Y, Suematsu M, Motohashi H, Fujii S, Matsunaga T, Yamamoto M, Ono K, Devarie‐Baez NO, Xian M, Fukuto JM, Akaike T. Reactive cysteine persulfides and S‐polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111: 7606‐7611, 2014. DOI: 10.1073/pnas.1321232111.
 81.Iwakiri Y. Pathophysiology of portal hypertension. Clin Liver Dis 18: 281‐291, 2014. DOI: 10.1016/j.cld.2013.12.001.
 82.Jackson‐Weaver O, Osmond JMM, Riddle MAA, Naik JSS, Bosc LVG, Walker BRR, Kanagy NLL, Gonzalez Bosc LV, Walker BRR, Kanagy NLL. Hydrogen sulfide dilates rat mesenteric arteries by activating endothelial large‐conductance Ca2+‐activated K+ channels and smooth muscle Ca2+ sparks. AJP Hear Circ Physiol 304: H1446‐H1454, 2013. DOI: 10.1152/ajpheart.00506.2012.
 83.Jackson‐Weaver O, Paredes DA, Bosc LVG, Walker BR, Kanagy NL. Intermittent hypoxia in rats increases myogenic tone through loss of hydrogen sulfide activation of large‐conductance Ca2+‐activated potassium channels. Circ Res 108: 1439‐1447, 2011. DOI: 10.1161/CIRCRESAHA.110.228999.
 84.Jain SK, Bull R, Rains JL, Bass PF, Levine SN, Reddy S, McVie R, Bocchini JA. Low levels of hydrogen sulfide in the blood of diabetes patients and streptozotocin‐treated rats causes vascular inflammation? Antioxid Redox Signal 12: 1333‐1337, 2010. DOI: 10.1089/ars.2009.2956.
 85.Jain SK, Huning L, Micinski D. Hydrogen sulfide upregulates glutamate‐cysteine ligase catalytic subunit, glutamate‐cysteine ligase modifier subunit, and glutathione and inhibits interleukin‐1β secretion in monocytes exposed to high glucose levels. Metab Syndr Relat Disord 12: 299‐302, 2014. DOI: 10.1089/met.2014.0022.
 86.Jang H, Oh MY, Kim YJ, Choi IY, Yang HS, Ryu WS, Lee SH, Yoon BW. Hydrogen sulfide treatment induces angiogenesis after cerebral ischemia. J Neurosci Res 92: 1520‐1528, 2014. DOI: 10.1002/jnr.23427.
 87.Jensen AR, Drucker NA, te Winkel JP, Ferkowicz MJ, Markel TA. The route and timing of hydrogen sulfide therapy critically impacts intestinal recovery following ischemia and reperfusion injury. J Pediatr Surg 53: 1111‐1117, 2018. DOI: 10.1016/j.jpedsurg.2018.02.072.
 88.Jiang B, Tang G, Cao K, Wu L, Wang R. Molecular mechanism for H2S‐induced activation of K ATP channels. Antioxid Redox Signal 12: 1167‐1178, 2010. DOI: 10.1089/ars.2009.2894.
 89.Jiang Z, Li C, Manuel ML, Yuan S, Kevil CG, McCarter KD, Lu W, Sun H. Role of hydrogen sulfide in early blood‐brain barrier disruption following transient focal cerebral ischemia. PLoS One 10: e0117982, 2015. DOI: 10.1371/journal.pone.0117982.
 90.Kabil O, Vitvitsky V, Xie P, Banerjee R. The quantitative significance of the transsulfuration enzymes for H2S production in murine tissues. Antioxid Redox Signal 15: 363‐372, 2011. DOI: 10.1089/ars.2010.3781.
 91.Kalayarasan S, Prabhu PN, Sriram N, Manikandan R, Arumugam M, Sudhandiran G. Diallyl sulfide enhances antioxidants and inhibits inflammation through the activation of Nrf2 against gentamicin‐induced nephrotoxicity in Wistar rats. Eur J Pharmacol 606: 162‐171, 2009. DOI: 10.1016/j.ejphar.2008.12.055.
 92.Kan J, Guo W, Huang C, Bao G, Zhu YZ, Zhu YZ. S‐Propargyl‐cysteine, a novel water‐soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxidants Redox Signal 20: 2303‐2316, 2014. DOI: 10.1089/ars.2013.5449.
 93.Kanagy NL, Szabo C, Papapetropoulos A. Vascular biology of hydrogen sulfide. Am J Physiol ‐ Cell Physiol 312: C537‐C549, 2017. DOI: 10.1152/ajpcell.00329.2016.
 94.Kaneko Y, Kimura Y, Kimura H, Niki I. l‐Cysteine inhibits insulin release from the pancreatic β‐cell: Possible involvement of metabolic production of hydrogen sulfide, a novel gasotransmitter. Diabetes 55: 1391‐1397, 2006. DOI: 10.2337/db05‐1082.
 95.Kartha RV, Zhou J, Hovde LB, Cheung BWY, Schröder H. Enhanced detection of hydrogen sulfide generated in cell culture using an agar trap method. Anal Biochem 423: 102‐108, 2012. DOI: 10.1016/j.ab.2012.01.001.
 96.Kashfi K, Olson KR. Biology and therapeutic potential of hydrogen sulfide and hydrogen sulfide‐releasing chimeras. Biochem. Pharmacol. 85: 689‐703, 2013.
 97.Katsouda A, Bibli SI, Pyriochou A, Szabo C, Papapetropoulos A. Regulation and role of endogenously produced hydrogen sulfide in angiogenesis. Pharmacol. Res 113: 175‐185, 2016.
 98.Kim SH, Kaschula CH, Priedigkeit N, Lee AV, Singh SV. Forkhead box Q1 is a novel target of breast cancer stem cell inhibition by diallyl trisulfide. J Biol Chem 291: 13495‐13508, 2016. DOI: 10.1074/jbc.M116.715219.
 99.Kimura H. Hydrogen sulfide: Its production, release and functions. Amino Acids 41: 113‐121, 2011. DOI: 10.1007/s00726‐010‐0510‐x.
 100.Kimura H. Physiological role of hydrogen sulfide and polysulfide in the central nervous system. Neurochem Int 63: 492‐497, 2013. DOI: 10.1016/j.neuint.2013.09.003.
 101.Kimura H. Signaling by hydrogen sulfide (H2S) and polysulfides (H2Sn) in the central nervous system. Neurochem Int 126: 118‐125, 2019. DOI: 10.1016/j.neuint.2019.01.027.
 102.King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao Y‐X, Dugas TR, Kelley EE, Elrod JW, Huang PL, Wang R, Lefer DJ. Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase‐nitric oxide dependent. Proc Natl Acad Sci 111: 3182‐3187, 2014. DOI: 10.1073/pnas.1321871111.
 103.Köhn C, Schleifenbaum J, Szijártó IA, Markó L, Dubrovska G, Huang Y, Gollasch M. Differential effects of cystathionine‐γ‐lyase‐dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. PLoS One 7: 1‐9, 2012. DOI: 10.1371/journal.pone.0041951.
 104.Kolluru GK, Bir SC, Yuan S, Shen X, Pardue S, Wang R, Kevil CG. Cystathionine γ‐lyase regulates arteriogenesis through NO‐dependent monocyte recruitment. Cardiovasc Res 107: 590‐600, 2015. DOI: 10.1093/cvr/cvv198.
 105.Kolluru GK, Shen X, Kevil CG. Reactive sulfur species: A new redox player in cardiovascular pathophysiology. Arterioscler Thromb Vasc Biol 40: 874‐884, 2020. DOI: 10.1161/ATVBAHA.120.314084.
 106.Levitt MD, Abdel‐Rehim MS, Furne J. Free and acid‐labile hydrogen sulfide concentrations in mouse tissues: Anomalously high free hydrogen sulfide in aortic tissue. Antioxid Redox Signal 15: 373‐378, 2011. DOI: 10.1089/ars.2010.3525.
 107.Li H, Xu F, Gao G, Gao X, Wu B, Zheng C, Wang P, Li Z, Hua H, Li D. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple‐negative breast cancer. Redox Biol 34: 101564, 2020. DOI: 10.1016/j.redox.2020.101564.
 108.Li J, Teng X, Jin S, Dong J, Guo Q, Tian D, Wu Y. Hydrogen sulfide improves endothelial dysfunction by inhibiting the vicious cycle of NLRP3 inflammasome and oxidative stress in spontaneously hypertensive rats. J Hypertens 37: 1633‐1643, 2019. DOI: 10.1097/HJH.0000000000002101.
 109.Li L, Rose P, Moore PK. Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51: 169‐187, 2011. DOI: 10.1146/annurev‐pharmtox‐010510‐100505.
 110.Li L, Rossoni G, Sparatore A, Lee LC, Del Soldato P, Moore PK. Anti‐inflammatory and gastrointestinal effects of a novel diclofenac derivative. Free Radic Biol Med 42: 706‐719, 2007. DOI: 10.1016/j.freeradbiomed.2006.12.011.
 111.Li W, Tang C, Jin H, Du J. Regulatory effects of sulfur dioxide on the development of atherosclerotic lesions and vascular hydrogen sulfide in atherosclerotic rats. Atherosclerosis 215: 323‐330, 2011. DOI: 10.1016/j.atherosclerosis.2010.12.037.
 112.Li Y, Zhang J, Zhang L, Si M, Yin H, Li J. Diallyl trisulfide inhibits proliferation, invasion and angiogenesis of osteosarcoma cells by switching on suppressor microRNAs and inactivating of Notch‐1 signaling. Carcinogenesis 34: 1601‐1610, 2013. DOI: 10.1093/carcin/bgt065.
 113.Liguori I, Russo G, Curcio F, Bulli G, Aran L, Della‐Morte D, Gargiulo G, Testa G, Cacciatore F, Bonaduce D, Abete P. Oxidative stress, aging, and diseases. Clin Interv Aging 13: 757‐772, 2018. DOI: 10.2147/CIA.S158513.
 114.Lill R. Function and biogenesis of iron–sulphur proteins. Nature 460: 831‐838, 2009. DOI: 10.1038/nature08301.
 115.Lilyanna S, Peh MT, Liew OW, Wang P, Moore PK, Richards AM, Martinez EC. GYY4137 attenuates remodeling, preserves cardiac function and modulates the natriuretic peptide response to ischemia. J Mol Cell Cardiol 87: 27‐37, 2015. DOI: 10.1016/j.yjmcc.2015.07.028.
 116.Lin F, Yang Y, Wei S, Huang X, Peng Z, Ke X, Zeng Z, Song Y. Hydrogen sulfide protects against high glucose‐induced human umbilical vein endothelial cell injury through activating PI3K/Akt/eNOS pathway. Drug Des Devel Ther Volume 14: 621‐633, 2020. DOI: 10.2147/DDDT.S242521.
 117.Lin Z, Altaf N, Li C, Chen M, Pan L, Wang D, Xie L, Zheng Y, Fu H, Han Y, Ji Y. Hydrogen sulfide attenuates oxidative stress‐induced NLRP3 inflammasome activation via S‐sulfhydrating c‐Jun at Cys269 in macrophages. Biochim Biophys Acta ‐ Mol Basis Dis 1864: 2890‐2900, 2018. DOI: 10.1016/j.bbadis.2018.05.023.
 118.Littman DR, Pamer EG. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10: 311‐323, 2011.
 119.Liu F, Chen DD, Sun X, Xie HH, Yuan H, Jia WP, Chen AF. Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin‐1 in type 2 diabetes. Diabetes 63: 1763‐1778, 2014. DOI: 10.2337/db13‐0483.
 120.Liu Y, Zhu P, Wang Y, Wei Z, Tao L, Zhu Z, Sheng X, Wang S, Ruan J, Liu Z, Cao Y, Shan Y, Sun L, Wang A, Chen W, Lu Y. Antimetastatic therapies of the polysulfide diallyl trisulfide against triple‐negative breast cancer (TNBC) via suppressing MMP2/9 by blocking NF‐κB and ERK/MAPK signaling pathways. PLoS One 10: 0123781, 2015. DOI: 10.1371/journal.pone.0123781.
 121.Lobb I, Mok A, Lan Z, Liu W, Garcia B, Sener A. Supplemental hydrogen sulphide protects transplant kidney function and prolongs recipient survival after prolonged cold ischaemia‐reperfusion injury by mitigating renal graft apoptosis and infl ammation. BJU Int 110, 2012. DOI: 10.1111/j.1464‐410X.2012.11526.x.
 122.Lu C, Kavalier A, Lukyanov E, Gross SS. S‐sulfhydration/desulfhydration and S‐nitrosylation/denitrosylation: A common paradigm for gasotransmitter signaling by H2S and NO. Methods 62: 177‐181, 2013. DOI: 10.1016/j.ymeth.2013.05.020.
 123.Maassen H, Hendriks KDW, Venema LH, Henning RH, Hofker SH, van Goor H, Leuvenink HGD, Coester AM. Hydrogen sulphide‐induced hypometabolism in human‐sized porcine kidneys. PLoS One 14, 2019. DOI: 10.1371/journal.pone.0225152.
 124.Madamanchi NR, Vendrov A, Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25: 29‐38, 2005. DOI: 10.1161/01.ATV.0000150649.39934.13.
 125.Majumder A, Singh M, George AK, Behera J, Tyagi N, Tyagi SC. Hydrogen sulfide improves postischemic neoangiogenesis in the hind limb of cystathionine‐β‐synthase mutant mice via PPAR‐γ/VEGF axis. Physiol Rep 6, 2018. DOI: 10.14814/phy2.13858.
 126.Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhoták Š, Meng QH, Wang R. Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127: 2523‐2534, 2013. DOI: 10.1161/CIRCULATIONAHA.113.002208.
 127.Mikami Y, Shibuya N, Ogasawara Y, Kimura H. Hydrogen sulfide is produced by cystathionine γ‐lyase at the steady‐state low intracellular Ca2+ concentrations. Biochem Biophys Res Commun 431: 131‐135, 2013. DOI: 10.1016/j.bbrc.2013.01.010.
 128.Mistry RK, Brewer AC. Redox regulation of gasotransmission in the vascular system: A focus on angiogenesis. Free Radic Biol Med 108: 500‐516, 2017. DOI: 10.1016/j.freeradbiomed.2017.04.025.
 129.Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 20: 1126‐1167, 2014. DOI: 10.1089/ars.2012.5149.
 130.Módis K, Bos EM, Calzia E, Van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II Pathophysiological and therapeutic aspects. Br. J. Pharmacol 171: 2123‐2146, 2014.
 131.Módis K, Coletta C, Erdélyi K, Papapetropoulos A, Szabo C. Intramitochondrial hydrogen sulfide production by 3‐mercaptopyruvate sulfurtransferase maintains mitochondrial electron flow and supports cellular bioenergetics. FASEB J 27: 601‐611, 2013. DOI: 10.1096/fj.12‐216507.
 132.Moloney JN, Cotter TG. ROS signalling in the biology of cancer. Semin Cell Dev Biol 80: 50‐64, 2018. DOI: 10.1016/j.semcdb.2017.05.023.
 133.Moreau R, Komeichi H, Kirstetter P, Ohsuga M, Cailmail S, Lebrec D. Altered control of vascular tone by adenosine triphosphate‐sensitive potassium channels in rats with cirrhosis. Gastroenterology 106: 1016‐1023, 1994. DOI: 10.1016/0016‐5085(94)90762‐5.
 134.Mun J, Kang H‐M, Jung J, Park C. Role of hydrogen sulfide in cerebrovascular alteration during aging. Arch Pharm Res 42: 446‐454, 2019. DOI: 10.1007/s12272‐019‐01135‐y.
 135.Murata T, Sato T, Kamoda T, Moriyama H, Kumazawa Y, Hanada N. Differential susceptibility to hydrogen sulfide‐induced apoptosis between PHLDA1‐overexpressing oral cancer cell lines and oral keratinocytes: Role of PHLDA1 as an apoptosis suppressor. Exp Cell Res 320: 247‐257, 2014. DOI: 10.1016/j.yexcr.2013.10.023.
 136.Mustafa AK, Gadalla MM, Sen N, Kim S, Mu W, Sadia K, Barrow RK, Yang G, Wang R, Snyder SH, Liang M, Jin S, Wu D, Wang M, Zhu Y, Zhao W, Ndisang JF, Wang R, Tang D, Santschi PH. Modulation of endogenous production of H2S in rat tissues. J Chromatogr A 883: 305‐309, 2003. DOI: 10.1126/scisignal.2000464.H.
 137.Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH. Hydrogen sulfide as endothelium‐derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109: 1259‐1268, 2011. DOI: 10.1161/CIRCRESAHA.111.240242.
 138.Muyzer G, Stams AJM. The ecology and biotechnology of sulphate‐reducing bacteria. Nat Rev Microbiol 6: 441‐454, 2008. DOI: 10.1038/nrmicro1892.
 139.Muzaffar S, Jeremy JY, Sparatore A, Del Soldato P, Angelini GD, Shukla N. H2S‐donating sildenafil (ACS6) inhibits superoxide formation and gp91 phox expression in arterial endothelial cells: Role of protein kinases A and G. Br J Pharmacol 155: 984‐994, 2008. DOI: 10.1038/bjp.2008.326.
 140.Mys LA, Strutynska NA, Goshovska YV, Sagach VF. Stimulation of the endogenous hydrogen sulfide synthesis suppresses oxidative–nitrosative stress and restores endothelial‐dependent vasorelaxation in old rats. Can J Physiol Pharmacol 98: 275‐281, 2020. DOI: 10.1139/cjpp‐2019‐0411.
 141.Nagy P, Dóka É, Ida T, Akaike T. Measuring reactive sulfur species and thiol oxidation states: Challenges and cautions in relation to alkylation‐based protocols. Antioxid Redox Signal 33: 1174‐1189, 2020. DOI: 10.1089/ars.2020.8077.
 142.Naik JS, Osmond JM, Walker BR, Kanagy NL. Hydrogen sulfide‐induced vasodilation mediated by endothelial TRPV4 channels. Am J Physiol Circ Physiol 311: H1437‐H1444, 2016. DOI: 10.1152/ajpheart.00465.2016.
 143.Nakamura N, Lin HC, McSweeney CS, MacKie RI, Rex Gaskins H. Mechanisms of microbial hydrogen disposal in the human colon and implications for health and disease. Annu Rev Food Sci Technol 1: 363‐395, 2010. DOI: 10.1146/
 144.Nath N, Prasad HK, Kumar M. Cerebroprotective effects of hydrogen sulfide in homocysteine‐induced neurovascular permeability: Involvement of oxidative stress, arginase, and matrix metalloproteinase‐9. J Cell Physiol 234: 3007‐3019, 2019. DOI: 10.1002/jcp.27120.
 145.Netz DJA, Stith CM, Stümpfig M, Köpf G, Vogel D, Genau HM, Stodola JL, Lill R, Burgers PMJ, Pierik AJ. Eukaryotic DNA polymerases require an iron‐sulfur cluster for the formation of active complexes. Nat Chem Biol 8: 125‐132, 2012. DOI: 10.1038/nchembio.721.
 146.Nicholson CK, Lambert JP, Molkentin JD, Sadoshima J, Calvert JW. Thioredoxin 1 is essential for sodium sulfide‐mediated cardioprotection in the setting of heart failure. Arterioscler Thromb Vasc Biol 33: 744‐751, 2013. DOI: 10.1161/ATVBAHA.112.300484.
 147.Norris EJ, Feilen N, Nguyen NH, Culberson CR, Shin MC, Fish M, Clemens MG. Hydrogen sulfide modulates sinusoidal constriction and contributes to hepatic micorcirculatory dysfunction during endotoxemia. Am J Physiol Gastrointest Liver Physiol 304: G1070‐G1078, 2013. DOI: 10.1152/ajpgi.00395.2012.
 148.Norris EJ, Larion S, Culberson CR, Clemens MG. Hydrogen sulfide differentially affects the hepatic vasculature in response to phenylephrine and endothelin 1 during endotoxemia. Shock 39: 168‐175, 2013. DOI: 10.1097/SHK.0b013e3182736688.
 149.Okamoto M, Ishizaki T, Kimura T. Protective effect of hydrogen sulfide on pancreatic beta‐cells. Nitric Oxide 46: 32‐36, 2015. DOI: 10.1016/j.niox.2014.11.007.
 150.Oláh G, Módis K, Törö G, Hellmich MR, Szczesny B, Szabo C. Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochem Pharmacol 149: 186‐204, 2018. DOI: 10.1016/j.bcp.2017.10.011.
 151.Olas B, Kontek B. The possible role of hydrogen sulfide as a modulator of hemostatic parameters of plasma. Chem Biol Interact 220: 20‐24, 2014. DOI: 10.1016/j.cbi.2014.06.001.
 152.Olson KR. Hydrogen sulfide as an oxygen sensor. Antioxidants Redox Signal 22: 377‐397, 2015. DOI: 10.1089/ars.2014.5930.
 153.Papapetropoulos A, Pyriochou A, Altaany Z, Yang G, Marazioti A, Zhou Z, Jeschke MG, Branski LK, Herndon DN, Wang R, Szabo C. Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci 106: 21972‐21977, 2009. DOI: 10.1073/pnas.0908047106.
 154.Peng YJ, Makarenko VV, Gridina A, Chupikova I, Zhang X, Kumar GK, Fox AP, Prabhakar NR. H2S mediates carotid body response to hypoxia but not anoxia. Respir Physiol Neurobiol 259: 75‐85, 2019. DOI: 10.1016/j.resp.2018.08.001.
 155.Pérez‐Torres I, Soto ME, Castrejón‐Tellez V, Rubio‐Ruiz ME, Manzano Pech L, Guarner‐Lans V. Oxidative, reductive, and nitrosative stress effects on epigenetics and on posttranslational modification of enzymes in cardiometabolic diseases. Oxid Med Cell Longev 2020: 8819719, 2020. DOI: 10.1155/2020/8819719.
 156.Peter EA, Shen X, Shah SH, Pardue S, Glawe JD, Zhang WW, Reddy P, Akkus NI, Varma J, Kevil CG. Plasma free H2S levels are elevated in patients with cardiovascular disease. J Am Heart Assoc 2: e000387, 2013. DOI: 10.1161/JAHA.113.000387.
 157.Polhemus DJ, Kondo K, Bhushan S, Bir SC, Kevil CG, Murohara T, Lefer DJ, Calvert JW. Hydrogen sulfide attenuates cardiac dysfunction after heart failure via induction of angiogenesis. Circ Hear Fail 6: 1077‐1086, 2013. DOI: 10.1161/CIRCHEARTFAILURE.113.000299.
 158.Prabhakar NR, Peng Y‐J, Yuan G, Nanduri J. Reactive oxygen radicals and gaseous transmitters in carotid body activation by intermittent hypoxia. Cell Tissue Res 372: 427‐431, 2018. DOI: 10.1007/s00441‐018‐2807‐0.
 159.Rajendran S, Shen X, Glawe J, Kolluru GK, Kevil CG. Nitric oxide and hydrogen sulfide regulation of ischemic vascular growth and remodeling. Compr Physiol 9: 1213‐1247, 2019. DOI: 10.1002/cphy.c180026.
 160.Renga B, Bucci M, Cipriani S, Carino A, Monti MC, Zampella A, Gargiulo A, d'Emmanuele di Villa Bianca R, Distrutti E, Fiorucci S. Cystathionine γ‐lyase, a H2S‐generating enzyme, is a GPBAR1‐regulated gene and contributes to vasodilation caused by secondary bile acids. Am J Physiol Circ Physiol 309: H114‐H126, 2015. DOI: 10.1152/ajpheart.00087.2015.
 161.Rho S‐S, Ando K, Fukuhara S. Dynamic regulation of vascular permeability by vascular endothelial cadherin‐mediated endothelial cell‐cell junctions. J Nippon Med Sch 84: 148‐159, 2017. DOI: 10.1272/jnms.84.148.
 162.Riggs JL, Pace CE, Ward HH, Gonzalez Bosc LV, Rios L, Barrera A, Kanagy NL. Intermittent hypoxia exacerbates increased blood pressure in rats with chronic kidney disease. Am J Physiol Renal Physiol 315: F927‐F941, 2018. DOI: 10.1152/ajprenal.00420.2017.
 163.Rios ECS, Szczesny B, Soriano FG, Olah G, Szabo C. Hydrogen sulfide attenuates cytokine production through the modulation of chromatin remodeling. Int J Mol Med 35: 1741‐1746, 2015. DOI: 10.3892/ijmm.2015.2176.
 164.Runyon BA, Squier S, Borzio M. Translocation of gut bacteria in rats with cirrhosis to mesenteric lymph nodes partially explains the pathogenesis of spontaneous bacterial peritonitis. J Hepatol 21: 792‐796, 1994. DOI: 10.1016/S0168‐8278(94)80241‐6.
 165.Searcy DG, Whitehead JP, Maroney MJ. Interaction of Cu, Zn superoxide dismutase with hydrogen sulfide. Arch Biochem Biophys 318: 251‐263, 1995. DOI: 10.1006/abbi.1995.1228.
 166.Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH. Hydrogen sulfide‐linked sulfhydration of NF‐κB mediates its antiapoptotic actions. Mol Cell 45: 13‐24, 2012. DOI: 10.1016/j.molcel.2011.10.021.
 167.Sena CM, Leandro A, Azul L, Seiça R, Perry G. Vascular oxidative stress: Impact and therapeutic approaches. Front Physiol 9: 1668, 2018. DOI: 10.3389/fphys.2018.01668.
 168.Sheibani L, Lechuga TJ, Zhang H, Hameed A, Wing DA, Kumar S, Rosenfeld CR, Chen D. Augmented H2S production via cystathionine‐beta‐synthase upregulation plays a role in pregnancy‐associated uterine vasodilation†. Biol Reprod 96: 664‐672, 2017. DOI: 10.1095/biolreprod.116.143834.
 169.Shen X, Carlström M, Borniquel S, Jädert C, Kevil CG, Lundberg JO. Microbial regulation of host hydrogen sulfide bioavailability and metabolism. Free Radic Biol Med 60: 195‐200, 2013. DOI: 10.1016/j.freeradbiomed.2013.02.024.
 170.Shen X, Chakraborty S, Dugas TR, Kevil CG. Hydrogen sulfide measurement using sulfide dibimane: Critical evaluation with electrospray ion trap mass spectrometry. Nitric oxide Biol Chem 41: 97‐104, 2014. DOI: 10.1016/j.niox.2014.06.002.
 171.Shen X, Kolluru GK, Yuan S, Kevil CG. Measurement of H2S in vivo and in vitro by the monobromobimane method. Methods Enzymol 554: 31‐45, 2015. DOI: 10.1016/bs.mie.2014.11.039.
 172.Shen X, Pattillo CB, Pardue S, Bir SC, Wang R, Kevil CG. Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radic Biol Med 50: 1021‐1031, 2011. DOI: 10.1016/j.freeradbiomed.2011.01.025.
 173.Shen X, Peter EA, Bir S, Wang R, Kevil CG. Analytical measurement of discrete hydrogen sulfide pools in biological specimens. Free Radic Biol Med 52: 2276‐7783, 2012. DOI: 10.1016/j.freeradbiomed.2012.04.007.
 174.Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H. Vascular endothelium expresses 3‐mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146: 623‐626, 2009. DOI: 10.1093/jb/mvp111.
 175.Singh S, Lin H. Hydrogen sulfide in physiology and diseases of the digestive tract. Microorganisms 3: 866‐889, 2015. DOI: 10.3390/microorganisms3040866.
 176.Singh S, Padovani D, Leslie RA, Chiku T, Banerjee R. Relative contributions of cystathionine β‐synthase and γ‐cystathionase to H2S biogenesis via alternative trans‐sulfuration reactions. J Biol Chem 284: 22457‐22466, 2009. DOI: 10.1074/jbc.M109.010868.
 177.Singh SV, Powolny AA, Stan SD, Xiao D, Arlotti JA, Warin R, Hahm ER, Marynowski SW, Bommareddy A, Potter DM, Dhir R. Garlic constituent diallyl trisulfide prevents development of poorly differentiated prostate cancer and pulmonary metastasis multiplicity in TRAMP mice. Cancer Res 68: 9503‐9511, 2008. DOI: 10.1158/0008‐5472.CAN‐08‐1677.
 178.Singleton PA, Chatchavalvanich S, Fu P, Xing J, Birukova AA, Fortune JA, Klibanov AM, Garcia JGN, Birukov KG. Akt‐mediated transactivation of the s1p1 receptor in caveolin‐enriched microdomains regulates endothelial barrier enhancement by oxidized phospholipids. Circ Res 104: 978‐986, 2009. DOI: 10.1161/CIRCRESAHA.108.193367.
 179.Sonke E, Verrydt M, Postenka CO, Pardhan S, Willie CJ, Mazzola CR, Hammers MD, Pluth MD, Lobb I, Power NE, Chambers AF, Leong HS, Sener A. Inhibition of endogenous hydrogen sulfide production in clear‐cell renal cell carcinoma cell lines and xenografts restricts their growth, survival and angiogenic potential. Nitric Oxide ‐ Biol Chem 49: 26‐39, 2015. DOI: 10.1016/j.niox.2015.06.001.
 180.Suarez F, Furne J, Springfield J, Levitt M. Production and elimination of sulfur‐containing gases in the rat colon. Am J Physiol ‐ Gastrointest Liver Physiol 274: 37‐44, 1998. DOI: 10.1152/ajpgi.1998.274.4.g727.
 181.Sun X, Wang W, Dai J, Jin S, Huang J, Guo C, Wang C, Pang L, Wang Y. A long‐term and slow‐releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury. Sci Rep 7: 3541, 2017. DOI: 10.1038/s41598‐017‐03941‐0.
 182.Suzuki K, Olah G, Modis K, Coletta C, Kulp G, Gerö D, Szoleczky P, Chang T, Zhou Z, Wu L, Wang R, Papapetropoulos A, Szabo C. Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc Natl Acad Sci U S A 108: 13829‐13834, 2011. DOI: 10.1073/pnas.1105121108.
 183.Suzuki K, Sagara M, Aoki C, Tanaka S, Aso Y. Clinical implication of plasma hydrogen sulfide levels in Japanese patients with type 2 diabetes. Intern Med 56: 17‐21, 2017. DOI: 10.2169/internalmedicine.56.7403.
 184.Szabo C. A timeline of hydrogen sulfide (H2S) research: From environmental toxin to biological mediator. Biochem Pharmacol 149: 5‐19, 2018. DOI: 10.1016/j.bcp.2017.09.010.
 185.Szabo C, Coletta C, Chao C, Módis K, Szczesny B, Papapetropoulos A, Hellmich MR. Tumor‐derived hydrogen sulfide, produced by cystathionine‐β‐synthase, stimulates bioenergetics, cell proliferation, and angiogenesis in colon cancer. Proc Natl Acad Sci U S A 110: 12474‐12479, 2013. DOI: 10.1073/pnas.1306241110.
 186.Szabó C, Papapetropoulos A. Hydrogen sulphide and angiogenesis: Mechanisms and applications. Br J Pharmacol 164: 853‐865, 2011. DOI: 10.1111/j.1476‐5381.2010.01191.x.
 187.Szabo C, Papapetropoulos A. International union of basic and clinical pharmacology. CII: Pharmacological modulation of H2S levels: H2S donors and H2S biosynthesis inhibitors. Pharmacol Rev 69: 497‐564, 2017. DOI: 10.1124/pr.117.014050.
 188.Szijártó IA, Markó L, Filipovic MR, Miljkovic JL, Tabeling C, Tsvetkov D, Wang N, Rabelo LA, Witzenrath M, Diedrich A, Tank J, Akahoshi N, Kamata S, Ishii I, Gollasch M. Cystathionine γ‐lyase–produced hydrogen sulfide controls endothelial NO bioavailability and blood pressure. Hypertension 71: 1210‐1217, 2018. DOI: 10.1161/HYPERTENSIONAHA.117.10562.
 189.Taguchi T, Awata S, Nishioka M, Arakawa Y, Shiraishi N, Ryu S, Kumazawa H, Takano YT, Nakayama K, Yagyu K, Kawamura M, Sato A. Elevation of cystathionine γ‐lyase activity in the serum of rats treated with a single dose of carbon tetrachloride. Ind Health 33: 199‐205, 1995. DOI: 10.2486/indhealth.33.199.
 190.Tan B, Jin S, Sun J, Gu Z, Sun X, Zhu Y, Huo K, Cao Z, Yang P, Xin X, Liu X, Pan L, Qiu F, Jiang J, Jia Y, Ye F, Xie Y, Zhu YZ. New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC‐MS/MS. Sci Rep 7: 46278, 2017. DOI: 10.1038/srep46278.
 191.Tan G, Pan S, Li J, Dong X, Kang K, Zhao M, Jiang X, Kanwar JR, Qiao H, Jiang H, Sun X. Hydrogen sulfide attenuates carbon tetrachloride‐induced hepatotoxicity, liver cirrhosis and portal hypertension in rats. PLoS One 6: 0025943, 2011. DOI: 10.1371/journal.pone.0025943.
 192.Tang G, Yang G, Jiang B, Ju Y, Wu L, Wang R. H2S is an endothelium‐derived hyperpolarizing factor. Antioxid Redox Signal 19: 1634‐1646, 2013. DOI: 10.1089/ars.2012.4805.
 193.Tang G, Zhang L, Yang G, Wu L, Wang R. Hydrogen sulfide‐induced inhibition of L‐type Ca2+ channels and insulin secretion in mouse pancreatic beta cells. Diabetologia 56: 533‐541, 2013. DOI: 10.1007/s00125‐012‐2806‐8.
 194.Thannickal VJ, Fanburg BL. Reactive oxygen species in cell signaling. Am. J. Physiol. ‐ Lung Cell. Mol. Physiol. 279: 1005‐1028, 2000.
 195.Tiong CX, Lu M, Bian JS. Protective effect of hydrogen sulphide against 6‐OHDA‐induced cell injury in SH‐SY5Y cells involves PKC/PI3K/Akt pathway. Br J Pharmacol 161: 467‐480, 2010. DOI: 10.1111/j.1476‐5381.2010.00887.x.
 196.Tomasova L, Konopelski P, Ufnal M. Gut bacteria and hydrogen Sulfide: The new old players in circulatory system homeostasis. Molecules 21: 1558, 2016. DOI: 10.3390/molecules21111558.
 197.Tonelli C, Chio IIC, Tuveson DA. Transcriptional regulation by Nrf2. Antioxid Redox Signal 29: 1727‐1745, 2018. DOI: 10.1089/ars.2017.7342.
 198.Toohey JI. Sulfur signaling: Is the agent sulfide or sulfane? Anal Biochem 413: 1‐7, 2011. DOI: 10.1016/j.ab.2011.01.044.
 199.Umaru B, Pyriochou A, Kotsikoris V, Papapetropoulos A, Topouzis S. ATP‐sensitive potassium channel activation induces angiogenesis in vitro and in vivo. J Pharmacol Exp Ther 354: 79‐87, 2015. DOI: 10.1124/jpet.114.222000.
 200.Van Den Born JC, Hammes HP, Greffrath W, Van Goor H, Hillebrands JL. Gasotransmitters in vascular complications of diabetes. Diabetes 65: 331‐345, 2016. DOI: 10.2337/db15‐1003.
 201.Van Den Born JC, Mencke R, Conroy S, Zeebregts CJ, Van Goor H, Hillebrands JL. Cystathionine γ‐lyase is expressed in human atherosclerotic plaque microvessels and is involved in micro‐angiogenesis. Sci Rep 6: 1‐13, 2016. DOI: 10.1038/srep34608.
 202.Vandini E, Ottani A, Zaffe D, Calevro A, Canalini F, Cavallini GM, Rossi R, Guarini S, Giuliani D. Mechanisms of hydrogen sulfide against the progression of severe Alzheimer's disease in transgenic mice at different ages. Pharmacology 103: 93‐100, 2019. DOI: 10.1159/000494113.
 203.Volpe CMO, Villar‐Delfino PH, Dos Anjos PMF, Nogueira‐Machado JA. Cellular death, reactive oxygen species (ROS) and diabetic complications. Cell Death Dis 9: 1198, 2018. DOI: 10.1038/s41419‐017‐0135‐z.
 204.Wallace JL, Ferraz JGP, Muscara MN. Hydrogen sulfide: An endogenous mediator of resolution of inflammation and injury. Antioxid Redox Signal 17: 58‐67, 2012. DOI: 10.1089/ars.2011.4351.
 205.Wallace JL, Motta JP, Buret AG. Hydrogen sulfide: An agent of stability at the microbiome‐mucosa interface. Am. J. Physiol. ‐ Gastrointest. Liver Physiol. 314: G143‐G149, 2018.
 206.Wang G, Li W, Chen Q, Jiang Y, Lu X, Zhao X. Hydrogen sulfide accelerates wound healing in diabetic rats. Int J Clin Exp Pathol 8: 5097‐5104, 2015.
 207.Wang GG, Li W. Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice. Iran J Basic Med Sci 22: 1192‐1197, 2019. DOI: 10.22038/ijbms.2019.36551.8709.
 208.Wang M, Yan J, Cao X, Hua P, Li Z. Hydrogen sulfide modulates epithelial‐mesenchymal transition and angiogenesis in non‐small cell lung cancer via HIF‐1α activation. Biochem Pharmacol 172: 113775, 2020. DOI: 10.1016/j.bcp.2019.113775.
 209.Wang MJ, Cai WJ, Li N, Ding YJ, Chen Y, Zhu YC. The hydrogen sulfide donor NaHS promotes angiogenesis in a rat model of hind limb ischemia. Antioxidants Redox Signal 12: 1065‐1077, 2010. DOI: 10.1089/ars.2009.2945.
 210.Wang R. Shared signaling pathways among gasotransmitters. Proc Natl Acad Sci 109: 8801‐8802, 2012. DOI: 10.1073/pnas.1206646109.
 211.Wang R, Li K, Wang H, Jiao H, Wang X, Zhao J, Lin H. Endogenous CSE/hydrogen sulfide systemregulates the effects of glucocorticoids and insulin on muscle protein synthesis. Oxid Med Cell Longev 2019: 9752698, 2019. DOI: 10.1155/2019/9752698.
 212.Wang T, Chiang ET, Moreno‐Vinasco L, Lang GD, Pendyala S, Samet JM, Geyh AS, Breysse PN, Chillrud SN, Natarajan V, Garcia JGN. Particulate matter disrupts human lung endothelial barrier integrity via ROS‐ and p38 MAPK‐dependent pathways. Am J Respir Cell Mol Biol 42: 442‐449, 2010. DOI: 10.1165/rcmb.2008‐0402OC.
 213.Wang T, Wang L, Zaidi SR, Sammani S, Siegler J, Moreno‐Vinasco L, Mathew B, Natarajan V, Garcia JGN. Hydrogen sulfide attenuates particulate matter‐induced human lung endothelial barrier disruption via combined reactive oxygen species scavenging and Akt activation. Am J Respir Cell Mol Biol 47: 491‐496, 2012. DOI: 10.1165/rcmb.2011‐0248OC.
 214.Wang WJ, Cai GY, Ning YC, Cui J, Hong Q, Bai XY, Xu XM, Bu R, Sun XF, Chen XM. Hydrogen sulfide mediates the protection of dietary restriction against renal senescence in aged F344 rats. Sci Rep 6: 30292, 2016. DOI: 10.1038/srep30292.
 215.Wang Y, Huang J, Chen W, Wang R, Kao M, Pan Y, Chan S, Tsai K, Kung H, Lin K, Wang L. Dysregulation of cystathionine γ‐lyase promotes prostate cancer progression and metastasis. EMBO Rep 20: E45986, 2019. DOI: 10.15252/embr.201845986.
 216.Wang Y, Jia J, Ao G, Hu L, Liu H, Xiao Y, Du H, Alkayed NJ, Liu C‐F, Cheng J. Hydrogen sulfide protects blood‐brain barrier integrity following cerebral ischemia. J Neurochem 129: 827‐838, 2014. DOI: 10.1111/jnc.12695.
 217.Wei W, Wang C, Li D. The content of hydrogen sulfide in plasma of cirrhosis rats combined with portal hypertension and the correlation with indexes of liver function and liver fibrosis. Exp Ther Med 14: 5022‐5026, 2017. DOI: 10.3892/etm.2017.5133.
 218.Wei Z, Shan Y, Tao L, Liu Y, Zhu Z, Liu Z, Wu Y, Chen W, Wang A, Lu Y. Diallyl trisulfides, a natural histone deacetylase inhibitor, attenuate HIF‐1α synthesis, and decreases breast cancer metastasis. Mol Carcinog 56: 2317‐2331, 2017. DOI: 10.1002/mc.22686.
 219.Weis SM, Cheresh DA. Tumor angiogenesis: Molecular pathways and therapeutic targets. Nat Med 17: 1359‐1370, 2011. DOI: 10.1038/nm.2537.
 220.Wen Y‐D, Wang H, Kho S‐H, Rinkiko S, Sheng X, Shen H‐M, Zhu Y‐Z. Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress. PLoS One 8: e53147, 2013. DOI: 10.1371/journal.pone.0053147.
 221.Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, Ehmke H. Immune mechanisms in arterial hypertension. J Am Soc Nephrol 27: 677‐686, 2016. DOI: 10.1681/ASN.2015050562.
 222.Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, Shore AC. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53: 1722‐1726, 2010. DOI: 10.1007/s00125‐010‐1761‐5.
 223.Wiest R, Garcia‐Tsao G. Bacterial translocation (BT) in cirrhosis. Hepatology 41: 422‐433, 2005. DOI: 10.1002/hep.20632.
 224.Wiliński B, Wiliński J, Somogyi E, Piotrowska J, Opoka W. Metformin raises hydrogen sulfide tissue concentrations in various mouse organs. Pharmacol Reports 65: 737‐742, 2013. DOI: 10.1016/S1734‐1140(13)71053‐3.
 225.Wu D, Hu Q, Liu X, Pan L, Xiong Q, Zhu YZ. Hydrogen sulfide protects against apoptosis under oxidative stress through SIRT1 pathway in H9c2 cardiomyocytes. Nitric Oxide ‐ Biol Chem 46: 204‐212, 2015. DOI: 10.1016/j.niox.2014.11.006.
 226.Wu D, Li J, Zhang Q, Tian W, Zhong P, Liu Z, Wang HH, Wang HH, Ji A, Li Y. Exogenous hydrogen sulfide regulates the growth of human thyroid carcinoma cells. Oxid Med Cell Longev 2019: 6927298, 2019. DOI: 10.1155/2019/6927298.
 227.Wu D, Li M, Tian W, Wang S, Cui L, Li H, Wang H, Ji A, Li Y. Hydrogen sulfide acts as a double‐edged sword in human hepatocellular carcinoma cells through EGFR/ERK/MMP‐2 and PTEN/AKT signaling pathways. Sci Rep 7: 5134, 2017. DOI: 10.1038/s41598‐017‐05457‐z.
 228.Wu D, Wang J, Li H, Xue M, Ji A, Li Y. Role of hydrogen sulfide in ischemia‐reperfusion injury. Oxid Med Cell Longev 2015: 186908, 2015. DOI: 10.1155/2015/186908.
 229.Wu J, Chen A, Zhou Y, Zheng S, Yang Y, An Y, Xu K, He H, Kang J, Luckanagul JA, Xian M, Xiao J, Wang Q. Novel H2S‐releasing hydrogel for wound repair via in situ polarization of M2 macrophages. Biomaterials 222: E119398, 2019. DOI: 10.1016/j.biomaterials.2019.119398.
 230.Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y, Meng G, Han Y, Wang Y, Liu G, Moore PK, Wang X, Wang H, Zhang Z, Yu Y, Ferro A, Huang Z, Ji Y. Hydrogen sulfide induces Keap1 S‐sulfhydration and suppresses diabetes‐accelerated atherosclerosis via Nrf2 activation. Diabetes 65: 3171‐3184, 2016. DOI: 10.2337/db16‐0020.
 231.Xin H, Wang M, Tang W, Shen Z, Miao L, Wu W, Li C, Wang X, Xin X, Zhu YZ. Hydrogen sulfide attenuates inflammatory hepcidin by reducing IL‐6 secretion and promoting SIRT1‐mediated STAT3 deacetylation. Antioxid Redox Signal 24: 70‐83, 2016. DOI: 10.1089/ars.2015.6315.
 232.Xiong T, Liu XW, Huang XL, Xu XF, Xie WQ, Zhang SJ, Tu J. Tristetraprolin: A novel target of diallyl disulfide that inhibits the progression of breast cancer. Oncol Lett 15: 7817‐7827, 2018. DOI: 10.3892/ol.2018.8299.
 233.Xu X, Yan Q, Liu X, Li P, Li X, Chen Y, Simoncini T, Liu J, Zhu D, Fu X. 17β‐Estradiol nongenomically induces vascular endothelial H2S release by promoting phosphorylation of cystathionine γ‐lyase. J Biol Chem 294: 15577‐15592, 2019. DOI: 10.1074/jbc.RA119.008597.
 234.Xu Y, Du H‐P, Li J, Xu R, Wang Y‐L, You S‐J, Liu H, Wang F, Cao Y‐J, Liu C‐F, Hu L‐F. Statins upregulate cystathionine γ‐lyase transcription and H2S generation via activating Akt signaling in macrophage. Pharmacol Res 87: 18‐25, 2014. DOI: 10.1016/j.phrs.2014.06.006.
 235.Xu ZS, Wang XY, Xiao DM, Hu LF, Lu M, Wu ZY, Bian JS. Hydrogen sulfide protects MC3T3‐E1 osteoblastic cells against H 2O2‐induced oxidative damage‐implications for the treatment of osteoporosis. Free Radic Biol Med 50: 1314‐1323, 2011. DOI: 10.1016/j.freeradbiomed.2011.02.016.
 236.Yang G, Pei Y, Teng H, Cao Q, Wang R. Specificity protein‐1 as a critical regulator of human cystathionine γ‐lyase in smooth muscle cells. J Biol Chem 286: 26450‐26460, 2011. DOI: 10.1074/jbc.M111.266643.
 237.Yang G, Wu L, Bryan S, Khaper N, Mani S, Wang R. Cystathionine gamma‐lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc Res 86: 487‐495, 2010. DOI: 10.1093/cvr/cvp420.
 238.Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine γ‐lyase. Science (80‐ ) 322: 587‐590, 2008. DOI: 10.1126/science.1162667.
 239.Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R. H2S as a physiologic vasorelaxant: Hypertension in mice with deletion of cystathionine ‐lyase. Science (80‐ ) 322: 587‐590, 2008. DOI: 10.1126/science.1162667.
 240.Yang G, Zhao K, Ju Y, Mani S, Cao Q, Puukila S, Khaper N, Wu L, Wang R. Hydrogen sulfide protects against cellular senescence via s‐sulfhydration of keap1 and activation of Nrf2. Antioxidants Redox Signal 18: 1906‐1919, 2013. DOI: 10.1089/ars.2012.4645.
 241.Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y, Zandi E, Chen W, Zhou Y, Shi S. Hydrogen sulfide promotes Tet1‐ and Tet2‐mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity 43: 251‐263, 2015. DOI: 10.1016/j.immuni.2015.07.017.
 242.Yin J, Tu C, Zhao J, Ou D, Chen G, Liu Y, Xiao X. Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti‐oxidative, anti‐inflammatory and anti‐apoptotic effects in rats. Brain Res 1491: 188‐196, 2013. DOI: 10.1016/j.brainres.2012.10.046.
 243.Yin P, Zhao C, Li Z, Mei C, Yao W, Liu Y, Li N, Qi J, Wang L, Shi Y, Qiu S, Fan J, Zha X. Sp1 is involved in regulation of cystathionine γ‐lyase gene expression and biological function by PI3K/Akt pathway in human hepatocellular carcinoma cell lines. Cell Signal 24: 1229‐1240, 2012. DOI: 10.1016/j.cellsig.2012.02.003.
 244.Yuan S, Pardue S, Shen X, Alexander JS, Orr AW, Kevil CG. Hydrogen sulfide metabolism regulates endothelial solute barrier function. Redox Biol 9: 157‐166, 2016. DOI: 10.1016/j.redox.2016.08.004.
 245.Yuan S, Yurdagul A, Peretik JM, Alfaidi M, Al Yafeai Z, Pardue S, Kevil CG, Orr AW. Cystathionine γ‐lyase modulates flow‐dependent vascular remodeling. Arterioscler Thromb Vasc Biol 38: 2126‐2136, 2019. DOI: 10.1161/ATVBAHA.118.311402.Cystathionine.
 246.Zhang D, Du J, Tang C, Huang Y, Jin H. H2S‐induced sulfhydration: Biological function and detection methodology. Front Pharmacol 8: 1‐13, 2017. DOI: 10.3389/fphar.2017.00608.
 247.Zhang D, Wang X, Chen S, Chen S, Yu W, Liu X, Yang G, Tao Y, Tang X, Bu D, Zhang H, Kong W, Tang C, Huang Y, Du J, Jin H. Endogenous hydrogen sulfide sulfhydrates IKKβ at cysteine 179 to control pulmonary artery endothelial cell inflammation. Clin Sci 133: 2045‐2059, 2019. DOI: 10.1042/CS20190514.
 248.Zhang H, Huang Y, Chen S, Tang C, Wang G, Du J, Jin H. Hydrogen sulfide regulates insulin secretion and insulin resistance in diabetes mellitus, a new promising target for diabetes mellitus treatment? A review. J Adv Res 27: 19‐30, 2021. DOI: 10.1016/j.jare.2020.02.013.
 249.Zhang H‐X, Liu S‐J, Tang X‐L, Duan G‐L, Ni X, Zhu X‐Y, Liu Y‐J, Wang C‐N. H2S attenuates LPS‐induced acute lung injury by reducing oxidative/nitrative stress and inflammation. Cell Physiol Biochem 40: 1603‐1612, 2016. DOI: 10.1159/000453210.
 250.Zhang JX, Pegoli W, Clemens MG. Endothelin‐1 induces direct constriction of hepatic sinusoids. Am J Physiol ‐ Gastrointest Liver Physiol 266, 1994. DOI: 10.1152/ajpgi.1994.266.4.g624.
 251.Zhang MW, Yang G, Zhou YF, Qian C, Mu MD, Ke Y, Qian ZM. Regulating ferroportin‐1 and transferrin receptor‐1 expression: A novel function of hydrogen sulfide. J Cell Physiol 234: 3158‐3169, 2019. DOI: 10.1002/jcp.27431.
 252.Zhang Y, Hou Y, Liu C, Li Y, Guo W, Wu JL, Xu D, You X, Pan Y, Chen Y. Identification of an adaptor protein that facilitates Nrf2‐Keap1 complex formation and modulates antioxidant response. Free Radic Biol Med 97: 38‐49, 2016. DOI: 10.1016/j.freeradbiomed.2016.05.017.
 253.Zhao H, Lu S, Chai J, Zhang Y, Ma X, Chen J, Guan Q, Wan M, Liu Y. Hydrogen sulfide improves diabetic wound healing in ob/ob mice via attenuating inflammation. J Diabetes Complications 31: 1363‐1369, 2017. DOI: 10.1016/j.jdiacomp.2017.06.011.
 254.Zhao W, Zhang J, Lu Y, Wang R. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20: 6008‐6016, 2001. DOI: 10.1093/emboj/20.21.6008.
 255.Zhao X, Liu L, An T, Xian M, Luckanagul JA, Su Z, Lin Y, Wang Q. A hydrogen sulfide‐releasing alginate dressing for effective wound healing. Acta Biomater 104: 85‐94, 2020. DOI: 10.1016/j.actbio.2019.12.032.
 256.Zhen Y, Pan W, Hu F, Wu H, Feng J, Zhang Y, Chen J. Exogenous hydrogen sulfide exerts proliferation/anti‐apoptosis/angiogenesis/migration effects via amplifying the activation of NF‐κB pathway in PLC/PRF/5 hepatoma cells. Int J Oncol 46: 2194‐2204, 2015. DOI: 10.3892/ijo.2015.2914.
 257.Zhen Y, Zhang W, Liu C, He J, Lu Y, Guo R, Feng J, Zhang Y, Chen J. Exogenous hydrogen sulfide promotes C6 glioma cell growth through activation of the p38 MAPK/ERK1/2‐COX‐2 pathways. Oncol Rep 34: 2413‐2422, 2015. DOI: 10.3892/or.2015.4248.
 258.Zheng J, Zhao T, Yuan Y, Hu N, Tang X. Hydrogen sulfide (H2S) attenuates uranium‐induced acute nephrotoxicity through oxidative stress and inflammatory response via Nrf2‐NF‐κB pathways. Chem Biol Interact 242: 353‐362, 2015. DOI: 10.1016/j.cbi.2015.10.021.
 259.Zuhra K, Tomé CS, Forte E, Vicente JB, Giuffrè A. The multifaceted roles of sulfane sulfur species in cancer‐associated processes. Biochim Biophys Acta ‐ Bioenerg 1862, 2021. DOI: 10.1016/j.bbabio.2020.148338.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Perenkita J. Mendiola, Jay S. Naik, Laura V. Gonzalez Bosc, Amy S. Gardiner, Aleksandr Birg, Nancy L. Kanagy. Hydrogen Sulfide Actions in the Vasculature. Compr Physiol 2021, 11: 2467-2488. doi: 10.1002/cphy.c200036