Comprehensive Physiology Wiley Online Library

Beta‐Cell Ion Channels and Their Role in Regulating Insulin Secretion

Full Article on Wiley Online Library


Beta cells of the pancreatic islet express many different types of ion channels. These channels reside in the β‐cell plasma membrane as well as subcellular organelles and their coordinated activity and sensitivity to metabolism regulate glucose‐dependent insulin secretion. Here, we review the molecular nature, expression patterns, and functional roles of many β‐cell channels, with an eye toward explaining the ionic basis of glucose‐induced insulin secretion. Our primary focus is on KATP and voltage‐gated Ca2+ channels as these primarily regulate insulin secretion; other channels in our view primarily help to sculpt the electrical patterns generated by activated β‐cells or indirectly regulate metabolism. Lastly, we discuss why understanding the physiological roles played by ion channels is important for understanding the secretory defects that occur in type 2 diabetes. © 2021 American Physiological Society. Compr Physiol 11:2525‐2545, 2021.

Figure 1. Figure 1. Shows a simulation performed using the Integrated Oscillator Model [IOM; 20] of β‐cell bursting in the steady state (e.g. in 11 mM glucose) to show the respective contributions of voltage‐gated Ca2+ channels (ICa), voltage‐dependent K+ channels (IK), slow Ca2+‐activated K+ channels (IK(Ca)) and ATP‐sensitive K+ channels (IK(ATP)) to slow (A) versus fast (B) bursting electrical activity (Vm). Simulations were performed by Dr. Isabella Marinelli, to whom we are grateful.

Figure 1. Shows a simulation performed using the Integrated Oscillator Model [IOM; 20] of β‐cell bursting in the steady state (e.g. in 11 mM glucose) to show the respective contributions of voltage‐gated Ca2+ channels (ICa), voltage‐dependent K+ channels (IK), slow Ca2+‐activated K+ channels (IK(Ca)) and ATP‐sensitive K+ channels (IK(ATP)) to slow (A) versus fast (B) bursting electrical activity (Vm). Simulations were performed by Dr. Isabella Marinelli, to whom we are grateful.
 1.Ainscow EK, Rutter GA. Mitochondrial priming modifies Ca2+ oscillations and insulin secretion in pancreatic islets. Biochem J 353: 175‐180, 2001. DOI: 10.1042/bj3530175.
 2.Ainscow EK, Rutter GA. Glucose‐stimulated oscillations in free cytosolic ATP concentration imaged in single islet B‐cells: Evidence for a Ca2+‐dependent mechanism. Diabetes 51: S162‐S170, 2002. DOI: 10.2337/diabetes.51.2007.s162.
 3.Akbulut Y, Gaunt HJ, Muraki K, Ludlow MJ, Amer MS, Bruns A, Vasudev NS, Radtke L, Willot M, Hahn S, Seitz T, Ziegler S, Christmann M, Beech DJ, Waldmann H. (−)‐Englerin A is a potent and selective activator of TRPC4 and TRPC5 calcium channels. Angew Chem Int Ed 54: 3787‐3791, 2015. DOI: 10.1002/anie.201411511.
 4.Arroyo G, Aldea M, Fuentealba J, Albillos A, Garcia AG. SNX482 selectively blocks P/Q Ca2+ channels and delays the inactivation of Na+ channels of chromaffin cells. Eur J Pharmacol 475: 11‐18, 2003. DOI: 10.1016/s0014‐2999(03)02084‐3.
 5.Ashcroft F, Rorsman P. Electrophysiology of the pancreatic beta‐cell. Prog Biophys Mol Biol 54: 87‐143, 1989. DOI: 10.1016/0079‐6107(89)90013‐8.
 6.Ashcroft FM. ATP‐sensitive potassium channelopathies: Focus on insulin secretion. J Clin Investig 115: 2047‐2058, 2005. DOI: 10.1172/JCI25495.
 7.Ashcroft FM, Harrison DE, Ashcroft SJH. Glucose induces closure of single potassium channels in isolated rat pancreatic β‐cells. Nature 312: 446‐448, 1984. DOI: 10.1038/312446a0.
 8.Ashcroft FM, Kelly RP, Smith PA. Two types of Ca channel in rat pancreatic β‐cells. Pflugers Arch 415: 504‐506, 1990. DOI: 10.1007/bf00373633.
 9.Ashcroft FM, Rorsman P. ATP‐sensitive K+ channels: A link between B‐cell metabolism and insulin secretion. Biochem Soc T 18: 109‐111, 1990. DOI: 10.1042/bst0180109.
 10.Atwater I, Dawson CM, Ribalet B, Rojas E. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta‐cell. J Physiol 288: 575‐588, 1979. DOI: 10.1113/jphysiol.1979.sp012714.
 11.Atwater I, Ribalet B, Rojas E. Cyclic changes in potential and resistance of the beta‐cell membrane induced by glucose in islets of Langerhans from mouse. J Physiol 278: 117‐139, 1978. DOI: 10.1113/jphysiol.1978.sp012296.
 12.Atwater I, Rosario L, Rojas E. Properties of the Ca‐activated K+ channel in pancreatic β‐cells. Cell Calcium 4: 451‐461, 1983. DOI: 10.1016/0143‐4160(83)90021‐0.
 13.Balamurugan K, Kavitha B, Yang Z, Mohan V, Radha V, Shyng S. Functional characterization of activating mutations in the sulfonylurea receptor 1 (ABCC8) causing neonatal diabetes mellitus in Asian Indian children. Pediatr Diabetes 20: 397‐407, 2019. DOI: 10.1111/pedi.12843.
 14.Barasch J, Kiss B, Prince A, Saiman L, Gruenert D, AI‐Awqati Q. Defective acidification of intracellular organelles in cystic fibrosis. Nature 352: 70‐73, 1991. DOI: 10.1038/352070a0.
 15.Barg S, Galvanovskis J, Gopel SO, Rorsman P, Eliasson L. Tight coupling between electrical activity and exocytosis in mouse glucagon‐secreting alpha‐cells. Diabetes 49: 1500‐1510, 2000. DOI: 10.2337/diabetes.49.9.1500.
 16.Barg S, Ma X, Eliasson L, Galvanovskis J, Göpel SO, Obermüller S, Platzer J, Renström E, Trus M, Atlas D, Striessnig J, Rorsman P. Fast exocytosis with few Ca2+ channels in insulin‐secreting mouse pancreatic B cells. Biophys J 81: 3308, 3323, 2001. DOI: 10.1016/s0006‐3495(01)75964‐4.
 17.Bari MR, Akbar S, Eweida M, Kühn FJP, Gustafsson AJ, Lückhoff A, Islam MdS. H2O2‐induced Ca2+ influx and its inhibition by N‐(p‐amylcinnamoyl) anthranilic acid in the β‐cells: Involvement of TRPM2 channels. J Cell Mol Med 13: 3260‐3267, 2009. DOI: 10.1111/j.1582‐4934.2009.00737.x.
 18.Barnett DW, Pressel DM, Misler S. Voltage‐dependent Na+ and Ca2+ currents in human pancreatic islet β‐cells: Evidence for roles in the generation of action potentials and insulin secretion. Pflugers Arch 431: 272‐282, 1995. DOI: 10.1007/bf00410201.
 19.Berger HA, Anderson MP, Gregory RJ, Thompson S, Howard PW, Maurer RA, Mulligan R, Smith AE, Welsh MJ. Identification and regulation of the cystic fibrosis transmembrane conductance regulator‐generated chloride channel. J Clin Invest 88: 1422‐1431, 1991. DOI: 10.1172/jci115450.
 20.Bertram R, Satin LS, Sherman AS. Closing in on the mechanisms of pulsatile insulin secretion. Diabetes 67: 351‐359, 2018. DOI: 10.2337/dbi17‐0004.
 21.Bertram R, Sherman A, Satin LS. Metabolic and electrical oscillations: Partners in controlling pulsatile insulin secretion. Am J Physiol Endocrinol Metab 293: E890‐E900, 2007. DOI: 10.1152/ajpendo.00359.2007.
 22.Best L. Glucose and a‐ketoisocaproate induce transient inward currents in rat pancreatic beta cells. Diabetologia 40: 1‐6, 1997. DOI: 10.1007/s001250050635.
 23.Best L, Brown P, Tomlinson S. Anion fluxes, volume regulation and electrical activity in the mammalian pancreatic beta‐cell. Exp Physiol 82: 957‐966, 1997. DOI: 10.1113/expphysiol.1997.sp004081.
 24.Best L, Brown PD, Sener A, Malaisse WJ. Electrical activity in pancreatic islet cells: The VRAC hypothesis. Islets 2: 59‐64, 2010. DOI: 10.4161/isl.2.2.11171.
 25.Best L, Miley H, Yates A. Activation of an anion conductance and beta‐cell depolarization during hypotonically induced insulin release. Exp Physiol 81: 927‐933, 1996. DOI: 10.1113/expphysiol.1996.sp003993.
 26.Best L, Sheader E, Brown P. A volume‐activated anion conductance in insulin‐secreting cells. Pflugers Arch ‐ Eur J Physiol 431: 363‐370, 1996. DOI: 10.1007/bf02207273.
 27.Bhattacharjee A, Whitehurst RM, Zhang M, Wang L, Li M. T‐type calcium channels facilitate insulin secretion by enhancing general excitability in the insulin‐secreting β‐cell line, INS‐1. Endocrinology 138: 3735‐3740, 1997. DOI: 10.1210/endo.138.9.5390.
 28.Biwersi J, Verkman AS. Functional CFTR in endosomal compartment of CFTR‐expressing fibroblasts and T84 cells. Am J Physiol‐Cell Ph 266: C149‐C156, 1994. DOI: 10.1152/ajpcell.1994.266.1.c149.
 29.Blank T, Nijholt I, Kye M‐J, Spiess J. Small conductance ca2+‐activated k+ channels as targets of CNS drug development. Curr Drug Target ‐CNS Neurological Disord 3: 161‐167, 2004. DOI: 10.2174/1568007043337472.
 30.Blodgett DM, Nowosielska A, Afik S, Pechhold S, Cura AJ, Kennedy NJ, Kim S, Kucukural A, Davis RJ, Kent SC, Greiner DL, Garber MG, Harlan DM, diIorio P. Novel observations from next‐generation RNA sequencing of highly purified human adult and fetal islet cell subsets. Diabetes 64: 3172‐3181, 2015. DOI: 10.2337/db15‐0039.
 31.Bokvist K, Eliasson L, Ammälä C, Renström E, Rorsman P. Co‐localization of L‐type Ca2+ channels and insulin‐containing secretory granules and its significance for the initiation of exocytosis in mouse pancreatic B‐cells. EMBO J 14: 50‐57, 1995.
 32.Bokvist K, Rorsman P, Smith PA. Effects of external tetraethylammonium ions and quinine on delayed rectifying K+ channels in mouse pancreatic beta‐cells. J Physiol 423: 311‐325, 1990. DOI: 10.1113/jphysiol.1990.sp018024.
 33.Bonaventura MM, Crivello M, Ferreira ML, Repetto M, Cymeryng C, Libertun C, Lux‐Lantos VA. Effects of GABAB receptor agonists and antagonists on glycemia regulation in mice. Eur J Pharmacol 677: 188‐196, 2012. DOI: 10.1016/j.ejphar.2011.12.013.
 34.Braun M. The αβδ of ion channels in human islet cells. Islets 1: 160‐162, 2009. DOI: 10.4161/isl.1.2.9405.
 35.Braun M, Ramracheya R, Bengtsson M, Clark A, Walker JN, Johnson PR, Rorsman P. γ‐Aminobutyric acid (GABA) is an autocrine excitatory transmitter in human pancreatic β‐cells. Diabetes 59: 1694‐1701, 2010. DOI: 10.2337/db09‐0797.
 36.Braun M, Ramracheya R, Bengtsson M, Zhang Q, Karanauskaite J, Partridge C, Johnson PR, Rorsman P. Voltage‐gated ion channels in human pancreatic beta‐cells: Electrophysiological characterization and role in insulin secretion. Diabetes 57: 1618‐1628, 2008. DOI: 10.2337/db07‐0991.
 37.Braun M, Wendt A, Birnir B, Broman J, Eliasson L, Galvanovskis J, Gromada J, Mulder H, Rorsman P. Regulated exocytosis of GABA‐containing synaptic‐like microvesicles in pancreatic β‐cells. J Gen Physiol 123: 191‐204, 2004. DOI: 10.1085/jgp.200308966.
 38.Braun M, Wendt A, Buschard K, Salehi A, Sewing S, Gromada J, Rorsman P. GABAB receptor activation inhibits exocytosis in rat pancreatic β‐cells by G‐protein‐dependent activation of calcineurin. J Physiol 559: 397‐409, 2004. DOI: 10.1113/jphysiol.2004.066563.
 39.Braun M, Wendt A, Karanauskaite J, Galvanovskis J, Clark A, MacDonald PE, Rorsman P. Corelease and differential exit via the fusion pore of GABA, serotonin, and ATP from LDCV in rat pancreatic β cells. J Gen Physiol 129: 221‐231, 2007. DOI: 10.1085/jgp.200609658.
 40.Briant LJ, Zhang Q, Vergari E, Kellard JA, Rodriguez B, Ashcroft FM, Rorsman P. Functional identification of islet cell types by electrophysiological fingerprinting. J Roy Soc Interface 14: 20160999, 2017. DOI: 10.1098/rsif.2016.0999.
 41.Brissova M, Fowler MJ, Nicholson WE, Chu A, Hirshberg B, Harlan DM, Powers AC. Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy. J Histochem Cytochem 53: 1087‐1097, 2005. DOI: 10.1369/jhc.5c6684.2005.
 42.Britsch S, Krippeitdrews P, Gregor M, Lang F, Drews G. Effects of osmotic changes in extracellular solution on electrical activity of mouse pancreatic B‐cells. Biochem Bioph Res Co 204: 641‐645, 1994. DOI: 10.1006/bbrc.1994.2507.
 43.Brixel LR, Monteilh‐Zoller MK, Ingenbrandt CS, Fleig A, Penner R, Enklaar T, Zabel BU, Prawitt D. TRPM5 regulates glucose‐stimulated insulin secretion. Pflugers Arch ‐ Eur J Physiol 460: 69‐76, 2010. DOI: 10.1007/s00424‐010‐0835‐z.
 44.Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren P‐O, Caicedo A. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. P Natl Acad Sci USA 103: 2334‐2339, 2006. DOI: 10.1073/pnas.0510790103.
 45.Camunas‐Soler J, Dai X, Hang Y, Bautista A, Lyon J, Suzuki K, Kim SK, Quake SR, MacDonald PE. Pancreas patch‐seq links physiologic dysfunction in diabetes to single‐cell transcriptomic phenotypes. BioRxiv: 555110.
 46.Camunas‐Soler J, Dai X‐Q, Hang Y, Bautista A, Lyon J, Suzuki K, Kim SK, Quake SR, MacDonald PE. Patch‐seq links single‐cell transcriptomes to human islet dysfunction in diabetes. Cell Metab 31: 1017‐1031.e4, 2020. DOI: 10.1016/j.cmet.2020.04.005.
 47.Carbone E, Lux HD. A low voltage‐activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature 310: 501‐502, 1984. DOI: 10.1038/310501a0.
 48.Cartier EA, Conti LR, Vandenberg CA, Shyng S‐L. Defective trafficking and function of KATP channels caused by a sulfonylurea receptor 1 mutation associated with persistent hyperinsulinemic hypoglycemia of infancy. Proc Natl Acad Sci 98: 2882‐2887, 2001. DOI: 10.1073/pnas.051499698.
 49.Casas S, Novials A, Reimann F, Gomis R, Gribble FM. Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51: 2252‐2262, 2008. DOI: 10.1007/s00125‐008‐1111‐z.
 50.Catterall WA. Structure and regulation of voltage‐gated Ca2+ channels. Annu Rev Cell Dev Bi 16: 521‐555, 2000. DOI: 10.1146/annurev.cellbio.16.1.521.
 51.Chai H, Cheng X, Zhou B, Zhao L, Lin X, Huang D, Lu W, Lv H, Tang F, Zhang Q, Huang W, Li Y, Yang H. Structure‐based discovery of a subtype‐selective inhibitor targeting a transient receptor potential vanilloid channel. J Med Chem 62: 1373‐1384, 2019. DOI: 10.1021/acs.jmedchem.8b01496.
 52.Chay TR, Keizer J. Minimal model for membrane oscillations in the pancreatic beta‐cell. Biophys J 42: 181‐189, 1983. DOI: 10.1016/s0006‐3495(83)84384‐7.
 53.Chen P‐C, Kryukova YN, Shyng S‐L. Leptin regulates KATP channel trafficking in pancreatic β‐cells by a signaling mechanism involving AMP‐activated protein kinase (AMPK) and cAMP‐dependent protein kinase (PKA). J Biol Chem 288: 34098‐34109, 2013. DOI: 10.1074/jbc.m113.516880.
 54.Clement JP, Kunjilwar K, Gonzalez G, Schwanstecher M, Panten U, Aguilar‐Bryan L, Bryan J. Association and stoichiometry of KATP channel subunits. Neuron 18: 827‐838, 1997. DOI: 10.1016/s0896‐6273(00)80321‐9.
 55.Colsoul B, Schraenen A, Lemaire K, Quintens R, Lommel LV, Segal A, Owsianik G, Talavera K, Voets T, Margolskee RF, Kokrashvili Z, Gilon P, Nilius B, Schuit FC, Vennekens R. Loss of high‐frequency glucose‐induced Ca2+ oscillations in pancreatic islets correlates with impaired glucose tolerance in Trpm5−/− mice. Proc National Acad Sci 107: 5208‐5213, 2010. DOI: 10.1073/pnas.0913107107.
 56.Contreras GF, Castillo K, Enrique N, Carrasquel‐Ursulaez W, Castillo JP, Milesi V, Neely A, Alvarez O, Ferreira G, González C, Latorre R. A BK (Slo1) channel journey from molecule to physiology. Channels 7: 442‐458, 2013. DOI: 10.4161/chan.26242.
 57.Cook DL. Electrical pacemaker mechanisms of pancreatic islet cells. Fed Proc 43: 2368‐2372, 1984.
 58.Cook DL, Ikeuchi M, Fujimoto WY. Lowering of pHi inhibits Ca2+‐activated K+ channels in pancreatic B‐cells. Nature 311: 269‐271, 1984. DOI: 10.1038/311269a0.
 59.Cook DL, Satin LS, Ashford ML, Hales NC. ATP‐sensitive k+ channels in pancreatic β‐cells: Spare‐channel hypothesis. Diabetes 37: 495‐498, 1988. DOI: 10.2337/diab.37.5.495.
 60.Cook DL, Satin LS, Hopkins WF. Pancreatic B cells are bursting, but how? Trends Neurosci 14: 411‐414, 1991. DOI: 10.1016/0166‐2236(91)90033‐q.
 61.Crutzen R, Virreira M, Markadieu N, Shlyonsky V, Sener A, Malaisse WJ, Beauwens R, Boom A, Golstein PE. Anoctamin 1 (Ano1) is required for glucose‐induced membrane potential oscillations and insulin secretion by murine β‐cells. Pflugers Arch ‐ Eur J Physiol 468: 573‐591, 2016. DOI: 10.1007/s00424‐015‐1758‐5.
 62.Dadi PK, Luo B, Vierra NC, Jacobson DA. TASK‐1 potassium channels limit pancreatic α‐cell calcium influx and glucagon secretion. Mol Endocrinol 29: 777‐787, 2015. DOI: 10.1210/me.2014‐1321.
 63.Dadi PK, Vierra NC, Jacobson DA. Pancreatic β‐cell‐specific ablation of TASK‐1 channels augments glucose‐stimulated calcium entry and insulin secretion, improving glucose tolerance. Endocrinology 155: 3757‐3768, 2014. DOI: 10.1210/en.2013‐2051.
 64.Davalli AM, Biancardi E, Pollo A, Socci C, Pontiroli AE, Pozza G, Clementi F, Sher E, Carbone E. Dihydropyridine‐sensitive and ‐insensitive voltage‐operated calcium channels participate in the control of glucose‐induced insulin release from human pancreatic β cells. J Endocrinol 150: 195‐203, 1996. DOI: 10.1677/joe.0.1500195.
 65.Davidson HW, Rhodes CJ, Hutton JC. Intraorganellar calcium and pH control proinsulin cleavage in the pancreatic β cell via two distinct site‐specific endopeptidases. Nature 333: 93‐96, 1988. DOI: 10.1038/333093a0.
 66.Davies LA, Hu C, Guagliardo NA, Sen N, Chen X, Talley EM, Carey RM, Bayliss DA, Barrett PQ. TASK channel deletion in mice causes primary hyperaldosteronism. Proc National Acad Sci 105: 2203‐2208, 2008. DOI: 10.1073/pnas.0712000105.
 67.Dean PM. Ultrastructural morphometry of the pancreatic β‐cell. Diabetologia 9: 115‐119, 1973. DOI: 10.1007/bf01230690.
 68.Dean PM, Matthews EK. Glucose‐induced electrical activity in pancreatic islet cells. J Physiol 210: 255‐264, 1970. DOI: 10.1113/jphysiol.1970.sp009207.
 69.Deneka D, Sawicka M, Lam AKM, Paulino C, Dutzler R. Structure of a volume‐regulated anion channel of the LRRC8 family. Nature 558: 254‐259, 2018. DOI: 10.1038/s41586‐018‐0134‐y.
 70.Detimary P, Gilon P, Henquin J‐C. Interplay between cytoplasmic Ca2+ and the ATP/ADP ratio: A feedback control mechanism in mouse pancreatic islets. Biochem J 333: 269‐274, 1998. DOI: 10.1042/bj3330269.
 71.Donatsch P, Lowe DA, Richardson BP, Taylor P. The functional significance of sodium channels in pancreatic beta‐cell membranes. J Physiol 267: 357‐376, 1977. DOI: 10.1113/jphysiol.1977.sp011817.
 72.Düfer M, Gier B, Wolpers D, Krippeit‐Drews P, Ruth P, Drews G. Enhanced glucose tolerance by SK4 channel inhibition in pancreatic β‐cells. Diabetes 58: 1835‐1843, 2009. DOI: 10.2337/db08‐1324.
 73.Dunne MJ, Petersen OH. Intracellular ADP activates K+ channels that are inhibited by ATP in an insulin‐secreting cell line. FEBS Lett 208: 59‐62, 1986. DOI: 10.1016/0014‐5793(86)81532‐0.
 74.Duprat F, Girard C, Jarretou G, Lazdunski M. Pancreatic two P domain K+ channels TALK‐1 and TALK‐2 are activated by nitric oxide and reactive oxygen species. J Physiol 562: 235‐244, 2005. DOI: 10.1113/jphysiol.2004.071266.
 75.Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C, Lazdunski M. TASK, a human background K+ channel to sense external pH variations near physiological pH. EMBO J 16: 5464‐5471, 1997. DOI: 10.1093/emboj/16.17.5464.
 76.Dyachok O, Idevall‐Hagren O, Sågetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjärvi G, Gylfe E, Tengholm A. Glucose‐induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 8: 26‐37, 2008. DOI: 10.1016/j.cmet.2008.06.003.
 77.Edlund A, Barghouth M, Huhn M, Abels M, Esguerra J, Mollet I, Svedin E, Wendt A, Renstrom E, Zhang E, Wierup N, Scholte BJ, Flodström‐Tullberg M, Eliasson L. Defective exocytosis and processing of insulin in a cystic fibrosis mouse model. J Endocrinol 1: 45‐57, 2019. DOI: 10.1530/joe‐18‐0570.
 78.Edlund A, Esguerra JL, Wendt A, Flodström‐Tullberg M, Eliasson L. CFTR and Anoctamin 1 (ANO1) contribute to cAMP amplified exocytosis and insulin secretion in human and murine pancreatic beta‐cells. BMC Med 12: 87, 2014. DOI: 10.1186/1741‐7015‐12‐87.
 79.Fakler B, Brändle U, Glowatzki E, Zenner H, Ruppersberg J. Kir2.1 inward rectifier K+ channels are regulated independently by protein kinases and ATP hydrolysis. Neuron 13: 1413‐1420, 1994. DOI: 10.1016/0896‐6273(94)90426‐X.
 80.Ferrer J, Nichols C, Makhina E, Salkoff L, Bernstein J, Gerhard D, Wasson J, Ramanadham S, Permutt A. Pancreatic islet cells express a family of inwardly rectifying K+ channel subunits which interact to form G‐protein‐activated channels. J Biol Chem 270: 26086‐26091, 1995.
 81.Fontés G, Ghislain J, Benterki I, Zarrouki B, Trudel D, Berthiaume Y, Poitout V. The ΔF508 mutation in the cystic fibrosis transmembrane conductance regulator is associated with progressive insulin resistance and decreased functional β‐cell mass in mice. Diabetes 64: 4112‐4122, 2015. DOI: 10.2337/db14‐0810.
 82.Fourgeaud L, Dvorak C, Faouzi M, Starkus J, Sahdeo S, Wang Q, Lord B, Coate H, Taylor N, He Y, Qin N, Wickenden A, Carruthers N, Lovenberg TW, Penner R, Bhattacharya A. Pharmacology of JNJ‐28583113: A novel TRPM2 antagonist. Eur J Pharmacol 853: 299‐307, 2019. DOI: 10.1016/j.ejphar.2019.03.043.
 83.Fox JE, Gyulkhandanyan AV, Satin LS, Wheeler MB. Oscillatory membrane potential response to glucose in islet β‐cells: A comparison of islet‐cell electrical activity in mouse and rat. Endocrinology 147: 4655‐4663, 2006. DOI: 10.1210/en.2006‐0424.
 84.Gall D, Gromada J, Susa I, Rorsman P, Herchuelz A, Bokvist K. Significance of Na/Ca exchange for Ca2+ buffering and electrical activity in mouse pancreatic β‐cells. Biophys J 76: 2018‐2028, 1999. DOI: 10.1016/s0006‐3495(99)77359‐5.
 85.Gaskins HR, Baldeón ME, Selassie L, Beverly JL. Glucose modulates γ‐aminobutyric acid release from the pancreatic βTC6 cell line (*). J Biol Chem 270: 30286‐30289, 1995. DOI: 10.1074/jbc.270.51.30286.
 86.Gilon P, Yakel J, Gromada J, Zhu Y, Henquin JC, Rorsman P. G protein‐dependent inhibition of L‐type Ca2+ currents by acetylcholine in mouse pancreatic B‐cells. J Physiol 499: 65‐76, 1997. DOI: 10.1113/jphysiol.1997.sp021911.
 87.Gloyn AL, Pearson ER, Antcliff JF, Proks P, Bruining G, Slingerland AS, Howard N, Srinivasan S, Silva JM, Molnes J, Edghill EL, Frayling TM, Temple I, Mackay D, Shield JP, Sumnik Z, van Rhijn A, Wales JK, Clark P, Gorman S, Aisenberg J, Ellard S, Njølstad PR, Ashcroft FM, Hattersley AT. Activating mutations in the gene encoding the ATP‐sensitive potassium‐channel subunit Kir6.2 and permanent neonatal diabetes. N Engl J Med 350: 1838‐1849, 2004. DOI: 10.1056/NEJMoa032922.
 88.Glynn E, Thompson B, Vadrevu S, Lu S, Kennedy RT, Ha J, Sherman A, Satin LS. Chronic glucose exposure systematically shifts the oscillatory threshold of mouse islets: Experimental evidence for an early intrinsic mechanism of compensation for hyperglycemia. Endocrinology 157: 611‐623, 2016. DOI: 10.1210/en.2015‐1563.
 89.Goforth PB, Bertram R, Khan FA, Zhang M, Sherman A, Satin LS. Calcium‐activated K+ channels of mouse β‐cells are controlled by both store and cytoplasmic Ca2+ experimental and theoretical studies. J Gen Physiol 120: 307‐322, 2002. DOI: 10.1085/jgp.20028581.
 90.Goldin AL. Resurgence of sodium channel research. Annu Rev Physiol 63: 871‐894, 2001. DOI: 10.1146/annurev.physiol.63.1.871.
 91.Gonzalez‐Perez V, Lingle CJ. Regulation of BK channels by beta and gamma subunits. Annu Rev Physiol 81: 113‐137, 2016. DOI: 10.1146/annurev‐physiol‐022516‐034038.
 92.Göpel S, Kanno T, Barg S, Eliasson L, Galvanovskis J, Renström E, Rorsman P. Activation of Ca(2+)‐dependent K(+) channels contributes to rhythmic firing of action potentials in mouse pancreatic beta cells. J Gen Physiol 114: 759‐770, 1999.
 93.Göpel S, Kanno T, Barg S, Galvanovskis J, Rorsman P. Voltage‐gated and resting membrane currents recorded from B‐cells in intact mouse pancreatic islets. J Physiol 521: 717‐728, 1999. DOI: 10.1111/j.1469‐7793.1999.00717.x.
 94.Göpel SO, Kanno T, Barg S, Weng X‐G, Gromada J, Rorsman P. Regulation of glucagon release in mouse α‐cells by KATP channels and inactivation of TTX‐sensitive Na+ channels. J Physiol 528: 509‐520, 2000. DOI: 10.1111/j.1469‐7793.2000.00509.x.
 95.Gromada J, Chabosseau P, Rutter GA. The α‐cell in diabetes mellitus. Nat Rev Endocrinol 14: 1, 2018. DOI: 10.1038/s41574‐018‐0097‐y.
 96.Guo JH, Chen H, Ruan YC, Zhang XL, Zhang XH, Fok KL, Tsang LL, Yu MK, Huang WQ, Sun X, Chung YW, Jiang X, Sohma Y, Chan HC. Glucose‐induced electrical activities and insulin secretion in pancreatic islet β‐cells are modulated by CFTR. Nat Commun 5: 4420, 2014. DOI: 10.1038/ncomms5420.
 97.Hagiwara S, Ozawa S, Sand O. Voltage clamp analysis of two inward current mechanisms in the egg cell membrane of a starfish. J Gen Physiol 65: 617‐644, 1975. DOI: 10.1085/jgp.65.5.617.
 98.Han Y‐EE, Chun JN, Kwon MJ, Ji Y‐SS, Jeong M‐HH, Kim H‐HH, Park S‐HH, Rah JC, Kang J, Lee S‐HH, Ho W‐KK. Endocytosis of KATP channels drives glucose‐stimulated excitation of pancreatic β cells. Cell Rep 22: 471‐481, 2018. DOI: 10.1016/j.celrep.2017.12.049.
 99.Hart NJ, Aramandla R, Poffenberger G, Fayolle C, Thames AH, Bautista A, Spigelman AF, Babon JAB, DeNicola ME, Dadi PK, Bush WS, Balamurugan AN, Brissova M, Dai C, Prasad N, Bottino R, Jacobson DA, Drumm ML, Kent SC, MacDonald PE, Powers AC. Cystic fibrosis–related diabetes is caused by islet loss and inflammation. Jci Insight 3: e98240, 2018. DOI: 10.1172/jci.insight.98240.
 100.Heimberg H, Vos AD, Pipeleers D, Thorens B, Schuit F. Differences in glucose transporter gene expression between rat pancreatic α‐ and β‐cells are correlated to differences in glucose transport but not in glucose utilization. J Biol Chem 270: 8971‐8975, 1995. DOI: 10.1074/jbc.270.15.8971.
 101.Heinemann SH, Terlau H, Stühmer W, Imoto K, Numa S. Calcium channel characteristics conferred on the sodium channel by single mutations. Nature 356: 441‐443, 1992. DOI: 10.1038/356441a0.
 102.Hellman B. The frequency distribution of the number and volume of the islets Langerhans in man. I. Studies on non‐diabetic adults. Acta Soc Med Ups 64: 432‐460, 1959.
 103.Henquin J‐C, Meissner HP. Opposite effects of tolbutamide and diazoxide on 86Rb+ fluxes and membrane potential in pancreatic B cells. Biochem Pharmacol 31: 1407‐1415, 1982. DOI: 10.1016/0006‐2952(82)90036‐3.
 104.Herchuelz A, Diaz‐Horta O, Eylen F. Na/Ca exchange in function, growth, and demise of β‐cells. Ann N Y Acad Sci 976: 315‐324, 2002. DOI: 10.1111/j.1749‐6632.2002.tb04754.x.
 105.Hering S, Berjukow S, Sokolov S, Marksteiner R, Weiß RG, Kraus R, Timin EN. Molecular determinants of inactivation in voltage‐gated Ca2+ channels. J Physiol 528: 237‐249, 2000. DOI: 10.1111/j.1469‐7793.2000.t01‐1‐00237.x.
 106.Hess P, Lansman JB, Tsien RW. Different modes of Ca channel gating behaviour favoured by dihydropyridine Ca agonists and antagonists. Nature 311: 538‐544, 1984. DOI: 10.1038/311538a0.
 107.Hille B. Ion Channels of Excitable Membranes (3rd ed). Sinauer, 2001.
 108.Hiriart M, Matteson DR. Na channels and two types of Ca channels in rat pancreatic B cells identified with the reverse hemolytic plaque assay. J Gen Physiol 91: 617‐639, 1988. DOI: 10.1085/jgp.91.5.617.
 109.Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J Physiol 116: 449‐472, 1952. DOI: 10.1113/jphysiol.1952.sp004717.
 110.Hodgkin AL, Huxley AF. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J Physiol 116: 497‐506, 1952. DOI: 10.1113/jphysiol.1952.sp004719.
 111.Hondeghem LM, Katzung BG. Antiarrhythmic agents: The modulated receptor mechanism of action of sodium and calcium channel‐blocking drugs. Annu Rev Pharmacol 24: 387‐423, 1984. DOI: 10.1146/
 112.Honrath B, Krabbendam IE, Culmsee C, Dolga AM. Small conductance Ca2+‐activated K+ channels in the plasma membrane, mitochondria and the ER: Pharmacology and implications in neuronal diseases. Neurochem Int 109: 13‐23, 2017. DOI: 10.1016/j.neuint.2017.05.005.
 113.Hopkins WF, Satin LS, Cook DL. Inactivation kinetics and pharmacology distinguish two calcium currents in mouse pancreatic B‐cells. J Membr Biol 119: 229‐239, 1991. DOI: 10.1007/bf01868728.
 114.Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA. α2δ expression sets presynaptic calcium channel abundance and release probability. Nature 486: 122‐125, 2012. DOI: 10.1038/nature11033.
 115.Horváth A, Szabadkai G, Várnai P, Arányi T, Wollheim CB, Spät A, Enyedi P. Voltage dependent calcium channels in adrenal glomerulosa cells and in insulin producing cells. Cell Calcium 23: 33‐42, 1998. DOI: 10.1016/s0143‐4160(98)90072‐0.
 116.Houamed KM, Sweet IR, Satin LS. BK channels mediate a novel ionic mechanism that regulates glucose‐dependent electrical activity and insulin secretion in mouse pancreatic β‐cells. J Physiol 588: 3511‐3523, 2010. DOI: 10.1113/jphysiol.2009.184341.
 117.Hurst RS, Busch AE, Kavanaugh MP, Osborne PB, North RA, Adelman JP. Identification of amino acid residues involved in dendrotoxin block of rat voltage‐dependent potassium channels. Mol Pharmacol 40: 572‐576, 1991.
 118.Hyzinski‐García MC, Rudkouskaya A, Mongin AA. LRRC8A protein is indispensable for swelling‐activated and ATP‐induced release of excitatory amino acids in rat astrocytes. J Physiol 592: 4855‐4862, 2014. DOI: 10.1113/jphysiol.2014.278887.
 119.Ichii H, Inverardi L, Pileggi A, Molano RD, Cabrera O, Caicedo A, Messinger S, Kuroda Y, Berggren P, Ricordi CA. Novel method for the assessment of cellular composition and beta‐cell viability in human islet preparations. Am J Transplant 5: 1635‐1645, 2005. DOI: 10.1111/j.1600‐6143.2005.00913.x.
 120.Ionescu‐Tirgoviste C, Gagniuc PA, Gubceac E, Mardare L, Popescu I, Dima S, Militaru M. A 3D map of the islet routes throughout the healthy human pancreas. Sci Rep 5: 14634, 2015. DOI: 10.1038/srep14634.
 121.Ishii M, Hagiwara T, Mori Y, Shimizu S. Involvement of TRPM2 and L‐type Ca2+ channels in Ca2+ entry and cell death induced by hydrogen peroxide in rat β‐cell line RIN‐5F. J Toxicol Sci 39: 199‐209, 2014. DOI: 10.2131/jts.39.199.
 122.Islam MdS. Molecular regulations and functions of the transient receptor potential channels of the islets of langerhans and insulinoma cells. Cell 9: 685, 2020. DOI: 10.3390/cells9030685.
 123.Ivanina T, Blumenstein Y, Shistik E, Barzilai R, Dascal N. Modulation of L‐type Ca2+ channels by Gβγ and calmodulin via Interactions with N and C termini of α1C. J Biol Chem 275: 39846‐39854, 2000. DOI: 10.1074/jbc.m005881200.
 124.Iwanir S, Reuveny E. Adrenaline‐induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein‐gated inwardly rectifying potassium (GIRK) channels. Pflugers Arch ‐ Eur J Physiol 456: 1097‐1108, 2008. DOI: 10.1007/s00424‐008‐0479‐4.
 125.Jacobson D, Shyng S‐L. Ion channels of the islets in type 2 diabetes. J Mol Biol 432: 1326‐1346, 2019. DOI: 10.1016/j.jmb.2019.08.014.
 126.Jacobson DA, Mendez F, Thompson M, Torres J, Cochet O, Philipson LH. Calcium‐activated and voltage‐gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J Physiol 588: 3525‐3537, 2010. DOI: 10.1113/jphysiol.2010.190207.
 127.Jian X, Felsenfeld G. Insulin promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism. Proc National Acad Sci 115: 201803146, 2018. DOI: 10.1073/pnas.1803146115.
 128.Jing X, Li D‐Q, Olofsson CS, Salehi A, Surve VV, Caballero J, Ivarsson R, Lundquist I, Pereverzev A, Schneider T, Rorsman P, Renström E. CaV2.3 calcium channels control second‐phase insulin release. J Clin Invest 115: 146‐154, 2005. DOI: 10.1172/jci22518.
 129.Kaczorowski GJ, Knaus H‐G, Leonard RJ, McManus OB, Garcia ML. High‐conductance calcium‐activated potassium channels; Structure, pharmacology, and function. J Bioenerg Biomembr 28: 255‐267, 1996. DOI: 10.1007/bf02110699.
 130.Kakei M, Kelly RP, Ashcroft SJH, Ashcroft FM. The ATP‐sensitivity of K+ channels in rat pancreatic B‐cells is modulated by ADP. FEBS Lett 208: 63‐66, 1986. DOI: 10.1016/0014‐5793(86)81533‐2.
 131.Kang C, Xie L, Gunasekar SK, Mishra A, Zhang Y, Pai S, Gao Y, Kumar A, Norris AW, Stephens SB, Sah R. SWELL1 is a glucose sensor regulating β‐cell excitability and systemic glycaemia. Nat Commun 9: 367, 2018. DOI: 10.1038/s41467‐017‐02664‐0.
 132.Kang D, Kim D. Single‐channel properties and pH sensitivity of two‐pore domain K+ channels of the TALK family. Biochem Bioph Res Co 315: 836‐844, 2004. DOI: 10.1016/j.bbrc.2004.01.137.
 133.Kanno T, Rorsman P, Göpel SO. Glucose‐dependent regulation of rhythmic action potential firing in pancreatic beta‐cells by K(ATP)‐channel modulation. J Physiol 545: 501‐507, 2002. DOI: 10.1113/jphysiol.2002.031344.
 134.Kashio M, Tominaga M. Redox signal‐mediated enhancement of the temperature sensitivity of transient receptor potential melastatin 2 (TRPM2) elevates glucose‐induced insulin secretion from pancreatic islets. J Biol Chem 290: 12435‐12442, 2015. DOI: 10.1074/jbc.m115.649913.
 135.Kennedy HJ, Pouli AE, Ainscow EK, Jouaville LS, Rizzuto R, Rutter GA. Glucose generates sub‐plasma membrane ATP microdomains in single islet β‐cells potential role for strategically located mitochondria. J Biol Chem 274: 13281‐13291, 1999. DOI: 10.1074/jbc.274.19.13281.
 136.Khajavi N, Finan B, Kluth O, Müller TD, Mergler S, Schulz A, Kleinau G, Scheerer P, Schürmann A, Gudermann T, Tschöp MH, Krude H, DiMarchi RD, Biebermann H. An incretin‐based tri‐agonist promotes superior insulin secretion from murine pancreatic islets via PLC activation. Cell Signal 51: 13‐22, 2018. DOI: 10.1016/j.cellsig.2018.07.006.
 137.Khan FA, Goforth PB, Zhang M, Satin LS. Insulin activates ATP‐sensitive K+ channels in pancreatic ‐cells through a phosphatidylinositol 3‐kinase‐dependent pathway. Diabetes 50: 2192‐2198, 2001. DOI: 10.2337/diabetes.50.10.2192.
 138.Kheradpezhouh E, Barritt GJ, Rychkov GY. Curcumin inhibits activation of TRPM2 channels in rat hepatocytes. Redox Biol 7: 1‐7, 2016. DOI: 10.1016/j.redox.2015.11.001.
 139.Kim A, Miller K, Jo J, Kilimnik G, Wojcik P, Hara M. Islet architecture: A comparative study. Islets 1: 129‐136, 2009. DOI: 10.4161/isl.1.2.9480.
 140.Kim Y, Bang H, Kim D. TBAK‐1 and TASK‐1, two‐pore K+ channel subunits: Kinetic properties and expression in rat heart. Am J Physiol‐heart C 277: H1669‐H1678, 1999. DOI: 10.1152/ajpheart.1999.277.5.h1669.
 141.Kinard TA, Satin LS. An ATP‐sensitive Cl− channel current that is activated by cell swelling, cAMP, and glyburide in insulin‐secreting cells. Diabetes 44: 1461‐1466, 1995. DOI: 10.2337/diab.44.12.1461.
 142.Kinard TA, Satin LS. Temperature modulates the Ca2+ current of HIT‐T15 and mouse pancreatic β‐cells. Cell Calcium 20: 475‐482, 1996. DOI: 10.1016/s0143‐4160(96)90089‐5.
 143.Kiyonaka S, Kato K, Nishida M, Mio K, Numaga T, Sawaguchi Y, Yoshida T, Wakamori M, Mori E, Numata T, Ishii M, Takemoto H, Ojida A, Watanabe K, Uemura A, Kurose H, Morii T, Kobayashi T, Sato Y, Sato C, Hamachi I, Mori Y. Selective and direct inhibition of TRPC3 channels underlies biological activities of a pyrazole compound. Proc National Acad Sci 106: 5400‐5405, 2009. DOI: 10.1073/pnas.0808793106.
 144.Kobayashi T, Washiyama K, Ikeda K. Inhibition of G‐protein‐activated inwardly rectifying K+ channels by the selective norepinephrine reuptake inhibitors atomoxetine and reboxetine. Neuropsychopharmacology 35: 1560‐1569, 2010. DOI: 10.1038/npp.2010.27.
 145.Komatsu M, Yokokawa N, Takeda T, Nagasawa Y, Aizawa T, Yamada T. Pharmacological characterization of the voltage‐dependent calcium channel of pancreatic B‐cell. Endocrinology 125: 2008‐2014, 1989. DOI: 10.1210/endo‐125‐4‐2008.
 146.König B, Stauber T. Biophysics and structure‐function relationships of LRRC8‐formed volume‐regulated anion channels. Biophys J 116: 1185‐1193, 2019. DOI: 10.1016/j.bpj.2019.02.014.
 147.Koschak A, Reimer D, Huber I, Grabner M, Glossmann H, Engel J, Striessnig J. α1d (cav1.3) subunits can form l‐type ca2+ channels activating at negative voltages. J Biol Chem 276: 22100‐22106, 2001. DOI: 10.1074/jbc.m101469200.
 148.Kozak JA, Logothetis DE. A calcium‐dependent chloride current in insulin‐secreting βTC‐3 cells. Pflugers Arch 433: 679‐690, 1997. DOI: 10.1007/s004240050332.
 149.Krishnan V, Maddox JW, Rodriguez T, Gleason E. A role for the cystic fibrosis transmembrane conductance regulator in the nitric oxide‐dependent release of Cl − from acidic organelles in amacrine cells. J Neurophysiol 118: 2842‐2852, 2017. DOI: 10.1152/jn.00511.2017.
 150.Kukuljan M, Goncalves AA, Atwater I. Charybdotoxin‐sensitive K(Ca) channel is not involved in glucose‐induced electrical activity in pancreatic β‐cells. J Membr Biol 119: 187‐195, 1991. DOI: 10.1007/bf01871418.
 151.Lange I, Yamamoto S, Partida‐Sanchez S, Mori Y, Fleig A, Penner R. TRPM2 functions as a lysosomal Ca2+‐release channel in β cells. Sci Signal 2: ra23‐ra23, 2009. DOI: 10.1126/scisignal.2000278.
 152.Latorre R, Castillo K, Carrasquel‐Ursulaez W, Sepulveda RV, Gonzalez‐Nilo F, Gonzalez C, Alvarez O. Molecular determinants of BK channel functional diversity and functioning. Physiol Rev 97: 39‐87, 2017. DOI: 10.1152/physrev.00001.2016.
 153.Lebrun P, Atwater I. Effects of the calcium channel agonist, BAY K 8644, on electrical activity in mouse pancreatic B‐cells. Biophys J 48: 919‐930, 1985. DOI: 10.1016/s0006‐3495(85)83855‐8.
 154.Lee J‐H, Gomora JC, Cribbs LL, Perez‐Reyes E. Nickel block of three cloned T‐type calcium channels: Low concentrations selectively block α1H. Biophys J 77: 3034‐3042, 1999. DOI: 10.1016/s0006‐3495(99)77134‐1.
 155.Lee S, Yoon B‐E, Berglund K, Oh S‐J, Park H, Shin H‐S, Augustine GJ, Lee CJ. Channel‐mediated tonic GABA release from glia. Science 330: 790‐796, 2010. DOI: 10.1126/science.1184334.
 156.Li C, Liu C, Nissim I, Chen J, Chen P, Doliba N, Zhang T, Nissim I, Daikhin Y, Stokes D, Yudkoff M, Bennett MJ, Stanley CA, Matschinsky FM, Naji A. Regulation of glucagon secretion in normal and diabetic human islets by γ‐hydroxybutyrate and glycine. J Biol Chem 288: 3938‐3951, 2013. DOI: 10.1074/jbc.m112.385682.
 157.Li N, Wu J‐X, Ding D, Cheng J, Gao N, Chen L. Structure of a pancreatic ATP‐sensitive potassium channel. Cell 168: 101‐110.e10, 2017. DOI: 10.1016/j.cell.2016.12.028.
 158.Ligon B, Boyd AE, Dunlap K. Class a calcium channel variants in pancreatic islets and their role in insulin secretion. J Biol Chem 273: 13905‐13911, 1998. DOI: 10.1074/jbc.273.22.13905.
 159.Lin M, Aladejebi O, Hockerman GH. Distinct properties of amlodipine and nicardipine block of the voltage‐dependent Ca2+ channels Cav1.2 and Cav2.1 and the mutant channels Cav1.2/Dihydropyridine insensitive and Cav2.1/Dihydropyridine sensitive. Eur J Pharmacol 670: 105‐113, 2011. DOI: 10.1016/j.ejphar.2011.08.005.
 160.Liu G, Hilliard N, Hockerman GH. Cav1.3 is preferentially coupled to glucose‐induced [Ca2+]i oscillations in the pancreatic β Cell Line INS‐1. Mol Pharmacol 65: 1269‐1277, 2004. DOI: 10.1124/mol.65.5.1269.
 161.Llinás R, Sugimori M, Lin JW, Cherksey B. Blocking and isolation of a calcium channel from neurons in mammals and cephalopods utilizing a toxin fraction (FTX) from funnel‐web spider poison. Proc National Acad Sci 86: 1689‐1693, 1989. DOI: 10.1073/pnas.86.5.1689.
 162.Lutter D, Ullrich F, Lueck JC, Kempa S, Jentsch TJ. Selective transport of neurotransmitters and –modulators by distinct volume‐regulated LRRC8 anion channels. J Cell Sci 130: 1122‐1133, 2017. DOI: 10.1242/jcs.196253.
 163.Lv W, Wang X, Xu Q, Lu W. Mechanisms and characteristics of sulfonylureas and glinides. Curr Top Med Chem 20: 37‐56, 2019. DOI: 10.2174/1568026620666191224141617.
 164.MacDonald PE, Ha XF, Wang J, Smukler SR, Sun AM, Gaisano HY, Salapatek AMF, Backx PH, Wheeler MB. Members of the Kv1 and Kv2 voltage‐dependent K+ channel families regulate insulin secretion. Mol Endocrinol 15: 1423‐1435, 2001. DOI: 10.1210/mend.15.8.0685.
 165.MacDonald PE, Sewing S, Wang J, Joseph JW, Smukler SR, Sakellaropoulos G, Wang J, Saleh MC, Chan CB, Tsushima RG, Salapatek AMF, Wheeler MB. Inhibition of Kv2.1 voltage‐dependent K+channels in pancreatic β‐cells enhances glucose‐dependent insulin secretion. J Biol Chem 277: 44938‐44945, 2002. DOI: 10.1074/jbc.m205532200.
 166.Marabita F, MdS I. Expression of transient receptor potential channels in the purified human pancreatic &bgr;‐cells. Pancreas 46: 97‐101, 2017. DOI: 10.1097/mpa.0000000000000685.
 167.Marchetti C, Amico C, Podestà D, Robello M. Inactivation of voltage‐dependent calcium current in an insulinoma cell line. Eur Biophys J 23: 51‐58, 1994. DOI: 10.1007/bf00192205.
 168.Martin GM, Chen P‐C, Devaraneni P, Shyng S‐L. Pharmacological rescue of trafficking‐impaired ATP‐sensitive potassium channels. Front Physiol 4: 386, 2013. DOI: 10.3389/fphys.2013.00386.
 169.Martin GM, Yoshioka C, Rex EA, Fay JF, Xie Q, Whorton MR, Chen JZ, Shyng S‐L. Cryo‐EM structure of the ATP‐sensitive potassium channel illuminates mechanisms of assembly and gating. elife 6: e24149, 2017. DOI: 10.7554/eLife.24149.
 170.Mastrolia V, Flucher SM, Obermair GJ, Drach M, Hofer H, Renström E, Schwartz A, Striessnig J, Flucher BE, Tuluc P. Loss of α 2 δ‐1 calcium channel subunit function increases the susceptibility for diabetes. Diabetes 66: 897‐907, 2017. DOI: 10.2337/db16‐0336.
 171.McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL. GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: Implications for understanding genetic association signals at this locus. Mol Genet Metab 104: 648‐653, 2011. DOI: 10.1016/j.ymgme.2011.08.026.
 172.McHugh D, Flemming R, Xu S‐Z, Perraud A‐L, Beech DJ. Critical intracellular Ca2+ dependence of transient receptor potential melastatin 2 (TRPM2) cation channel activation. J Biol Chem 278: 11002‐11006, 2003. DOI: 10.1074/jbc.m210810200.
 173.McKenna JP, Bertram R. Fast‐slow analysis of the integrated oscillator model for pancreatic β‐cells. J Theor Biol: 152‐162, 2018. DOI: 10.1016/j.jtbi.2018.08.029.
 174.Meissner H, Atwater I. The kinetics of electrical activity of beta cells in response to a “square wave” stimulation with glucose or glibenclamide. Horm Metab Res 8: 11‐16, 1976. DOI: 10.1055/s‐0028‐1093685.
 175.Merrins MJ, Bertram R, Sherman A, Satin LS. Phosphofructo‐2‐kinase/fructose‐2,6‐bisphosphatase modulates oscillations of pancreatic islet metabolism. PLoS ONE 7: e34036, 2012. DOI: 10.1371/journal.pone.0034036.
 176.Merrins MJ, Dyke AR, Mapp AK, Rizzo MA, Satin LS. Direct measurements of oscillatory glycolysis in pancreatic islet β‐cells using novel fluorescence resonance energy transfer (FRET) biosensors for pyruvate kinase m2 activity. J Biol Chem 288: 33312‐33322, 2013. DOI: 10.1074/jbc.M113.508127.
 177.Miki T, Nagashima K, Tashiro F, Kotake K, Yoshitomi H, Tamamoto A, Gonoi T, Iwanaga T, Miyazaki J, Seino S. Defective insulin secretion and enhanced insulin action in KATP channel‐deficient mice. Proc Natl Acad Sci 95: 10402‐10406, 1998. DOI: 10.1073/pnas.95.18.10402.
 178.Miley HE, Holden D, Grint R, Best L, Brown PD. Regulatory volume increase in rat pancreatic β‐cells. Pflugers Arch 435: 227‐230, 1997. DOI: 10.1007/s004240050505.
 179.Miley HE, Sheader EA, Brown PD, Best L. Glucose‐induced swelling in rat pancreatic β‐cells. J Physiol 504: 191‐198, 1997. DOI: 10.1111/j.1469‐7793.1997.00191.x.
 180.Miller AN, Long SB. Crystal structure of the human two–pore domain potassium channel K2P1. Science 335: 432‐436, 2012. DOI: 10.1126/science.1213274.
 181.Miller M, Shi J, Zhu Y, Kustov M, Tian J, Stevens A, Wu M, Xu J, Long S, Yang P, Zholos AV, Salovich JM, Weaver CD, Hopkins CR, Lindsley CW, McManus O, Li M, Zhu MX. Identification of ML204, a novel potent antagonist that selectively modulates native TRPC4/C5 ion channels. J Biol Chem 286: 33436‐33446, 2011. DOI: 10.1074/jbc.m111.274167.
 182.Minke B. The history of the Drosophila TRP channel: The birth of a new channel superfamily. J Neurogenet 24: 216‐233, 2010. DOI: 10.3109/01677063.2010.514369.
 183.Misler S, Barnett DW, Gillis KD, Pressel DM. Electrophysiology of stimulus‐secretion coupling in human‐cells. Diabetes 41: 1221‐1228, 1992. DOI: 10.2337/diab.41.10.1221.
 184.Misler S, Barnett DW, Pressel DM, Gillis KD, Scharp DW, Falke LC. Stimulus‐secretion coupling in ‐cells of transplantable human islets of langerhans: Evidence for a critical role for Ca2+ entry. Diabetes 41: 662‐670, 1992. DOI: 10.2337/diab.41.6.662.
 185.Morales FR, Silveira V, Damián A, Higgie R, Pose I. The possible additional role of the cystic fibrosis transmembrane regulator to motoneuron inhibition produced by glycine effects. Neuroscience 177: 138‐147, 2011. DOI: 10.1016/j.neuroscience.2010.12.034.
 186.Namkung Y, Skrypnyk N, Jeong M‐J, Lee T, Lee M‐S, Kim H‐L, Chin H, Suh P‐G, Kim S‐S, Shin H‐S. Requirement for the L‐type Ca2+ channel α1D subunit in postnatal pancreatic β cell generation. J Clin Invest 108: 1015‐1022, 2001. DOI: 10.1172/jci13310.
 187.Nardi A, Olesen S‐P. BK Channel modulators: A comprehensive overview. Curr Med Chem 15: 1126, 1146, 2008. DOI: 10.2174/092986708784221412.
 188.Newcomb R, Szoke B, Palma A, Wang G, Chen X, Hopkins W, Cong R, Miller J, Urge L, Tarczy‐Hornoch K, Loo JA, Dooley DJ, Nadasdi L, Tsien RW, Lemos J, Miljanich G. Selective peptide antagonist of the class E calcium channel from the venom of the tarantula hysterocrates gigas †. Biochemistry 37: 15353‐15362, 1998. DOI: 10.1021/bi981255g.
 189.Nica AC, Ongen H, Irminger J‐C, Bosco D, Berney T, Antonarakis SE, Halban PA, Dermitzakis ET. Cell‐type, allelic, and genetic signatures in the human pancreatic beta cell transcriptome. Genome Res 23: 1554‐1562, 2013. DOI: 10.1101/gr.150706.112.
 190.Nichols CG. KATP channels as molecular sensors of cellular metabolism. Nature 440: 470‐476, 2006. DOI: 10.1038/nature04711.
 191.Nichols CG, Lopatin AN. Inward rectifier potassium channels. Annu Rev Physiol 59: 171‐191, 1997. DOI: 10.1146/annurev.physiol.59.1.171.
 192.Nowycky MC, Fox AP, Tsien RW. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316: 440‐443, 1985. DOI: 10.1038/316440a0.
 193.Nunemaker CS, Bertram R, Sherman A, Tsaneva‐Atanasova K, Daniel CR, Satin LS. Glucose modulates [Ca2+]i oscillations in pancreatic islets via ionic and glycolytic mechanisms. Biophys J 91: 2082‐2096, 2006. DOI: 10.1529/biophysj.106.087296.
 194.Ohta M, Nelson J, Nelson D, Meglasson MD, Erecińska M. Effect of Ca++ channel blockers on energy level and stimulated insulin secretion in isolated rat islets of Langerhans. J Pharmacol Exp Ther 264: 35‐40, 1993.
 195.Olivera BM, McIntosh JM, Curz LJ, Luque FA, Gray WR. Purification and sequence of a presynaptic peptide toxin from Conus geographus venom. Biochemistry 23: 5087‐5090, 1984. DOI: 10.1021/bi00317a001.
 196.Olivier AK, Yi Y, Sun X, Sui H, Liang B, Hu S, Xie W, Fisher JT, Keiser NW, Lei D, Zhou W, Yan Z, Li G, Evans TIA, Meyerholz DK, Wang K, Stewart ZA, Norris AW, Engelhardt JF. Abnormal endocrine pancreas function at birth in cystic fibrosis ferrets. J Clin Invest 122: 3755‐3768, 2012. DOI: 10.1172/jci60610.
 197.Olofsson CS, Göpel SO, Barg S, Galvanovskis J, Ma X, Salehi A, Rorsman P, Eliasson L. Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B‐cells. Pflugers Arch 444: 43‐51, 2002. DOI: 10.1007/s00424‐002‐0781‐5.
 198.Orci L, Baetens D, Ravazzola M, Stefan Y, Malaisse‐Lagae F. Pancreatic polypeptide and glucagon: Non‐random distribution in pancreatic islets. Life Sci 19: 1811‐1816, 1976. DOI: 10.1016/0024‐3205(76)90112‐0.
 199.Ostroumov A, Simonetti M, Nistri A. Cystic fibrosis transmembrane conductance regulator modulates synaptic chloride homeostasis in motoneurons of the rat spinal cord during neonatal development. Dev Neurobiol 71: 253‐268, 2011. DOI: 10.1002/dneu.20855.
 200.Palmer KR, Atwal K, Bakaj I, Carlucci‐Derbyshire S, Buber TM, Cerne R, Cortés RY, Devantier HR, Jorgensen V, Pawlyk A, Lee PS, Sprous DG, Zhang Z, Bryant R. Triphenylphosphine oxide is a potent and selective inhibitor of the transient receptor potential melastatin‐5 ion channel. Assay Drug Dev Technol 8: 703‐713, 2010. DOI: 10.1089/adt.2010.0334.
 201.Pang B, Kim S, Li D, Ma Z, Sun B, Zhang X, Wu Z, Chen L. Glucagon‐like peptide‐1 potentiates glucose‐stimulated insulin secretion via the transient receptor potential melastatin 2 channel. Exp Ther Med 14: 5219‐5227, 2017. DOI: 10.3892/etm.2017.5136.
 202.Park S‐H, Ryu S‐Y, Yu W‐J, Han Y, Ji Y‐S, Oh K, Sohn J‐W, Lim A, Jeon J‐P, Lee H, Lee K‐H, Lee S‐H, Berggren P‐O, Jeon J‐H, Ho W‐K. Leptin promotes KATP channel trafficking by AMPK signaling in pancreatic β‐cells. Proc Natl Acad Sci 110: 12673‐12678, 2013. DOI: 10.1073/pnas.1216351110.
 203.Payandeh J, Scheuer T, Zheng N, Catterall WA. The crystal structure of a voltage‐gated sodium channel. Nature 475: 353‐358, 2011. DOI: 10.1038/nature10238.
 204.Pedemonte N, Galietta LJV. Structure and function of TMEM16 proteins (Anoctamins). Physiol Rev 94: 419‐459, 2014. DOI: 10.1152/physrev.00039.2011.
 205.Pennefather P, Lancaster B, Adams PR, Nicoll RA. Two distinct Ca‐dependent K currents in bullfrog sympathetic ganglion cells. Proc National Acad Sci 82: 3040‐3044, 1985. DOI: 10.1073/pnas.82.9.3040.
 206.Pereverzev A, Mikhna M, Vajna R, Gissel C, Henry M, Weiergräber M, Hescheler J, Smyth N, Schneider T. Disturbances in glucose‐tolerance, insulin‐release, and stress‐induced hyperglycemia upon disruption of the Ca v 2.3 (α1E) subunit of voltage‐gated Ca 2+ channels. Mol Endocrinol 16: 884‐895, 2002. DOI: 10.1210/mend.16.4.0801.
 207.Pereverzev A, Vajna R, Pfitzer G, Hescheler J, Klockner U, Schneider T. Reduction of insulin secretion in the insulinoma cell line INS‐1 by overexpression of a Ca(v)2.3 (alpha1E) calcium channel antisense cassette. Eur J Endocrinol 146: 881‐889, 2002. DOI: 10.1530/eje.0.1460881.
 208.Perez‐Reyes E, Cribbs LL, Daud A, Lacerda AE, Barclay J, Williamson MP, Fox M, Rees M, Lee J‐H. Molecular characterization of a neuronal low‐voltage‐activated T‐type calcium channel. Nature 391: 896‐900, 1998. DOI: 10.1038/36110.
 209.Philippaert K, Pironet A, Mesuere M, Sones W, Vermeiren L, Kerselaers S, Pinto S, Segal A, Antoine N, Gysemans C, Laureys J, Lemaire K, Gilon P, Cuypers E, Tytgat J, Mathieu C, Schuit F, Rorsman P, Talavera K, Voets T, Vennekens R. Steviol glycosides enhance pancreatic beta‐cell function and taste sensation by potentiation of TRPM5 channel activity. Nat Commun 8: 14733, 2017. DOI: 10.1038/ncomms14733.
 210.Philipson LH, Rosenberg MP, Kuznetsov A, Lancaster ME, Worley JF, Roe MW, Dukes ID. Delayed rectifier K+ channel overexpression in transgenic islets and beta‐cells associated with impaired glucose responsiveness. J Biol Chem 269: 27787‐27790, 1994.
 211.Pipeleers D, Kiekens R, Veld PI. Morphology of the pancreatic β‐cell. In: Ashcroft FM, Ashcroft SJH, editors. Insulin: Molecular Biology to Pathology. IRL Press at Oxford University Press, 1992, p. 5‐31.
 212.Plant TD. Properties and calcium‐dependent inactivation of calcium currents in cultured mouse pancreatic B‐cells. J Physiol 404: 731‐747, 1988. DOI: 10.1113/jphysiol.1988.sp017316.
 213.Plant TD. Na+ currents in cultured mouse pancreatic B‐cells. Pflugers Arch 411: 429‐435, 1988. DOI: 10.1007/bf00587723.
 214.Pollo A, Lovallo M, Biancardi E, Sher E, Socci C, Carbone E. Sensitivity to dihydropyridines, ω‐conotoxin and noradrenaline reveals multiple high‐voltage‐activated Ca2+ channels in rat insulinoma and human pancreatic β‐cells. Pflugers Arch 423: 462‐471, 1993. DOI: 10.1007/bf00374942.
 215.Qin N, Neeper MP, Liu Y, Hutchinson TL, Lubin ML, Flores CM. TRPV2 is activated by cannabidiol and mediates CGRP release in cultured rat dorsal root ganglion neurons. J Neurosci 28: 6231‐6238, 2008. DOI: 10.1523/jneurosci.0504‐08.2008.
 216.Ramanadham S, Turk J. ω‐Conotoxin inhibits glucose‐ and arachidonic acid‐induced rises in intracellular [Ca2+] in rat pancreatic islet β‐cells. Cell Calcium 15: 259‐264, 1994. DOI: 10.1016/0143‐4160(94)90065‐5.
 217.Randall A, Tsien R. Pharmacological dissection of multiple types of Ca2+ channel currents in rat cerebellar granule neurons. J Neurosci 15: 2995‐3012, 1995. DOI: 10.1523/jneurosci.15‐04‐02995.1995.
 218.Remedi MS, Friedman JB, Nichols CG. Diabetes induced by gain‐of‐function mutations in the Kir6.1 subunit of the KATP channel. J Gen Physiol 149: jgp.201611653, 2016. DOI: 10.1085/jgp.201611653.
 219.Ren J, Sherman A, Bertram R, Goforth PB, Nunemaker CS, Waters CD, Satin LS. Slow oscillations of KATP conductance in mouse pancreatic islets provide support for electrical bursting driven by metabolic oscillations. Am J Physiol Endocrinol Metab 305: E805‐E817, 2013. DOI: 10.1152/ajpendo.00046.2013.
 220.Ribalet B, Beigelman PM. Calcium action potentials and potassium permeability activation in pancreatic beta‐cells. Am J Physiol‐cell Ph 239: C124‐C133, 1980. DOI: 10.1152/ajpcell.1980.239.3.c124.
 221.Riz M, Braun M, Wu X, Pedersen MG. Inwardly rectifying Kir2.1 currents in human β‐cells control electrical activity: Characterisation and mathematical modelling. Biochem Biophys Res Commun 459: 284‐287, 2015. DOI: 10.1016/j.bbrc.2015.02.099.
 222.Roe MWM, Worley JF, Mittal AA, Kuznetsov A, DasGupta S, Mertz RJ, Witherspoon SM, Blair N, Lancaster ME, McIntyre MS, Shehee WR, Dukes ID, Philipson LH. Expression and function of pancreatic β‐cell delayed rectifier k+ channels role in stimulus‐secretion coupling. J Biol Chem 271: 32241‐32246, 1996. DOI: 10.1074/jbc.271.50.32241.
 223.Rorsman P. Two types of Ca2+ currents with different sensitivities to organic Ca2+ channel antagonists in guinea pig pancreatic alpha 2 cells. J Gen Physiol 91: 243‐254, 1988. DOI: 10.1085/jgp.91.2.243.
 224.Rorsman P, Ashcroft FM. Pancreatic β‐cell electrical activity and insulin secretion: Of mice and men. Physiol Rev 98: 117‐214, 2018. DOI: 10.1152/physrev.00008.2017.
 225.Rorsman P, Ashcroft FM, Trube G. Single Ca channel currents in mouse pancreatic B‐cells. Pflugers Arch 412: 597‐603, 1988. DOI: 10.1007/bf00583760.
 226.Rorsman P, Bokvist K, Ämmälä C, Arkhammar P, Berggren P‐O, Larsson O, Wåhlander K. Activation by adrenaline of a low‐conductance G protein‐dependent K+ channel in mouse pancreatic B cells. Nature 349: 77‐79, 1991. DOI: 10.1038/349077a0.
 227.Rorsman P, Braun M. Regulation of insulin secretion in human pancreatic islets. Physiology 75: 155‐179, 2013. DOI: 10.1146/annurev‐physiol‐030212‐183754.
 228.Rorsman P, Eliasson L, Kanno T, Zhang Q, Gopel S. Electrophysiology of pancreatic β‐cells in intact mouse islets of Langerhans. Prog Biophys Mol Biol 107: 224‐235, 2011. DOI: 10.1016/j.pbiomolbio.2011.06.009.
 229.Rorsman P, Huising MO. The somatostatin‐secreting pancreatic δ‐cell in health and disease. Nat Rev Endocrinol 14: 404‐414, 2018. DOI: 10.1038/s41574‐018‐0020‐6.
 230.Rorsman P, Renström E. Insulin granule dynamics in pancreatic beta cells. Diabetologia 46: 1029‐1045, 2003. DOI: 10.1007/s00125‐003‐1153‐1.
 231.Rorsman P, Trube G. Glucose dependent K+‐channels in pancreaticβ‐cells are regulated by intracellular ATP. Pflugers Arch 405: 305‐309, 1985. DOI: 10.1007/bf00595682.
 232.Rorsman P, Trube G. Calcium and delayed potassium currents in mouse pancreatic beta‐cells under voltage‐clamp conditions. J Physiol 374: 531‐550, 1986. DOI: 10.1113/jphysiol.1986.sp016096.
 233.Ruppersberg JP, Fakler B. Complexity of the regulation of Kir2.1 K+ channels. Neuropharmacology 35: 887‐893, 1996. DOI: 10.1016/0028‐3908(96)00092‐5.
 234.Sabourin J, Gal L, Saurwein L, Haefliger J‐AA, Raddatz E, Allagnat F. Store‐operated Ca2+ entry mediated by Orai1 and TRPC1 participates to insulin secretion in rat β‐cells. J Biol Chem 290: 30530‐30539, 2015. DOI: 10.1074/jbc.M115.682583.
 235.Samols E, Marri G, Marks V. Promotion of insulin secretion by glucagon. Lancet 286: 415‐416, 1965. DOI: 10.1016/s0140‐6736(65)90761‐0.
 236.Sather WA, McCleskey EW. Permeation and selectivity in calcium channels. Annu Rev Physiol 65: 133‐159, 2003. DOI: 10.1146/annurev.physiol.65.092101.142345.
 237.Satin LS. Localized calcium influx in pancreatic β‐cells. Endocrine 13: 251‐262, 2000. DOI: 10.1385/endo:13:3:251.
 238.Satin LS, Butler PC, Ha J, Sherman AS. Pulsatile insulin secretion, impaired glucose tolerance and type 2 diabetes. Mol Asp Med 42: 61‐77, 2015. DOI: 10.1016/j.mam.2015.01.003.
 239.Satin LS, Cook DL. Voltage‐gated Ca2+ current in pancreatic B‐cells. Pflugers Arch 404: 385‐387, 1985. DOI: 10.1007/bf00585354.
 240.Satin LS, Cook DL. Evidence for two calcium currents in insulin‐secreting cells. Pflugers Arch 411: 401‐409, 1988. DOI: 10.1007/bf00587719.
 241.Satin LS, Cook DL. Calcium current inactivation in insulin‐secreting cells is mediated by calcium influx and membrane depolarization. Pflugers Arch 414: 1‐10, 1989. DOI: 10.1007/bf00585619.
 242.Satin LS, Kinard TA. Neurotransmitters and their receptors in the islets of langerhans of the pancreas. Endocrine 8: 213‐223, 1998. DOI: 10.1385/endo:8:3:213.
 243.Satin LS, Tavalin SJ, Kinard TA, Teague J. Contribution of L‐ and non‐L‐type calcium channels to voltage‐gated calcium current and glucose‐dependent insulin secretion in HIT‐T15 cells. Endocrinology 136: 4589‐4601, 1995. DOI: 10.1210/endo.136.10.7545106.
 244.Satin LS, Watts M, Sherman AS. An introduction to beta cell electrophysiology and modeling. In: Khadra A, editor. Diabetes Systems Biology. IOP Publishing, 2020, p. 2‐1 to 2‐46.
 245.Sawatani T, Kaneko Y, Doutsu I, Ogawa A, Ishikawa T. TRPV2 channels mediate cell swelling‐induced insulin secretion in mouse pancreatic β‐cells. Proc Annu Meet Jpn Pharmacol Soc WCP2018: PO2‐7–33, 2020. DOI: 10.1254/jpssuppl.wcp2018.0_po2‐7‐33.
 246.Sawatani T, Kaneko YK, Doutsu I, Ogawa A, Ishikawa T. TRPV2 channels mediate insulin secretion induced by cell swelling in mouse pancreatic β‐cells. Am J Physiol‐cell Ph 316: C434‐C443, 2019. DOI: 10.1152/ajpcell.00210.2017.
 247.Schmidt A, Hescheler J, Offermanns S, Spicher K, Hinsch KD, Klinz FJ, Codina J, Birnbaumer L, Gausepohl H, Frank R. Involvement of pertussis toxin‐sensitive G‐proteins in the hormonal inhibition of dihydropyridine‐sensitive Ca2+ currents in an insulin‐secreting cell line (RINm5F). J Biol Chem 266: 18025‐18033, 1991.
 248.Schneider MJ, Rogowski RS, Krueger BK, Blaustein MP. Charybdotoxin blocks both Ca‐activated K channels and Ca‐independent voltage‐gated K channels in rat brain synaptosomes. FEBS Lett 250: 433‐436, 1989. DOI: 10.1016/0014‐5793(89)80771‐9.
 249.Schober AL, Wilson CS, Mongin AA. Molecular composition and heterogeneity of the LRRC8‐containing swelling‐activated osmolyte channels in primary rat astrocytes. J Physiol 595: 6939‐6951, 2017. DOI: 10.1113/jp275053.
 250.Schuit FC, Derde M‐P, Pipeleers DG. Sensitivity of rat pancreatic A and B cells to somatostatin. Diabetologia 32: 207‐212, 1989. DOI: 10.1007/bf00265096.
 251.Schulla V, Renström E, Feil R, Feil S, Franklin I, Gjinovci A, Jing X, Laux D, Lundquist I, Magnuson MA, Obermüller S, Olofsson CS, Salehi A, Wendt A, Klugbauer N, Wollheim CB, Rorsman P, Hofmann F. Impaired insulin secretion and glucose tolerance in β cell‐selective CaV1.2 Ca2+ channel null mice. EMBO J 22: 3844‐3854, 2003. DOI: 10.1093/emboj/cdg389.
 252.Segerstolpe Å, Palasantza A, Eliasson P, Andersson E‐M, Andréasson A‐C, Sun X, Picelli S, Sabirsh A, Clausen M, Bjursell MK, Smith DM, Kasper M, Ämmälä C, Sandberg R. Single‐cell transcriptome profiling of human pancreatic islets in health and type 2 diabetes. Cell Metab 24: 593‐607, 2016. DOI: 10.1016/j.cmet.2016.08.020.
 253.Seghers V, Nakazaki M, DeMayo F, Aguilar‐Bryan L, Bryan J. Sur1 knockout mice. A model for K(ATP) channel‐independent regulation of insulin secretion. J Biol Chem 275: 9270‐9277, 2000.
 254.Sehlin J. Interrelationship between chloride fluxes in pancreatic islets and insulin release. Am J Physiol‐endoc M 235: E501, 1978. DOI: 10.1152/ajpendo.1978.235.5.e501.
 255.Sehlin J, Meissner HP. Effects of Cl− deficiency on the membrane potential in mouse pancreatic β‐cells. Biochimica Et Biophysica Acta Bba ‐ Biomembr 937: 309‐318, 1988. DOI: 10.1016/0005‐2736(88)90253‐2.
 256.Seino S, Iwanaga T, Nagashima K, Miki T. Diverse roles of K(ATP) channels learned from Kir6.2 genetically engineered mice. Diabetes 49: 311‐318, 2000. DOI: 10.2337/diabetes.49.3.311.
 257.Sharma S, Hopkins CR. Review of transient receptor potential canonical (TRPC5) channel modulators and diseases: Miniperspective. J Med Chem 62: 7589‐7602, 2019. DOI: 10.1021/acs.jmedchem.8b01954.
 258.Sher E, Giovannini F, Codignola A, Passafaro M, Giorgi‐Rossi P, Volsen S, Craig P, Davalli A, Carrera P. Voltage‐operated calcium channel heterogeneity in pancreatic cells: Physiopathological implications. J Bioenerg Biomembr 35: 687‐696, 2003. DOI: 10.1023/b:jobb.0000008032.49504.48.
 259.Shigeto M, Ramracheya R, Tarasov AI, Cha CY, Chibalina MV, Hastoy B, Philippaert K, Reinbothe T, Rorsman N, Salehi A, Sones WR, Vergari E, Weston C, Gorelik J, Katsura M, Nikolaev VO, Vennekens R, Zaccolo M, Galione A, Johnson PR, Kaku K, Ladds G, Rorsman P. GLP‐1 stimulates insulin secretion by PKC‐dependent TRPM4 and TRPM5 activation. J Clin Invest 125: 4714‐4728, 2015. DOI: 10.1172/JCI81975.
 260.Shyng S‐L, Nichols CG. Octameric stoichiometry of the KATP channel complex. J Gen Physiol 110: 655‐664, 1997. DOI: 10.1085/jgp.110.6.655.
 261.Sinnegger‐Brauns MJ, Hetzenauer A, Huber IG, Renström E, Wietzorrek G, Berjukov S, Cavalli M, Walter D, Koschak A, Waldschütz R, Hering S, Bova S, Rorsman P, Pongs O, Singewald N, Striessnig J. Isoform‐specific regulation of mood behavior and pancreatic β cell and cardiovascular function by L‐type Ca2+ channels. J Clin Invest 113: 1430‐1439, 2004. DOI: 10.1172/jci20208.
 262.Skrzypski M, Khajavi N, Mergler S, Billert M, Szczepankiewicz D, Wojciechowicz T, Nowak KW, Strowski MZ. Orexin A modulates INS‐1E cell proliferation and insulin secretion via extracellular signal‐regulated kinase and transient receptor potential channels. J Physiology Pharmacol Official J Pol Physiological Soc 67: 643‐652, 2016.
 263.Somers G, Somer A, Devis G, Malaisse WJ. The stimulus‐secretion coupling of glucose‐induced insulin release. Pflugers Arch 388: 249‐253, 1980. DOI: 10.1007/bf00658490.
 264.Srivastava S, Li Z, Soomro I, Sun Y, Wang J, Bao L, Coetzee WA, Stanley CA, Li C, Skolnik EY. Regulation of KATP channel trafficking in pancreatic β cells by protein histidine phosphorylation. Diabetes 67: db171433, 2018. DOI: 10.2337/db17‐1433.
 265.Steiner DJ, Kim A, Miller K, Hara M. Pancreatic islet plasticity: Interspecies comparison of islet architecture and composition. Islets 2: 135‐145, 2010. DOI: 10.4161/isl.2.3.11815.
 266.Strowski M, Parmar R, Blake A, Schaeffer J. Somatostatin inhibits insulin and glucagon secretion via two receptors subtypes: An in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 141: 111‐117, 2000. DOI: 10.1210/endo.141.1.7263.
 267.Strübing C, Krapivinsky G, Krapivinsky L, Clapham DE. TRPC1 and TRPC5 form a novel cation channel in mammalian brain. Neuron 29: 645‐655, 2001. DOI: 10.1016/s0896‐6273(01)00240‐9.
 268.Stuhlmann T, Planells‐Cases R, Jentsch TJ. LRRC8/VRAC anion channels enhance β‐cell glucose sensing and insulin secretion. Nat Commun 9: 1974, 2018. DOI: 10.1038/s41467‐018‐04353‐y.
 269.Sussman KE, Vaughan GD. Insulin release after ACTH, glucagon and adenosine‐3′‐5′‐phosphate (Cyclic AMP) in the perfused isolated rat pancreas. Diabetes 16: 449‐454, 1967. DOI: 10.2337/diab.16.7.449.
 270.Swayne LA, Mezghrani A, Lory P, Nargeot J, Monteil A. The NALCN ion channel is a new actor in pancreatic β‐cell physiology. Islets 2: 54‐56, 2010. DOI: 10.4161/isl.2.1.10522.
 271.Talavera K, Staes M, Janssens A, Klugbauer N, Droogmans G, Hofmann F, Nilius B. Aspartate residues of the Glu‐Glu‐Asp‐Asp (EEDD) pore locus control selectivity and permeation of the t‐type Ca2+channel α1G. J Biol Chem 276: 45628‐45635, 2001. DOI: 10.1074/jbc.m103047200.
 272.Tamagawa T, Henquin J‐C. Chloride modulation of insulin release, 86Rb+ Efflux, and 45Ca2+ fluxes in rat islets stimulated by various secretagogues. Diabetes 32: 416‐423, 1983. DOI: 10.2337/diab.32.5.416.
 273.Tamarina NA, Wang Y, Mariotto L, Kuznetsov A, Bond C, Adelman J, Philipson LH. Small‐conductance calcium‐activated K+ channels are expressed in pancreatic islets and regulate glucose responses. Diabetes 52: 2000‐2006, 2003. DOI: 10.2337/diabetes.52.8.2000.
 274.Taneera J, Jin Z, Jin Y, Muhammed SJ, Zhang E, Lang S, Salehi A, Korsgren O, Renström E, Groop L, Birnir B. γ‐Aminobutyric acid (GABA) signalling in human pancreatic islets is altered in type 2 diabetes. Diabetologia 55: 1985‐1994, 2012. DOI: 10.1007/s00125‐012‐2548‐7.
 275.Tang C, Presser F, Morad M. Amiloride selectively blocks the low threshold (T) calcium channel. Science 240: 213‐215, 1988. DOI: 10.1126/science.2451291.
 276.Taniguchi H, Okada Y, Shimada C, Baba S. GABA in pancreatic islets. Arch Histol Japon 40: 87‐97, 1977. DOI: 10.1679/aohc1950.40.supplement_87.
 277.Thomas P, Cote G, Wohllk N, Haddad B, Mathew P, Rabl W, Aguilar‐Bryan L, Gagel R, Bryan J. Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy. Science 268: 426‐429, 1995. DOI: 10.1126/science.7716548.
 278.Thorens B. GLUT2, glucose sensing and glucose homeostasis. Diabetologia 58: 221‐232, 2015. DOI: 10.1007/s00125‐014‐3451‐1.
 279.Tian G, Sandler S, Gylfe E, Tengholm A. Glucose‐ and hormone‐induced cAMP oscillations in α‐ and β‐cells within intact pancreatic islets. Diabetes 60: 1535‐1543, 2011. DOI: 10.2337/db10‐1087.
 280.Togashi K, Hara Y, Tominaga T, Higashi T, Konishi Y, Mori Y, Tominaga M. TRPM2 activation by cyclic ADP‐ribose at body temperature is involved in insulin secretion. EMBO J 25: 1804‐1815, 2006. DOI: 10.1038/sj.emboj.7601083.
 281.Trube G, Rorsman P, Ohno‐Shosaku T. Opposite effects of tolbutamide and diazoxide on the ATP‐dependent K+ channel in mouse pancreatic β‐cells. Pflugers Arch 407: 493‐499, 1986. DOI: 10.1007/bf00657506.
 282.Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 11: 431‐438, 1988. DOI: 10.1016/0166‐2236(88)90194‐4.
 283.Uchida K, Dezaki K, Damdindorj B, Inada H, Shiuchi T, Mori Y, Yada T, Minokoshi Y, Tominaga M. Lack of TRPM2 impaired insulin secretion and glucose metabolisms in mice. Diabetes 60: 119‐126, 2011. DOI: 10.2337/db10‐0276.
 284.Uchida K, Tominaga M. The role of thermosensitive TRP (transient receptor potential) channels in insulin secretion [Review]. Endocr J 58: 1021‐1028, 2011. DOI: 10.1507/endocrj.ej11‐0130.
 285.Uchida K, Tominaga M. The role of TRPM2 in pancreatic β‐cells and the development of diabetes. Cell Calcium 56: 332‐339, 2014. DOI: 10.1016/j.ceca.2014.07.001.
 286.Ullrich ND, Voets T, Prenen J, Vennekens R, Talavera K, Droogmans G, Nilius B. Comparison of functional properties of the Ca2+‐activated cation channels TRPM4 and TRPM5 from mice. Cell Calcium 37: 267‐278, 2005. DOI: 10.1016/j.ceca.2004.11.001.
 287.Urban N, Schaefer M. Direct activation of TRPC3 channels by the antimalarial agent artemisinin. Cell 9: 202, 2020. DOI: 10.3390/cells9010202.
 288.Vajna R, Klöckner U, Pereverzev A, Weiergräber M, Chen X, Miljanich G, Klugbauer N, Hescheler J, Perez‐Reyes E, Schneider T. Functional coupling between ‘R‐type’ Ca2+ channels and insulin secretion in the insulinoma cell line INS‐1. Eur J Biochem 268: 1066‐1075, 2001. DOI: 10.1046/j.1432‐1327.2001.01969.x.
 289.Varshney A, Scott LJ, Welch RP, Erdos MR, Chines PS, Narisu N, Albanus RD, Orchard P, Wolford BN, Kursawe R, Vadlamudi S, Cannon ME, Didion JP, Hensley J, Kirilusha A, Program NCS, Bonnycastle LL, Taylor DL, Watanabe R, Mohlke KL, Boehnke M, Collins FS, Parker SCJ, Stitzel ML, Barnabas BB, Bouffard GG, Brooks SY, Coleman H, Dekhtyar L, Guan X, Han J, Ho S, Legaspi R, Maduro QL, Masiello CA, McDowell JC, Montemayor C, Mullikin JC, Park M, Riebow NL, Rosarda J, Schandler K, Schmidt B, Sison C, Smith R, Stantripop S, Thomas JW, Thomas PJ, Vemulapalli M, Young AC. Genetic regulatory signatures underlying islet gene expression and type 2 diabetes. Proc National Acad Sci 114: 2301‐2306, 2017. DOI: 10.1073/pnas.1621192114.
 290.Venkatachalam K, Montell C. TRP channels. Annu Rev Biochem 76: 387‐417, 2007. DOI: 10.1146/annurev.biochem.75.103004.142819.
 291.Vierra NC, Dadi PK, Jeong I, Dickerson M, Powell DR, Jacobson DA. Type 2 diabetes–associated K+ channel TALK‐1 modulates β‐cell electrical excitability, second‐phase insulin secretion, and glucose homeostasis. Diabetes 64: 3818‐3828, 2015. DOI: 10.2337/db15‐0280.
 292.Vierra NC, Dadi PK, Milian SC, Dickerson MT, Jordan KL, Gilon P, Jacobson DA. TALK‐1 channels control β cell endoplasmic reticulum Ca2+ homeostasis. Sci Signal 10: eaan2883, 2017. DOI: 10.1126/scisignal.aan2883.
 293.Vogalis F, Storm JF, Lancaster B. SK channels and the varieties of slow after‐hyperpolarizations in neurons. Eur J Neurosci 18: 3155‐3166, 2003. DOI: 10.1111/j.1460‐9568.2003.03040.x.
 294.Wagner TFJ, Drews A, Loch S, Mohr F, Philipp SE, Lambert S, Oberwinkler J. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells. Pflügers Archiv Eur J Physiol 460: 755‐765, 2010. DOI: 10.1007/s00424‐010‐0838‐9.
 295.Wang L, Bhattacharjee A, Fu J, Li M. Abnormally expressed low‐voltage‐activated calcium channels in ‐cells from NOD mice and a related clonal cell line. Diabetes 45: 1678‐1683, 1996. DOI: 10.2337/diab.45.12.1678.
 296.Weaver CD, Partridge JG, Yao TL, Moates JM, Magnuson MA, Verdoorn TA. Activation of glycine and glutamate receptors increases intracellular calcium in cells derived from the endocrine pancreas. Mol Pharmacol 54: 639‐646, 1998.
 297.Wendt A, Eliasson L. Pancreatic α‐cells – The unsung heroes in islet function. Semin Cell Dev Biol 103: 41‐50, 2020. DOI: 10.1016/j.semcdb.2020.01.006.
 298.Wiser O, Trus M, Hernández A, Renström E, Barg S, Rorsman P, Atlas D. The voltage sensitive Lc‐type Ca2+ channel is functionally coupled to the exocytotic machinery. Proc National Acad Sci 96: 248‐253, 1999. DOI: 10.1073/pnas.96.1.248.
 299.Xu Z, Lefevre GM, Gavrilova O, Claire MBFS, Riddick G, Felsenfeld G. Mapping of long‐range INS promoter interactions reveals a role for calcium‐activated chloride channel ANO1 in insulin secretion. Proc National Acad Sci 111: 16760‐16765, 2014. DOI: 10.1073/pnas.1419240111.
 300.Yamada H, Yoshida M, Ito K, Dezaki K, Yada T, Ishikawa S, Kakei M. Potentiation of glucose‐stimulated insulin secretion by the GPR40–PLC–TRPC pathway in pancreatic β‐cells. Sci Rep 6: 25912, 2016. DOI: 10.1038/srep25912.
 301.Yan‐Do R, Duong E, Fox JEM, Dai X, Suzuki K, Khan S, Bautista A, Ferdaoussi M, Lyon J, Wu X, Cheley S, MacDonald PE, Braun M. A glycine‐insulin autocrine feedback loop enhances insulin secretion from human β‐cells and is impaired in type 2 diabetes. Diabetes 65: 2311‐2321, 2016. DOI: 10.2337/db15‐1272.
 302.Yang S‐N, Berggren P‐O. CaV2.3 channel and PKCλ: New players in insulin secretion. J Clin Invest 115: 16‐20, 2005. DOI: 10.1172/jci23970.
 303.Yang S‐N, Berggren P‐O. The role of voltage‐gated calcium channels in pancreatic β‐cell physiology and pathophysiology. Endocr Rev 27: 621‐676, 2006. DOI: 10.1210/er.2005‐0888.
 304.Yildirim V, Vadrevu S, Thompson B, Satin LS, Bertram R. Upregulation of an inward rectifying K+ channel can rescue slow Ca2+ oscillations in K(ATP) channel deficient pancreatic islets. PLoS Comput Biol 13: e1005686, 2017. DOI: 10.1371/journal.pcbi.1005686.
 305.Zhang L, Liu Q, Liu C, Zhai X, Feng Q, Xu R, Cui X, Zhao Z, Cao J, Wu B. Zacopride selectively activates the Kir2.1 channel via a PKA signaling pathway in rat cardiomyocytes. Sci China Life Sci 56: 788‐796, 2013. DOI: 10.1007/s11427‐013‐4531‐z.
 306.Zhang M, Goforth P, Bertram R, Sherman A, Satin L. The Ca2+ dynamics of isolated mouse beta‐cells and islets: Implications for mathematical models. Biophys J 84: 2852‐2870, 2003. DOI: 10.1016/S0006‐3495(03)70014‐9.
 307.Zhang M, Houamed K, Kupershmidt S, Roden D, Satin LS. Pharmacological properties and functional role of Kslow current in mouse pancreatic β‐cells SK channels contribute to Kslow tail current and modulate insulin secretion. J Gen Physiol 126: 353‐363, 2005. DOI: 10.1085/jgp.200509312.
 308.Zhang Q, Chibalina MV, Bengtsson M, Groschner LN, Ramracheya R, Rorsman NJG, Leiss V, Nassar MA, Welling A, Gribble FM, Reimann F, Hofmann F, Wood JN, Ashcroft FM, Rorsman P. Na+ current properties in islet α‐ and β‐cells reflect cell‐specific Scn3a and Scn9a expression. J Physiol 592: 4677‐4696, 2014. DOI: 10.1113/jphysiol.2014.274209.
 309.Zhang Z, Liu F, Chen J. Molecular structure of the ATP‐bound, phosphorylated human CFTR. Proc National Acad Sci 115: 201815287, 2018. DOI: 10.1073/pnas.1815287115.
 310.Zhuang H, Bhattacharjee A, Hu F, Zhang M, Goswami T, Wang L, Wu S, Berggren PO, Li M. Cloning of a T‐type Ca2+ channel isoform in insulin‐secreting cells. Diabetes 49: 59‐64, 2000. DOI: 10.2337/diabetes.49.1.59.
 311.Zitt C, Zobel A, Obukhov AG, Harteneck C, Kalkbrenner F, Lückhoff A, Schultz G. Cloning and functional expression of a human Ca2+‐permeable cation channel activated by calcium store depletion. Neuron 16: 1189‐1196, 1996. DOI: 10.1016/s0896‐6273(00)80145‐2.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Benjamin Thompson, Leslie S. Satin. Beta‐Cell Ion Channels and Their Role in Regulating Insulin Secretion. Compr Physiol 2021, 11: 1-21. doi: 10.1002/cphy.c210004