Comprehensive Physiology Wiley Online Library

Physiology of Continuous‐Flow Left Ventricular Assist Device Therapy

Full Article on Wiley Online Library



Abstract

The expanding use of continuous‐flow left ventricular assist devices (CF‐LVADs) for end‐stage heart failure warrants familiarity with the physiologic interaction of the device with the native circulation. Contemporary devices utilize predominantly centrifugal flow and, to a lesser extent, axial flow rotors that vary with respect to their intrinsic flow characteristics. Flow can be manipulated with adjustments to preload and afterload as in the native heart, and ascertainment of the predicted effects is provided by differential pressure‐flow (HQ) curves or loops. Valvular heart disease, especially aortic regurgitation, may significantly affect adequacy of mechanical support. In contrast, atrioventricular and ventriculoventricular timing is of less certain significance. Although beneficial effects of device therapy are typically seen due to enhanced distal perfusion, unloading of the left ventricle and atrium, and amelioration of secondary pulmonary hypertension, negative effects of CF‐LVAD therapy on right ventricular filling and function, through right‐sided loading and septal interaction, can make optimization challenging. Additionally, a lack of pulsatile energy provided by CF‐LVAD therapy has physiologic consequences for end‐organ function and may be responsible for a series of adverse effects. Rheological effects of intravascular pumps, especially shear stress exposure, result in platelet activation and hemolysis, which may result in both thrombotic and hemorrhagic consequences. Development of novel solutions for untoward device‐circulatory interactions will facilitate hemodynamic support while mitigating adverse events. © 2021 American Physiological Society. Compr Physiol 12:1‐37, 2021.

Figure 1. Figure 1. LVAD configuration. A standard configuration for durable CF‐LVAD support with near‐LV apical cannulation, rotor housing within the pericardium, and outflow cannula extending from the rotor housing to the right lateral ascending aorta. HeartMate III model shown. Reproduced, with permission, from Abbott Laboratories.
Figure 2. Figure 2. Bearing types utilized in contemporary continuous‐flow left ventricular assist devices. (A) Mechanical pivot bearing, (B) electromagnetic bearing, (C) hydrodynamic radial bearing, (D) hydrodynamic thrust bearing, and (E) hydrodynamic thrust and permanent magnet bearing combination. Reprinted, with permission, from Elsevier, Inc./Moazami N, et al., 2013 252.
Figure 3. Figure 3. Computational fluid dynamics modeling of HeartMate III. Reprinted, with permission, from John Wiley and Sons/Wiegmann L, et al., 2019 391.
Figure 4. Figure 4. Example of a benchtop mock circulatory setup with CF‐LVAD in situ. Reprinted via Creative Commons CC BY 4.0 license, with permission, from Bozkurt S, et al., 2016 49.
Figure 5. Figure 5. Hemodynamic assessment paradigm derived from left heart catheterization. (A) Relationship between transaortic gradient (TAG) and left ventricular end‐diastolic pressure in patients evaluated for hemodynamic optimization. (B) Relationship in patients evaluated for pump obstruction. (C) Relationship in patients evaluated for aortic insufficiency (D) Hemodynamics in one patient with severe aortic insufficiency demonstrating a rise in LVEDP with ramp. Reprinted via Creative Commons CC BY‐NC 3.0 license, with permission, from Rosenbaum AN, et al., 2019 310.
Figure 6. Figure 6. Simplified HQ curves for axial and centrifugal flow devices. Relationship between differential pressure (post‐pre rotor pressures, H) versus pump flow (Q) stratified by axial (blue) and centrifugal (red) flow devices. A flatter contour of the HQ curves in centrifugal flow devices results in greater sensitivity to the differential pressure and greater changes in flow based on loading conditions (ΔH vs. ΔQ). Across the cardiac cycle, this enhances pulsatility (top right inset) of centrifugal flow devices relative to axial flow (bottom left inset). Hemodynamic waveforms within insets represent continuous aortic pressure (light grey) and continuous left ventricular pressure (dark grey). RPM, revolutions per minute.
Figure 7. Figure 7. HQ loops in axial and centrifugal flow devices. Reprinted, with permission, from John Wiley and Sons/Noor MR, et al., 2016 274.
Figure 8. Figure 8. Clinical scenarios representing deviations in pump parameters. Top Left: A high power and high flow state with high pulsatility may reflect exercise and therefore enhanced contractility of the left ventricle with high flow. Myocardial recovery will similarly result in improved flow and high pulsatility index. Because significant aortic insufficiency will load the left ventricle, but if well tolerated, will increase contractility through a Frank‐Starling mechanism and result in higher pulsatility and flows. Top Right: A low flow situation with high pulsatility index may occur in the setting of relatively low speed, in which the LV ventricle is loaded to a greater degree and if able to compensate, may result in a high PI. Similarly, hypertension, because of the interaction with device flow will exaggerate the systolic and diastolic flows and therefore result in elevated pulsatility while flow may be low. Bottom Left: A high power situation with low PI may result from excessive unloading of the left ventricle due to high speed. However, if somewhat acute, may also represent rotor thrombus increasing power consumption while pulsatility is not well transmitted to the device. Excessive medication‐related vasodilation or sepsis may result in high flow, low pulsatility index due to low peripheral resistance. Bottom Right: A low flow, power, and PI situation may occur in hypovolemia from any cause as the ventricle is under‐filled resulting in low flows, pericardial tamponade, an effectively low filling state, right ventricular failure, where inadequate flow is provided to the LV, and ventricular dysrhythmias during which pulsatility index is low from lack of coordinated LV contraction, which also impairs flow through the device. Finally, both inflow or outflow obstruction will impair true device flow and shield the rotor from the normal variability in flow pulses resulting in a low pulsatility.
Figure 9. Figure 9. Myocardial stress distribution of the septum by CF‐LVAD speed. Reprinted via Creative Commons CC BY 4.0 license, with permission, from Sack KL, et al., 2018 318.
Figure 10. Figure 10. Immediate changes in longitudinal RV motion postpericardiotomy in patients undergoing traditional versus minimally invasive valve replacement. Reprinted, with permission, from Elsevier, Inc./Unsworth B, et al., 2013 369.
Figure 11. Figure 11. Invasive LV hemodynamics at rest and exercise in an LVAD‐supported patient. On the left, at baseline speed of 9000 RPM, the LV is unloaded, and aortic valve does not open owing to the high reverse pressure gradient across the aortic valve (A). Same patient at 7000 RPM simulating minimal support with consistent aortic valve opening resulting from high intrinsic LV contractility and aortic gradient (B).
Figure 12. Figure 12. Hemodynamic tracing before and after increase in pacing lower rate limit. (A) Hemodynamic tracings with simultaneous aortic, LV, and RA pressure waveforms and ECG are shown at 50 BPM. (B) The same tracing evaluated with a paced rhythm of 80 BPM.
Figure 13. Figure 13. Hemodynamic energy and pulsatility by pulse pressure. (A) Maximal dp/dy, (B) surplus hemodynamic energy (SHE), and (C) pulse power index (PPI) values over a range of pulse pressures (PP), stratified by modes of CF‐LVAD pulsation. Reprinted, with permission, from John Wiley and Sons/Kleinheyer M, et al., 2016 198.
Figure 14. Figure 14. Combined effects of shear stress and exposure time in relation to hemolysis. The relationship between the combined effects of shear stress exposure on blood cells and exposure time in the relevant vessel determines risk of hemolysis. The roughly cylindrical nature of LVAD blood flow pathways lends to higher exposure times. Reprinted, with permission, from Elsevier, Inc./Leverett LB, et al., 1972 221.
Figure 15. Figure 15. Diagrammatic representation of intravascular platelet aggregation using continuum modeling using two spatial scales. Reprinted, with permission, from Elsevier, Inc./Fogelson AL and Guy RD, 2008 109.
Figure 16. Figure 16. Outflow cannula pathologies leading to LVAD obstruction. (A) Kinking of the outflow cannula may occur due to surgical malpositioning or rotation within the thoracic cavity over time. (B) Outflow cannula stenosis may occur due to chronic thrombus accumulation and may be identified on cross‐sectional computed tomography. (C) Exudative thrombofibrotic material may accumulate between the outflow graft and proximal bend relief resulting in extrinsic compression and functional stenosis.


Figure 1. LVAD configuration. A standard configuration for durable CF‐LVAD support with near‐LV apical cannulation, rotor housing within the pericardium, and outflow cannula extending from the rotor housing to the right lateral ascending aorta. HeartMate III model shown. Reproduced, with permission, from Abbott Laboratories.


Figure 2. Bearing types utilized in contemporary continuous‐flow left ventricular assist devices. (A) Mechanical pivot bearing, (B) electromagnetic bearing, (C) hydrodynamic radial bearing, (D) hydrodynamic thrust bearing, and (E) hydrodynamic thrust and permanent magnet bearing combination. Reprinted, with permission, from Elsevier, Inc./Moazami N, et al., 2013 252.


Figure 3. Computational fluid dynamics modeling of HeartMate III. Reprinted, with permission, from John Wiley and Sons/Wiegmann L, et al., 2019 391.


Figure 4. Example of a benchtop mock circulatory setup with CF‐LVAD in situ. Reprinted via Creative Commons CC BY 4.0 license, with permission, from Bozkurt S, et al., 2016 49.


Figure 5. Hemodynamic assessment paradigm derived from left heart catheterization. (A) Relationship between transaortic gradient (TAG) and left ventricular end‐diastolic pressure in patients evaluated for hemodynamic optimization. (B) Relationship in patients evaluated for pump obstruction. (C) Relationship in patients evaluated for aortic insufficiency (D) Hemodynamics in one patient with severe aortic insufficiency demonstrating a rise in LVEDP with ramp. Reprinted via Creative Commons CC BY‐NC 3.0 license, with permission, from Rosenbaum AN, et al., 2019 310.


Figure 6. Simplified HQ curves for axial and centrifugal flow devices. Relationship between differential pressure (post‐pre rotor pressures, H) versus pump flow (Q) stratified by axial (blue) and centrifugal (red) flow devices. A flatter contour of the HQ curves in centrifugal flow devices results in greater sensitivity to the differential pressure and greater changes in flow based on loading conditions (ΔH vs. ΔQ). Across the cardiac cycle, this enhances pulsatility (top right inset) of centrifugal flow devices relative to axial flow (bottom left inset). Hemodynamic waveforms within insets represent continuous aortic pressure (light grey) and continuous left ventricular pressure (dark grey). RPM, revolutions per minute.


Figure 7. HQ loops in axial and centrifugal flow devices. Reprinted, with permission, from John Wiley and Sons/Noor MR, et al., 2016 274.


Figure 8. Clinical scenarios representing deviations in pump parameters. Top Left: A high power and high flow state with high pulsatility may reflect exercise and therefore enhanced contractility of the left ventricle with high flow. Myocardial recovery will similarly result in improved flow and high pulsatility index. Because significant aortic insufficiency will load the left ventricle, but if well tolerated, will increase contractility through a Frank‐Starling mechanism and result in higher pulsatility and flows. Top Right: A low flow situation with high pulsatility index may occur in the setting of relatively low speed, in which the LV ventricle is loaded to a greater degree and if able to compensate, may result in a high PI. Similarly, hypertension, because of the interaction with device flow will exaggerate the systolic and diastolic flows and therefore result in elevated pulsatility while flow may be low. Bottom Left: A high power situation with low PI may result from excessive unloading of the left ventricle due to high speed. However, if somewhat acute, may also represent rotor thrombus increasing power consumption while pulsatility is not well transmitted to the device. Excessive medication‐related vasodilation or sepsis may result in high flow, low pulsatility index due to low peripheral resistance. Bottom Right: A low flow, power, and PI situation may occur in hypovolemia from any cause as the ventricle is under‐filled resulting in low flows, pericardial tamponade, an effectively low filling state, right ventricular failure, where inadequate flow is provided to the LV, and ventricular dysrhythmias during which pulsatility index is low from lack of coordinated LV contraction, which also impairs flow through the device. Finally, both inflow or outflow obstruction will impair true device flow and shield the rotor from the normal variability in flow pulses resulting in a low pulsatility.


Figure 9. Myocardial stress distribution of the septum by CF‐LVAD speed. Reprinted via Creative Commons CC BY 4.0 license, with permission, from Sack KL, et al., 2018 318.


Figure 10. Immediate changes in longitudinal RV motion postpericardiotomy in patients undergoing traditional versus minimally invasive valve replacement. Reprinted, with permission, from Elsevier, Inc./Unsworth B, et al., 2013 369.


Figure 11. Invasive LV hemodynamics at rest and exercise in an LVAD‐supported patient. On the left, at baseline speed of 9000 RPM, the LV is unloaded, and aortic valve does not open owing to the high reverse pressure gradient across the aortic valve (A). Same patient at 7000 RPM simulating minimal support with consistent aortic valve opening resulting from high intrinsic LV contractility and aortic gradient (B).


Figure 12. Hemodynamic tracing before and after increase in pacing lower rate limit. (A) Hemodynamic tracings with simultaneous aortic, LV, and RA pressure waveforms and ECG are shown at 50 BPM. (B) The same tracing evaluated with a paced rhythm of 80 BPM.


Figure 13. Hemodynamic energy and pulsatility by pulse pressure. (A) Maximal dp/dy, (B) surplus hemodynamic energy (SHE), and (C) pulse power index (PPI) values over a range of pulse pressures (PP), stratified by modes of CF‐LVAD pulsation. Reprinted, with permission, from John Wiley and Sons/Kleinheyer M, et al., 2016 198.


Figure 14. Combined effects of shear stress and exposure time in relation to hemolysis. The relationship between the combined effects of shear stress exposure on blood cells and exposure time in the relevant vessel determines risk of hemolysis. The roughly cylindrical nature of LVAD blood flow pathways lends to higher exposure times. Reprinted, with permission, from Elsevier, Inc./Leverett LB, et al., 1972 221.


Figure 15. Diagrammatic representation of intravascular platelet aggregation using continuum modeling using two spatial scales. Reprinted, with permission, from Elsevier, Inc./Fogelson AL and Guy RD, 2008 109.


Figure 16. Outflow cannula pathologies leading to LVAD obstruction. (A) Kinking of the outflow cannula may occur due to surgical malpositioning or rotation within the thoracic cavity over time. (B) Outflow cannula stenosis may occur due to chronic thrombus accumulation and may be identified on cross‐sectional computed tomography. (C) Exudative thrombofibrotic material may accumulate between the outflow graft and proximal bend relief resulting in extrinsic compression and functional stenosis.
References
 1.Abraham J, Remick JD, Caulfield T, Puhlman M, Evenson K, Ott G, Kirker E. Left ventricular assist device outflow cannula obstruction treated with percutaneous endovascular stenting. Circ Heart Fail 8: 229‐230, 2015. DOI: 10.1161/circheartfailure.114.001891.
 2.Addetia K, Uriel N, Maffessanti F, Sayer G, Adatya S, Kim GH, Sarswat N, Fedson S, Medvedofsky D, Kruse E, Collins K, Rodgers D, Ota T, Jeevanandam V, Mor‐Avi V, Burkhoff D, Lang RM. 3D morphological changes in LV and RV during LVAD ramp studies. JACC Cardiovasc Imaging 11: 159‐169, 2018. DOI: 10.1016/j.jcmg.2016.12.019.
 3.Agarwal R, Raina A, Lasorda DM, Moraca RJ, Bailey SH, Kanwar M, Sokos G, Murali S, Benza RL. Successful treatment of acute left ventricular assist device thrombosis and cardiogenic shock with intraventricular thrombolysis and a tandem heart. ASAIO J 61: 98‐101, 2015. DOI: 10.1097/MAT.0000000000000149.
 4.Agostoni P, Contini M, Vignati C, Del Torto A, De Vecchi Lajolo G, Salvioni E, Spadafora E, Lombardi C, Gerosa G, Bottio T, Morosin M, Tarzia V, Scuri S, Parati G, Apostolo A. Acute increase of cardiac output reduces central sleep apneas in heart failure patients. J Am Coll Cardiol 66: 2571‐2572, 2015. DOI: 10.1016/j.jacc.2015.09.074.
 5.Ahmad FS, Sauer AJ, Ricciardi MJ. Endovascular repair of ventricular assist device outflow cannula stenosis. Catheter Cardiovasc Interv 91: E81‐E85, 2018. DOI: 10.1002/ccd.26852.
 6.Ahmad T, Wang T, O'Brien EC, Samsky MD, Pura JA, Lokhnygina Y, Rogers JG, Hernandez AF, Craig D, Bowles DE, Milano CA, Shah SH, Januzzi JL, Felker GM, Patel CB. Effects of left ventricular assist device support on biomarkers of cardiovascular stress, fibrosis, fluid homeostasis, inflammation, and renal injury. JACC Heart Fail 3: 30‐39, 2015. DOI: 10.1016/j.jchf.2014.06.013.
 7.Akimoto T, Litwak KN, Yamazaki K, Litwak P, Kihara SI, Tagusari O, Yamazaki SI, Kameneva MV, Watach MJ, Umezu M, Tomioka J, Kormos RL, Koyanagi H, Griffith BP. The role of diastolic pump flow in centrifugal blood pump hemodynamics. Artif Organs 25: 724‐727, 2001. DOI: 10.1046/j.1525‐1594.2001.06864.x.
 8.Akin S, Soliman O, de By TMMH, Muslem R, Tijssen JGP, Schoenrath F, Meyns B, Gummert JF, Mohacsi P, Caliskan K. Causes and predictors of early mortality in patients treated with left ventricular assist device implantation in the European Registry of Mechanical Circulatory Support (EUROMACS). Intensive Care Med 46: 1349‐1360, 2020. DOI: 10.1007/s00134‐020‐05939‐1.
 9.Akiyama D, Nishimura T, Sumikura H, Iizuka K, Mizuno T, Tsukiya T, Takewa Y, Ono M, Tatsumi E. Accurate method of quantification of aortic insufficiency during left ventricular assist device support by thermodilution analysis: Proof of concept and validation by a mock circulatory system. Artif Organs 42: 954‐960, 2018. DOI: 10.1111/aor.13158.
 10.Alba AC, Rao V, Ivanov J, Ross HJ, Delgado DH. Predictors of acute renal dysfunction after ventricular assist device placement. J Card Fail 15: 874‐881, 2009.
 11.Ali HJR, Kiernan MS, Choudhary G, Levine DJ, Sodha NR, Ehsan A, Yousefzai R. Right ventricular failure post‐implantation of left ventricular assist device: Prevalence, pathophysiology, and predictors. ASAIO J 66: 610‐619, 2020. DOI: 10.1097/MAT.0000000000001088.
 12.Ambardekar AV, Buttrick PM. Reverse remodeling with left ventricular assist devices: A review of clinical, cellular, and molecular effects. Circ Heart Fail 4: 224‐233, 2011. DOI: 10.1161/CIRCHEARTFAILURE.110.959684.
 13.Ambardekar AV, Dorosz JL, Cleveland JC, Lindenfeld J, Buttrick PM. Longitudinal left ventricular structural and functional imaging during full support with continuous‐flow ventricular assist devices: A retrospective, preliminary analysis. J Heart Lung Transplant 31: 1311‐1313, 2012. DOI: 10.1016/j.healun.2012.09.004.
 14.Ammar KA, Jacobsen SJ, Mahoney DW, Kors JA, Redfield MM, Burnett JC, Rodeheffer RJ. Prevalence and prognostic significance of heart failure stages: Application of the American College of Cardiology/American Heart Association heart failure staging criteria in the community. Circulation 115: 1563‐1570, 2007. DOI: 10.1161/CIRCULATIONAHA.106.666818.
 15.Anderson RD, Lee G, Virk S, Bennett RG, Hayward CS, Muthiah K, Kalman J, Kumar S. Catheter ablation of ventricular tachycardia in patients with a ventricular assist device: A systematic review of procedural characteristics and outcomes. JACC Clin Electrophysiol 5: 39‐51, 2019. DOI: 10.1016/j.jacep.2018.08.009.
 16.Ando M, Nishimura T, Takewa Y, Yamazaki K, Kyo S, Ono M, Tsukiya T, Mizuno T, Taenaka Y, Tatsumi E. Electrocardiogram‐synchronized rotational speed change mode in rotary pumps could improve pulsatility. Artif Organs 35: 941‐947, 2011. DOI: 10.1111/j.1525‐1594.2011.01205.x.
 17.Antonides CFJ, Schoenrath F, de By TMMH, Muslem R, Veen K, Yalcin YC, Netuka I, Gummert J, Potapov EV, Meyns B, Özbaran M, Schibilsky D, Caliskan K. Outcomes of patients after successful left ventricular assist device explantation: A EUROMACS study. ESC Heart Fail 7: 1085‐1094, 2020. DOI: 10.1002/ehf2.12629.
 18.Anyanwu EC, Patel K, Henderson C, Fedson SE, Kim GH, Sarswat N, Juricek C, Ota T, Jeevanandam V, Sayer G, Uriel N. Normalization of hemodynamics following LVAD implantation may be related to improved long term outcome. J Card Fail 21: S99, 2015. DOI: 10.1016/j.cardfail.2015.06.294.
 19.Apel J, Paul R, Klaus S, Siess T, Reul H. Assessment of hemolysis related quantities in a microaxial blood pump by computational fluid dynamics. Artif Organs 25: 341‐347, 2001. DOI: 10.1046/j.1525‐1594.2001.025005341.x.
 20.Apostolo A, Paolillo S, Contini M, Vignati C, Tarzia V, Campodonico J, Mapelli M, Massetti M, Bejko J, Righini F, Bottio T, Bonini N, Salvioni E, Gugliandolo P, Parati G, Lombardi C, Gerosa G, Salvi L, Alamanni F, Agostoni P. Comprehensive effects of left ventricular assist device speed changes on alveolar gas exchange, sleep ventilatory pattern, and exercise performance. J Heart Lung Transplant 37: 1361‐1371, 2018. DOI: 10.1016/j.healun.2018.07.005.
 21.Arakawa M, Nishimura T, Takewa Y, Umeki A, Ando M, Kishimoto Y, Kishimoto S, Fujii Y, Date K, Kyo S, Adachi H, Tatsumi E. Pulsatile support using a rotary left ventricular assist device with an electrocardiography‐synchronized rotational speed control mode for tracking heart rate variability. J Artif Organs 19: 204‐207, 2016. DOI: 10.1007/s10047‐015‐0875‐4.
 22.Asleh R, Albitar HAH, Schettle SD, Kushwaha SS, Pereira NL, Behfar A, Stulak JM, Rodeheffer RJ, Iyer VN. Intravenous bevacizumab as a novel treatment for refractory left ventricular assist device‐related gastrointestinal bleeding. J Heart Lung Transplant 39: 492‐495, 2020. DOI: 10.1016/j.healun.2020.02.012.
 23.Atluri P, Fairman AS, Macarthur JW, Goldstone AB, Cohen JE, Howard JL, Zalewski CM, Shudo Y, Woo YJ. Continuous flow left ventricular assist device implant significantly improves pulmonary hypertension, right ventricular contractility, and tricuspid valve competence. J Card Surg 28: 770‐775, 2013. DOI: 10.1111/jocs.12214.
 24.Atluri P, Goldstone AB, Fairman AS, Macarthur JW, Shudo Y, Cohen JE, Acker AL, Hiesinger W, Howard JL, Acker MA, Woo YJ. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era [Online]. Ann Thorac Surg 96: 857‐864, 2013. DOI: 10.1016/j.athoracsur.2013.03.099.
 25.Axelrad JE, Pinsino A, Trinh PN, Thanataveerat A, Brooks C, Demmer RT, Effner L, Parkis G, Cagliostro B, Han J, Garan AR, Topkara V, Takeda K, Takayama H, Naka Y, Ramirez I, Garcia‐Carrasquillo R, Colombo PC, Gonda T, Yuzefpolskaya M. Limited usefulness of endoscopic evaluation in patients with continuous‐flow left ventricular assist devices and gastrointestinal bleeding. J Heart Lung Transplant 37: 723‐732, 2018. DOI: 10.1016/j.healun.2017.12.017.
 26.Aymami M, Amsallem M, Adams J, Sallam K, Moneghetti K, Wheeler M, Hiesinger W, Teuteberg J, Weisshaar D, Verhoye JP, Woo YJ, Ha R, Haddad F, Banerjee D. The incremental value of right ventricular size and strain in the risk assessment of right heart failure post ‐ left ventricular assist device implantation. J Card Fail 24: 823‐832, 2018. DOI: 10.1016/j.cardfail.2018.10.012.
 27.Baker WL, Radojevic J, Gluck JA. Systematic review of phosphodiesterase‐5 inhibitor use in right ventricular failure following left ventricular assist device implantation. Artif Organs 40: 123‐128, 2016. DOI: 10.1111/aor.12518.
 28.Baldauf C, Schneppenheim R, Stacklies W, Obser T, Pieconka A, Schneppenheim S, Budde U, Zhou J, Gräter F. Shear‐induced unfolding activates von Willebrand factor A2 domain for proteolysis. J Thromb Haemost 7: 2096‐2105, 2009. DOI: 10.1111/j.1538‐7836.2009.03640.x.
 29.Bansal A, Uriel N, Colombo PC, Narisetty K, Long JW, Bhimaraj A, Cleveland JC, Goldstein DJ, Stulak JM, Najjar SS, Lanfear DE, Adler ED, Dembitsky WP, Somo SI, Crandall DL, Chen D, Connors JM, Mehra MR. Effects of a fully magnetically levitated centrifugal‐flow or axial‐flow left ventricular assist device on von Willebrand factor: A prospective multicenter clinical trial. J Heart Lung Transplant 38: 806‐816, 2019. DOI: 10.1016/j.healun.2019.05.006.
 30.Barac YD, Nevo A, Schroder JN, Milano CA, Daneshmand MA. LVAD outflow graft role in pump thrombosis. ASAIO J 66: 128‐131, 2020. DOI: 10.1097/MAT.0000000000000936.
 31.Barbone A, Holmes JW, Heerdt PM, The' AHS, Naka Y, Joshi N, Daines M, Marks AR, Oz MC, Burkhoff D. Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: A primary role of mechanical unloading underlying reverse remodeling. Circulation 104: 670‐675, 2001. DOI: 10.1161/hc3101.093903.
 32.Bartoli CR, Ghotra AS, Pachika AR, Birks EJ, McCants KC. Hematologic markers better predict left ventricular assist device thrombosis than echocardiographic or pump parameters. Thorac Cardiovasc Surg 62: 414‐418, 2014. DOI: 10.1055/s‐0034‐1376891.
 33.Bartoli CR, Giridharan GA, Litwak KN, Sobieski M, Prabhu SD, Slaughter MS, Koenig SC. Hemodynamic responses to continuous versus pulsatile mechanical unloading of the failing left ventricle. ASAIO J 56: 410‐416, 2010. DOI: 10.1097/MAT.0b013e3181e7bf3c.
 34.Bartoli CR, Zhang DM, Hennessy‐Strahs S, Kang J, Restle DJ, Bermudez C, Atluri P, Acker MA. Clinical and in vitro evidence that left ventricular assist device‐induced von willebrand factor degradation alters angiogenesis. Circ Heart Fail 11: e004638, 2018. DOI: 10.1161/CIRCHEARTFAILURE.117.004638.
 35.Bazilevs Y, Gohean JR, Hughes TJR, Moser RD, Zhang Y. Patient‐specific isogeometric fluid‐structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device. Comput Methods Appl Mech Eng 198: 3534‐3550, 2009. DOI: 10.1016/j.cma.2009.04.015.
 36.Belkin MN, Venturini J, Nathan S, Grinstein J. Left ventricular assist device performance under pressure: Troubleshooting outflow graft dysfunction. Circ Heart Fail 13: 187‐188, 2020. DOI: 10.1161/CIRCHEARTFAILURE.120.007098.
 37.Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, De Ferranti SD, Floyd J, Fornage M, Gillespie C, Isasi CR, Jim'nez MC, Jordan LC, Judd SE, Lackland D, Lichtman JH, Lisabeth L, Liu S, Longenecker CT, MacKey RH, Matsushita K, Mozaffarian D, Mussolino ME, Nasir K, Neumar RW, Palaniappan L, Pandey DK, Thiagarajan RR, Reeves MJ, Ritchey M, Rodriguez CJ, Roth GA, Rosamond WD, Sasson C, Towfghi A, Tsao CW, Turner MB, Virani SS, Voeks JH, Willey JZ, Wilkins JT, Wu JHY, Alger HM, Wong SS, Muntner P. Heart Disease and Stroke Statistics'2017 update: A report from the American Heart Association. Circulation 135: e146‐e603, 2017. DOI: 10.1161/CIR.0000000000000485.
 38.Berg DD, Vaduganathan M, Upadhyay GA, Singh JP, Mehra MR, Stewart GC. Cardiac implantable electronic devices in patients with left ventricular assist systems. J Am Coll Cardiol 71: 1483‐1493, 2018. DOI: 10.1016/j.jacc.2018.01.061.
 39.Bhagra S, Bhagra C, Özalp F, Butt T, Ramesh BC, Parry G, Roysam C, Woods A, Robinson‐Smith N, Wrightson N, Macgowan GA, Schueler S. Development of de novo aortic valve incompetence in patients with the continuous‐flow HeartWare ventricular assist device. J Heart Lung Transplant 35: 312‐319, 2016. DOI: 10.1016/j.healun.2015.10.022.
 40.Bhama JK, Kormos RL, Toyoda Y, Teuteberg JJ, McCurry KR, Siegenthaler MP. Clinical experience using the Levitronix CentriMag system for temporary right ventricular mechanical circulatory support. J Heart Lung Transplant 28: 971‐976, 2009. DOI: 10.1016/j.healun.2009.04.015.
 41.Birks EJ, Drakos SG, Lowes BD, Patel SR, Selzman C, Slaughter MS, Alturi P, Goldstein D, Um J, Cunningham C, Margulies KB, Stehlik J, Starling R, Farrar D, Rame E. Outcome and primary endpoint results from a prospective multi‐center study of myocardial recovery using LVADs: Remission from Stage D Heart Failure (RESTAGE‐HF). J Heart Lung Transplant 37: S142, 2018. DOI: 10.1016/j.healun.2018.01.342.
 42.Birks EJ, Drakos SG, Patel SR, Lowes BD, Selzman CH, Starling RC, Trivedi J, Slaughter MS, Alturi P, Goldstein D, Maybaum S, Um JY, Margulies KB, Stehlik J, Cunningham C, Farrar DJ, Rame JE. Prospective multicenter study of myocardial recovery using left ventricular assist devices (RESTAGE‐HF [Remission from Stage D Heart Failure]): Medium‐term and primary end point results. Circulation 142: 2016‐2028, 2020.
 43.Birks EJ, George RS, Hedger M, Bahrami T, Wilton P, Bowles CT, Webb C, Bougard R, Amrani M, Yacoub MH, Dreyfus G, Khaghani A. Reversal of severe heart failure with a continuous‐flow left ventricular assist device and pharmacological therapy: A prospective study. Circulation 123: 381‐390, 2011. DOI: 10.1161/CIRCULATIONAHA.109.933960.
 44.Bitcon CJ, Tousignant C. The effect of pericardial incision on right ventricular systolic function: A prospective observational study. Can J Anesth Can d'anesthésie 64: 1194‐1201, 2017. DOI: 10.1007/s12630‐017‐0972‐3.
 45.Bluestein D. Research approaches for studying flow‐induced thromboembolic complications in blood recirculating devices. Expert Rev Med Devices 1: 65‐80, 2004.
 46.Boehmer JP, Starling RC, Cooper LT, Torre‐Amione G, Wittstein I, Dec GW, Markham DW, Zucker MJ, Gorcsan J, McTiernan C, Kip K, McNamara DM. Left ventricular assist device support and myocardial recovery in recent onset cardiomyopathy. J Card Fail 18: 755‐761, 2012. DOI: 10.1016/j.cardfail.2012.08.001.
 47.Bolen MA, Popovic ZB, Gonzalez‐Stawinski G, Schoenhagen P. Left ventricular assist device malposition interrogated by 4‐D cine computed tomography. J Cardiovasc Comput Tomogr 5: 186‐188, 2011. DOI: 10.1016/j.jcct.2011.01.009.
 48.Bonios MJ, Koliopoulou A, Wever‐Pinzon O, Taleb I, Stehlik J, Xu W, Wever‐Pinzon J, Catino A, Kfoury AG, Horne BD, Nativi‐Nicolau J, Adamopoulos SN, Fang JC, Selzman CH, Bax JJ, Drakos SG. Cardiac rotational mechanics as a predictor of myocardial recovery in heart failure patients undergoing chronic mechanical circulatory support a pilot study. Circ Cardiovasc Imaging 11: e007117, 2018. DOI: 10.1161/CIRCIMAGING.117.007117.
 49.Bozkurt S, van de Vosse FN, Rutten MCM. Enhancement of arterial pressure pulsatility by controlling continuous‐flow left ventricular assist device flow rate in mock circulatory system. J Med Biol Eng 36: 308‐315, 2016. DOI: 10.1007/s40846‐016‐0140‐1.
 50.Bradley TD, Floras JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373: 82‐93, 2009. DOI: 10.1016/S0140‐6736(08)61622‐0.
 51.Brassard P, Jensen AS, Nordsborg N, Gustafsson F, Møller JE, Hassager C, Boesgaard S, Hansen PB, Olsen PS, Sander K, Secher NH, Madsen PL. Central and peripheral blood flow during exercise with a continuous‐flow left ventricular assist device: Constant versus increasing pump speed: A Pilot study. Circ Heart Fail 4: 554‐560, 2011. DOI: 10.1161/CIRCHEARTFAILURE.110.958041.
 52.Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WWH, Parikh CR, Testani JM. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail 7: 68‐75, 2014. DOI: 10.1161/CIRCHEARTFAILURE.113.000507.
 53.Brown CH, Leverett LB, Lewis CW, Alfrey CP, Hellums JD. Morphological, biochemical, and functional changes in human platelets subjected to shear stress. J Lab Clin Med 86: 462‐471, 1975. DOI: 10.5555/uri:pii:0022214375900517.
 54.Burkhoff D, Klotz S, Mancini DM. LVAD‐induced reverse remodeling: Basic and clinical implications for myocardial recovery. J Card Fail 12: 227‐239, 2006. DOI: 10.1016/j.cardfail.2005.10.012.
 55.Burkhoff D, Sayer G, Doshi D, Uriel N. Hemodynamics of mechanical circulatory support. J Am Coll Cardiol 66: 2663‐2674, 2015. DOI: 10.1016/j.jacc.2015.10.017.
 56.Capoccia M. Mechanical circulatory support for advanced heart failure: Are we about to witness a new “Gold Standard”? J Cardiovasc Dev Dis 3: E35, 2016. DOI: 10.3390/jcdd3040035.
 57.Carswell D, McBride D, Croft TN, Slone AK, Cross M, Foster G. A CFD model for the prediction of haemolysis in micro axial left ventricular assist devices. Appl Math Model 37: 4199‐4207, 2013. DOI: 10.1016/j.apm.2012.09.020.
 58.Casida JM, Brewer RJ, Smith C, Davis JE. An exploratory study of sleep quality, daytime function, and quality of life in patients with mechanical circulatory support. Int J Artif Organs 35: 531‐537, 2012. DOI: 10.5301/ijao.5000109.
 59.Casida JM, Davis JE, Brewer RJ, Smith C, Yarandi H. Sleep and daytime sleepiness of patients with left ventricular assist devices: A longitudinal pilot study. Prog Transplant 21: 131‐136, 2011. DOI: 10.7182/prtr.21.2.cp5874v2l28g62x6.
 60.Castagna F, Stöhr EJ, Pinsino A, Cockcroft JR, Willey J, Reshad Garan A, Topkara VK, Colombo PC, Yuzefpolskaya M, McDonnell BJ. The unique blood pressures and pulsatility of LVAD patients: Current challenges and future opportunities. Curr Hypertens Rep 19, 2017. DOI: 10.1007/s11906‐017‐0782‐6.
 61.Centofanti P, Baronetto A, Attisani M, Ricci D, Simonato E, La Torre MW, Boffini M, Rinaldi M. Thrombosis in left ventricular assistance device with centrifugal technology: Is early thrombolysis a better solution? Int J Artif Organs 40: 629‐635, 2017. DOI: 10.5301/ijao.5000626.
 62.Chen S, Rosenthal DN, Murray J, Dykes JC, Almond CS, Yarlagadda VV, Wright G, Navaratnam M, Reinhartz O, Maeda K. Bridge to transplant with ventricular assist device support in pediatric patients with single ventricle heart disease. ASAIO J 66: 205‐211, 2020. DOI: 10.1097/MAT.0000000000000983.
 63.Chivukula VK, Beckman JA, Li S, Masri SC, Levy WC, Lin S, Cheng RK, Farris SD, Wood G, Dardas TF, Kirkpatrick JN, Koomalsingh K, Zimpfer D, MacKensen GB, Chassagne F, Mahr C, Aliseda A. Left ventricular assist device inflow cannula insertion depth influences thrombosis risk. ASAIO J 66: 766‐773, 2020. DOI: 10.1097/MAT.0000000000001068.
 64.Choi JH, Weber MP, Horan DP, Luc JGY, Phan K, Patel S, Rizvi S‐SA, Maynes EJ, Reeves GR, Entwistle JW, Morris RJ, Massey HT, Tchantchaleishvili V. Left ventricular assist device decommissioning compared with explantation for ventricular recovery. ASAIO J 66: 17‐22, 2018. DOI: 10.1097/mat.0000000000000926.
 65.Clerkin KJ, Topkara VK, Demmer RT, Dizon JM, Yuzefpolskaya M, Fried JA, Mai X, Mancini DM, Takeda K, Takayama H, Naka Y, Colombo PC, Garan AR. Implantable cardioverter‐defibrillators in patients with a continuous‐flow left ventricular assist device: An analysis of the INTERMACS registry. JACC Heart Fail 5: 916‐926, 2017. DOI: 10.1016/j.jchf.2017.08.014.
 66.Colombo PC, Lanier GM, Orlanes K, Yuzefpolskaya M, Demmer RT. Usefulness of a standard automated blood pressure monitor in patients with continuous‐flow left ventricular assist devices. J Heart Lung Transplant 34: 1633‐1635, 2015.
 67.Compostella L, Russo N, Setzu T, Compostella C, Bellotto F. Exercise performance of chronic heart failure patients in the early period of support by an axial‐flow left ventricular assist device as destination therapy. Artif Organs 38: 366‐373, 2014.
 68.Consolo F, Esposti F, Gustar A, De Bonis M, Pappalardo F. Log files analysis and evaluation of circadian patterns for the early diagnosis of pump thrombosis with a centrifugal continuous‐flow left ventricular assist device. J Heart Lung Transplant 38: 1077‐1086, 2019. DOI: 10.1016/j.healun.2019.04.008.
 69.Consolo F, Pozzi L, Pieri M, Della Valle P, Redaelli A, D'Angelo A, Pappalardo F. Influence of different antithrombotic regimens on platelet‐mediated thrombin generation in patients with left ventricular assist devices. ASAIO J 66: 415‐422, 2020. DOI: 10.1097/MAT.0000000000001064.
 70.Converse MP, Sobhanian M, Taber DJ, Houston BA, Meadows HB, Uber WE. Effect of angiotensin II inhibitors on gastrointestinal bleeding in patients with left ventricular assist devices. J Am Coll Cardiol 73: 1769‐1778, 2019. DOI: 10.1016/j.jacc.2019.01.051.
 71.Cornwell WK, Tarumi T, Aengevaeren VL, Ayers C, Divanji P, Fu Q, Palmer D, Drazner MH, Meyer DM, Bethea BT, Hastings JL, Fujimoto N, Shibata S, Zhang R, Markham DW, Levine BD. Effect of pulsatile and nonpulsatile flow on cerebral perfusion in patients with left ventricular assist devices. J Heart Lung Transplant 33: 1295‐1303, 2014. DOI: 10.1016/j.healun.2014.08.013.
 72.Corrà U, Pistono M, Mezzani A, Braghiroli A, Giordano A, Lanfranchi P, Bosimini E, Gnemmi M, Giannuzzi P. Sleep and exertional periodic breathing in chronic heart failure: Prognostic importance and interdependence. Circulation 113: 44‐50, 2006. DOI: 10.1161/CIRCULATIONAHA.105.543173.
 73.Cotarlan V, Johnson F, Goerbig‐Campbell J, Light‐McGroary KA, Inampudi C, Franzwa J, Jenn K, Johnson C, Tandon R, Tahir R, Nabeel Y, Emerenini U, Giudici M. Usefulness of cardiac resynchronization therapy in patients with continuous flow left ventricular assist devices. Am J Cardiol 123: 93‐99, 2019. DOI: 10.1016/j.amjcard.2018.09.022.
 74.Cowger J, Rao V, Massey T, Sun B, May‐Newman K, Jorde U, Estep JD. Comprehensive review and suggested strategies for the detection and management of aortic insufficiency in patients with a continuous‐flow left ventricular assist device. J Heart Lung Transplant 34: 149‐157, 2015. DOI: 10.1016/j.healun.2014.09.045.
 75.Cowger JA, Aaronson KD, Romano MA, Haft J, Pagani FD. Consequences of aortic insufficiency during long‐term axial continuous‐flow left ventricular assist device support. J Heart Lung Transplant 33: 1233‐1240, 2014. DOI: 10.1016/j.healun.2014.06.008.
 76.Critoph C, Green G, Hayes H, Baumwol J, Lam K, Larbalestier R, Chih S. Clinical outcomes of patients treated with pulmonary vasodilators early and in high dose after left ventricular assist device implantation. Artif Organs 40: 106‐114, 2016. DOI: 10.1111/aor.12502.
 77.Crow S, Chen D, Milano C, Thomas W, Joyce L, Piacentino V, Sharma R, Wu J, Arepally G, Bowles D, Rogers J, Villamizar‐Ortiz N. Acquired von Willebrand syndrome in continuous‐flow ventricular assist device recipients. Ann Thorac Surg 90: 1263‐1269, 2010. DOI: 10.1016/j.athoracsur.2010.04.099.
 78.Dandel M, Hetzer R. Myocardial recovery during mechanical circulatory support: Long‐term outcome and elective ventricular assist device implantation to promote recovery as a treatment goal. [Online]. Heart Lung Vessel 7: 289‐296, 2015. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4712031/.
 79.Dandel M, Potapov E, Krabatsch T, Stepanenko A, Löw A, Vierecke J, Knosalla C, Hetzer R. Load dependency of right ventricular performance is a major factor to be considered in decision making before ventricular assist device implantation. Circulation 128: 14‐24, 2013. DOI: 10.1161/CIRCULATIONAHA.112.000335.
 80.Dang G, Epperla N, Muppidi V, Sahr N, Pan A, Simpson P, Baumann Kreuziger L. Medical management of pump‐related thrombosis in patients with continuous‐flow left ventricular assist devices: A systematic review and meta‐analysis. ASAIO J 63: 373‐385, 2017. DOI: 10.1097/MAT.0000000000000497.
 81.Dassanayaka S, Slaughter MS, Bartoli CR. Mechanistic pathway(s) of acquired von Willebrand syndrome with a continuous‐flow ventricular assist device: In vitro findings. ASAIO J 59: 123‐129, 2013. DOI: 10.1097/MAT.0b013e318283815c.
 82.Date K, Nishimura T, Arakawa M, Takewa Y, Kishimoto S, Umeki A, Ando M, Mizuno T, Tsukiya T, Ono M, Tatsumi E. Changing pulsatility by delaying the rotational speed phasing of a rotary left ventricular assist device. J Artif Organs 20: 18‐25, 2017. DOI: 10.1007/s10047‐016‐0920‐y.
 83.de By TMMH, Mohacsi P, Gummert J, Bushnaq H, Krabatsch T, Gustafsson F, Leprince P, Martinelli L, Meyns B, Morshuis M, Netuka I, Potapov E, Zittermann A, Delmo Walter EM, Hetzer R. The European Registry for Patients with Mechanical Circulatory Support (EUROMACS): First annual report. Eur J Cardiothorac Surg 47: 770‐777, 2015. DOI: 10.1093/ejcts/ezv096.
 84.De Jonge N, Kirkels H, Lahpor JR, Klo C. Exercise performance in patients with end‐stage heart failure after implantation of a left ventricular assist device and after heart transplantation an outlook for permanent assisting? JACC 37: 7‐12, 2001.
 85.Demirozu ZT, Radovancevic R, Hochman LF, Gregoric ID, Letsou GV, Kar B, Bogaev RC, Frazier OH. Arteriovenous malformation and gastrointestinal bleeding in patients with the HeartMate II left ventricular assist device. J Heart Lung Transplant 30: 849‐853, 2011. DOI: 10.1016/j.healun.2011.03.008.
 86.Deo SV, Sharma V, Altarabsheh SE, Hasin T, Dillon J, Shah IK, Durham LA, Stulak JM, Daly RC, Joyce LD, Park SJ. Hepatic and renal function with successful long‐term support on a continuous flow left ventricular assist device. Heart Lung Circ 23: 229‐233, 2013. DOI: 10.1016/j.hlc.2013.07.021.
 87.Deo SV, Sharma V, Cho YH, Shah IK, Park SJ. De novo aortic insufficiency during long‐term support on a left ventricular assist device: A systematic review and meta‐analysis. ASAIO J 60: 183‐188, 2014. DOI: 10.1097/MAT.0000000000000042.
 88.Diakos NA, Selzman CH, Sachse FB, Stehlik J, Kfoury AG, Wever‐Pinzon O, Catino A, Alharethi R, Reid BB, Miller DV, Salama M, Zaitsev AV, Shibayama J, Li H, Fang JC, Li DY, Drakos SG. Myocardial atrophy and chronic mechanical unloading of the failing human heart: Implications for cardiac assist device‐induced myocardial recovery. J Am Coll Cardiol 64: 1602‐1612, 2014. DOI: 10.1016/j.jacc.2014.05.073.
 89.Dimopoulos S, Diakos N, Tseliou E, Tasoulis A, Mpouchla A, Manetos C, Katsaros L, Drakos S, Terrovitis J, Nanas S. Chronotropic incompetence and abnormal heart rate recovery early after left ventricular assist device implantation. Pacing Clin Electrophysiol 34: 1607‐1614, 2011. DOI: 10.1111/j.1540‐8159.2011.03215.x.
 90.Djordjevic I, Merkle J, Eghbalzadeh K, Sabashnikov A, Ivanov B, Gummert J, Potapov E, Schoenrath F, Meyns B, Özbaran M, de By TMMH, Wahlers T, Zeriouh M, Rahmanian PB. The outcome of patients with peripartum cardiomyopathy and consecutive implantation of a left ventricular assist device. J Card Surg 36: 2651‐2657, 2021. DOI: 10.1111/jocs.15598.
 91.Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, Horton K, Haddad F, Li DY, Renlund DG, Fisher PW. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol 105: 1030‐1035, 2010. DOI: 10.1016/j.amjcard.2009.11.026.
 92.Drakos SG, Kfoury AG, Hammond EH, Reid BB, Revelo MP, Rasmusson BY, Whitehead KJ, Salama ME, Selzman CH, Stehlik J, Clayson SE, Bristow MR, Renlund DG, Li DY. Impact of mechanical unloading on microvasculature and associated central remodeling features of the failing human heart. J Am Coll Cardiol 56: 382‐391, 2010. DOI: 10.1016/j.jacc.2010.04.019.
 93.Drakos SG, Kfoury AG, Stehlik J, Selzman CH, Reid BB, Terrovitis JV, Nanas JN, Li DY. Bridge to recovery: Understanding the disconnect between clinical and biological outcomes. Circulation 126: 230‐241, 2012. DOI: 10.1161/CIRCULATIONAHA.111.040261.
 94.Drakos SG, Wever‐Pinzon O, Selzman CH, Gilbert EM, Alharethi R, Reid BB, Saidi A, Diakos NA, Stoker S, Davis ES, Movsesian M, Li DY, Stehlik J, Kfoury AG. Magnitude and time course of changes induced by continuous‐flow left ventricular assist device unloading in chronic heart failure: Insights into cardiac recovery. J Am Coll Cardiol 61: 1985‐1994, 2013. DOI: 10.1016/j.jacc.2013.01.072.
 95.Dumont K, Vierendeels J, Kaminsky R, Van Nooten G, Verdonck P, Bluestein D. Comparison of the hemodynamic and thrombogenic performance of two bileaflet mechanical heart valves using a CFD/FSI model. J Biomech Eng 129: 558‐565, 2007. DOI: 10.1115/1.2746378.
 96.Dunlay SM, Allison TG, Pereira NL. Changes in cardiopulmonary exercise testing parameters following continuous flow left ventricular assist device implantation and heart transplantation. J Card Fail 20: 548‐554, 2014. DOI: 10.1016/j.cardfail.2014.05.008.
 97.Elbeery JR, Own CH, Savitt MA, Davis JW, Feneley MP, Rankin JS, VanTrigt P. Effects of the left ventricular assist device on right ventricular function. J Thorac Cardiovasc Surg 99: 809‐816, 1990.
 98.Elmously A, de Biasi AR, Risucci DA, Worku B, Horn EM, Salemi A. Systemic blood pressure trends and antihypertensive utilization following continuous‐flow left ventricular assist device implantation: An analysis of the Interagency Registry for Mechanically Assisted Circulatory Support. J Thorac Dis 10: 2866‐2875, 2018. DOI: 10.21037/jtd.2018.05.24.
 99.Enriquez AD, Calenda B, Gandhi PU, Nair AP, Anyanwu AC, Pinney SP. Clinical impact of atrial fibrillation in patients with the HeartMate II left ventricular assist device. J Am Coll Cardiol 64: 1883‐1890, 2014. DOI: 10.1016/j.jacc.2014.07.989.
 100.Estep JD, Vivo RP, Krim SR, Cordero‐Reyes AM, Elias B, Loebe M, Bruckner BA, Bhimaraj A, Trachtenberg BH, Ashrith G, Torre‐Amione G, Nagueh SF. Echocardiographic evaluation of hemodynamics in patients with systolic heart failure supported by a continuous‐flow LVAD. J Am Coll Cardiol 64: 1231‐1241, 2014. DOI: 10.1016/j.jacc.2014.06.1188.
 101.Farrar DJ, Bourque K, Dague CP, Cotter CJ, Poirier VL. Design features, developmental status, and experimental results with the heartmate III centrifugal left ventricular assist system with a magnetically levitated rotor. ASAIO J 53: 310‐315, 2007. DOI: 10.1097/MAT.0b013e3180536694.
 102.Farrar DJ, Compton PG, Dajee H, Fonger JD, Hill JD. Right heart function during left heart assist and the effects of volume loading in a canine preparation. Circulation 70: 708‐716, 1984. DOI: 10.1161/01.CIR.70.4.708.
 103.Farrar DJ, Hill JD. Univentricular and biventricular thoratec VAD support as a bridge to transplantation. Ann Thorac Surg 55: 276‐282, 1993. DOI: 10.1016/0003‐4975(93)90537‐R.
 104.Farrar DJ, Ph D, Compton PG, Hershon JJ, Fonger JD, Hill JD. Right heart interaction with the mechanically assisted left heart. World J Surg 9: 89‐102, 1985.
 105.Feitell S, Patel J, Pirlamarla P, Whittier J, Gongora E, Rowe T, Hankins S, Eisen HJ. Type 2 cardiorenal syndrome in the left ventricular assist device (LVAD) population. J Heart Lung Transplant 32: S227, 2013. DOI: 10.1016/j.healun.2013.01.577.
 106.Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Eng M, Dickstein ML, El‐Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J, Rowe AW. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: Executive summary. J Heart Lung Transplant 32: 157, 2013‐187.
 107.Feldman DS, Moazami N, Adamson PB, Vierecke J, Raval N, Shreenivas S, Cabuay BM, Jimenez J, Abraham WT, O'Connell JB, Naka Y. The utility of a wireless implantable hemodynamic monitoring system in patients requiring mechanical circulatory support. ASAIO J 64: 301‐308, 2018. DOI: 10.1097/MAT.0000000000000670.
 108.Ferrari M, Kadipasaoglu KA, Croitoru M, Conger J, Myers T, Gregoric I, Radovancevic B, Letsou GV, Frazier OH. Evaluation of myocardial function in patients with end‐stage heart failure during support with the Jarvik 2000 left ventricular assist device. J Heart Lung Transplant 24: 226‐228, 2005. DOI: 10.1016/j.healun.2003.09.044.
 109.Fogelson AL, Guy RD. Immersed‐boundary‐type models of intravascular platelet aggregation. Comput Methods Appl Mech Eng 197: 2087‐2104, 2008.
 110.Foo D, Walker BD, Kuchar DL, Thorburn CW, Tay A, Hayward CS, MacDonald P, Keogh A, Kotlyar E, Spratt P, Jansz P. Left ventricular mechanical assist devices and cardiac device interactions: An observational case series. Pacing Clin Electrophysiol 32: 879‐887, 2009. DOI: 10.1111/j.1540‐8159.2009.02403.x.
 111.Fraser KH, Taskin ME, Griffith BP, Wu ZJ. The use of computational fluid dynamics in the development of ventricular assist devices. Med Eng Phys 33: 263‐280, 2011. DOI: 10.1016/j.medengphy.2010.10.014.
 112.Fresiello L, Jacobs S, Timmermans P, Buys R, Hornikx M, Goetschalckx K, Droogne W, Meyns B. Limiting factors of peak and submaximal exercise capacity in LVAD patients. PLoS One 15: e0235684, 2020. DOI: 10.1371/journal.pone.0235684.
 113.Fried J, Garan AR, Shames S, Masoumi A, Yuzefpolskaya M, Takeda K, Takayama H, Uriel N, Naka Y, Colombo PC, Topkara VK. Aortic root thrombosis in patients supported with continuous‐flow left ventricular assist devices. J Heart Lung Transplant 37: 1425‐1432, 2018. DOI: 10.1016/j.healun.2018.07.012.
 114.Frontera JA, Starling R, Cho SM, Nowacki AS, Uchino K, Hussain MS, Mountis M, Moazami N. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant 36: 673‐683, 2017.
 115.Fukamachi K, Asou T, Nakamura Y, Toshima Y, Oe M, Mitani A, Sakamoto M, Kishizaki K, Sunagawa K, Tokunaga K. Effects of left heart bypass on right ventricular performance. Evaluation of the right ventricular end‐systolic and end‐diastolic pressure‐volume relation in the in situ normal canine heart. J Thorac Cardiovasc Surg 99: 725‐734, 1990. DOI: 10.1016/s0022‐5223(19)36950‐8.
 116.Galand V, Flécher E, Auffret V, Boulé S, Vincentelli A, Dambrin C, Mondoly P, Sacher F, Nubret K, Kindo M, Cardi T, Gaudard P, Rouvière P, Michel M, Gourraud JB, Defaye P, Chavanon O, Verdonk C, Ghodbane W, Pelcé E, Gariboldi V, Pozzi M, Obadia JF, Litzler PY, Anselme F, Babatasi G, Belin A, Garnier F, Bielefeld M, Hamon D, Radu C, Pierre B, Bourguignon T, Eschalier R, D'Ostrevy N, Bories MC, Marijon E, Vanhuyse F, Blangy H, Verhoye JP, Leclercq C, Martins RP. Predictors and clinical impact of late ventricular arrhythmias in patients with continuous‐flow left ventricular assist devices. JACC Clin Electrophysiol 4: 1166‐1175, 2018. DOI: 10.1016/j.jacep.2018.05.006.
 117.Galand V, Flécher E, Auffret V, Pichard C, Boulé S, Vincentelli A, Rollin A, Mondoly P, Barandon L, Pernot M, Kindo M, Cardi T, Gaudard P, Rouvière P, Sénage T, Jacob N, Defaye P, Chavanon O, Verdonk C, Ghodbane W, Pelcé E, Gariboldi V, Pozzi M, Obadia JF, Savouré A, Anselme F, Babatasi G, Belin A, Garnier F, Bielefeld M, Hamon D, Lellouche N, Pierre B, Bourguignon T, Eschalier R, D'Ostrevy N, Bories MC, Marijon E, Vanhuyse F, Blangy H, Verhoye JP, Leclercq C, Martins RP. Early ventricular arrhythmias after LVAD implantation is the strongest predictor of 30‐day post‐operative mortality. JACC Clin Electrophysiol 5: 944‐954, 2019. DOI: 10.1016/j.jacep.2019.05.025.
 118.Geisen U, Heilmann C, Beyersdorf F, Benk C, Berchtold‐Herz M, Schlensak C, Budde U, Zieger B. Non‐surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 33: 679‐684, 2008. DOI: 10.1016/j.ejcts.2007.12.047.
 119.Giersiepen M, Wurzinger LJ, Opitz R, Reul H. Estimation of shear stress‐related blood damage in heart valve prostheses ‐ in vitro comparison of 25 aortic valves. Int J Artif Organs 13: 300‐306, 1990. DOI: 10.1177/039139889001300507.
 120.Giron F, Birtwell WC, Soroff HS, Deterling RA. Hemodynamic effects of pulsatile and nonpulsatile flow. Arch Surg 93: 802‐810, 1966. DOI: 10.1001/archsurg.1966.01330050106015.
 121.Goldstein JA. Pathophysiology and management of right heart ischemia. J Am Coll Cardiol 40: 841‐853, 2002. DOI: 10.1016/S0735‐1097(02)02048‐X.
 122.Gopinathannair R, Cornwell WK, Dukes JW, Ellis CR, Hickey KT, Joglar JA, Pagani FD, Roukoz H, Slaughter MS, Patton KK. Device therapy and arrhythmia management in left ventricular assist device recipients: A scientific statement from the American Heart Association. Circulation 139: E967‐E989, 2019. DOI: 10.1161/CIR.0000000000000673.
 123.Gopinathannair R, Roukoz H, Bhan A, Ravichandran A, Ahmed MM, Familtsev D, Bhat G, Cowger J, Abdullah M, Sandesara C, Dhawan R, Birks EJ, Trivedi JR, Slaughter MS. Cardiac resynchronization therapy and clinical outcomes in continuous flow left ventricular assist device recipients. J Am Heart Assoc 7: e009091, 2018. DOI: 10.1161/JAHA.118.009091.
 124.Gopinathannair R, Roukoz H, Trivedi JR, Cowger J, Bhan A, Ravichandran A, Bhat G, Birks EJ, Slaughter MS, Ahmed MM. Impact of QRS duration and ventricular pacing on clinical and arrhythmic outcomes in continuous flow left ventricular assist device recipients: A multicenter study. J Card Fail 25: 355‐363, 2019. DOI: 10.1016/j.cardfail.2019.02.013.
 125.Gorcsan J, Severyn D, Murali S, Kormos RL. Non‐invasive assessment of myocardial recovery on chronic left ventricular assist device: Results associated with successful device removal. J Heart Lung Transplant 22: 1304‐1313, 2003. DOI: 10.1016/S1053‐2498(03)00056‐1.
 126.Grigioni M, Morbiducci U, D'Avenio G, Di Benedetto G, Del Gaudio C. A novel formulation for blood trauma prediction by a modified power‐law mathematical model. Biomech Model Mechanobiol 4: 249‐260, 2005. DOI: 10.1007/s10237‐005‐0005‐y.
 127.Grinstein J, Imamura T, Kruse E, Kalantari S, Rodgers D, Adatya S, Sayer G, Kim GH, Sarswat N, Raihkelkar J, Ota T, Jeevanandam V, Burkhoff D, Lang R, Uriel N. Echocardiographic predictors of hemodynamics in patients supported with left ventricular assist devices. J Card Fail 24: 561‐567, 2018. DOI: 10.1016/j.cardfail.2018.07.004.
 128.Grinstein J, Kruse E, Sayer G, Fedson S, Kim GH, Jorde UP, Juricek C, Ota T, Jeevanandam V, Lang RM, Uriel N. Accurate quantification methods for aortic insufficiency severity in patients with LVAD: Role of diastolic flow acceleration and systolic‐to‐diastolic peak velocity ratio of outflow cannula. JACC Cardiovasc Imaging 9: 641‐651, 2016. DOI: 10.1016/j.jcmg.2015.06.020.
 129.Grosman‐Rimon L, Kachel E, McDonald MA, Lalonde SD, Yip P, Ribeiro RVP, Adamson MB, Cherney DZ, Rao V. Association between neurohormone levels and exercise testing measures in patients with mechanical circulatory supports. ASAIO J 66: 875‐880, 2020. DOI: 10.1097/MAT.0000000000001082.
 130.Gross C, Fresiello L, Schlöglhofer T, Dimitrov K, Marko C, Maw M, Meyns B, Wiedemann D, Zimpfer D, Schima H, Moscato F. Hemodynamic exercise responses with a continuous‐flow left ventricular assist device: Comparison of patients' response and cardiorespiratory simulations. PLoS One 15: e0229688, 2020. DOI: 10.1371/journal.pone.0229688.
 131.Gross C, Marko C, Mikl J, Altenberger J, Schlöglhofer T, Schima H, Zimpfer D, Moscato F. LVAD pump flow does not adequately increase with exercise. Artif Organs 43: 222‐228, 2019. DOI: 10.1111/aor.13349.
 132.Grossi EA, Connolly MW, Krieger KH, Nathan IM, Hunter CE, Colvin SB, Baumann FG, Spencer FC. Quantification of pulsatile flow during cardiopulmonary bypass to permit direct comparison of the effectiveness of various types of “pulsatile” and “nonpulsatile” flow. Surgery 98: 547‐554, 1985.
 133.Haft J, Armstrong W, Dyke DB, Aaronson KD, Koelling TM, Farrar DJ, Pagani FD. Hemodynamic and exercise performance with pulsatile and continuous‐flow left ventricular assist devices. Circulation 116: I8‐I15, 2007. DOI: 10.1161/CIRCULATIONAHA.106.677898.
 134.Haglund TA, Rajasekaran NS, Smood B, Giridharan GA, Hoopes CW, Holman WL, Mauchley DC, Prabhu SD, Pamboukian SV, Tallaj JA, Rajapreyar IN, Kirklin JK, Sethu P. Evaluation of flow‐modulation approaches in ventricular assist devices using an in‐vitro endothelial cell culture model. J Heart Lung Transplant 38: 456‐465, 2019. DOI: 10.1016/j.healun.2018.10.007.
 135.Haneya A, Philipp A, Puehler T, Rupprecht L, Kobuch R, Hilker M, Schmid C, Hirt SW. Temporary percutaneous right ventricular support using a centrifugal pump in patients with postoperative acute refractory right ventricular failure after left ventricular assist device implantation. Eur J Cardiothorac Surg 41: 219‐223, 2012. DOI: 10.1016/j.ejcts.2011.04.029.
 136.Harding JD, Piacentino V, Gaughan JP, Houser SR, Margulies KB. Electrophysiological alterations after mechanical circulatory support in patients with advanced cardiac failure. Circulation 104: 1241‐1247, 2001. DOI: 10.1161/hc3601.095718.
 137.Hasin T, Topilsky Y, Schirger JA, Li Z, Zhao Y, Boilson BA, Clavell AL, Rodeheffer RJ, Frantz RP, Edwards BS, Pereira NL, Joyce L, Daly R, Park SJ, Kushwaha SS. Changes in renal function after implantation of continuous‐flow left ventricular assist devices. J Am Coll Cardiol 59: 26‐36, 2012. DOI: 10.1016/j.jacc.2011.09.038.
 138.Hayes K, Leet AS, Bradley SJ, Holland AE. Effects of exercise training on exercise capacity and quality of life in patients with a left ventricular assist device: A preliminary randomized controlled trial. J Heart Lung Transplant 31: 729‐734, 2012. DOI: 10.1016/j.healun.2012.02.021.
 139.Heerdt PM, Holmes JW, Cai B, Barbone A, Madigan JD, Reiken S, Lee DL, Oz MC, Marks AR, Burkhoff D. Chronic unloading by left ventricular assist device reverses contractile dysfunction and alters gene expression in end‐stage heart failure. Circulation 102: 2713‐2719, 2000. DOI: 10.1161/01.CIR.102.22.2713.
 140.Heerdt PM, Schlame M, Jehle R, Barbone A, Burkhoff D, Blanck TJJ. Disease‐specific remodeling of cardiac mitochondria after a left ventricular assist device. Ann Thorac Surg 73: 1216‐1221, 2002. DOI: 10.1016/S0003‐4975(01)03621‐9.
 141.Ho G, Braun O, Adler ED, Feld GK, Pretorius VG, Birgersdotter‐Green U. Management of arrhythmias and cardiac implantable electronic devices in patients with left ventricular assist devices. JACC Clin Electrophysiol 4: 847‐859, 2018. DOI: 10.1016/j.jacep.2018.04.014.
 142.Hoffman JR, Cornwell WK, Reece TB, Cleveland JC, Fullerton DA, Pal JD. A novel method for evaluation of right ventricular performance during left ventricular assist device implantation. J Heart Lung Transplant 39: S339, 2020. DOI: 10.1016/j.healun.2020.01.377.
 143.Hollis IB, Chen SL, Chang PP, Katz JN. Inhaled desmopressin for refractory gastrointestinal bleeding in a patient with a HeartMate II Left Ventricular Assist Device. ASAIO J 63: e47‐e49, 2017. DOI: 10.1097/MAT.0000000000000433.
 144.Holman WL, Bourge RC, Fan P, Kirklin JK, Pacifico AD, Nanda NC. Influence of longer term left ventricular assist device support on valvular regurgitation. ASAIO J 40: II309‐II318, 1994. DOI: 10.1097/00002480‐199407000‐00041.
 145.Houston BA, Kalathiya RJ, Hsu S, Loungani R, Davis ME, Coffin ST, Haglund N, Maltais S, Keebler ME, Leary PJ, Judge DP, Stevens GR, Rickard J, Sciortino CM, Whitman GJ, Shah AS, Russell SD, Tedford RJ. Right ventricular afterload sensitivity dramatically increases after left ventricular assist device implantation: A multi‐center hemodynamic analysis. J Heart Lung Transplant 35: 868‐876, 2016. DOI: 10.1016/j.healun.2016.01.1225.
 146.Houston BA, Schneider ALC, Vaishnav J, Cromwell DM, Miller PE, Faridi KF, Shah A, Sciortino C, Whitman G, Tedford RJ, Stevens GR, Judge DP, Russell SD, Rouf R. Angiotensin II antagonism is associated with reduced risk for gastrointestinal bleeding caused by arteriovenous malformations in patients with left ventricular assist devices. J Heart Lung Transplant 36: 380‐385, 2017. DOI: 10.1016/j.healun.2016.12.016.
 147.Hutcheson IR, Griffith TM. Release of endothelium‐derived relaxing factor is modulated both by frequency and amplitude of pulsatile flow. Am J Physiol Heart Circ Physiol 261, 1991. DOI: 10.1152/ajpheart.1991.261.1.h257.
 148.Hydren JR, Iii WKC, Richardson RS, Drakos SG. Exercise capacity in mechanically supported advanced heart failure patients: It is all about the beat. ASAIO J 66: 339‐342, 2020. DOI: 10.1097/MAT.0000000000001164.
 149.Hydren JR, Kithas AC, Park SHUN, Wever‐Pinzon O, Selzman CH, Perry W, Vargas CAS, Stehlik J, Drakos SG, Richardson RS. Targeting peripheral vascular pulsatility in heart failure patients with continuous‐flow left ventricular assist devices: The impact of pump speed. ASAIO J 66: 291‐299.
 150.Imamura T, Chung B, Nguyen A, Rodgers D, Sayer G, Adatya S, Sarswat N, Kim G, Raikhelkar J, Ota T, Song T, Juricek C, Kagan V, Jeevanandam V, Mehra M, Burkhoff D, Uriel N. Decoupling between diastolic pulmonary artery pressure and pulmonary capillary wedge pressure as a prognostic factor after continuous flow ventricular assist device implantation. Circ Heart Fail 10: e003882, 2017. DOI: 10.1161/CIRCHEARTFAILURE.117.003882.
 151.Imamura T, Jeevanandam V, Kim G, Raikhelkar J, Sarswat N, Kalantari S, Smith B, Rodgers D, Besser S, Chung B, Nguyen A, Narang N, Ota T, Song T, Juricek C, Mehra M, Costanzo MR, Jorde UP, Burkhoff D, Sayer G, Uriel N. Optimal hemodynamics during left ventricular assist device support are associated with reduced readmission rates. Circ Heart Fail 12: e005094, 2019. DOI: 10.1161/CIRCHEARTFAILURE.118.005094.
 152.Imamura T, Kinugawa K, Nitta D, Inaba T, Maki H, Hatano M, Kinoshita O, Nawata K, Kyo S, Ono M. Opening of native aortic valve accomplished after left ventricular assist device implantation in patients with insufficient preoperative Beta‐blocker treatment. Int Heart J 56: 303‐308, 2015. DOI: 10.1536/ihj.14‐330.
 153.Imamura T, Kinugawa K, Ono M, Kinoshita O, Fukushima N, Shiose A, Matsui Y, Yamazaki K, Saiki Y, Usui A, Niinami H, Matsumiya G, Arai H, Sawa Y. Implication of preoperative existence of atrial fibrillation on hemocompatibility‐related adverse events during left ventricular assist device support. Circ J 83: 1286‐1292, 2019. DOI: 10.1253/circj.CJ‐18‐1215.
 154.Imamura T, Nguyen A, Rodgers D, Kim G, Raikhelkar J, Sarswat N, Kalantari S, Smith B, Chung B, Narang N, Juricek C, Burkhoff D, Song T, Ota T, Jeevanandam V, Sayer G, Uriel N. Omega‐3 therapy is associated with reduced gastrointestinal bleeding in patients with continuous‐flow left ventricular assist device. Circ Heart Fail 11: e005082, 2018. DOI: 10.1161/CIRCHEARTFAILURE.118.005082.
 155.Imamura T, Nnanabu J, Rodgers D, Raikehlkar J, Kalantar S, Smith B, Nguyen A, Chung B, Narang N, Ota T, Song T, Burkhoff D, Jeevanandam V, Kim G, Sayer G, Uriel N. Hemodynamic effects of concomitant mitral valve surgery and left ventricular assist device implantation. ASAIO J 66: 355‐361, 2020. DOI: 10.1097/MAT.0000000000000999.
 156.Islam S, Cevik C, Madonna R, Frandah W, Islam E, Islam S, Nugent K. Left ventricular assist devices and gastrointestinal bleeding: A narrative review of case reports and case series. Clin Cardiol 36: 190‐200, 2013. DOI: 10.1002/clc.22096.
 157.Iwashima Y, Yanase M, Horio T, Seguchi O, Murata Y, Fujita T, Toda K, Kawano Y, Nakatani T. Serial changes in renal function as a prognostic indicator in advanced heart failure patients with left ventricular assist system. Ann Thorac Surg 93: 816‐823, 2012. DOI: 10.1016/j.athoracsur.2011.11.058.
 158.Jabbar HR, Abbas A, Ahmed M, Klodell CT, Chang M, Dai Y, Draganov PV. The incidence, predictors and outcomes of gastrointestinal bleeding in patients with left ventricular assist device (LVAD). Dig Dis Sci 60: 3697‐3706, 2015. DOI: 10.1007/s10620‐015‐3743‐4.
 159.Jabbour A, Keogh A, Hayward C, Macdonald P. Chronic sildenafil lowers transpulmonary gradient and improves cardiac output allowing successful heart transplantation. Eur J Heart Fail 9: 674‐677, 2007. DOI: 10.1016/j.ejheart.2007.01.008.
 160.Jackson GR, Brand T, Katz JN, Ikonomidis JS. Left ventricular assist device failure due to outflow graft compression by thrombofibrotic exudate. J Thorac Cardiovasc Surg 157: e259‐e261, 2019. DOI: 10.1016/j.jtcvs.2018.10.069.
 161.Jacquet L, Vancaenegem O, Pasquet A, Matte P, Poncelet A, Price J, Gurné O, Noirhomme P. Exercise capacity in patients supported with rotary blood pumps is improved by a spontaneous increase of pump flow at constant pump speed and by a rise in native cardiac output. Artif Organs 35: 682‐690, 2011. DOI: 10.1111/j.1525‐1594.2011.01227.x.
 162.Jain P, Hayward CS. Left ventricular ejection fraction under continuous‐flow mechanical support. Circ Heart Fail 13: 323‐325, 2020. DOI: 10.32388/k0r7n6.
 163.Jain P, Meredith T, Adji A, Schnegg B, Hayward CS. Spontaneous oscillatory left ventricular‐ aortic uncoupling under continuous‐flow left ventricular assist device support. Circ HF 14: 285‐286, 2021.
 164.Jain P, Muthiah K, Shehab S, Robson D, Hayward CS. Dynamic flow responses to expiratory maneuvers in left ventricular assist device patients. J Heart Lung Transplant 38: 669‐674, 2019. DOI: 10.1016/j.healun.2019.02.011.
 165.Jain P, Shehab S, Stevens M, Macdonald P, Jansz P, Hayward C. Pulsatile conduit pressure gradients in the heartWare HVAD. ASAIO J 65: 489‐494, 2019. DOI: 10.1097/MAT.0000000000000964.
 166.Jakovljevic DG, George RS, Donovan G, Nunan D, Henderson K, Bougard RS, Yacoub MH, Birks EJ, Brodie DA. Comparison of cardiac power output and exercise performance in patients with left ventricular assist devices, explanted (recovered) patients, and those with moderate to severe heart failure. Am J Cardiol 105: 1780‐1785, 2010. DOI: 10.1016/j.amjcard.2010.01.362.
 167.Jakovljevic DG, George RS, Nunan D, Donovan G, Bougard RS, Yacoub MH, Birks EJ, Brodie DA. The impact of acute reduction of continuous‐flow left ventricular assist device support on cardiac and exercise performance. Heart 96: 1390‐1395, 2010. DOI: 10.1136/hrt.2010.193698.
 168.Jakovljevic DG, Yacoub MH, Schueler S, MacGowan GA, Velicki L, Seferovic PM, Hothi S, Tzeng BH, Brodie DA, Birks E, Tan LB. Left ventricular assist device as a bridge to recovery for patients with advanced heart failure. J Am Coll Cardiol 69: 1924‐1933, 2017. DOI: 10.1016/j.jacc.2017.02.018.
 169.James KB, McCarthy PM, Thomas JD, Vargo R, Hobbs RE, Sapp S, Bravo E. Effect of the implantable left ventricular assist device on neuroendocrine activation in heart failure. Circulation 92: 191‐195, 1995. DOI: 10.1161/01.cir.92.9.191.
 170.Jansen‐Park SH, Mahmood MN, Müller I, Turnhoff LK, Schmitz‐Rode T, Steinseifer U, Sonntag SJ. Effects of interaction between ventricular assist device assistance and autoregulated mock circulation including frank–starling mechanism and baroreflex. Artif Organs 40: 981‐991, 2016. DOI: 10.1111/aor.12635.
 171.John R, Long JW, Massey HT, Griffith BP, Sun BC, Tector AJ, Frazier OH, Joyce LD. Outcomes of a multicenter trial of the Levitronix CentriMag ventricular assist system for short‐term circulatory support. J Thorac Cardiovasc Surg 141: 932‐939, 2011. DOI: 10.1016/j.jtcvs.2010.03.046.
 172.Jorde UP, Katz JN, Colombo PC, Stulak J, Saeed O, Egnaczyk G, Haeusslein E, McCann P, Crandall D, Franke A, Adamson R. PREVENTion of non‐surgical bleeding by management of HeartMate II patients without anti‐platelet therapy (PREVENT II) trial. J Heart Lung Transplant 39: 838‐840, 2020. DOI: 10.1016/j.healun.2020.05.003.
 173.Jorde UP, Uriel N, Nahumi N, Bejar D, Gonzalez‐Costello J, Thomas SS, Han J, Morrison KA, Jones S, Kodali S, Hahn RT, Shames S, Yuzefpolskaya M, Colombo P, Takayama H, Naka Y. Prevalence, significance, and management of aortic insufficiency in continuous flow left ventricular assist device recipients. Circ Heart Fail 7: 310‐319, 2014. DOI: 10.1161/CIRCHEARTFAILURE.113.000878.
 174.Jung MH, Gustafsson F, Houston B, Russell SD. Ramp study hemodynamics, functional capacity, and outcome in heart failure patients with continuous‐flow left ventricular assist devices. ASAIO J 62: 442‐446, 2016. DOI: 10.1097/MAT.0000000000000387.
 175.Jung MH, Hassager C, Balling L, Russell SD, Boesgaard S, Gustafsson F. Relation between pressure and volume unloading during ramp testing in patients supported with a continuous‐flow left ventricular assist device. ASAIO J 61: 307‐312, 2015. DOI: 10.1097/MAT.0000000000000194.
 176.Kakino T, Saku K, Sakamoto T, Sakamoto K, Akashi T, Ikeda M, Ide T, Kishi T, Tsutsui H, Sunagawa K. Prediction of hemodynamics under left ventricular assist device. Am J Physiol Heart Circ Physiol 312: H80‐H88, 2017. DOI: 10.1152/ajpheart.00617.2016.
 177.Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant 35: 67‐73, 2016. DOI: 10.1016/j.healun.2015.06.009.
 178.Kang J, Hennessy‐Strahs S, Kwiatkowski P, Bermudez CA, Acker MA, Atluri P, McConnell PI, Bartoli CR. Continuous‐flow LVAD support causes a distinct form of intestinal angiodysplasia. Circ Res 121: 963‐969, 2017. DOI: 10.1161/CIRCRESAHA.117.310848.
 179.Kapur NK, Jumean M, Halin N, Kiernan MS, DeNofrio D, Pham DT. Ventricular square‐wave response. Circ Heart Fail 8: 652‐654, 2015. DOI: 10.1161/circheartfailure.115.002160.
 180.Kasai T, Floras JS, Bradley TD. Sleep apnea and cardiovascular disease: A bidirectional relationship. Circulation 126: 1495‐1510, 2012. DOI: 10.1161/CIRCULATIONAHA.111.070813.
 181.Kassi M, Estep JD. Role of multimodality imaging in patients with left ventricular assist device. Curr Opin Cardiol 31: 510‐522, 2016. DOI: 10.1097/HCO.0000000000000318.
 182.Kassi M, Rosenbaum AN, Wiley BM, Behfar A. Novel use for intracardiac echocardiography: Evaluation of patients with continuous flow left ventricular assist devices. JACC Cardiovasc Imaging 12: 363‐366, 2019. DOI: 10.1016/j.jcmg.2018.06.022.
 183.Kassis H, Cherukuri K, Agarwal R, Kanwar M, Elapavaluru S, Sokos GG, Moraca RJ, Bailey SH, Murali S, Benza RL, Raina A. Significance of residual mitral regurgitation after continuous flow left ventricular assist device implantation. JACC Heart Fail 5: 81‐88, 2017. DOI: 10.1016/j.jchf.2016.09.014.
 184.Kawabori M, Kurihara C, Critsinelis AC, Sugiura T, Kaku Y, Civitello AB, Rosengart TK, Morgan JA. Gastrointestinal bleeding after HeartMate II or HVAD implantation: Incidence, location, etiology, and effect on survival. ASAIO J 66: 283‐290, 2020. DOI: 10.1097/MAT.0000000000000998.
 185.Kawahito S, Nakata KI, Nonaka K, Sato T, Yoshikawa M, Takano T, Maeda T, Linneweber J, Schulte‐Eistrup S, Flowers D, Glueck J, Nosé Y. Analysis of the arterial blood pressure waveform using fast fourier transform technique during left ventricular nonpulsatile assistance: In vitro study. Artif Organs 24: 580‐583, 2000. DOI: 10.1046/j.1525‐1594.2000.06502‐3.x.
 186.Kawahito S, Takano T, Nakata KI, Maeda T, Nonaka K, Linneweber J, Schulte‐Eistrup S, Sato T, Mikami M, Glueck J, Nosé Y. Analysis of the arterial blood pressure waveform during left ventricular nonpulsatile assistance in animal models. Artif Organs 24: 816‐820, 2000. DOI: 10.1046/j.1525‐1594.2000.06502‐3.x.
 187.Kerrigan DJ, Williams CT, Ehrman JK, Saval MA, Bronsteen K, Schairer JR, Swaffer M, Brawner CA, Lanfear DE, Selektor Y, Velez M, Tita C, Keteyian SJ. Cardiac rehabilitation improves functional capacity and patient‐reported health status in patients with continuous‐flow left ventricular assist devices: The rehab‐vad randomized controlled trial. JACC Heart Fail 2: 653‐659, 2014. DOI: 10.1016/j.jchf.2014.06.011.
 188.Khush KK, Cherikh WS, Chambers DC, Harhay MO, Khush KK, Lehman RR, Meiser B, Rossano JW, Hsich E, Potena L, Sadavarte A, Singh TP, Zuckermann A, Stehlik J. The International Thoracic Organ Transplant Registry of the International Society for Heart and Lung Transplantation: Twenty‐second pediatric lung and heart‐lung transplantation report—2019; Focus theme: Donor and recipient size match. J Heart Lung Transplant 38: 1015‐1027, 2019. DOI: 10.1016/j.healun.2019.08.003.
 189.Kiernan MS, Wilson Grandin E, Brinkley M, Kapur NK, Pham DT, Ruthazer R, Eduardo Rame J, Atluri P, Birati EY, Oliveira GH, Pagani FD, Kirklin JK, Naftel D, Kormos RL, Teuteberg JJ, Denofrio D. Early right ventricular assist device use in patients undergoing continuous‐flow left ventricular assist device implantation: Incidence and risk factors from the Interagency Registry for Mechanically Assisted Circulatory Support. Circ Heart Fail 10: e003863, 2017. DOI: 10.1161/CIRCHEARTFAILURE.117.003863.
 190.Kilic A, Katz JN, Joseph SM, Brisco‐Bacik MA, Uriel N, Lima B, Agarwal R, Bharmi R, Farrar DJ, Lee S. Changes in pulmonary artery pressure before and after left ventricular assist device implantation in patients utilizing remote haemodynamic monitoring. ESC Heart Fail 6: 138‐145, 2019. DOI: 10.1002/ehf2.12373.
 191.Kinoshita M, Takano H, Takaichi S, Taenaka Y, Nakatani T. Influence of prolonged ventricular assistance on myocardial histopathology in intact heart. Ann Thorac Surg 61: 640‐645, 1996. DOI: 10.1016/0003‐4975(95)01087‐4.
 192.Kirklin JK, Naftel DC, Kormos RL, Stevenson LW, Pagani FD, Miller MA, Timothy Baldwin J, Young JB. Fifth INTERMACS annual report: Risk factor analysis from more than 6,000 mechanical circulatory support patients. J Heart Lung Transplant 32: 141‐156, 2013. DOI: 10.1016/j.healun.2012.12.004.
 193.Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Miller MA, Timothy Baldwin J, Young JB. Sixth INTERMACS annual report: A 10,000‐patient database. J Heart Lung Transplant 33: 555‐564, 2014. DOI: 10.1016/j.healun.2014.04.010.
 194.Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant 34: 1495‐1504, 2015. DOI: 10.1016/j.healun.2015.10.003.
 195.Kirklin JK, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB, Naftel DC. Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant 36: 1080‐1086, 2017.
 196.Kishimoto Y, Takewa Y, Arakawa M, Umeki A, Ando M, Nishimura T, Fujii Y, Mizuno T, Nishimura M, Tatsumi E. Development of a novel drive mode to prevent aortic insufficiency during continuous‐flow LVAD support by synchronizing rotational speed with heartbeat. J Artif Organs 16: 129‐137, 2013. DOI: 10.1007/s10047‐012‐0685‐x.
 197.Kittipibul V, Xanthopoulos A, Hurst TE, Fukamachi K, Blackstone EH, Soltesz E, Starling RC. Clinical courses of HeartMate II left ventricular assist device thrombosis. ASAIO J 66: 153‐159, 2020. DOI: 10.1097/MAT.0000000000000952.
 198.Kleinheyer M, Timms DL, Tansley GD, Nestler F, Greatrex NA, Frazier OH, Cohn WE. Rapid speed modulation of a rotary total artificial heart impeller. Artif Organs 40: 824‐833, 2016. DOI: 10.1111/aor.12827.
 199.Knierim J, Heck R, Pieri M, Schoenrath F, Soltani S, Stawowy P, Dreysse S, Stein J, Müller M, Mulzer J, Dandel M, Falk V, Krabatsch T, Potapov E. Outcomes from a recovery protocol for patients with continuous‐flow left ventricular assist devices. J Heart Lung Transplant 38: 440‐448, 2019. DOI: 10.1016/j.healun.2018.11.001.
 200.Koerber DM, Rosenbaum AN, Olson TP, Kushwaha S, Stulak J, Maltais S, Behfar A. Exercise‐induced hypoxemia predicts heart failure hospitalization and death in patients supported with left ventricular assist devices. Int J Artif Organs 43: 165‐172, 2020. DOI: 10.1177/0391398819882435.
 201.Kondo T, Okumura T, Oishi H, Arao Y, Kato H, Yamaguchi S, Kuwayama T, Haga T, Yokoi T, Hiraiwa H, Fukaya K, Sawamura A, Morimoto R, Mutsuga M, Fujimoto K, Usui A, Murohara T. Associations between hemodynamic parameters at rest and exercise capacity in patients with implantable left ventricular assist devices. Int J Artif Organs 44: 174‐180, 2021. DOI: 10.1177/0391398820949888.
 202.Kormos RL, Borovetz HS, Gasior T, Antaki JF, Armitage JM, Pristas JM, Hardesty RL, Griffith BP. Experience with univentricular support in mortally ill cardiac transplant candidates. Ann Thorac Surg 49: 261‐272, 1990. DOI: 10.1016/0003‐4975(90)90148‐Y.
 203.Kormos RL, Cowger J, Pagani FD, Teuteberg JJ, Goldstein DJ, Jacobs JP, Higgins RS, Stevenson LW, Stehlik J, Atluri P, Grady KL, Kirklin JK. The Society of Thoracic Surgeons Intermacs database annual report: Evolving indications, outcomes, and scientific partnerships. J Heart Lung Transplant 38: 114‐126, 2019.
 204.Kormos RL, Gasior T, Antaki J, Armitage JM, Miyamoto Y, Borovetz HS, Hardesty RL, Griffith BP. Evaluation of right ventricular function during clinical left ventricular assistance. ASAIO Trans 35: 547‐549, 1989. DOI: 10.1097/00002216‐198907000‐00121.
 205.Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, Massey T, Milano CA, Moazami N, Sundareswaran KS, Farrar DJ. Right ventricular failure in patients with the HeartMate II continuous‐flow left ventricular assist device: Incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg 139: 1316‐1324, 2010. DOI: 10.1016/j.jtcvs.2009.11.020.
 206.Krabatsch T, Potapov E, Stepanenko A, Schweiger M, Kukucka M, Huebler M, Hennig E, Hetzer R. Biventricular circulatory support with two miniaturized implantable assist devices. Circulation 124, 2011. DOI: 10.1161/CIRCULATIONAHA.110.011502.
 207.Kroll MH, Hellum JD, McIntire LV, Schafer AI, Moake JL. Platelets and shear stress. Blood 88: 1525‐1541, 1996.
 208.Kugler C, Malehsa D, Schrader E, Tegtbur U, Guetzlaff E, Haverich A, Strueber M. A multi‐modal intervention in management of left ventricular assist device outpatients: Dietary counselling, controlled exercise and psychosocial support. Eur J Cardiothorac Surg 42: 1026‐1032, 2012. DOI: 10.1093/ejcts/ezs206.
 209.Kumarasinghe G, Jain P, Jabbour A, Lai J, Keogh AM, Kotlyar E, Jansz P, Macdonald PS, Hayward CS. Comparison of continuous‐flow ventricular assist device therapy with intensive medical therapy in fixed pulmonary hypertension secondary to advanced left heart failure. ESC Heart Fail 5: 695‐702, 2018. DOI: 10.1002/ehf2.12284.
 210.Lai JV, Muthiah K, Robson D, Prichard R, Walker R, Pin Lim C, Wang LW, Macdonald PS, Jansz P, Hayward CS. Impact of pump speed on hemodynamics with exercise in continuous flow ventricular assist device patients. ASAIO J 66: 132‐138, 2020. DOI: 10.1097/MAT.0000000000000975.
 211.Lampert BC, Eckert C, Weaver S, Scanlon A, Lockard K, Allen C, Kunz N, Bermudez C, Bhama JK, Shullo MA, Kormos RL, Dew MA, Teuteberg JJ. Blood pressure control in continuous flow left ventricular assist devices: Efficacy and impact on adverse events. Ann Thorac Surg 97: 139‐146, 2014. DOI: 10.1016/j.athoracsur.2013.07.069.
 212.Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant 34: 1123‐1130, 2015. DOI: 10.1016/j.healun.2015.06.015.
 213.Lanier GM, Orlanes K, Hayashi Y, Murphy J, Flannery M, Te‐Frey R, Uriel N, Yuzefpolskaya M, Mancini DM, Naka Y, Takayama H, Jorde UP, Demmer RT, Colombo PC. Validity and reliability of a novel slow cuff‐deflation system for noninvasive blood pressure monitoring in patients with continuous‐flow left ventricular assist device. Circ Heart Fail 6: 1005‐1012, 2013. DOI: 10.1161/CIRCHEARTFAILURE.112.000186.
 214.Laoutaris ID. Restoring pulsatility and peakVO2 in the era of continuous flow, fixed pump speed, left ventricular assist devices: ‘A hypothesis of pump's or patient's speed?’. Eur J Prev Cardiol 26: 1806‐1815, 2019. DOI: 10.1177/2047487319856448.
 215.Laoutaris ID, Dritsas A, Adamopoulos S, Manginas A, Gouziouta A, Kallistratos MS, Koulopoulou M, Voudris V, Cokkinos DV, Sfirakis P. Benefits of physical training on exercise capacity, inspiratory muscle function, and quality of life in patients with ventricular assist devices long‐term postimplantation. Eur J Prev Cardiol 18: 33‐40, 2011. DOI: 10.1097/HJR.0b013e32833c0320.
 216.Larose JA, Tamez D, Ashenuga M, Reyes C. Design concepts and principle of operation of the heartware ventricular assist system. ASAIO J 56: 285‐289, 2010. DOI: 10.1097/MAT.0b013e3181dfbab5.
 217.Larue SJ, Garcia‐Cortes R, Nassif ME, Vader JM, Ray S, Ravichandran A, Rasalingham R, Silvestry SC, Ewald GA, Wang IW, Schilling JD. Treatment of secondary pulmonary hypertension with bosentan after left ventricular assist device implantation. Cardiovasc Ther 33: 50‐55, 2015. DOI: 10.1111/1755‐5922.12111.
 218.Lavee J, Mulzer J, Krabatsch T, Marasco S, McGiffin D, Garbade J, Schmitto JD, Zimpfer D, Potapov EV. An international multicenter experience of biventricular support with HeartMate 3 ventricular assist systems. J Heart Lung Transplant 37: 1399‐1402, 2018. DOI: 10.1016/j.healun.2018.08.008.
 219.Leibner ES, Cysyk J, Eleuteri K, El‐Banayosy A, Boehmer JP, Pae WE. Changes in the functional status measures of heart failure patients with mechanical assist devices. ASAIO J 59: 117‐122, 2013. DOI: 10.1097/MAT.0b013e3182816cb7.
 220.Letsou GV, Pate TD, Gohean JR, Kurusz M, Longoria RG, Kaiser L, Smalling RW. Improved left ventricular unloading and circulatory support with synchronized pulsatile left ventricular assistance compared with continuous‐flow left ventricular assistance in an acute porcine left ventricular failure model. J Thorac Cardiovasc Surg 140: 1181‐1188, 2010. DOI: 10.1016/j.jtcvs.2010.03.043.
 221.Leverett LB, Hellums JD, Alfrey CP, Lynch EC. Red blood cell damage by shear stress. Biophys J 12: 257‐273, 1972. DOI: 10.1016/S0006‐3495(72)86085‐5.
 222.Li YY, Feng Y, McTiernan CF, Pei W, Moravec CS, Wang P, Rosenblum W, Kormos RL, Feldman AM. Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104: 1147‐1152, 2001. DOI: 10.1161/hc3501.095215.
 223.Lilliu M, Onorati F, Luciani GB, Faggian G. The determinants of functional capacity in left ventricular assist device patients: Many actors with not well defined roles. J Cardiovasc Med 21: 472‐480, 2020. DOI: 10.2459/JCM.0000000000000958.
 224.Lim HS, Ranasinghe A, Chue C, Mascaro J. Two‐year outcome of warfarin monotherapy in HeartMate 3 left ventricular assist device: A single‐center experience. J Heart Lung Transplant 39: 1149‐1151, 2020. DOI: 10.1016/j.healun.2020.06.012.
 225.Loforte A, Montalto A, Della Monica PL, Contento C, Musumeci F. Biventricular support with the HeartWare implantable continuous flow pump: An additional contribution. J Heart Lung Transplant 29: 1443‐1444, 2010. DOI: 10.1016/j.healun.2010.07.012.
 226.Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A Bayesian Model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail 4: 711‐721, 2016. DOI: 10.1016/j.jchf.2016.04.004.
 227.Magnussen C, Bernhardt AM, Ojeda FM, Wagner FM, Gummert J, de By TMMH, Krabatsch T, Mohacsi P, Rybczynski M, Knappe D, Sill B, Deuse T, Blankenberg S, Schnabel RB, Reichenspurner H. Gender differences and outcomes in left ventricular assist device support: The European Registry for Patients with Mechanical Circulatory Support. J Heart Lung Transplant 37: 61‐70, 2018. DOI: 10.1016/j.healun.2017.06.016.
 228.Makki N, Mesubi O, Steyers C, Olshansky B, Abraham WT. Meta‐analysis of the relation of ventricular arrhythmias to all‐cause mortality after implantation of a left ventricular assist device. Am J Cardiol 116: 1385‐1390, 2015. DOI: 10.1016/j.amjcard.2015.07.065.
 229.Maltais S, Topilsky Y, Tchantchaleishvili V, McKellar SH, Durham LA, Joyce LD, Daly RC, Park SJ. Surgical treatment of tricuspid valve insufficiency promotes early reverse remodeling in patients with axial‐flow left ventricular assist devices. J Thorac Cardiovasc Surg 143: 1370‐1376.e1, 2012. DOI: 10.1016/j.jtcvs.2011.07.014.
 230.Mancini D, Goldsmith R, Levin H, Beniaminovitz A, Rose E, Catanese K, Flannery M, Oz M. Comparison of exercise performance in patients with chronic severe heart failure versus left ventricular assist devices. Circulation 98: 1178‐1183, 1998. DOI: 10.1161/01.CIR.98.12.1178.
 231.Marey G, McHugh KM, Sakhitab‐Kerestes AM, Jang S, Steiner ME, John R, Richtsfeld M, Said SM, Ameduri R, Griselli M. HeartMate III as a bridge to transplantation in an adolescent with failed Fontan circulation. JACC Case Reports 1: 512‐515, 2019. DOI: 10.1016/j.jaccas.2019.09.013.
 232.Marinescu KK, Uriel N, Mann DL, Burkhoff D. Left ventricular assist device‐induced reverse remodeling: It's not just about myocardial recovery. Expert Rev Med Devices 14: 15‐26, 2017. DOI: 10.1080/17434440.2017.1262762.
 233.Martina J, de Jonge N, Rutten M, Kirkels JH, Klöpping C, Rodermans B, Sukkel E, Hulstein N, Mol B, Lahpor J. Exercise hemodynamics during extended continuous flow left ventricular assist device support: The response of systemic cardiovascular parameters and pump performance. Artif Organs 37: 754‐762, 2013. DOI: 10.1111/aor.12151.
 234.Martina JR, Westerhof BE, De Jonge N, Van Goudoever J, Westers P, Chamuleau S, Van Dijk D, Rodermans BFM, De Mol BAJM, Lahpor JR. Noninvasive arterial blood pressure waveforms in patients with continuous‐flow left ventricular assist devices. ASAIO J 60: 154‐161, 2014. DOI: 10.1097/MAT.0000000000000033.
 235.Masri SC, Tedford RJ, Colvin MM, Leary PJ, Cogswell R. Pulmonary arterial compliance improves rapidly after left ventricular assist device implantation. ASAIO J 63: 139‐143, 2017. DOI: 10.1097/MAT.0000000000000467.
 236.Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score. A pre‐operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 51: 2163‐2172, 2008.
 237.Maybaum S, Mancini D, Xydas S, Starling RC, Aaronson K, Pagani FD, Miller LW, Margulies K, McRee S, Frazier OH, Torre‐Amione G. Cardiac improvement during mechanical circulatory support: A prospective multicenter study of the LVAD Working Group. Circulation 115: 2497‐2505, 2007. DOI: 10.1161/CIRCULATIONAHA.106.633180.
 238.McGee E, Danter M, Strueber M, Mahr C, Mokadam NA, Wieselthaler G, Klein L, Lee S, Boeve T, Maltais S, Pretorius GV, Adler E, Vassiliades T, Cheung A. Evaluation of a lateral thoracotomy implant approach for a centrifugal‐flow left ventricular assist device: The LATERAL clinical trial. J Heart Lung Transplant 38: 344‐351, 2019. DOI: 10.1016/j.healun.2019.02.002.
 239.McGiffin D, Kure C, McLean J, Marasco S, Bergin P, Hare JL, Leet A, Patel H, Zimmet A, Rix J, Taylor A, Kaye D. The results of a single‐center experience with HeartMate 3 in a biventricular configuration. J Heart Lung Transplant 40: 193‐200, 2021. DOI: 10.1016/j.healun.2020.12.006.
 240.Medvedofsky D, Mor‐Avi V, Sayer G, Addetia K, Kruse E, Adatya S, Kim G, Weinert L, Yamat M, Ota T, Jeevanandam V, Uriel N, Lang RM. Residual native left ventricular function optimization using quantitative 3D echocardiographic assessment of rotational mechanics in patients with left ventricular assist devices. Echocardiography 35: 1606‐1615, 2018. DOI: 10.1111/echo.14101.
 241.Mehra MR. The burden of haemocompatibility with left ventricular assist systems: A complex weave. Eur Heart J 40: 673‐677, 2019. DOI: 10.1093/eurheartj/ehx036.
 242.Mehra MR, Canter CE, Hannan MM, Semigran MJ, Uber PA, Baran DA, Danziger‐Isakov L, Kirklin JK, Kirk R, Kushwaha SS, Lund LH, Potena L, Ross HJ, Taylor DO, Verschuuren EAM, Zuckermann A. The 2016 International Society for Heart Lung Transplantation listing criteria for heart transplantation: A 10‐year update. J Heart Lung Transplant 35: 1‐23, 2016. DOI: 10.1016/j.healun.2015.10.023.
 243.Mehra MR, Uriel N, Naka Y, Cleveland JC, Yuzefpolskaya M, Salerno CT, Walsh MN, Milano CA, Patel CB, Hutchins SW, Ransom J, Ewald GA, Itoh A, Raval NY, Silvestry SC, Cogswell R, John R, Bhimaraj A, Bruckner BA, Lowes BD, Um JY, Jeevanandam V, Sayer G, Mangi AA, Molina EJ, Sheikh F, Aaronson K, Pagani FD, Cotts WG, Tatooles AJ, Babu A, Chomsky D, Katz JN, Tessmann PB, Dean D, Krishnamoorthy A, Chuang J, Topuria I, Sood P, Goldstein DJ. A fully magnetically levitated left ventricular assist device ‐ Final report. N Engl J Med 380: 1618‐1627, 2019. DOI: 10.1056/NEJMoa1900486.
 244.Mentz RJ, Lewis EF. Epidemiology of cardiorenal syndrome. Heart Fail Clin 6: 333‐346, 2010. DOI: 10.1016/j.hfc.2010.03.001.
 245.Meyer AL, Malehsa D, Bara C, Budde U, Slaughter MS, Haverich A, Strueber M. Acquired von Willebrand syndrome in patients with an axial flow left ventricular assist device. Circ Heart Fail 3: 675‐681, 2010. DOI: 10.1161/CIRCHEARTFAILURE.109.877597.
 246.Meyer AL, Malehsa D, Budde U, Bara C, Haverich A, Strueber M. Acquired von Willebrand syndrome in patients with a centrifugal or axial continuous flow left ventricular assist device. JACC Heart Fail 2: 141‐145, 2014. DOI: 10.1016/j.jchf.2013.10.008.
 247.Mezzani A, Pistono M, Agostoni P, Giordano A, Gnemmi M, Imparato A, Temporelli P, Corra U. Exercise gas exchange in continuous‐flow left ventricular assist device recipients. PLoS One 13: e0187112, 2018. DOI: 10.1371/journal.pone.0187112.
 248.Mikail P, Crosby JR, Slepian MJ, Smith R, Khalpey Z. LVAD pulsatility assesses cardiac contractility: In vitro model utilizing the total artificial heart and mock circulation. ASAIO J 65: 580‐586, 2019. DOI: 10.1097/MAT.0000000000000861.
 249.Milano CA, Simeone AA, Blue LJ, Rogers JG. Presentation and management of left ventricular assist device inflow cannula malposition. J Heart Lung Transplant 30: 838‐840, 2011. DOI: 10.1016/j.healun.2011.03.003.
 250.Mirza KK, Cuomo K, Jung MH, Russell SD, Gustafsson F. Effect of heart rate reserve on exercise capacity in patients treated with a continuous left ventricular assist device. ASAIO J 66: 160‐165, 2020. DOI: 10.1097/MAT.0000000000000955.
 251.Mirza KK, Jung MH, Sigvardsen PE, Kofoed KF, Elming MB, Rossing K, Gustafsson F. Computed tomography‐estimated right ventricular function and exercise capacity in patients with continuous‐flow left ventricular assist devices. ASAIO J: 8‐16, 2020. DOI: 10.1097/MAT.0000000000000925.
 252.Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, Lee S, Horvath DJ, Starling RC. Axial and centrifugal continuous‐flow rotary pumps: A translation from pump mechanics to clinical practice. J Heart Lung Transplant 32: 1‐11, 2013.
 253.Molina EJ, Shah P, Kiernan MS, Cornwell WK, Copeland H, Takeda K, Fernandez FG, Badhwar V, Habib RH, Jacobs JP, Koehl D, Kirklin JK, Pagani FD, Cowger JA. The Society of Thoracic Surgeons Intermacs 2020 Annual Report. Ann Thorac Surg 111: 778‐792, 2021. DOI: 10.1016/j.athoracsur.2020.12.038.
 254.Moon MR, Bolger AF, Deanda A, Komeda M, Daughters GT, Nikolic SD, Miller DC, Ingels NB. Septal function during left ventricular unloading. Circulation 95: 1320‐1327, 1997. DOI: 10.1161/01.CIR.95.5.1320.
 255.Moon MR, Castro LJ, DeAnda A, Tomizawa Y, Daughters GT, Ingels NB, Miller DC. Right ventricular dynamics during left ventricular assistance in closed‐chest dogs. Ann Thorac Surg 56: 54‐67, 1993. DOI: 10.1016/0003‐4975(93)90402‐4.
 256.Moreno JA, Martín‐Cleary C, Gutiérrez E, Toldos O, Blanco‐Colio LM, Praga M, Ortiz A, Egido J. Aki associated with macroscopic glomerular hematuria: Clinical and pathophysiologic consequences. Clin J Am Soc Nephrol 7: 175‐184, 2012. DOI: 10.2215/CJN.01970211.
 257.Morgan JA, Paone G, Nemeh HW, Murthy R, Williams CT, Lanfear DE, Tita C, Brewer RJ. Impact of continuous‐flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant 32: 398‐403, 2013. DOI: 10.1016/j.healun.2012.12.018.
 258.Morley D, Litwak K, Ferber P, Spence P, Dowling R, Meyns B, Griffith B, Burkhoff D. Hemodynamic effects of partial ventricular support in chronic heart failure: Results of simulation validated with in vivo data. J Thorac Cardiovasc Surg 133, 2007. DOI: 10.1016/j.jtcvs.2006.07.037.
 259.Moss N, Rakita V, Lala A, Parikh A, Roldan J, Mitter SS, Anyanwu A, Campoli M, Burkhoff D, Mancini DM. Hemodynamic response to exercise in patients supported by continuous flow left ventricular assist devices. JACC Heart Fail 8: 291‐301, 2020. DOI: 10.1016/j.jchf.2019.10.013.
 260.Mullan C, Caraballo C, Ravindra NG, Miller PE, Mori M, McCullough M, Clarke JRD, Anwer M, Velazquez EJ, Geirsson A, Desai NR, Ahmad T. Clinical impact of concomitant tricuspid valve procedures during left ventricular assist device implantation. J Heart Lung Transplant 39: 926‐933, 2020. DOI: 10.1016/j.healun.2020.05.007.
 261.Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, Young JB, Tang WHW. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol 53: 589‐596, 2009. DOI: 10.1016/j.jacc.2008.05.068.
 262.Muthiah K, Gupta S, Otton J, Robson D, Walker R, Tay A, Macdonald P, Keogh A, Kotlyar E, Granger E, Dhital K, Spratt P, Jansz P, Hayward CS. Body position and activity, but not heart rate, affect pump flows in patients with continuous‐flow left ventricular assist devices. JACC Heart Fail 2: 323‐330, 2014. DOI: 10.1016/j.jchf.2014.02.008.
 263.Najjar SS, Slaughter MS, Pagani FD, Starling RC, McGee EC, Eckman P, Tatooles AJ, Moazami N, Kormos RL, Hathaway DR, Najarian KB, Bhat G, Aaronson KD, Boyce SW. An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial. J Heart Lung Transplant 33: 23‐34, 2014. DOI: 10.1016/j.healun.2013.12.001.
 264.Nakahara S, Chien C, Gelow J, Dalouk K, Henrikson CA, Mudd J, Stecker EC. Ventricular arrhythmias after left ventricular assist device. Circ Arrhythmia Electrophysiol 6: 648‐654, 2013. DOI: 10.1161/CIRCEP.113.000113.
 265.Nakata KI, Ohashi Y, Tayama E, Ohtsuka G, Takami Y, Mueller J, Glueck J, Nosé Y. Estimation of the native cardiac output from a rotary blood pump flow: In vitro study. Artif Organs 22: 411‐413, 1998. DOI: 10.1046/j.1525‐1594.1998.06127.x.
 266.Namdaran P, Zikos TA, Pan JY, Banerjee D. Thalidomide use reduces risk of refractory gastrointestinal bleeding in patients with continuous flow left ventricular assist devices. ASAIO J 66: 645‐651, 2020. DOI: 10.1097/MAT.0000000000001054.
 267.Nascimbene A, Neelamegham S, Frazier OH, Moake JL, Dong JF. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 127: 3133‐3141, 2016. DOI: 10.1182/blood‐2015‐10‐636480.
 268.Nassif ME, Tibrewala A, Raymer DS, Andruska A, Novak E, Vader JM, Itoh A, Silvestry SC, Ewald GA, Larue SJ. Systolic blood pressure on discharge after left ventricular assist device insertion is associated with subsequent stroke. J Heart Lung Transplant 34: 503‐508, 2015. DOI: 10.1016/j.healun.2014.09.042.Systolic.
 269.Nei SD, Wieruszewski PM, Orzel LA, Ritchie BM, Stulak JM. Tirofiban in suspected left ventricular assist device pump thrombosis. ASAIO J 66: 886‐889, 2020. DOI: 10.1097/MAT.0000000000001083.
 270.Netuka I, Kvasnička T, Kvasnička J, Hrachovinová I, Ivák P, Mareček F, Bílková J, Malíková I, Jančová M, Malý J, Sood P, Sundareswaran KS, Connors JM, Mehra MR. Evaluation of von Willebrand factor with a fully magnetically levitated centrifugal continuous‐flow left ventricular assist device in advanced heart failure. J Heart Lung Transplant 35: 860‐867, 2016. DOI: 10.1016/j.healun.2016.05.019.
 271.Nishimura RA, Tajik AJ. The Valsalva Maneuver ‐ 3 centuries later. Mayo Clin Proc 79: 577‐578, 2004. DOI: 10.4065/79.4.577.
 272.Nishinaka T, Tatsumi E, Taenaka Y, Takano H, Koyanagi H. Influence of pulsatile and nonpulsatile left heart bypass on the hormonal circadian rhythm. ASAIO J 46: 582‐586, 2000. DOI: 10.1097/00002480‐200009000‐00015.
 273.Noor MR, Bowles C, Banner NR. Relationship between pump speed and exercise capacity during HeartMate II left ventricular assist device support: Influence of residual left ventricular function. Eur J Heart Fail 14: 613‐620, 2012. DOI: 10.1093/eurjhf/hfs042.
 274.Noor MR, Ho CH, Parker KH, Simon AR, Banner NR, Bowles CT. Investigation of the characteristics of HeartWare HVAD and thoratec HeartMate II under steady and pulsatile flow conditions. Artif Organs 40: 549‐560, 2016. DOI: 10.1111/aor.12593.
 275.Nunan D, Sandercock GRH, George RS, Jakovljevic DG, Donovan G, Bougard R, Yacoub MH, Brodie DA, Birks EJ. Cardiovascular autonomic control in patients undergoing left ventricular assist device (LVAD) support and pharmacologic therapy. Int J Cardiol 168: 4145‐4149, 2013. DOI: 10.1016/j.ijcard.2013.07.075.
 276.O'Connor MJ, Lorts A, Davies RR, Fynn‐Thompson F, Joong A, Maeda K, Mascio CE, McConnell PI, Mongé MC, Nandi D, Peng DM, Rosenthal DN, Si MS, Sutcliffe DL, VanderPluym CJ, Viegas M, Zafar F, Zinn M, Morales DLS. Early experience with the HeartMate 3 continuous‐flow ventricular assist device in pediatric patients and patients with congenital heart disease: A multicenter registry analysis. J Heart Lung Transplant 39: 573‐579, 2020. DOI: 10.1016/j.healun.2020.02.007.
 277.Ochiai Y, McCarthy PM, Smedira NG, Banbury MK, Navia JL, Feng J, Hsu AP, Yeager ML, Buda T, Hoercher KJ, Howard MW, Takagaki M, Doi K, Fukamachi K. Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: Analysis of 245 patients. Circulation 106: I198‐I202, 2002. DOI: 10.1161/01.cir.0000032906.33237.1c.
 278.Ochsner G, Wilhelm MJ, Amacher R, Petrou A, Cesarovic N, Staufert S, Röhrnbauer B, Maisano F, Hierold C, Meboldt M, Daners MS. In vivo evaluation of physiologic control algorithms for left ventricular assist devices based on left ventricular volume or pressure. ASAIO J 63: 568‐577, 2017. DOI: 10.1097/MAT.0000000000000533.
 279.Oezpeker C, Zittermann A, Ensminger S, Kizner L, Koster A, Sayin A, Schoenbrodt M, Milting H, Gummert JF, Morshuis M. Systemic thrombolysis versus device exchange for pump thrombosis management: A single‐center experience. ASAIO J 62: 246‐251, 2016. DOI: 10.1097/MAT.0000000000000340.
 280.Ogletree‐Hughes ML, Stull LB, Sweet WE, Smedira NG, McCarthy PM, Moravec CS. Mechanical unloading restores β‐adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 104: 881‐886, 2001. DOI: 10.1161/hc3301.094911.
 281.Oswald H, Schultz‐Wildelau C, Gardiwal A, Lüsebrink U, König T, Meyer A, Duncker D, Pichlmaier MA, Klein G, Strüber M. Implantable defibrillator therapy for ventricular tachyarrhythmia in left ventricular assist device patients. Eur J Heart Fail 12: 593‐599, 2010. DOI: 10.1093/eurjhf/hfq048.
 282.Padeletti M, Henriquez A, Mancini DM, Basner RC. Persistence of Cheyne‐Stokes breathing after left ventricular assist device implantation in patients with acutely decompensated end‐stage heart failure. J Heart Lung Transplant 26: 742‐744, 2007. DOI: 10.1016/j.healun.2007.04.009.
 283.Parikh KS, Mehrotra AK, Russo MJ, Lang RM, Anderson A, Jeevanandam V, Freed BH, Paul JD, Karol J, Nathan S, Shah AP. Percutaneous transcatheter aortic valve closure successfully treats left ventricular assist device‐associated aortic insufficiency and improves cardiac hemodynamics. JACC Cardiovasc Interv 6: 84‐89, 2013. DOI: 10.1016/j.jcin.2012.08.021.
 284.Parker WF, Chung K, Anderson AS, Siegler M, Huang ES, Churpek MM. Practice changes at U.S. Transplant Centers after the new adult heart allocation policy. J Am Coll Cardiol 75: 2906‐2916, 2020. DOI: 10.1016/j.jacc.2020.01.066.
 285.Pasrija C, Sawan MA, Sorensen E, Voorhees H, Shah A, Strauss E, Ton VK, Dichiacchio L, Kaczorowski DJ, Griffith BP, Pham SM, Kon ZN. Less invasive left ventricular assist device implantation may reduce right ventricular failure. Interact Cardiovasc Thorac Surg 29: 592‐598, 2019. DOI: 10.1093/icvts/ivz143.
 286.Patel AM, Adeseun GA, Ahmed I, Mitter N, Eduardo Rame J, Rudnick MR. Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol 8: 484‐496, 2013. DOI: 10.2215/CJN.06210612.
 287.Patel SR, Jorde UP. Creating adequate pulsatility with a continuous flow left ventricular assist device: Just do it! Curr Opin Cardiol 31: 329‐336, 2016. DOI: 10.1097/HCO.0000000000000283.
 288.Patel SR, Madan S, Saeed O, Algodi M, Luke A, Gibber M, Goldstein DJ, Jorde UP. Association of nasal mucosal vascular alterations, gastrointestinal arteriovenous malformations, and bleeding in patients with continuous‐flow left ventricular assist devices. JACC Heart Fail 4: 962‐970, 2016. DOI: 10.1016/j.jchf.2016.08.005.
 289.Patel SR, Saeed O, Murthy S, Bhatia V, Shin JJ, Wang D, Negassa A, Pullman J, Goldstein DJ, Maybaum S. Combining neurohormonal blockade with continuous‐flow left ventricular assist device support for myocardial recovery: A single‐arm prospective study. J Heart Lung Transplant 32: 305‐312, 2013. DOI: 10.1016/j.healun.2012.11.019.
 290.Patil NP, Mohite PN, Sabashnikov A, Dhar D, Weymann A, Zeriouh M, Koch A, Garcia‐Saez D, Zych B, Hards R, Hedger M, De Robertis F, Moza A, Bahrami T, Amrani M, Rahman‐Haley S, Popov AF, Banner N, Simon AR. Does postoperative blood pressure influence development of aortic regurgitation following continuous‐flow left ventricular assist device implantation? Eur J Cardiothorac Surg 49: 788‐794, 2016. DOI: 10.1093/ejcts/ezv221.
 291.Pauwaa S, Bhat G, Tatooles AJ, Aggarwal A, Martin M, Kumar A, Modi H, Pappas PS. How effective are continuous flow left ventricular assist devices in lowering high pulmonary artery pressures in heart transplant candidates? Cardiol J 19: 153‐158, 2012. DOI: 10.5603/CJ.2012.0027.
 292.Pavie A, Leger P. Physiology of univentricular versus biventricular support. Ann Thorac Surg 61: 347‐349, 1996. DOI: 10.1016/0003‐4975(95)01026‐2.
 293.Pennings KAMA, van Tuijl S, van de Vosse FN, de Mol BAJ, Rutten MCM. Estimation of left ventricular pressure with the pump as “sensor” in patients with a continuous flow LVAD. Int J Artif Organs 38: 433‐443, 2015. DOI: 10.5301/ijao.5000424.
 294.Petrou A, Ochsner G, Amacher R, Pergantis P, Rebholz M, Meboldt M, Schmid Daners M. A physiological controller for turbodynamic ventricular assist devices based on left ventricular systolic pressure. Artif Organs 40: 842‐855, 2016. DOI: 10.1111/aor.12820.
 295.Phan K, Haswell JM, Xu J, Assem Y, Mick SL, Kapadia SR, Cheung A, Ling FS, Yan TD, Tchantchaleishvili V. Percutaneous transcatheter interventions for aortic insufficiency in continuous‐flow left ventricular assist device patients: A systematic review and meta‐analysis. ASAIO J 63: 117‐122, 2017. DOI: 10.1097/MAT.0000000000000447.
 296.Pini R, Cavallini MC, Palmieri V, Marchionni N, Di Bari M, Devereux RB, Masotti G, Roman MJ. Central but not brachial blood pressure predicts cardiovascular events in an unselected geriatric population. The ICARe Dicomano Study. J Am Coll Cardiol 51: 2432‐2439, 2008. DOI: 10.1016/j.jacc.2008.03.031.
 297.Potapov E, Meyer D, Swaminathan M, Ramsay M, El Banayosy A, Diehl C, Veynovich B, Gregoric ID, Kukucka M, Gromann TW, Marczin N, Chittuluru K, Baldassarre JS, Zucker MJ, Hetzer R. Inhaled nitric oxide after left ventricular assist device implantation: A prospective, randomized, double‐blind, multicenter, placebo‐controlled trial. J Heart Lung Transplant 30: 870‐878, 2011. DOI: 10.1016/j.healun.2011.03.005.
 298.Potapov EV, Loebe M, Nasseri BA, Sinawski H, Koster A, Kuppe H, Noon GP, DeBakey ME, Hetzer R. Pulsatile flow in patients with a novel nonpulsatile implantable ventricular assist device. Circulation 102: III183‐7, 2000. DOI: 10.1161/01.cir.102.suppl_3.iii‐183.
 299.Potapov EV, Nersesian G, Lewin D, Özbaran M, de By TMMH, Stein J, Pya Y, Gummert J, Ramjankhan F, Zembala MO, Damman K, Carrel T, Meyns B, Zimpfer D, Netuka I. Propensity score‐based analysis of long‐term follow‐up in patients supported with durable centrifugal left ventricular assist devices: The EUROMACS analysis. Eur J Cardiothorac Surg: ezab144, 2021. DOI: 10.1093/ejcts/ezab144.
 300.Prichard RA, Juul M, Gazibarich G, Davidson PM, Mason C, Keogh AM, Macdonald PS, Hayward CS. Six‐minute walk distance predicts VO2 (max) in patients supported with continuous flow left ventricular assist devices. Int J Artif Organs 37: 539‐545, 2014. DOI: 10.5301/ijao.5000345.
 301.Raffa GM, D'Ancona G, Romano G, Falletta C, Sciacca S, Todaro C, Tuzzolino F, Pietrosi A, Amaducci A, Clemenza F, Scardulla C, Pilato M. Should device replacement be the first choice strategy in continuous‐flow left ventricle assist device thrombosis? Analysis of 9 events and results after endoventricular thrombolysis. Int J Cardiol 178: 159‐161, 2015. DOI: 10.1016/j.ijcard.2014.10.169.
 302.Raffa GM, D'Ancona G, Sciacca S, Pietrosi A, Hernandez Baravoglia CM, Turrisi M, Romano G, Armaro A, Stringi V, Clemenza F, Pilato M. Systemic or endoventricular thrombolysis to treat HeartWare left ventricle assist device thrombosis: A clinical dilemma. Artif Organs 39: 526‐529, 2015. DOI: 10.1111/aor.12423.
 303.Rajapreyar I, Rame JE, Fiorilli P, Pamboukian SV, Hoopes CW, Silvestry SC, Pagani FD, Rajagopal K. Pathological insights into persistent mitral regurgitation following continuous flow left ventricular assist device implantation. J Heart Lung Transplant 39: 184‐186, 2020. DOI: 10.1016/j.healun.2019.11.014.
 304.Ranganath NK, Rashidi M, Antaki JF, Phillips KG, Kon ZN, Smith DE, Reyentovich A, Moazami N. Mechanical blood‐immersed bearings in continuous‐flow rotary blood pumps. ASAIO J 66: 343‐347, 2020. DOI: 10.1097/MAT.0000000000000994.
 305.Robertson JO, Naftel DC, Myers SL, Tedford RJ, Joseph SM, Kirklin JK, Silvestry SC. Concomitant mitral valve procedures in patients undergoing implantation of continuous‐flow left ventricular assist devices: An INTERMACS database analysis. J Heart Lung Transplant 37: 79‐88, 2018. DOI: 10.1016/j.healun.2017.09.016.
 306.Rogers JG, Pagani FD, Tatooles AJ, Bhat G, Slaughter MS, Birks EJ, Boyce SW, Najjar SS, Jeevanandam V, Anderson AS, Gregoric ID, Mallidi H, Leadley K, Aaronson KD, Frazier OHH, Milano CA. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 376: 451‐460, 2017. DOI: 10.1056/NEJMoa1602954.
 307.Roman MJ, Devereux RB, Kizer JR, Lee ET, Galloway JM, Ali T, Umans JG, Howard BV. Central pressure more strongly relates to vascular disease and outcome than does brachial pressure: The strong heart study. Hypertension 50: 197‐203, 2007. DOI: 10.1161/HYPERTENSIONAHA.107.089078.
 308.Rosenbaum AN, Clavell AL, Stulak JM, Behfar A. Correction of high afterload improves low cardiac output in patients supported on left ventricular assist device therapy. ASAIO J 67: 32‐38, 2021. DOI: 10.1097/MAT.0000000000001159.
 309.Rosenbaum AN, Dunlay SM, Pereira NL, Allison TG, Maltais S, Stulak JM, Joyce LD, Kushwaha SS. Determinants of improvement in cardiopulmonary exercise testing after left ventricular assist device implantation. ASAIO J 64: 610‐615, 2018. DOI: 10.1097/MAT.0000000000000693.
 310.Rosenbaum AN, Frantz RP, Kushwaha SS, Stulak JM, Maltais S, Behfar A. Novel left heart catheterization ramp protocol to guide hemodynamic optimization in patients supported with left ventricular assist device therapy. J Am Heart Assoc 8: e010232, 2019. DOI: 10.1161/JAHA.118.010232.
 311.Rosenbaum AN, Kremers WK, Duval S, Sakaguchi S, John R, Eckman PM. Arrhythmias in patients with cardiac implantable electrical devices after implantation of a left ventricular assist device. ASAIO J 62: 274‐280, 2016. DOI: 10.1097/MAT.0000000000000349.
 312.Rosenbaum AN, Stulak JM, Clavell AL, Behfar A. Inadequate left ventricular unloading during ramp is associated with hospitalization or death during left ventricular assist device support. Artif Organs 5: 115‐123, 2020. DOI: 10.1111/aor.13792.
 313.Rosenbaum AN, Ternus BW, Pahwa S, Stulak J, Clavell A, Schettle S, Behfar A, Jentzer JC. Risk of liver dysfunction after left ventricular assist device implantation. Ann Thorac Surg, 2020. DOI: 10.1016/j.athoracsur.2020.08.012.
 314.Rösner A, Avenarius D, Malm S, Iqbal A, Schirmer H, Bijnens B, Myrmel T. Changes in right ventricular shape and deformation following coronary artery bypass surgery‐insights from echocardiography with strain rate and magnetic resonance imaging. Echocardiography 32: 1809‐1820, 2015. DOI: 10.1111/echo.12973.
 315.Rossini L, Braun O, Brambatt M, Benito Y, Mizeracki A, Miramontes M, Nguyen C, Martinez‐Legazpi P, Alemeida S, Kraushaar M, Vu V, May‐Newman K, Bermejo J, Adler ED, Kahn A, Del Alamo J. Intraventricular flow patterns in patients treated with left ventricular assist devices. ASAIO J 67: 74‐83, 2021. DOI: 10.1097/MAT.0000000000001158.
 316.Roukoz H, Bhan A, Ravichandran A, Ahmed MM, Bhat G, Cowger J, Abdullah M, Dhawan R, Trivedi JR, Slaughter MS, Gopinathannair R. Continued versus suspended cardiac resynchronization therapy after left ventricular assist device implantation. Sci Rep 10: 2573, 2020. DOI: 10.1038/s41598‐020‐59117‐w.
 317.Sabato LA, Salerno DM, Moretz JD, Jennings DL. Inhaled pulmonary vasodilator therapy for management of right ventricular dysfunction after left ventricular assist device placement and cardiac transplantation. Pharmacotherapy 37: 944‐955, 2017. DOI: 10.1002/phar.1959.
 318.Sack KL, Dabiri Y, Franz T, Solomon SD, Burkhoff D, Guccione JM. Investigating the role of interventricular interdependence in development of right heart dysfunction during LVAD support: A patient‐specific methods‐based approach. Front Physiol 9: 520, 2018. DOI: 10.3389/fphys.2018.00520.
 319.Sade RM, Castaneda AR. The dispensable right ventricle. Surgery 77: 624‐631, 1975. DOI: 10.1016/0022‐3468(76)90211‐6.
 320.Saeed D, Maxhera B, Albert A, Westenfeld R, Hoffmann T, Lichtenberg A. Conservative approaches for HeartWare ventricular assist device pump thrombosis may improve the outcome compared with immediate surgical approaches. Interact Cardiovasc Thorac Surg 23: 90‐95, 2016. DOI: 10.1093/icvts/ivw063.
 321.Saeed O, Colombo PC, Mehra MR, Uriel N, Goldstein DJ, Cleveland J, Connors JM, Najjar SS, Mokadam NA, Bansal A, Crandall DL, Sood P, Jorde UP. Effect of aspirin dose on hemocompatibility‐related outcomes with a magnetically levitated left ventricular assist device: An analysis from the MOMENTUM 3 study. J Heart Lung Transplant 39: 518‐525, 2020. DOI: 10.1016/j.healun.2020.03.001.
 322.Saidi A, Selzman CH, Ahmadjee A, Al‐Sarie M, Snow GL, Wever‐Pinzon O, Alharethi R, Reid B, Stehlik J, Kfoury AG, Bader F. Favorable effects on pulmonary vascular hemodynamics with continuous‐flow left ventricular assist devices are sustained 5 years after heart transplantation. ASAIO J 64: 38‐42, 2017. DOI: 10.1097/MAT.0000000000000614.
 323.Saito A, Shiono M, Orime Y, Yagi S, Nakata KI, Eda K, Hattori T, Funahashi M, Taniguchi Y, Negishi N, Sezai Y. Effects of left ventricular assist device on cardiac function: Experimental study of relationship between pump flow and left ventricular diastolic function. Artif Organs 25: 728‐732, 2001. DOI: 10.1046/j.1525‐1594.2001.06865.x.
 324.Saito T, Wassilew K, Gorodetski B, Stein J, Falk V, Krabatsch T, Potapov E. Aortic valve pathology in patients supported by continuous‐flow left ventricular assist device. Circ J 80: 1371‐1377, 2016. DOI: 10.1253/circj.CJ‐15‐1188.
 325.Sajgalik P, Kremen V, Fabian V, Maltais S, Stulak JM, Kushwaha SS, Joyce LD, Schirger JA, Johnson BD. Noninvasive blood pressure monitor designed for patients with heart failure supported with continuous‐flow left ventricular assist devices. ASAIO J 65: 127‐133, 2019. DOI: 10.1097/MAT.0000000000000775.
 326.Salamonsen RF, Mason DG, Ayre PJ. Response of rotary blood pumps to changes in preload and afterload at a fixed speed setting are unphysiological when compared with the natural heart. Artif Organs 35: E47‐E53, 2011. DOI: 10.1111/j.1525‐1594.2010.01168.x.
 327.Samura T, Yoshioka D, Asanoi H, Toda K, Miyagawa S, Yoshikawa Y, Hata H, Kainuma S, Kawamura T, Kawamura A, Sakata Y, Sawa Y. Right atrial pressure waveform predicts right ventricular failure after left ventricular assist device implantation. Ann Thorac Surg 108: 1361‐1368, 2019. DOI: 10.1016/j.athoracsur.2019.04.050.
 328.Sandner SE, Zimpfer D, Zrunek P, Rajek A, Schima H, Dunkler D, Grimm M, Wolner E, Wieselthaler GM. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg 87: 1072‐1078, 2009. DOI: 10.1016/j.athoracsur.2009.01.022.
 329.Santamore WP, Gray LA. Left ventricular contributions to right ventricular systolic function during LVAD support. Ann Thorac Surg 61: 350‐356, 1996.
 330.Sayer G, Sarswat N, Kim GH, Adatya S, Medvedofsky D, Rodgers D, Kruse E, Ota T, Jeevanandam V, Lang R, Uriel N. The hemodynamic effects of aortic insufficiency in patients supported with continuous‐flow left ventricular assist devices. J Card Fail 23: 545‐551, 2017. DOI: 10.1016/j.cardfail.2017.04.012.
 331.Scandroglio AM, Kaufmann F, Pieri M, Kretzschmar A, Müller M, Pergantis P, Dreysse S, Falk V, Krabatsch T, Potapov EV. Diagnosis and treatment algorithm for blood flow obstructions in patients with left ventricular assist device. J Am Coll Cardiol 67: 2758‐2768, 2016. DOI: 10.1016/j.jacc.2016.03.573.
 332.Segan L, Nanayakkara S, Vizi D, Mariani J, Kaye D. Exercise haemodynamics as a predictor of myocardial recovery in LVAD patients. ASAIO J 25: S108, 2016. DOI: 10.1016/j.hlc.2016.06.256.
 333.Selim AM, Wadhwani L, Burdorf A, Raichlin E, Lowes B, Zolty R. Left ventricular assist devices in Pulmonary Hypertension Group 2 with significantly elevated pulmonary vascular resistance: A bridge to cure. Heart Lung Circ 28: 946‐952, 2019. DOI: 10.1016/j.hlc.2018.04.299.
 334.Shehab S, Allida SM, Newton PJ, Robson D, Macdonald PS, Davidson PM, Jansz PC, Hayward CS. Valvular regurgitation in a biventricular mock circulatory loop. ASAIO J 65: 551‐557, 2019. DOI: 10.1097/MAT.0000000000000852.
 335.Shepard RB, Simpson DC, Sharp JF. Energy equivalent pressure. Arch Surg 93: 730‐740, 1966.
 336.Singh M, Shullo M, Kormos RL, Lockard K, Zomak R, Simon MA, Bermudez C, Bhama J, McNamara D, Toyoda Y, Teuteberg JJ. Impact of renal function before mechanical circulatory support on posttransplant renal outcomes. Ann Thorac Surg 91: 1348‐1354, 2011. DOI: 10.1016/j.athoracsur.2010.10.036.
 337.Slaughter M, Rogers J, Milano C, Russell S, Conte J, Feldman D, Sun B, Tatooles A, Delgado R III, Long J, Wozniak T, Ghumman W, Farrar D, Frazier O. Advanced heart failure treated with continuous‐flow left ventricular assist device. N Engl J Med 361: 2241‐2251, 2009.
 338.Slaughter MS, Bartoli CR, Sobieski MA, Pantalos GM, Giridharan GA, Dowling RD, Prabhu SD, Farrar DJ, Koenig SC. Intraoperative evaluation of the HeartMate II flow estimator. J Heart Lung Transplant 28: 39‐43, 2009. DOI: 10.1016/j.healun.2008.10.007.
 339.Smith M, El‐Said H, Pretorius V, Mendenhall M, Thomas T, Reeves RR, Enciso JS, Alshawabkeh L, Nigro J, Adler ED, Urey MA. Significance of aortopulmonary collaterals in a single‐ventricle patient supported with a HeartMate 3. Circ Heart Fail 13: e006473, 2020. DOI: 10.1161/CIRCHEARTFAILURE.119.006473.
 340.Somers VK, Dyken ME, Mark AL, Abboud FM. Sympathetic‐nerve activity during sleep in normal subjects. NEJM 328: 303‐307, 1993. DOI: 10.1097/00132586‐199308000‐00067.
 341.Song Z, Gu K, Gao B, Wan F, Chang Y, Zeng Y. Hemodynamic effects of various support modes of continuous flow LVADs on the cardiovascular system: A numerical study. Med Sci Monit 20: 733‐741, 2014. DOI: 10.12659/MSM.890824.
 342.Sorensen EN, Dees LM, Kaczorowski DJ, Feller ED. The heartware lavare cycle: A cautionary tale. ASAIO J 66: e114‐e116, 2020. DOI: 10.1097/MAT.0000000000001161.
 343.Sorensen EN, Kon ZN, Feller ED, Pham SM, Griffith BP. Quantitative assessment of inflow malposition in two continuous‐flow left ventricular assist devices. Ann Thorac Surg 105: 1377‐1383, 2018. DOI: 10.1016/j.athoracsur.2017.12.004.
 344.Soucy KG, Koenig SC, Giridharan GA, Sobieski MA, Slaughter MS. Defining pulsatility during continuous‐flow ventricular assist device support. J Heart Lung Transplant 32: 581‐587, 2013. DOI: 10.1016/j.healun.2013.02.010.
 345.Stainback RF, Estep JD, Agler DA, Birks EJ, Bremer M, Hung J, Kirkpatrick JN, Rogers JG, Shah NR. Echocardiography in the management of patients with left ventricular assist devices: Recommendations from the American Society of Echocardiography. J Am Soc Echocardiogr 28: 853‐909, 2015. DOI: 10.1016/j.echo.2015.05.008.
 346.Steiner J, Wiafe S, Camuso J, Milley K, Wooster L, Baily C, Thomas S, D'Alessandro D, Garcia J, Lewis G. Predicting success: LVAD Explantation Evaluation Protocol Utilizing Comprehensive Cardiopulmonary Exercise Testing. Circ Heart Fail 10: e003694, 2017. DOI: 10.1161/CIRCHEARTFAILURE.116.003694.
 347.Stulak JM, Tchantchaleishvili V, Haglund NA, Davis ME, Schirger JA, Cowger JA, Shah P, Aaronson KD, Pagani FD, Maltais S. Uncorrected pre‐operative mitral valve regurgitation is not associated with adverse outcomes after continuous‐flow left ventricular assist device implantation. J Heart Lung Transplant 34: 718‐723, 2015. DOI: 10.1016/j.healun.2014.11.023.
 348.Suarez J, Patel CB, Felker GM, Becker R, Hernandez AF, Rogers JG. Mechanisms of bleeding and approach to patients with axial‐flow left ventricular assist devices. Circ Heart Fail 4: 779‐784, 2011. DOI: 10.1161/CIRCHEARTFAILURE.111.962613.
 349.Takayama H, Naka Y, Kodali SK, Vincent JA, Addonizio LJ, Jorde UP, Willia MR. A novel approach to percutaneous right‐ventricular mechanical support. Eur J Cardiothorac Surg 41: 423‐426, 2012. DOI: 10.1016/j.ejcts.2011.05.041.
 350.Takeda K, Naka Y, Yang JA, Uriel N, Colombo PC, Jorde UP, Takayama H. Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant 33: 141‐148, 2014. DOI: 10.1016/j.healun.2013.06.025.
 351.Tedford RJ, Hemnes AR, Russell SD, Wittstein IS, Mahmud M, Zaiman AL, Mathai SC, Thiemann DR, Hassoun PM, Girgis RE, Orens JB, Shah AS, Yuh D, Conte JV, Champion HC. PDE5A inhibitor treatment of persistent pulmonary hypertension after mechanical circulatory support. Circ Heart Fail 1: 213‐219, 2008. DOI: 10.1161/CIRCHEARTFAILURE.108.796789.
 352.Tehrani DM, Adatya S, Grinstein J, Rodgers D, Sarswat N, Kim GH, Raikhelkar J, Sayer G, Uriel N. Impact of cardiac resynchronization therapy on left ventricular unloading in patients with implanted left ventricular assist devices. ASAIO J 65: 117‐121, 2019. DOI: 10.1097/MAT.0000000000000787.
 353.Thomas IC, Cork DP, Levy A, Nayak H, Beshai JF, Burke MC, Moss JD. ICD lead parameters, performance, and adverse events following continuous‐flow LVAD implantation. Pacing Clin Electrophysiol 37: 464‐472, 2014. DOI: 10.1111/pace.12290.
 354.Tolpen S, Janmaat J, Reider C, Kallel F, Farrar D, May‐Newman K. Programmed speed reduction enables aortic valve opening and increased pulsatility in the LVAD‐assisted heart. ASAIO J 61: 540‐547, 2015. DOI: 10.1097/MAT.0000000000000241.
 355.Ton V‐K, Ramani G, Hsu S, Hopkins CD, Kaczorowski D, Madathil RJ, Mak S, Tedford RJ. High right ventricular afterload is associated with impaired exercise tolerance in patients with left ventricular assist devices. ASAIO J, 2020. DOI: 10.1097/mat.0000000000001169.
 356.Topkara VK, Dang NC, Barili F, Cheema FH, Martens TP, George I, Bardakci H, Oz MC, Naka Y. Predictors and outcomes of continuous veno‐venous hemodialysis use after implantation of a left ventricular assist device. J Heart Lung Transplant 25: 404‐408, 2006. DOI: 10.1016/j.healun.2005.11.457.
 357.Torre‐Amione G, Southard RE, Loebe MM, Youker KA, Bruckner B, Estep JD, Tierney M, Noon GP. Reversal of secondary pulmonary hypertension by axial and pulsatile mechanical circulatory support. J Heart Lung Transplant 29: 195‐200, 2010. DOI: 10.1016/j.healun.2009.05.030.
 358.Touyz RM, Herrmann SMS, Herrmann J. Vascular toxicities with VEGF inhibitor therapies–focus on hypertension and arterial thrombotic events. J Am Soc Hypertens 12: 409‐425, 2018. DOI: 10.1016/j.jash.2018.03.008.
 359.Trankle CR, Quader MA, Grizzard JD, Tang DG, Shah KB, Paris K, Shepard CK, Gertz ZM. Internal versus external compression of a left ventricular assist device outflow graft: Diagnosis with intravascular ultrasound and treatment with stenting. Circ Heart Fail 11: e004959, 2018. DOI: 10.1161/CIRCHEARTFAILURE.118.004959.
 360.Travis AR, Giridharan GA, Pantalos GM, Dowling RD, Prabhu SD, Slaughter MS, Sobieski M, Undar A, Farrar DJ, Koenig SC. Vascular pulsatility in patients with a pulsatile‐ or continuous‐flow ventricular assist device. J Thorac Cardiovasc Surg 133: 517‐524, 2007. DOI: 10.1016/j.jtcvs.2006.09.057.
 361.Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: A kidney's perspective. Heart Fail Rev 20: 519‐532, 2015. DOI: 10.1007/s10741‐015‐9481‐z.
 362.Truby LK, Garan AR, Givens RC, Wayda B, Takeda K, Yuzefpolskaya M, Colombo PC, Naka Y, Takayama H, Topkara VK. Aortic insufficiency during contemporary left ventricular assist device support: Analysis of the INTERMACS Registry. JACC Heart Fail 6: 951‐960, 2018. DOI: 10.1016/j.jchf.2018.07.012.
 363.Tsai HM, Sussman II, Nagel RL. Shear stress enhances the proteolysis of von Willebrand factor in normal plasma. Blood 83: 2171‐2179, 1994. DOI: 10.1182/blood.v83.8.2171.bloodjournal8382171.
 364.Turer DM, Koch KL, Koelling TM, Wu AH, Pagani FD, Haft JW. Comparing the effectiveness of an axial and a centrifugal left ventricular assist device in ventricular unloading. ASAIO J 62: 652‐656, 2016. DOI: 10.1097/MAT.0000000000000420.
 365.Umeki A, Nishimura T, Ando M, Takewa Y, Yamazaki K, Kyo S, Ono M, Tsukiya T, Mizuno T, Taenaka Y, Tatsumi E. Alteration of LV end‐diastolic volume by controlling the power of the continuous‐flow LVAD, so it is synchronized with cardiac beat: Development of a native heart load control system (NHLCS). J Artif Organs 15: 128‐133, 2012. DOI: 10.1007/s10047‐011‐0615‐3.
 366.Ündar A. Myths and truths of pulsatile and nonpulsatile perfusion during acute and chronic cardiac support. Artif Organs 28: 439‐443, 2004. DOI: 10.1111/j.1525‐1594.2004.00086.x.
 367.Ündar A, Frazier OH, Fraser CD. Defining pulsatile perfusion: Quantification in terms of energy equivalent pressure. Artif Organs 23: 712‐716, 1999. DOI: 10.1046/j.1525‐1594.1999.06409.x.
 368.Ündar A, Zapanta CM, Reibson JD, Souba M, Lukic B, Weiss WJ, Snyder AJ, Kunselman AR, Pierce WS, Rosenberg G, Myers JL. Precise quantification of pressure flow waveforms of a pulsatile ventricular assist device. ASAIO J 51: 56‐59, 2005. DOI: 10.1097/01.MAT.0000150326.51377.A0.
 369.Unsworth B, Casula RP, Yadav H, Baruah R, Hughes AD, Mayet J, Francis DP. Contrasting effect of different cardiothoracic operations on echocardiographic right ventricular long axis velocities, and implications for interpretation of post‐operative values. Int J Cardiol 165: 151‐160, 2013. DOI: 10.1016/j.ijcard.2011.08.031.
 370.Uriel N, Burkhoff D, Rich JD, Drakos SG, Teuteberg JJ, Imamura T, Rodgers D, Raikhelkar J, Vorovich EE, Selzman CH, Kim G, Sayer G. Impact of hemodynamic ramp test‐guided HVAD speed and medication adjustments on clinical outcomes: The RAMP‐IT‐UP Multicenter Study. Circ Heart Fail 12: e006067, 2019. DOI: 10.1161/CIRCHEARTFAILURE.119.006067.
 371.Uriel N, Colombo PC, Cleveland JC, Long JW, Salerno C, Goldstein DJ, Patel CB, Ewald GA, Tatooles AJ, Silvestry SC, John R, Caldeira C, Jeevanandam V, Boyle AJ, Sundareswaran KS, Sood P, Mehra MR. Hemocompatibility‐related outcomes in the MOMENTUM 3 trial at 6 months: A randomized controlled study of a fully magnetically levitated pump in advanced heart failure. Circulation 135: 2003‐2012, 2017. DOI: 10.1161/CIRCULATIONAHA.117.028303.
 372.Uriel N, Levin AP, Sayer GT, Mody KP, Thomas SS, Adatya S, Yuzefpolskaya M, Garan AR, Breskin A, Takayama H, Colombo PC, Naka Y, Burkhoff D, Jorde UP. Left ventricular decompression during speed optimization ramps in patients supported by continuous‐flow left ventricular assist devices: Device‐specific performance characteristics and impact on diagnostic algorithms. J Card Fail 21: 785‐791, 2015. DOI: 10.1016/j.cardfail.2015.06.010.
 373.Uriel N, Morrison KA, Garan AR, Kato TS, Yuzefpolskaya M, Latif F, Restaino SW, Mancini DM, Flannery M, Takayama H, John R, Colombo PC, Naka Y, Jorde UP. Development of a novel echocardiography ramp test for speed optimization and diagnosis of device thrombosis in continuous‐flow left ventricular assist devices: The Columbia ramp study. J Am Coll Cardiol 60: 1764‐1775, 2012. DOI: 10.1016/j.jacc.2012.07.052.
 374.Uriel N, Sayer G, Addetia K, Fedson S, Kim GH, Rodgers D, Kruse E, Collins K, Adatya S, Sarswat N, Jorde UP, Juricek C, Ota T, Jeevanandam V, Burkhoff D, Lang RM. Hemodynamic ramp tests in patients with left ventricular assist devices. JACC Heart Fail 4: 208‐217, 2016. DOI: 10.1016/j.jchf.2015.10.001.
 375.Vakil K, Kazmirczak F, Sathnur N, Adabag S, Cantillon DJ, Kiehl EL, Koene R, Cogswell R, Anand I, Roukoz H. Implantable cardioverter‐defibrillator use in patients with left ventricular assist devices: A systematic review and meta‐analysis. JACC Heart Fail 4: 772‐779, 2016. DOI: 10.1016/j.jchf.2016.05.003.
 376.Varga‐Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol 28: 403‐413, 2008. DOI: 10.1161/ATVBAHA.107.150474.
 377.Vazir A, Hastings PC, Morrell MJ, Pepper J, Henein MY, Westaby S, Poole‐Wilson PA, Cowie MR, Simonds AK. Resolution of central sleep apnoea following implantation of a left ventricular assist device. Int J Cardiol 138: 317‐319, 2010. DOI: 10.1016/j.ijcard.2008.06.072.
 378.Veen KM, Caliskan K, De By TMMH, Mokhles MM, Soliman OI, Mohacsi P, Schoenrath F, Gummert J, Paluszkiewicz L, Netuka I, Loforte A, Pya Y, Takkenberg JJM, Bogers AJJC. Outcomes after tricuspid valve surgery concomitant with left ventricular assist device implantation in the EUROMACS registry: A propensity score matched analysis. Eur J Cardiothorac Surg 56: 1081‐1089, 2019. DOI: 10.1093/ejcts/ezz208.
 379.Veen KM, Mokhles MM, Soliman O, De By TMMH, Mohacsi P, Schoenrath F, Paluszkiewicz L, Netuka I, Bogers AJJC, Takkenberg JJM, Caliskan K. Clinical impact and “natural” course of uncorrected tricuspid regurgitation after implantation of a left ventricular assist device: An analysis of the European Registry for Patients with Mechanical Circulatory Support (EUROMACS). Eur J Cardiothorac Surg 59: 207‐216, 2021. DOI: 10.1093/ejcts/ezaa294.
 380.Vierecke J, Gahl B, De By TMMH, Antretter H, Beyersdorf F, Caliskan K, Krachak V, Loforte A, Potapov E, Schoenrath F, Stockman B, Vanderheyden M, Meyns B, Gummert J, Mohacsi P. Results of primary biventricular support: An analysis of data from the EUROMACS registry. Eur J Cardiothorac Surg 56: 1037‐1045, 2019. DOI: 10.1093/ejcts/ezz173.
 381.Vincent F, Rauch A, Loobuyck V, Robin E, Nix C, Vincentelli A, Smadja DM, Leprince P, Amour J, Lemesle G, Spillemaeker H, Debry N, Latremouille C, Jansen P, Capel A, Moussa M, Rousse N, Schurtz G, Delhaye C, Paris C, Jeanpierre E, Dupont A, Corseaux D, Rosa M, Sottejeau Y, Barth S, Mourran C, Gomane V, Coisne A, Richardson M, Caron C, Preda C, Ung A, Carpentier A, Hubert T, Denis C, Staels B, Lenting PJ, Van Belle E, Susen S. Arterial pulsatility and circulating von Willebrand factor in patients on mechanical circulatory support. J Am Coll Cardiol 71: 2106‐2118, 2018. DOI: 10.1016/j.jacc.2018.02.075.
 382.Vlachopoulos C, Mcdonald P, Spratt P, O'Rourke M. Pulse wave analysis in the assessment of patients with left ventricular assist device. J Heart Lung Transplant 20: 98‐102, 2001. DOI: 10.1016/S1053‐2498(00)00177‐7.
 383.Vukelic S, Vlismas PP, Patel SR, Xue X, Shitole SG, Saeed O, Sims DB, Chinnadurai T, Shin JJ, Forest SJ, Goldstein DJ, Jorde UP. Digoxin is associated with a decreased incidence of angiodysplasia‐related gastrointestinal bleeding in patients with continuous‐flow left ventricular assist devices. Circ Heart Fail 11: e004899, 2018. DOI: 10.1161/CIRCHEARTFAILURE.118.004899.
 384.Wang Y, Loghmanpour N, Vandenberghe S, Ferreira A, Keller B, Gorcsan J, Antaki J. Simulation of dilated heart failure with continuous flow circulatory support. PLoS One 9, 2014. DOI: 10.1371/journal.pone.0085234.
 385.Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, Antaki JF. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant 31: 140‐149, 2012. DOI: 10.1016/j.healun.2011.11.003.
 386.Weeks P, Sieg A, Rajapreyar I, Nathan S, Jumean M, Patel M, Radovancevic R, Kar B, Gregoric I. Bivalirudin for left ventricular assist device thrombosis. J Thromb Thrombolysis 46: 496‐501, 2018. DOI: 10.1007/s11239‐018‐1725‐z.
 387.Weiss HJ, Turitto V, Baumgartner HR. Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. II. Relationships among platelet adhesion, thrombus dimensions, and fibrin formation. J Lab Clin Med 95: 208‐221, 1980. DOI: 10.5555/uri:pii:0022214380904436.
 388.Wever‐Pinzon J, Selzman CH, Stoddard G, Wever‐Pinzon O, Catino A, Kfoury AG, Diakos NA, Reid BB, McKellar S, Bonios M, Koliopoulou A, Budge D, Kelkhoff A, Stehlik J, Fang JC, Drakos SG. Impact of ischemic heart failure etiology on cardiac recovery during mechanical unloading. J Am Coll Cardiol 68: 1741‐1752, 2016. DOI: 10.1016/j.jacc.2016.07.756.
 389.Wever‐Pinzon O, Drakos SG, McKellar SH, Horne BD, Caine WT, Kfoury AG, Li DY, Fang JC, Stehlik J, Selzman CH. Cardiac recovery during long‐term left ventricular assist device support. J Am Coll Cardiol 68: 1540‐1553, 2016. DOI: 10.1016/j.jacc.2016.07.743.
 390.Wever‐Pinzon O, Selzman CH, Drakos SG, Saidi A, Stoddard GJ, Gilbert EM, Labedi M, Reid BB, Davis ES, Kfoury AG, Li DY, Stehlik J, Bader F. Pulsatility and the risk of nonsurgical bleeding in patients supported with the continuous‐flow left ventricular assist device HeartMate II. Circ Heart Fail 6: 517‐526, 2013. DOI: 10.1161/CIRCHEARTFAILURE.112.000206.
 391.Wiegmann L, Thamsen B, de Zélicourt D, Granegger M, Boës S, Schmid Daners M, Meboldt M, Kurtcuoglu V. Fluid dynamics in the HeartMate 3: Influence of the artificial pulse feature and residual cardiac pulsation. Artif Organs 43: 363‐376, 2019. DOI: 10.1111/aor.13346.
 392.Willey JZ, Boehme AK, Castagna F, Yuzefpolskaya M, Garan AR, Topkara V, Colombo PC. Hypertension and stroke in patients with left ventricular assist devices (LVADs). Curr Hypertens Rep 18: 12, 2016.
 393.Wright G. The hydraulic power outputs of pulsatile and nonpulsatile cardiopulmonary bypass pumps. Perfusion 3: 251‐262, 1988.
 394.Wright G. Mechanical simulation of cardiac function by means of pulsatile blood pumps. J Cardiothorac Vasc Anesth 11: 299‐309, 1997. DOI: 10.1016/S1053‐0770(97)90099‐9.
 395.Wu J, Yun BM, Fallon AM, Hanson SR, Aidun CK, Yoganathan AP. Numerical investigation of the effects of channel geometry on platelet activation and blood damage. Ann Biomed Eng 39: 897‐910, 2011. DOI: 10.1007/s10439‐010‐0184‐2.
 396.Yehya A, Rajagopal V, Meduri C, Kauten J, Brown M, Dean L, Webster J, Krishnamoorthy A, Hrobowski T, Dean D. Short‐term results with transcatheter aortic valve replacement for treatment of left ventricular assist device patients with symptomatic aortic insufficiency. J Heart Lung Transplant 38: 920‐926, 2019. DOI: 10.1016/j.healun.2019.03.001.
 397.Yokoyama Y, Kawaguchi O, Kitao T, Kimura T, Steinseifer U, Takatani S. Prediction of the external work of the native heart from the dynamic H‐Q curves of the rotary blood pumps during left heart bypass. Artif Organs 34: 766‐777, 2010. DOI: 10.1111/j.1525‐1594.2010.01101.x.
 398.Yousefzai R, Brambatti M, Tran HA, Pedersen R, Braun O, Baykaner T, Ghashghaei R, Sulemanjee NZ, Cheema OM, Rappelt M, Baeza C, Alkhayyat A, Shi Y, Pretorius V, Greenberg B, Adler E, Thohan V. Benefits of neurohormonal therapy in patients with continuous‐flow left ventricular assist devices. ASAIO J: 409‐414, 2019. DOI: 10.1097/MAT.0000000000001022.
 399.Zimpfer D, Strueber M, Aigner P, Schmitto JD, Fiane AE, Larbalestier R, Tsui S, Jansz P, Simon A, Schueler S, Moscato F, Schima H. Evaluation of the HeartWare ventricular assist device Lavare cycle in a particle image velocimetry model and in clinical practice. Eur J Cardiothorac Surg 50: 839‐848, 2016. DOI: 10.1093/ejcts/ezw232.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Andrew N. Rosenbaum, James F. Antaki, Atta Behfar, Mauricio A. Villavicencio, John Stulak, Sudhir S. Kushwaha. Physiology of Continuous‐Flow Left Ventricular Assist Device Therapy. Compr Physiol 2021, 12: 2731-2767. doi: 10.1002/cphy.c210016