Comprehensive Physiology Wiley Online Library

Structure and Functions of the Vagus Nerve in Mammals

Full Article on Wiley Online Library



Abstract

We review the structure and function of the vagus nerve, drawing on information obtained in humans and experimental animals. The vagus nerve is the largest and longest cranial nerve, supplying structures in the neck, thorax, and abdomen. It is also the only cranial nerve in which the vast majority of its innervation territory resides outside the head. While belonging to the parasympathetic division of the autonomic nervous system, the nerve is primarily sensory—it is dominated by sensory axons. We discuss the macroscopic and microscopic features of the nerve, including a detailed description of its extensive territory. Histochemical and genetic profiles of afferent and efferent axons are also detailed, as are the central nuclei involved in the processing of sensory information conveyed by the vagus nerve and the generation of motor (including parasympathetic) outflow via the vagus nerve. We provide a comprehensive review of the physiological roles of vagal sensory and motor neurons in control of the cardiovascular, respiratory, and gastrointestinal systems, and finish with a discussion on the interactions between the vagus nerve and the immune system. © 2022 American Physiological Society. Compr Physiol 12: 1–49, 2022.

Figure 1. Figure 1. General anatomy of the vagus nerve with all the major branches. Adapted with permission, from Ottaviani MM, et al., 2022 137/CCBY 4.0.
Figure 2. Figure 2. Thoracic vagus nerves with cervical and thoracic cardiac branches to the deep and superficial cardiac plexi and recurrent laryngeal nerves. Adapted with permission, from Ottaviani MM, et al., 2022 137/CCBY 4.0.
Figure 3. Figure 3. Thoracic vagus forming the esophageal plexus and then converging onto the anterior and posterior vagal trunks and major abdominal vagus nerves branches. Created with BioRender.com.
Figure 4. Figure 4. A histological transversal section of a pig cervical vagus nerve in hematoxylin and eosin staining.
Figure 5. Figure 5. Comparative anatomy of the cervical vagus nerve between mouse, rat, canine, nonhuman primate (NHP), pig, and human. Adapted, with permission, from Settell ML, et al., 2020 171 / IOP Publishing/CC BY 3.0.
Figure 6. Figure 6. Histological sections taken at several locations along the length of pig vagus nerve demonstrating bimodal organization or vagotopy. Section 1 was taken through the nodose ganglion and superior laryngeal branch and contains the pseudo‐unipolar cells aggregated in a large “fascicle” that gives rise to a distinct smaller grouping of fascicles in sections 2 to 4. After the recurrent laryngeal bifurcates from the vagus nerve trunk, the bimodal organization is no longer evident (section 5). Adapted, with permission, from Settell ML, et al., 2020 171/IOP Publishing/CC BY 3.0/CC BY 4.0.
Figure 7. Figure 7. Single‐cell RNA sequencing of murine nodose and jugular neurons and their hierarchical clusterization. (A) Vagal jugular and nodose neurons were distinguished via expression of Prdm12 and Phox2b proteins, respectively, and clustered based on gene expression of neurotransmitters, membrane receptors, and cytoskeletal proteins. These profiles were then compared to those of dorsal root ganglia (DRG) neurons for further functional classifications. (B) Jugular neurons were grouped into six clusters and classified as generic somatosensory neurons due to the similarities with the genetic profile of DRG neurons. (C) Nodose neurons were divided into 18 clusters with unique somatosensory profiles and were divided into two main groups including mechanosensory neurons (NG1‐11) and nociceptor‐like neurons (NG12‐18). Adapted, with permission, from Kupari et al. 2019 100/Springer Nature.
Figure 8. Figure 8. Proposed vagus nerve sensory neuron classification and their relation to function. (A) Jugular ganglion neuron types and their functional relations are based on shared neuronal identity with functionally characterized dorsal root ganglia neurons. (B) NG1–NG11 nodose ganglion mechanosensory‐like neurons molecular profiles. (C) Nodose ganglion nociceptor‐like neurons molecular profiles (NG12‐18). Adapted, with permission, from Kupari J, et al., 2019 100.
Figure 9. Figure 9. Comprehensive comparison of genetically defined vagal sensory neurons subpopulations and clusters among three different studies 6,101,204. Adapted, with permission, from Zhao Q, et al., 2022 204/Springer Nature/CC BY 4.0.
Figure 10. Figure 10. (A) A single‐cell sequencing approach (Projection‐seq) based on multiplexed projection barcodes to generate genetic profiles of vagal sensory neurons innervating different visceral organs. (B) Comprehensive uniform manifold approximation and projection plot of vagal sensory neurons integrating the three feature‐coding dimensions such as the target organ (indicated by colored lines), the type of endings in tissue layers (indicated using italic), and the stimulus modality (labeled in bold). (C) Vagal sensory neurons have stereotypical endings along various tissue layers across multiple visceral organs. (D) Schematic explanation of the multidimensional coding architecture of the vagal interoceptive system. The three coding dimensions, such as visceral organ (red), tissue layer (blue), and sensory modality (green), specify parallel sensory pathways combined to precisely and effectively present body signals to the brain. These sensory pathways are no longer organized in serial, but in a more complex divergent and convergent manner in the brainstem, based on multiple features of interoceptive signals. Adapted, with permission, from Zhao Q, et al., 2022 204.
Figure 11. Figure 11. (A) Rostro‐caudal distribution of central autonomic network components in the central nervous system. (B) Schematic representation of the central autonomic network with internuclei connections. An autonomic vagovagal loop comprises visceral inputs to the nucleus tractus solitarii (NTS) which then sends outputs to the dorsal motor nucleus (DMNV), the rostral ventrolateral medullary (RVLM), and the intermediate lateral medulla (ILM) to adapt the autonomic balance to physiological demands. This autonomic forebrain loop is modulated by a forebrain autonomic loop, through cross‐talk between the NTS and brain areas (hypothalamus, amygdala, cingulate cortex, insula, prefrontal cortex) that are also involved in neuroendocrine, emotional, and cognitive controls of behavior. (C) Distribution of the major visceral terminations in the NTS. AP, area postrema. Created with BioRender.com.
Figure 12. Figure 12. (A) Piezo2+ vagal fibers with a ring‐like morphology visualized with immunofluorescence in thick coronal aortic sections in a Piezo2‐ires‐Cre mice; scale bar, 100 μm. (B) Piezo2+ neurons visualized by confocal microscopy represent a subset of fibers in the aortic depressor nerve, with all neurons visualized by immunofluorescence for synaptophysin (blue); scale bar, 20 μm. (A,B) Adapted, with permission, from Min S, et al., 2019 127. (C) Immunofluorescence visualization of murine vagal baroreceptor with, from left to right, end‐net endings, club ending, and surround the entire aorta with a schematic illustration on the right. Scale bars: 50 μm. Adapted, with permission, from Lu H‐J, et al., 2020 110; Min S, et al., 2019 127. (D) Immunofluorescent double staining of flower spray baroreceptors terminals with leaf‐like or knob‐like terminal expansions. Adapted, with permission, from Liu J, et al., 2021 108. (E) Imaging pipeline of vagal afferent terminals in the intact cleared heart using nodose ganglia injection of AAV‐FLEX‐tdTomato in corresponding Cre mouse lines. (F) Distribution of the three vagal afferent ending types in the heart. Purple circles, plate of puncta (flower spray) endings; blue squares, parallel intramuscular arrays; orange circles, varicose surface endings. (G) Representative cardiovascular vagal endings. RA, right atrium; LA, left atrium; RCV, right cardiac vein; AO, aorta; PT, pulmonary trunk. Adapted, with permission, from Zhao Q, et al., 2022 204.
Figure 13. Figure 13. Scheme of neural discharges of the best characterized cardiopulmonary vagal afferent fibers in the literature. Rhythmic discharges of vagal fibers are shown in relationship to physiological parameters (ECG, BP, CVP, and RESP). BP, blood pressure; CVP, central venous pressure with a corresponding to atrial contraction, c to tricuspid valve bulging into the right atrium, x to right atrium relaxation, v to the rapid filling of the right atrium, and y to early ventricular filling; RESP, respiration; bR, aortic baroreceptors; AaR, type A atrial receptors; BaR, type B atrial receptors; SAR, slowly adapting pulmonary receptors; RAR, rapidly, adapting pulmonary receptor.
Figure 14. Figure 14. (A) Schematic representation of thoracic cardiovascular afferent fibers traveling in the vagus nerve with their distribution to target tissues and their main myelination profiles. Cardiovascular afferent fibers include baro‐ and chemoreceptors from the aortic arch and the bifurcation of the right brachiocephalic trunk, left and right atrial, myocardial, and pericardial receptors. Insets: top, baroreceptors Piezo2+ and TTN3+ terminals; down, unmyelinated 5‐HT3R+ myocardial receptors involved in the Bezold‐Jarisch reflex. (B) Different vagal reflexes initiated via activation of cardiovascular vagal afferents. NTS, nucleus tractus solitarii; NA, nucleus ambiguous; RVLM, rostral ventrolateral medulla; CVLM, caudal ventrolateral medulla; VRG, ventral respiratory group. Created with BioRender.com.
Figure 15. Figure 15. (A) P2RY1 neuron terminals visualized in an open‐book preparation of the larynx after injecting AAV‐flex‐AP into nodose and jugular ganglia of P2RY1‐ires‐Cre mice. Scale bar, 500 μm. (B) Diagram depicting terminals of various neuron types in the larynx after AAV mapping. (C) Representative images of P2RY1 terminals. Scale bars, 50 mm. (D) Taste buds visualized in larynx cryosections by KRT8 immunohistochemistry (green). Scale bar, 100 mm. (E) Two‐color immunohistochemistry for KRT8 (green) and tdTomato (magenta) in cryosections of the larynx from P2RY1‐ires‐Cre mice injected with AAV‐flex‐ tdTomato in nodose and jugular ganglia. Scale bar, 50 mm. Adapted, with permission, from Prescott SL, et al., 2020 154/Elsevier.
Figure 16. Figure 16. (A) Schematic representation of jugular and nodose neurons distribution in the airways and specific terminations of different classes of vagal afferent and efferent fibers in the airways wall. (B) Circuitry of pulmonary reflexes involving SARs and RARs activation. SARs stimulation by lung inflation causes the Hering‐Breuer reflex with activation of the ventral respiratory group (VRG) that promotes expiration, and inhibition of the dorsal respiratory group (DRG) that stimulate inspiration. SARs activation causes also inhibition of the vagal cardiac outflow, leading to reflex tachycardia and reduction in systemic vascular resistance. RARs activation increases breathing frequency and parasympathetic outflow to the lungs causing reflex bronchoconstriction and airway mucus secretion. AC, apneustic center. Created with BioRender.com.
Figure 17. Figure 17. (A) Different populations of nodose neurons innervating the gastrointestinal tract. (B) Scheme of vagal innervation of the gut wall. (C) Distribution of specific vagal afferent populations along the gut. The color code is the same as in (A). Created with BioRender.com.
Figure 18. Figure 18. The vagus nerve connectome in the immune system. mAChR, muscarinic acetylcholine receptor; AChE, acetylcholine esterase; AP, area postrema; RVLM, rostral ventrolateral medulla; DA, dopamine; NG, nodose ganglion; CG, celiac ganglia; HPA, hypothalamic‐pituitary‐adrenal axis; PVN, paraventricular nucleus; NE, norepinephrine. Created with BioRender.com.


Figure 1. General anatomy of the vagus nerve with all the major branches. Adapted with permission, from Ottaviani MM, et al., 2022 137/CCBY 4.0.


Figure 2. Thoracic vagus nerves with cervical and thoracic cardiac branches to the deep and superficial cardiac plexi and recurrent laryngeal nerves. Adapted with permission, from Ottaviani MM, et al., 2022 137/CCBY 4.0.


Figure 3. Thoracic vagus forming the esophageal plexus and then converging onto the anterior and posterior vagal trunks and major abdominal vagus nerves branches. Created with BioRender.com.


Figure 4. A histological transversal section of a pig cervical vagus nerve in hematoxylin and eosin staining.


Figure 5. Comparative anatomy of the cervical vagus nerve between mouse, rat, canine, nonhuman primate (NHP), pig, and human. Adapted, with permission, from Settell ML, et al., 2020 171 / IOP Publishing/CC BY 3.0.


Figure 6. Histological sections taken at several locations along the length of pig vagus nerve demonstrating bimodal organization or vagotopy. Section 1 was taken through the nodose ganglion and superior laryngeal branch and contains the pseudo‐unipolar cells aggregated in a large “fascicle” that gives rise to a distinct smaller grouping of fascicles in sections 2 to 4. After the recurrent laryngeal bifurcates from the vagus nerve trunk, the bimodal organization is no longer evident (section 5). Adapted, with permission, from Settell ML, et al., 2020 171/IOP Publishing/CC BY 3.0/CC BY 4.0.


Figure 7. Single‐cell RNA sequencing of murine nodose and jugular neurons and their hierarchical clusterization. (A) Vagal jugular and nodose neurons were distinguished via expression of Prdm12 and Phox2b proteins, respectively, and clustered based on gene expression of neurotransmitters, membrane receptors, and cytoskeletal proteins. These profiles were then compared to those of dorsal root ganglia (DRG) neurons for further functional classifications. (B) Jugular neurons were grouped into six clusters and classified as generic somatosensory neurons due to the similarities with the genetic profile of DRG neurons. (C) Nodose neurons were divided into 18 clusters with unique somatosensory profiles and were divided into two main groups including mechanosensory neurons (NG1‐11) and nociceptor‐like neurons (NG12‐18). Adapted, with permission, from Kupari et al. 2019 100/Springer Nature.


Figure 8. Proposed vagus nerve sensory neuron classification and their relation to function. (A) Jugular ganglion neuron types and their functional relations are based on shared neuronal identity with functionally characterized dorsal root ganglia neurons. (B) NG1–NG11 nodose ganglion mechanosensory‐like neurons molecular profiles. (C) Nodose ganglion nociceptor‐like neurons molecular profiles (NG12‐18). Adapted, with permission, from Kupari J, et al., 2019 100.


Figure 9. Comprehensive comparison of genetically defined vagal sensory neurons subpopulations and clusters among three different studies 6,101,204. Adapted, with permission, from Zhao Q, et al., 2022 204/Springer Nature/CC BY 4.0.


Figure 10. (A) A single‐cell sequencing approach (Projection‐seq) based on multiplexed projection barcodes to generate genetic profiles of vagal sensory neurons innervating different visceral organs. (B) Comprehensive uniform manifold approximation and projection plot of vagal sensory neurons integrating the three feature‐coding dimensions such as the target organ (indicated by colored lines), the type of endings in tissue layers (indicated using italic), and the stimulus modality (labeled in bold). (C) Vagal sensory neurons have stereotypical endings along various tissue layers across multiple visceral organs. (D) Schematic explanation of the multidimensional coding architecture of the vagal interoceptive system. The three coding dimensions, such as visceral organ (red), tissue layer (blue), and sensory modality (green), specify parallel sensory pathways combined to precisely and effectively present body signals to the brain. These sensory pathways are no longer organized in serial, but in a more complex divergent and convergent manner in the brainstem, based on multiple features of interoceptive signals. Adapted, with permission, from Zhao Q, et al., 2022 204.


Figure 11. (A) Rostro‐caudal distribution of central autonomic network components in the central nervous system. (B) Schematic representation of the central autonomic network with internuclei connections. An autonomic vagovagal loop comprises visceral inputs to the nucleus tractus solitarii (NTS) which then sends outputs to the dorsal motor nucleus (DMNV), the rostral ventrolateral medullary (RVLM), and the intermediate lateral medulla (ILM) to adapt the autonomic balance to physiological demands. This autonomic forebrain loop is modulated by a forebrain autonomic loop, through cross‐talk between the NTS and brain areas (hypothalamus, amygdala, cingulate cortex, insula, prefrontal cortex) that are also involved in neuroendocrine, emotional, and cognitive controls of behavior. (C) Distribution of the major visceral terminations in the NTS. AP, area postrema. Created with BioRender.com.


Figure 12. (A) Piezo2+ vagal fibers with a ring‐like morphology visualized with immunofluorescence in thick coronal aortic sections in a Piezo2‐ires‐Cre mice; scale bar, 100 μm. (B) Piezo2+ neurons visualized by confocal microscopy represent a subset of fibers in the aortic depressor nerve, with all neurons visualized by immunofluorescence for synaptophysin (blue); scale bar, 20 μm. (A,B) Adapted, with permission, from Min S, et al., 2019 127. (C) Immunofluorescence visualization of murine vagal baroreceptor with, from left to right, end‐net endings, club ending, and surround the entire aorta with a schematic illustration on the right. Scale bars: 50 μm. Adapted, with permission, from Lu H‐J, et al., 2020 110; Min S, et al., 2019 127. (D) Immunofluorescent double staining of flower spray baroreceptors terminals with leaf‐like or knob‐like terminal expansions. Adapted, with permission, from Liu J, et al., 2021 108. (E) Imaging pipeline of vagal afferent terminals in the intact cleared heart using nodose ganglia injection of AAV‐FLEX‐tdTomato in corresponding Cre mouse lines. (F) Distribution of the three vagal afferent ending types in the heart. Purple circles, plate of puncta (flower spray) endings; blue squares, parallel intramuscular arrays; orange circles, varicose surface endings. (G) Representative cardiovascular vagal endings. RA, right atrium; LA, left atrium; RCV, right cardiac vein; AO, aorta; PT, pulmonary trunk. Adapted, with permission, from Zhao Q, et al., 2022 204.


Figure 13. Scheme of neural discharges of the best characterized cardiopulmonary vagal afferent fibers in the literature. Rhythmic discharges of vagal fibers are shown in relationship to physiological parameters (ECG, BP, CVP, and RESP). BP, blood pressure; CVP, central venous pressure with a corresponding to atrial contraction, c to tricuspid valve bulging into the right atrium, x to right atrium relaxation, v to the rapid filling of the right atrium, and y to early ventricular filling; RESP, respiration; bR, aortic baroreceptors; AaR, type A atrial receptors; BaR, type B atrial receptors; SAR, slowly adapting pulmonary receptors; RAR, rapidly, adapting pulmonary receptor.


Figure 14. (A) Schematic representation of thoracic cardiovascular afferent fibers traveling in the vagus nerve with their distribution to target tissues and their main myelination profiles. Cardiovascular afferent fibers include baro‐ and chemoreceptors from the aortic arch and the bifurcation of the right brachiocephalic trunk, left and right atrial, myocardial, and pericardial receptors. Insets: top, baroreceptors Piezo2+ and TTN3+ terminals; down, unmyelinated 5‐HT3R+ myocardial receptors involved in the Bezold‐Jarisch reflex. (B) Different vagal reflexes initiated via activation of cardiovascular vagal afferents. NTS, nucleus tractus solitarii; NA, nucleus ambiguous; RVLM, rostral ventrolateral medulla; CVLM, caudal ventrolateral medulla; VRG, ventral respiratory group. Created with BioRender.com.


Figure 15. (A) P2RY1 neuron terminals visualized in an open‐book preparation of the larynx after injecting AAV‐flex‐AP into nodose and jugular ganglia of P2RY1‐ires‐Cre mice. Scale bar, 500 μm. (B) Diagram depicting terminals of various neuron types in the larynx after AAV mapping. (C) Representative images of P2RY1 terminals. Scale bars, 50 mm. (D) Taste buds visualized in larynx cryosections by KRT8 immunohistochemistry (green). Scale bar, 100 mm. (E) Two‐color immunohistochemistry for KRT8 (green) and tdTomato (magenta) in cryosections of the larynx from P2RY1‐ires‐Cre mice injected with AAV‐flex‐ tdTomato in nodose and jugular ganglia. Scale bar, 50 mm. Adapted, with permission, from Prescott SL, et al., 2020 154/Elsevier.


Figure 16. (A) Schematic representation of jugular and nodose neurons distribution in the airways and specific terminations of different classes of vagal afferent and efferent fibers in the airways wall. (B) Circuitry of pulmonary reflexes involving SARs and RARs activation. SARs stimulation by lung inflation causes the Hering‐Breuer reflex with activation of the ventral respiratory group (VRG) that promotes expiration, and inhibition of the dorsal respiratory group (DRG) that stimulate inspiration. SARs activation causes also inhibition of the vagal cardiac outflow, leading to reflex tachycardia and reduction in systemic vascular resistance. RARs activation increases breathing frequency and parasympathetic outflow to the lungs causing reflex bronchoconstriction and airway mucus secretion. AC, apneustic center. Created with BioRender.com.


Figure 17. (A) Different populations of nodose neurons innervating the gastrointestinal tract. (B) Scheme of vagal innervation of the gut wall. (C) Distribution of specific vagal afferent populations along the gut. The color code is the same as in (A). Created with BioRender.com.


Figure 18. The vagus nerve connectome in the immune system. mAChR, muscarinic acetylcholine receptor; AChE, acetylcholine esterase; AP, area postrema; RVLM, rostral ventrolateral medulla; DA, dopamine; NG, nodose ganglion; CG, celiac ganglia; HPA, hypothalamic‐pituitary‐adrenal axis; PVN, paraventricular nucleus; NE, norepinephrine. Created with BioRender.com.
References
 1.Abe C, Inoue T, Inglis MA, Viar KE, Huang L, Ye H, DL R, Stornetta RL, Okusa MD, Guyenet PG. C1 neurons mediate a stress‐induced anti‐inflammatory reflex in mice. Nat Neurosci 20: 700‐707, 2017. DOI: 10.1038/nn.4526.
 2.Agostoni E, Chinnock JE, De Daly MB, Murray JG. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J Physiol 135: 182‐205, 1957. DOI: 10.1113/jphysiol.1957.sp005703.
 3.Ahrén B. Autonomic regulation of islet hormone secretion ‐ Implications for health and disease. Diabetologia 43: 393‐410, 2000. DOI: 10.1007/s001250051322.
 4.Allen AM, Lewis SJ, Verberne AJM, Mendelsohn FAO. Angiotensin receptors and the vagal system. Clin Exp Hypertens A Theory Pract 10: 1239‐1249, 1988. DOI: 10.1080/07300077.1988.11878914.
 5.Andersson U, Tracey KJ. Neural reflexes in inflammation and immunity. J Exp Med 209: 1057‐1068, 2012. DOI: 10.1084/jem.20120571.
 6.Bai L, Mesgarzadeh S, Ramesh KS, Zeng H, Krasnow MA, Knight ZA. Genetic identification of vagal sensory neurons that control feeding. Cell 179: 1129‐1143.e23, 2019. DOI: 10.1016/j.cell.2019.10.031.
 7.Banzett RB, Guz A, Paydarfar D, Shea SA, Schachter SC, Lansing RW. Cardiorespiratory variables and sensation during stimulation of the left vagus in patients with epilepsy. Epilepsy Res 35: 1‐11, 1999. DOI: 10.1016/S0920‐1211(98)00126‐0.
 8.Barnes PJ. Neural control of human airways in health and disease. Am Rev Respir Dis 134: 1289‐1314, 1986. DOI: 10.1164/arrd.1986.134.6.1289.
 9.Bassi GS, Kanashiro A, Coimbra NC, Terrando N, Maixner W, Ulloa L. Anatomical and clinical implications of vagal modulation of the spleen. Neurosci Biobehav Rev 112: 363‐373, 2020. DOI: 10.1016/j.neubiorev.2020.02.011.10.
 10.Battinelli E, Levy T, Tsaava T, Bouton CE, Tracey KJ, Chavan SS, Zanos TP. Identification of hypoglycemia‐specific neural signals by decoding murine vagus nerve. Bioelectron Med 115: E4843‐E4852, 2018. DOI: 10.1073/pnas.1719083115.
 11.Becker LE, Zhang W, Pereyra PM. Delayed maturation of the vagus nerve in sudden infant death syndrome. Acta Neuropathol 86: 617‐622, 1993. DOI: 10.1007/BF00294301.
 12.Beissner F, Meissner K, Bär KJ, Napadow V. The autonomic brain: An activation likelihood estimation meta‐analysis for central processing of autonomic function. J Neurosci 33: 10503‐10511, 2013. DOI: 10.1523/JNEUROSCI.1103‐13.2013.
 13.Benarroch EE. Physiology and pathophysiology of the autonomic nervous system. Continuum (Minneap Minn) 26: 12‐24, 2020. DOI: 10.1212/CON.0000000000000817.
 14.Berthoud HR, Neuhuber WL. Functional and chemical anatomy of the afferent vagal system. Auton Neurosci Basic Clin 85: 1‐17, 2000. DOI: 10.1016/S1566‐0702(00)00215‐0.
 15.Binks AP, Paydarfar D, Schachter SC, Guz A, Banzett RB. High strength stimulation of the vagus nerve in awake humans: A lack of cardiorespiratory effects. Respir Physiol 127: 125‐133, 2001. DOI: 10.1016/S0034‐5687(01)00252‐3.
 16.Bonaz B, Bazin T, Pellissier S. The vagus nerve at the interface of the microbiota‐gut‐brain axis. Front Neurosci 12: 1‐9, 2018. DOI: 10.3389/fnins.2018.00049.
 17.Bonaz B, Sinniger V, Pellissier S. Anti‐inflammatory properties of the vagus nerve: potential therapeutic implications of vagus nerve stimulation. J Physiol 594: 5781‐5790, 2016. DOI: 10.1113/JP271539.
 18.Bonaz B, Sinniger V, Pellissier S. The vagus nerve in the neuro‐immune axis: Implications in the pathology of the gastrointestinal tract. Front Immunol 8: 1452, 2017. DOI: 10.3389/fimmu.2017.01452.
 19.Borgmann D, Ciglieri E, Biglari N, Brandt C, Cremer AL, Backes H, Tittgemeyer M, Wunderlich FT, Brüning JC, Fenselau H. Gut‐brain communication by distinct sensory neurons differently controls feeding and glucose metabolism. Cell Metab 33: 1466‐1482.e7, 2021. DOI: 10.1016/j.cmet.2021.05.002.
 20.Bouton C. Neural decoding and applications in bioelectronics medicine. Bioelectron Med: 20‐24, 2015. DOI: 10.15424/bioelectronmed.2014.00012.
 21.Bouton C. Cracking the neural code, treating paralysis and the future of bioelectronic medicine. J Intern Med 282: 37‐45, 2017. DOI: 10.1111/joim.12610.
 22.Boyden ES. Optogenetics and the future of neuroscience. Nature 18: 1200‐1202, 2015. DOI: 10.1038/nn.4094.
 23.Breit S, Kupferberg A, Rogler G, Hasler G. Vagus nerve as modulator of the brain‐gut axis in psychiatric and inflammatory disorders. Front Psychiatry 9, 2018. DOI: 10.3389/fpsyt.2018.00044.
 24.Britland ST, Youngb RJ, Sharmaa AK, Leec D, Ah‐Seed AK, Clarke B. Vagus nerve morphology in diabetic gastropathy. Diabet Med: 780‐787, 1990. DOI: 10.1111/j.1464‐5491.1990.tb01492.x.
 25.Brookes SJH, Spencer NJ, Costa M, Zagorodnyuk VP. Extrinsic primary afferent signalling in the gut. Nat Rev Gastroenterol Hepatol 10: 286‐296, 2013. DOI: 10.1038/nrgastro.2013.29.
 26.Browning KN, Verheijden S, Boeckxstaens GE. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 152: 730‐744, 2017. DOI: 10.1053/j.gastro.2016.10.046.
 27.Buchanan KL, Rupprecht LE, Kaelberer MM, Sahasrabudhe A, Klein ME, Villalobos JA, Liu WW, Yang A, Gelman J, Park S, Anikeeva P, Bohórquez DV. The preference for sugar over sweetener depends on a gut sensor cell. Nat Neurosc 25 (2): 191‐200, 2022. DOI: 10.1038/s41593‐021‐00982‐7.
 28.Buell EP, Borland MS, Loerwald KW, Chandler C, Hays SA, Engineer CT, Kilgard MP. Vagus nerve stimulation rate and duration determine whether sensory pairing produces neural plasticity. Neuroscience 406: 290‐299, 2019. DOI: 10.1016/j.neuroscience.2019.03.019.
 29.Burnstock G. Cotransmission in the autonomic nervous system. Handb Clin Neurol 117: 23‐35, 2013. DOI: 10.1016/B978‐0‐444‐53491‐0.00003‐1.
 30.Câmara R, Griessenauer CJ. Chapter 27 – Anatomy of the vagus nerve. In: Nerves and Nerve Injuries. Elsevier, 2015, p. 385‐397.
 31.Campbell T, Shenton F, Lucking E, Pyner S, Jones J. Electrophysiological characterisation of atrial volume receptors using ex‐vivo models of isolated rat cardiac atria. Exp Physiol 105 (12): 2190‐2206, 2020. DOI: 10.1113/EP088972.
 32.Cao J, Wang X, Powley TL, Liu Z. Gastric neurons in the nucleus tractus solitarius are selective to the orientation of gastric electrical stimulation. J Neural Eng 18 (5), 2021. DOI: 10.1088/1741‐2552/ac2ec6.
 33.Caravaca AS, Centa M, Gallina AL, Tarnawski L, Olofsson PS. Neural reflex control of vascular inflammation. Bioelectron Med 6: 4‐11, 2020. DOI: 10.1186/s42234‐020‐0038‐7.
 34.Carr MJ, Undem BJ. Bronchopulmonary afferent nerves. Respirology 8: 291‐301, 2003. DOI: 10.1046/j.1440‐1843.2003.00473.x.
 35.Cechetto DF, Shoemaker JK. Functional neuroanatomy of autonomic regulation. NeuroImage 47: 795‐803, 2009. DOI: 10.1016/j.neuroimage.2009.05.024.
 36.Cerati D, Schwartz PJ. Single cardiac vagal fiber activity, acute myocardial ischemia, and risk for sudden death. Circ Res 69: 1389‐1401, 1991. DOI: 10.1161/01.res.69.5.1389.
 37.Chang EH, Chavan SS, Pavlov VA. Cholinergic control of inflammation, metabolic dysfunction, and cognitive impairment in obesity‐associated disorders: Mechanisms and novel therapeutic opportunities. Front Neurosci 13: 1‐13, 2019. DOI: 10.3389/fnins.2019.00263.
 38.Chang HY, Mashimo H, Goyal RK. Musings on the wanderer: What's new in our understanding of vago‐vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 284: 357‐366, 2003. DOI: 10.1152/ajpgi.00478.2002.
 39.Chang RB, Strochlic DE, Williams EK, Umans BD, Liberles SD. Vagal sensory neuron subtypes that differentially control breathing. Cell 161: 622‐633, 2015. DOI: 10.1016/j.cell.2015.03.022.
 40.Chase MR, Ranson SW. The structure of the roots, trunk and branches of the vagus nerve. J Comp Neurol 24: 31‐60, 1914. DOI: 10.1002/cne.900240103.
 41.Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro‐immune communication. Immunity 46: 927‐942, 2017. DOI: 10.1016/j.immuni.2017.06.008.
 42.Chavan SS, Tracey KJ. Essential neuroscience in immunology. J Immunol 198: 3389‐3397, 2017. DOI: 10.4049/jimmunol.1601613.
 43.Cheng Z, Powley TL, Schwaber JS, Doyle FJ. Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy. J Comp Neurol 381: 1‐17, 1997. DOI: 10.1002/(sici)1096‐9861(19970428)381:1<1::aid‐cne1>3.0.co;2‐5.
 44.Cohen ML, Georgievskaya Z. Histopathology of the stimulated Vagus nerve: Primum non nocere. Heart Fail Rev 16: 163‐169, 2011. DOI: 10.1007/s10741‐010‐9182‐6.
 45.Coleridge H, Coleridge JCG, Banzett RB. Effect of CO2 on afferent vagal endings in the canine lung. Respir Physiol 34: 135‐151, 1978. DOI: 10.1016/0034‐5687(78)90053‐1.
 46.Cottrell BYDF, Iggo A. Tension receptors with vagal afferent fibres in the proximal duodenum and pyloric sphincter of sheep. J Physiol 128: 593‐607. DOI: 10.1113/jphysiol.1984.sp015388.
 47.Courtice GP, Kwong TE, Lumbers ER, Potter EK. Excitation of the cardiac vagus by vasopressin in mammals. J Physiol 354: 547‐556, 1984. DOI: 10.1113/jphysiol.1984.sp015392.
 48.Cracchiolo M, Ottaviani MM, Panarese A, Strauss I, Vallone F, Mazzoni A, Micera S. Bioelectronic medicine for the autonomic nervous system: clinical applications and perspectives. J Neural Eng 18 (4), 2021. DOI: 10.1088/1741‐2552/abe6b9.
 49.Critchley HD, Nagai Y, Gray MA, Mathias CJ. Dissecting axes of autonomic control in humans: Insights from neuroimaging. Auton Neurosci Basic Clin 161: 34‐42, 2011. DOI: 10.1016/j.autneu.2010.09.005.
 50.Darrow MJ, Torres M, Sosa MJ, Danaphongse TT, Haider Z, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation paired with rehabilitative training enhances motor recovery after bilateral spinal cord injury to cervical forelimb motor pools. Neurorehabil Neural Repair 34: 200‐209, 2020. DOI: 10.1177/1545968319895480.
 51.de Lartigue G. Role of the vagus nerve in the development and treatment of diet‐induced obesity. J Physiol 594: 5791‐5815, 2016. DOI: 10.1113/JP271538.
 52.de Lartigue G, Xu C. Mechanisms of vagal plasticity influencing feeding behavior. Brain Res 1693: 146‐150, 2018. DOI: 10.1016/j.brainres.2018.03.030.
 53.De Neef KJ, Jansen JRC, Versprille A. Developmental morphometry and physiology of the rabbit vagus nerve. Dev Brain Res 4: 265‐274, 1982. DOI: 10.1016/0165‐3806(82)90138‐9.
 54.DeGiorgio C, Heck C, Bunch S, Britton J, Green P, Lancman M, Murphy J, Olejniczak P, Shih J, Arrambide S, Soss J. Vagus nerve stimulation for epilepsy: Randomized comparison of three stimulation paradigms. Neurology 65: 317‐319, 2005. DOI: 10.1212/01.wnl.0000168899.11598.00.
 55.Dirr EW, Urdaneta ME, Patel Y, Johnson RD, Campbell‐Thompson M, Otto KJ. Designing a bioelectronic treatment for Type 1 diabetes: Targeted parasympathetic modulation of insulin secretion. Bioelectron Med 3: 17‐31, 2020. DOI: 10.2217/bem‐2020‐0006.
 56.Ducreux C, Reynaud JC, Puizillout JJ. Spike conduction properties of T‐shaped C neurons in the rabbit nodose ganglion. Pflügers Arch Eur J Physiol 424: 238‐244, 1993. DOI: 10.1007/BF00384348.
 57.Evans DHL, Murray JG. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J Anat 88: 320‐337, 1954.
 58.Fallen EL, Kamath MV, Tougas G, Upton A. Afferent vagal modulation: Clinical studies of visceral sensory input. Auton Neurosci Basic Clin 90: 35‐40, 2001. DOI: 10.1016/S1566‐0702(01)00265‐X.
 59.Farmer DGS, Dutschmann M, Paton JFR, Pickering AE, McAllen RM. Brainstem sources of cardiac vagal tone and respiratory sinus arrhythmia. J Physiol 594: 7249‐7265, 2016. DOI: 10.1113/JP273164.
 60.Fawley JA, Hegarty DM, Aicher SA, Beaumont E, Andresen MC. Dedicated C‐fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus. Brain Res 1769: 147625, 2021. DOI: 10.1016/j.brainres.2021.147625.
 61.From P, James D, Uni L, St A, August WM. The mammalian vagus nerve ‐ A functional and histological study. Am J Physiol 106: 623‐646, 1933. DOI: 10.1152/ajplegacy.1933.106.3.623.
 62.Furness JB, Rivera LR, Cho HJ, Bravo DM, Callaghan B. The gut as a sensory organ. Nat Rev Gastroenterol Hepatol 10: 729‐740, 2013. DOI: 10.1038/nrgastro.2013.180.
 63.George MS, Rush AJ, Marangell LB, Sackeim HA, Brannan SK, Davis SM, Howland R, Kling MA, Moreno F, Rittberg B, Dunner D, Schwartz T, Carpenter L, Burke M, Ninan P, Goodnick P. A one‐year comparison of vagus nerve stimulation with treatment as usual for treatment‐resistant depression. Biol Psychiatry 58: 364‐373, 2005. DOI: 10.1016/j.biopsych.2005.07.028.
 64.George R, Sonnen A, Upton A, Salinsky M, Ristanovic R, Bergen D, Mirza W, Rosenfeld W, Nari‐Toku D, Manon‐Espaillat R, Barolat G, Willis J, Stefan H, Treig T, Hufnagel A, Kuzniecky R, Uthman B, Wilder BJ, Augustinsson L, Ben‐Menachem E, Ramsay E, Wernick EJF, Tarver WB. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology 45: 224‐230, 1995. DOI: 10.1212/WNL.45.2.224.
 65.Ghilardi JR, Allen CJ, Vigna SR, McVey DC, Mantyh PW. Cholecystokinin and neuropeptide Y receptors on single rabbit vagal afferent ganglion neurons: site of prejunctional modulation of visceral sensory neurons. Brain Res 633: 33‐40, 1994. DOI: 10.1016/0006‐8993(94)91519‐9.
 66.Grasset E, Burcelin R. The gut microbiota to the brain axis in the metabolic control. Rev Endocr Metab Disord 20: 427‐438, 2019. DOI: 10.1007/s11154‐019‐09511‐1.
 67.Green JH, Heffron PF. The origin of the right aortic nerve in the rabbit. Q J Exp Physiol 276–283, 1966. DOI: 10.1113/expphysiol.1966.sp001863.
 68.Grossman P, Taylor EW. Toward understanding respiratory sinus arrhythmia: Relations to cardiac vagal tone, evolution and biobehavioral functions. Biol Psychol 74: 263‐285, 2007. DOI: 10.1016/j.biopsycho.2005.11.014.
 69.Groves DA, Brown VJ. Vagal nerve stimulation: A review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev 29: 493‐500, 2005. DOI: 10.1016/j.neubiorev.2005.01.004.
 70.Güemes A, Georgiou P. Review of the role of the nervous system in glucose homoeostasis and future perspectives towards the management of diabetes. Bioelectron Med 4: 1‐18, 2018. DOI: 10.1186/s42234‐018‐0009‐4.
 71.Guo YP, Mc Leod JG. Pathological changes in the vagus nerves in chronic alcoholism. J Neurol Neurosurg Psychiatry 50: 1449‐1453, 1987. PMID: 2174764.
 72.Guz A, Noble MIM, Trenchard D, Smith AJ, Makey AR. The hering‐breuer inflation reflex in man: studies of unilateral lung inflation and vagus nerve block. Respir Physiol 382–389, 1966. DOI: 10.1016/0034‐5687(66)90005‐3.
 73.Guz A, Trenchard DW. Pulmonary stretch receptor activity in man: A comparison with dog and cat. J Physiol 213: 329‐343, 1971. DOI: 10.1113/jphysiol.1971.sp009385.
 74.Hammer N, Glätzner J, Feja C, Kühne C, Meixensberger J, Planitzer U, Schleifenbaum S, Tillmann BN, Winkler D. Human vagus nerve branching in the cervical region. PLoS One 10, 2015. DOI: 10.1371/journal.pone.0118006.
 75.Hammer N, Löffler S, Cakmak YO, Ondruschka B, Planitzer U, Schultz M, Winkler D, Weise D. Cervical vagus nerve morphometry and vascularity in the context of nerve stimulation ‐ A cadaveric study. Sci Rep 8: 1‐9, 2018. DOI: 10.1038/s41598‐018‐26135‐8.
 76.Han L, Limjunyawong N, Ru F, Li Z, Hall OJ, Steele H, Zhu Y, Wilson J, Mitzner W, Kollarik M, Undem BJ, Canning BJ, Dong X. Mrgprs on vagal sensory neurons contribute to bronchoconstriction and airway hyper‐responsiveness. Nat Neurosci 21: 324‐328, 2018. DOI: 10.1038/s41593‐018‐0074‐8.
 77.Han W, Tellez LA, Perkins MH, Perez IO, Qu T, Ferreira J, Ferreira TL, Quinn D, Liu ZW, Gao XB, Kaelberer MM, Bohórquez DV, Shammah‐Lagnado SJ, de Lartigue G, de Araujo IE. A neural circuit for gut‐induced reward. Cell 175: 665‐678.e23, 2018. DOI: 10.1016/j.cell.2018.08.049.
 78.Hanes WM, Olofsson PS, Kwan K, Hudson LK, Chavan SS, Pavlov VA, Tracey KJ. Galantamine attenuates type 1 diabetes and inhibits anti‐insulin antibodies in non‐obese diabetic mice. Mol Med 21: 1, 2015. DOI: 10.2119/molmed.2015.00142.
 79.Hays SA, Rennaker RL, Kilgard MP. Targeting plasticity with vagus nerve stimulation to treat neurological disease. Prog Brain Res 207: 275‐299, 2013. DOI: 10.1016/B978‐0‐444‐63327‐9.00010‐2.
 80.Henssen DJHA, Derks B, van Doorn M, Verhoogt NC, Staats P, Vissers K, Van Cappellen van Walsum AM. Visualizing the trigeminovagal complex in the human medulla by combining ex‐vivo ultra‐high resolution structural MRI and polarized light imaging microscopy. Sci Rep 9: 1‐11, 2019. DOI: 10.1038/s41598‐019‐47855‐5.
 81.Hoffman HH, Kuntz A. Vagus nerve components. Anat Rec 127: 551‐567, 1957. DOI: 10.1002/ar.1091270306.
 82.Hoffman HH, Schnitzlein HN. The numbers of nerve fibers in the vagus nerve of man. Anat Rec 139: 429‐435, 1961. DOI: 10.1002/ar.1091390312.
 83.Iggo A, Leek BF. An electrophysiological study of single vagal efferent units associated with gastric movements in sheep. J Physiol: 707‐733. DOI: 10.1113/jphysiol.1967.sp008244.
 84.Jaffe RA, Sampson SR. Analysis of passive and active electrophysiologic properties of neurons in mammalian nodose ganglia maintained in vitro. J Neurophysiol 39: 802‐815, 1976. DOI: 10.1152/jn.1976.39.4.802.
 85.Jared M, Huston KJT. The pulse of inflammation: Heart rate variability, the cholinergic anti‐inflammatory pathway, and implications for therapy. J Intern Med 269: 45‐53, 2015. DOI: 10.1111/j.1365‐2796.2010.02321.x.
 86.Jewett DL. Activity of single efferent fibres in the cervical vagus nerve of the dog, with special reference to possible cardio‐inhibitory fibres. J Physiol 175: 321‐357, 1964. DOI: 10.1113/jphysiol.1964.sp007520.
 87.Johnson RL, Wilson CG. A review of vagus nerve stimulation as a therapeutic intervention. J Inflamm Res 11: 203‐213, 2018. DOI: 10.2147/JIR.S163248.
 88.Jordan D, Khalid MEM, Schneiderman N, Spyer KM. The location and properties of preganglionic vagal cardiomotor neurones in the rabbit. Pflügers Arch Eur J Physiol 395: 244‐250, 1982. DOI: 10.1007/BF00584817.
 89.Kaelberer MM, Buchanan KL, Klein ME, Barth B, Montoya M, Shen X, Bohórquez DV. A gut‐brain neural circuit for nutrient sensory transduction. Science 361, 2018. DOI: 10.1126/science.aat5236.
 90.Kashihara K, Kawada T, Yanagiya Y, Uemura K, Inagaki M, Takaki H, Sugimachi M, Sunagawa K. Bezold‐Jarisch reflex attenuates dynamic gain of baroreflex neural arc. Am J Physiol Hear Circ Physiol 285: 5‐7, 2003. DOI: 10.1152/ajpheart.01082.2002.
 91.Kawagishi K, Fukushima N, Yokouchi K, Sumitomo N, Kakegawa A, Moriizumi T. Tyrosine hydroxylase‐immunoreactive fibers in the human vagus nerve. J Clin Neurosci 15: 1023‐1026, 2008. DOI: 10.1016/j.jocn.2007.08.032.
 92.Kawashima T. The autonomic nervous system of the human heart with special reference to its origin, course, and peripheral distribution. Anat Embryol (Berl) 209: 425‐438, 2005. DOI: 10.1007/s00429‐005‐0462‐1.
 93.Kim D, Heo G, Kim M, Kim H, Jin JA, Kim H, Jung S, An M, Ahn BH, Park JH, Park H, Lee M, Lee JW, Schwartz GJ, Kim S. A neural circuit mechanism for mechanosensory feedback control of ingestion. Nature 580: 376‐380, 2020. DOI: 10.1038/s41586‐020‐2167‐2.
 94.Kim KS, Seeley RJ, Sandoval DA. Signalling from the periphery to the brain that regulates energy homeostasis. Nat Rev Neurosci 19: 185‐196, 2018. DOI: 10.1038/nrn.2018.8.
 95.Kim M, Heo G, Kim SY. Neural signalling of gut mechanosensation in ingestive and digestive processes. Nat Rev Neurosci 0123456789, 2022. DOI: 10.1038/s41583‐021‐00544‐7.
 96.Klinkenberg S, Aalbers MW, Vles JSH, Cornips EMJ, Rijkers K, Leenen L, Kessels FGH, Aldenkamp AP, Majoie M. Vagus nerve stimulation in children with intractable epilepsy: A randomized controlled trial. Dev Med Child Neurol 54: 855‐861, 2012. DOI: 10.1111/j.1469‐8749.2012.04305.x.
 97.Kohl J, Koller EA, Kuoni J, Mokry L. Location‐dependent characteristics of pulmonary stretch receptor activity in the rabbit. Pflugers Arch 406: 303‐307, 1986. DOI: 10.1007/BF00640918.
 98.Komisaruk BR, Frangos E. Vagus nerve afferent stimulation: Projection into the brain, reflexive physiological, perceptual, and behavioral responses, and clinical relevance. Auton Neurosci Basic Clin 237: 102908, 2022. DOI: 10.1016/j.autneu.2021.102908.
 99.Kuntz A, Hoffman HH. Vagus nerve components. Anat Rec 127: 551‐567, 1957. DOI: 10.1002/ar.1091270306.
 100.Kupari J, Häring M, Agirre E, Castelo‐Branco G, Ernfors P. An atlas of vagal sensory neurons and their molecular specialization. Cell Rep 27: 2508‐2523.e4, 2019. DOI: 10.1016/j.celrep.2019.04.096.
 101.Kwon E, Joung HY, Liu SM, Chua SC, Schwartz GJ, Jo YH. Optogenetic stimulation of the liver‐projecting melanocortinergic pathway promotes hepatic glucose production. Nat Commun 11: 1‐13, 2020. DOI: 10.1038/s41467‐020‐20160‐w.
 102.La Rovere MT, Raczak G. How to measure baroreflex sensitivity. Cardiol J 13: 630‐637, 2006. PMID: 10678538.
 103.Lamotte G, Shouman K, Benarroch EE. Stress and central autonomic network. Auton Neurosci 235: 102870, 2021. DOI: 10.1016/j.autneu.2021.102870.
 104.Lee WB, Ismay MJ, Lumbers ER. Mechanisms by which angiotensin II affects the heart rate of the conscious sheep. Circ Res 47: 286‐292, 1980. DOI: 10.1161/01.RES.47.2.286.
 105.Li H, Page AJ. Activation of CRF2 receptor increases gastric vagal afferent mechanosensitivity. J Neurophysiol 122: 2636‐2642, 2019. DOI: 10.1152/jn.00619.2019.
 106.Li Y, Owyang C. Musings on the Wanderer: What's new in our understanding of vago‐vagal reflexes? V. Remodeling of vagus and enteric neural circuitry after vagal injury. Am J Physiol ‐ Gastrointest Liver Physiol 285: 461‐469, 2003. DOI: 10.1152/ajpgi.00119.2003.
 107.Liu DS, Le XT. Cell‐type identification in the autonomic nervous system. Neurosci Bull 35: 145‐155, 2019. DOI: 10.1007/s12264‐018‐0284‐9.
 108.Liu J, Song N, Wang Y, Walker J, Yu J. A single baroreceptor unit consists of multiple sensors. Sci Rep 11: 1‐11, 2021. DOI: 10.1038/s41598‐021‐02563‐x.
 109.Longhurst JC. Cardiac receptors: Their function in health and disease. Prog Cardiovasc Dis 27: 201‐222, 1984. DOI: 10.1016/0033‐0620(84)90005‐7.
 110.Lu H‐J, Nguyen T‐L, Hong G‐S, Pak S, Kim H, Kim H, Kim D‐Y, Kim S‐Y, Shen Y, Ryu PD, Lee M‐O, Oh U. Tentonin 3/TMEM150C senses blood pressure changes in the aortic arch. J Clin Invest 130: 3671‐3683, 2020. DOI: 10.1172/jci133798.
 111.Lumbers BYER, Mccloskey DI, Potter EK. Inhibition by angiotensin II of baroreceptor‐evoked activity in cardiac vagal efferent nerves in the dog. J Physiol 294: 69‐80, 1979.
 112.Macefield VG, Henderson LA. Identification of the human sympathetic connectome involved in blood pressure regulation. NeuroImage 202: 116119, 2019. DOI: 10.1016/j.neuroimage.2019.116119.
 113.Macefield VG, Henderson LA. Identifying increases in activity of the human RVLM through MSNA‐coupled fMRI. Front Neurosci 13: 1‐10, 2020. DOI: 10.3389/fnins.2019.01369.
 114.Machhada A, Marina N, Korsak A, Stuckey DJ, Lythgoe MF, Gourine AV. Origins of the vagal drive controlling left ventricular contractility. J Physiol 594: 4017‐4030, 2016. DOI: 10.1113/JP270984.
 115.Makhmutova M, Weitz J, Tamayo A, Pereira E, Boulina M, Almaça J, Rodriguez‐Diaz R, Caicedo A. Pancreatic beta cells communicate with vagal sensory neurons. Gastroenterology 160: 875‐888, 2021. DOI: 10.1053/j.gastro.2020.10.034.
 116.Marmerstein JT, McCallum GA, Durand DM. Direct measurement of vagal tone in rats does not show correlation to HRV. Sci Rep 11: 1‐12, 2021. DOI: 10.1038/s41598‐020‐79808‐8.
 117.Martelli D, Yao ST, Mckinley MJ, Mcallen RM. Reflex control of inflammation by sympathetic nerves, not the vagus. J Physiol 592: 1677‐1686, 2014. DOI: 10.1113/jphysiol.2013.268573.
 118.Masi EB, Valdés‐Ferrer SI, Steinberg BE. The vagus neurometabolic interface and clinical disease. Int J Obes 42: 1101‐1111, 2018. DOI: 10.1038/s41366‐018‐0086‐1.
 119.Mazzone SB, Undem BJ. Vagal afferent innervation of the airways in health and disease. Physiol Rev 96: 975‐1024, 2016. DOI: 10.1152/physrev.00039.2015.
 120.McAllen RM, Spyer KM. Two types of vagal preganglionic motoneurones projecting to the heart and lungs. J Physiol 282: 353‐364, 1978. DOI: 10.1113/jphysiol.1978.sp012468.
 121.McCulloch PF. Animal models for investigating the central control of the mammalian diving response. Front Physiol 3 (MAY): 1‐16, 2012. DOI: 10.3389/fphys.2012.00169.
 122.McDougall SJ, Peters JH, Andresen MC. Convergence of cranial visceral afferents within the solitary tract nucleus. J Neurosci 29: 12886‐12895, 2009. DOI: 10.1523/JNEUROSCI.3491‐09.2009.
 123.Menuet C, Connelly AA, Bassi JK, Melo MR, Le S, Kamar J, Kumar NN, McDougall SJ, McMullan S, Allen AM. Prebötzinger complex neurons drive respiratory modulation of blood pressure and heart rate. elife 9: 1‐30, 2020. DOI: 10.7554/eLife.57288.
 124.Metz CN, Pavlov VA. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am J Physiol Gastrointest Liver Physiol 2–5, 2016. DOI: 10.1152/ajpgi.00195.2018.
 125.Meyers EC, Solorzano BR, James J, Ganzer PD, Lai ES, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation enhances stable plasticity and generalization of stroke recovery. Stroke 49: 710‐717, 2018. DOI: 10.1161/STROKEAHA.117.019202.
 126.Middlekauff HR, Doering A, Weiss JN. Adenosine enhances neuroexcitability by inhibiting a slow postspike afterhyperpolarization in rabbit vagal afferent neurons. Circulation 103: 1325‐1329, 2001. DOI: 10.1161/01.CIR.103.9.1325.
 127.Min S, Chang RB, Prescott SL, Beeler B, Joshi NR, Strochlic DE, Liberles SD. Arterial baroreceptors sense blood pressure through decorated aortic claws. Cell Rep 29: 2192‐2201.e3, 2019. DOI: 10.1016/j.celrep.2019.10.040.
 128.Morrison RA, Hulsey DR, Adcock KS, Rennaker RL, Kilgard MP, Hays SA. Vagus nerve stimulation intensity influences motor cortex plasticity. Brain Stimul 12: 256‐262, 2019. DOI: 10.1016/j.brs.2018.10.017.
 129.Murray K, Reardon C. The cholinergic anti‐inflammatory pathway revisited. Neurogastroenterol Motil 30: 1‐6, 2018. DOI: 10.1111/nmo.13288.
 130.Murray K, Rude KM, Sladek J, Reardon C. Divergence of neuroimmune circuits activated by afferent and efferent vagal nerve stimulation in the regulation of inflammation. J Physiol 7: 2075‐2084, 2021. DOI: 10.1113/JP281189.
 131.Neuhuber WL, Berthoud H‐R. Functional anatomy of the vagus system – Emphasis on the somato‐visceral interface. Auton Neurosci 236: 102887, 2021. DOI: 10.1016/j.autneu.2021.102887.
 132.Neyens D, Zhao H, Huston NJ, Wayman GA, Ritter RC, Appleyard SM. Leptin sensitizes NTS neurons to vagal input by increasing postsynaptic NMDA receptor currents. J Neurosci 40: 7054‐7064, 2020. DOI: 10.1523/JNEUROSCI.1865‐19.2020.
 133.Niijima A. Glucose‐sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea‐pig. J Physiol 332: 315‐323, 1982. DOI: 10.1113/jphysiol.1982.sp014415.
 134.Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z, Francisco AG, Ranade SS, Liberles SD, Patapoutian A. Piezo2 senses airway stretch and mediates lung inflation‐induced apnoea. Nature 541: 176‐181, 2017. DOI: 10.1038/nature20793.
 135.Olshansky B, Sabbah HN, Hauptman PJ, Colucci WS. Parasympathetic nervous system and heart failure pathophysiology and potential implications for therapy. Circulation 118: 863‐871, 2008. DOI: 10.1161/CIRCULATIONAHA.107.760405.
 136.Onkka P, Maskoun W, Rhee KS, Hellyer J, Patel J, Tan J, Chen LS, Vinters HV, Fishbein MC, Chen PS. Sympathetic nerve fibers and ganglia in canine cervical vagus nerves: Localization and quantitation. Hear Rhythm 10: 585‐591, 2013. DOI: 10.1016/j.hrthm.2012.12.015.
 137.Ottaviani MM, Vallone F, Micera S, Recchia FA, Hunt D. Closed‐loop vagus nerve stimulation for the treatment of cardiovascular diseases: State of the art and future directions. Front Cardiovasc Med 9: 1‐19, 2022. DOI: 10.3389/fcvm.2022.866957.
 138.Ottaviani MM, Wright L, Dawood T, Macefield VG. In‐vivo recordings from the human vagus nerve using ultrasound‐guided microneurography. J Physiol 598: 3569‐3576, 2020. DOI: 10.1113/JP280077.
 139.Paintal AS. The conduction velocities of respiratory and cardiovascular afferent fibres in the vagus nerve. J Physiol 121: 341‐359, 1953a. DOI: 10.1113/jphysiol.1953.sp004950.
 140.Paintal AS. A study of right and left atrial receptors. J Physiol 120: 596‐610, 1953b. DOI: 10.1113/jphysiol.1953.sp004920.
 141.Paintal AS. A study of gastric stretch receptors. Their role in the peripheral mechanism of satiation of hunger and thirst. J Physiol 126: 255‐270, 1954. DOI: 10.1113/jphysiol.1954.sp005207.
 142.Paintal AS. Vagal sensory receptors and their reflex effects. Physiol Rev 53: 159‐227, 1973. DOI: 10.1152/physrev.1973.53.1.159.
 143.Panneton WM. The mammalian diving response: An enigmatic reflex to preserve life? Physiology 28: 284‐297, 2013. DOI: 10.1152/physiol.00020.2013.
 144.Pavlov VA, Ochani M, Gallowitsch‐Puerta M, Ochani K, Huston JM, Czura CJ, Al‐Abed Y, Tracey KJ. Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci 103: 5219‐5223, 2006. DOI: 10.1073/pnas.0600506103.
 145.Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex – Linking immunity and metabolism. Nat Rev Endocrinol 8: 743‐754, 2012. DOI: 10.1038/nrendo.2012.189.
 146.Pavlov VA, Tracey KJ. Neural circuitry and immunity. Immunol Res 63: 38‐57, 2015. DOI: 10.1007/s12026‐015‐8718‐1.
 147.Pavlov VA, Tracey KJ. Neural regulation of immunity: Molecular mechanisms and clinical translation. Nat Neurosci 20: 156‐166, 2017. DOI: 10.1038/nn.4477.
 148.Pelz JO, Belau E, Henn P, Hammer N, Classen J, Weise D. Sonographic evaluation of the vagus nerves: Protocol, reference values, and side‐to‐side differences. Muscle Nerve 57: 766‐771, 2018. DOI: 10.1002/mus.25993.
 149.Penry JK, Dean JC. Prevention of intractable partial seizures by intermittent vagal stimulation in humans: Preliminary results. Epilepsia 31: S40‐S43, 1990. DOI: 10.1111/j.1528‐1157.1990.tb05848.x.
 150.Pereyra PM, Zhang W, Schmidt M, Becker LE. Development of myelinated and unmyelinated fibers of human vagus nerve during the first year of life. J Neurol Sci 110: 107‐113, 1992. DOI: 10.1016/0022‐510X(92)90016‐E.
 151.Peters JH, Simasko SM, Ritter RC. Modulation of vagal afferent excitation and reduction of food intake by leptin and cholecystokinin. Physiol Behav 89: 477‐485, 2006. DOI: 10.1016/j.physbeh.2006.06.017.
 152.Planitzer U, Hammer N, Bechmann I, Glätzner J, Löffler S, Möbius R, Tillmann BN, Weise D, Winkler D. Positional relations of the cervical vagus nerve revisited. Neuromodulation 20: 361‐368, 2017. DOI: 10.1111/ner.12557.
 153.Prescott SL, Liberles SD. Internal senses of the vagus nerve. Neuron 20–30, 2022. DOI: 10.1016/j.neuron.2021.12.020.
 154.Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD, Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181: 574‐589, 2020. DOI: 10.1016/j.cell.2020.03.004.
 155.Rajendran PS, Challis RC, Fowlkes CC, Hanna P, Tompkins JD, Jordan MC, Hiyari S, Gabris‐Weber BA, Greenbaum A, Chan KY, Deverman BE, Münzberg H, Ardell JL, Salama G, Gradinaru V, Shivkumar K. Identification of peripheral neural circuits that regulate heart rate using optogenetic and viral vector strategies. Nat Commun 10: 1‐13, 2019. DOI: 10.1038/s41467‐019‐09770‐1.
 156.Roberts AM, Bhattacharya J, Schultz HD, Coleridge HM, Coleridge JC. Stimulation of pulmonary vagal afferent C‐fibers by lung edema in dogs. Circ Res 58: 512‐522, 1986. DOI: 10.1161/01.RES.58.4.512.
 157.Rosenthal D, Beals J, Kerman IA, Akil H, Watson SJ. Modification of classical neurochemical markers in identified primary afferent neurons with Abeta‐, Adelta‐, and C‐fibers after chronic constriction injury in mice. Comp Gen Pharmacol 601: 586‐601, 2007. DOI: 10.1002/cne.
 158.Rousseau JP. Electrophysiological study of vagal afferent and efferent units in conscious sheep. Q J Exp Physiol 69: 627‐637, 1984. DOI: 10.1113/expphysiol.1984.sp002849.
 159.Ruffoli R, Giorgi FS, Pizzanelli C, Murri L, Paparelli A, Fornai F. The chemical neuroanatomy of vagus nerve stimulation. J Chem Neuroanat 42: 288‐296, 2011. DOI: 10.1016/j.jchemneu.2010.12.002.
 160.Ruiz Vargas E, Sörös P, Shoemaker JK, Hachinski V. Human cerebral circuitry related to cardiac control: A neuroimaging meta‐analysis. Ann Neurol 79: 709‐716, 2016. DOI: 10.1002/ana.24642.
 161.Rush AJ, George MS, Sackeim HA, Marangell LB, Husain MM, Giller C, Nahas Z, Haines S, Simpson RK, Goodman R. Vagus nerve stimulation (VNS) for treatment‐resistant depressions: A multicenter study. Biol Psychiatry 47: 276‐286, 2000. DOI: 10.1016/S0006‐3223(99)00304‐2.
 162.Rush AJ, Marangell LB, Sackeim HA, George MS, Brannan SK, Davis SM, Howland R, Kling MA, Rittberg BR, Burke WJ, Rapaport MH, Zajecka J, Nierenberg AA, Husain MM, Ginsberg D, Cooke RG. Vagus nerve stimulation for treatment‐resistant depression: A randomized controlled acute phase trial. Biol Psychiatry 58: 347‐354, 2005. DOI: 10.1016/j.biopsych.2005.05.025.
 163.Ryvlin P, Gilliam FG, Nguyen DK, Colicchio G, Iudice A, Tinuper P, Zamponi N, Aguglia U, Wagner L, Minotti L, Stefan H, Boon P, Sadler M, Benna P, Raman P, Perucca E. The long‐term effect of vagus nerve stimulation on quality of life in patients with pharmacoresistant focal epilepsy: The PuLsE (Open Prospective Randomized Long‐term Effectiveness) trial. Epilepsia 55: 893‐900, 2014. DOI: 10.1111/epi.12611.
 164.Sabharwal MWC, R. Methods of assessing vagus nerve activity and reflexes. Heart Fail Rev 16 (2): 109‐127, 2011. DOI: 10.1007/s10741‐010‐9174‐6.
 165.Salinsky MC, Uthman BM, Ristanovic RK, Wernicke JF, Tarver WB. Vagus nerve stimulation for the treatment of medically intractable seizures. Results of a 1‐year open‐extension trial. Vagus Nerve Stimulation Study Group. Arch Neurol 53 (11): 1176‐1180, 1996. DOI: 10.1001/archneur.1996.00550110128021.
 166.Satapathy SK, Ochani M, Dancho M, Hudson LK, Rosas‐Ballina M, Valdes‐Ferrer SI, Olofsson PS, Harris YT, Roth J, Chavan S, Tracey KJ, Pavlov V, a. Galantamine alleviates inflammation and other obesity‐associated complications in high‐fat diet‐fed mice. Mol Med 17: 599‐606, 2011. DOI: 10.2119/molmed.2011.00083.
 167.Schelegle ES, Green JF. An overview of the anatomy and physiology of slowly adapting pulmonary stretch receptors. Respir Physiol 125: 17‐31, 2001. DOI: 10.1016/S0034‐5687(00)00202‐4.
 168.Schnitzlein HN, Row‐e LC, Hoffman HH. The myelinated components of vagus nerve in man. Anat Rec 139: 429‐435, 1961. DOI: 10.1002/ar.1091390312.
 169.Schwartz PJ, De Ferrari GM. Sympathetic‐parasympathetic interaction in health and disease: Abnormalities and relevance in heart failure. Heart Fail Rev 16: 101‐107, 2011. DOI: 10.1007/s10741‐010‐9179‐1.
 170.Seki A, Green HR, Lee TD, Hong L, Tan J, Vinters HV, Chen P‐S, Fishbein MC. Sympathetic nerve fibers in human cervical and thoracic vagus nerves. Heart Rhythm 14: 384‐399, 2010. DOI: 10.1080/10810730902873927.Testing.
 171.Settell ML, Pelot NA, Knudsen BE, Dingle AM, McConico AL, Nicolai EN, Trevathan JK, Ezzell JA, Ross EK, Gustafson KJ, Shoffstall AJ, Williams JC, Zeng W, Poore SO, Populin LC, Suminski AJ, Grill WM, Ludwig KA. Functional vagotopy in the cervical vagus nerve of the domestic pig: Implications for the study of vagus nerve stimulation. J Neural Eng 17, 2020. DOI: 10.1088/1741‐2552/ab7ad4.
 172.Sklerov M, Dayan E, Browner N. Functional neuroimaging of the central autonomic network: Recent developments and clinical implications. Clin Auton Res 29: 555‐566, 2019. DOI: 10.1007/s10286‐018‐0577‐0.
 173.Spyer KM, Medical T. The baroreceptor input to cardiac vagal motoneurones. J Physiol 282: 365‐374, 1978. DOI: 10.1113/jphysiol.1978.sp012469.
 174.Stakenborg N, Gomez‐Pinilla PJ, Verlinden TJM, Wolthuis AM, D'Hoore A, Farré R, Herijgers P, Matteoli G, Boeckxstaens GE. Comparison between the cervical and abdominal vagus nerves in mice, pigs, and humans. Neurogastroenterol Motil 1–8, 2020. DOI: 10.1111/nmo.13889.
 175.Steinberg B, Silverman H, Robbiati S, Gunasekaran M, Tsaava T, Battinelli E, Stiegler A, Bouton C, Chavan S, Tracey KJ, Huerta P. Cytokine‐specific neurograms in the sensory vagus nerve. Bioelectron Med 3: 7‐17, 2016. DOI: 10.15424/bioelectronmed.2016.00007.
 176.Stromberg W, Schmidt EM. The myelinated fibers in the aortic nerve of the swine. Anat Rec 159 (1): 41‐45, 1967. DOI: 10.1002/ar.1091590107.
 177.Tan H, Sisti AC, Jin H, Vignovich M, Villavicencio M, Tsang KS, Goffer Y, Zuker CS. The gut – brain axis mediates sugar preference. Nature, 2020. DOI: 10.1038/s41586‐020‐2199‐7.
 178.Tanaka S, Abe C, Abbott SBG, Zheng S, Yamaoka Y, Lipsey JE, Skrypnyk NI, Yao J, Inoue T, Nash WT, Stornetta DS, Rosin DL, Stornetta RL, Guyenet PG, Okusa MD. Vagus nerve stimulation activates two distinct neuroimmune circuits converging in the spleen to protect mice from kidney injury. Proc Natl Acad Sci 118: 1‐12, 2021. DOI: 10.1073/PNAS.2021758118.
 179.Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol 74: 224‐242, 2007. DOI: 10.1016/j.biopsycho.2005.11.013.
 180.Thayer JF, Loerbroks A, Sternberg EM. Inflammation and cardiorespiratory control: The role of the vagus nerve. Respir Physiol Neurobiol 178: 387‐394, 2011. DOI: 10.1016/j.resp.2011.05.016.
 181.Thompson N, Mastitskaya S, Holder D. Avoiding off‐target effects in electrical stimulation of the cervical vagus nerve: Neuroanatomical tracing techniques to study fascicular anatomy of the vagus nerve. J Neurosci Methods 325: 108325, 2019. DOI: 10.1016/j.jneumeth.2019.108325.
 182.Thompson N, Ravagli E, Mastitskaya S, Iacoviello F, Aristovich K, Perkins J, Shearing P, Holder D. MicroCT optimisation for imaging fascicular anatomy in peripheral nerves. J Neurosci Methods, 2020. DOI: 10.1101/818237.
 183.Tracey KJ. Fat meets the cholinergic antiinflammatory pathway. J Cell Biol 171: 1017‐1021, 2005. DOI: 10.1084/jem.20051760.
 184.Tracey KJ. The inflammatory reflex. Nature 257: 122‐125, 2005. DOI: 10.1111/j.1365‐2796.2004.01440.x.
 185.Travagli RA, Anselmi L. Vagal neurocircuitry and its influence on gastric motility. Nat Rev Gastroenterol Hepatol 13: 87‐92, 2016. DOI: 10.1016/j.coviro.2015.09.001.Human.
 186.Tyler R, Cacace A, Stocking C, Tarver B, Engineer N, Martin J, Deshpande A, Stecker N, Pereira M, Kilgard M, Burress C, Pierce D, Rennaker R, Vanneste S. Vagus nerve stimulation paired with tones for the treatment of tinnitus: A prospective randomized double‐blind controlled pilot study in humans. Sci Rep 7: 1‐11, 2017. DOI: 10.1038/s41598‐017‐12178‐w.
 187.Undem BJ, Sun H. Molecular/ionic basis of vagal bronchopulmonary C‐Fiber activation by inflammatory mediators. Physiology 35: 57‐68, 2020. DOI: 10.1152/physiol.00014.2019.
 188.Ustinova EE, Schultz HD. Activation of cardiac vagal afferents in ischemia and reperfusion: Prostaglandins versus oxygen‐derived free radicals. Circ Res 74: 904‐911, 1994. DOI: 10.1161/01.RES.74.5.904.
 189.Vallone F, Ottaviani MM, Dedola F, Cutrone A, Romeni S, Macrì Panarese A, Bernini F, Cracchiolo M, Strauss I, Gabisonia K, Gorgodze N, Mazzoni A, Recchia F, Micera S. Simultaneous decoding of cardiovascular and respiratory functional changes from pig intraneural vagus nerve signals. J Neural Eng 18 (4), 2021. DOI: 10.1088/1741‐2552/ac0d42.
 190.Verlinden TJM, Rijkers K, Hoogland G, Herrler A. Morphology of the human cervical vagus nerve: Implications for vagus nerve stimulation treatment. Acta Neurol Scand 133: 173‐182, 2016. DOI: 10.1111/ane.12462.
 191.Waise TMZ, Dranse HJ, Lam TKT. The metabolic role of vagal afferent innervation. Nat Rev Gastroenterol Hepatol 15: 625‐636, 2018. DOI: 10.1038/s41575‐018‐0062‐1.
 192.Wang H, Yu M, Ochani M, Amella CA, Tanovic M, Susarla S, Li JH, Wang H, Yang H, Ulloa L, Al‐Abed Y, Czura CJ, Tracey KJ. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421: 384‐388, 2003. DOI: 10.1038/nature01339.
 193.Wang Y, Zhan G, Cai Z, Jiao B, Zhao Y, Li S, Luo A. Vagus nerve stimulation in brain diseases: Therapeutic applications and biological mechanisms. Neurosci Biobehav Rev 127: 37‐53, 2021. DOI: 10.1016/j.neubiorev.2021.04.018.
 194.Widdicombe J. Reflexes from the lungs and airways: Historical perspective. J Appl Physiol 101: 628‐634, 2006. DOI: 10.1152/japplphysiol.00155.2006.
 195.Widdicombe JG. Action potentials in parasympathetic and sympathetic efferent fibres to the trachea and lungs of dogs and cats. J Physiol 186: 56‐88, 1966. DOI: 10.1113/jphysiol.1966.sp008020.
 196.Widdicombe JG. Pulmonary and respiratory tract receptors. J Exp Biol 100: 41‐57, 1982. DOI: 10.1242/jeb.100.1.41.
 197.Williams EKK, Chang RBB, Strochlic DEE, Umans BDD, Lowell BBB, Liberles SDD. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166: 209‐221, 2016. DOI: 10.1016/j.cell.2016.05.011.
 198.Won SM, Song E, Reeder JT, Rogers JA. Emerging modalities and implantable technologies for neuromodulation. Cell 1: 115‐135, 2020. DOI: 10.1016/j.cell.2020.02.054.
 199.Yasuma F, Hayano JI. Respiratory sinus arrhythmia: Why does the heartbeat synchronize with respiratory rhythm? Chest 125: 683‐690, 2004. DOI: 10.1378/chest.125.2.683.
 200.Yuan H, Silberstein SD. Vagus nerve and vagus nerve stimulation, a comprehensive review: Part III. Headache 56: 479‐490, 2016. DOI: 10.1111/head.12649.
 201.Zanos TP, Silverman HA, Levy T, Tsaava T, Battinelli E, Lorraine PW, Ashe JM, Chavan SS, Tracey KJ, Bouton CE. Identification of cytokine‐specific sensory neural signals by decoding murine vagus nerve activity. Proc Natl Acad Sci 115: E4843‐E4852, 2018. DOI: 10.1073/pnas.1719083115.
 202.Zeng WZ, Marshall KL, Min S, Daou I, Chapleau MW, Abboud FM, Liberles SD, Patapoutian A. PIEZOs mediate neuronal sensing of blood pressure and the baroreceptor reflex. Science 362: 464‐467, 2018. DOI: 10.1126/science.aau6324.
 203.Zhang W, Waise TMZ, Toshinai K, Tsuchimochi W, Naznin F, Islam MN, Tanida R, Sakoda H, Nakazato M. Functional interaction between Ghrelin and GLP‐1 regulates feeding through the vagal afferent system. Sci Rep 10: 1‐12, 2020. DOI: 10.1038/s41598‐020‐75621‐5.
 204.Zhao Q, Yu CD, Wang R, Xu QJ, Pra RD, Zhang L, Chang RB. A multidimensional coding architecture of the vagal interoceptive system. Nature 603: 878‐884, 2022. DOI: 10.1038/s41586‐022‐04515‐5.
 205.Zhuo H, Ichikawa H, Helke CJ. Neurochemistry of the nodose ganglion. Prog Neurobiol 52: 79‐107, 1997. DOI: 10.1016/S0301‐0082(97)00003‐8.
 206.Zimmerman CA, Huey EL, Ahn JS, Beutler LR, Tan CL, Kosar S, Bai L, Chen Y, Corpuz TV, Madisen L, Zeng H, Knight ZA. A gut‐to‐brain signal of fluid osmolarity controls thirst satiation. Nature 568: 98‐102, 2019. DOI: 10.1038/s41586‐019‐1066‐x.
 207.Metz CN, Pavlov VA. Vagus nerve cholinergic circuitry to the liver and the gastrointestinal tract in the neuroimmune communicatome. Am J Physiol Gastrointest Liver Physiol: 2‐5, 2016. DOI: 10.1152/ajpgi.00195.2018.
 208.Niijima A. The afferent discharges from sensors for interleukin 1 beta in the hepatoportal system in the anesthetized rat. J Auton Nerv Syst 61: 287‐291, 1996. DOI: 10.1016/s0165‐1838(96)00098‐7.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Matteo M. Ottaviani, Vaughan G. Macefield. Structure and Functions of the Vagus Nerve in Mammals. Compr Physiol 2022, 12: 1-49. doi: 10.1002/cphy.c210042