Comprehensive Physiology Wiley Online Library

Actions of Dendritic Cells in the Kidney during Hypertension

Full Article on Wiley Online Library



Abstract

The immune response plays a critical role in the pathogenesis of hypertension, and immune cell populations can promote blood pressure elevation via actions in the kidney. Among these cell lineages, dendritic cells (DCs), the most potent antigen‐presenting cells, play a central role in regulating immune response during hypertension and kidney disease. DCs have different subtypes, and renal DCs are comprised of the CD103+CD11b and CD103CD11b+ subsets. DCs become mature and express costimulatory molecules on their surface once they encounter antigen. Isolevuglandin‐modified proteins function as antigens to activate DCs and trigger them to stimulate T cells. Activated T cells accumulate in the hypertensive kidney, release effector cytokines, promote renal oxidative stress, and promote renal salt and water retention. Individual subsets of activated T cells can secrete tumor necrosis factor‐alpha, interleukin‐17A, and interferon‐gamma, each of which has augmented the elevation of blood pressure in hypertensive models by enhancing renal sodium transport. Fms‐like tyrosine kinase 3 ligand‐dependent classical DCs are required to sustain the full hypertensive response, but C‐X3‐C chemokine receptor 1 positive DCs do not regulate blood pressure. Excess sodium enters the DC through transporters to activate DCs, whereas the ubiquitin editor A20 in dendritic cells constrains blood pressure elevation by limiting T cell activation. By contrast, activation of the salt sensing kinase, serum/glucocorticoid kinase 1 in DCs exacerbates salt‐sensitive hypertension. This article discusses recent studies illustrating mechanisms through which DC‐T cell interactions modulate levels of pro‐hypertensive mediators to regulate blood pressure via actions in the kidney. © 2022 American Physiological Society. Compr Physiol 12: 4087–4101, 2022.

Figure 1. Figure 1. Dendritic cell (DC) development is governed by a multistep differentiation cascade in the bone marrow. Myeloid precursors derive from hematopoietic stem cells and develop into common DC and myeloid progenitors. Classical/conventional DC (cDC1) and plasmacytoid DC (pDC) arise from common DC progenitors and are dependent on fms‐like tyrosine kinase 3 ligand (FLT3L). cDC continues differentiation in peripheral lymphoid tissues while pDC stays in the bone marrow and is dependent on basic helix‐loop‐helix transcription factor E2‐2. The development of cDC is regulated by several transcription factors, and cDC can be classified as cDC1 and cDC2 dependent on basic leucine zipper ATF‐like transcription factors 3 (BATF3) and interferon regulatory factor 4 (IRF4), respectively. In inflammatory conditions, monocytes differentiate into monocyte‐derived dendritic cells (mDCs) and are recruited into inflammatory sites. Another specialized subset of DCs called the Langerhans cell (LC) is resident in the epidermal layer of the skin.
Figure 2. Figure 2. Dendritic cells (DCs) develop from hematopoietic stem cells in the bone marrow and travel to the kidney. DCs are distributed throughout the renal parenchyma to encounter antigens in the kidney. After DCs engulf antigens and become activated, they home to renal lymph nodes and prime T cells in the T cell zone of the lymph node. After activation, DCs progress toward apoptosis, and their elimination helps to balance immunity and tolerance.
Figure 3. Figure 3. Hypertensive factors such as high salt, angiotensin II, and aldosterone salt activate inflammatory responses in multiple organs, including the brain, heart, blood vessel, kidney, and intestine. Antigen formation in these organs triggers the maturation of DCs that stimulate T cells to release hypertensive cytokines and increase oxidative stress. This process occurs in several target organs allowing activated immune cells to cause organ dysfunction following hypertensive stimuli.
Figure 4. Figure 4. In response to hypertensive stimuli, reactive oxygen species (ROS) are generated and facilitate the formation of neoantigens such as damage‐activated molecular patterns (DAMPs), pathogen‐activated molecular patterns (PAMPs), and isolevuglandin (IsoLG)‐modified proteins. DCs take up neoantigens and become activated, expressing high levels of CC‐chemokine receptor 7 (CCR7) and costimulatory molecules, enabling DCs to present antigen to T cells in the lymph node. CC‐chemokine ligands (CCL) for CCR7, including CCL19 and CCL21, recruit DCs from the kidney into renal lymph nodes to prime T cells. DCs release pro‐hypertensive cytokines such as IL‐1β, IL‐6, and IL‐23 to activate and polarize T cells toward pro‐inflammatory T helper cells. Activated T cells produce TNF‐α, IL‐17A, IL‐1β, and IFN‐γ, increasing sodium/fluid retention in the kidney, exacerbating BP elevation and kidney damage.
Figure 5. Figure 5. In response to hypertensive stimuli, dendritic cells (DCs) are recruited to the kidney, where they mature and are exposed to antigens. Excess sodium enters the DC through sodium transporters to activate DCs. Activation of the salt sensing kinase, serum/glucocorticoid kinase1 (SGK1), in DCs exacerbates salt‐sensitive hypertension. The NF‐κB signaling pathway is downstream of SGK1 and controls DC maturation. On this pathway, the ubiquitin editor A20 in dendritic cells limits blood pressure elevation by restraining NF‐κB‐dependent DC maturation. Innate immune signals mediate DC activation. When DCs become mature, CC‐chemokine receptor 7 (CCR7) and costimulatory molecules including CD40, CD70, CD80, CD86 are expressed on the cell surface to guide DC interactions with the T cell receptor.


Figure 1. Dendritic cell (DC) development is governed by a multistep differentiation cascade in the bone marrow. Myeloid precursors derive from hematopoietic stem cells and develop into common DC and myeloid progenitors. Classical/conventional DC (cDC1) and plasmacytoid DC (pDC) arise from common DC progenitors and are dependent on fms‐like tyrosine kinase 3 ligand (FLT3L). cDC continues differentiation in peripheral lymphoid tissues while pDC stays in the bone marrow and is dependent on basic helix‐loop‐helix transcription factor E2‐2. The development of cDC is regulated by several transcription factors, and cDC can be classified as cDC1 and cDC2 dependent on basic leucine zipper ATF‐like transcription factors 3 (BATF3) and interferon regulatory factor 4 (IRF4), respectively. In inflammatory conditions, monocytes differentiate into monocyte‐derived dendritic cells (mDCs) and are recruited into inflammatory sites. Another specialized subset of DCs called the Langerhans cell (LC) is resident in the epidermal layer of the skin.


Figure 2. Dendritic cells (DCs) develop from hematopoietic stem cells in the bone marrow and travel to the kidney. DCs are distributed throughout the renal parenchyma to encounter antigens in the kidney. After DCs engulf antigens and become activated, they home to renal lymph nodes and prime T cells in the T cell zone of the lymph node. After activation, DCs progress toward apoptosis, and their elimination helps to balance immunity and tolerance.


Figure 3. Hypertensive factors such as high salt, angiotensin II, and aldosterone salt activate inflammatory responses in multiple organs, including the brain, heart, blood vessel, kidney, and intestine. Antigen formation in these organs triggers the maturation of DCs that stimulate T cells to release hypertensive cytokines and increase oxidative stress. This process occurs in several target organs allowing activated immune cells to cause organ dysfunction following hypertensive stimuli.


Figure 4. In response to hypertensive stimuli, reactive oxygen species (ROS) are generated and facilitate the formation of neoantigens such as damage‐activated molecular patterns (DAMPs), pathogen‐activated molecular patterns (PAMPs), and isolevuglandin (IsoLG)‐modified proteins. DCs take up neoantigens and become activated, expressing high levels of CC‐chemokine receptor 7 (CCR7) and costimulatory molecules, enabling DCs to present antigen to T cells in the lymph node. CC‐chemokine ligands (CCL) for CCR7, including CCL19 and CCL21, recruit DCs from the kidney into renal lymph nodes to prime T cells. DCs release pro‐hypertensive cytokines such as IL‐1β, IL‐6, and IL‐23 to activate and polarize T cells toward pro‐inflammatory T helper cells. Activated T cells produce TNF‐α, IL‐17A, IL‐1β, and IFN‐γ, increasing sodium/fluid retention in the kidney, exacerbating BP elevation and kidney damage.


Figure 5. In response to hypertensive stimuli, dendritic cells (DCs) are recruited to the kidney, where they mature and are exposed to antigens. Excess sodium enters the DC through sodium transporters to activate DCs. Activation of the salt sensing kinase, serum/glucocorticoid kinase1 (SGK1), in DCs exacerbates salt‐sensitive hypertension. The NF‐κB signaling pathway is downstream of SGK1 and controls DC maturation. On this pathway, the ubiquitin editor A20 in dendritic cells limits blood pressure elevation by restraining NF‐κB‐dependent DC maturation. Innate immune signals mediate DC activation. When DCs become mature, CC‐chemokine receptor 7 (CCR7) and costimulatory molecules including CD40, CD70, CD80, CD86 are expressed on the cell surface to guide DC interactions with the T cell receptor.
References
 1.Ahadzadeh E, Rosendahl A, Czesla D, Steffens P, Prussner L, Meyer‐Schwesinger C, Wanner N, Paust HJ, Huber TB, Stahl RAK, Wiech T, Kurts C, Seniuk A, Ehmke H, Wenzel UO. The chemokine receptor CX3CR1 reduces renal injury in mice with angiotensin II‐induced hypertension. Am J Physiol Renal Physiol 315: F1526‐F1535, 2018.
 2.Alfonso‐Perez M, Lopez‐Giral S, Quintana NE, Loscertales J, Martin‐Jimenez P, Munoz C. Anti‐CCR7 monoclonal antibodies as a novel tool for the treatment of chronic lymphocyte leukemia. J Leukoc Biol 79: 1157‐1165, 2006.
 3.Amigorena S, Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr Opin Immunol 22: 109‐117, 2010.
 4.Anandasabapathy N, Breton G, Hurley A, Caskey M, Trumpfheller C, Sarma P, Pring J, Pack M, Buckley N, Matei I, Lyden D, Green J, Hawthorne T, Marsh HC, Yellin M, Davis T, Keler T, Schlesinger SJ. Efficacy and safety of CDX‐301, recombinant human Flt3L, at expanding dendritic cells and hematopoietic stem cells in healthy human volunteers. Bone Marrow Transplant 50: 924‐930, 2015.
 5.Araos P, Prado C, Lozano M, Figueroa S, Espinoza A, Berger T, Mak TW, Jaisser F, Pacheco R, Michea L, Amador CA. Dendritic cells are crucial for cardiovascular remodeling and modulate neutrophil gelatinase‐associated lipocalin expression upon mineralocorticoid receptor activation. J Hypertens 37: 1482‐1492, 2019.
 6.Asselin‐Paturel C, Trinchieri G. Production of type I interferons: Plasmacytoid dendritic cells and beyond. J Exp Med 202: 461‐465, 2005.
 7.Bamoulid J, Staeck O, Halleck F, Khadzhynov D, Brakemeier S, Durr M, Budde K. The need for minimization strategies: Current problems of immunosuppression. Transpl Int 28: 891‐900, 2015.
 8.Barbaro NR, Foss JD, Kryshtal DO, Tsyba N, Kumaresan S, Xiao L, Mernaugh RL, Itani HA, Loperena R, Chen W, Dikalov S, Titze JM, Knollmann BC, Harrison DG, Kirabo A. Dendritic cell amiloride‐sensitive channels mediate sodium‐induced inflammation and hypertension. Cell Rep 21: 1009‐1020, 2017.
 9.Batal I, Mohan S, De Serres SA, Vasilescu ER, Tsapepas D, Crew RJ, Patel SS, Serban G, McCune K, Husain SA, Chang JH, Herter JM, Bhagat G, Markowitz GS, D'Agati VD, Hardy MA, Ratner L, Chandraker A. Analysis of dendritic cells and ischemia‐reperfusion changes in postimplantation renal allograft biopsies may serve as predictors of subsequent rejection episodes. Kidney Int 93: 1227‐1239, 2018.
 10.Batchu SN, Hughson A, Gerloff J, Fowell DJ, Korshunov VA. Role of Axl in early kidney inflammation and progression of salt‐dependent hypertension. Hypertension 62: 302‐309, 2013.
 11.Bautista LE, Vera LM, Arenas IA, Gamarra G. Independent association between inflammatory markers (C‐reactive protein, interleukin‐6, and TNF‐alpha) and essential hypertension. J Hum Hypertens 19: 149‐154, 2005.
 12.Blanco P, Palucka AK, Pascual V, Banchereau J. Dendritic cells and cytokines in human inflammatory and autoimmune diseases. Cytokine Growth Factor Rev 19: 41‐52, 2008.
 13.Brahler S, Zinselmeyer BH, Raju S, Nitschke M, Suleiman H, Saunders BT, Johnson MW, Bohner AMC, Viehmann SF, Theisen DJ, Kretzer NM, Briseno CG, Zaitsev K, Ornatsky O, Chang Q, Carrero JA, Kopp JB, Artyomov MN, Kurts C, Murphy KM, Miner JH, Shaw AS. Opposing roles of dendritic cell subsets in experimental GN. J Am Soc Nephrol 29: 138‐154, 2018.
 14.Burns JC, Roberts SC, Tremoulet AH, He F, Printz BF, Ashouri N, Jain SS, Michalik DE, Sharma K, Truong DT, Wood JB, Kim KK, Jain S, KIDCARE Multicenter Study Group. Infliximab versus second intravenous immunoglobulin for treatment of resistant kawasaki disease in the USA (KIDCARE): A randomised, multicentre comparative effectiveness trial. Lancet Child Adolesc Health 5: 852‐861, 2021.
 15.Caillon A, Mian MOR, Fraulob‐Aquino JC, Huo K‐G, Barhoumi T, Ouerd S, Sinnaeve PR, Paradis P, Schiffrin EL. Gammadelta T cells mediate angiotensin II‐induced hypertension and vascular injury. Circulation 135: 2155‐2162, 2017.
 16.Cao Q, Lu J, Li Q, Wang C, Wang XM, Lee VW, Wang C, Nguyen H, Zheng G, Zhao Y, Alexander SI, Wang Y, Harris DC. CD103+ dendritic cells elicit CD8+ T cell responses to accelerate kidney injury in adriamycin nephropathy. J Am Soc Nephrol 27: 1344‐1360, 2016.
 17.Castellano G, Trouw LA, Fiore N, Daha MR, Schena FP, van Kooten C. Infiltrating dendritic cells contribute to local synthesis of C1q in murine and human lupus nephritis. Mol Immunol 47: 2129‐2137, 2010.
 18.Chae CU, Lee RT, Rifai N, Ridker PM. Blood pressure and inflammation in apparently healthy men. Hypertension 38: 399‐403, 2001.
 19.Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, Kim HA, Krishnan SM, Lewis CV, Salimova E, Tipping P, Vinh A, Samuel CS, Peter K, Guzik TJ, Kyaw TS, Toh BH, Bobik A, Drummond GR. Obligatory role for B cells in the development of angiotensin II‐dependent hypertension. Hypertension 66: 1023‐1033, 2015.
 20.Chen Z, Zhang T, Mao K, Shao X, Xu Y, Zhu M, Zhou H, Wang Q, Li Z, Xie Y, Yuan X, Ying L, Zhang M, Hu J, Mou S. A single‐cell survey of the human glomerulonephritis. J Cell Mol Med 25: 4684‐4695, 2021.
 21.Cheng M, Gu X, Herrera GA. Dendritic cells in renal biopsies of patients with acute tubulointerstitial nephritis. Hum Pathol 54: 113‐120, 2016.
 22.Cisse B, Caton ML, Lehner M, Maeda T, Scheu S, Locksley R, Holmberg D, Zweier C, den Hollander NS, Kant SG, Holter W, Rauch A, Zhuang Y, Reizis B. Transcription factor E2‐2 is an essential and specific regulator of plasmacytoid dendritic cell development. Cell 135: 37‐48, 2008.
 23.Collin M, Bigley V. Human dendritic cell subsets: An update. Immunology 154: 3‐20, 2018.
 24.Crowley SD, Song Y‐S, Lin EE, Griffiths R, Kim H‐S, Ruiz P. Lymphocyte responses exacerbate angiotensin II‐dependent hypertension. Am J Physiol Regul Integr Comp Physiol 298: R1089‐R1097, 2010.
 25.Cuesta‐Mateos C, Loscertales J, Kreutzman A, Colom‐Fernandez B, Portero‐Sainz I, Perez‐Villar JJ, Terron F, Munoz‐Calleja C. Preclinical activity of anti‐CCR7 immunotherapy in patients with high‐risk chronic lymphocytic leukemia. Cancer Immunol Immunother 64: 665‐676, 2015.
 26.Dalekos GN, Elisaf M, Bairaktari E, Tsolas O, Siamopoulos KC. Increased serum levels of interleukin‐1beta in the systemic circulation of patients with essential hypertension: Additional risk factor for atherogenesis in hypertensive patients? J Lab Clin Med 129: 300‐308, 1997.
 27.De Miguel C, Guo C, Lund H, Feng D, Mattson DL. Infiltrating T lymphocytes in the kidney increase oxidative stress and participate in the development of hypertension and renal disease. Am J Physiol Renal Physiol 300: F734‐F742, 2011.
 28.De Palma G, Castellano G, Del Prete A, Sozzani S, Fiore N, Loverre A, Parmentier M, Gesualdo L, Grandaliano G, Schena FP. The possible role of ChemR23/chemerin axis in the recruitment of dendritic cells in lupus nephritis. Kidney Int 79: 1228‐1235, 2011.
 29.Dixon DL, Wohlford GF, Abbate A. Inflammation and hypertension: Causal or not? Hypertension 75: 297‐298, 2020.
 30.Dong X, Swaminathan S, Bachman LA, Croatt AJ, Nath KA, Griffin MD. Resident dendritic cells are the predominant TNF‐secreting cell in early renal ischemia‐reperfusion injury. Kidney Int 71: 619‐628, 2007.
 31.Ebringer A, Doyle AE. Raised serum IgG levels in hypertension. Br Med J 2: 146‐148, 1970.
 32.Egan BM, Zhao Y, Axon R. US trends in prevalence, awareness, treatment, and control of hypertension, 1988‐2008. JAMA 303: 2043‐2050, 2010.
 33.Eisenbarth SC. Dendritic cell subsets in T cell programming: Location dictates function. Nat Rev Immunol 19: 89‐103, 2019.
 34.Elijovich F, Laffer CL, Sahinoz M, Pitzer A, Ferguson JF, Kirabo A. The gut microbiome, inflammation, and salt‐sensitive hypertension. Curr Hypertens Rep 22: 79, 2020.
 35.Evans LC, Petrova G, Kurth T, Yang C, Bukowy JD, Mattson DL, Cowley AW Jr. Increased perfusion pressure drives renal T‐cell infiltration in the Dahl salt‐sensitive rat. Hypertension 70: 543‐551, 2017.
 36.Evers BD, Engel DR, Bohner AM, Tittel AP, Krause TA, Heuser C, Garbi N, Kastenmuller W, Mack M, Tiegs G, Panzer U, Boor P, Ludwig‐Portugall I, Kurts C. CD103+ kidney dendritic cells protect against crescentic GN by maintaining IL‐10‐producing regulatory T cells. J Am Soc Nephrol 27: 3368‐3382, 2016.
 37.Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, Xiao L, Simmons AJ, Warden C, Pasic L, Himmel LE, Washington MK, Revetta FL, Zhao S, Kumaresan S, Scholz MB, Tang Z, Chen G, Reilly MP, Kirabo A. High dietary salt‐induced dendritic cell activation underlies microbial dysbiosis‐associated hypertension. JCI Insight 5: e126241, 2019.
 38.Garrett WS, Chen LM, Kroschewski R, Ebersold M, Turley S, Trombetta S, Galan JE, Mellman I. Developmental control of endocytosis in dendritic cells by CDC42. Cell 102: 325‐334, 2000.
 39.Ginhoux F, Liu K, Helft J, Bogunovic M, Greter M, Hashimoto D, Price J, Yin N, Bromberg J, Lira SA, Stanley ER, Nussenzweig M, Merad M. The origin and development of nonlymphoid tissue CD103+ DCs. J Exp Med 206: 3115‐3130, 2009.
 40.Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, Stanley ER, Randolph GJ, Merad M. Langerhans cells arise from monocytes in vivo. Nat Immunol 7: 265‐273, 2006.
 41.Granot T, Senda T, Carpenter DJ, Matsuoka N, Weiner J, Gordon CL, Miron M, Kumar BV, Griesemer A, Ho SH, Lerner H, Thome JJC, Connors T, Reizis B, Farber DL. Dendritic cells display subset and tissue‐specific maturation dynamics over human life. Immunity 46: 504‐515, 2017.
 42.Green DS, Nunes AT, David‐Ocampo V, Ekwede IB, Houston ND, Highfill SL, Khuu H, Stroncek DF, Steinberg SM, Zoon KC, Annunziata CM. A phase 1 trial of autologous monocytes stimulated ex vivo with sylatron® (Peginterferon alfa‐2b) and actimmune® (Interferon gamma‐1b) for intra‐peritoneal administration in recurrent ovarian cancer. J Transl Med. 16: 196, 2018.
 43.Guilliams M, Dutertre CA, Scott CL, McGovern N, Sichien D, Chakarov S, Van Gassen S, Chen J, Poidinger M, De Prijck S, Tavernier SJ, Low I, Irac SE, Mattar CN, Sumatoh HR, Low GHL, Chung TJK, Chan DKH, Tan KK, Hon TLK, Fossum E, Bogen B, Choolani M, Chan JKY, Larbi A, Luche H, Henri S, Saeys Y, Newell EW, Lambrecht BN, Malissen B, Ginhoux F. Unsupervised high‐dimensional analysis aligns dendritic cells across tissues and species. Immunity 45: 669‐684, 2016.
 44.Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, Goronzy J, Weyand C, Harrison DG. Role of the T cell in the genesis of angiotensin II induced hypertension and vascular dysfunction. J Exp Med 204: 2449‐2460, 2007.
 45.Heart Protection Study Collaborative Group. MRC/BHF heart protection study of antioxidant vitamin supplementation in 20,536 high‐risk individuals: A randomised placebo‐controlled trial. Lancet 360: 23‐33, 2002.
 46.Helft J, Ginhoux F, Bogunovic M, Merad M. Origin and functional heterogeneity of non‐lymphoid tissue dendritic cells in mice. Immunol Rev 234: 55‐75, 2010.
 47.Herrada AA, Contreras FJ, Marini NP, Amador CA, Gonzalez PA, Cortes CM, Riedel CA, Carvajal CA, Figueroa F, Michea LF, Fardella CE, Kalergis AM. Aldosterone promotes autoimmune damage by enhancing Th17‐mediated immunity. J Immunol 184: 191‐202, 2010.
 48.Herrera J, Ferrebuz A, MacGregor EG, Rodriguez‐Iturbe B. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J Am Soc Nephrol 17: S218‐S225, 2006.
 49.Hevia D, Araos P, Prado C, Fuentes Luppichini E, Rojas M, Alzamora R, Cifuentes‐Araneda F, Gonzalez AA, Amador CA, Pacheco R, Michea L. Myeloid CD11c(+) antigen‐presenting cells ablation prevents hypertension in response to angiotensin II plus high‐salt diet. Hypertension 71: 709‐718, 2018.
 50.Heymann F, Meyer‐Schwesinger C, Hamilton‐Williams EE, Hammerich L, Panzer U, Kaden S, Quaggin SE, Floege J, Grone HJ, Kurts C. Kidney dendritic cell activation is required for progression of renal disease in a mouse model of glomerular injury. J Clin Invest 119: 1286‐1297, 2009.
 51.Hirao M, Onai N, Hiroishi K, Watkins SC, Matsushima K, Robbins PD, Lotze MT, Tahara H. CC chemokine receptor‐7 on dendritic cells is induced after interaction with apoptotic tumor cells: Critical role in migration from the tumor site to draining lymph nodes. Cancer Res 60: 2209‐2217, 2000.
 52.Hochheiser K, Engel DR, Hammerich L, Heymann F, Knolle PA, Panzer U, Kurts C. Kidney dendritic cells become pathogenic during crescentic glomerulonephritis with proteinuria. J Am Soc Nephrol 22: 306‐316, 2011.
 53.Hochheiser K, Heuser C, Krause TA, Teteris S, Ilias A, Weisheit C, Hoss F, Tittel AP, Knolle PA, Panzer U, Engel DR, Tharaux PL, Kurts C. Exclusive CX3CR1 dependence of kidney DCs impacts glomerulonephritis progression. J Clin Invest 123: 4242‐4254, 2013.
 54.Hughes GC, Clark EA. Regulation of dendritic cells by female sex steroids: Relevance to immunity and autoimmunity. Autoimmunity 40: 470‐481, 2007.
 55.Itani HA, Xiao L, Saleh MA, Wu J, Pilkinton MA, Dale BL, Barbaro NR, Foss JD, Kirabo A, Montaniel KR, Norlander AE, Chen W, Sato R, Navar LG, Mallal SA, Madhur MS, Bernstein KE, Harrison DG. CD70 exacerbates blood pressure elevation and renal damage in response to repeated hypertensive stimuli. Circ Res 118: 1233‐1243, 2016.
 56.Ito T, Yang M, Wang YH, Lande R, Gregorio J, Perng OA, Qin XF, Liu YJ, Gilliet M. Plasmacytoid dendritic cells prime IL‐10‐producing T regulatory cells by inducible costimulator ligand. J Exp Med 204: 105‐115, 2007.
 57.Jung S, Unutmaz D, Wong P, Sano G, De los Santos K, Sparwasser T, Wu S, Vuthoori S, Ko K, Zavala F, Pamer EG, Littman DR, Lang RA. In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell‐associated antigens. Immunity 17: 211‐220, 2002.
 58.Kaissling B, Le Hir M. Characterization and distribution of interstitial cell types in the renal cortex of rats. Kidney Int 45: 709‐720, 1994.
 59.Kamat NV, Thabet SR, Xiao L, Saleh MA, Kirabo A, Madhur MS, Delpire E, Harrison DG, McDonough AA. Renal transporter activation during angiotensin‐II hypertension is blunted in interferon‐gamma−/− and interleukin‐17A−/− mice. Hypertension 65: 569‐576, 2015.
 60.Kamath AT, Henri S, Battye F, Tough DF, Shortman K. Developmental kinetics and lifespan of dendritic cells in mouse lymphoid organs. Blood 100: 1734‐1741, 2002.
 61.Kassianos AJ, Wang X, Sampangi S, Afrin S, Wilkinson R, Healy H. Fractalkine‐CX3CR1‐dependent recruitment and retention of human CD1c+ myeloid dendritic cells by in vitro‐activated proximal tubular epithelial cells. Kidney Int 87: 1153‐1163, 2015.
 62.Kirabo A, Fontana V, de Faria APC, Loperena R, Galindo CL, Wu J, Bikineyeva AT, Dikalov S, Xiao L, Chen W, Saleh MA, Trott DW, Itani HA, Vinh A, Amarnath V, Amarnath K, Guzik TJ, Bernstein KE, Shen XZ, Shyr Y, Chen S‐C, Mernaugh RL, Laffer CL, Elijovich F, Davies SS, Moreno H, Madhur MS, Roberts J 2nd, Harrison DG. DC isoketal‐modified proteins activate T cells and promote hypertension. J Clin Invest 124: 4642‐4656, 2014.
 63.Ko HJ, Brady JL, Ryg‐Cornejo V, Hansen DS, Vremec D, Shortman K, Zhan Y, Lew AM. GM‐CSF‐responsive monocyte‐derived dendritic cells are pivotal in TH17 pathogenesis. J Immunol 192: 2202‐2209, 2014.
 64.Krüger T, Benke D, Eitner F, Lang A, Wirtz M, Hamilton‐Williams EE, Engel D, Giese B, Muller‐Newen G, Floege J, Kurts C. Identification and functional characterization of dendritic cells in the healthy murine kidney and in experimental glomerulonephritis. J Am Soc Nephrol 15: 613‐621, 2004.
 65.Kubiszewska I, Gackowska L, Obrycki L, Wierzbicka A, Helmin‐Basa A, Kulaga Z, Wiese‐Szadkowska M, Michalkiewicz J, Litwin M. Distribution and maturation state of peripheral blood dendritic cells in children with primary hypertension. Hypertens Res 45: 401‐413, 2022.
 66.Kulkarni OP, Hartter I, Mulay SR, Hagemann J, Darisipudi MN, Kumar Vr S, Romoli S, Thomasova D, Ryu M, Kobold S, Anders HJ. Toll‐like receptor 4‐induced IL‐22 accelerates kidney regeneration. J Am Soc Nephrol 25: 978‐989, 2014.
 67.Leon B, Lopez‐Bravo M, Ardavin C. Monocyte‐derived dendritic cells formed at the infection site control the induction of protective T helper 1 responses against leishmania. Immunity 26: 519‐531, 2007.
 68.Liao J, Yu Z, Chen Y, Bao M, Zou C, Zhang H, Liu D, Li T, Zhang Q, Li J, Cheng J, Mo Z. Single‐cell RNA sequencing of human kidney. Sci Data 7: 4, 2020.
 69.Liao X, Ren J, Reihl A, Pirapakaran T, Sreekumar B, Cecere TE, Reilly CM, Luo XM. Renal‐infiltrating CD11c(+) cells are pathogenic in murine lupus nephritis through promoting CD4(+) T cell responses. Clin Exp Immunol 190: 187‐200, 2017.
 70.Liu J, Zhang X, Cheng Y, Cao X. Dendritic cell migration in inflammation and immunity. Cell Mol Immunol 18: 2461‐2471, 2021.
 71.Liu Y, Rafferty TM, Rhee SW, Webber JS, Song L, Ko B, Hoover RS, He B, Mu S. CD8+ T cells stimulate Na‐Cl co‐transporter NCC in distal convoluted tubules leading to salt‐sensitive hypertension. Nat Commun 8: 14037, 2017.
 72.Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A, Sleight P, Probstfield J, Dagenais GR, HOPE and HOPE‐TOO Trial Investigators. Effects of long‐term vitamin E supplementation on cardiovascular events and cancer: A randomized controlled trial. JAMA 293: 1338‐1347, 2005.
 73.Lonn E, Yusuf S, Dzavik V, Doris C, Yi Q, Smith S, Moore‐Cox A, Bosch J, Riley W, Teo K, Investigators S. Effects of ramipril and vitamin E on atherosclerosis: The study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (secure). Circulation 103: 919‐925, 2001.
 74.Lu X, Rudemiller NP, Privratsky JR, Ren J, Wen Y, Griffiths R, Crowley SD. Classical dendritic cells mediate hypertension by promoting renal oxidative stress and fluid retention. Hypertension 75: 131‐138, 2020.
 75.Lu X, Rudemiller NP, Wen Y, Ren J, Hammer GE, Griffiths R, Privratsky JR, Yang B, Sparks MA, Crowley SD. A20 in myeloid cells protects against hypertension by inhibiting dendritic cell‐mediated T‐cell activation. Circ Res 125: 1055‐1066, 2019.
 76.Ludewig P, Gallizioli M, Urra X, Behr S, Brait VH, Gelderblom M, Magnus T, Planas AM. Dendritic cells in brain diseases. Biochim Biophys Acta 1862: 352‐367, 2016.
 77.Lukacs‐Kornek V, Burgdorf S, Diehl L, Specht S, Kornek M, Kurts C. The kidney‐renal lymph node‐system contributes to cross‐tolerance against innocuous circulating antigen. J Immunol 180: 706‐715, 2008.
 78.Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, Harrison DG. Interleukin 17 promotes angiotensin II‐induced hypertension and vascular dysfunction. Hypertension 55: 500‐507, 2010.
 79.Mantegazza AR, Magalhaes JG, Amigorena S, Marks MS. Presentation of phagocytosed antigens by MHC class I and II. Traffic 14: 135‐152, 2013.
 80.Matsue H, Takashima A. Apoptosis in dendritic cell biology. J Dermatol Sci 20: 159‐171, 1999.
 81.Mattson DL, James L, Berdan EA, Meister CJ. Immune suppression attenuates hypertension and renal disease in the Dahl salt‐sensitive rat. Hypertension 48: 149‐156, 2006.
 82.McKenna HJ, Stocking KL, Miller RE, Brasel K, De Smedt T, Maraskovsky E, Maliszewski CR, Lynch DH, Smith J, Pulendran B, Roux ER, Teepe M, Lyman SD, Peschon JJ. Mice lacking flt3 ligand have deficient hematopoiesis affecting hematopoietic progenitor cells, dendritic cells, and natural killer cells. Blood 95: 3489‐3497, 2000.
 83.Merad M, Collin M, Bromberg J. Dendritic cell homeostasis and trafficking in transplantation. Trends Immunol 28: 353‐359, 2007.
 84.Merad M, Ginhoux F, Collin M. Origin, homeostasis and function of langerhans cells and other langerin‐expressing dendritic cells. Nat Rev Immunol 8: 935‐947, 2008.
 85.Mikolajczyk TP, Nosalski R, Szczepaniak P, Budzyn K, Osmenda G, Skiba D, Sagan A, Wu J, Vinh A, Marvar PJ, Guzik B, Podolec J, Drummond G, Lob HE, Harrison DG, Guzik TJ. Role of chemokine rantes in the regulation of perivascular inflammation, T‐cell accumulation, and vascular dysfunction in hypertension. FASEB J 30: 1987‐1999, 2016.
 86.Mildner A, Jung S. Development and function of dendritic cell subsets. Immunity 40: 642‐656, 2014.
 87.Moschovakis GL, Bubke A, Friedrichsen M, Ristenpart J, Back JW, Falk CS, Kremmer E, Forster R. The chemokine receptor CCR7 is a promising target for rheumatoid arthritis therapy. Cell Mol Immunol 16: 791‐799, 2019.
 88.Moseman EA, Liang X, Dawson AJ, Panoskaltsis‐Mortari A, Krieg AM, Liu YJ, Blazar BR, Chen W. Human plasmacytoid dendritic cells activated by CpG oligodeoxynucleotides induce the generation of CD4+CD25+ regulatory t cells. J Immunol 173: 4433‐4442, 2004.
 89.Muller DN, Shagdarsuren E, Park J‐K, Dechend R, Mervaala E, Hampich F, Fiebeler A, Ju X, Finckenberg P, Theuer J, Viedt C, Kreuzer J, Heidecke H, Haller H, Zenke M, Luft FC. Immunosuppressive treatment protects against angiotensin II‐induced renal damage. Am J Pathol 161: 1679‐1693, 2002.
 90.Nahmod KA, Vermeulen ME, Raiden S, Salamone G, Gamberale R, Fernandez‐Calotti P, Alvarez A, Nahmod V, Giordano M, Geffner JR. Control of dendritic cell differentiation by angiotensin II. FASEB J 17: 491‐493, 2003.
 91.Nakano H, Lin KL, Yanagita M, Charbonneau C, Cook DN, Kakiuchi T, Gunn MD. Blood‐derived inflammatory dendritic cells in lymph nodes stimulate acute T helper type 1 immune responses. Nat Immunol 10: 394‐402, 2009.
 92.Ngwenyama N, Kirabo A, Aronovitz M, Velazquez F, Carrillo‐Salinas F, Salvador AM, Nevers T, Amarnath V, Tai A, Blanton RM, Harrison DG, Alcaide P. Isolevuglandin‐modified cardiac proteins drive CD4+ T‐cell activation in the heart and promote cardiac dysfunction. Circulation 143: 1242‐1255, 2021.
 93.Nie W, Yan H, Li S, Zhang Y, Yu F, Zhu W, Fan F, Zhu J. Angiotensin‐(1‐7) enhances angiotensin II induced phosphorylation of ERK1/2 in mouse bone marrow‐derived dendritic cells. Mol Immunol 46: 355‐361, 2009.
 94.O'Doherty U, Peng M, Gezelter S, Swiggard WJ, Betjes M, Bhardwaj N, Steinman RM. Human blood contains two subsets of dendritic cells, one immunologically mature and the other immature. Immunology 82: 487‐493, 1994.
 95.Ohl L, Mohaupt M, Czeloth N, Hintzen G, Kiafard Z, Zwirner J, Blankenstein T, Henning G, Forster R. CCR7 governs skin dendritic cell migration under inflammatory and steady‐state conditions. Immunity 21: 279‐288, 2004.
 96.Ostchega Y, Fryar CD, Nwankwo T, Nguyen DT. Hypertension prevalence among adults aged 18 and over: United States, 2017‐2018. NCHS Data Brief: 1‐8, 2020.
 97.Parra G, Quiroz Y, Salazar J, Bravo Y, Pons H, Chavez M, Johnson RJ, Rodriguez‐Iturbe B. Experimental induction of salt‐sensitive hypertension is associated with lymphocyte proliferative response to HSP70. Kidney Int Suppl: S55‐S59, 2008.
 98.Plantinga M, Guilliams M, Vanheerswynghels M, Deswarte K, Branco‐Madeira F, Toussaint W, Vanhoutte L, Neyt K, Killeen N, Malissen B, Hammad H, Lambrecht BN. Conventional and monocyte‐derived CD11b(+) dendritic cells initiate and maintain T helper 2 cell‐mediated immunity to house dust mite allergen. Immunity 38: 322‐335, 2013.
 99.Pons H, Ferrebuz A, Quiroz Y, Romero‐Vasquez F, Parra G, Johnson RJ, Rodriguez‐Iturbe B. Immune reactivity to heat shock protein 70 expressed in the kidney is cause of salt‐sensitive hypertension. Am J Physiol Renal Physiol 304: F289‐F299, 2013.
 100.Rathinam C, Sauer M, Ghosh A, Rudolph C, Hegazy A, Schlegelberger B, Welte K, Klein C. Generation and characterization of a novel hematopoietic progenitor cell line with DC differentiation potential. Leukemia 20: 870‐876, 2006.
 101.Reis e Sousa C. Dendritic cells in a mature age. Nat Rev Immunol 6: 476‐483, 2006.
 102.Richmond BW, Mansouri S, Serezani A, Novitskiy S, Blackburn JB, Du RH, Fuseini H, Gutor S, Han W, Schaff J, Vasiukov G, Xin MK, Newcomb DC, Jin L, Blackwell TS, Polosukhin VV. Monocyte‐derived dendritic cells link localized secretory IgA deficiency to adaptive immune activation in COPD. Mucosal Immunol 14: 431‐442, 2021.
 103.Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, Kastelein JJP, Cornel JH, Pais P, Pella D, Genest J, Cifkova R, Lorenzatti A, Forster T, Kobalava Z, Vida‐Simiti L, Flather M, Shimokawa H, Ogawa H, Dellborg M, Rossi PRF, Troquay RPT, Libby P, Glynn RJ, CANTOS Trial Group. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med 377: 1119‐1131, 2017.
 104.Rissoan MC, Soumelis V, Kadowaki N, Grouard G, Briere F, de Waal Malefyt R, Liu YJ. Reciprocal control of T helper cell and dendritic cell differentiation. Science 283: 1183‐1186, 1999.
 105.Rodriguez‐Iturbe B, Pons H, Quiroz Y, Gordon K, Rincon J, Chavez M, Parra G, Herrera‐Acosta J, Gomez‐Garre D, Largo R, Egido J, Johnson RJ. Mycophenolate mofetil prevents salt‐sensitive hypertension resulting from angiotensin II exposure. Kidney Int 59: 2222‐2232, 2001.
 106.Rodriguez‐Iturbe B, Quiroz Y, Nava M, Bonet L, Chavez M, Herrera‐Acosta J, Johnson RJ, Pons HA. Reduction of renal immune cell infiltration results in blood pressure control in genetically hypertensive rats. Am J Physiol Renal Physiol 282: F191‐F201, 2002.
 107.Rothman AM, MacFadyen J, Thuren T, Webb A, Harrison DG, Guzik TJ, Libby P, Glynn RJ, Ridker PM. Effects of interleukin‐1beta inhibition on blood pressure, incident hypertension, and residual inflammatory risk: A secondary analysis of CANTOS. Hypertension 75: 477‐482, 2020.
 108.Sabado RL, Balan S, Bhardwaj N. Dendritic cell‐based immunotherapy. Cell Res 27: 74‐95, 2017.
 109.Scandella E, Men Y, Legler DF, Gillessen S, Prikler L, Ludewig B, Groettrup M. CCL19/CCL21‐triggered signal transduction and migration of dendritic cells requires prostaglandin E2. Blood 103: 1595‐1601, 2004.
 110.Scholz J, Lukacs‐Kornek V, Engel DR, Specht S, Kiss E, Eitner F, Floege J, Groene HJ, Kurts C. Renal dendritic cells stimulate IL‐10 production and attenuate nephrotoxic nephritis. J Am Soc Nephrol 19: 527‐537, 2008.
 111.Schraml BU, van Blijswijk J, Zelenay S, Whitney PG, Filby A, Acton SE, Rogers NC, Moncaut N, Carvajal JJ, Reis e Sousa C. Genetic tracing via DNGR‐1 expression history defines dendritic cells as a hematopoietic lineage. Cell 154: 843‐858, 2013.
 112.Segerer S, Heller F, Lindenmeyer MT, Schmid H, Cohen CD, Draganovici D, Mandelbaum J, Nelson PJ, Grone HJ, Grone EF, Figel AM, Nossner E, Schlondorff D. Compartment specific expression of dendritic cell markers in human glomerulonephritis. Kidney Int 74: 37‐46, 2008.
 113.Segerer SE, Muller N, van den Brandt J, Kapp M, Dietl J, Reichardt HM, Rieger L, Kammerer U. Impact of female sex hormones on the maturation and function of human dendritic cells. Am J Reprod Immunol 62: 165‐173, 2009.
 114.Segura E, Amigorena S. Inflammatory dendritic cells in mice and humans. Trends Immunol 34: 440‐445, 2013.
 115.Serra HM, Eberhard Y, Martin AP, Gallino N, Gagliardi J, Baena‐Cagnani CE, Lascano AR, Ortiz S, Mariani AL, Uguccioni M. Secondary lymphoid tissue chemokine (CCL21) is upregulated in allergic contact dermatitis. Int Arch Allergy Immunol 133: 64‐71, 2004.
 116.Soos TJ, Sims TN, Barisoni L, Lin K, Littman DR, Dustin ML, Nelson PJ. CX3CR1+ interstitial dendritic cells form a contiguous network throughout the entire kidney. Kidney Int 70: 591‐596, 2006.
 117.SPRINT Research Group, Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, Reboussin DM, Rahman M, Oparil S, Lewis CE, Kimmel PL, Johnson KC, Goff DC Jr, Fine LJ, Cutler JA, Cushman WC, Cheung AK, Ambrosius WT. A randomized trial of intensive versus standard blood‐pressure control. N Engl J Med 373: 2103‐2116, 2015.
 118.Sriramula S, Haque M, Majid DS, Francis J. Involvement of tumor necrosis factor‐alpha in angiotensin II‐mediated effects on salt appetite, hypertension, and cardiac hypertrophy. Hypertension 51: 1345‐1351, 2008.
 119.Steinman RM. Decisions about dendritic cells: Past, present, and future. Annu Rev Immunol 30: 1‐22, 2012.
 120.Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137: 1142‐1162, 1973.
 121.Stewart BJ, Ferdinand JR, Young MD, Mitchell TJ, Loudon KW, Riding AM, Richoz N, Frazer GL, Staniforth JUL, Vieira Braga FA, Botting RA, Popescu DM, Vento‐Tormo R, Stephenson E, Cagan A, Farndon SJ, Polanski K, Efremova M, Green K, Del Castillo Velasco‐Herrera M, Guzzo C, Collord G, Mamanova L, Aho T, Armitage JN, Riddick ACP, Mushtaq I, Farrell S, Rampling D, Nicholson J, Filby A, Burge J, Lisgo S, Lindsay S, Bajenoff M, Warren AY, Stewart GD, Sebire N, Coleman N, Haniffa M, Teichmann SA, Behjati S, Clatworthy MR. Spatiotemporal immune zonation of the human kidney. Science 365: 1461‐1466, 2019.
 122.Suryaprabha P, Padma T, Rao UB. Increased serum IgG levels in essential hypertension. Immunol Lett 8: 143‐145, 1984.
 123.Swiecki M, Colonna M. The multifaceted biology of plasmacytoid dendritic cells. Nat Rev Immunol 15: 471‐485, 2015.
 124.Tadagavadi RK, Reeves WB. Renal dendritic cells ameliorate nephrotoxic acute kidney injury. J Am Soc Nephrol 21: 53‐63, 2010.
 125.Tal O, Lim HY, Gurevich I, Milo I, Shipony Z, Ng LG, Angeli V, Shakhar G. DC mobilization from the skin requires docking to immobilized CCL21 on lymphatic endothelium and intralymphatic crawling. J Exp Med 208: 2141‐2153, 2011.
 126.ten Broeke T, Wubbolts R, Stoorvogel W. MHC class II antigen presentation by dendritic cells regulated through endosomal sorting. Cold Spring Harb Perspect Biol 5: a016873, 2013.
 127.Thomas JM, Ling YH, Huuskes B, Jelinic M, Sharma P, Saini N, Ferens DM, Diep H, Krishnan SM, Kemp‐Harper BK, O'Connor PM, Latz E, Arumugam TV, Guzik TJ, Hickey MJ, Mansell A, Sobey CG, Vinh A, Drummond GR. IL‐18 (interleukin‐18) produced by renal tubular epithelial cells promotes renal inflammation and injury during deoxycorticosterone/salt‐induced hypertension in mice. Hypertension 78: 1296‐1309, 2021.
 128.Thomopoulos C, Parati G, Zanchetti A. Effects of blood pressure‐lowering treatment on cardiovascular outcomes and mortality: 14 ‐ Effects of different classes of antihypertensive drugs in older and younger patients: Overview and meta‐analysis. J Hypertens 36: 1637‐1647, 2018.
 129.Tian N, Gu JW, Jordan S, Rose RA, Hughson MD, Manning RD Jr. Immune suppression prevents renal damage and dysfunction and reduces arterial pressure in salt‐sensitive hypertension. Am J P Heart Circ Physiol 292: H1018‐H1025, 2007.
 130.Till KJ, Lin K, Zuzel M, Cawley JC. The chemokine receptor CCR7 and alpha4 integrin are important for migration of chronic lymphocytic leukemia cells into lymph nodes. Blood 99: 2977‐2984, 2002.
 131.Tittel AP, Heuser C, Ohliger C, Knolle PA, Engel DR, Kurts C. Kidney dendritic cells induce innate immunity against bacterial pyelonephritis. J Am Soc Nephrol 22: 1435‐1441, 2011.
 132.Tittel AP, Heuser C, Ohliger C, Llanto C, Yona S, Hammerling GJ, Engel DR, Garbi N, Kurts C. Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nat Methods 9: 385‐390, 2012.
 133.Trombetta ES, Ebersold M, Garrett W, Pypaert M, Mellman I. Activation of lysosomal function during dendritic cell maturation. Science 299: 1400‐1403, 2003.
 134.Umemoto E, Otani K, Ikeno T, Verjan Garcia N, Hayasaka H, Bai Z, Jang MH, Tanaka T, Nagasawa T, Ueda K, Miyasaka M. Constitutive plasmacytoid dendritic cell migration to the splenic white pulp is cooperatively regulated by CCR7‐ and CXCR4‐mediated signaling. J Immunol 189: 191‐199, 2012.
 135.Van Beusecum JP, Barbaro NR, McDowell Z, Aden LA, Xiao L, Pandey AK, Itani HA, Himmel LE, Harrison DG, Kirabo A. High salt activates CD11c(+) antigen‐presenting cells via SGK (serum glucocorticoid kinase) 1 to promote renal inflammation and salt‐sensitive hypertension. Hypertension 74: 555‐563, 2019.
 136.Vanbervliet B, Bendriss‐Vermare N, Massacrier C, Homey B, de Bouteiller O, Briere F, Trinchieri G, Caux C. The inducible CXCR3 ligands control plasmacytoid dendritic cell responsiveness to the constitutive chemokine stromal cell‐derived factor 1 (SDF‐1)/CXCL12. J Exp Med 198: 823‐830, 2003.
 137.Vinh A, Chen W, Blinder Y, Weiss D, Taylor WR, Goronzy JJ, Weyand CM, Harrison DG, Guzik TJ. Inhibition and genetic ablation of the B7/CD28 T‐cell costimulation axis prevents experimental hypertension. Circulation 122: 2529‐2537, 2010.
 138.Wade B, Petrova G, Mattson DL. Role of immune factors in angiotensin II‐induced hypertension and renal damage in Dahl salt‐sensitive rats. Am J Physiol Regul Integr Comp Physiol 314: R323‐R333, 2018.
 139.Wang R, Chen T, Wang C, Zhang Z, Wang XM, Li Q, Lee VWS, Wang YM, Zheng G, Alexander SI, Wang Y, Harris DCH, Cao Q. Flt3 inhibition alleviates chronic kidney disease by suppressing CD103+ dendritic cell‐mediated T cell activation. Nephrol Dial Transplant 34: 1853‐1863, 2019.
 140.Weidenbusch M, Song S, Iwakura T, Shi C, Rodler S, Kobold S, Mulay SR, Honarpisheh MM, Anders HJ. IL‐22 sustains epithelial integrity in progressive kidney remodeling and fibrosis. Physiol Rep 6: e13817, 2018.
 141.Wen Y, Rudemiller NP, Zhang J, Lu X, Ren J, Privratsky JR, Griffiths R, Zhang JJ, Hammer GE, Crowley SD. C‐C motif chemokine receptor 7 exacerbates hypertension through effects on T lymphocyte trafficking. Hypertension 75: 869‐876, 2020.
 142.Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, Karbach SH, Schwenk M, Yogev N, Schulz E, Oelze M, Grabbe S, Jonuleit H, Becker C, Daiber A, Waisman A, Munzel T. Lysozyme M‐positive monocytes mediate angiotensin II‐induced arterial hypertension and vascular dysfunction. Circulation 124: 1370‐1381, 2011.
 143.Wenzel U, Turner JE, Krebs C, Kurts C, Harrison DG, Ehmke H. Immune mechanisms in arterial hypertension. J Am Soc Nephrol 27: 677‐686, 2016.
 144.Woltman AM, de Fijter JW, Zuidwijk K, Vlug AG, Bajema IM, van der Kooij SW, van Ham V, van Kooten C. Quantification of dendritic cell subsets in human renal tissue under normal and pathological conditions. Kidney Int 71: 1001‐1008, 2007.
 145.Worbs T, Hammerschmidt SI, Forster R. Dendritic cell migration in health and disease. Nat Rev Immunol 17: 30‐48, 2017.
 146.Wu J, Saleh MA, Kirabo A, Itani HA, Montaniel KR, Xiao L, Chen W, Mernaugh RL, Cai H, Bernstein KE, Goronzy JJ, Weyand CM, Curci JA, Barbaro NR, Moreno H, Davies SS, Roberts LJ 2nd, Madhur MS, Harrison DG. Immune activation caused by vascular oxidation promotes fibrosis and hypertension. J Clin Invest 126: 1607, 2016.
 147.Wu L, Wei Q, Brzostek J, Gascoigne NRJ. Signaling from T cell receptors (TCRs) and chimeric antigen receptors (CARs) on T cells. Cell Mol Immunol 17: 600‐612, 2020.
 148.Xiao L, Kirabo A, Wu J, Saleh MA, Zhu L, Wang F, Takahashi T, Loperena R, Foss JD, Mernaugh RL, Chen W, Roberts J 2nd, Osborn JW, Itani HA, Harrison DG. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II‐induced hypertension. Circ Res 117: 547‐557, 2015.
 149.Yin Y, Wang M, Liu M, Zhou E, Ren T, Chang X, He M, Zeng K, Guo Y, Wu J. Efficacy and safety of IL‐17 inhibitors for the treatment of ankylosing spondylitis: A systematic review and meta‐analysis. Arthritis Res Ther 22: 111, 2020.
 150.Yoneyama H, Matsuno K, Zhang Y, Nishiwaki T, Kitabatake M, Ueha S, Narumi S, Morikawa S, Ezaki T, Lu B, Gerard C, Ishikawa S, Matsushima K. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int Immunol 16: 915‐928, 2004.
 151.Yoon PW, Gillespie CD, George MG, Wall HK, Centers for Disease Control and Prevention (CDC). Control of hypertension among adults–National Health and Nutrition Examination Survey, United States, 2005‐2008. MMWR Suppl 61: 19‐25, 2012.
 152.Yu X, Yang Z, Yu M. Correlation of tumor necrosis factor alpha and interleukin 6 with hypertensive renal damage. Ren Fail 32: 475‐479, 2010.
 153.Zhang J, Patel MB, Griffiths R, Mao A, Song YS, Karlovich NS, Sparks MA, Jin H, Wu M, Lin EE, Crowley SD. Tumor necrosis factor‐alpha produced in the kidney contributes to angiotensin II‐dependent hypertension. Hypertension 64: 1275‐1281, 2014.
 154.Zhang W, Wang W, Yu H, Zhang Y, Dai Y, Ning C, Tao L, Sun H, Kellems RE, Blackburn MR, Xia Y. Interleukin 6 underlies angiotensin II‐induced hypertension and chronic renal damage. Hypertension 59: 136‐144, 2012.
 155.Zigmond E, Varol C, Farache J, Elmaliah E, Satpathy AT, Friedlander G, Mack M, Shpigel N, Boneca IG, Murphy KM, Shakhar G, Halpern Z, Jung S. Ly6Chi monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen‐presenting cells. Immunity 37: 1076‐1090, 2012.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Xiaohan Lu, Steven D. Crowley. Actions of Dendritic Cells in the Kidney during Hypertension. Compr Physiol 2022, 12: 4087-4101. doi: 10.1002/cphy.c210050