Comprehensive Physiology Wiley Online Library

The Mouse‐To‐Elephant Metabolic Curve: Historical Overview

Full Article on Wiley Online Library



Abstract

Although it is intuitive that large mammals need more food than smaller ones, it is not so obvious that, relative to their body mass, larger mammals consume less than smaller ones. In fact, on a per kg basis, the resting metabolic rate of a mouse is some 50 times higher than that of an elephant. The fact that metabolism could not be proportional to the mass of the animal was suggested by Sarrus and Rameaux in 1838. The first indication that oxygen consumption (or other indices of metabolic rate, Y) related to the animal body mass (M) according to an exponential of the type Y = a · Mb, where b was about 0.75, was presented by Max Kleiber in 1932. Two years later Samuel Brody had collected sufficient data to construct the first “mouse‐to‐elephant” metabolic curve. The physiological basis of the relationship has been the object of many hypotheses, often accompanied by a great deal of controversy. This historical essay traces the origin of the mouse‐to‐elephant metabolic function, recalling the earliest concepts of metabolism and its measurements to understand the body size dependency, which is still one of the most elusive phenomena in comparative physiology. A brief look at the metabolic scaling of nonmammalian organisms will be included to frame the mouse‐to‐elephant curve into a broader context and to introduce some interesting interpretations of the mammalian function. © 2023 American Physiological Society. Compr Physiol 13:4513‐4558, 2023.

Figure 1. Figure 1. Santorio Sanctorius (1561–1636). Reused, with permission, from History and Art Collection/Alamy Images.
Figure 2. Figure 2. Germain Hess (1802–1850). Reused, with permission, from /Wikimedia Commons/Public domain.
Figure 3. Figure 3. August Krogh (1874–1949). Reused, with permission, from A. B. Lagrelius/Wikimedia Commons/Public domain.
Figure 4. Figure 4. D'Arcy Wentworth Thompson (1860–1948) and some of his geometric transformations.
Figure 5. Figure 5. Georges Teissier (1900–1972).
Figure 6. Figure 6. (A) Allometric relations in absolute values (Y = Mb) or (B) mass‐specific values (Y/M = Mb) for volumes, areas, and linear dimensions.
Figure 7. Figure 7. Pierre Frédéric Sarrus (1798–1861). Reused, with permission, from Unknown Source/Wikimedia Commons/Public domain.
Figure 8. Figure 8. Thermographs of a Patagonian mara (A) and a White rhinoceros (B) at approximately 21°C ambient temperature. At top are the corresponding standard digital pictures. Note the differences in radiant temperature among body surface regions. Reused, with permission, from Mortola JP, The Zoological Society of Japan. 2013 163.
Figure 9. Figure 9. Body temperature (top) and body surface radiant temperature (at the ambient temperatures Ta of about 21, 23.5, and 26°C) in mammals of different body size. Each symbol is the average value of a species. Reused, with permission, from Mortola JP, The Zoological Society of Japan. 2013 163.
Figure 10. Figure 10. (A) Samuel A. Brody (1890–1956). (B) The allometric plot of metabolism covered the range in body size from mouse to elephant. Reused, with permission, from Brody S, et al., Curators of the University of Missouri. 1934 35.
Figure 11. Figure 11. (A) Francis G. Benedict (1870–1957). Reused, with permission, from Unknown Source/Wikimedia Commons/CC BY 4.0. (B) Figure 44 from Benedict's monograph “Vital Energetics”. The units of the Y‐axis are Cal/m2 surface area. Reused, with permission, from Benedict FG, Carnegie Inst. Washington Publication. 1938 20.
Figure 12. Figure 12. Double‐log plot of oxygen consumption against body mass in eutherian species. Dashed line indicates the best fit through all species. Red and blue symbols refer to species with body weight, respectively, smaller or greater than 100 g. Constructed by combining the lists compiled by Brody 35, Benedict 20, Hayssen and Lacy 91, Elgar and Harvey 58, Frappell et al. 70, and White and Seymour 247.
Figure 13. Figure 13. Allometric plot (double‐log representation) of oxygen consumption (mL/min) against body mass (M, kg) for 65 species of nonpasserines (blue circles) and 62 species of passerines (red triangles). The dashed lines are the extrapolated linear regressions through the data points, the slope of which is indicated in brackets. The thicker black continuous line is the linear regression through all bird species combined (M0.67). Adapted, with permission, from McKechnie AE and Wolf BO, Physiol Biochem Zool. 2004 149.
Figure 14. Figure 14. The slopes of the regression lines of the three groups of organisms (0.75 for all) were parallel to each other, with the intercept becoming progressively higher from unicellular, to poikilotherms, to homeotherms. Reused, with permission, from Hemmingsen AM, ScienceOpen, Inc. 1960 95.
Figure 15. Figure 15. Otto Heinrich Warburg (1883–1970). Reused, with permission, from Georg Pahl/Wikimedia Commons/CC BY‐SA 3.0.
Figure 16. Figure 16. Allometric curve of the surface areas (solid lines) of summated organs (liver, kidney, brain, and heart) and of the summated organs plus skeletal muscles. The two dashed lines are the allometric curves of resting and maximal oxygen consumption (V˙O2) for the species studied. Adapted, with permission, from Else PL and Hulbert AJ, Am J Physiol. 1985 60.
Figure 17. Figure 17. Diagram of the multi‐contributor model of metabolic allometry proposed by Darveau et al. 48. Each contributor to energy demand (left) and supply (right) has its own allometric scaling (intercept c and slope b in Eq. 16); their individual c and b can vary depending on extrinsic and intrinsic regulation. ATP‐utilizing processes can be considered linked in parallel, while the supply processes are linked in series. Reused, with permission, Hochachka PW, et al. Comp Biochem Physiol A. 2003/Elsevier 99.


Figure 1. Santorio Sanctorius (1561–1636). Reused, with permission, from History and Art Collection/Alamy Images.


Figure 2. Germain Hess (1802–1850). Reused, with permission, from /Wikimedia Commons/Public domain.


Figure 3. August Krogh (1874–1949). Reused, with permission, from A. B. Lagrelius/Wikimedia Commons/Public domain.


Figure 4. D'Arcy Wentworth Thompson (1860–1948) and some of his geometric transformations.


Figure 5. Georges Teissier (1900–1972).


Figure 6. (A) Allometric relations in absolute values (Y = Mb) or (B) mass‐specific values (Y/M = Mb) for volumes, areas, and linear dimensions.


Figure 7. Pierre Frédéric Sarrus (1798–1861). Reused, with permission, from Unknown Source/Wikimedia Commons/Public domain.


Figure 8. Thermographs of a Patagonian mara (A) and a White rhinoceros (B) at approximately 21°C ambient temperature. At top are the corresponding standard digital pictures. Note the differences in radiant temperature among body surface regions. Reused, with permission, from Mortola JP, The Zoological Society of Japan. 2013 163.


Figure 9. Body temperature (top) and body surface radiant temperature (at the ambient temperatures Ta of about 21, 23.5, and 26°C) in mammals of different body size. Each symbol is the average value of a species. Reused, with permission, from Mortola JP, The Zoological Society of Japan. 2013 163.


Figure 10. (A) Samuel A. Brody (1890–1956). (B) The allometric plot of metabolism covered the range in body size from mouse to elephant. Reused, with permission, from Brody S, et al., Curators of the University of Missouri. 1934 35.


Figure 11. (A) Francis G. Benedict (1870–1957). Reused, with permission, from Unknown Source/Wikimedia Commons/CC BY 4.0. (B) Figure 44 from Benedict's monograph “Vital Energetics”. The units of the Y‐axis are Cal/m2 surface area. Reused, with permission, from Benedict FG, Carnegie Inst. Washington Publication. 1938 20.


Figure 12. Double‐log plot of oxygen consumption against body mass in eutherian species. Dashed line indicates the best fit through all species. Red and blue symbols refer to species with body weight, respectively, smaller or greater than 100 g. Constructed by combining the lists compiled by Brody 35, Benedict 20, Hayssen and Lacy 91, Elgar and Harvey 58, Frappell et al. 70, and White and Seymour 247.


Figure 13. Allometric plot (double‐log representation) of oxygen consumption (mL/min) against body mass (M, kg) for 65 species of nonpasserines (blue circles) and 62 species of passerines (red triangles). The dashed lines are the extrapolated linear regressions through the data points, the slope of which is indicated in brackets. The thicker black continuous line is the linear regression through all bird species combined (M0.67). Adapted, with permission, from McKechnie AE and Wolf BO, Physiol Biochem Zool. 2004 149.


Figure 14. The slopes of the regression lines of the three groups of organisms (0.75 for all) were parallel to each other, with the intercept becoming progressively higher from unicellular, to poikilotherms, to homeotherms. Reused, with permission, from Hemmingsen AM, ScienceOpen, Inc. 1960 95.


Figure 15. Otto Heinrich Warburg (1883–1970). Reused, with permission, from Georg Pahl/Wikimedia Commons/CC BY‐SA 3.0.


Figure 16. Allometric curve of the surface areas (solid lines) of summated organs (liver, kidney, brain, and heart) and of the summated organs plus skeletal muscles. The two dashed lines are the allometric curves of resting and maximal oxygen consumption (V˙O2) for the species studied. Adapted, with permission, from Else PL and Hulbert AJ, Am J Physiol. 1985 60.


Figure 17. Diagram of the multi‐contributor model of metabolic allometry proposed by Darveau et al. 48. Each contributor to energy demand (left) and supply (right) has its own allometric scaling (intercept c and slope b in Eq. 16); their individual c and b can vary depending on extrinsic and intrinsic regulation. ATP‐utilizing processes can be considered linked in parallel, while the supply processes are linked in series. Reused, with permission, Hochachka PW, et al. Comp Biochem Physiol A. 2003/Elsevier 99.
References
 1.Abzhanov A. The old and new faces of morphology: The legacy of D'Arcy Thompson's ‘theory of transformations’ and ‘laws of growth’. Development 144: 4284‐4297, 2017. DOI: 10.1242/dev.137505.
 2.Agutter PS, Wheatley DN. Metabolic scaling: Consensus or controversy? Theor Biol Med Model 1‐13, 2004. DOI: 10.1186/1742‐4682‐1‐13.
 3.Aiello LC, Wheeler P. The expensive‐tissue hypothesis. The brain and the digestive system in human and primate evolution. Curr Anthropol 36: 199‐221, 1995. https://www.jstor.org/stable/2744104.
 4.Akmal M, Zulkifle M, Ansari AH. Ibn Nafis ‐ A forgotten genius in the discovery of pulmonary blood circulation. Heart Views 11: 26‐30, 2010. PMID: 21042463.
 5.Alexander RMN, Jayes AS, Maloiy GMO, Wathuta EM. Allometry of the leg muscles of mammals. J Zool 194: 539‐552, 1981. DOI:doi.org/10.1111/j.1469‐7998.1981.tb04600.x.
 6.Andrews RM, Pough FH. Metabolism of squamate reptiles. Allometric and ecological relationships. Physiol Zool 58: 214‐231, 1985. DOI: 10.1086/physzool.58.2.30158569.
 7.Anken RH, Rahmann H. Gravitational zoology: How animals use and cope with gravity. In: Horneck G, Baumstark‐Khan C, editors. Astrobiology. Berlin, Heidelberg: Springer, 2002. [online ISBN 978‐3‐642‐59381‐9].
 8.Arthur W. D'Arcy Thompson and the theory of transformations. Nat Rev Genet 7: 401‐406, 2006. DOI: 10.1038/nrg1835.
 9.Aschoff J, Pohl H. Rhythmic variations in energy metabolism. Fed Proc 29: 1541‐1552, 1970. PMID: 5459903.
 10.Atanasov AT, Dimitrov BD. Changes of the power coefficient in the ‘metabolism‐mass’ relationship in the evolutionary process of animals. Biosystems 66: 65‐71, 2002. DOI: 10.1016/s0303‐2647(02)00034‐5.
 11.Bai L, Huang B, Chen Y, Zhao S, Fan J, Liu E. Determination of body surface area in Japanese white rabbits. Scand J Lab An Sci 43: 1‐9, 2017. DOI: 10.23675/sjlas.v43i0.442.
 12.Banavar JR, Damuth J, Maritan A, Rinaldo A. Allometric cascades. Nature 421: 713‐714, 2003. DOI: 10.1038/421713b.
 13.Banavar JR, Maritan A, Rinaldo A. Size and form in efficient transportation networks. Nature 399: 130‐132, 1999. DOI: 10.1038/20144.
 14.Barenblatt GI, Monin AS. Similarity principles for the biology of pelagic animals. Proc Natl Acad Sci USA 80: 3540‐3542, 1983. DOI: 10.1073/pnas.80.11.3540.
 15.Bartels H. Metabolic rate of mammals equals the 0.75 power of their body weight. Exp Biol Med 7: 1‐11, 1982.
 16.Bartholomew GA, Casey TM. Body temperature and oxygen consumption during rest and activity in relation to body size in some tropical beetles. J Therm Biol 2: 173‐176, 1977. DOI: 10.1016/0306‐4565(77)90026‐2.
 17.Bartholomew GA, Tucker VA. Size, body temperature, thermal conductance, oxygen consumption, and heart rate in Australian varanid lizards. Physiol Zool 37: 341‐354, 1964. https://www.jstor.org/stable/30152753.
 18.Batterham AM, Tolfrey K, George KP. Nevill's explanation of Kleiber's 0.75 mass exponent: An artifact of collinearity problems in least squares models? J Appl Physiol 82: 693‐697, 1997. DOI: 10.1152/jappl.1997.82.2.693.
 19.Benedict FG. Some techniques for measurement of the gaseous metabolism of humans. Boston Med Surg J 193: 807‐825, 1925.
 20.Benedict FG, Vital energetics. A Study in Comparative Basal Metabolism. Washington, D.C., publication # 503: Carnegie Inst., 1938, p. 215.
 21.Bennett AF, Dawson WR. Metabolism. In: Gans C, Dawson WR, editors. Biology of the Reptilia. New York, NY, ch 3: Academic Press, vol. 5 Physiology, 1976, p. 127‐233. ISBN: 0122746058.
 22.Bennett P, Harvey P. Active and resting metabolism in birds ‐ allometry, phylogeny and ecology. J Zool 213: 327‐363, 1987. DOI: 10.1111/j.1469‐7998.1987.tb03708.x.
 23.Bertalanffy L, Estwick RR. Tissue respiration of musculature in relation to body size. Am J Phys 173: 58‐60, 1953. DOI: 10.1152/ajplegacy.1953.173.1.58.
 24.Bertalanffy L, Pirozynski WJ. Tissue respiration, growth, and basal metabolism. Biol Bull 105: 240‐256, 1953. DOI: 10.2307/1538640.
 25.Biewener AA. Animal Locomotion. Oxford: Oxford Univ Press, 2003. ISBN: 019850022.
 26.Bishop CM. The maximum oxygen consumption and aerobic scope of birds and mammals: Getting to the heart of the matter. Proc R Soc Lond B 266: 2275‐2281, 1999. DOI: 10.1098/rspb.1999.0919.
 27.Björklund M. Are “comparative methods” always necessary? Oikos 80: 607‐612, 1997. DOI: 10.2307/3546637.
 28.Blaxter K. Energy Metabolism in Animals and Man. Cambridge: Cambridge Univ. Press, 1989, p. 336. ISBN: 9780521369312.
 29.Blum JJ. On the geometry of four‐dimensions and the relationship between metabolism and body mass. J Theor Biol 64: 599‐601, 1977. DOI: 10.1016/0022‐5193(77)90292‐2.
 30.Boggs DF, Tenney SM. Scaling respiratory pattern and respiratory ‘drive’. Respir Physiol 58: 245‐251, 1984. DOI: 10.1016/0034‐5687(84)90001‐x.
 31.Bokma F. Evidence against universal metabolic allometry. Funct Ecol 18: 184‐187, 2004. DOI: 10.1111/j.0269‐8463.2004.00817.x.
 32.Bowes HM, Burdon CA, Peoples GE, Notley SR, Taylor NAS. Scaling the peak and steady‐state aerobic power of running and walking humans. Eur J Appl Physiol 121: 2925‐2938, 2021. DOI: 10.1007/s00421‐021‐04759‐5.
 33.Brody S. Bioenergetics and Growth with Special Reference to the Efficiency Complex in Domestic Animals. New York, NY: Reinhold Pub. Corp, 1945, p. 1023.
 34.Brody S, Procter RC. Growth and development with special reference to domestic animals. XXIII. Relation between basal metabolism and mature body weight in different species of mammals and birds. Res Bull (Univ Missouri Agric Exp Station) 166: 89‐101, 1932.
 35.Brody S, Procter RC, Ashworth US. Growth and development with special reference to domestic animals. XXXIV. Basal metabolism, endogenous nitrogen, creatinine and neutral sulphur excretions as functions of body weight. Res Bull (Univ Missouri Agric Exp Station) 220: 1‐40, 1934.
 36.Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology 85: 1771‐1789, 2004. DOI: 10.1890/03‐9000.
 37.Brown JH, West GB, Enquist BJ. Yes, West, Brown and Enquist's model of allometric scaling is both mathematically correct and biologically relevant. Funct Ecol 19: 735‐738, 2005. DOI: 10.1111/j.1365‐2435.2005.01022.x.
 38.Brown MF, Gratton TP, Stuart JA. Metabolic rate does not scale with body mass in cultured mammalian cells. Am J Phys 292: R2115‐R2121, 2007. DOI: 10.1152/ajpregu.00568.2006.
 39.Butler JP, Feldman HA, Fredberg JJ. Dimensional analysis does not determine a mass exponent for metabolic scaling. Am J Phys 253: R195‐R199, 1987. DOI: 10.1152/ajpregu.1987.253.1.R195.
 40.Butler PJ, Green JA, Boyd IL, Speakman JR. Measuring metabolic rate in the field: The pros and cons of the doubly‐labelled water and heart rate methods. Funct Ecol 18: 168‐183, 2004. DOI: 10.1111/j.0269‐8463.2004.00821.x.
 41.Calder WA. Size, Function, and Life History. Cambridge, MA: Harvard University Press, 1984, p. 448. ISBN: 0486691918.
 42.Calder WA. Scaling energetics of homeothermic vertebrates: An operational allometry. Annu Rev Physiol 49: 107‐120, 1987. DOI: 10.1146/annurev.ph.49.030187.000543.
 43.Chaui‐Berlinck JG. A critical understanding of the fractal model of metabolic scaling. J Exp Biol 209: 3045‐3054, 2006. DOI: 10.1242/jeb.02362.
 44.Chown SL, Marais E, Terblanche JS, Klok CJ, Lighton JRB, Blackburn TM. Scaling of insect metabolic rate is inconsistent with the nutrient supply network model. Funct Ecol 21: 282‐290, 2007. DOI: 10.1111/j.1365‐2435.2007.01245.x.
 45.Coelho JR, Moon AJ. Allometry of resting metabolic rate in cockroaches. Comp Biochem Physiol A 94: 587‐590, 1989. DOI: 10.1016/0300‐9629(89)90598‐7.
 46.Coulson RA. Metabolic rate and the flow theory: A study in chemical engineering. Comp Biochem Physiol A 84: 217‐229, 1986. DOI: 10.1016/0300‐9629(86)90607‐9.
 47.Couture P, Hulbert AJ. Relationship between body mass, tissue metabolic rate, and sodium pump activity in mammalian liver and kidney. Am J Phys 268: R641‐R650, 1995. DOI: 10.1152/ajpregu.1995.268.3.R641.
 48.Darveau CA, Suarez RK, Andrews RD, Hochachka PW. Allometric cascade as a unifying principle of body mass effects on metabolism. Nature 417: 166‐170, 2002. DOI: 10.1038/417166a.
 49.Darveau CA, Suarez RK, Andrews RD, Hochachka PW. Darveau et al. reply. Nature 421: 714, 2003. DOI: 10.1038/421714a.
 50.Dawson TJ, Hulbert AJ. Standard metabolism, body temperature, and surface area of Australian marsupials. Am J Phys 218: 1233‐1238, 1970. DOI: 10.1152/ajplegacy.1970.218.4.1233.
 51.Demetrius L. Directionality theory and the evolution of body size. Proc R Soc Lond B 267: 2385‐2391, 2000. DOI: 10.1098/rspb.2000.1295.
 52.Depocas F, Hart JS. Use of the Pauling oxygen analyzer for measurement of oxygen consumption of animals in open‐circuit systems and in a short‐lag, closed‐circuit apparatus. J Appl Physiol 10: 388‐392, 1957. DOI: 10.1152/jappl.1957.10.3.388.
 53.Dodds PS, Rothman DH, Weitz JS. Re‐examination of the “3/4‐law” of metabolism. J Theor Biol 209: 9‐27, 2001. DOI: 10.1006/jtbi.2000.2238.
 54.Dreyer O. Allometric scaling and central source systems. Phys Rev Lett 87: 038101, 2001. DOI: 10.1103/PhysRevLett.87.038101.
 55.Dreyer O, Puzio R. Allometric scaling in animals and plants. J Math Biol 43: 144‐156, 2001. DOI: 10.1007/s002850170001.
 56.Economos AC. Gravity, metabolic rate and body size of mammals. Physiologist 22: S71‐S72, 1979. PMID: 120950.
 57.Eknoyan G. Santorio Sanctorius (1561–1636) ‐ Founding father of metabolic balance studies. Am J Nephrol 19: 226‐233, 1999. DOI: 10.1159/000013455.
 58.Elgar MA, Harvey PH. Basal metabolic rates in mammals: Allometry, phylogeny and ecology. Funct Ecol 1: 25‐36, 1987. DOI: 10.2307/2389354.
 59.Else PL, Brand MD, Turner N, Hulbert AJ. Respiration rate of hepatocytes varies with body mass in birds. J Exp Biol 207: 2305‐2311, 2004. DOI: 10.1242/jeb.01017.
 60.Else PL, Hulbert AJ. Mammals: An allometric study of metabolism at tissue and mitochondrial level. Am J Phys 248: R415‐R421, 1985. DOI: 10.1152/ajpregu.1985.248.4.R415.
 61.Etienne RS, Apol MEF, Olff H. Demystifying the West, Brown & Enquist model of the allometry of metabolism. Funct Ecol 20: 394‐399, 2006. DOI: 10.1111/j.1365‐2435.2006.01136.x.
 62.Farrell‐Gray CC, Gotelli NJ. Allometric exponents support a 3/4‐power scaling law. Ecology 86: 2083‐2087, 2005. https://www.jstor.org/stable/3450918.
 63.Feder ME. Oxygen consumption and body temperature in neotropical and temperate zone lungless salamanders (Amphibia: Plethodontidae). J Comp Physiol 110: 197‐208, 1976. DOI: 10.1007/BF00689308.
 64.Feldman HA, McMahon TA. The 3/4 mass exponent for energy metabolism is not a statistical artifact. Respir Physiol 52: 149‐163, 1983. DOI: 10.1016/0034‐5687(83)90002‐6.
 65.Felsenstein J. Phylogenies and comparative method. Am Nat 125: 1‐15, 1985. https://www.jstor.org/stable/2461605.
 66.Fenby DV. Heat: Its measurement from Galileo to Lavoisier. Pure Appl Chem 59: 91‐100, 1987. DOI: 10.1351/pac198759010091.
 67.Fenchel T, Finlay BJ. Respiration rates in heterotrophic, free‐living protozoa. Microb Ecol 9: 99‐122, 1983. DOI: 10.1007/BF02015125.
 68.Frappell PB, Baudinette RV. Scaling of respiratory variables and the breathing pattern in adult marsupials. Respir Physiol 100: 83‐90, 1995. DOI: 10.1016/0034‐5687(94)00122‐g.
 69.Frappell PB, Hinds DS, Boggs DF. Scaling of respiratory variables and the breathing pattern in birds: An allometric and phylogenetic approach. Physiol Biochem Zool 74: 75‐89, 2001. DOI: 10.1086/319300.
 70.Frappell P, Lanthier C, Baudinette RV, Mortola JP. Metabolism and ventilation in acute hypoxia: A comparative analysis in small mammalian species. Am J Phys 262: R1040‐R1046, 1992. DOI: 10.1152/ajpregu.1992.262.6.R1040.
 71.Galvão PE, Tarasantchi J, Guertzenstein P. Heat production of tropical snakes in relation to body weight and body surface. Am J Phys 209: 501‐506, 1965. DOI: 10.1152/ajplegacy.1965.209.3.501.
 72.Garland T, Bennett AF, Rezende EL. Phylogenetic approaches in comparative physiology. J Exp Biol 208: 3015‐3035, 2005. DOI: 10.1242/jeb.01745.
 73.Gayon J. De la croissance relative à l'allométrie (1918‐1936). Rev Hist Sci 53: 475‐498, 2000.
 74.Gayon J. History of the concept of allometry. Am Zool 40: 748‐758, 2000. DOI: 10.1668/0003‐1569(2000)040[0748:HOTCOA]2.0.CO;2.
 75.wild and domestic mammals. Gehr P, Mwangi DK, Ammann A, Maloiy GMO, Taylor CR, Weibel ER. Design of the mammalian respiratory system. V. Scaling morphometric pulmonary diffusing capacity to body mass. Respir Physiol 44: 61‐86, 1981. DOI: 10.1016/0034‐5687(81)90077‐3.
 76.Genould M, Isler K, Martin RD. Comparative analyses of basal rate of metabolism in mammals: Data selection does matter. Biol Rev 93: 404‐438, 2018. DOI: 10.1111/brv.12350.
 77.Gilden DL, Mezaraups TM. Allometric scaling laws for temporal proximity in perceptual organization. Psychol Rev 129: 457‐483, 2021. DOI: 10.1037/rev0000307.
 78.Gillooly JF, Brown JH, West GB, Savage VM, Charnov EL. Effects of size and temperature on metabolic rate. Science 293: 2248‐2251, 2001. DOI: 10.1126/science.1061967.
 79.Glazier DS. Beyond the ‘3/4‐power law’: Variation in the intra‐ and interspecific scaling of metabolic rate in animals. Biol Rev 80: 611‐662, 2005. DOI: 10.1017/S1464793105006834.
 80.Glazier DS. Metabolic level and size scaling of rates of respiration and growth in unicellular organisms. Funct Ecol 23: 963‐968, 2009. DOI: 10.1111/j.1365‐2435.2009.01583.x.
 81.Glazier DS. The intraspecific scaling of metabolic rate with body mass in fishes depends on lifestyle and temperature. Ecol Lett 13: 184‐193, 2010. DOI: 10.1111/j.1461‐0248.2009.01415.x.
 82.Glazier DS. A unifying explanation for diverse metabolic scaling in animals and plants. Biol Rev 85: 111‐138, 2010. DOI: 10.1111/j.1469‐185X.2009.00095.x.
 83.Glazier DS. Log‐transformation is useful for examining proportional relationships in allometric scaling. J Theor Biol 334: 200‐203, 2013. DOI: 10.1016/j.jtbi.2013.06.017.
 84.Glazier DS. Body‐mass scaling of metabolic rate: What are the relative roles of cellular versus systemic effects? Biol 4: 187‐189, 2015. DOI: 10.3390/biology4010187.
 85.Glazier DS. Biological scaling analyses are more than statistical line fitting. J Exp Biol 224: 241059, 2021. DOI: 10.1242/jeb.241059.
 86.Gouma E, Simos Y, Verginadis I, Lykoudis E, Evangelou A, Karkabounas S. A simple procedure for estimation of total body surface area and determination of a new value of Meeh's constant in rats. Lab An 46: 40‐45, 2012. DOI: 10.1258/la.2011.011021.
 87.Grafen A. The phylogenetic regression. Philos Trans R Soc Lond B 326: 119‐157, 1989. https://www.jstor.org/stable/2396904.
 88.Günther B, Morgado E. Allometric algorithms. Biol Res 29: 345‐353, 1996.
 89.Günther B, Morgado E. Body mass and body weight: A dual reference system in biology. Rev Chil Hist Nat 76: 57‐64, 2003. DOI: 10.4067/S0716‐078X2003000100006.
 90.Hart JS. Rodents. In: Whittow GC, editor. Comparative Physiology of Thermoregulation. New York: Acad. Press, vol. II Mammals, 1971, p. 2‐149. [eBook ISBN: 9781483257433].
 91.Hayssen V, Lacy RC. Basal metabolic rates in mammals: Taxonomic differences in the allometry of BMR and body mass. Comp Biochem Physiol A 81: 741‐754, 1985. DOI: 10.1016/0300‐9629(85)90904‐1.
 92.Healy K, McNally L, Ruxton GD, Cooper N, Jackson AL. Metabolic rate and body size are linked with perception of temporal information. Anim Behav 86: 685‐696, 2013. DOI: 10.1016/j.anbehav.2013.06.018.
 93.Heglund NC, Taylor CR. Speed, stride frequency and energy cost per stride: How do they change with body size and gait? J Exp Biol 138: 301‐318, 1988. DOI: 10.1242/jeb.138.1.301.
 94.Heldmaier G, Ortmann S, Elvert R. Natural hypometabolism during hibernation and daily torpor in mammals. Respir Physiol Neurobiol 141: 317‐329, 2004. DOI: 10.1016/j.resp.2004.03.014.
 95.Hemmingsen AM. Energy metabolism as related to body size and respiratory surfaces and its evolution. Report Steno Mem Hosp (Copenhagen) 9 (2): 1‐110, 1960.
 96.Heusner AA. Energy metabolism and body size. I. Is the 0.75 mass exponent of Kleiber's equation a statistical artifact? Respir Physiol 48: 1‐12, 1982. DOI: 10.1016/0034‐5687(82)90046‐9.
 97.Heusner AA. Size and power in mammals. J Exp Biol 160: 25‐54, 1991. DOI: 10.1242/jeb.160.1.25.
 98.Hill AV. The dimensions of animals and their muscular dynamics. Sci Prog 38: 209‐230, 1950. https://www.jstor.org/stable/43422833.
 99.Hochachka PW, Darveau CA, Andrews RD, Suarez RK. Allometric cascade: A model for resolving body mass effects on metabolism. Comp Biochem Physiol A 134: 675‐691, 2003. DOI: 10.1016/s1095‐6433(02)00364‐1.
 100.Hochachka PW, Somero GN. Biochemical Adaptation. Mechanisms and Process in Physiological Evolution. New York, USA: Oxford Univ Press, 2002, p. 466. [ISBN 0‐19‐511‐702‐6].
 101.Holliday MA, Potter D, Jarrah A, Bearg S. The relation of metabolic rate to body weight and organ size. Pediatr Res 1: 185‐195, 1967. DOI: 10.1203/00006450‐196705000‐00005.
 102.Hoppeler H, Lindstedt SL, Claassen H, Taylor CR, Mathieu O, Weibel ER. Scaling mitochondrial volume in heart to body mass. Respir Physiol 55: 131‐137, 1984. DOI: 10.1016/0034‐5687(84)90018‐5.
 103.Hoppeler H, Weibel ER. Scaling functions to body size: Theories and facts. J Exp Biol 208: 1573‐1574, 2005. DOI: 10.1242/jeb.01630.
 104.Hou C, Kaspari M, Vander Zanden HB, Gillooly JF. Energetic basis of colonial living in social insects. Proc Natl Acad Sci USA 107: 3634‐3638, 2010. DOI: 10.1073/pnas.0908071107.
 105.Hoyt DF, Rahn H. Respiration of avian embryos ‐ A comparative analysis. Respir Physiol 39: 255‐264, 1980. DOI: 10.1016/0034‐5687(80)90057‐2.
 106.Huber N, Mahr K, Tóth Z, Szarka EZ, Çinar YU, Salmón P, Lendvai ÁZ. The stressed bird in the hand: Influence of sampling design on the physiological stress response in a free‐living songbird. Physiol Behav 238: 113488, 2021. DOI: 10.1016/j.physbeh.2021.113488.
 107.Hudson LN, Isaac NJB, Reuman DC. The relationship between body mass and field metabolic rate among individual birds and mammals. J An Ecol 82: 1009‐1020, 2013. DOI: 10.1111/1365‐2656.12086.
 108.Hulbert AJ. A Sceptics View: “Kleiber's Law” or the “3/4 Rule” is neither a law nor a rule but rather an empirical approximation. System 2: 186‐202, 2014. DOI: 10.3390/systems2020186.
 109.Hulbert AJ, Else PL. Mechanisms underlying the cost of living in animals. Annu Rev Physiol 62: 207‐235, 2000. DOI: 10.1146/annurev.physiol.62.1.207.
 110.Hulbert AJ, Else PL. Basal metabolic rate: History, composition, regulation, and usefulness. Physiol Biochem Zool 77: 869‐876, 2004. DOI: 10.1086/422768.
 111.Huxley JS. Problems of Relative Growth. New York: Dial Press, 1932, p. 224. ISBN: 10 0486611140.
 112.Huxley JS, Teissier G. Terminology of relative growth. Nature 137: 780‐781, 1936. DOI: 10.1038/137780b0.
 113.Huxley JS, Teissier G. Terminologie et notation dans la description de la croissance relative. Compt Rend Soc Bio 121: 934‐937, 1936.
 114.Irving L, Krog J. Body temperatures of arctic and subarctic birds and mammals. J Appl Physiol 6: 667‐680, 1954. DOI: 10.1152/jappl.1954.6.11.667.
 115.Ivleva IV. The dependence of crustacean respiration rate on body mass and habitat temperature. Int Rev Gesamten Hydrobiol 65: l‐47, 1980. DOI: 10.1002/iroh.19800650102.
 116.Johnston R, Valentinuzzi M. Metabolism: The Physiological Power‐Generating Process. Retrospectroscope. IEEE Pulse, 2016. [posted on May 23rd 2016]. DOI: 10.1109/MPUL.2016.2538484.
 117.Kayser C, Heusner A. Etude comparative de metabolisme energetique dans la serie animale. J Physiol Paris 56: 489‐524, 1964.
 118.King JR, Farner DS. Energy metabolism, thermoregulation and body temperature. In: Marshall AJ, editor. Biology and Comparative Physiology of Birds, Vol. II. NY, ch 19: Academic Press, 1961, p. 215‐288.
 119.Kleiber M. Body size and metabolism. Hilgardia 6: 315‐353, 1932. DOI: 10.3733/hilg.v06n11p315.
 120.Kleiber M. Body size and metabolism of liver slices in vitro. Proc Soc Exp Biol Med 48: 419‐423, 1941. DOI: 10.3181/00379727‐48‐13340.
 121.Kleiber M. Body size and metabolic rate. Physiol Rev 27: 511‐541, 1947. DOI: 10.1152/physrev.1947.27.4.511.
 122.Kleiber M. The Fire of Life. An Introduction to Animal Energetics. New York: Wiley & Sons, 1961, p. 454. ISBN: 10: 0882751611.
 123.Konoplev VA, Sokolov VE, Zotin AI. Criterion of orderliness and some problems of taxonomy. In: Lamprecht I, Zotin AI, editors. Thermodynamics of Biological Processes. Berlin: De Gruyter, 1978, p. 349‐359. ISBN: 9783110073126.
 124.Koteja P. On the relation between basal and maximum metabolic rate in mammals. Comp Biochem Physiol A 87: 205‐208, 1987. DOI: 10.1016/0300‐9629(87)90447‐6.
 125.Kozłowski J, Konarzewski M. Is West, Brown and Enquist' s model of allometric scaling mathematically correct and biologically relevant? Funct Ecol 18: 283‐289, 2004. DOI: 10.1111/j.0269‐8463.2004.00830.x.
 126.Kozłowski J, Konarzewski M. West, Brown and Enquist's model of allometric scaling again: The same questions remain. Funct Ecol 19: 739‐743, 2005. DOI: 10.1111/j.1365‐2435.2005.01021.x.
 127.Kozłowski J, Konarzewski M, Gawelczyk AT. Cell size as a link between noncoding DNA and metabolic rate scaling. Proc Natl Acad Sci USA 100: 14080‐14085, 2003. DOI: 10.1073/pnas.2334605100.
 128.Kozłowski J, Weiner J. Interspecific allometries are by‐products of body size optimization. Am Nat 149: 352‐380, 1997. https://www.jstor.org/stable/2463399.
 129.Krebs HA. Body size and tissue respiration. Biochem Biophys Acta 4: 249‐269, 1950. DOI: 10.1016/0006‐3002(50)90032‐1.
 130.Kunkel HO, Campbell JE. Tissue cytochrome oxidase activity and body weight. J Biol Chem 198: 229‐236, 1952. PMID: 12999736.
 131.Lahiri S. Blood oxygen affinity and alveolar ventilation in relation to body weight in mammals. Am J Phys 229: 529‐536, 1975. DOI: 10.1152/ajplegacy.1975.229.2.529.
 132.Lambert R, Teissier G. Théorie de la similitude biologique. Ann Phys 3: 212‐246, 1927.
 133.Lasiewski RC, Calder WA. A preliminary allometric analysis of respiratory variables in resting birds. Respir Physiol 11: 152‐166, 1971. DOI: 10.1016/0034‐5687(71)90020‐X.
 134.Lasiewski RC, Dawson WR. A re‐examination of the relation between standard metabolic rate and body weight in birds. Condor 69: 13‐23, 1967. DOI: 10.2307/1366368.
 135.Lechner AJ. The scaling of maximal oxygen consumption and pulmonary dimensions in small mammals. Respir Physiol 34: 29‐44, 1978. DOI: 10.1016/0034‐5687(78)90047‐6.
 136.Lifson N, McClintock R. Theory of use of the turnover rates of body water for measuring energy and material balance. J Theor Biol 12: 46‐74, 1966. DOI: 10.1016/0022‐5193(66)90185‐8.
 137.Lindstedt SL. Body size, time and dimensions of oxygen diffusion. Comp Biochem Physiol A 252: 110847, 2021. DOI: 10.1016/j.cbpa.2020.110847.
 138.Lindstedt SL, Calder WA. Body size, physiological time and longevity of homeothermic animals. Q Rev Biol 56: 1‐15, 1981. https://www.jstor.org/stable/2826367.
 139.Lovegrove BG. The zoogeography of mammalian basal metabolic rate. Am Nat 156: 201‐219, 2000. DOI: 10.1086/303383.
 140.Lovegrove BG. The influence of climate on the basal metabolic rate of small mammals: A slow‐fast metabolic continuum. J Comp Physiol B 173: 87‐112, 2003. DOI: 10.1007/s00360‐002‐0309‐5.
 141.MacMillen RE, Nelson JE. Bioenergetics and body size in dasyruid marsupials. Am J Phys 217: 1246‐1251, 1969. DOI: 10.1152/ajplegacy.1969.217.4.1246.
 142.Makarieva AM, Gorshkov VG, Li BL. Energetics of the smallest: Do bacteria breathe at the same rate as whales? Proc R Soc B 272: 2219‐2224, 2005. DOI: 10.1098/rspb.2005.3225.
 143.Makarieva AM, Gorshkov VG, Li BL. Biochemical universality of living matter and its metabolic implications. Funct Ecol 19: 547‐557, 2005. https://www.jstor.org/stable/3599215.
 144.Makarieva AM, Gorshkov V, Li BL, Chown SL. Size‐ and temperature‐independence of minimum life‐supporting metabolic rates. Funct Ecol 20: 83‐96, 2006. DOI: 10.1111/j.1365‐2435.2006.01070.x.
 145.Maldonado R, San José H, Martinoya C, Günther B. Cell size and body weight in some homeotherms and poikilotherms. Acta Physiol Lat Am 24: 328‐335, 1974. PMID: 4468693.
 146.Martins EP, Hansen TH. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat 149: 646‐667, 1997. https://www.jstor.org/stable/2463542.
 147.Mathieu O, Krauer R, Hoppeler H, Gehr P, Lindstedt SL, Alexander RM, Taylor CR, Weibel ER. Design of the mammalian respiratory system. VII. Scaling mitochondrial volume in skeletal muscle to body mass. Respir Physiol 44: 113‐128, 1981. DOI: 10.1016/0034‐5687(81)90079‐7.
 148.McKechnie AE, Freckleton RP, Jetz W. Phenotypic plasticity in the scaling of avian basal metabolic rate. Proc R Soc B 273: 931‐937, 2006. DOI: 10.1098/rspb.2005.3415.
 149.McKechnie AE, Wolf BO. The allometry of avian basal metabolic rate: Good predictions need good data. Physiol Biochem Zool 77: 502‐521, 2004. DOI: 10.1086/383511.
 150.McLean JA, Tobin G. Animal and Human Calorimetry. Cambridge: Cambridge Univ. Press, 1987, p. 338. ISBN: 0 521 30905 0.
 151.McMahon T. Size and shape in biology. Science 179: 1201‐1204, 1973. DOI: 10.1126/science.179.4079.1201.
 152.McMahon TA. Using body size to understand the structural design of animals: Quadrupedal locomotion. J Appl Physiol 39: 619‐627, 1975. DOI: 10.1152/jappl.1975.39.4.619.
 153.McMahon TA, Bonner JT. On Size and Life. New York (USA): Sci. Am. Library, 1983, p. 255. ISBN: O‐7167‐5000‐7.
 154.McNab BK. An analysis of body temperature in birds. Condor 68: 47‐55, 1966. DOI: 10.2307/1365174.
 155.McNab BK. Complications inherent in scaling the basal rate of metabolism in mammals. Q Rev Biol 63: 25‐54, 1988. DOI: 10.1086/415715.
 156.McNab BK. Energetics of toucans, a barbet and a hornbill: Implications for avian frugivory. Auk 118: 916‐933, 2001. DOI: 10.1093/auk/118.4.916.
 157.McNab BK. Ecological factors affect the level and scaling of avian BMR. Comp Biochem Physiol A 152: 22‐45, 2009. DOI: 10.1016/j.cbpa.2008.08.021.
 158.More HL, Hutchinson JR, Collins DF, Weber DJ, Aung SKH, Donelan JM. Scaling of sensorimotor control in terrestrial mammals. Proc R Soc B 277: 3563‐3568, 2010. DOI: 10.1098/rspb.2010.0898.
 159.Morrison PR, Pearson OP. The metabolism of a very small mammal. Science 104: 287‐289, 1946. DOI: 10.1126/science.104.2700.287.
 160.Morrison PR, Ryser FA. Weight and body temperature in mammals. Science 116: 231‐232, 1952. DOI: 10.1126/science.116.3009.231.
 161.Morrison PR, Ryser FA, Dawe AR. Studies on the physiology of the Masked shrew Sorex cinereus. Physiol Zool 32: 256‐271, 1959. https://www.jstor.org/stable/30155403.
 162.Mortola JP. Respiratory Physiology of Newborn Mammals. A Comparative Perspective. Baltimore, Maryland: The Johns Hopkins Univ Press, 2001, p. 344. ISBN: 0‐801806497‐6.
 163.Mortola JP. Thermographic analysis of body surface temperature of mammals. Zool Sci 30: 118‐124, 2013. DOI: 10.2108/zsj.30.118.
 164.Mortola JP, Lanthier C. Breathing frequency in ruminants: A comparative analysis with non‐ruminant mammals. Respir Physiol Neurobiol 145: 265‐277, 2005. DOI: 10.1016/j.resp.2004.10.006.
 165.Mortola JP, Maskrey M. Metabolism, Temperature and Ventilation. In: Mitchell GS, Milsom WK, DR MC, Dempsey JA, editors. Comprehensive Physiology ‐ Control of Breathing. Washington, DC: Am Physiol Soc, vol. 1, 2011, p. 1679‐1709. DOI: 10.1002/cphy.c100008.
 166.Mortola JP, Seguin J. End‐tidal CO2 in some aquatic mammals of large size. Zoology 112: 77‐85, 2009. DOI: 10.1016/j.zool.2008.06.001.
 167.Murray BG Jr. Mass or weight: What is measured and what should be reported? Auk 125: 232‐233, 2008. DOI: 10.1525/auk.2008.125.1.232.
 168.Nagy KA. Field metabolic rate and body size. J Exp Biol 208: 1621‐1625, 2005. DOI: 10.1242/jeb.01553.
 169.Nakaya F, Saito Y, Motokawa T. Switching of metabolic‐rate scaling between allometry and isometry in colonial ascidians. Proc R Soc B 270: 1105‐1113, 2003. DOI: 10.1098/rspb.2003.2347.
 170.Nakaya F, Saito Y, Motokawa T. Experimental allometry: Effect of size manipulation on metabolic rate of colonial ascidians. Proc R Soc B 272: 1963‐1969, 2005. DOI: 10.1098/rspb.2005.3143.
 171.Nevill AM. The need to scale for differences in body size and mass: An explanation of Kleiber's 0.75 mass exponent. J Appl Physiol 77: 2870‐2873, 1994. DOI: 10.1152/jappl.1994.77.6.2870.
 172.Niklas KJ, Enquist BJ. Invariant scaling relationships for interspecific plant biomass production rates and body size. Proc Natl Acad Sci USA 98: 2922‐2927, 2001. DOI: 10.1073/pnas.041590298.
 173.Nunn JF. Carbon dioxide stores and the unsteady state. In: Nunn's Applied Respiratory, Physiology‐4th Edition. Oxford, UK: Butterworth‐Heinemann, vol. ch 10, 1993, p. 237. ISBN: 0 7506 1336 X.
 174.Oikawa S, Itazawa Y. Allometric relationship between tissue respiration and body mass in a marine teleost, Porgy Pagrus major. Comp Biochem Physiol A 105: 129‐133, 1993. DOI: 10.1016/0300‐9629(93)90184‐6.
 175.Packard GC. Is logarithmic transformation necessary in allometry? Biol J Linn Soc 109: 476‐486, 2013. DOI: 10.1111/bij.12038.
 176.Packard GC, Birchard GF. Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates. J Exp Biol 211: 3581‐3587, 2008. DOI: 10.1242/jeb.023317.
 177.Pagel M. Inferring the historical patterns of biological evolution. Nature 401: 877‐884, 1999. DOI: 10.1038/44766.
 178.Patterson MR. A mass transfer explanation of metabolic scaling relationships in some aquatic invertebrates and algae. Science 255: 1421‐1423, 1992. DOI: 10.1126/science.255.5050.1421.
 179.Pearson OP. Metabolism and bioenergetics. Sci Mon 66: 131‐134, 1948. https://www.jstor.org/stable/19332.
 180.Peters RH. The Ecological Implications of Body Size. Cambridge, UK: Cambridge University Press, 1983, p. 329. ISBN: 0‐521‐24684‐9.
 181.Phillips JC. Allometric scaling in evolutionary biology: Implications for the metal‐insulator and network glass stiffness transitions and high‐temperature superconductivity, and the converse. Philos Mag B 80: 1773‐1178, 2000. DOI: 10.1080/13642810008216505.
 182.Platt J. Metabolic rates of Short‐tailed shrews. Physiol Zool 47: 75‐90, 1974. https://www.jstor.org/stable/30155625.
 183.Porter RK, Brand MD. Body mass dependence of H+ leak in mitochondria and its relevance to metabolic rate. Nature 362: 628‐630, 1993. DOI: 10.1038/362628a0.
 184.Prange HD, Anderson JF, Rahn H. Scaling of skeletal mass to body mass in birds and mammals. Am Nat 113: 103‐122, 1979. https://www.jstor.org/stable/2459945.
 185.Prothero J. Scaling of standard energy metabolism in mammals: I. Neglect of circadian rhythms. J Theor Biol 106: 1‐8, 1984. DOI: 10.1016/0022‐5193(84)90023‐7.
 186.Prothero J. Scaling of energy metabolism in unicellular organisms: A re‐analysis. Comp Biochem Physiol A 83: 243‐248, 1986. DOI: 10.1016/0300‐9629(86)90569‐4.
 187.Prothero J. Perspectives on dimensional analysis in scaling studies. Perspect Biol Med 45: 175‐189, 2002. DOI: 10.1353/pbm.2002.0037.
 188.Rau ARP. Biological scaling and physics. J Biosci 27: 475‐478, 2002. DOI: 10.1007/BF02705043.
 189.Reichle DE. Relation of body size to food intake, oxygen consumption, and trace element metabolism in forest floor arthropods. Ecology 49: 538‐542, 1968. DOI: 10.2307/1934119.
 190.Reynolds PS. Phylogenetic analysis of surface areas in mammals. J Mammal 78: 859‐868, 1997. DOI: 10.2307/1382944.
 191.Reynolds PS, Lee RM. Phylogenetic analysis of avian energetics: Passerines and nonpasserines do not differ. Am Nat 147: 735‐759, 1996. https://www.jstor.org/stable/2463088.
 192.Rezende EL, Swanson DL, Novoa FF, Bozinovic F. Passerines versus nonpasserines: So far, no statistical differences in the scaling of avian energetics. J Exp Biol 205: 101‐107, 2002. DOI: 10.1242/jeb.205.1.101.
 193.Richet C. La calorimétrie et la production de caleur. In: La Chaleur Animale. Paris, ch. XI: Felix Alcan, 1889, p. 215‐239.
 194.Ricklefs RE, Starck JM. Applications of phylogenetically independent contrasts: A mixed progress report. Oikos 77: 167‐172, 1996. DOI: 10.2307/3545598.
 195.Riisgård HU. No foundation of a “3/4 power scaling law” for respiration in biology. Ecol Lett 1: 71‐73, 1998. DOI: 10.1046/J.1461‐0248.1998.00020.X.
 196.Robb EL, Maddalena LA, Dunlop VA, Foster T, Stuart JA. Absence of metabolic rate allometry in an ex vivo model of mammalian skeletal muscle. Comp Biochem Physiol A 162: 157‐162, 2012. DOI: 10.1016/j.cbpa.2012.01.022.
 197.Roberts MF, Lightfoot EN, Porter WP. A new model for the body size‐metabolism relationship. Physiol Biochem Zool 83: 395‐405, 2010. DOI: 10.1086/651564.
 198.Roberts MF, Lightfoot EN, Porter WP. Basal metabolic rate of endotherms can be modeled using heat‐transfer principles and physiological concepts: Reply to “Can the basal metabolic rate of endotherms be explained by physiological modeling?”. Physiol Biochem Zool 84: 111‐114, 2011. DOI: 10.1086/658084.
 199.Robinson WR, Peters RH, Zimmerman J. The effects of body size and temperature on metabolic rate of organisms. Can J Zool 61: 281‐288, 1983. DOI: 10.1126/science.1061967.
 200.Rohlf FJ. A comment on phylogenetic correction. Evolution 60: 1509‐1515, 2006. https://www.jstor.org/stable/4095344.
 201.Rolfe DFS, Brown GC. Cellular energy utilization and molecular origin of standard metabolic rate in mammals. Physiol Rev 77: 731‐758, 1997. DOI: 10.1152/physrev.1997.77.3.731.
 202.Rosenthal O, Drabkin DL. The cytochrome C content of normal and neoplastic mammalian epithelium, and its correlation with body mass. J Biol Chem 150: 131‐141, 1943. DOI: 10.1016/S0021‐9258(18)51258‐8.
 203.Rubner M. Ueber den einfluss der körpergrösse auf stoffund kraftwechsel. Z Biol 19: 535‐562, 1883.
 204.Sarrus F, Rameaux J. Rapport sur une mémoire adressé á l'Académic Royale de Médecine. Bull Acad R Med 3: 1094‐1100, 1838. [English translation “Sarrus and Rameaux, 1838, translated into English” by Shour R, 2017, doi: 10.13140/RG.2.2.26197.27363].
 205.Savage VM, Gillooly JF, Woodruff WH, West GB, Allen AP, Enquist BJ, Brown JH. The predominance of the quarter‐power scaling in biology. Funct Ecol 18: 257‐282, 2004. DOI: 10.1111/j.0269‐8463.2004.00856.x.
 206.Schmidt‐Nielsen K. Scaling. Why Is Animal Size so Important? Cambridge (UK): Cambridge Univ. Press, 1984, p. 241. ISBN: 0 521 3198 70.
 207.Sernetz M, Gelléri B, Hofmann J. The organism as bioreactor. Interpretation of the reduction law of metabolism in terms of heterogeneous catalysis and fractal structure. J Theor Biol 117: 209‐230, 1985. DOI: 10.1016/s0022‐5193(85)80218‐6.
 208.Sernetz M, Rufeger H, Kindt R. Interpretation of the reduction law of metabolism. Exp Biol Med 7: 21‐29, 1982.
 209.Seymour RS, White CR. Can the basal metabolic rate of endotherms be explained by biophysical modeling? Response to “A new model for the body size‐metabolism relationship”. Physiol Biochem Zool 84: 107‐110, 2011. DOI: 10.1086/658083.
 210.Shestopaloff YK. Metabolic allometric scaling model: Combining cellular transportation and heat dissipation constraints. J Exp Biol 219: 2481‐2489, 2016. DOI: 10.1242/jeb.138305.
 211.Shestopaloff YK. Interspecific allometric scaling of unicellular organisms as an evolutionary process of food chain creation. arXiv:161109824 [q‐bioOT], 2016. DOI: 10.48550/arXiv.1611.09824.
 212.Shestopaloff YK. Biophysical growth and reproduction mechanisms of cells and first principles of life origin and development. arXiv:160909421 [q‐bioOT], 2016. Corpus ID: 31572863.
 213.Silva M, Downing JA. CRC Handbook of Mammalian Body Masses. Boca Raton, FL: CRC Press, 1995, p. 359. ISBN: 978‐0849327902.
 214.Singer D, Schunck O, Bach F, Kuhn HJ. Body size allometry of mammalian blood heat output as assessed by microcalorimetry. Thermochim Acta 229: 133‐145, 1993. DOI: 10.1016/0040‐6031(93)80321‐Z.
 215.Smith RE. Quantitative relations between liver mitochondria metabolism and total body weight in mammals. Ann NY Acad Sci 62: 405‐421, 1956. DOI: 10.1111/j.1749‐6632.1956.tb35360.x.
 216.Smith RJ. Allometric scaling in comparative biology: problems of concept and method. Am J Phys 246: R152‐R160, 1984. DOI: 10.1152/ajpregu.1984.246.2.R152.
 217.Smith RJ. Use and misuse of the reduced major axis for line‐fitting. Am J Phys Anthropol 140: 476‐486, 2009. DOI: 10.1002/ajpa.21090.
 218.Speakman JR. On Blum's four‐dimensional geometric explanation for the 0.75 exponent in metabolic allometry. J Theor Biol 144: 139‐141, 1990. DOI: 10.1016/s0022‐5193(05)80305‐4.
 219.Stahl WR. Similarity and dimensional methods in biology. Science 137: 205‐212, 1962. DOI: 10.1126/science.137.3525.205.
 220.Stahl WR. Scaling of respiratory variables in mammals. J Appl Physiol 22: 453‐460, 1967. DOI: 10.1152/jappl.1967.22.3.453.
 221.Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD. Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6: 235‐243, 1992. DOI: 10.1165/ajrcmb/6.2.235.
 222.Suarez RK, Darveau CA, Childress JJ. Metabolic scaling: a many‐splendoured thing. Comp Biochem Physiol B 139: 531‐541, 2004. DOI: 10.1016/j.cbpc.2004.05.001.
 223.Taylor CR, Maloiy GM, Weibel ER, Langman VA, Kamau JM, Seeherman HJ, Heglund NC. Design of the mammalian respiratory system. III Scaling maximum aerobic capacity to body mass: Wild and domestic mammals. Respir Physiol 44: 25‐37, 1980. DOI: 10.1016/0034‐5687(81)90075‐x.
 224.Tenney SM. A tangled web: Young, Laplace, and the surface tension law. News Physiol Sci 8: 179‐183, 1993. DOI: 10.1152/physiologyonline.1993.8.4.179.
 225.Tenney SM. A brief history of comparative respiratory physiology: some ideas and their proponents. In: West JB, editor. Respiratory Physiology ‐ Peoples and Ideas. NY, ch 12: Springer, 1996, p. 355‐407. ISBN: 13: 978‐0195080810.
 226.Tenney SM, Bartlett D. Comparative quantitative morphology of the mammalian lung: trachea. Respir Physiol 3: 130‐135, 1967. DOI: 10.1016/0034‐5687(67)90002‐3.
 227.Tenney SM, Remmers JE. Comparative morphology of the lung: diffusing area. Nature 197: 54‐56, 1963. DOI: 10.1038/197054a0.
 228.Thorne S. Modeling the role of gravitation in metabolic processes. Comm Integr Biol 14: 115‐135, 2021. DOI: 10.1080/19420889.2021.1914913.
 229.Tieleman BI, Williams JB. The adjustment of avian metabolic rates and water fluxes to desert environments. Physiol Biochem Zool 73: 461‐479, 2000. DOI: 10.1086/317740.
 230.Tomasi T. Shrew metabolic rate and thyroxine utilization. Comp Biochem Physiol A 78: 431‐435, 1984. DOI: 10.1016/0300‐9629(84)90572‐3.
 231.Ultsch GR. A theoretical and experimental investigation of the relationships between metabolic rate, body size, and oxygen exchange capacity. Respir Physiol 18: 143‐160, 1973. DOI: 10.1016/0034‐5687(73)90045‐5.
 232.Ultsch GR. Gas exchange and metabolism in the Sirenidae (Amphibia: Cordata) ‐ 1. Oxygen consumption of submerged Sirenids as a function of body size and respiratory surface area. Comp Biochem Physiol A 47: 485‐498, 1974. DOI: 10.1016/0300‐9629(74)90012‐7.
 233.Waters JS, Holbrook TC, Fewell JH, Harrison JF. Allometric scaling of metabolism, growth, and activity in whole colonies of the seed‐harvester ant Pogonomyrmex californicus. Am Nat 176: 501‐510, 2010. DOI: 10.1086/656266.
 234.Weibel ER. Morphometric estimation of pulmonary diffusing capacity. V. Comparative morphometry of alveolar lungs. Respir Physiol 14: 26‐43, 1972. DOI: 10.1016/0034‐5687(72)90015‐1.
 235.Weibel ER. The pitfalls of power laws. Nature 417: 131‐132, 2002. DOI: 10.1038/417131a.
 236.Weibel ER, Bacigalupe L, Schmitt B, Hoppeler H. Allometric scaling of maximal metabolic rate in mammals: muscle aerobic capacity as determinant factor. Respir Physiol Neurobiol 140: 115‐132, 2004. DOI: 10.1016/j.resp.2004.01.006.
 237.West D, West BJ. Physiologic time: a hypothesis. Phys Life Rev 10: 210‐224, 2013. DOI: 10.1016/j.plrev.2013.04.006.
 238.West GB, Brown JH. The origin of allometric scaling laws in biology from genomes to ecosystems: towards a quantitative unifying theory of biological structure and organization. J Exp Biol 208: 1575‐1592, 2005. DOI: 10.1242/jeb.01589.
 239.West GB, Brown JH, Enquist BJ. A general model for the origin of allometric scaling laws in biology. Science 276: 122‐126, 1997. DOI: 10.1126/science.276.5309.122.
 240.West GB, Brown JH, Enquist BJ. The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284: 1677‐1679, 1999. DOI: 10.1126/science.284.5420.167.
 241.West GB, Savage VM, Gillooly J, Enquist BJ, Woodruff WH, Brown JH. Why does metabolic rate scale with body size? Nature 421: 713, 2003. DOI: 10.1038/421713a.
 242.West GB, Woodruff WH, Brown JH. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proc Natl Acad Sci 99: 2473‐2478, 2002. DOI: 10.1073/pnas.012579799.
 243.Westoby M, Leishman M, Lord J. On misinterpreting the “phylogenetic correction”. J Ecol 83: 531‐534, 1995. DOI: 10.2307/2261605.
 244.Westoby M, Leishman M, Lord J. Further remarks on phylogenetic correction. J Ecol 83: 727‐734, 1995. DOI: 10.2307/2261640.
 245.White CR, Blackburn TM, Seymour RS. Phylogenetically informed analysis of the allometry of mammalian basal metabolic rate supports neither geometric nor quarter‐power scaling. Evolution 63: 2658‐2667, 2009. DOI: 10.1111/j.1558‐5646.2009.00747.x.
 246.White CR, Kearney MR. Metabolic scaling in animals: methods, empirical results, and theoretical explanations. Compr Physiol 4: 231‐256, 2014. DOI: 10.1002/cphy.c110049.
 247.White CR, Seymour RS. Mammalian basal metabolic rate is proportional to body mass2/3. Proc Natl Acad Sci USA 100: 4046‐4049, 2003. DOI: 10.1073/pnas.0436428100.
 248.White CR, Seymour RS. Sample size and mass range effects on the allometric exponent of basal metabolic rate. Comp Biochem Physiol A 142: 74‐78, 2005. DOI: 10.1016/j.cbpa.2005.07.013.
 249.Wilder RM. Calorimetry. The basis of the science of nutrition. AMA Arch Intern Med 103: 146‐154, 1959. DOI: 10.1001/archinte.1959.00270010152020.
 250.Winberg GG. Rate of metabolism and food requirement of fishes. Fisher Res B Canada Transl Serv N 194, 1960. (Original title: “Intensivnost obmena i pishchevye potrebnosti ryb”, published in Nauchnye Trudy Belorusskovo Gosudarstvennovo Universiteta imeni. V. I, Lenina, Minsk, pp. 253, 1956).
 251.Yablokov AV. Variability of Mammals. Akademia Nauk SSSR, translated from Russian by Van Valen L (1974), Published for Smithsonian Inst. and Nat. Sci. Found, Washington DC by Amerind Publishing Co., New Delhi, p. 350, 1966. [https://library.si.edu/digital‐library/book/variabilityofmam00iabl]
 252.Ye X, Lu L, Jiang M, Jia J, Li W, Wu H, Liao Y, Li J. Metabolic scaling: individual versus intraspecific scaling of Nile tilapia (Oreochromis niloticus). J Comp Physiol B 191: 721‐729, 2021. DOI: 10.1007/s00360‐021‐01376‐8.
 253.Zar JH. The use of the allometric model for avian standard metabolism‐body weight relationships. Comp Biochem Physiol 29: 227‐234, 1969. DOI: 10.1016/0010‐406X(69)91738‐1.
 254.Zehnder AM, Hawkins MG, Trestrail EA, Holt RW, Kent MS. Calculation of body surface area via computed tomography–guided modeling in domestic rabbits (Oryctolagus cuniculus). Am J Vet Res 73: 1859‐1863, 2012. DOI: 10.2460/ajvr.73.12.1859.
 255.Zeuthen E. Oxygen uptake as related to body size in organisms. Q Rev Biol 28: 1‐12, 1953. https://www.jstor.org/stable/2810299.
 256.Zotin AL, Konoplev VA. Direction of the evolutionary progress of organisms. In: Lamprecht I, Zotin AL, editors. Thermodynamics of Biological Processes. Berlin: De Gruyter, 1978, p. 341‐347.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jacopo P. Mortola. The Mouse‐To‐Elephant Metabolic Curve: Historical Overview. Compr Physiol 2023, 13: 4513-4558. doi: 10.1002/cphy.c220003