Comprehensive Physiology Wiley Online Library

Aging and Bone Metabolism

Full Article on Wiley Online Library



Abstract

Changes in bone architecture and metabolism with aging increase the likelihood of osteoporosis and fracture. Age‐onset osteoporosis is multifactorial, with contributory extrinsic and intrinsic factors including certain medical problems, specific prescription drugs, estrogen loss, secondary hyperparathyroidism, microenvironmental and cellular alterations in bone tissue, and mechanical unloading or immobilization. At the histological level, there are changes in trabecular and cortical bone as well as marrow cellularity, lineage switching of mesenchymal stem cells to an adipogenic fate, inadequate transduction of signals during skeletal loading, and predisposition toward senescent cell accumulation with production of a senescence‐associated secretory phenotype. Cumulatively, these changes result in bone remodeling abnormalities that over time cause net bone loss typically seen in older adults. Age‐related osteoporosis is a geriatric syndrome due to the multiple etiologies that converge upon the skeleton to produce the ultimate phenotypic changes that manifest as bone fragility. Bone tissue is dynamic but with tendencies toward poor osteoblastic bone formation and relative osteoclastic bone resorption with aging. Interactions with other aging physiologic systems, such as muscle, may also confer detrimental effects on the aging skeleton. Conversely, individuals who maintain their BMD experience a lower risk of fractures, disability, and mortality, suggesting that this phenotype may be a marker of successful aging. © 2023 American Physiological Society. Compr Physiol 13:4355‐4386, 2023.

Figure 1. Figure 1. Factors that contribute to age‐related bone loss and their cellular and tissue manifestations. Age‐related osteoporosis is multifactorial and manifests as characteristic cellular and histological changes to bone.
Figure 2. Figure 2. The association of BMD with risk of fracture as a function of age. Fracture risk approximately doubles with every 1 standard deviation drop in T‐score. Intrinsic and extrinsic factors confer additional risk independent of BMD, such that individuals with T‐scores in the osteopenic range but with risk factors are at higher likelihood of fracture than with consideration of BMD alone (e.g., brown shaded area).
Figure 3. Figure 3. Osteoporosis is a geriatric syndrome due to multisystem involvement, and contributions made by older age, multifactorial risk factors, functional impairment, and multimorbidity.
Figure 4. Figure 4. Racial differences contribute to the risk of hip and vertebral fractures. Non‐Hispanic whites and Hispanic Americans have the greatest risk for hip fractures. Asian Americans and non‐Hispanic whites have the greatest risk for vertebral fractures.
Figure 5. Figure 5. Changes in cortical bone structure with aging. Due to periosteal apposition in the setting of endocortical resorption, there is outward cortical displacement with aging resulting in a decrease in cortical thickness and area. Concomitant alterations include increases in cortical porosity, trabecularization, and heterogeneity of mineralized bone as well as a decrease in ultimate stress. These changes tend to occur more prominently in women compared to men.
Figure 6. Figure 6. Changes in trabecular bone structure with aging. In women, there is a loss of trabecular bone with increased trabecular spacing. In men, there is a thinning of trabecular bone rather than trabecular bone loss.
Figure 7. Figure 7. Bone MSC (bMSC) lineage switching with aging and osteoporosis. There is a substantial increase in bone marrow adiposity with aging, largely due to the Wnt pathway inhibitor SOST (sclerostin) in the context of transcription and other factors that promote adipocyte over osteoblast differentiation of bMSCs. Normal (→), and enhanced (–→) pathways are indicated; inhibited pathways are noted (‖). Upwardly curved arrow indicates renewal and expansion (↻).
Figure 8. Figure 8. Aging‐related changes in bone mechanical responsiveness. Osteocytes are the primary mechanosensors in bone, and with aging, there is a drop in osteocyte density, loss of osteocyte dendritic processes, and disruption of the connectivity of canalicular network. The loss of connexin‐43 is associated with osteocyte cell death, empty lacunae, and deteriorative changes in the canalicular network. Wnt signaling pathway‐mediated mechanical transduction is also limited by sclerostin inhibition. Dashed arrows (⤏) indicate reduced pathways and solid lines (—) indicate enhanced pathways; inhibited pathways are noted (⊢).
Figure 9. Figure 9. Bone remodeling imbalance with aging and menopausal status. (A) Bone remodeling is normally a constant dynamic process that couples bone resorption to bone formation. (B) With aging, bone remodeling becomes uncoupled due to cellular senescence, lineage switching that favors adipogenesis over osteogenesis, and a relative increase in sclerostin. With postmenopausal status in women (and decreased estrogen level in men), there is an increase in osteoclast differentiation and activation frequency as well as an enhanced stimulation of sclerostin. In both aging and menopause increased levels of RANKL and IL‐6 favor osteoclast differentiation. Reduced (⤏), normal (→), and enhanced (—, →) pathways are indicated; inhibited pathways are noted (‖); bMSC, bone mesenchymal stem cell.
Figure 10. Figure 10. Renal osteodystrophy contributes to age‐related bone loss. Its two most common forms are based on the effects of elevated or depressed parathyroid hormone (PTH), manifested as osteitis fibrosa (high bone turnover), or adynamic bone disease (low bone turnover). Defects in bone mineralization are common in all forms of renal osteodystrophy but elevated levels of FGF23 are a major inducer of osteomalacia.
Figure 11. Figure 11. Cellular senescence in bone aging. Aging disrupts homeostatic processes in bone, causing increased osteoclast resorption and reduced bone formation and mineralization by osteoblasts. Bone MSCs (bMSC) produce a reduced number of osteoblasts and preferentially undergo adipogenic differentiation. Loss of osteocyte connectivity and disruption of the canalicular network accompanies osteocyte death and the accumulation of empty lacunae. Activation of osteoclasts promotes resorption, leading to bone loss. Senescent osteocytes are prominent in the aging bone microenvironment. Important drivers of cellular senescence, in general, include telomere dysfunction and a DDR that induces cell cycle arrest mediated by p16Ink4a or p21, with subsequent suppression of Cyclin D, CDK4/6, Cyclin E, and CDK2. Activation of NF‐κB promotes the transcription of pro‐inflammatory SASP factors. Mitochondrial dysfunction, disruption of protein homeostasis (i.e., proteostasis), chromatin modifications, miRNA‐regulation of senescence‐related genes, and alterations of the nuclear lamina are among the typical features of cellular senescence. Senolytic compounds and senomorphic agents target senescent cells and the SASP, respectively. Figure is courtesy of Abhishek Chandra, PhD, Mayo Clinic College of Medicine.
Figure 12. Figure 12. Possible age‐related changes in muscle‐bone interactions. Factors with beneficial effects are secreted in response to muscle contraction and skeletal loading. RANKL and TGFβ, released during the resorptive phase of bone remodeling, have negative effects on muscle, while detrimental effects on both muscle and bone are mediated by myostatin. IL‐7, IL6, and myostatin contribute to osteoclast differentiation, recruitment, and activation, which in turn increases bone resorption. Dashed lines (‐ ‐ ‐) indicate putative age‐related changes.
Figure 13. Figure 13. Resilience to age‐related bone loss confers health and life span advantages. Maintenance of BMD through exercise, genetic predisposition, and/or zoledronate is associated with decreased mortality, disability, and fractures. Zoledronate, independent of its effects on fracture reduction confers a mortality advantage.


Figure 1. Factors that contribute to age‐related bone loss and their cellular and tissue manifestations. Age‐related osteoporosis is multifactorial and manifests as characteristic cellular and histological changes to bone.


Figure 2. The association of BMD with risk of fracture as a function of age. Fracture risk approximately doubles with every 1 standard deviation drop in T‐score. Intrinsic and extrinsic factors confer additional risk independent of BMD, such that individuals with T‐scores in the osteopenic range but with risk factors are at higher likelihood of fracture than with consideration of BMD alone (e.g., brown shaded area).


Figure 3. Osteoporosis is a geriatric syndrome due to multisystem involvement, and contributions made by older age, multifactorial risk factors, functional impairment, and multimorbidity.


Figure 4. Racial differences contribute to the risk of hip and vertebral fractures. Non‐Hispanic whites and Hispanic Americans have the greatest risk for hip fractures. Asian Americans and non‐Hispanic whites have the greatest risk for vertebral fractures.


Figure 5. Changes in cortical bone structure with aging. Due to periosteal apposition in the setting of endocortical resorption, there is outward cortical displacement with aging resulting in a decrease in cortical thickness and area. Concomitant alterations include increases in cortical porosity, trabecularization, and heterogeneity of mineralized bone as well as a decrease in ultimate stress. These changes tend to occur more prominently in women compared to men.


Figure 6. Changes in trabecular bone structure with aging. In women, there is a loss of trabecular bone with increased trabecular spacing. In men, there is a thinning of trabecular bone rather than trabecular bone loss.


Figure 7. Bone MSC (bMSC) lineage switching with aging and osteoporosis. There is a substantial increase in bone marrow adiposity with aging, largely due to the Wnt pathway inhibitor SOST (sclerostin) in the context of transcription and other factors that promote adipocyte over osteoblast differentiation of bMSCs. Normal (→), and enhanced (–→) pathways are indicated; inhibited pathways are noted (‖). Upwardly curved arrow indicates renewal and expansion (↻).


Figure 8. Aging‐related changes in bone mechanical responsiveness. Osteocytes are the primary mechanosensors in bone, and with aging, there is a drop in osteocyte density, loss of osteocyte dendritic processes, and disruption of the connectivity of canalicular network. The loss of connexin‐43 is associated with osteocyte cell death, empty lacunae, and deteriorative changes in the canalicular network. Wnt signaling pathway‐mediated mechanical transduction is also limited by sclerostin inhibition. Dashed arrows (⤏) indicate reduced pathways and solid lines (—) indicate enhanced pathways; inhibited pathways are noted (⊢).


Figure 9. Bone remodeling imbalance with aging and menopausal status. (A) Bone remodeling is normally a constant dynamic process that couples bone resorption to bone formation. (B) With aging, bone remodeling becomes uncoupled due to cellular senescence, lineage switching that favors adipogenesis over osteogenesis, and a relative increase in sclerostin. With postmenopausal status in women (and decreased estrogen level in men), there is an increase in osteoclast differentiation and activation frequency as well as an enhanced stimulation of sclerostin. In both aging and menopause increased levels of RANKL and IL‐6 favor osteoclast differentiation. Reduced (⤏), normal (→), and enhanced (—, →) pathways are indicated; inhibited pathways are noted (‖); bMSC, bone mesenchymal stem cell.


Figure 10. Renal osteodystrophy contributes to age‐related bone loss. Its two most common forms are based on the effects of elevated or depressed parathyroid hormone (PTH), manifested as osteitis fibrosa (high bone turnover), or adynamic bone disease (low bone turnover). Defects in bone mineralization are common in all forms of renal osteodystrophy but elevated levels of FGF23 are a major inducer of osteomalacia.


Figure 11. Cellular senescence in bone aging. Aging disrupts homeostatic processes in bone, causing increased osteoclast resorption and reduced bone formation and mineralization by osteoblasts. Bone MSCs (bMSC) produce a reduced number of osteoblasts and preferentially undergo adipogenic differentiation. Loss of osteocyte connectivity and disruption of the canalicular network accompanies osteocyte death and the accumulation of empty lacunae. Activation of osteoclasts promotes resorption, leading to bone loss. Senescent osteocytes are prominent in the aging bone microenvironment. Important drivers of cellular senescence, in general, include telomere dysfunction and a DDR that induces cell cycle arrest mediated by p16Ink4a or p21, with subsequent suppression of Cyclin D, CDK4/6, Cyclin E, and CDK2. Activation of NF‐κB promotes the transcription of pro‐inflammatory SASP factors. Mitochondrial dysfunction, disruption of protein homeostasis (i.e., proteostasis), chromatin modifications, miRNA‐regulation of senescence‐related genes, and alterations of the nuclear lamina are among the typical features of cellular senescence. Senolytic compounds and senomorphic agents target senescent cells and the SASP, respectively. Figure is courtesy of Abhishek Chandra, PhD, Mayo Clinic College of Medicine.


Figure 12. Possible age‐related changes in muscle‐bone interactions. Factors with beneficial effects are secreted in response to muscle contraction and skeletal loading. RANKL and TGFβ, released during the resorptive phase of bone remodeling, have negative effects on muscle, while detrimental effects on both muscle and bone are mediated by myostatin. IL‐7, IL6, and myostatin contribute to osteoclast differentiation, recruitment, and activation, which in turn increases bone resorption. Dashed lines (‐ ‐ ‐) indicate putative age‐related changes.


Figure 13. Resilience to age‐related bone loss confers health and life span advantages. Maintenance of BMD through exercise, genetic predisposition, and/or zoledronate is associated with decreased mortality, disability, and fractures. Zoledronate, independent of its effects on fracture reduction confers a mortality advantage.
References
 1.Aaron JE, Makins NB, Sagreiya K. The microanatomy of trabecular bone loss in normal aging men and women. Clin Orthop Relat Res 215: 260‐271, 1987.
 2.Abdallah BM, Haack‐Sørensen M, Fink T, Kassem M. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Bone 39: 181‐188, 2006.
 3.Abdallah BM, Kassem M. New factors controlling the balance between osteoblastogenesis and adipogenesis. Bone 50: 540‐545, 2012.
 4.Abdelrahman S, Ireland A, Winter EM, Purcell M, Coupaud S. Osteoporosis after spinal cord injury: Aetiology, effects and therapeutic approaches. J Musculoskelet Neuronal Interact 21: 26‐50, 2021.
 5.Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S, Fumagalli M, Da Costa M, Brown C, Popov N, Takatsu Y, Melamed J, d'Adda di Fagagna F, Bernard D, Hernando E, Gil J. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133: 1006‐1018, 2008.
 6.Agger K, Cloos PA, Rudkjaer L, Williams K, Andersen G, Christensen J, Helin K. The H3K27me3 demethylase JMJD3 contributes to the activation of the INK4A‐ARF locus in response to oncogene‐ and stress‐induced senescence. Genes Dev 23: 1171‐1176, 2009.
 7.Agidigbi TS, Kim C. Reactive oxygen species in osteoclast differentiation and possible pharmaceutical targets of ROS‐mediated osteoclast diseases. Int J Mol Sci 20: 3576, 2019.
 8.Ahmed LA, Nguyen ND, Bjornerem A, Joakimsen RM, Jorgensen L, Stormer J, Bliuc D, Center JR, Eisman JA, Nguyen TV, Emaus N. External validation of the Garvan nomograms for predicting absolute fracture risk: The Tromso study. PLoS One 9: e107695, 2014.
 9.Akune T, Ohba S, Kamekura S, Yamaguchi M, Chung UI, Kubota N, Terauchi Y, Harada Y, Azuma Y, Nakamura K, Kadowaki T, Kawaguchi H. PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113: 846‐855, 2004.
 10.Albright F, Smith PH, Richardson AM. Postmenopausal osteoporosis. J Am Med Assoc 116: 2465‐2474, 1941.
 11.Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC. Involvement of the cyclin‐dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93: 13742‐13747, 1996.
 12.Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman‐Breen C. Increased risk of hip fracture among patients with end‐stage renal disease. Kidney Int 58: 396‐399, 2000.
 13.Alfano CM, Peng J, Andridge RR, Lindgren ME, Povoski SP, Lipari AM, Agnese DM, Farrar WB, Yee LD, Carson WE 3rd, Kiecolt‐Glaser JK. Inflammatory cytokines and comorbidity development in breast cancer survivors versus noncancer controls: Evidence for accelerated aging? J Clin Oncol 35: 149‐156, 2017.
 14.Almeida M. Aging mechanisms in bone. Bonekey Rep 1: 102, 2012.
 15.Altindag O, Erel O, Soran N, Celik H, Selek S. Total oxidative/anti‐oxidative status and relation to bone mineral density in osteoporosis. Rheumatol Int 28: 317‐321, 2008.
 16.Amin S, Felson DT. Osteoporosis in men. Rheum Dis Clin N Am 27: 19‐47, 2001.
 17.Ammann P, Rizzoli R, Bonjour JP, Bourrin S, Meyer JM, Vassalli P, Garcia I. Transgenic mice expressing soluble tumor necrosis factor‐receptor are protected against bone loss caused by estrogen deficiency. J Clin Invest 99: 1699‐1703, 1997.
 18.Andrew T, Antioniades L, Scurrah KJ, Macgregor AJ, Spector TD. Risk of wrist fracture in women is heritable and is influenced by genes that are largely independent of those influencing BMD. J Bone Miner Res 20: 67‐74, 2005.
 19.Aquino‐Martinez R, Farr JN, Weivoda MM, Negley BA, Onken JL, Thicke BS, Fulcer MM, Fraser DG, van Wijnen AJ, Khosla S, Monroe DG. miR‐219a‐5p regulates rorbeta during osteoblast differentiation and in age‐related bone loss. J Bone Miner Res 34: 135‐144, 2019.
 20.Arnaud CD. Hyperparathyroidism and renal failure. Kidney Int 4: 89‐95, 1973.
 21.Ashique AM, Hart LS, Thomas CDL, Clement JG, Pivonka P, Carter Y, Mousseau DD, Cooper DML. Lacunar‐canalicular network in femoral cortical bone is reduced in aged women and is predominantly due to a loss of canalicular porosity. Bone Rep 7: 9‐16, 2017.
 22.Bafico A, Liu G, Yaniv A, Gazit A, Aaronson SA. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf‐1 interaction with LRP6/Arrow. Nat Cell Biol 3: 683‐686, 2001.
 23.Balasubramanian A, Zhang J, Chen L, Wenkert D, Daigle SG, Grauer A, Curtis JR. Risk of subsequent fracture after prior fracture among older women. Osteoporos Int 30: 79‐92, 2019.
 24.Bannwarth B. Drug‐induced musculoskeletal disorders. Drug Saf 30: 27‐46, 2007.
 25.Bardin T. Musculoskeletal manifestations of chronic renal failure. Curr Opin Rheumatol 15: 48‐54, 2003.
 26.Barrett‐Connor E, Siris ES, Wehren LE, Miller PD, Abbott TA, Berger ML, Santora AC, Sherwood LM. Osteoporosis and fracture risk in women of different ethnic groups. J Bone Miner Res 20: 185‐194, 2005.
 27.Bartell SM, Kim HN, Ambrogini E, Han L, Iyer S, Serra Ucer S, Rabinovitch P, Jilka RL, Weinstein RS, Zhao H, O'Brien CA, Manolagas SC, Almeida M. FoxO proteins restrain osteoclastogenesis and bone resorption by attenuating H2O2 accumulation. Nat Commun 5: 3773, 2014.
 28.Bauer RL, Deyo RA. Low risk of vertebral fracture in Mexican American women. Arch Intern Med 147: 1437‐1439, 1987.
 29.Baxter MA, Wynn RF, Jowitt SN, Wraith JE, Fairbairn LJ, Bellantuono I. Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells 22: 675‐682, 2004.
 30.Beekman KM, Veldhuis‐Vlug AG, den Heijer M, Maas M, Oleksik AM, Tanck MW, Ott SM, van t'Hof RJ, Lips P, Bisschop PH, Bravenboer N. The effect of raloxifene on bone marrow adipose tissue and bone turnover in postmenopausal women with osteoporosis. Bone 118: 62‐68, 2019.
 31.Benayoun BA, Pollina EA, Brunet A. Epigenetic regulation of ageing: Linking environmental inputs to genomic stability. Nat Rev Mol Cell Biol 16: 593‐610, 2015.
 32.Benito M, Gomberg B, Wehrli FW, Weening RH, Zemel B, Wright AC, Song HK, Cucchiara A, Snyder PJ. Deterioration of trabecular architecture in hypogonadal men. J Clin Endocrinol Metab 88: 1497‐1502, 2003.
 33.Bennett JH, Joyner CJ, Triffitt JT, Owen ME. Adipocytic cells cultured from marrow have osteogenic potential. J Cell Sci 99 (Pt1): 131‐139, 1991.
 34.Bentler SE, Liu L, Obrizan M, Cook EA, Wright KB, Geweke JF, Chrischilles EA, Pavlik CE, Wallace RB, Ohsfeldt RL, Jones MP, Rosenthal GE, Wolinsky FD. The aftermath of hip fracture: Discharge placement, functional status change, and mortality. Am J Epidemiol 170: 1290‐1299, 2009.
 35.Beresford JN, Bennettt JH, Devlin C, Leboyt PS, Owen ME. Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102: 341‐351, 1992.
 36.Bergman RJ, Gazit D, Kahn AJ, Gruber H, McDougall S, Hahn TJ. Age‐related changes in osteogenic stem cells in mice. J Bone Miner Res 11: 568‐577, 1996.
 37.Bianco P, Riminucci M, Gronthos S, Robey PG. Bone marrow stromal stem cells: Nature, biology, and potential applications. Stem Cells 19: 180‐192, 2001.
 38.Bikle DD, Sakata T, Halloran BP. The impact of skeletal unloading on bone formation. Gravit Space Biol Bull 16: 45‐54, 2003.
 39.Black DM, Cauley JA, Wagman R, Ensrud K, Fink HA, Hillier TA, Lui LY, Cummings SR, Schousboe JT, Napoli N. The ability of a single BMD and fracture history assessment to predict fracture over 25 years in postmenopausal women: The study of osteoporotic fractures. J Bone Miner Res 33: 389‐395, 2018.
 40.Blagosklonny MV. Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: Terminology for TOR‐driven aging. Aging (Albany NY) 4: 159‐165, 2012.
 41.Bliuc D, Alarkawi D, Nguyen TV, Eisman JA, Center JR. Risk of subsequent fractures and mortality in elderly women and men with fragility fractures with and without osteoporotic bone density: The Dubbo Osteoporosis Epidemiology Study. J Bone Miner Res 30: 637‐646, 2015.
 42.Bonafede M, Shi N, Barron R, Li X, Crittenden DB, Chandler D. Predicting imminent risk for fracture in patients aged 50 or older with osteoporosis using US claims data. Arch Osteoporos 11: 26, 2016.
 43.Bonyadi M, Waldman SD, Liu D, Aubin JE, Grynpas MD, Stanford WL. Mesenchymal progenitor self‐renewal deficiency leads to age‐dependent osteoporosis in Sca‐1/Ly‐6A null mice. Proc Natl Acad Sci U S A 100: 5840‐5845, 2003.
 44.Bork S, Pfister S, Witt H, Horn P, Korn B, Ho AD, Wagner W. DNA methylation pattern changes upon long‐term culture and aging of human mesenchymal stromal cells. Aging Cell 9: 54‐63, 2010.
 45.Borodkina AV, Deryabin PI, Giukova AA, Nikolsky NN. “Social life” of senescent cells: What is SASP and why study it? Acta Nat 10: 4‐14, 2018.
 46.Boulanger Piette A, Hamoudi D, Marcadet L, Morin F, Argaw A, Ward L, Frenette J. Targeting the muscle‐bone unit: Filling two needs with one deed in the treatment of duchenne muscular dystrophy. Curr Osteoporos Rep 16: 541‐553, 2018.
 47.Bouxsein ML, Kaufman J, Tosi L, Cummings S, Lane J, Johnell O. Recommendations for optimal care of the fragility fracture patient to reduce the risk of future fracture. J Am Acad Orthop Surg 12: 385‐395, 2004.
 48.Bow CH, Cheung E, Cheung CL, Xiao SM, Loong C, Soong C, Tan KC, Luckey MM, Cauley JA, Fujiwara S, Kung AW. Ethnic difference of clinical vertebral fracture risk. Osteoporos Int 23: 879‐885, 2012.
 49.Bowers RR, Lane MD. A role for bone morphogenetic protein‐4 in adipocyte development. Cell Cycle 6: 385‐389, 2007.
 50.Bracken AP, Kleine‐Kohlbrecher D, Dietrich N, Pasini D, Gargiulo G, Beekman C, Theilgaard‐Monch K, Minucci S, Porse BT, Marine JC, Hansen KH, Helin K. The Polycomb group proteins bind throughout the INK4A‐ARF locus and are disassociated in senescent cells. Genes Dev 21: 525‐530, 2007.
 51.Brennan TA, Egan KP, Lindborg CM, Chen Q, Sweetwyne MT, Hankenson KD, Xie SX, Johnson FB, Pignolo RJ. Mouse models of telomere dysfunction phenocopy skeletal changes found in human age‐related osteoporosis. Dis Model Mech 7: 583‐592, 2014.
 52.Briot K, Fechtenbaum J, Roux C. Clinical relevance of vertebral fractures in men. J Bone Miner Res 31: 1497‐1499, 2016.
 53.Brockstedt H, Kassem M, Eriksen EF, Mosekilde L, Melsen F. Age‐ and sex‐related changes in iliac cortical bone mass and remodeling. Bone 14: 681‐691, 1993.
 54.Broy SB, Cauley JA, Lewiecki ME, Schousboe JT, Shepherd JA, Leslie WD. Fracture risk prediction by non‐BMD DXA measures: The 2015 ISCD official positions part 1: Hip geometry. J Clin Densitom 18: 287‐308, 2015.
 55.Buehring B, Binkley N. Myostatin—the holy grail for muscle, bone, and fat? Curr Osteoporos Rep 11: 407‐414, 2013.
 56.Burkhardt R, Kettner G, Böhm W, Schmidmeier M, Schlag R, Frisch B, Mallmann B, Eisenmenger W, Gilg T. Changes in trabecular bone, hematopoiesis and bone marrow vessels in aplastic anemia, primary osteoporosis, and old age: A comparative histomorphometric study. Bone 8: 157‐164, 1987.
 57.Burr DB. Changes in bone matrix properties with aging. Bone 120: 85‐93, 2019.
 58.Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, Djuric M, Amling M. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 9: 1065‐1075, 2010.
 59.Cadarette SM, Jaglal SB, Kreiger N, McIsaac WJ, Darlington GA, Tu JV. Development and validation of the Osteoporosis Risk Assessment Instrument to facilitate selection of women for bone densitometry. CMAJ 162: 1289‐1294, 2000.
 60.Cadarette SM, Jaglal SB, Murray TM, McIsaac WJ, Joseph L, Brown JP. Evaluation of decision rules for referring women for bone densitometry by dual‐energy X‐ray absorptiometry. JAMA 286: 57‐63, 2001.
 61.Campisi J. Senescent cells, tumor suppression, and organismal aging: Good citizens, bad neighbors. Cell 120: 513‐522, 2005.
 62.Canaff L, Hendy GN. Human calcium‐sensing receptor gene. Vitamin D response elements in promoters p1 and p2 confer transcriptional responsiveness to 1,25‐dihydroxyvitamin D. J Biol Chem 277: 30337‐30350, 2002.
 63.Canalis E, Mazziotti G, Giustina A, Bilezikian JP. Glucocorticoid‐induced osteoporosis: Pathophysiology and therapy. Osteoporos Int 18: 1319‐1328, 2007.
 64.Cao J, Venton L, Sakata T, Halloran BP. Expression of RANKL and OPG correlates with age‐related bone loss in male C57BL/6 mice. J Bone Miner Res 18: 270‐277, 2003.
 65.Cauley JA, Cawthon PM, Peters KE, Cummings SR, Ensrud KE, Bauer DC, Taylor BC, Shikany JM, Hoffman AR, Lane NE, Kado DM, Stefanick ML, Orwoll ES, Osteoporotic Fractures in Men Study Research Group. Risk factors for hip fracture in older men: The osteoporotic fractures in men study (MrOS). J Bone Miner Res 31: 1810‐1819, 2016.
 66.Cauley JA, Lui LY, Barnes D, Ensrud KE, Zmuda JM, Hillier TA, Hochberg MC, Schwartz AV, Yaffe K, Cummings SR, Newman AB, SOF Research Group. Successful skeletal aging: A marker of low fracture risk and longevity. The study of osteoporotic fractures (SOF). J Bone Miner Res 24: 134‐143, 2009.
 67.Center JR, Bliuc D, Nguyen TV, Eisman JA. Risk of subsequent fracture after low‐trauma fracture in men and women. JAMA 297: 387‐394, 2007.
 68.Center JR, Nguyen TV, Schneider D, Sambrook PN, Eisman JA. Mortality after all major types of osteoporotic fracture in men and women: An observational study. Lancet 353: 878‐882, 1999.
 69.Chalhoub D, Orwoll ES, Cawthon PM, Ensrud KE, Boudreau R, Greenspan S, Newman AB, Zmuda J, Bauer D, Cummings S, Cauley JA, Osteoporotic Fractures in Men Study Research Group. Areal and volumetric bone mineral density and risk of multiple types of fracture in older men. Bone 92: 100‐106, 2016.
 70.Chandra A, Lagnado AB, Farr JN, Monroe DG, Park S, Hachfeld C, Tchkonia T, Kirkland JL, Khosla S, Passos JF, Pignolo RJ. Targeted reduction of senescent cell burden alleviates focal radiotherapy‐related bone loss. J Bone Miner Res 35: 1119‐1131, 2020.
 71.Chandra A, Lin T, Young T, Tong W, Ma X, Tseng WJ, Kramer I, Kneissel M, Levine MA, Zhang Y, Cengel K, Liu XS, Qin L. Suppression of sclerostin alleviates radiation‐induced bone loss by protecting bone‐forming cells and their progenitors through distinct mechanisms. J Bone Miner Res 32: 360‐372, 2017.
 72.Chandra A, Lin T, Zhu J, Tong W, Huo Y, Jia H, Zhang Y, Liu XS, Cengel K, Xia B, Qin L. PTH1‐34 blocks radiation‐induced osteoblast apoptosis by enhancing DNA repair through canonical Wnt pathway. J Biol Chem 290: 157‐167, 2015.
 73.Chandra A, Rosenzweig A, Pignolo RJ. Osteobiology of aging. In: Pignolo R, Ahn J, editors. Fractures in the Elderly. Cham: Humana Press, 2018, p. 3‐37.
 74.Chang S, Multani AS, Cabrera NG, Naylor ML, Laud P, Lombard D, Pathak S, Guarente L, DePinho RA. Essential role of limiting telomeres in the pathogenesis of Werner syndrome. Nat Genet 36: 877‐882, 2004.
 75.Chantraine A, Heynen G, Franchimont P. Bone metabolism, parathyroid hormone, and calcitonin in paraplegia. Calcif Tissue Int 27: 199‐204, 1979.
 76.Charatcharoenwitthaya N, Khosla S, Atkinson EJ, McCready LK, Riggs BL. Effect of blockade of TNF‐alpha and interleukin‐1 action on bone resorption in early postmenopausal women. J Bone Miner Res 22: 724‐729, 2007.
 77.Chen JS, Cameron ID, Cumming RG, Lord SR, March LM, Sambrook PN, Simpson JM, Seibel MJ. Effect of age‐related chronic immobility on markers of bone turnover. J Bone Miner Res 21: 324‐331, 2005.
 78.Chen Q, Liu K, Robinson AR, Clauson CL, Blair HC, Robbins PD, Niedernhofer LJ, Ouyang H. DNA damage drives accelerated bone aging via an NF‐kappaB‐dependent mechanism. J Bone Miner Res 28: 1214‐1228, 2013.
 79.Chen Q, Shou P, Zhang L, Xu C, Zheng C, Han Y, Li W, Huang Y, Zhang X, Shao C, Roberts AI, Rabson AB, Ren G, Zhang Y, Wang Y, Denhardt DT, Shi Y. An osteopontin‐integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 32: 327‐337, 2014.
 80.Chen Y, Guo Y, Zhang X, Mei Y, Feng Y, Zhang X. Bone susceptibility mapping with MRI is an alternative and reliable biomarker of osteoporosis in postmenopausal women. Eur Radiol 28: 5027‐5034, 2018.
 81.Cheng SY, Levy AR, Lefaivre KA, Guy P, Kuramoto L, Sobolev B. Geographic trends in incidence of hip fractures: A comprehensive literature review. Osteoporos Int 22: 2575‐2586, 2011.
 82.Cheung P, Vallania F, Warsinske HC, Donato M, Schaffert S, Chang SE, Dvorak M, Dekker CL, Davis MM, Utz PJ, Khatri P, Kuo AJ. Single‐cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell 173: 1385‐1397 e1314, 2018.
 83.Chevalley T, Bonjour JP, van Rietbergen B, Ferrari S, Rizzoli R. Fractures during childhood and adolescence in healthy boys: Relation with bone mass, microstructure, and strength. J Clin Endocrinol Metab 96: 3134‐3142, 2011.
 84.Childs BG, Durik M, Baker DJ, van Deursen JM. Cellular senescence in aging and age‐related disease: From mechanisms to therapy. Nat Med 21: 1424‐1435, 2015.
 85.Chow J, Tobias JH, Colston KW, Chambers TJ. Estrogen maintains trabecular bone volume in rats not only by suppression of bone resorption but also by stimulation of bone formation. J Clin Invest 89: 74‐78, 1992.
 86.Chung PL, Zhou S, Eslami B, Shen L, LeBoff MS, Glowacki J. Effect of age on regulation of human osteoclast differentiation. J Cell Biochem 115: 1412‐1419, 2014.
 87.Clark EM, Ness AR, Bishop NJ, Tobias JH. Association between bone mass and fractures in children: A prospective cohort study. J Bone Miner Res 21: 1489‐1495, 2006.
 88.Clark GR, Duncan EL. The genetics of osteoporosis. Br Med Bull 113: 73‐81, 2015.
 89.Cohen A, Shane E. Osteoporosis after solid organ and bone marrow transplantation. Osteoporos Int 14: 617‐630, 2003.
 90.Colon‐Emeric CS, Mesenbrink P, Lyles KW, Pieper CF, Boonen S, Delmas P, Eriksen EF, Magaziner J. Potential mediators of the mortality reduction with zoledronic acid after hip fracture. J Bone Miner Res 25: 91‐97, 2010.
 91.Compston JE. Mechanisms of bone loss and gain in untreated and treated osteoporosis. Endocrine 17: 21‐27, 2002.
 92.Coppe JP, Patil CK, Rodier F, Sun Y, Munoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J. Senescence‐associated secretory phenotypes reveal cell‐nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6: 2853‐2868, 2008.
 93.d'Adda di Fagagna F, Reaper PM, Clay‐Farrace L, Fiegler H, Carr P, Von Zglinicki T, Saretzki G, Carter NP, Jackson SP. A DNA damage checkpoint response in telomere‐initiated senescence. Nature 426: 194‐198, 2003.
 94.Dalsky GP, Stocke KS, Ehsani AA, Slatopolsky E, Lee WC, Birge SJ Jr. Weight‐bearing exercise training and lumbar bone mineral content in postmenopausal women. Ann Intern Med 108: 824‐828, 1988.
 95.Davis HM, Pacheco‐Costa R, Atkinson EG, Brun LR, Gortazar AR, Harris J, Hiasa M, Bolarinwa SA, Yoneda T, Ivan M, Bruzzaniti A, Bellido T, Plotkin LI. Disruption of the Cx43/miR21 pathway leads to osteocyte apoptosis and increased osteoclastogenesis with aging. Aging Cell 16: 551‐563, 2017.
 96.De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD, Le O, Beausejour C, Ambati J, Ambati K, Simon M, Seluanov A, Gorbunova V, Slagboom PE, Helfand SL, Neretti N, Sedivy JM. L1 drives IFN in senescent cells and promotes age‐associated inflammation. Nature 566: 73‐78, 2019.
 97.Delgado‐Calle J, Fernandez AF, Sainz J, Zarrabeitia MT, Sanudo C, Garcia‐Renedo R, Perez‐Nunez MI, Garcia‐Ibarbia C, Fraga MF, Riancho JA. Genome‐wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum 65: 197‐205, 2013.
 98.Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge RM, Vijg J, Van Steeg H, Dolle ME, Hoeijmakers JH, de Bruin A, Hara E, Campisi J. An essential role for senescent cells in optimal wound healing through secretion of PDGF‐AA. Dev Cell 31: 722‐733, 2014.
 99.Demidenko ZN, Blagosklonny MV. Growth stimulation leads to cellular senescence when the cell cycle is blocked. Cell Cycle 7: 3355‐3361, 2008.
 100.Deng HW, Chen WM, Recker S, Stegman MR, Li JL, Davies KM, Zhou Y, Deng H, Heaney R, Recker RR. Genetic determination of Colles' fracture and differential bone mass in women with and without Colles' fracture. J Bone Miner Res 15: 1243‐1252, 2000.
 101.Diagnosis and Therapy NIH Consensus Development Panel on Osteoporosis Prevention. Osteoporosis prevention, diagnosis, and therapy. JAMA 285: 785‐795, 2001.
 102.Dionyssiotis Y. Spinal cord injury‐related bone impairment and fractures: An update on epidemiology and physiopathological mechanisms. J Musculoskelet Neuronal Interact 11: 257‐265, 2011.
 103.Dixon WG, Lunt M, Pye SR, Reeve J, Felsenberg D, Silman AJ, O'Neill TW, European Prospective Osteoporosis Study Group. Low grip strength is associated with bone mineral density and vertebral fracture in women. Rheumatology (Oxford) 44: 642‐646, 2005.
 104.Domazetovic V, Marcucci G, Iantomasi T, Brandi ML, Vincenzini MT. Oxidative stress in bone remodeling: Role of antioxidants. Clin Cases Miner Bone Metab 14: 209‐216, 2017.
 105.Donati G, Peddigari S, Mercer CA, Thomas G. 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2‐p53 checkpoint. Cell Rep 4: 87‐98, 2013.
 106.Drake MT, McCready LK, Hoey KA, Atkinson EJ, Khosla S. Effects of suppression of follicle‐stimulating hormone secretion on bone resorption markers in postmenopausal women. J Clin Endocrinol Metab 95: 5063‐5068, 2010.
 107.Dudakovic A, Camilleri ET, Paradise CR, Samsonraj RM, Gluscevic M, Paggi CA, Begun DL, Khani F, Pichurin O, Ahmed FS, Elsayed R, Elsalanty M, McGee‐Lawrence ME, Karperien M, Riester SM, Thaler R, Westendorf JJ, van Wijnen AJ. Enhancer of zeste homolog 2 (Ezh2) controls bone formation and cell cycle progression during osteogenesis in mice. J Biol Chem 293: 12894‐12907, 2018.
 108.Dudakovic A, Camilleri ET, Riester SM, Paradise CR, Gluscevic M, O'Toole TM, Thaler R, Evans JM, Yan H, Subramaniam M, Hawse JR, Stein GS, Montecino MA, McGee‐Lawrence ME, Westendorf JJ, van Wijnen AJ. Enhancer of zeste homolog 2 inhibition stimulates bone formation and mitigates bone loss caused by ovariectomy in skeletally mature mice. J Biol Chem 291: 24594‐24606, 2016.
 109.Dudakovic A, Samsonraj RM, Paradise CR, Galeano‐Garces C, Mol MO, Galeano‐Garces D, Zan P, Galvan ML, Hevesi M, Pichurin O, Thaler R, Begun DL, Kloen P, Karperien M, Larson AN, Westendorf JJ, Cool SM, van Wijnen AJ. Inhibition of the epigenetic suppressor EZH2 primes osteogenic differentiation mediated by BMP2. J Biol Chem 295: 7877‐7893, 2020.
 110.Dufresne SS, Boulanger‐Piette A, Bosse S, Argaw A, Hamoudi D, Marcadet L, Gamu D, Fajardo VA, Yagita H, Penninger JM, Russell Tupling A, Frenette J. Genetic deletion of muscle RANK or selective inhibition of RANKL is not as effective as full‐length OPG‐fc in mitigating muscular dystrophy. Acta Neuropathol Commun 6: 31, 2018.
 111.Duong LT, Pickarski M, Cusick T, Chen CM, Zhuo Y, Scott K, Samadfam R, Smith SY, Pennypacker BL. Effects of long term treatment with high doses of odanacatib on bone mass, bone strength, and remodeling/modeling in newly ovariectomized monkeys. Bone 88: 113‐124, 2016.
 112.Ebeling PR, Atley LM, Guthrie JR, Burger HG, Dennerstein L, Hopper JL, Wark JD. Bone turnover markers and bone density across the menopausal transition. J Clin Endocrinol Metab 81: 3366‐3371, 1996.
 113.Eghbali‐Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL. Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111: 1221‐1230, 2003.
 114.el‐Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW, Vogelstein B. WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817‐825, 1993.
 115.Elliot‐Gibson V, Bogoch ER, Jamal SA, Beaton DE. Practice patterns in the diagnosis and treatment of osteoporosis after a fragility fracture: A systematic review. Osteoporos Int 15: 767‐778, 2004.
 116.Engelke K, Adams JE, Armbrecht G, Augat P, Bogado CE, Bouxsein ML, Felsenberg D, Ito M, Prevrhal S, Hans DB, Lewiecki EM. Clinical use of quantitative computed tomography and peripheral quantitative computed tomography in the management of osteoporosis in adults: The 2007 ISCD official positions. J Clin Densitom 11: 123‐162, 2008.
 117.Epker BN, Frost HM. A histological study of remodeling at the periosteal, haversian canal, cortical endosteal, and trabecular endosteal surfaces in human rib. Anat Rec 152: 129‐135, 1965.
 118.Epstein CJ, Martin GM, Schultz AL, Motulsky AG. Werner's syndrome a review of its symptomatology, natural history, pathologic features, genetics and relationship to the natural aging process. Medicine (Baltimore) 45: 177‐221, 1966.
 119.Ernst M, Heath JK, Rodan GA. Estradiol effects on proliferation, messenger ribonucleic acid for collagen and insulin‐like growth factor‐I, and parathyroid hormone‐stimulated adenylate cyclase activity in osteoblastic cells from calvariae and long bones. Endocrinology 125: 825‐833, 1989.
 120.European Prospective Osteoporosis Study Group, Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD, Cockerill WC, Banzer D, Benevolenskaya LI, Bhalla A, Bruges Armas J, Cannata JB, Cooper C, Dequeker J, Eastell R, Felsch B, Gowin W, Havelka S, Hoszowski K, Jajic I, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lorenc R, Lyritis G, Masaryk P, Matthis C, Miazgowski T, Parisi G, Pols HA, Poor G, Raspe HH, Reid DM, Reisinger W, Schedit‐Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Yershova OB, Reeve J, O'Neill TW. Incidence of vertebral fracture in europe: Results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17: 716‐724, 2002.
 121.Falahati‐Nini A, Riggs BL, Atkinson EJ, O'Fallon WM, Eastell R, Khosla S. Relative contributions of testosterone and estrogen in regulating bone resorption and formation in normal elderly men. J Clin Invest 106: 1553‐1560, 2000.
 122.Falconi D, Oizumi K, Aubin JE. Leukemia inhibitory factor influences the fate choice of mesenchymal progenitor cells. Stem Cells 25: 305‐312, 2007.
 123.Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, Drake MT, Tchkonia T, LeBrasseur NK, Kirkland JL, Bonewald LF, Pignolo RJ, Monroe DG, Khosla S. Identification of senescent cells in the bone microenvironment. J Bone Miner Res 31: 1920‐1929, 2016.
 124.Farr JN, Khosla S. Skeletal changes through the lifespan—from growth to senescence. Nat Rev Endocrinol 11: 513‐521, 2015.
 125.Farr JN, Roforth MM, Fujita K, Nicks KM, Cunningham JM, Atkinson EJ, Therneau TM, McCready LK, Peterson JM, Drake MT, Monroe DG, Khosla S. Effects of age and estrogen on skeletal gene expression in humans as assessed by RNA sequencing. PLoS One 10: e0138347, 2015.
 126.Farr JN, Rowsey JL, Eckhardt BA, Thicke BS, Fraser DG, Tchkonia T, Kirkland JL, Monroe DG, Khosla S. Independent roles of estrogen deficiency and cellular senescence in the pathogenesis of osteoporosis: Evidence in young adult mice and older humans. J Bone Miner Res 34: 1407‐1418, 2019.
 127.Farr JN, Xu M, Weivoda MM, Monroe DG, Fraser DG, Onken JL, Negley BA, Sfeir JG, Ogrodnik MB, Hachfeld CM, LeBrasseur NK, Drake MT, Pignolo RJ, Pirtskhalava T, Tchkonia T, Oursler MJ, Kirkland JL, Khosla S. Targeting cellular senescence prevents age‐related bone loss in mice. Nat Med 23: 1072‐1079, 2017.
 128.Faulkner KG, Cummings SR, Black D, Palermo L, Gluer CC, Genant HK. Simple measurement of femoral geometry predicts hip fracture: The study of osteoporotic fractures. J Bone Miner Res 8: 1211‐1217, 1993.
 129.Feichtinger X, Muschitz C, Heimel P, Baierl A, Fahrleitner‐Pammer A, Redl H, Resch H, Geiger E, Skalicky S, Dormann R, Plachel F, Pietschmann P, Grillari J, Hackl M, Kocijan R. Bone‐related circulating microRNAs miR‐29b‐3p, miR‐550a‐3p, and miR‐324‐3p and their association to bone microstructure and histomorphometry. Sci Rep 8: 4867, 2018.
 130.Fekete N, Erle A, Amann EM, Furst D, Rojewski MT, Langonne A, Sensebe L, Schrezenmeier H, Schmidtke‐Schrezenmeier G. Effect of high‐dose irradiation on human bone‐marrow‐derived mesenchymal stromal cells. Tissue Eng Part C Methods 21: 112‐122, 2015.
 131.Ferguson VL, Ayers RA, Bateman TA, Simske SJ. Bone development and age‐related bone loss in male C57BL/6J mice. Bone 33: 387‐398, 2003.
 132.Fernandez‐Rebollo E, Eipel M, Seefried L, Hoffmann P, Strathmann K, Jakob F, Wagner W. Primary osteoporosis is not reflected by disease‐specific DNA methylation or accelerated epigenetic age in blood. J Bone Miner Res 33: 356‐361, 2018.
 133.Feskanich D, Willett W, Colditz G. Walking and leisure‐time activity and risk of hip fracture in postmenopausal women. JAMA 288: 2300‐2306, 2002.
 134.Fink HA, Ewing SK, Ensrud KE, Barrett‐Connor E, Taylor BC, Cauley JA, Orwoll ES. Association of testosterone and estradiol deficiency with osteoporosis and rapid bone loss in older men. J Clin Endocrinol Metab 91: 3908‐3915, 2006.
 135.Finkelstein JS, Lee H, Leder BZ, Burnett‐Bowie SA, Goldstein DW, Hahn CW, Hirsch SC, Linker A, Perros N, Servais AB, Taylor AP, Webb ML, Youngner JM, Yu EW. Gonadal steroid‐dependent effects on bone turnover and bone mineral density in men. J Clin Invest 126: 1114‐1125, 2016.
 136.Fitzpatrick LA. Secondary causes of osteoporosis. Mayo Clin Proc 77: 453‐468, 2002.
 137.Forsén L, Meyer HE, Midthjell K, Edna TH. Diabetes mellitus and the incidence of hip fracture: Results from the Nord‐Trondelag health survey. Diabetologia 42: 920‐925, 1999.
 138.Foster JD. Update on mineral and bone disorders in chronic kidney disease. Vet Clin North Am Small Anim Pract 46: 1131‐1149, 2016.
 139.Fournier A, Oprisiu R, Hottelart C, Yverneau PH, Ghazali A, Atik A, Hedri H, Said S, Sechet A, Rasolombololona M, Abighanem O, Sarraj A, Esper NE, Moriniere P, Boudailliez B, Westeel P‐F, Achard J‐M, Pruna A. Renal osteodystrophy in dialysis patients: Diagnosis and treatment. Artif Organs 22: 530‐557, 1998.
 140.Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age‐associated diseases. J Gerontol A Biol Sci Med Sci 69 (Suppl 1): S4‐S9, 2014.
 141.Frick KK, Bushinsky DA. Metabolic acidosis stimulates RANKL RNA expression in bone through a cyclo‐oxygenase‐dependent mechanism. J Bone Miner Res 18: 1317‐1325, 2003.
 142.Frost HM. Bone “mass” and the “mechanostat”: A proposal. Anat Rec 219: 1‐9, 1987.
 143.Frost HM. Some ABC's of skeletal pathophysiology. 6. The growth/modeling/remodeling distinction. Calcif Tissue Int 49: 301‐302, 1991.
 144.Frost HM. Bone's mechanostat: A 2003 update. Anat Rec A Discov Mol Cell Evol Biol 275: 1081‐1101, 2003.
 145.Garg AX, Papaioannou A, Ferko N, Campbell G, Clarke J‐A, Ray JG. Estimating the prevalence of renal insufficiency in seniors requiring long‐term care. Kidney Int 65: 649‐653, 2004.
 146.Garnero P, Sornay‐Rendu E, Chapuy MC, Delmas PD. Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J Bone Miner Res 11: 337‐349, 1996.
 147.Gaudio A, Pennisi P, Bratengeier C, Torrisi V, Lindner B, Mangiafico RA, Pulvirenti I, Hawa G, Tringali G, Fiore CE. Increased sclerostin serum levels associated with bone formation and resorption markers in patients with immobilization‐induced bone loss. J Clin Endocrinol Metab 95: 2248‐2253, 2010.
 148.Gekas C, Graf T. CD41 expression marks myeloid‐biased adult hematopoietic stem cells and increases with age. Blood 121: 4463‐4472, 2013.
 149.Gennari C, Agnusdei D, Nardi P, Civitelli R. Estrogen preserves a normal intestinal responsiveness to 1,25‐dihydroxyvitamin D3 in oophorectomized women. J Clin Endocrinol Metab 71: 1288‐1293, 1990.
 150.Georgakopoulou E, Evangelou K, Havaki S, Townsend P, Kanavaros P, Gorgoulis VG. Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow? Mech Ageing Dev 156: 17‐24, 2016.
 151.Geusens P, Hochberg MC, van der Voort DJ, Pols H, van der Klift M, Siris E, Melton ME, Turpin J, Byrnes C, Ross P. Performance of risk indices for identifying low bone density in postmenopausal women. Mayo Clin Proc 77: 629‐637, 2002.
 152.Gibson CJ, Lindsley RC, Tchekmedyian V, Mar BG, Shi J, Jaiswal S, Bosworth A, Francisco L, He J, Bansal A, Morgan EA, Lacasce AS, Freedman AS, Fisher DC, Jacobsen E, Armand P, Alyea EP, Koreth J, Ho V, Soiffer RJ, Antin JH, Ritz J, Nikiforow S, Forman SJ, Michor F, Neuberg D, Bhatia R, Bhatia S, Ebert BL. Clonal hematopoiesis associated with adverse outcomes after autologous stem‐cell transplantation for lymphoma. J Clin Oncol 35: 1598‐1605, 2017.
 153.Gimble JM, Morgan C, Kelly K, Wu X, Dandapani V, Wang CS, Rosen V. Bone morphogenetic proteins inhibit adipocyte differentiation by bone marrow stromal cells. J Cell Biochem 58: 393‐402, 1995.
 154.Gimble JM, Robinson CE, Wu X, Kelly KA, Rodriguez BR, Kliewer SA, Lehmann JM, Morris DC. Peroxisome proliferator‐activated receptor‐gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50: 1087‐1094, 1996.
 155.Goessling W, North TE, Loewer S, Lord AM, Lee S, Stoick‐Cooper CL, Weidinger G, Puder M, Daley GQ, Moon RT, Zon LI. Genetic interaction of PGE2 and Wnt signaling regulates developmental specification of stem cells and regeneration. Cell 136: 1136‐1147, 2009.
 156.Goodman WG, Veldhuis JD, Belin TR, Juppner H, Salusky IB. Suppressive effect of calcium on parathyroid hormone release in adynamic renal osteodystrophy and secondary hyperparathyroidism. Kidney Int 51: 1590‐1595, 1997.
 157.Gorski JP, Huffman NT, Vallejo J, Brotto L, Chittur SV, Breggia A, Stern A, Huang J, Mo C, Seidah NG, Bonewald L, Brotto M. Deletion of Mbtps1 (Pcsk8, S1p, Ski‐1) gene in osteocytes stimulates soleus muscle regeneration and increased size and contractile force with age. J Biol Chem 291: 4308‐4322, 2016.
 158.Greendale GA, Edelstein S, Barrett‐Connor E. Endogenous sex steroids and bone mineral density in older women and men: The Rancho Bernardo Study. J Bone Miner Res 12: 1833‐1843, 1997.
 159.Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: A reversal of sex difference seen in younger subjects. J Magn Reson Imaging 36: 225‐230, 2012.
 160.Gronthos S, Chen S, Wang CY, Robey PG, Shi S. Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res 18: 716‐722, 2003.
 161.Grover A, Sanjuan‐Pla A, Thongjuea S, Carrelha J, Giustacchini A, Gambardella A, Macaulay I, Mancini E, Luis TC, Mead A, Jacobsen SE, Nerlov C. Single‐cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat Commun 7: 11075, 2016.
 162.Guillot C, Lecuit T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 340: 1185‐1189, 2013.
 163.Hachemi Y, Rapp AE, Picke AK, Weidinger G, Ignatius A, Tuckermann J. Molecular mechanisms of glucocorticoids on skeleton and bone regeneration after fracture. J Mol Endocrinol 61: R75‐R90, 2018.
 164.Haddy TB, Mosher RB, Reaman GH. Osteoporosis in survivors of acute lymphoblastic leukemia. Oncologist 6: 278‐285, 2001.
 165.Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin I, Leonova K, Polinsky A, Chernova OB, Gudkov AV. Aging of mice is associated with p16(Ink4a)‐ and beta‐galactosidase‐positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany NY) 8: 1294‐1315, 2016.
 166.Harvey N, Curtis EM, Dennison EM, Cooper C. The epidemiology of osteoporotic fractures. In: Bilezikian JP, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (9th ed). Hoboken, NJ: John Wiley & Sons, Inc, 2019, p. 398‐404.
 167.Harvey NC, Gluer CC, Binkley N, McCloskey EV, Brandi ML, Cooper C, Kendler D, Lamy O, Laslop A, Camargos BM, Reginster JY, Rizzoli R, Kanis JA. Trabecular bone score (TBS) as a new complementary approach for osteoporosis evaluation in clinical practice. Bone 78: 216‐224, 2015.
 168.Hattner R, Epker BN, Frost HM. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 206: 489‐490, 1965.
 169.Hayflick L. The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614‐636, 1965.
 170.Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585‐621, 1961.
 171.Haylock DN, Nilsson SK. Osteopontin: A bridge between bone and blood. Br J Haematol 134: 467‐474, 2006.
 172.Hemming S, Cakouros D, Vandyke K, Davis MJ, Zannettino AC, Gronthos S. Identification of novel EZH2 targets regulating osteogenic differentiation in mesenchymal stem cells. Stem Cells Dev 25: 909‐921, 2016.
 173.Henderson TO, Ness KK, Cohen HJ. Accelerated aging among cancer survivors: From pediatrics to geriatrics. Am Soc Clin Oncol Educ Book: e423‐e430, 2014.
 174.Heveran CM, Rauff A, King KB, Carpenter RD, Ferguson VL. A new open‐source tool for measuring 3D osteocyte lacunar geometries from confocal laser scanning microscopy reveals age‐related changes to lacunar size and shape in cortical mouse bone. Bone 110: 115‐127, 2018.
 175.Hippisley‐Cox J, Coupland C. Derivation and validation of updated QFracture algorithm to predict risk of osteoporotic fracture in primary care in the United Kingdom: Prospective open cohort study. BMJ 344: e3427, 2012.
 176.Hoare M, Ito Y, Kang TW, Weekes MP, Matheson NJ, Patten DA, Shetty S, Parry AJ, Menon S, Salama R, Antrobus R, Tomimatsu K, Howat W, Lehner PJ, Zender L, Narita M. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol 18: 979‐992, 2016.
 177.Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Spelsberg TC, Riggs BL. Estrogen stimulates gene expression and protein production of osteoprotegerin in human osteoblastic cells. Endocrinology 140: 4367‐4370, 1999.
 178.Holstege H, Pfeiffer W, Sie D, Hulsman M, Nicholas TJ, Lee CC, Ross T, Lin J, Miller MA, Ylstra B, Meijers‐Heijboer H, Brugman MH, Staal FJ, Holstege G, Reinders MJ, Harkins TT, Levy S, Sistermans EA. Somatic mutations found in the healthy blood compartment of a 115‐yr‐old woman demonstrate oligoclonal hematopoiesis. Genome Res 24: 733‐742, 2014.
 179.Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309: 1074‐1078, 2005.
 180.Horn HF, Vousden KH. Cooperation between the ribosomal proteins L5 and L11 in the p53 pathway. Oncogene 27: 5774‐5784, 2008.
 181.Howard GM, Nguyen TV, Harris M, Kelly PJ, Eisman JA. Genetic and environmental contributions to the association between quantitative ultrasound and bone mineral density measurements: A twin study. J Bone Miner Res 13: 1318‐1327, 1998.
 182.Hruska KA, Teitelbaum SL. Renal osteodystrophy. N Engl J Med 333: 166‐174, 1995.
 183.Alexeeva P, Burkhardt P, Christiansen C, Cooper C, Delmas P, Johnell O, Johnston C, Kanis JA, Lips P, Melton LJ, Meunier P, Seeman E, Stepan J, and Tosteson A. Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843: 1‐129, 1994.
 184.Huang H, Song T‐J, Li X, Hu L, He Q, Liu M, Lane MD, Tang Q‐Q. BMP signaling pathway is required for commitment of C3H10T1/2 pluripotent stem cells to the adipocyte lineage. Proc Natl Acad Sci U S A 106: 12670‐12675, 2009.
 185.Huang J, Romero‐Suarez S, Lara N, Mo C, Kaja S, Brotto L, Dallas SL, Johnson ML, Jahn K, Bonewald LF, Brotto M. Crosstalk between MLO‐Y4 osteocytes and C2C12 muscle cells is mediated by the Wnt/beta‐catenin pathway. JBMR Plus 1: 86‐100, 2017.
 186.Hughes DE, Dai A, Tiffee JC, Li HH, Mundy GR, Boyce BF. Estrogen promotes apoptosis of murine osteoclasts mediated by TGF‐beta. Nat Med 2: 1132‐1136, 1996.
 187.Inouye SK, Studenski S, Tinetti ME, Kuchel GA. Geriatric syndromes: Clinical, research, and policy implications of a core geriatric concept. J Am Geriatr Soc 55: 780‐791, 2007.
 188.Ismail AA, Pye SR, Cockerill WC, Lunt M, Silman AJ, Reeve J, Banzer D, Benevolenskaya LI, Bhalla A, Bruges Armas J, Cannata JB, Cooper C, Delmas PD, Dequeker J, Dilsen G, Falch JA, Felsch B, Felsenberg D, Finn JD, Gennari C, Hoszowski K, Jajic I, Janott J, Johnell O, Kanis JA, Kragl G, Lopez Vaz A, Lorenc R, Lyritis G, Marchand F, Masaryk P, Matthis C, Miazgowski T, Naves‐Diaz M, Pols HA, Poor G, Rapado A, Raspe HH, Reid DM, Reisinger W, Scheidt‐Nave C, Stepan J, Todd C, Weber K, Woolf AD, O'Neill TW. Incidence of limb fracture across Europe: Results from the European Prospective Osteoporosis Study (EPOS). Osteoporos Int 13: 565‐571, 2002.
 189.Ito CY, Li CY, Bernstein A, Dick JE, Stanford WL. Hematopoietic stem cell and progenitor defects in Sca‐1/Ly‐6A‐null mice. Blood 101: 517‐523, 2003.
 190.Jacobsen SJ, Cooper C, Gottlieb MS, Goldberg J, Yahnke DP, Melton LJ 3rd. Hospitalization with vertebral fracture among the aged: A national population‐based study, 1986‐1989. Epidemiology 3: 515‐518, 1992.
 191.Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, Lindsley RC, Mermel CH, Burtt N, Chavez A, Higgins JM, Moltchanov V, Kuo FC, Kluk MJ, Henderson B, Kinnunen L, Koistinen HA, Ladenvall C, Getz G, Correa A, Banahan BF, Gabriel S, Kathiresan S, Stringham HM, McCarthy MI, Boehnke M, Tuomilehto J, Haiman C, Groop L, Atzmon G, Wilson JG, Neuberg D, Altshuler D, Ebert BL. Age‐related clonal hematopoiesis associated with adverse outcomes. N Engl J Med 371: 2488‐2498, 2014.
 192.Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz‐Gonzalez XR, Reyes M, Lenvik T, Lund T, Blackstad M, Du J, Aldrich S, Lisberg A, Low WC, Largaespada DA, Verfaillie CM. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418: 41‐49, 2002.
 193.Jilka RL. Biology of the basic multicellular unit and the pathophysiology of osteoporosis. Med Pediatr Oncol 41: 182‐185, 2003.
 194.Jilka RL. The relevance of mouse models for investigating age‐related bone loss in humans. J Gerontol A Biol Sci Med Sci 68: 1209‐1217, 2013.
 195.Jilka RL, Almeida M, Ambrogini E, Han L, Roberson PK, Weinstein RS, Manolagas SC. Decreased oxidative stress and greater bone anabolism in the aged, when compared to the young, murine skeleton with parathyroid hormone administration. Aging Cell 9: 851‐867, 2010.
 196.Jilka RL, Hangoc G, Girasole G, Passeri G, Williams DC, Abrams JS, Boyce B, Broxmeyer H, Manolagas SC. Increased osteoclast development after estrogen loss: Mediation by interleukin‐6. Science 257: 88‐91, 1992.
 197.Jilka RL, O'Brien CA. The role of osteocytes in age‐related bone loss. Curr Osteoporos Rep 14: 16‐25, 2016.
 198.Johansson AG, Lindh E, Blum WF, Kollerup G, Sørensen OH, Ljunghall S. Effects of growth hormone and insulin‐like growth factor I in men with idiopathic osteoporosis. J Clin Endocrinol Metab 81: 44‐48, 1996.
 199.Johansson H, Siggeirsdottir K, Harvey NC, Oden A, Gudnason V, McCloskey E, Sigurdsson G, Kanis JA. Imminent risk of fracture after fracture. Osteoporos Int 28: 775‐780, 2017.
 200.Johmura Y, Sun J, Kitagawa K, Nakanishi K, Kuno T, Naiki‐Ito A, Sawada Y, Miyamoto T, Okabe A, Aburatani H, Li S, Miyoshi I, Takahashi S, Kitagawa M, Nakanishi M. SCF(Fbxo22)‐KDM4A targets methylated p53 for degradation and regulates senescence. Nat Commun 7: 10574, 2016.
 201.Justesen J, Stenderup K, Ebbesen EN, Mosekilde L, Steiniche T, Kassem M. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis. Biogerontology 2: 165‐171, 2001.
 202.Justesen J, Stenderup K, Eriksen EF, Kassem M. Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Cacif Tissue Int 71: 36‐44, 2002.
 203.Kado DM, Browner WS, Palermo L, Nevitt MC, Genant HK, Cummings SR. Vertebral fractures and mortality in older women: A prospective study. Study of Osteoporotic Fractures Research Group. Arch Intern Med 159: 1215‐1220, 1999.
 204.Kajkenova O, Lecka‐Czernik B, Gubrij I, Hauser SP, Takahashi K, Parfitt AM, Jilka RL, Manolagas SC, Lipschitz DA. Increased adipogenesis and myelopoiesis in the bone marrow of SAMP6, a murine model of defective osteoblastogenesis and low turnover osteopenia. J Bone Miner Res 12: 1772‐1779, 1997.
 205.Kalu DN. Evaluation of the pathogenesis of skeletal changes in ovariectomized rats. Endocrinology 115: 507‐512, 1984.
 206.Kane AE, Sinclair DA. Epigenetic changes during aging and their reprogramming potential. Crit Rev Biochem Mol Biol 54: 61‐83, 2019.
 207.Kang C, Xu Q, Martin TD, Li MZ, Demaria M, Aron L, Lu T, Yankner BA, Campisi J, Elledge SJ. The DNA damage response induces inflammation and senescence by inhibiting autophagy of GATA4. Science 349: aaa5612, 2015.
 208.Kang Q, Song W‐X, Luo Q, Tang N, Luo J, Luo X, Chen J, Bi Y, He B‐C, Park JK, Jiang W, Tang Y, Huang J, Su Y, Zhu G‐H, He Y, Yin H, Hu Z, Wang Y, Chen L, Zuo G‐W, Pan XL, Shen J, Vokes T, Reid RR, Haydon RC, Luu HH, He T‐C. A comprehensive analysis of the dual roles of BMPs in regulating adipogenic and osteogenic differentiation of mesenchymal progenitor cells. Stem Cells Dev 18: 545‐558, 2009.
 209.Kang S, Bennett CN, Gerin I, Rapp LA, Hankenson KD, Macdougald OA. Wnt signaling stimulates osteoblastogenesis of mesenchymal precursors by suppressing CCAAT/enhancer‐binding protein α and peroxisome proliferator. J Biol Chem 282: 14515‐14524, 2007.
 210.Kanis JA, Cooper C, Rizzoli R, Abrahamsen B, Al‐Daghri NM, Brandi ML, Cannata‐Andia J, Cortet B, Dimai HP, Ferrari S, Hadji P, Harvey NC, Kraenzlin M, Kurth A, McCloskey E, Minisola S, Thomas T, Reginster JY, European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases. Identification and management of patients at increased risk of osteoporotic fracture: Outcomes of an ESCEO expert consensus meeting. Osteoporos Int 28: 2023‐2034, 2017.
 211.Kanis JA, Oden A, McCloskey EV, Johansson H, Wahl DA, Cooper C, IOF Working Group on Epidemiology and Quality of Life. A systematic review of hip fracture incidence and probability of fracture worldwide. Osteoporos Int 23: 2239‐2256, 2012.
 212.Kannus P, Palvanen M, Kaprio J, Parkkari J, Koskenvuo M. Genetic factors and osteoporotic fractures in elderly people: Prospective 25 year follow up of a nationwide cohort of elderly Finnish twins. BMJ 319: 1334‐1337, 1999.
 213.Karner CM, Long F. Wnt signaling and cellular metabolism in osteoblasts. Cell Mol Life Sci 74: 1649‐1657, 2017.
 214.Kasperk CH, Wergedal JE, Farley JR, Linkhart TA, Turner RT, Baylink DJ. Androgens directly stimulate proliferation of bone cells in vitro. Endocrinology 124: 1576‐1578, 1989.
 215.Kassem M, Marie PJ. Senescence‐associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10: 191‐197, 2011.
 216.Katsoulis M, Benetou V, Karapetyan T, Feskanich D, Grodstein F, Pettersson‐Kymmer U, Eriksson S, Wilsgaard T, Jorgensen L, Ahmed LA, Schottker B, Brenner H, Bellavia A, Wolk A, Kubinova R, Stegeman B, Bobak M, Boffetta P, Trichopoulou A. Excess mortality after hip fracture in elderly persons from Europe and the USA: The CHANCES project. J Intern Med 281: 300‐310, 2017.
 217.Kawaguchi H, Manabe N, Miyaura C, Chikuda H, Nakamura K, Kuro‐o M. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low‐turnover osteopenia. J Clin Invest 104: 229‐237, 1999.
 218.Kawaguchi H, Pilbeam CC, Vargas SJ, Morse EE, Lorenzo JA, Raisz LG. Ovariectomy enhances and estrogen replacement inhibits the activity of bone marrow factors that stimulate prostaglandin production in cultured mouse calvariae. J Clin Invest 96: 539‐548, 1995.
 219.Khastgir G, Studd J, Holland N, Alaghband‐Zadeh J, Fox S, Chow J. Anabolic effect of estrogen replacement on bone in postmenopausal women with osteoporosis: Histomorphometric evidence in a longitudinal study. J Clin Endocrinol Metab 86: 289‐295, 2001.
 220.Khosla S. Pathogenesis of age‐related bone loss in humans. J Gerontol A Biol Sci Med Sci 68: 1226‐1235, 2013.
 221.Khosla S. New insights into androgen and estrogen receptor regulation of the male skeleton. J Bone Miner Res 30: 1134‐1137, 2015.
 222.Khosla S, Atkinson EJ, Melton LJ 3rd, Riggs BL. Effects of age and estrogen status on serum parathyroid hormone levels and biochemical markers of bone turnover in women: A population‐based study. J Clin Endocrinol Metab 82: 1522‐1527, 1997.
 223.Khosla S, Melton LJ 3rd, Atkinson EJ, O'Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab 86: 3555‐3561, 2001.
 224.Khosla S, Melton LJ 3rd, Atkinson EJ, O'Fallon WM, Klee GG, Riggs BL. Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: A key role for bioavailable estrogen. J Clin Endocrinol Metab 83: 2266‐2274, 1998.
 225.Khosla S, Oursler MJ, Monroe DG. Estrogen and the skeleton. Trends Endocrinol Metab 23: 576‐581, 2012.
 226.Khosla S, Riggs BL. Pathophysiology of age‐related bone loss and osteoporosis. Endocrinol Metab Clin N Am 34: 1015‐1030, xi, 2005.
 227.Khosla S, Riggs BL, Atkinson EJ, Oberg AL, McDaniel LJ, Holets M, Peterson JM, Melton LJ 3rd. Effects of sex and age on bone microstructure at the ultradistal radius: A population‐based noninvasive in vivo assessment. J Bone Miner Res 21: 124‐131, 2006.
 228.Kim H, Wrann CD, Jedrychowski M, Vidoni S, Kitase Y, Nagano K, Zhou C, Chou J, Parkman VA, Novick SJ, Strutzenberg TS, Pascal BD, Le PT, Brooks DJ, Roche AM, Gerber KK, Mattheis L, Chen W, Tu H, Bouxsein ML, Griffin PR, Baron R, Rosen CJ, Bonewald LF, Spiegelman BM. Irisin mediates effects on bone and fat via alphaV integrin receptors. Cell 175: 1756‐1768.e17, 2018.
 229.Kim HN, Chang J, Iyer S, Han L, Campisi J, Manolagas SC, Zhou D, Almeida M. Elimination of senescent osteoclast progenitors has no effect on the age‐associated loss of bone mass in mice. Aging Cell 18: e12923, 2019.
 230.Kim HN, Chang J, Shao L, Han L, Iyer S, Manolagas SC, O'Brien CA, Jilka RL, Zhou D, Almeida M. DNA damage and senescence in osteoprogenitors expressing Osx1 may cause their decrease with age. Aging Cell 16: 693‐703, 2017.
 231.Kim SW, Lu Y, Williams EA, Lai F, Lee JY, Enishi T, Balani DH, Ominsky MS, Ke HZ, Kronenberg HM, Wein MN. Sclerostin antibody administration converts bone lining cells into active osteoblasts. J Bone Miner Res 32: 892‐901, 2017.
 232.Kiratli BJ, Smith AE, Nauenberg T, Kallfelz CF, Perkash I. Bone mineral and geometric changes through the femur with immobilization due to spinal cord injury. J Rehabil Res Dev 37: 225‐233, 2000.
 233.Kirkland JL, Tchkonia T, Zhu Y, Niedernhofer LJ, Robbins PD. The clinical potential of senolytic drugs. J Am Geriatr Soc 65: 2297‐2301, 2017.
 234.Kitase Y, Vallejo JA, Gutheil W, Vemula H, Jahn K, Yi J, Zhou J, Brotto M, Bonewald LF. Beta‐aminoisobutyric acid, l‐BAIBA, is a muscle‐derived osteocyte survival factor. Cell Rep 22: 1531‐1544, 2018.
 235.Klop C, van Staa TP, Cooper C, Harvey NC, de Vries F. The epidemiology of mortality after fracture in England: Variation by age, sex, time, geographic location, and ethnicity. Osteoporos Int 28: 161‐168, 2017.
 236.Klotzbuecher CM, Ross PD, Landsman PB, Abbott TA 3rd, Berger M. Patients with prior fractures have an increased risk of future fractures: A summary of the literature and statistical synthesis. J Bone Miner Res 15: 721‐739, 2000.
 237.Kocijan R, Muschitz C, Geiger E, Skalicky S, Baierl A, Dormann R, Plachel F, Feichtinger X, Heimel P, Fahrleitner‐Pammer A, Grillari J, Redl H, Resch H, Hackl M. Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 101: 4125‐4134, 2016.
 238.Koh LK, Sedrine WB, Torralba TP, Kung A, Fujiwara S, Chan SP, Huang QR, Rajatanavin R, Tsai KS, Park HM, Reginster JY. A simple tool to identify asian women at increased risk of osteoporosis. Osteoporos Int 12: 699‐705, 2001.
 239.Kontulainen S, Sievanen H, Kannus P, Pasanen M, Vuori I. Effect of long‐term impact‐loading on mass, size, and estimated strength of humerus and radius of female racquet‐sports players: A peripheral quantitative computed tomography study between young and old starters and controls. J Bone Miner Res 17: 2281‐2289, 2002.
 240.Krall EA, Dawson‐Hughes B. Walking is related to bone density and rates of bone loss. Am J Med 96: 20‐26, 1994.
 241.Krieger NS, Frick KK, Bushinsky DA. Mechanism of acid‐induced bone resorption. Curr Opin Nephrol Hypertens 13: 423‐436, 2004.
 242.Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al‐Regaiey K, Su L, Sharpless NE. Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114: 1299‐1307, 2004.
 243.Kritz‐Silverstein D, Barrett‐Connor E. Grip strength and bone mineral density in older women. J Bone Miner Res 9: 45‐51, 1994.
 244.Kudlow BA, Kennedy BK, Monnat RJ Jr. Werner and Hutchinson‐Gilford progeria syndromes: Mechanistic basis of human progeroid diseases. Nat Rev Mol Cell Biol 8: 394‐404, 2007.
 245.Kuilman T, Michaloglou C, Mooi WJ, Peeper DS. The essence of senescence. Genes Dev 24: 2463‐2479, 2010.
 246.Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ, Aarden LA, Mooi WJ, Peeper DS. Oncogene‐induced senescence relayed by an interleukin‐dependent inflammatory network. Cell 133: 1019‐1031, 2008.
 247.Kurihara N, Bertolini D, Suda T, Akiyama Y, Roodman GD. IL‐6 stimulates osteoclast‐like multinucleated cell formation in long term human marrow cultures by inducing IL‐1 release. J Immunol 144: 4226‐4230, 1990.
 248.Langdahl B, Ferrari S, Dempster DW. Bone modeling and remodeling: Potential as therapeutic targets for the treatment of osteoporosis. Ther Adv Musculoskelet Dis 8: 225‐235, 2016.
 249.Lawson J. Drug‐induced metabolic bone disorders. Semin Musculoskelet Radiol 6: 285‐297, 2002.
 250.LeBlanc ES, Nielson CM, Marshall LM, Lapidus JA, Barrett‐Connor E, Ensrud KE, Hoffman AR, Laughlin G, Ohlsson C, Orwoll ES, Osteoporotic Fractures in Men Study Group. The effects of serum testosterone, estradiol, and sex hormone binding globulin levels on fracture risk in older men. J Clin Endocrinol Metab 94: 3337‐3346, 2009.
 251.Leinau L, Perazella MA. Hip fractures in end‐stage renal disease patients: Incidence, risk factors, and prevention. Semin Dial 19: 75‐79, 2006.
 252.Lenchik L, Register TC, Hsu FC, Xu J, Smith SC, Carr JJ, Freedman BI, Bowden DW. Bone mineral density of the radius predicts all‐cause mortality in patients with type 2 diabetes: Diabetes heart study. J Clin Densitom 21: 347‐354, 2018.
 253.Lerebours C, Buenzli PR. Towards a cell‐based mechanostat theory of bone: The need to account for osteocyte desensitisation and osteocyte replacement. J Biomech 49: 2600‐2606, 2016.
 254.Lessard F, Igelmann S, Trahan C, Huot G, Saint‐Germain E, Mignacca L, Del Toro N, Lopes‐Paciencia S, Le Calve B, Montero M, Deschenes‐Simard X, Bury M, Moiseeva O, Rowell MC, Zorca CE, Zenklusen D, Brakier‐Gingras L, Bourdeau V, Oeffinger M, Ferbeyre G. Senescence‐associated ribosome biogenesis defects contributes to cell cycle arrest through the Rb pathway. Nat Cell Biol 20: 789‐799, 2018.
 255.Levey AS. National kidney foundation practice guidelines for chronic kidney disease: Evaluation, classification, and stratification. Ann Intern Med 139: 137‐147, 2003.
 256.Lewiecki EM. Clinical vignettes: Using non‐BMD measurements in clinical practice. Clin Rev Bone Miner Metab 14: 50‐54, 2016.
 257.Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, Gordon CM, Jankowski LG, Lee JK, Leslie WD, International Society for Clinical Densitometry. Best practices for dual‐energy X‐ray absorptiometry measurement and reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 19: 127‐140, 2016.
 258.Li B, Boast S, de los Santos K, Schieren I, Quiroz M, Teitelbaum SL, Tondravi MM, Goff SP. Mice deficient in Abl are osteoporotic and have defects in osteoblast maturation. Nat Genet 24: 304‐308, 2000.
 259.Li CJ, Cheng P, Liang MK, Chen YS, Lu Q, Wang JY, Xia ZY, Zhou HD, Cao X, Xie H, Liao EY, Luo XH. MicroRNA‐188 regulates age‐related switch between osteoblast and adipocyte differentiation. J Clin Invest 125: 1509‐1522, 2015.
 260.Li H, Wang Z, Fu Q, Zhang J. Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 19: 553‐556, 2014.
 261.Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, Harris SE, Wu D. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem 280: 19883‐19887, 2005.
 262.Liang CT, Barnes J, Seedor JG, Quartuccio HA, Bolander M, Jeffrey JJ, Rodan GA. Impaired bone activity in aged rats: Alterations at the cellular and molecular levels. Bone 13: 435‐441, 1992.
 263.Lips P. Vitamin D deficiency and secondary hyperparathyroidism in the elderly: Consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22: 477‐501, 2001.
 264.Liu L, van Groen T, Kadish I, Li Y, Wang D, James SR, Karpf AR, Tollefsbol TO. Insufficient DNA methylation affects healthy aging and promotes age‐related health problems. Clin Epigenetics 2: 349‐360, 2011.
 265.Liu X, Wan M. A tale of the good and bad: Cell senescence in bone homeostasis and disease. Int Rev Cell Mol Biol 346: 97‐128, 2019.
 266.Lopez‐Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 153: 1194‐1217, 2013.
 267.Loro E, Ramaswamy G, Chandra A, Tseng WJ, Mishra MK, Shore EM, Khurana TS. IL15RA is required for osteoblast function and bone mineralization. Bone 103: 20‐30, 2017.
 268.Lydick E, Cook K, Turpin J, Melton M, Stine R, Byrnes C. Development and validation of a simple questionnaire to facilitate identification of women likely to have low bone density. Am J Manag Care 4: 37‐48, 1998.
 269.Maggi S, Kelsey JL, Litvak J, Heyse SP. Incidence of hip fractures in the elderly: A cross‐national analysis. Osteoporos Int 1: 232‐241, 1991.
 270.Malaquin N, Martinez A, Rodier F. Keeping the senescence secretome under control: Molecular reins on the senescence‐associated secretory phenotype. Exp Gerontol 82: 39‐49, 2016.
 271.Manolagas SC. Birth and death of bone cells: Basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21: 115‐137, 2000.
 272.Marie PJ, Kassem M. Extrinsic mechanisms involved in age‐related defective bone formation. J Clin Endocrinol Metab 96: 600‐609, 2011.
 273.Marques EA, Elbejjani M, Gudnason V, Sigurdsson G, Lang T, Sigurdsson S, Aspelund T, Meirelles O, Siggeirsdottir K, Launer L, Eiriksdottir G, Harris TB. Proximal femur volumetric bone mineral density and mortality: 13 years of follow‐up of the AGES‐Reykjavik Study. J Bone Miner Res 32: 1237‐1242, 2017.
 274.Martin‐Millan M, Almeida M, Ambrogini E, Han L, Zhao H, Weinstein RS, Jilka RL, O'Brien CA, Manolagas SC. The estrogen receptor‐alpha in osteoclasts mediates the protective effects of estrogens on cancellous but not cortical bone. Mol Endocrinol 24: 323‐334, 2010.
 275.Martin B. Aging and strength of bone as a structural material. Calcif Tissue Int 53 (Suppl 1): S34‐S39; discussion S39‐S40, 1993.
 276.Martin TJ, Seeman E. Bone remodelling: Its local regulation and the emergence of bone fragility. Best Pract Res Clin Endocrinol Metab 22: 701‐722, 2008.
 277.Martin TJ, Sims NA. Osteoclast‐derived activity in the coupling of bone formation to resorption. Trends Mol Med 11: 76‐81, 2005.
 278.Mason PJ, Wilson DB, Bessler M. Dyskeratosis congenita—a disease of dysfunctional telomere maintenance. Curr Mol Med 5: 159‐170, 2005.
 279.Matsushita M, Tsuboyama T, Kasai R, Okumura H, Yamamuro T, Higuchi K, Higuchi K, Kohno A, Yonezu T, Utani A, Umezawa M, Takeda T. Age‐related changes in bone mass in the senescence‐accelerated mouse (SAM). SAM‐R/3 and SAM‐P/6 as new murine models for senile osteoporosis. Am J Pathol 125: 276‐283, 1986.
 280.McKane WR, Khosla S, Burritt MF, Kao PC, Wilson DM, Ory SJ, Riggs BL. Mechanism of renal calcium conservation with estrogen replacement therapy in women in early postmenopause—a clinical research center study. J Clin Endocrinol Metab 80: 3458‐3464, 1995.
 281.McKerrell T, Park N, Moreno T, Grove CS, Ponstingl H, Stephens J, Understanding Society Scientific Group, Crawley C, Craig J, Scott MA, Hodkinson C, Baxter J, Rad R, Forsyth DR, Quail MA, Zeggini E, Ouwehand W, Varela I, Vassiliou GS. Leukemia‐associated somatic mutations drive distinct patterns of age‐related clonal hemopoiesis. Cell Rep 10: 1239‐1245, 2015.
 282.Mehrotra R. Disordered mineral metabolism and vascular calcification in nondialyzed chronic kidney disease patients. J Ren Nutr 16: 100‐118, 2006.
 283.Mellstrom D, Vandenput L, Mallmin H, Holmberg AH, Lorentzon M, Oden A, Johansson H, Orwoll ES, Labrie F, Karlsson MK, Ljunggren O, Ohlsson C. Older men with low serum estradiol and high serum SHBG have an increased risk of fractures. J Bone Miner Res 23: 1552‐1560, 2008.
 284.Meng J, Zhang D, Pan N, Sun N, Wang Q, Fan J, Zhou P, Zhu W, Jiang L. Identification of miR‐194‐5p as a potential biomarker for postmenopausal osteoporosis. PeerJ 3: e971, 2015.
 285.Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galan‐Diez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G. Osteocalcin signaling in myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 23: 1078‐1092, 2016.
 286.Meunier P, Aaron J, Edouard C, Vignon G. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue: A quantitative study of 84 iliac bone biopsies. Clin Orthop Relat Res 80: 147‐154, 1971.
 287.Michaelsson K, Melhus H, Ferm H, Ahlbom A, Pedersen NL. Genetic liability to fractures in the elderly. Arch Intern Med 165: 1825‐1830, 2005.
 288.Minaire P, Meunier P, Edouard C, Bernard J, Courpron P, Bourret J. Quantitative histological data on disuse osteoporosis ‐ comparison with biological data. Calcif Tissue Res 17: 57‐73, 1974.
 289.Mirza FS, Padhi ID, Raisz LG, Lorenzo JA. Serum sclerostin levels negatively correlate with parathyroid hormone levels and free estrogen index in postmenopausal women. J Clin Endocrinol Metab 95: 1991‐1997, 2010.
 290.Misra J, Mohanty ST, Madan S, Fernandes JA, Hal Ebetino F, Russell RG, Bellantuono I. Zoledronate attenuates accumulation of DNA damage in mesenchymal stem cells and protects their function. Stem Cells 34: 756‐767, 2016.
 291.Misteli T. Higher‐order genome organization in human disease. Cold Spring Harb Perspect Biol 2: a000794, 2010.
 292.Mitchell WK, Williams J, Atherton P, Larvin M, Lund J, Narici M. Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Front Physiol 3: 260, 2012.
 293.Mo C, Romero‐Suarez S, Bonewald L, Johnson M, Brotto M. Prostaglandin E2: From clinical applications to its potential role in bone‐muscle crosstalk and myogenic differentiation. Recent Pat Biotechnol 6: 223‐229, 2012.
 294.Mo C, Zhao R, Vallejo J, Igwe O, Bonewald L, Wetmore L, Brotto M. Prostaglandin E2 promotes proliferation of skeletal muscle myoblasts via EP4 receptor activation. Cell Cycle 14: 1507‐1516, 2015.
 295.Modder UI, Roforth MM, Hoey K, McCready LK, Peterson JM, Monroe DG, Oursler MJ, Khosla S. Effects of estrogen on osteoprogenitor cells and cytokines/bone‐regulatory factors in postmenopausal women. Bone 49: 202‐207, 2011.
 296.Moerman EJ, Teng K, Lipschitz DA, Lecka‐Czernik B. Aging activates adipogenic and suppresses osteogenic programs in mesenchymal marrow stroma/stem cells: The role of PPAR‐γ2 transcription factor and TGF‐β/BMP. Aging Cell 3: 379‐389, 2004.
 297.Moore SG, Dawson KL. Red and yellow marrow in the femur: Age‐related changes in appearance at MR imaging. Radiology 175: 219‐223, 1990.
 298.Morris JA, Tsai PC, Joehanes R, Zheng J, Trajanoska K, Soerensen M, Forgetta V, Castillo‐Fernandez JE, Frost M, Spector TD, Christensen K, Christiansen L, Rivadeneira F, Tobias JH, Evans DM, Kiel DP, Hsu YH, Richards JB, Bell JT. Epigenome‐wide association of DNA methylation in whole blood with bone mineral density. J Bone Miner Res 32: 1644‐1650, 2017.
 299.Mosekilde L, Danielsen CC, Gasser J. The effect on vertebral bone mass and strength of long term treatment with antiresorptive agents (estrogen and calcitonin), human parathyroid hormone‐(1‐38), and combination therapy, assessed in aged ovariectomized rats. Endocrinology 134: 2126‐2134, 1994.
 300.Mosteiro L, Pantoja C, Alcazar N, Marion RM, Chondronasiou D, Rovira M, Fernandez‐Marcos PJ, Munoz‐Martin M, Blanco‐Aparicio C, Pastor J, Gomez‐Lopez G, De Martino A, Blasco MA, Abad M, Serrano M. Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science 354: aaf4445, 2016.
 301.Mudhasani R, Zhu Z, Hutvagner G, Eischen CM, Lyle S, Hall LL, Lawrence JB, Imbalzano AN, Jones SN. Loss of miRNA biogenesis induces p19Arf‐p53 signaling and senescence in primary cells. J Cell Biol 181: 1055‐1063, 2008.
 302.Mullender MG, Tan SD, Vico L, Alexandre C, Klein‐Nulend J. Differences in osteocyte density and bone histomorphometry between men and women and between healthy and osteoporotic subjects. Calcif Tissue Int 77: 291‐296, 2005.
 303.Munoz‐Espin D, Canamero M, Maraver A, Gomez‐Lopez G, Contreras J, Murillo‐Cuesta S, Rodriguez‐Baeza A, Varela‐Nieto I, Ruberte J, Collado M, Serrano M. Programmed cell senescence during mammalian embryonic development. Cell 155: 1104‐1118, 2013.
 304.Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S. Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130: 811‐823, 2007.
 305.Nam HS, Kweon SS, Choi JS, Zmuda JM, Leung PC, Lui LY, Hill DD, Patrick AL, Cauley JA. Racial/ethnic differences in bone mineral density among older women. J Bone Miner Metab 31: 190‐198, 2013.
 306.Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA, Spector DL, Hannon GJ, Lowe SW. Rb‐mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 113: 703‐716, 2003.
 307.Nehlin JO, Jafari A, Tencerova M, Kassem M. Aging and lineage allocation changes of bone marrow skeletal (stromal) stem cells. Bone 123: 265‐273, 2019.
 308.Neumann K, Endres M, Ringe J, Flath B, Manz R, Häupl T, Sittinger M, Kaps C. BMP7 promotes adipogenic but not osteo‐/chondrogenic differentiation of adult human bone marrow‐derived stem cells in high‐density micro‐mass culture. J Cell Biochem 102: 626‐637, 2007.
 309.Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, Rodrigues NP, Crockford TL, Cabuy E, Vindigni A, Enver T, Bell JI, Slijepcevic P, Goodnow CC, Jeggo PA, Cornall RJ. DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447: 686‐690, 2007.
 310.Nishimura Y, Fukuoka H, Kiriyama M, Suzuki Y, Oyama K, Ikawa S, Higurashi M, Gunji A. Bone turnover and calcium metabolism during 20 days bed rest in young healthy males and females. Acta Physiol Scand Suppl 616: 27‐35, 1994.
 311.Niziolek PJ, Bullock W, Warman ML, Robling AG. Missense mutations in LRP5 associated with high bone mass protect the mouse skeleton from disuse‐ and ovariectomy‐induced osteopenia. PLoS One 10: e0140775, 2015.
 312.Okada M, Kim HW, Matsu‐ura K, Wang YG, Xu M, Ashraf M. Abrogation of age‐induced microRNA‐195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells 34: 148‐159, 2016.
 313.Olovnikov AM. Principle of marginotomy in template synthesis of polynucleotides. Dokl Akad Nauk SSSR 201: 1496‐1499, 1971.
 314.Ominsky MS, Libanati C, Niu QT, Boyce RW, Kostenuik PJ, Wagman RB, Baron R, Dempster DW. Sustained modeling‐based bone formation during adulthood in cynomolgus monkeys may contribute to continuous BMD gains with denosumab. J Bone Miner Res 30: 1280‐1289, 2015.
 315.Ominsky MS, Niu QT, Li C, Li X, Ke HZ. Tissue‐level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res 29: 1424‐1430, 2014.
 316.Omodei U, Mazziotti G, Donarini G, Gola M, Guella V, Pagani F, Bugari G, Porcelli T, Giustina A. Effects of recombinant follicle‐stimulating hormone on bone turnover markers in infertile women undergoing in vitro fertilization procedure. J Clin Endocrinol Metab 98: 330‐336, 2013.
 317.Orwoll ES. Men, bone and estrogen: Unresolved issues. Osteoporos Int 14: 93‐98, 2003.
 318.Orwoll ES, Vanderschueren D, Boonen S. Osteoporosis in men: Epidemiology, pathophysiology, and clinical characterization. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, editors. Osteoporosis (4th ed). San Diego, CA: Academic Press, 2013, p. 757‐802.
 319.Oursler MJ, Cortese C, Keeting P, Anderson MA, Bonde SK, Riggs BL, Spelsberg TC. Modulation of transforming growth factor‐beta production in normal human osteoblast‐like cells by 17 beta‐estradiol and parathyroid hormone. Endocrinology 129: 3313‐3320, 1991.
 320.Owen TA, Aronow MS, Barone LM, Bettencourt B, Stein GS, Lian JB. Pleiotropic effects of vitamin D on osteoblast gene expression are related to the proliferative and differentiated state of the bone cell phenotype: Dependency upon basal levels of gene expression, duration of exposure, and bone matrix competency in normal rat osteoblast cultures. Endocrinology 128: 1496‐1504, 1991.
 321.Ozgenc A, Loeb LA. Current advances in unraveling the function of the Werner syndrome protein. Mutat Res 577: 237‐251, 2005.
 322.Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone 118: 8‐15, 2019.
 323.Pal L, Santoro N. Premature ovarian failure (POF): Discordance between somatic and reproductive aging. Ageing Res Rev 1: 413‐423, 2002.
 324.Panczyszyn A, Boniewska‐Bernacka E, Goc A. The role of telomeres and telomerase in the senescence of postmitotic cells. DNA Repair (Amst) 95: 102956, 2020.
 325.Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL. Human bone marrow hematopoietic stem cells are increased in frequency and myeloid‐biased with age. Proc Natl Acad Sci U S A 108: 20012‐20017, 2011.
 326.Parfitt AM. The coupling of bone formation to bone resorption: A critical analysis of the concept and of its relevance to the pathogenesis of osteoporosis. Metab Bone Dis Relat Res 4: 1‐6, 1982.
 327.Parfitt AM. Osteonal and hemi‐osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J Cell Biochem 55: 273‐286, 1994.
 328.Parfitt AM, Villanueva AR, Foldes J, Rao DS. Relations between histologic indices of bone formation: Implications for the pathogenesis of spinal osteoporosis. J Bone Miner Res 10: 466‐473, 1995.
 329.Perkins SL, Gibbons R, Kling S, Kahn AJ. Age‐related bone loss in mice is associated with an increased osteoclast progenitor pool. Bone 15: 65‐72, 1994.
 330.Pernow Y, Hauge EM, Linder K, Dahl E, Saaf M. Bone histomorphometry in male idiopathic osteoporosis. Calcif Tissue Int 84: 430‐438, 2009.
 331.Piemontese M, Almeida M, Robling AG, Kim HN, Xiong J, Thostenson JD, Weinstein RS, Manolagas SC, O'Brien CA, Jilka RL. Old age causes de novo intracortical bone remodeling and porosity in mice. JCI Insight 2: e93771, 2017.
 332.Pignolo RJ, Al Mukaddam M. Evaluation of bone fragility and fracture prevention. In: Pignolo RJ, Ahn J, editors. Fractures in the Elderly: A Guide to Practicalmanagment (2nd ed). Humana Press, 2018, p. 285‐301.
 333.Pignolo RJ, Law SF, Chandra A. Bone aging, cellular senescence, and osteoporosis. JBMR Plus 5: e10488, 2021.
 334.Pignolo RJ, Passos JF, Khosla S, Tchkonia T, Kirkland JL. Reducing senescent cell burden in aging and disease. Trends Mol Med 26: 630‐638, 2020.
 335.Pignolo RJ, Samsonraj RM, Law SF, Wang H, Chandra A. Targeting cell senescence for the treatment of age‐related bone loss. Curr Osteoporos Rep 17: 70‐85, 2019.
 336.Pignolo RJ, Suda RK, McMillan EA, Shen J, Lee SH, Choi Y, Wright AC, Johnson FB. Defects in telomere maintenance molecules impair osteoblast differentiation and promote osteoporosis. Aging Cell 7: 23‐31, 2008.
 337.Piney A. Anatomy of the bone marrow with special reference to the distribution of red marrow. Br Med J 2: 792‐795, 1922.
 338.Pocock NA, Eisman JA, Hopper JL, Yeates MG, Sambrook PN, Eberl S. Genetic determinants of bone mass in adults. A twin study. J Clin Invest 80: 706‐710, 1987.
 339.Qiao W, Yu S, Sun H, Chen L, Wang R, Wu X, Goltzman D, Miao D. 1,25‐Dihydroxyvitamin D insufficiency accelerates age‐related bone loss by increasing oxidative stress and cell senescence. Am J Transl Res 12: 507‐518, 2020.
 340.Qu Q, Perala‐Heape M, Kapanen A, Dahllund J, Salo J, Vaananen HK, Harkonen P. Estrogen enhances differentiation of osteoblasts in mouse bone marrow culture. Bone 22: 201‐209, 1998.
 341.Rajagopalan S, Long EO. Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A 109: 20596‐20601, 2012.
 342.Rasheed N, Wang X, Niu QT, Yeh J, Li B. Atm‐deficient mice: An osteoporosis model with defective osteoblast differentiation and increased osteoclastogenesis. Hum Mol Genet 15: 1938‐1948, 2006.
 343.Rauner M, Sipos W, Pietschmann P. Age‐dependent Wnt gene expression in bone and during the course of osteoblast differentiation. Age (Dordr) 30: 273‐282, 2008.
 344.Rehman MT, Hoyland JA, Denton J, Freemont AJ. Age related histomorphometric changes in bone in normal British men and women. J Clin Pathol 47: 529‐534, 1994.
 345.Reid IR. Relationships among body mass, its components, and bone. Bone 31: 547‐555, 2002.
 346.Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R, Weissman IL. A role for Wnt signalling in self‐renewal of haematopoietic stem cells. Nature 423: 409‐414, 2003.
 347.Richards JB, Kavvoura FK, Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Zillikens MC, Wilson SG, Mullin BH, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra BA, Pols HA, Sigurdsson G, Thorsteinsdottir U, Soranzo N, Williams FM, Zhou Y, Ralston SH, Thorleifsson G, van Duijn CM, Kiel DP, Stefansson K, Uitterlinden AG, Ioannidis JP, Spector TD, Genetic Factors for Osteoporosis Consortium. Collaborative meta‐analysis: Associations of 150 candidate genes with osteoporosis and osteoporotic fracture. Ann Intern Med 151: 528‐537, 2009.
 348.Richards JB, Rivadeneira F, Inouye M, Pastinen TM, Soranzo N, Wilson SG, Andrew T, Falchi M, Gwilliam R, Ahmadi KR, Valdes AM, Arp P, Whittaker P, Verlaan DJ, Jhamai M, Kumanduri V, Moorhouse M, van Meurs JB, Hofman A, Pols HA, Hart D, Zhai G, Kato BS, Mullin BH, Zhang F, Deloukas P, Uitterlinden AG, Spector TD. Bone mineral density, osteoporosis, and osteoporotic fractures: A genome‐wide association study. Lancet 371: 1505‐1512, 2008.
 349.Riggs BL, Khosla S, Melton LJ 3rd. A unitary model for involutional osteoporosis: Estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J Bone Miner Res 13: 763‐773, 1998.
 350.Riggs BL, Melton Iii LJ 3rd, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, Rouleau PA, McCollough CH, Bouxsein ML, Khosla S. Population‐based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19: 1945‐1954, 2004.
 351.Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, McDaniel L, Amin S, Rouleau PA, Khosla S. A population‐based assessment of rates of bone loss at multiple skeletal sites: Evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23: 205‐214, 2008.
 352.Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, Sansom OJ, Zender L, Keyes WM. The senescence‐associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev 31: 172‐183, 2017.
 353.Rivadeneira F, Styrkarsdottir U, Estrada K, Halldorsson BV, Hsu YH, Richards JB, Zillikens MC, Kavvoura FK, Amin N, Aulchenko YS, Cupples LA, Deloukas P, Demissie S, Grundberg E, Hofman A, Kong A, Karasik D, van Meurs JB, Oostra B, Pastinen T, Pols HA, Sigurdsson G, Soranzo N, Thorleifsson G, Thorsteinsdottir U, Williams FM, Wilson SG, Zhou Y, Ralston SH, van Duijn CM, Spector T, Kiel DP, Stefansson K, Ioannidis JP, Uitterlinden AG, Genetic Factors for Osteoporosis Consortium. Twenty bone‐mineral‐density loci identified by large‐scale meta‐analysis of genome‐wide association studies. Nat Genet 41: 1199‐1206, 2009.
 354.Robbins J, Aragaki AK, Kooperberg C, Watts N, Wactawski‐Wende J, Jackson RD, LeBoff MS, Lewis CE, Chen Z, Stefanick ML, Cauley J. Factors associated with 5‐year risk of hip fracture in postmenopausal women. JAMA 298: 2389‐2398, 2007.
 355.Robles SJ, Adami GR. Agents that cause DNA double strand breaks lead to p16INK4a enrichment and the premature senescence of normal fibroblasts. Oncogene 16: 1113‐1123, 1998.
 356.Rocca WA, Gazzuola‐Rocca L, Smith CY, Grossardt BR, Faubion SS, Shuster LT, Kirkland JL, Stewart EA, Miller VM. Accelerated accumulation of multimorbidity after bilateral oophorectomy: A population‐based cohort study. Mayo Clin Proc 91: 1577‐1589, 2016.
 357.Rocca WA, Gazzuola Rocca L, Smith CY, Grossardt BR, Faubion SS, Shuster LT, Kirkland JL, Stewart EA, Miller VM. Bilateral oophorectomy and accelerated aging: Cause or effect? J Gerontol A Biol Sci Med Sci 72: 1213‐1217, 2017.
 358.Rodier F, Coppe JP, Patil CK, Hoeijmakers WA, Munoz DP, Raza SR, Freund A, Campeau E, Davalos AR, Campisi J. Persistent DNA damage signalling triggers senescence‐associated inflammatory cytokine secretion. Nat Cell Biol 11: 973‐979, 2009.
 359.Rolvien T, Amling M. Disuse osteoporosis: Clinical and mechanistic insights. Calcif Tissue Int 110: 592‐604, 2022.
 360.Rosen CJ, Ackert‐Bicknell C, Rodriguez JP, Pino AM. Marrow fat and the bone microenvironment: Developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19: 109‐124, 2009.
 361.Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL. Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447: 725‐729, 2007.
 362.Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, Weissman IL. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci U S A 102: 9194‐9199, 2005.
 363.Roux C, Briot K. Imminent fracture risk. Osteoporos Int 28: 1765‐1769, 2017.
 364.Rozman C, Reverter JC, Feliu E, Berga L, Rozman M, Climent C. Variations of fat tissue fraction in abnormal human bone marrow depend both on size and number of adipocytes: A stereologic study. Blood 76: 892‐895, 1990.
 365.Rube CE, Fricke A, Widmann TA, Furst T, Madry H, Pfreundschuh M, Rube C. Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One 6: e17487, 2011.
 366.Rubin C, Turner AS, Bain S, Mallinckrodt C, McLeod K. Anabolism. Low mechanical signals strengthen long bones. Nature 412: 603‐604, 2001.
 367.Rubin KH, Abrahamsen B, Friis‐Holmberg T, Hjelmborg JV, Bech M, Hermann AP, Barkmann R, Gluer CC, Brixen K. Comparison of different screening tools (FRAX(R), OST, ORAI, OSIRIS, SCORE and age alone) to identify women with increased risk of fracture. A population‐based prospective study. Bone 56: 16‐22, 2013.
 368.Russo D, Battaglia Y. Clinical Significance of FGF‐23 in Patients with CKD. Int J Nephrol 2011: 364890, 2011.
 369.Sabatakos G, Sims NA, Chen J, Aoki K, Kelz MB, Amling M, Bouali Y, Mukhopadhyay K, Ford K, Nestler EJ, Baron R. Overexpression of DeltaFosB transcription factor(s) increases bone formation and inhibits adipogenesis. Nat Med 6: 985‐990, 2000.
 370.Saeed H, Abdallah BM, Ditzel N, Catala‐Lehnen P, Qiu W, Amling M, Kassem M. Telomerase‐deficient mice exhibit bone loss owing to defects in osteoblasts and increased osteoclastogenesis by inflammatory microenvironment. J Bone Miner Res 26: 1494‐1505, 2011.
 371.Schousboe JT. Epidemiology of vertebral fractures. J Clin Densitom 19: 8‐22, 2016.
 372.Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, Hofman A, Uitterlinden AG, van Leeuwen JP, Pols HA. Fracture incidence and association with bone mineral density in elderly men and women: The Rotterdam Study. Bone 34: 195‐202, 2004.
 373.Sedivy JM, Banumathy G, Adams PD. Aging by epigenetics—a consequence of chromatin damage? Exp Cell Res 314: 1909‐1917, 2008.
 374.Sedrine WB, Chevallier T, Zegels B, Kvasz A, Micheletti MC, Gelas B, Reginster JY. Development and assessment of the osteoporosis index of risk (OSIRIS) to facilitate selection of women for bone densitometry. Gynecol Endocrinol 16: 245‐250, 2002.
 375.Seeman E. Pathogenesis of bone fragility in women and men. Lancet 359: 1841‐1850, 2002.
 376.Shen H, Grimston S, Civitelli R, Thomopoulos S. Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J Bone Miner Res 30: 596‐605, 2015.
 377.Shen W, Scherzer R, Gantz M, Chen J, Punyanitya M, Lewis CE, Grunfeld C. Relationship between MRI‐measured bone marrow adipose tissue and hip and spine bone mineral density in African‐American and Caucasian participants: The CARDIA study. J Clin Endocrinol Metab 97: 1337‐1346, 2012.
 378.Shepherd JA, Schousboe JT, Broy SB, Engelke K, Leslie WD. Executive summary of the 2015 ISCD position development conference on advanced measures from DXA and QCT: Fracture prediction beyond BMD. J Clin Densitom 18: 274‐286, 2015.
 379.Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR, Erdos MR, Eriksson M, Goldman AE, Khuon S, Collins FS, Jenuwein T, Goldman RD. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. Proc Natl Acad Sci U S A 103: 8703‐8708, 2006.
 380.Simonsen JL, Rosada C, Serakinci N, Justesen J, Stenderup K, Rattan SI, Jensen TG, Kassem M. Telomerase expression extends the proliferative life‐span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20: 592‐596, 2002.
 381.Singh L, Brennan TA, Russell E, Kim JH, Chen Q, Brad Johnson F, Pignolo RJ. Aging alters bone‐fat reciprocity by shifting in vivo mesenchymal precursor cell fate towards an adipogenic lineage. Bone 85: 29‐36, 2016.
 382.Slemenda CW, Longcope C, Zhou L, Hui SL, Peacock M, Johnston CC. Sex steroids and bone mass in older men. Positive associations with serum estrogens and negative associations with androgens. J Clin Invest 100: 1755‐1759, 1997.
 383.Sloan KE, Bohnsack MT, Watkins NJ. The 5S RNP couples p53 homeostasis to ribosome biogenesis and nucleolar stress. Cell Rep 5: 237‐247, 2013.
 384.Smith EL, Gilligan C, McAdam M, Ensign CP, Smith PE. Deterring bone loss by exercise intervention in premenopausal and postmenopausal women. Calcif Tissue Int 44: 312‐321, 1989.
 385.Snyder PJ, Kopperdahl DL, Stephens‐Shields AJ, Ellenberg SS, Cauley JA, Ensrud KE, Lewis CE, Barrett‐Connor E, Schwartz AV, Lee DC, Bhasin S, Cunningham GR, Gill TM, Matsumoto AM, Swerdloff RS, Basaria S, Diem SJ, Wang C, Hou X, Cifelli D, Dougar D, Zeldow B, Bauer DC, Keaveny TM. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone: A controlled clinical trial. JAMA Intern Med 177: 471‐479, 2017.
 386.So AY, Jung JW, Lee S, Kim HS, Kang KS. DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6: e19503, 2011.
 387.Solomon L. Osteoporosis and fracture of the femoral neck in the South African Bantu. J Bone Joint Surg Br 50: 2‐13, 1968.
 388.Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846‐856, 2006.
 389.Srinivasan S, Weimer DA, Agans SC, Bain SD, Gross TS. Low‐magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle. J Bone Miner Res 17: 1613‐1620, 2002.
 390.Stein GH, Drullinger LF, Soulard A, Dulic V. Differential roles for cyclin‐dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts. Mol Cell Biol 19: 2109‐2117, 1999.
 391.Stevens JR, Miranda‐Carboni GA, Singer MA, Brugger SM, Lyons KM, Lane TF. Wnt10b deficiency results in age‐dependent loss of bone mass and progressive reduction of mesenchymal progenitor cells. J Bone Miner Res 25: 2138‐2147, 2010.
 392.Stier S, Ko Y, Forkert R, Lutz C, Neuhaus T, Grunewald E, Cheng T, Dombkowski D, Calvi LM, Rittling SR, Scadden DT. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201: 1781‐1791, 2005.
 393.Storer M, Mas A, Robert‐Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J, Keyes WM. Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155: 1119‐1130, 2013.
 394.Stringer B, Waddington R, Houghton A, Stone M, Russell G, Foster G. Serum from postmenopausal women directs differentiation of human clonal osteoprogenitor cells from an osteoblastic toward an adipocytic phenotype. Calcif Tissue Int 80: 233‐243, 2007.
 395.Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Center JR, Nguyen TV, Bagger Y, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K. Multiple genetic loci for bone mineral density and fractures. N Engl J Med 358: 2355‐2365, 2008.
 396.Styrkarsdottir U, Halldorsson BV, Gretarsdottir S, Gudbjartsson DF, Walters GB, Ingvarsson T, Jonsdottir T, Saemundsdottir J, Snorradottir S, Center JR, Nguyen TV, Alexandersen P, Gulcher JR, Eisman JA, Christiansen C, Sigurdsson G, Kong A, Thorsteinsdottir U, Stefansson K. New sequence variants associated with bone mineral density. Nat Genet 41: 15‐17, 2009.
 397.Styrkarsdottir U, Thorleifsson G, Eiriksdottir B, Gudjonsson SA, Ingvarsson T, Center JR, Nguyen TV, Eisman JA, Christiansen C, Thorsteinsdottir U, Sigurdsson G, Stefansson K. Two rare mutations in the COL1A2 gene associate with low bone mineral density and fractures in iceland. J Bone Miner Res 31: 173‐179, 2016.
 398.Styrkarsdottir U, Thorleifsson G, Sulem P, Gudbjartsson DF, Sigurdsson A, Jonasdottir A, Jonasdottir A, Oddsson A, Helgason A, Magnusson OT, Walters GB, Frigge ML, Helgadottir HT, Johannsdottir H, Bergsteinsdottir K, Ogmundsdottir MH, Center JR, Nguyen TV, Eisman JA, Christiansen C, Steingrimsson E, Jonasson JG, Tryggvadottir L, Eyjolfsson GI, Theodors A, Jonsson T, Ingvarsson T, Olafsson I, Rafnar T, Kong A, Sigurdsson G, Masson G, Thorsteinsdottir U, Stefansson K. Nonsense mutation in the LGR4 gene is associated with several human diseases and other traits. Nature 497: 517‐520, 2013.
 399.Suchacki KJ, Cawthorn WP, Rosen CJ. Bone marrow adipose tissue: Formation, function and regulation. Curr Opin Pharmacol 28: 50‐56, 2016.
 400.Suda T, Udagawa N, Nakamura I, Miyaura C, Takahashi N. Modulation of osteoclast differentiation by local factors. Bone 17: S87‐S91, 1995.
 401.Sun L, Peng Y, Sharrow AC, Iqbal J, Zhang Z, Papachristou DJ, Zaidi S, Zhu LL, Yaroslavskiy BB, Zhou H, Zallone A, Sairam MR, Kumar TR, Bo W, Braun J, Cardoso‐Landa L, Schaffler MB, Moonga BS, Blair HC, Zaidi M. FSH directly regulates bone mass. Cell 125: 247‐260, 2006.
 402.Sun LQ, Lee DW, Zhang Q, Xiao W, Raabe EH, Meeker A, Miao D, Huso DL, Arceci RJ. Growth retardation and premature aging phenotypes in mice with disruption of the SNF2‐like gene, PASG. Genes Dev 18: 1035‐1046, 2004.
 403.Szulc P, Munoz F, Claustrat B, Garnero P, Marchand F, Duboeuf F, Delmas PD. Bioavailable estradiol may be an important determinant of osteoporosis in men: The MINOS study. J Clin Endocrinol Metab 86: 192‐199, 2001.
 404.Szulc P, Seeman E, Duboeuf F, Sornay‐Rendu E, Delmas PD. Bone fragility: Failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res 21: 1856‐1863, 2006.
 405.Taipaleenmäki H, Abdallah BM, Al Dahmash A, Saamanen AM, Kassem M. Wnt signalling mediates the cross‐talk between bone marrow derived pre‐adipocytic and pre‐osteoblastic cell populations. Exp Cell Res 317: 745‐756, 2011.
 406.Takada I, Kouzmenko AP, Kato S. Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5: 442‐447, 2009.
 407.Takashi Y, Fukumoto S. FGF23‐Klotho axis in CKD. Renal Replacment Ther 2: 2‐20, 2016.
 408.Takata S, Yasui N. Disuse osteoporosis. J Med Investig 48: 147‐156, 2001.
 409.Takeda T, Higuchi K, Hosokawa M. Senescence‐accelerated mouse (SAM): With special reference to development and pathological phenotypes. ILAR J 38: 109‐118, 1997.
 410.Takeda T, Hosokawa M, Higuchi K. Senescence‐accelerated mouse (SAM): A novel murine model of senescence. Exp Gerontol 32: 105‐109, 1997.
 411.Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M. Pathobiology of the senescence‐accelerated mouse (SAM). Exp Gerontol 32: 117‐127, 1997.
 412.Tanaka S, Takahashi N, Udagawa N, Tamura T, Akatsu T, Stanley ER, Kurokawa T, Suda T. Macrophage colony‐stimulating factor is indispensable for both proliferation and differentiation of osteoclast progenitors. J Clin Invest 91: 257‐263, 1993.
 413.Tavassoli M. Marrow adipose cells and hemopoiesis: An interpretative review. Exp Hematol 12: 139‐146, 1984.
 414.Tavassoli M, editor. Fatty involution of marrow and the role of adipose tissue in hematopoiesis. In: Handbook of the Hemopoietic Microenvironment. Clifton, NJ: Humana Press, 1989, p. 157‐187.
 415.Taylor AJ, Gary LC, Arora T, Becker DJ, Curtis JR, Kilgore ML, Morrisey MA, Saag KG, Matthews R, Yun H, Smith W, Delzell E. Clinical and demographic factors associated with fractures among older Americans. Osteoporos Int 22: 1263‐1274, 2011.
 416.Terzi MY, Izmirli M, Gogebakan B. The cell fate: Senescence or quiescence. Mol Biol Rep 43: 1213‐1220, 2016.
 417.Thandrayen K, Norris SA, Pettifor JM. Fracture rates in urban South African children of different ethnic origins: The birth to twenty cohort. Osteoporos Int 20: 47‐52, 2009.
 418.Tiede‐Lewis LM, Dallas SL. Changes in the osteocyte lacunocanalicular network with aging. Bone 122: 101‐113, 2019.
 419.Tran B, Center JR, Nguyen TV. Translational genetics of osteoporosis: From population association to individualized assessment. In: Bilezikian JP, editor. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism. Hoboken, NJ: Wiley‐Blackwell, 2019, p. 385‐392.
 420.Tu X, Delgado‐Calle J, Condon KW, Maycas M, Zhang H, Carlesso N, Taketo MM, Burr DB, Plotkin LI, Bellido T. Osteocytes mediate the anabolic actions of canonical Wnt/beta‐catenin signaling in bone. Proc Natl Acad Sci U S A 112: E478‐E486, 2015.
 421.Turinetto V, Vitale E, Giachino C. Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell‐based therapy. Int J Mol Sci 17: 1164, 2016.
 422.Turner CH. Biomechanics of bone: Determinants of skeletal fragility and bone quality. Osteoporos Int 13: 97‐104, 2002.
 423.Turner CH, Burr DB. Basic biomechanical measurements of bone: A tutorial. Bone 14: 595‐608, 1993.
 424.Uebelhart D, Demiaux‐Domenech B, Roth M, Chantraine A. Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 33: 669‐673, 1995.
 425.Uhthoff HK, Jaworski ZF. Bone loss in response to long‐term immobilisation. J Bone Joint Surg Br 60‐B: 420‐429, 1978.
 426.Uihlein AV, Finkelstein JS, Lee H, Leder BZ. FSH suppression does not affect bone turnover in eugonadal men. J Clin Endocrinol Metab 99: 2510‐2515, 2014.
 427.van Staa TP, Leufkens HG, Cooper C. Does a fracture at one site predict later fractures at other sites? A British cohort study. Osteoporos Int 13: 624‐629, 2002.
 428.Vanderschueren D, Laurent MR, Claessens F, Gielen E, Lagerquist MK, Vandenput L, Borjesson AE, Ohlsson C. Sex steroid actions in male bone. Endocr Rev 35: 906‐960, 2014.
 429.Varela I, Pereira S, Ugalde AP, Navarro CL, Suarez MF, Cau P, Cadinanos J, Osorio FG, Foray N, Cobo J, de Carlos F, Levy N, Freije JM, Lopez‐Otin C. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat Med 14: 767‐772, 2008.
 430.Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone 26: 375‐380, 2000.
 431.Vasileiou PVS, Evangelou K, Vlasis K, Fildisis G, Panayiotidis MI, Chronopoulos E, Passias PG, Kouloukoussa M, Gorgoulis VG, Havaki S. Mitochondrial homeostasis and cellular senescence. Cells 8: 686, 2019.
 432.Vassilopoulou‐Sellin R, Brosnan P, Delpassand A, Zietz H, Klein MJ, Jaffe N. Osteopenia in young adult survivors of childhood cancer. Med Pediatr Oncol 32: 272‐278, 1999.
 433.Vogel H, Lim DS, Karsenty G, Finegold M, Hasty P. Deletion of Ku86 causes early onset of senescence in mice. Proc Natl Acad Sci U S A 96: 10770‐10775, 1999.
 434.von Friesendorff M, McGuigan FE, Wizert A, Rogmark C, Holmberg AH, Woolf AD, Akesson K. Hip fracture, mortality risk, and cause of death over two decades. Osteoporos Int 27: 2945‐2953, 2016.
 435.Vrtacnik P, Zupan J, Mlakar V, Kranjc T, Marc J, Kern B, Ostanek B. Epigenetic enzymes influenced by oxidative stress and hypoxia mimetic in osteoblasts are differentially expressed in patients with osteoporosis and osteoarthritis. Sci Rep 8: 16215, 2018.
 436.Wagner H, Melhus H, Pedersen NL, Michaelsson K. Genetic influence on bone phenotypes and body composition: A Swedish twin study. J Bone Miner Metab 31: 681‐689, 2013.
 437.Wahl P, Wolf M. FGF23 in chronic kidney disease. Adv Exp Med Biol 728: 107‐125, 2012.
 438.Wang B, Zhang S, Wu XY. Effects of microgravity on the gene expression and cellular functions of osteoblasts. Space Med Med Eng (Beijing) 16: 227‐230, 2003.
 439.Wang D, Cai G, Wang H, He J. TRAF3, a target of microRNA‐363‐3p, suppresses senescence and regulates the balance between osteoblastic and adipocytic differentiation of rat bone marrow‐derived mesenchymal stem cells. Stem Cells Dev 29: 737‐745, 2020.
 440.Wang E. Senescent human fibroblasts resist programmed cell death, and failure to suppress bcl2 is involved. Cancer Res 55: 2284‐2292, 1995.
 441.Wang GJ, Sweet DE, Reger SI, Thompson RC. Fat‐cell changes as a mechanism of avascular necrosis of the femoral head in cortisone‐treated rabbits. J Bone Joint Surg Am 59: 729‐735, 1977.
 442.Wang H, Chen Q, Lee SH, Choi Y, Johnson FB, Pignolo RJ. Impairment of osteoblast differentiation due to proliferation‐independent telomere dysfunction in mouse models of accelerated aging. Aging Cell 11: 704‐713, 2012.
 443.Wang S, Prizment A, Thyagarajan B, Blaes A. Cancer treatment‐induced accelerated aging in cancer survivors: Biology and assessment. Cancers (Basel) 13: 1‐15, 2021.
 444.Waning DL, Mohammad KS, Reiken S, Xie W, Andersson DC, John S, Chiechi A, Wright LE, Umanskaya A, Niewolna M, Trivedi T, Charkhzarrin S, Khatiwada P, Wronska A, Haynes A, Benassi MS, Witzmann FA, Zhen G, Wang X, Cao X, Roodman GD, Marks AR, Guise TA. Excess TGF‐beta mediates muscle weakness associated with bone metastases in mice. Nat Med 21: 1262‐1271, 2015.
 445.Watson JD. Origin of concatemeric T7 DNA. Nat New Biol 239: 197‐201, 1972.
 446.Weber TJ. Battle of the sex steroids in the male skeleton: And the winner is. J Clin Invest 126: 829‐832, 2016.
 447.Wehrwein P. Stem cells: Repeat to fade. Nature 492: S12‐S13, 2012.
 448.Wein MN, Kronenberg HM. Regulation of bone remodeling by parathyroid hormone. Cold Spring Harb Perspect Med 8: a031237, 2018.
 449.Weitzmann MN, Cenci S, Rifas L, Brown C, Pacifici R. Interleukin‐7 stimulates osteoclast formation by up‐regulating the T‐cell production of soluble osteoclastogenic cytokines. Blood 96: 1873‐1878, 2000.
 450.Weivoda MM, Ruan M, Hachfeld CM, Pederson L, Howe A, Davey RA, Zajac JD, Kobayashi Y, Williams BO, Westendorf JJ, Khosla S, Oursler MJ. Wnt signaling inhibits osteoclast differentiation by activating canonical and noncanonical cAMP/PKA pathways. J Bone Miner Res 31: 65‐75, 2016.
 451.Wilson CL, Ness KK. Bone mineral density deficits and fractures in survivors of childhood cancer. Curr Osteoporos Rep 11: 329‐337, 2013.
 452.Wink CS, Felts WJ. Effects of castration on the bone structure of male rats: A model of osteoporosis. Calcif Tissue Int 32: 77‐82, 1980.
 453.Wiren KM, Zhang XW, Olson DA, Turner RT, Iwaniec UT. Androgen prevents hypogonadal bone loss via inhibition of resorption mediated by mature osteoblasts/osteocytes. Bone 51: 835‐846, 2012.
 454.Wiswell RA, Hawkins SA, Dreyer HC, Jaque SV. Maintenance of BMD in older male runners is independent of changes in training volume or VO(2)peak. J Gerontol A Biol Sci Med Sci 57: M203‐M208, 2002.
 455.Wronski TJ, Morey‐Holton E, Jee WS. Skeletal alterations in rats during space flight. Adv Space Res 1: 135‐140, 1981.
 456.Wronski TJ, Walsh CC, Ignaszewski LA. Histologic evidence for osteopenia and increased bone turnover in ovariectomized rats. Bone 7: 119‐123, 1986.
 457.Xu M, Palmer AK, Ding H, Weivoda MM, Pirtskhalava T, White TA, Sepe A, Johnson KO, Stout MB, Giorgadze N, Jensen MD, LeBrasseur NK, Tchkonia T, Kirkland JL. Targeting senescent cells enhances adipogenesis and metabolic function in old age. elife 4: e12997, 2015.
 458.Xu M, Tchkonia T, Ding H, Ogrodnik M, Lubbers ER, Pirtskhalava T, White TA, Johnson KO, Stout MB, Mezera V, Giorgadze N, Jensen MD, LeBrasseur NK, Kirkland JL. JAK inhibition alleviates the cellular senescence‐associated secretory phenotype and frailty in old age. Proc Natl Acad Sci U S A 112: E6301‐E6310, 2015.
 459.Yang R, Chen J, Zhang J, Qin R, Wang R, Qiu Y, Mao Z, Goltzman D, Miao D. 1,25‐Dihydroxyvitamin D protects against age‐related osteoporosis by a novel VDR‐Ezh2‐p16 signal axis. Aging Cell 19: e13095, 2020.
 460.Yeh L‐CC, Tsai AD, Lee JC. Osteogenic protein‐1 (OP‐1, BMP‐7) induces osteoblastic cell differentiation of the pluripotent mesenchymal cell line C2C12. J Cell Biochem 87: 292‐304, 2002.
 461.Yeung DK, Griffith JF, Antonio GE, Lee FK, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: A proton MR spectroscopy study. J Magn Reson Imaging 22: 279‐285, 2005.
 462.Young D, Hopper JL, Nowson CA, Green RM, Sherwin AJ, Kaymakci B, Smid M, Guest CS, Larkins RG, Wark JD. Determinants of bone mass in 10‐ to 26‐year‐old females: A twin study. J Bone Miner Res 10: 558‐567, 1995.
 463.Young MM, Nordin BE. Calcium metabolism and the menopause. Proc R Soc Med 60: 1137‐1138, 1967.
 464.Yuan L, Chan GC, Fung KL, Chim CS. RANKL expression in myeloma cells is regulated by a network involving RANKL promoter methylation, DNMT1, microRNA and TNFalpha in the microenvironment. Biochim Biophys Acta 1843: 1834‐1838, 2014.
 465.Yudoh K, Matsuno H, Nakazawa F, Katayama R, Kimura T. Reconstituting telomerase activity using the telomerase catalytic subunit prevents the telomere shorting and replicative senescence in human osteoblasts. J Bone Miner Res 16: 1453‐1464, 2001.
 466.Yudoh K, Nishioka K. Telomerized presenescent osteoblasts prevent bone mass loss in vivo. Gene Ther 11: 909‐915, 2004.
 467.Zampieri M, Ciccarone F, Calabrese R, Franceschi C, Burkle A, Caiafa P. Reconfiguration of DNA methylation in aging. Mech Ageing Dev 151: 60‐70, 2015.
 468.Zayzafoon M, Gathings WE, McDonald JM. Modeled microgravity inhibits osteogenic differentiation of human mesenchymal stem cells and increases adipogenesis. Endocrinology 145: 2421‐2432, 2004.
 469.Zebaze RM, Ghasem‐Zadeh A, Bohte A, Iuliano‐Burns S, Mirams M, Price RI, Mackie EJ, Seeman E. Intracortical remodelling and porosity in the distal radius and post‐mortem femurs of women: A cross‐sectional study. Lancet 375: 1729‐1736, 2010.
 470.Zhang J, Pugh TD, Stebler B, Ershler WB, Keller ET. Orchiectomy increases bone marrow interleukin‐6 levels in mice. Calcif Tissue Int 62: 219‐226, 1998.
 471.Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A, Yuan T, Yang J, Li Y, Shi L, Guan D, Pan H, Duan S, Ding Z, Li M, Yi F, Bai R, Wang Y, Chen C, Yang F, Li X, Wang Z, Aizawa E, Goebl A, Soligalla RD, Reddy P, Esteban CR, Tang F, Liu GH, Belmonte JC. Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348: 1160‐1163, 2015.
 472.Zhang Z, Zhang Y, Zhou Z, Shi H, Qiu X, Xiong J, Chen Y. BDNF regulates the expression and secretion of VEGF from osteoblasts via the TrkB/ERK1/2 signaling pathway during fracture healing. Mol Med Rep 15: 1362‐1367, 2017.
 473.Zheng HF, Forgetta V, Hsu YH, Estrada K, Rosello‐Diez A, Leo PJ, Dahia CL, Park‐Min KH, Tobias JH, Kooperberg C, Kleinman A, Styrkarsdottir U, Liu CT, Uggla C, Evans DS, Nielson CM, Walter K, Pettersson‐Kymmer U, McCarthy S, Eriksson J, Kwan T, Jhamai M, Trajanoska K, Memari Y, Min J, Huang J, Danecek P, Wilmot B, Li R, Chou WC, Mokry LE, Moayyeri A, Claussnitzer M, Cheng CH, Cheung W, Medina‐Gomez C, Ge B, Chen SH, Choi K, Oei L, Fraser J, Kraaij R, Hibbs MA, Gregson CL, Paquette D, Hofman A, Wibom C, Tranah GJ, Marshall M, Gardiner BB, Cremin K, Auer P, Hsu L, Ring S, Tung JY, Thorleifsson G, Enneman AW, van Schoor NM, de Groot LC, van der Velde N, Melin B, Kemp JP, Christiansen C, Sayers A, Zhou Y, Calderari S, van Rooij J, Carlson C, Peters U, Berlivet S, Dostie J, Uitterlinden AG, Williams SR, Farber C, Grinberg D, LaCroix AZ, Haessler J, Chasman DI, Giulianini F, Rose LM, Ridker PM, Eisman JA, Nguyen TV, Center JR, Nogues X, Garcia‐Giralt N, Launer LL, Gudnason V, Mellstrom D, Vandenput L, Amin N, van Duijn CM, Karlsson MK, Ljunggren O, Svensson O, Hallmans G, Rousseau F, Giroux S, Bussiere J, Arp PP, Koromani F, Prince RL, Lewis JR, Langdahl BL, Hermann AP, Jensen JE, Kaptoge S, Khaw KT, Reeve J, Formosa MM, Xuereb‐Anastasi A, Akesson K, McGuigan FE, Garg G, Olmos JM, Zarrabeitia MT, Riancho JA, Ralston SH, Alonso N, Jiang X, Goltzman D, Pastinen T, Grundberg E, Gauguier D, Orwoll ES, Karasik D, Davey‐Smith G, Consortium A, Smith AV, Siggeirsdottir K, Harris TB, Zillikens MC, van Meurs JB, Thorsteinsdottir U, Maurano MT, Timpson NJ, Soranzo N, Durbin R, Wilson SG, Ntzani EE, Brown MA, Stefansson K, Hinds DA, Spector T, Cupples LA, Ohlsson C, Greenwood CM, Consortium UK, Jackson RD, Rowe DW, Loomis CA, Evans DM, Ackert‐Bicknell CL, Joyner AL, Duncan EL, Kiel DP, Rivadeneira F, Richards JB. Whole‐genome sequencing identifies EN1 as a determinant of bone density and fracture. Nature 526: 112‐117, 2015.
 474.Zhou Q, Zhu L, Zhang D, Li N, Li Q, Dai P, Mao Y, Li X, Ma J, Huang S. Oxidative stress‐related biomarkers in postmenopausal osteoporosis: A systematic review and meta‐analyses. Dis Markers 2016: 7067984, 2016.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Robert J. Pignolo. Aging and Bone Metabolism. Compr Physiol 2023, 13: 4355-4386. doi: 10.1002/cphy.c220012