Comprehensive Physiology Wiley Online Library

Cellular Biology of the Neurosecretory Neuron

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Cytology of Neurosecretory Neurons
2 Neurosecretory Granules
3 Synthesis of Neurosecretion
4 Axonal Transport of Neurosecretory Material
4.1 Phenomenon of Transport
4.2 Rates of Transport
4.3 Effect of Electrical Activity on Transport
4.4 Mechanism of Transport
4.5 Modification of Neurosecretion During Transport
5 Release of Neurosecretory Material
6 Intraneuronal Carrier Proteins
7 Electrophysiology of Neurosecretory Neurons
8 Synaptology
9 Relations with Glial Elements
10 Regeneration of Neurosecretory Neurons
11 Addendum
Figure 1. Figure 1.

Neuronal structure of protocerebral medial neurosecretory neuron from cockroach (left) as compared with generalized invertebrate neuron (right); a, axon; co, collaterals; d, dendrite; nsm, neurosecretory material; pe, perikaryon; te, axon terminals.

From Adiyodi & Bern 4
Figure 2. Figure 2.

Neurosecretory granules in axon terminals of the rat neurohypophysis. Tissue was fixed in triple‐aldehyde fixative at pH 5, 6,7, and 8. Note decreasing density of granule contents with increasing pH and rupture of granules at pH 8. × 21,659.

From J. F. Morris, unpublished
Figure 3. Figure 3.

Ultra‐autoradiographs of supraoptic neurons of rat injected intracisternally with [3H]cysteine 5 min (A) and 1 h (B) before sacrifice. Note silver grains over endoplasmic reticulum in A and over Golgi zones in B.

From R. S. Nishioka, D. Zambrano, and H. A. Bern, unpublished; cf. 354
Figure 4. Figure 4.

Axon from proximal stump of transected frog hypothalamoneurohypophysial tract 12 h after transection to show tubular formations and their connections with neurosecretory granules, × 27,000.

From H.‐D. Dellmann and E. M. Rodriguez, unpublished; cf. 114
Figure 5. Figure 5.

Polygraph recordings to illustrate acceleration in the activity of a supraoptic neuron (SO) in a rat that immediately precedes oxytocin release. Each vertical deflection on the unit trace corresponds to a single action potential; the amplitude of the integration trace corresponds to frequency; 10 rat pups were suckling throughout. Note that the rise in intramammary pressure, which represents milk ejection, occurs 12–14 s after the activation of the supraoptic cell and the subsequent pulse of oxytocin.

From D. W. Lincoln, unpublished
Figure 6. Figure 6.

Relationship between electrical activity of neurosecretory cells and release of oxytocin in rats. Number of supraoptic (SO) and paraventricular (PV) neurons and the oxytocin content of the neurohypophysis are given in the center of the figure. Total spike traffic in the hypothalamoneurohypophysial tract is compared with the basal release of oxytocin (left) and the pulsatile release of oxytocin during suckling (right). In the latter calculation, the contribution to spike activity of the 9,000 unresponsive SO and PV cells has been ignored. Note the 100‐fold facilitation in the amount of hormone released per spike in the burst of activity that causes milk ejection.

From Lincoln 313
Figure 7. Figure 7.

Electron micrographs from neural lobe presenting evidence for exocytosis of elementary neurosecretory granules (A and B) and formation of small vesicles by pinocytosis (C; D with arrow). A, rat. × 78,000. B, hamster (“omega figure”), × 94,000. C, hamster, × 17,000. D, hamster, × 78,000

A and B from Nagasawa et al. 347; C and D from Douglas et al. 126
Figure 8. Figure 8.

Postulated sequence of events in exocytosis of granules from neurosecretory axon terminal and in recapture of granule membrane leading to formation of small vesicles.

Based on the studies of W. W. Douglas and his collaborators
Figure 9. Figure 9.

Recordings from neurosecretory neurons. A: intracellular spontaneous spike from neurosecretory soma of cockroach pars intercerebralis; note conspicuous hyperpolarizing afterpotential. B: intracellular evoked spike from intrinsic cell soma of blowfly corpus cardiacum. C: intracellular directly evoked spike from neurosecretory soma of crayfish X organ. D: intracellular antidromically evoked spike from neurosecretory soma of crayfish X organ. E and F: difference in the active components of action potentials between soma and axon in crayfish X organ neurosecretory system. In the normal medium (E) the action potential of the soma (upper) elicited by a direct current injected in the neuron soma and the corresponding spike potential of the axon (lower) were seen as a one‐to‐one relationship. A spontaneous spike potential of another neuron is also seen (asterisk). After application of tetrodotoxin (F) the spike potentials of the axon disappeared, while the spike potential of the neuron soma remained. G: antidromically evoked spike from rat supraoptic neuron. H: antidromically evoked spike from cat or dog supraoptic or paraventricular neuron to show small spike (inflection in rising phase) presumably originating from the axon hillock region and large spike presumably somatodendritic in origin. I: intracellular action potential from ordinary neuron in eel posterior spinal cord stimulated by directly applied outward current. J: intracellular action potential from eel caudal neurosecretory neuron stimulated by intracellularly applied 5‐ms depolarizing current. In A‐J, horizontal line in milliseconds, vertical line in millivolts

A from Cook & Milligan 91; B from Normann 362; C‐F from Iwasaki & Satow 246; G from Yagi et al. 533; H from Koizumi & Yamashita 284; I and J from Ishibashi 236
Figure 10. Figure 10.

Synapses onto neurosecretory cells of the paraventricular nucleus of the rat. A: process extending from a cell body, × 12,500. B: isolated process in the paraventricular region, × 14,700. Both elements contain neurosecretory granules (ng) and display typical synaptic contacts (s), but in neither case is it possible to be certain whether the profiles are axons as opposed to dendrites. Further the process in A lacks the characteristic features of an axon hillock, and such features are not seen in processes extending from neurosecretory cell bodies in the rat hypothalamus. The pale appearance of granules in both A and B is due to long fixation (i.e., overnight) at pH 7.3.

From J. F. Morris, unpublished
Figure 11. Figure 11.

A: pars nervosa of white‐crowned sparrow. Glial elements (G) interposed between axon endings (containing many small vesicles and dense granules) and basement membrane (BM) of capillary. B: supraesophageal ganglion of leech (Theromyzon rude). Neurosecretory cell (granule‐filled) with processes (P) from glial cell (G) invaginating into cytoplasm is shown. N, glial nucleus. [From R. S. Nishioka and I. R. Hagadorn, unpublished; cf. 197.]

From R. S. Nishioka and H. A. Bern, unpublished; cf. 47


Figure 1.

Neuronal structure of protocerebral medial neurosecretory neuron from cockroach (left) as compared with generalized invertebrate neuron (right); a, axon; co, collaterals; d, dendrite; nsm, neurosecretory material; pe, perikaryon; te, axon terminals.

From Adiyodi & Bern 4


Figure 2.

Neurosecretory granules in axon terminals of the rat neurohypophysis. Tissue was fixed in triple‐aldehyde fixative at pH 5, 6,7, and 8. Note decreasing density of granule contents with increasing pH and rupture of granules at pH 8. × 21,659.

From J. F. Morris, unpublished


Figure 3.

Ultra‐autoradiographs of supraoptic neurons of rat injected intracisternally with [3H]cysteine 5 min (A) and 1 h (B) before sacrifice. Note silver grains over endoplasmic reticulum in A and over Golgi zones in B.

From R. S. Nishioka, D. Zambrano, and H. A. Bern, unpublished; cf. 354


Figure 4.

Axon from proximal stump of transected frog hypothalamoneurohypophysial tract 12 h after transection to show tubular formations and their connections with neurosecretory granules, × 27,000.

From H.‐D. Dellmann and E. M. Rodriguez, unpublished; cf. 114


Figure 5.

Polygraph recordings to illustrate acceleration in the activity of a supraoptic neuron (SO) in a rat that immediately precedes oxytocin release. Each vertical deflection on the unit trace corresponds to a single action potential; the amplitude of the integration trace corresponds to frequency; 10 rat pups were suckling throughout. Note that the rise in intramammary pressure, which represents milk ejection, occurs 12–14 s after the activation of the supraoptic cell and the subsequent pulse of oxytocin.

From D. W. Lincoln, unpublished


Figure 6.

Relationship between electrical activity of neurosecretory cells and release of oxytocin in rats. Number of supraoptic (SO) and paraventricular (PV) neurons and the oxytocin content of the neurohypophysis are given in the center of the figure. Total spike traffic in the hypothalamoneurohypophysial tract is compared with the basal release of oxytocin (left) and the pulsatile release of oxytocin during suckling (right). In the latter calculation, the contribution to spike activity of the 9,000 unresponsive SO and PV cells has been ignored. Note the 100‐fold facilitation in the amount of hormone released per spike in the burst of activity that causes milk ejection.

From Lincoln 313


Figure 7.

Electron micrographs from neural lobe presenting evidence for exocytosis of elementary neurosecretory granules (A and B) and formation of small vesicles by pinocytosis (C; D with arrow). A, rat. × 78,000. B, hamster (“omega figure”), × 94,000. C, hamster, × 17,000. D, hamster, × 78,000

A and B from Nagasawa et al. 347; C and D from Douglas et al. 126


Figure 8.

Postulated sequence of events in exocytosis of granules from neurosecretory axon terminal and in recapture of granule membrane leading to formation of small vesicles.

Based on the studies of W. W. Douglas and his collaborators


Figure 9.

Recordings from neurosecretory neurons. A: intracellular spontaneous spike from neurosecretory soma of cockroach pars intercerebralis; note conspicuous hyperpolarizing afterpotential. B: intracellular evoked spike from intrinsic cell soma of blowfly corpus cardiacum. C: intracellular directly evoked spike from neurosecretory soma of crayfish X organ. D: intracellular antidromically evoked spike from neurosecretory soma of crayfish X organ. E and F: difference in the active components of action potentials between soma and axon in crayfish X organ neurosecretory system. In the normal medium (E) the action potential of the soma (upper) elicited by a direct current injected in the neuron soma and the corresponding spike potential of the axon (lower) were seen as a one‐to‐one relationship. A spontaneous spike potential of another neuron is also seen (asterisk). After application of tetrodotoxin (F) the spike potentials of the axon disappeared, while the spike potential of the neuron soma remained. G: antidromically evoked spike from rat supraoptic neuron. H: antidromically evoked spike from cat or dog supraoptic or paraventricular neuron to show small spike (inflection in rising phase) presumably originating from the axon hillock region and large spike presumably somatodendritic in origin. I: intracellular action potential from ordinary neuron in eel posterior spinal cord stimulated by directly applied outward current. J: intracellular action potential from eel caudal neurosecretory neuron stimulated by intracellularly applied 5‐ms depolarizing current. In A‐J, horizontal line in milliseconds, vertical line in millivolts

A from Cook & Milligan 91; B from Normann 362; C‐F from Iwasaki & Satow 246; G from Yagi et al. 533; H from Koizumi & Yamashita 284; I and J from Ishibashi 236


Figure 10.

Synapses onto neurosecretory cells of the paraventricular nucleus of the rat. A: process extending from a cell body, × 12,500. B: isolated process in the paraventricular region, × 14,700. Both elements contain neurosecretory granules (ng) and display typical synaptic contacts (s), but in neither case is it possible to be certain whether the profiles are axons as opposed to dendrites. Further the process in A lacks the characteristic features of an axon hillock, and such features are not seen in processes extending from neurosecretory cell bodies in the rat hypothalamus. The pale appearance of granules in both A and B is due to long fixation (i.e., overnight) at pH 7.3.

From J. F. Morris, unpublished


Figure 11.

A: pars nervosa of white‐crowned sparrow. Glial elements (G) interposed between axon endings (containing many small vesicles and dense granules) and basement membrane (BM) of capillary. B: supraesophageal ganglion of leech (Theromyzon rude). Neurosecretory cell (granule‐filled) with processes (P) from glial cell (G) invaginating into cytoplasm is shown. N, glial nucleus. [From R. S. Nishioka and I. R. Hagadorn, unpublished; cf. 197.]

From R. S. Nishioka and H. A. Bern, unpublished; cf. 47
 1. Abraham, M. The ultrastructure of the cell types and the neurosecretory innervation in the pituitary of Mugil cephalus L. from fresh water, the sea, and a hypersaline lagoon. 1. The rostral pars distalis. Gen. Comp. Endocrinol. 17: 334–350, 1971.
 2. Abrahams, V. C., G. B. Koelle, and P. Smart. Histochemical demonstration of cholinesterases in the hypothalamus of the dog. J. Physiol. London 139: 137–144, 1957.
 3. Acher, R., J. Chauvet, and G. Olivry. Sur l'existence eventuelle d'un hormone unique neurohypophysaire. Rélation entre l'ocytocine, la vasopressine et la protéine de Van Dyke extraites de la neurohypophyse de boeuf. Biochim. Biophys. Acta 22: 421–427, 1956.
 4. Adiyodi, K. G., and H. A. Bern. Neuronal appearance of neurosecretory cells in the pars intercerebralis of Periplaneta americana. Gen. Comp. Endocrinol. 11: 88–91, 1968.
 5. Alexandrowicz, J. S. The neurosecretory system of the vena cava in Cephalopoda. I. Eledone cirrosa. J. Marine Biol. Assoc. UK 44: 111–132, 1964.
 6. Alexandrowicz, J. The neurosecretory system of the vena cava in Cephalopoda. II. Sepia officinalis and Octopus vulgaris. J. Marine Biol. Assoc. UK 45: 209–228, 1965.
 7. Altenahr, E. Electron microscopical evidence for innervation of chief cells in human parathyroid gland. Experientia 47: 1077, 1971.
 8. Altner, H., and G. Thies. A functional unit consisting of an eversible gland with neurosecretory innervation and a proprioreceptor derived from a complex sensillum in an insect. Z. Zellforsch. Mikroskop. Anat. 145: 503–519, 1973.
 9. Alvarez‐Buylla, R., B. G. Livett, L. O. Uttenthal, D. B. Hope, and S. H. Milton. Immunochemical evidence for the transport of neurophysin in the hypothalamo‐neurohypophysial system of the dog. Z. Zellforsch. Mikroskop. Anat. 137: 435–450, 1973.
 10. Andrews, P. M. Ultrastructural study of the pericardial organ‐anterior ramifications complex neurosecretory terminals. Z. Zellforsch. Mikroskop. Anat. 144: 309–324, 1973.
 11. Andrews, P. M., D. E. Copeland, and M. Fingerman. Ultrastructural study of neurosecretory granules in the sinus gland of the blue Callinectes sapidus. Z. Zellforsch. Mikroskop. Anat. 113: 461–471, 1971.
 12. Anwyl, R., and L. H. Finlayson. The ultrastructure of neurons with both a motor and a neurosecretory function in the insect, Rhodnius prolixus. Z. Zellforsch. Mikroskop. Anat. 146: 367–374, 1973.
 13. Arch, S. Polypeptide secretion from the isolated parietovisceral ganglion of Aplysia californica. J. Gen. Physiol. 59: 47–59, 1972.
 14. Barer, R., H. Heller, and K. Lederis. The isolation, identification and properties of the hormonal granules of the neurohypophysis. Proc. Roy. Soc. London Ser. B 158: 388–416, 1963.
 15. Barer, R., and K. Lederis. Ultrastructure of the rabbit neurohypophysis with special reference to the release of hormones. Z. Zellforsch. Mikroskop. Anat. 75: 201–239, 1966.
 16. Bargmann, W. Über die neurosekretorische Verknüpfung von Hypothalamus and Neurohypophyse. Z. Zellforsch. Mikroskop. Anat. 34: 610–634, 1949.
 17. Bargmann, W. Neurosecretion. Intern. Rev. Cytol. 19: 183–202, 1966.
 18. Bargmann, W. On the innervation of vertebrate endocrine organs. In: Endocrinology, edited by R. O. Scow. New York: American Elsevier Excerpta Medica, 1973, p. 220–223.
 19. Bargmann, W., and B. V. Gaudecker. Über die Ultrastruktur neurosekretorisher Elementargranula. Z. Zellforsch. Mikroskop. Anat. 96: 495–504, 1969.
 20. Bargmann, W., E. Lindner, and K. H. Andres. Über Synapsen an endokrinen Epithelzellen und die Definition sekretorischer Neurone. Untersuchungen am Zwischenlappen der Katzenhypophyse. Z. Zellforsch. Mikroskop. Anat. 77: 282–298, 1967.
 21. Bargmann, W., and B. Scharrer (editors). Aspects of Neuroendocrinology. Munich: Bergmann, 1969. (Proc. Intern. Symp. Neurosecretion, 5th, Kiel.)
 22. Barker, J. L., J. W. Crayton, and R. A. Nicoll. Antidromic and orthodromic responses of paraventricular and supraoptic neurosecretory cells. Brain Res. 33: 353–366, 1971.
 23. Barker, J. L., J. W. Crayton, and R. A. Nicoll. Supraoptic neurosecretory cells: autonomic modulation. Science 171: 206–207, 1971.
 24. Barker, J. L., J. W. Crayton, and R. A. Nicoll. Noradrenaline and acetylcholine responses of supraoptic neurosecretory cells. J. Physiol London 218: 19–32, 1971.
 25. Barker, J. L., J. W. Crayton, and R. A. Nicoll. Supraoptic neurosecretory cells: adrenergic and cholinergic sensitivity. Science 171: 208–210, 1971.
 26. Barondes, S. H. (editor). Axoplasmic transport. Neurosci. Res. Program Bull. 5: 307–418, 1967.
 27. Barondes, S. H. (editor). Cellular dynamics of the neuron. In: Symposium of the International Society of Cellular Biology. New York: Academic, 1970, vol. 8.
 28. Baumgarten, H. G., and H. Braak. Catecholamine im Hypothalamus vom Goldfisch iCarassius auratus). Z. Zellforsch. Mikroskop. Anat. 80: 246–263, 1967.
 29. Benjamin, A. M., and J. H. Quastel. Locations of amino acids in brain slices from the rat. Tetrodotoxin‐sensitive release of amino acids. Biochem. J. 128: 631–646, 1972.
 30. Bennett, G. W., and J. A. Edwardson. Calcium dependent release of hypophysiotropic substances from nerve‐endings (synaptosomes) isolated from the hypothalamus. J. Endocrinol. 59: xv–xvi, 1973.
 31. Bennett, M. V. L., and S. Fox. Electrophysiology of caudal neurosecretory cells in the skate and fluke. Gen. Comp. Endocrinol. 2: 77–95, 1962.
 32. Bennett, M. V. L., M. Gimenez, and M. J. Ravitz. Synaptically evoked impulse activity of morphologically identified neurosecretory cells. Anat. Record 160: 313–314, 1968.
 33. Berl, S., S. Puszkin, and W. J. Nicklas. Actomysin‐like protein in brain. Science 179: 441–446, 1973.
 34. Berlind, A. Teleost caudal neurosecretory system: release of urotensin II from isolated urophyses. Gen. Comp. Endocrinol. 18: 557–560, 1972.
 35. Berlind, A. Caudal neurosecretory system: a physiologist's view. Am. Zoologist 13: 759–770, 1973.
 36. Berlind, A., and I. M. Cooke. Effect of calcium omission on neurosecretion and electrical activity of crab pericardial organs. Gen. Comp. Endocrinol. 11: 458–463, 1968.
 37. Berlind, A., and I. M. Cooke. Release of a neurosecretory hormone as peptide by electrical stimulation of crab pericardial organs. J. Exptl. Biol. 53: 679–686, 1970.
 38. Berlind, A., F. Lacanilao, and H. A. Bern. Teleost caudal neurosecretory system: effects of osmotic stress on urophysial proteins and active factors. Comp. Biochem. Physiol. 42A: 345–352, 1972.
 39. Bern, H. A. The properties of neurosecretory cells. Gen. Comp. Endocrinol. Suppl. 1: 117–132, 1962.
 40. Bern, H. A. The secretory neuron as a doubly specialized cell. In: Physiology of Cell Specialization, edited by D. Mazia and A. Tyler. New York: McGraw‐Hill, 1963, p. 349–366.
 41. Bern, H. A. On the production of hormones by neurones and the role of neurosecretion in neurones and the role of neurosecretion in neuroendocrine mechanisms. Symp. Soc. Exptl. Biol. 20: 325–344, 1966.
 42. Bern, H. A. The hormonogenic properties of neurosecretory cells. In: Neurosecretion, edited by F. Stutinsky. Berlin: Springer Verlag, 1967, p. 5–7.
 43. Bern, H. A. Urophysis and caudal neurosecretory system. In: Fish Physiology, edited by W. S. Hoar and D. J. Randall. New York: Academic, 1969, vol. II, p. 399–418.
 44. Bern, H. A. The status of neuroendocrine structures in invertebrates analogous with those in vertebrates. Mem. Soc. Endocrinol. 19: 843–851, 1971.
 45. Bern, H. A. Some questions on the nature and function of cranial and caudal neurosecretory systems in nonmammalian vertebrates. In: Progress in Brain Research. Topics in Neuroendocrinology, edited by J. Ariëns Kappers and J. P. Schadé. Amsterdam: Elsevier, 1972, vol. 38, p. 85–97.
 46. Bern, H. A., and I. R. Hagadorn. Neurosecretion. In: Structure and Function in the Nervous Systems of Invertebrates, edited by T. H. Bullock and G. H. Horridge. San Francisco: Freeman, 1965, vol. 1, p. 353–459.
 47. Bern, H. A., and F. G. W. Knowles. Neurosecretion. In: Neuroendocrinology, edited by L. Martini and W. F. Ganong. New York: Academic, 1966, vol. 1, p. 139–186.
 48. Bern, H. A., R. S. Nishioka, and I. R. Hagadorn. Neurosecretory granules and organelles of neurosecretory cells. Mem. Soc. Endocrinol. 12: 21–34, 1962.
 49. Bern, H. A., R. S. Nishioka, L. R. Mewaldt, and D. S. Farner. Photoperiodic and osmotic influences on the ultra‐structure of the hypothalamic neurosecretory system of the white‐crowned sparrow, Zonotrichia leucophrys gambelii. Z. Zellforsch. Mikroskop. Anat. 69: 198–227, 1966.
 50. Bern, H. A., R. S. Nishioka, and Y. Nagahama. The relationship between nerve fibers and adenohypophysial cell types in the cichlid teleost Tilapia mossambica. In: Recherches Biologiques Contemporaines. edited by L. Arvy. Nancy: Imprimenè Vagner, 1974, p. 179–194.
 51. Bern, H. A., and K. Yagi. Electrophysiology of neurosecretory systems. Proc. Intern. Congr. Endocrinol., 2nd. Excerpta Med. Found. Intern. Congr. Ser. 83: 577–583, 1965.
 52. Bern, H. A., K. Yagi, and R. S. Nishioka. The structure and function of the caudal neurosecretory system of fishes. Arch. Anat. Microscop. Morphol. Exptl. 54: 217–238, 1965.
 53. Bern, H. A., D. Zambrano, and R. S. Nishioka. Comparison of the innervation of the pituitary of two euryhaline teleost fishes, Gillichthys mirabilis and Tilapia mossambica, with special reference to the origin and nature of type ‘B’ fibres. Mem. Soc. Endocrinol. 19: 817–822, 1971.
 54. Berry, R. W., and M. J. Cohen. Synaptic stimulation of RNA metabolism in the giant neuron of Aplysia californica. J. Neurobiol. 3: 209–272, 1972.
 55. Bevan, S., R. Miledi, and W. Crampp. Induced transmitter release from Schwann cells and its suppression by actinomycin D. Nature New Biol. 241: 85–86, 1973.
 56. Bhargava, K. P., V. K. Kulshrestha, G. Santhankumari, and Y. P. Sirvastava. Mechanism of histamine‐in‐duced antidiuretic response. Brit. J. Pharmacol. 47: 700–706, 1973.
 57. Billenstien, D. C., and T. F. Leveque. The reorganization of the neurohypophyseal stalk following hypophysectomy in the rat. Endocrinology 56: 704–717, 1955.
 58. Bindler, E., F. S. LaBella, and M. Sanwal. Isolated nerve endings (neurosecretosomes) from the posterior pituitary. J. Cell Biol. 34: 185–205, 1967.
 59. Boer, G. J., D. F. Swaab, and J. G. Jongkind. Changes in enzyme activities of the neurohypophysis after influencing the hypothalamo‐neurohypophysial system of the rat. J. Endocrinol. 57: xviii, 1973.
 60. Bonga, W. S. E. Ultrastructure and histochemistry of neurosecretory cells and neurohaemal areas in the pond snail Lymnae stagnalis (L.). Z. Zellforsch. Mikroskop. Anat. 108: 190–224, 1970.
 61. Bonga, W. S. E. Formation, storage and release of neurosecretory material studied by quantitative electron microscopy in the fresh water snail Lymnaea stagnalis (L.). Z. Zellforsch. Mikroskop. Anat. 113: 490–517, 1971.
 62. Borg, T. K., R. A. Bell, and D. J. Picard. Ultrastructure of neurosecretory cells in the frontal ganglion of the tobacco hornworm, Manduca sexta (L.). Tissue Cell 5: 259–267, 1973.
 63. Borg, T. K., and E. P. Marks. Ultrastructure of the median neurosecretory cells of Manduca sexta in vivo and in vitro. J. Insect Physiol. 19: 1913–1920, 1973.
 64. Borisy, G. G., and E. W. Taylor. The mechanism of action of colchicine: binding of colchicine‐H3 to cellular protein. J. Cell Biol. 34: 525–533, 1967.
 65. Boudier, J. A., and Y. Detieux. Effets de la colchicine sur la recharge en neurosécrétat de la neurohypophyse du rat après déplétion par privation d'eau. J. Neurovisceral Rel. 32: 282–299, 1972.
 66. Boudier, J. L. Influence de la colchicine sur la déplétion en granules élémentaires des terminaisons neurosécrétoires in‐duite par la déshydration chez le rat. Compt. Rend. Soc. Biol. 166: 650–653, 1972.
 67. Boudier, J. L., J. A. Boudier, and D. Picard. Ultrastructure du lobe postérieur de l'hypophyse du rat et ses modifications au cours de l'excrétion de vasopressine. Z. Zellforsch. Mikroskop. Anat. 108: 357–379, 1970.
 68. Boulton, P. S., and C. H. F. Rowell. Degeneration and regeneration in the insect central nervous system. II. Z. Zellforsch. Mikroskop. Anat. 101: 119–134, 1969.
 69. Bridges, T. E., A. W. Fisher, J. L. Gosbee, K. Lederis, and R. C. Santolaya. Acetylcholine and cholinesterases (assays and light‐ and electron‐microscopical histochemistry) in different parts of the pituitary of rat, rabbit and domestic pig. Z. Zellforsch. Mikroskop. Anat. 136: 1–18, 1973.
 70. Bridges, T. E., and K. Lederis. Incorporation of 32P into phospholipids of the hypothalamo‐neurohypophysial system and subcellular distribution of labelled phospholipids in the rat neural lobe. J. Endocrinol. 58: 327–339, 1973.
 71. Bridges, T. E., and N. A. Thorn. The effect of autonomic blocking agents on vasopressin release in vivo by osmoreceptor stimulation. J. Endocrinol. 48: 265–276, 1970.
 72. Brooks, C. McC, T. Ishikawa, K. Koizumi, and H.‐H. Lu. Activity of neurones in the paraventricular nucleus of the hypothalamus and its control. J. Physiol. London 182: 217–231, 1966.
 73. Bucy, P. C. The pars nervosa of the bovine hypophysis. J. Comp. Neurol. 50: 505–520, 1930.
 74. Bunt, A. H. Formation of coated and “synaptic” vesicles within neurosecretory axon terminals of the crustacean sinus gland. J. Ultrastruct. Res. 28: 21–41, 1969.
 75. Bunt, A. H., and E. A. Ashby. Ultrastructural changes in the crayfish sinus gland following electrical stimulation. Gen. Comp. Endocrinol. 10: 376–382, 1968.
 76. Burford, G. D., P. Clifford, C. W. Jones, and B. T. Pickering. A model for the passage of the neurohypophysial hormones and their related proteins through the rat neurohypophysis. Biochem. J. 136: 1053–1058, 1973.
 77. Burford, G. D., and L. Moens. Isolation of rat neurohypophysial proteins and their tentative identification as neurophysins. J. Endocrinol. 51: 609–610, 1971.
 78. Burford, G. D., and B. T. Pickering. The number of neurophysins in the rat. Biochem. J. 128: 941–944, 1972.
 79. Burford, G. D., and B. T. Pickering. Intra‐axonal transport and turnover of neurophysins in the rat. Biochem. J. 136: 1047–1052, 1973.
 80. Burton, A. M., M. L. Forsling, and M. J. Martin. Release of neurophysin, oxytocin and arginine vasopressin in the rat. J. Physiol. London 217: 23P–24P, 1971.
 81. Camier, M., R. Alazard, P. Cohen, P. Pradelles, J.‐L. Morgat, and P. Fromageot. Hormonal interactions at the molecular level. A study of oxytocin and vasopressin binding to bovine neurophysins. European J. Biochem. 32: 207–214, 1973.
 82. Cannata, M. A., and J. F. Morris. Changes in the appearance of hypothalamo‐neurohypophysial neurosecretory granules associated with their maturation. J. Endocrinol. 57: 31–38, 1973.
 83. Cannata, M. A., and J. F. Morris. Neurosecretory granule morphology and hormone release in the rat neurohypophysis. J. Endocrinol. 53: xvi, 1973.
 84. Cannata, M. A., and J. H. Tramezzani. The neural lobe of the rats: several types of nerve endings. Experientia 25: 1281–1282, 1969.
 85. Capra, J. D., J. M. Kehoe, D. Kotelchuck, R. Walter, and E. Breslow. Evolution of neurophysin proteins: the partial sequence of bovine neurophysin I. Proc. Natl. Acad. Sci. US 69: 431–434, 1972.
 86. Carlsson, A., B. Falck, and N. A. Hillarp. Cellular localization of brain monamines. Acta Physiol. Scand. Suppl. 196: 1–28, 1962.
 87. Castel, M. In vivo uptake of tracers by neurosecretory axon terminals in normal and dehydrated mice. Gen. Comp. Endocrinol. 22: 336–337, 1974.
 88. Cheng, K. W., and H. G. Friesen. Physiological factors regulating secretion of neurophysin. Metabolism 19: 876–890, 1970.
 89. Cheng, K. W., and H. G. Friesen. Isolation and characterization of a third component of porcine neurophysin. J. Biol. Chem. 246: 7656–7665, 1971.
 90. Cheng, K. W., and H. G. Friesen. The isolation and characterization of human neurophysin. J. Clin. Endocrinol. Metab. 34: 165–176, 1972.
 91. Cheng, K. W., J. B. Martin, and H. G. Friesen. Studies of neurophysin release. Endocrinology 91: 177–184, 1972.
 92. Christ, J. F. Nerve supply, blood supply and cytology of the neurohypophysis. In: The Pituitary Gland, edited by G. W. Harris and B. T. Donovan. London: Butterworths, 1966, vol. 3, p. 62–130.
 93. Christ, J. F., and I. J. Bak. Some fine structural observations on the small vasicular components in the posterior pituitary nerve fibres of rabbit. Z. Zellforsch. Mikroskop. Anat. 81: 329–344, 1970.
 94. Clark, R. B. Secretory activity in the nervous system. In: Some Contemporary Studies in Marine Science, edited by H. Barnes. London: Allen and Unwin Ltd., 1966, p. 129–154.
 95. Cook, D. J., and J. V. Milligan. Electrophysiology and histology of the medial neurosecretory cells in adult male cockroaches, Periplaneta americana. J. Insect Physiol. 18: 1197–1214, 1972.
 96. Cooke, I. M. Electrical activity and release of neurosecretory material in crab pericardial organs. Comp. Biochem. Physiol. 13: 353–366, 1964.
 97. Cooke, I. M. Calcium dependent depolarizing responses recorded from crab neurosecretory terminals. Proc. Intern. Union Physiol. Sci. 9: 119, 1971.
 98. Cross, B. A. Unit responses in the hypothalamus. In: Frontiers in Neuroendocrinology, edited by W. F. Ganong and L. Martini. New York: Oxford Univ. Press, 1973, p. 133–171.
 99. Cross, B. A., R. E. J. Dyball, and R. L. Moss. Stimulation of paraventricular neurosecretory cells by oxytocin applied iontophoretically. J. Physiol. London 222: 22P–23P, 1972.
 100. Cross, B. A., and J. D. Green. Activity of single neurones in the hypothalamus: effect of osmotic and other stimuli. J. Physiol. London 148: 554–569, 1959.
 101. Cuenod, M., C. Sandri, and K. Akert. Enlarged synaptic vesicles in optic nerve terminals induced by intraocular injection of colchicine. Brain Res. 39: 285–297, 1972.
 102. Dahlstrom, A. A discussion on subcellular and macromo‐lecular aspects of synaptic transmission. Axoplasmic transport (with particular respect of adrenergic neurons). Phil. Trans. Roy. Soc. London Ser. B 261: 325–358, 1971.
 103. Daikoku, S., R. Takahashi, H. Kojimoto, and Y. G. Watanabe. Secretory surface phenomena in freeze‐etched preparations of the adenohypophysial cells and neurosecretory fibers. Z. Zellforsch. Mikroskop. Anat. 136: 207–214, 1973.
 104. Daniel, A. R., and K. Lederis. Effects of acetylcholine on the release of neurohypophysial hormones in vitro. J. Endocrinol. 34: 10–11, 1966.
 105. Dean, C. R., and D. B. Hope. The isolation of purified neurosecretory granules from bovine pituitary posterior lobes. Biochem. J. 104: 1082–1088, 1967.
 106. Dean, C. R., and D. B. Hope. The isolation of neurophysin I and II from bovine neurosecretory granules separated on a large scale from other subcellular organelles. Biochem. J. 106: 565–573, 1968.
 107. Dean, C. R., D. B. Hope, and T. Kazic. Evidence for the storage of oxytocin with neurophysin I and of vasopressin with neurophysin II in separate neurosecretory granules. Brit. J. Pharmacol. 34: 192–193, 1968.
 108. Dellmann, H.‐D. Herring bodies; an electron microscopic study of local degeneration and regeneration in neurosecretory axons. Z. Zellforsch. Mikroskop. Anat. 111: 293–315, 1970.
 109. Dellmann, H.‐D. Degeneration and regeneration neurosecretory systems. Intern. Rev. Cytol. 36: 215–315, 1973.
 110. Dellmann, H.‐D., and P. A. Owsley. Investigations on the hypothalamoneurohypophysial neurosecretory system of the grass frog (Rana pipiens) after transection of the proximal neurohypophysis. I. Light microscopic findings in animals kept at 18°C environmental temperature. Z. Zellforsch. Mikroskop. Anat. 87: 1–16, 1968.
 111. Dellmann, H.‐D., and P. A. Owsley. Autoradiographic studies on the neurosecretory hypothalamo‐hypophysial system of the grass frog Rana pipiens after disconnection of the distal hypophysis. Experientia 25: 197–199, 1969.
 112. Dellmann, H.‐D., and P. A. Owsley. Investigations on the hypothalamo‐neurohypophysial neurosecretory system of the grass frog Rana pipiens after transection of the proximal neurohypophysis. II. Light and electron microscope findings in the disconnected distal neurosecretory system with special emphasis on the pituicytes. Z. Zellforsch. Mikroskop. Anat. 94: 325–336, 1969.
 113. Dellmann, H.‐D., and E. M. Rodriguez. Neuronal transformation of ependymal cells in the median eminence of the grass frog (Rana pipiens) after transection of the proximal neurohypophysis. J. Endocrinol. 47: 399–400, 1970.
 114. Dellmann, H.‐D., and E. M. Rodriguez. Herring bodies: an electron microscopic study of local degeneration and regeneration of neurosecretory axons. Z. Zellforsch. Mikroskop. Anat. 111: 293–315, 1970.
 115. Dellmann, H.‐D., and E. M. Rodriguez. Comparative study of the ultrastructural and hormonal content of the proximal and distal stumps of the transected neurosecretory hypothalamo‐hypophysial system. Experientia 26: 414–415, 1970.
 116. Dellmann, H.‐D., and E. M. Rodriguez. Tubular formations in normal, stimulated and transected neurosecretory axons. Mem. Soc. Endocrinol. 19: 853–863, 1971.
 117. Dellmann, H.‐D., M. E. Stoeckel, A. Porte, and F. Stutinsky. Corticotrophic cells in the pars intermedia rostral zone of the mouse and rat and their relationship to neurohypophysial nerve fibers and the hypophysial portal system. In: Brain‐Pituitary‐Adrenal Interrelationships, edited by A. Brodish and E. S. Redgate. Basel: Karger, 1973, p. 323–327.
 118. Dellmann, H.‐D., M. E. Stoeckel, A. Porte, F. Stutinsky, M. J. Klein, N. Chang, and H. K. Adlinger. Ultrastructure of the rat neural lobe following interruption of the hypophysial stalk. Anat. Record 175: 305, 1973.
 119. De Robertis, E. Ultrastructure and function in some neurosecretory systems. Mem. Soc. Endocrinol. 12: 3–21, 1962.
 120. De Robertis, E. Histophysiology of Synapses and Neurosecretion. New York: Macmillan, 1964.
 121. De Wilde, J. Neuro‐endocriene integratie. Vakblad Biol. 49–55, March, 1973.
 122. Dicker, S. E. Release of vasopressin and oxytocin from isolated pituitary glands of adult and new‐born rats. J. Physiol. London 185: 429–444, 1966.
 123. Dierickx, K., A. Druyts, M. P. Vandenberghe, and N. Goossens. Identification of adenohypophysiotropic neurohormone producing neurosecretory cells in Rana temporaria. I. Ultrastructural evidence for the presence of neurosecretory cells in the tuber cinereum. Z. Zellforsch. Mikroskop. Anat. 134: 459–504, 1972.
 124. Dierickx, K., M. P. Vandenberghe, and N. Goossens. Identification of adenohypophysiotropic neurohormone producing neurosecretory cells in Rana temporaria. II. Identification in the median eminence of the terminal arborizations of axons of the tubero‐hypophysial neurosecretory system. Z. Zellforsch. Mikroskop. Anat. 142: 479–513, 1973.
 125. Donev, S. Ultrastructure des granules neurosécrétoires du cobaye. In: Aspects of Neuroendocrinology, edited by W. Bargmann and B. Scharrer. Berlin: Springer Verlag, 1970, p. 366–373.
 126. Douglas, W. W. A possible mechanism of neurosecretion: release of vasopressin by depolarization and its dependence on calcium. Nature 197: 81–82, 1963.
 127. Douglas, W. W. How do neurones secrete peptides? Exocytosis and its consequences, including “synaptic vesicle” formation, in the hypothalamoneurohypophyseal system. In: Progress in Brain Research. Drug Effects on Neuroendocrine Regulation, edited by E. Zimmerman, W. H. Gispen, B. H. Marks, and D. DeWied. Amsterdam: Elsevier, 1973, vol. 39, p. 21–39.
 128. Douglas, W. W., J. Nagasawa, and R. Schulz. Electron microscopic studies on the mechanism of secretion of posterior pituitary hormones and significance of microvesicles (‘synaptic vesicles’) evidence of secretion by exocytosis and formation of microvesicles as a by product of this process. Mem. Soc. Endocrinol. 19: 353–377, 1970.
 129. Douglas, W. W., J. Nagasawa, and R. A. Schulz. Coated microvesicles in neurosecretory terminals of posterior pituitary glands shed their coats to become smooth “synaptic vesicles.” Nature 232: 340–341, 1971.
 130. Douglas, W. W., and A. M. Poisner. Stimulus‐secretion coupling in a neurosecretory organ: the role of calcium in the release of vasopressin from the neurohypophysis. J. Physiol. London 172: 1–18, 1964.
 131. Douglas, W. W., and A. M. Poisner. Calcium movement in the neurohypophysis of the rat and its relation to the release of vasopressin. J. Physiol. London 172: 19–30, 1964.
 132. Douglas, W. W., and M. Sorimachi. Electrically evoked release of vasopressin from isolated neurohypophyses in sodium‐free media. Brit. J. Pharmacol. 42: 647P, 1971.
 133. Douglas, W. W., and M. Sorimachi. Effects of cytochalasin B and colchicine on secretion of posterior pituitary and adrenal medullary hormones. Brit. J. Pharmacol. 45: 143–144, 1972.
 134. Dreifuss, J. J. Mechanisms of hormone secretion from neurohypophysis. Cellular and subcellular aspects. J. Physiol. London 67: 5A–53A, 1973.
 135. Dreifuss, J. J., K. Akert, C. Sandri, and H. Moor. The fine structure of freeze‐fractured neurosecretory nerve endings in the neurohypophysis. Brain Res. 62: 367–372, 1973.
 136. Dreifuss, J. J., J. D. Grau, and R. E. Bianchi. Antagonism between Ca and Na ions at neurohypophysial nerve terminals. Experientia 27: 1295–1296, 1971.
 137. Dreifuss, J. J., J. D. Grau, J. J. Legros, and J. J. Nordmann. The isolated neurohypophysis, a model for studies on neuroendocrine release mechanisms. In: Progress in Brain Research. Topics in Neuroendocrinology, edited by J. Ariëns Kappers and J. P. Schadé. Amsterdam: Elsevier, 1972, vol. 38, p. 31–40.
 138. Dreifuss, J. J., I. Kalnins, J. S. Kelley, and K. B. Ruf. Action potentials and release of neurohypophysial hormones in vitro. J. Physiol. London 215: 805–817, 1971.
 139. Dreifuss, J. J., and J. S. Kelly. Excitation of identified supraoptic neurones by the iontophoretic application of acetylcholine. J. Physiol. London 210: 170–172, 1970.
 140. Dreifuss, J. J., and J. S. Kelly. Recurrent inhibition of antidromically identified rat supraoptic neurones. J. Physiol. London 220: 87–103, 1972.
 141. Dreifuss, J. J., and J. S. Kelly. The activity of identified supraoptic neurones and their response to acetylcholine applied by iontophoresis. J. Physiol. London 220: 105–119, 1972.
 142. Duke, H. N., and M. Pickford. Observations on the actions of acetylcholine and adrenaline on the hypothalamus. J. Physiol. London 114: 325–332, 1951.
 143. Durchon, M. L'Endocrinologie des Vers et des Mollusques. Paris: Masson, 1967.
 144. Dyball, R. E. J. Oxytocin and ADH secretion in relation to electrical activity in antidromically identified supraoptic and paraventricular units. J. Physiol. London 214: 245–256, 1971.
 145. Dyball, R. E. J. Single unit activity in the hypothalamoneurohypophysial system of Brattleboro rats. J. Endocrinol. 60: 135–143, 1974.
 146. Dyball, R. E. J., and R. G. Dyer. The effect of hypothalamic deafferentation on the firing rates and response to oxytocin of identified paraventricular units in rats. J. Endocrinol. 49: xxvii–xxviii, 1971.
 147. Dyball, R. E. J., and K. Koizumi. Electrical activity in the supraoptic and paraventricular nuclei associated with neurohypophysial hormone release. J. Physiol. London 201: 711–722, 1969.
 148. Dyball, R. E. J., and P. S. Poutney. Discharge patterns of supraoptic and paraventricular neurones in rats given a 2% NaCl solution instead of drinking water. J. Endocrinol. 56: 91–98, 1973.
 149. Dyer, R. G., R. E. J. Dyball, and J. F. Morris. The effect of hypothalamic deafferentation upon the ultrastructure and hormone content of the paraventricular nucleus. J. Endocrinol. 57: 509–516, 1973.
 150. Edström, A., H‐A. Hansson, and A. Norström. The effect of chlorpromazine and tetracaine on the rapid axonal transport of neurosecretory material in the hypothalamo‐neurohypophysial system of the rat. A biochemical and ultra‐structural study. Z. Zellforsch. Mikroskop. Anat. 143: 71–91, 1973.
 151. Edwards, B. A. The uptake of tritiated lysine vasopressin by rat and pig pituitary neural lobes in vitro. J. Endocrinol. 50: 669–677, 1971.
 152. Edwards, B. A. Uptake of tritiated oxytocin into the neurohypophysis of the rat. J. Endocrinol. 51: 607–608, 1971.
 153. Edwards, B. A., and M. E. Edwards. Subcellular distribution and some properties of the enzyme activity involved in the breakdown of tritiated lysine vasopressin by bovine neurohypophyses. J. Endocrinol. 59: 193–194, 1973.
 154. Edwards, B. A., M. E. Edwards, and N. A. Thorn. The release in vitro of vasopressin unaccompanied by the axoplasmic enzymes: lactic acid dehydrogenase and adenylate kinase. Acta Endocrinol. 72: 417–425, 1973.
 155. Edwardson, J. A., G. W. Bennett, and H. F. Bradford. Release of amino acids and neurosecretory substances after stimulation of nerve endings (synaptosomes) isolated from the hypothalamus. Nature 240: 554–556, 1972.
 156. Ehinger, B. Cellular localization of the uptake of some amino acids into the rabbit retina. Brain Res. 46: 297–311, 1972.
 157. Ekengren, B. The nucleus preopticus and the nucleus lateralis tuberis in the roach, Leuciscus rutilus. Z. Zellforsch. Mikroskop. Anat. 140: 369–388, 1973.
 158. Faeder, I. R., and M. M. Salpeter. Glutamate uptake by a stimulated insect nerve‐muscle preparation. J. Cell Biol. 46: 300–307, 1970.
 159. Fahrenbach, W. H. The morphology of the Limulus visual system. V. Protocerebral neurosecretion and ocular innervation. Z. Zellforsch. Mikroskop. Anat. 144: 153–166, 1973.
 160. Fasolo, A., M. F. Franzoni, and V. Mazzi. The neurohypophysis of the crested newt. II. Fine structure of the pars nervosa with special reference to ependymal cells. Z. Zellforsch. Mikroskop. Anat. 134: 367–382, 1972.
 161. Fawcett, C. P., A. T. Powell, and S. H. Sachs. Biosynthesis and release of neurophysin. Endocrinology 83: 1299–1310, 1968.
 162. Feldberg, W., and M. Vogt. Acetylcholine synthesis in different regions of central nervous system. J. Physiol. London 107: 372–381, 1948.
 163. Ficq, A., and J. Flament‐Durand. Autoradiography in endocrine research. In: Techniques in Endocrine Research, edited by F. Knowles and P. Eckstein. London: Academic, 1963, p. 73–85.
 164. Fingerman, M., and T. Aoto. Effects of eyestalk ablation upon neurosecretion in the supraesophageal ganglia of the dwarf crayfish, Cambarellus schufeldti. Trans. Am. Micro‐scop. Soc. 79: 68–74, 1960.
 165. Finlayson, L. H., and M. P. Osborne. Electrical activity of neurohaemal tissue in the stick insect, Carausius morosus. J. Insect Physiol. 16: 791–800, 1970.
 166. Finlayson, L. H., and M. J. Rice. Sensory and neurosecretory innervation of the tsetse fly proventricular complex. Trans. Roy. Soc. Trop. Med. 66: 317, 1972.
 167. Flament‐Durand, J. Contribution à l'étude de la neurosécrétion chez le rat par la méthode autoradiographique. In: Neurosecretion, edited by F. Stutinsky. Berlin: Springer Verlag, 1967, p. 60–76.
 168. Flament‐Durand, J., and P. Dustin. Studies on the transport of secretory granules in the magnocellular hypothalamic neurons. I. Action of colchicine on axonal flow and neurotubules in the paraventricular nuclei. Z. Zellforsch. Mikroskop. Anat. 130: 440–454, 1972.
 169. Florey, E. Neurotransmitters and modulators in the animal kingdom. Federation Proc. 26: 1164–1178, 1967.
 170. Follenius, E. Cytologie des systèmes neurosécréteurs hypothalamohypophysaires des Poissons Teléostéens. In: Neurosecretion, edited by F. Stutinsky. Berlin: Springer Verlag, 1967, p. 42–55.
 171. Follenius, E. Mise en évidence, au microscope électronique, de l'innervation de l'hypophyse de Gasterosteus aculeatus L. par la technique de Maillet Champy. Compt. Rend. 271: 1034–1037, 1970.
 172. Frazier, W. T., E. R. Kandel, I. Kuppermann, R. Wazipi and E. R. Coggeshall. Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30: 1288–1351, 1967.
 173. Fridberg, G., and H. A. Bern. The urophysis and the caudal neurosecretory system of fishes. Biol. Rev. 43: 175–199, 1968.
 174. Fridberg, G., H. A. Bern, and R. S. Nishioka. The neurosecretory system of the isospondylous teleost, Albula vulpes, from different habitats. Gen. Comp. Endocrinol. 6: 195–212, 1966.
 175. Fridberg, G., S. Iwasaki, K. Yagi, H. A. Bern, D. M. Wilson, and R. S. Nishioka. Relation of impulse conduction to electrically induced release of neurosecretory material from the urophysis of the teleost fish Tilapia mossambica. J. Exptl. Zool. 161: 137–150, 1966.
 176. Fridberg, G., and R. S. Nishioka. Secretion into the spinal fluid by caudal neurosecretory neurons. Science 152: 90–91, 1966.
 177. Fridberg, G., R. S. Nishioka, H. A. Bern, and W. R. Fleming. Regeneration of the caudal neurosecretory system in the cichlid teleost Tilapia mossambica. J. Exptl. Zool. 162: 311–336, 1966.
 178. Fujita, H., and J. F. Hartmann. Electron microscopy of neurohypophysis in normal, adrenaline‐treated and pilocarpine‐treated rabbits. Z. Zellforsch. Mikroskop. Anat. 54: 734–763, 1961.
 179. Gabe, M. Neurosecretion. New York: Pergamon, 1966.
 180. Gabe, M. Évolution du produit de neurosécrétion protocéphalique des Insectes Ptérygotes au cours du cheminement axonal. Compt. Rend. 264: 943–945, 1967.
 181. Gabe, M. Données histochimiques sur l'évolution du produit de neurosécretion protocéphalique des Insectes Ptérygotes au cours de son cheminement axonal. Acta Histochem. 43: 168–184, 1972.
 182. Gainer, H. Electrophysiological behavior of an endogenously active neurosecretory cell. Brain Res. 39: 403–418, 1972.
 183. Ganong, W. F., and L. Martini (editors). Frontiers in Neuroendocrinology. London: Oxford Univ. Press, 1969.
 184. Ganong, W. F., and L. Martini (editors). Frontiers in Neuroendocrinology. London: Oxford Univ. Press, 1973.
 185. Gersch, M. Neurosecretory phenomena in invertebrates. Gen. Comp. Endocrinol. Suppl. 2: 553–564, 1969.
 186. Gersch, M. Experimentelle Untersuchungen zum Freisetzungsmechanismus von Neurohormonen nach elektrischer Reizung der Corpora cardiaca von Periplaneta americana in vitro. J. Insect Physiol. 18: 2425–2439, 1972.
 187. Gersch, M., and J. Ude. Elektronenmikroskopische Untersuchungen zur dynamik neurosekretorischer Zellen von Enchytraeus (Oligochaeta). Z. Zellforsch. Mikroskop. Anat. 81: 374–389, 1967.
 188. Gerschenfeld, H. M., J. H. Tramezzani, and E. DeRobertis. Ultrastructure and function in neurohypophysis of the toad. Endocrinology 66: 741–762, 1960.
 189. Gersh, I. The structure and function of the parenchymatous glandular cells in the neurohypophysis of the rat. Am. J. Anat. 64: 407–443, 1939.
 190. Giller, E., Jr., and J. H. Schwartz. Choline acetyltransferase: regional distribution in the abdominal ganglion of Aplysia. Science 161: 908–911, 1968.
 191. Ginsburg, M. Production, release, transportation and elimination of the neurohypophysial hormones. In: Handbuch der Experimentellen Pharmakologie. XXIII. Neurohypophysial Hormones and Similar Polypeptides, edited by B. Berde. Berlin: Springer Verlag, 1968, pp. 286–371.
 192. Ginsburg, M. Molecular aspects of neurohypophysial hormone release. Proc. Roy. Soc. London Ser. B 170: 27–36, 1968.
 193. Ginsburg, M., G. D. Burford, and P. J. Thomas. Physico‐chemical aspects of the neurophysin‐hormone interaction. Mem. Soc. Endocrinol. 19: 313–324, 1971.
 194. Ginsburg, M., and M. P. Ireland. Isolation, hormone‐binding capacity and subcellular distribution of neurophysin. J. Physiol. London 169: 15–16, 1963.
 195. Ginsburg, M., and M. Ireland. The role of neurophysin in the transport and release of neurohypophysial hormones. J. Endocrinol. 35: 289–298, 1966.
 196. Golding, D. W. The infracerebral gland in Nephtys –‐ a possible neuroendocrine complex. Gen. Comp. Endocrinol. 14: 114–126, 1970.
 197. Golding, D. W., D. G. Baskin, and H. A. Bern. The infra‐cerebral gland —a possible neuroendocrine complex in Nereis. J. Morphol. 124: 187–216, 1968.
 198. Golding, D. W., and A. C. Whittle. Neurons with secretory end‐feet —a probable neuroendocrine complex in Nereis. Cell Tissue 6: 599–611, 1974.
 199. Goldsworthy, G. J., and W. Mordue. Neurosecretory hormones in insects. J. Endocrinol. 60: 529–558, 1974.
 200. Gosbee, J. L., and K. Lederis. In vivo release of antidiuretic hormone by direct application of acetylcholine or carbachol to the rat neurohypophysis. Can. J. Physiol. Pharmacol. 50: 618–620, 1972.
 201. Gosbee, J. L., J. V. Milligan, and B. N. Smallman. Neural properties of the protocerebral neurosecretory cells of the adult cockroach Periplaneta americana. J. Insect Physiol. 14: 1785–1792, 1968.
 202. Grau, J. D., E. K. Matthews, J. J. Legros, and J. J. Dreifuss. Nouvelles données en faveur d'une sécrétion des hormones neuro‐hypophysaires par exocytose. J. Physiol. Paris 65: 417A, 1972.
 203. Green, J. D., and D. S. Maxwell. Comparative anatomy of the neurohypophysis. In: Comparative Endocrinology. edited by A. Gorbman. New York: Wiley, 1959, p. 368–392.
 204. Griffin, J., P. Keen, and A. Livingston. Effects of vinblastine and colchicine on oxytocin levels of the posterior pituitary of the rat after saline treatment. J. Endocrinol. 52: 407–408, 1972.
 205. Güldner, F.‐H., and J. R. Wolff. Neurono‐glial synaptoid contacts in the median eminence of the rat: ultrastructure, staining properties and distribution on tanycytes. Brain Res. 61: 217–234, 1973.
 206. Hagadorn, I. R. Neurosecretory mechanisms. In: Invertebrate Nervous Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 115–124.
 207. Hagadorn, I. R. Neuroendocrine mechanisms in invertebrates. In: Neuroendocrinology, edited by L. Martini and W. F. Ganong, New York: Academic 1967, vol. 2, p. 439–484.
 208. Hagadorn, I. R., H. A. Bern, and R. S. Nishioka. The fine structure of the supraesophageal ganglion of the rhynchobdellid leech, Theromyzon rude, with special reference to neurosecretion. Z. Zellforsch. Mikroskop. Anat. 58: 714–758, 1963.
 209. Hanström, B. Preliminary report on the probable connection between the blood gland and the chromatophore activator in decapod crustaceans. Proc. Natl. Acad. Sci. US 21: 584–585, 1935.
 210. Hanström, B. Die Sinusdrüse und der hormonal bedingte Farbwechsel der Crustaceen. K. Svenska Vetensk. Akad. Handl. 16: 1–99, 1937.
 211. Hartmann, J. F. Electron microscopy of the neurohypophysis in normal and histamine‐treated rats. Z. Zellforsch. Mikroskop. Anat. 48: 291–308, 1958.
 212. Haterius, H. O., and J. K. W. Ferguson. Evidence for the hormonal nature of the oxytocic principle of the hypophysis. Am. J. Physiol. 124: 314–321, 1939.
 213. Hayward, J. N. Hypothalamic input to supraoptic neurons. In Progress in Brain Research. Topics in Neuroendocrinology, edited by J. Ariëns Kappers and J. P. Schadé. Amsterdam: Elsevier, 1972, vol. 38, p. 145–163.
 214. Hayward, J. N. Physiological and morphological identification of hypothalamic magnocellular neuroendocrine cells in goldfish preoptic nucleus. J. Physiol. London 239: 103–124, 1974.
 215. Hayward, J. N., and D. P. Jennings. Cyclic activity of identified hypothalamic neurons in the waking monkey (Macaca mulatta). Endocrinology 92, Suppl. A83, 1973.
 216. Hayward, J. N., and D. P. Jennings. Activity of magnocellular neuroendocrine cells in the hypothalamus of unanesthetized monkeys. I. Functional cell types and their anatomical distribution in the supraoptic nucleus and the internuclear zone. J. Physiol. London 232: 515–543, 1973.
 217. Heap, P. F., C. W. Jones, J. F. Morris, and B. T. Pickering. Transport and storage pools in the neurohypophysis — an autoradiographic approach. J. Endocrinol. 57: xvi, 1973.
 218. Heller, H. Neural control of hormone secretion. J. Sci. Ind. Res. 25: 298–302, 1966.
 219. Heller, H., and R. B. Clark (editors) Neurosecretion. Mem. Soc. Endocrinol. 12, 1962.
 220. Heller, H., and K. Lederis. Density gradient centrifugation of hormone containing subcellular granules from the rabbit neurohypophysis. J. Physiol. London 158: 27–29, 1961.
 221. Henn, F. A., and A. Hamburger. Glial cell function: uptake of transmitter substances. Proc. Natl. Acad. Sci. US 68: 2686–2690, 1971.
 222. Herlant, M. Mode de libération des produits de neurosécrétion. In: Neurosecretion, edited by F. Stutinsky. Berlin: Springer, 1966, p. 20–35.
 223. Heuser, J. E., and T. S. Reese. Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J. Cell Biol. 57: 315–344, 1973.
 224. Highnam, K. C. Induced changes in the amounts of material in the neurosecretory system of the desert locust. Nature 191: 199–200, 1961.
 225. Highnam, K. C. Some aspects of neurosecretion in arthropods. Zool. Jahrb. Abt. Physiol. 71: 558–582, 1965.
 226. Highnam, K. C. Insect hormones. J. Endocrinol. 39: 123–150, 1967.
 227. Highnam, K., and L. Hill. The Comparative Endocrinology of the Invertebrates. London: Arnold, 1969.
 228. Highnam, K. C., and A. J. Mordue. Estimates of neurosecretory activity by an autoradiographic method in adult female Schistocerca gregaria (Forsk.). Gen. Comp. Endocrinol. 15: 31–38, 1970.
 229. Highnam, K. C., and A. J. Mordue. Induced changes in neurosecretory activity of adult female Schistocerca gregaria in relation to feeding. Gen. Comp. Endocrinol. 22: 519–525, 1974.
 230. Hild, W., and G. Zetler. Über die Funktion des Neurosekrets im Zwischenhirn‐Neurohypophysensystem als Träger‐substanz für Vasopressin, Adiuretin und Oxytocin. Z. Ges. Exptl. Med. 120: 236–243, 1953.
 231. Hodgson, E. S., and S. Geldiay. Experimentally induced release of neurosecretory materials from roach corpora cardiaca. Biol. Bull. 117: 275–283, 1959.
 232. Hofer, H. O. The phenomenon of neurosecretion. In: The Structure and Function of Nervous Tissue, edited by G. H. Bourne. New York: Academic, 1968, vol. 1.
 233. Hokfelt, T., and A. Dahlstrom. Effects of two mitosis inhibitors (colchicine and vinblastine) on the distribution of axonal transport of noradrenaline storage particles, studied by fluorescent electron microscopy. Z. Zellforsch, Mikroskop. Anat. 119: 460–482, 1971.
 234. Holland, R. C., H. Negoro, S. Vissessuwan, and K. Pavasuthipaisit. Inhibition and excitation of units in paraventricular nucleus after stimulation of septum, amygdala and neurohypophysis. Anat. Record 175: 345, 1973.
 235. Holland, R. C., and K. Pavasuthipaisit. Electrophysiological studies of paraventricular nucleus units. Anat. Record 178: 377, 1974.
 236. Hollenberg, M. D., and D. B. Hope. The isolation of native hormone‐binding proteins from bovine pituitary posterior lobes. Crystallization of neurophysin I and II as complexes with (8 arginine)‐vasopressin. Biochem. J. 106: 557–564, 1968.
 237. Holman, G. M., and E. P. Marks. Synthesis, transport, and release of a neurohormone by cultured neuroendocrine glands from the cockroach, Leucophaea maderae. J. Insect Physiol. 20: 479–484, 1974.
 238. Holmes, R. L. Experimental, histochemical, and ultrastructural contributions to our understanding of mammalian pituitary function. Intern. Rev. Gen. Exptl. Zool. 1: 187–241, 1964.
 239. Holmes, R. L. The fine structure of supraoptic neurons of hedgehogs. Z. Zellforsch. Mikroskop. Anat. 66: 685–689, 1965.
 240. Holmes, R. L., and J. A. Kiernan. The fine structure of the infundibular process of the hedgehog. Z. Zellforsch. Mikroskop. Anat. 61: 894–912, 1964.
 241. Hope, D. B. Aspects of the neurophysin‐vasopressin interaction revealed by reporter groups. Mem. Soc. Endocrinol. 19: 951–957, 1971.
 242. Hope, D. B., and M. D. Hollenberg. Crystallization of complexes of neurophysins with vasopressin and oxytocin. Proc. Roy. Soc. London Ser. B 170: 37–47, 1968.
 243. Hope, D. B., B. A. Schacter, and D. T. B. Frankland. Dissociation of oxytocin, vasopressin, and neurophysin by gel filtration. Biochem. J. 93: 7P, 1964.
 244. Hopkins, C. R. Studies on the innervation of the pars intermedia in Xenopus laevis. Mem. Soc. Endocrinol. 19: 823–825, 1971.
 245. Hoyle, G., D. Dagan, B. Moberly, and W. Colquhoun. Dorsal unpaired median insect neurons make neurosecretory endings on skeletal muscle. J. Exptl. Zool. 187: 159–165, 1974.
 246. Hsu, L., and T. L. Lentz. Effect of colchicine on the fine structure of the neuromuscular junction. Z. Zellforsch. Mikroskop. Anat. 135: 439–448, 1973.
 247. Huddart, H., and S. J. Bradbury. Fine structure of a neurosecretory axon in a crustacean skeletal muscle. Experientia 28: 950–951, 1972.
 248. Ishibashi, T. Electrical activity of the caudal neurosecretory cells in the eel Anguilla japonica with special reference to synaptic transmission. Gen. Comp. Endocrinol. 2: 415, 1962.
 249. Ishida, A. The oxytocin release and the compound action potential evoked by electrical stimulation of the isolated neurohypophysis of the rat. Japan. J. Physiol. 20: 84–96, 1970.
 250. Ishida, A. The role of action potential on the release of posterior pituitary hormone. Med. J. Osaka Univ. 21: 101–111, 1971.
 251. Ishii, S. Isolation and identification of secretory vesicles in the axons of the equine median eminence. Gunma Symp. Endocrinol. 7: 1–11, 1970.
 252. Ishii, S. Classification and identification of neurosecretory granules in the median eminence. In: Brain‐Endocrine Interaction. Median Eminence: Structure and Function, edited by K. M. Knigge, D. E. Scott, and A. Weindl. Basel: Karger, 1972, p. 119–141.
 253. Ishii, S., P. Thomas, and T. Nakamura. Morphometric classification of the neurosecretory granules in the rat pars nervosa. Z. Zellforsch. Mikroskop. Anat. 146: 463–471, 1973.
 254. Ishikawa, T., K. Koizumi, and C. McC. Brooks. Electrical activity recorded from the pituitary stalk of the cat. Am. J. Physiol. 210: 427–431, 1966.
 255. Iverson, L. L. Neurotransmitters, neurohormones, and other small molecules in neurons. In: The Neurosciences: a Study Program, edited by F. O. Schmitt. New York: Rockefeller, 1970, p. 768–781.
 256. Iwasaki, S., and Y. Satow. Spontaneous grouped discharge of secretory neuron soma in X‐organ of crayfish, Procambarus clarki. J. Physiol. Soc. Japan 31: 629–630, 1969.
 257. Iwasaki, S., and Y. Satow. Spike initiation on neurosecretory neuron soma in Na deficient or tetrodotoxin medium. J. Physiol. Soc. Japan 32: 37–38, 1970.
 258. Iwasaki, S., and Y. Satow. Sodium‐ and calcium‐dependent spike potentials in the secretory neuron soma of the X‐organ of the crayfish. J. Gen. Physiol. 57: 216–238, 1971.
 259. Iwasaki, S., and Y. Satow. Electrical nature of secretory neurons. In: Neuroendocrine Control, edited by K. Yagi and S. Yoshida. New York: Wiley, 1973, p. 85–110.
 260. Iwasaki, S., Y. Satow, and T. Kuroda. On the hyperpolarizing inactivation of the Ca++‐dependent action potentials. Proc. Japan Acad. 49: 564–568, 1973.
 261. Jankowska, E., L. Lubinska, and S. Niemierko. Translocation of AChE‐containing particles in the axoplasm during nerve activity. Comp. Biochem. Physiol. 28: 907–913, 1969.
 262. Jasinski, A., A. Gorbman, and T. J. Hara. Rate of movement and redistribution of stainable neurosecretory granules in hypothalamic neurons. Science 154: 776–778, 1966.
 263. Jasinski, A., and W. Kilarski. Fine structure of pars neuro‐intermedia of the loach, Misgurnus fossilis L. Z. Zellforsch. Mikroskop. Anat. 105: 259–375, 1970.
 264. Johnson, B. Ultrastructure of probable sites of release of neurosecretory materials in an insect, Calliphora stygia Fabr. (Diptera). Gen. Comp. Endocrinol. 6: 99–108, 1966.
 265. Johnson, B., and B. Bowers. Transport of neurohormones from the corpora cardiaca in insects. Science 141: 264–266, 1963.
 266. Jones, C. W., R. E. Peter, and B. T. Pickering. Intraneuronal transport in the hypothalamo‐neurohypophysial system of the goldfish (Carassius auratus). Gen. Comp. Endocrinol. 20: 99–107, 1973.
 267. Jones, C. W., and B. T. Pickering. Rapid transport of neurohypophysial hormones in the hypothalamo‐neurohypophysial tract. J. Physiol. London 208: 73–78, 1970.
 268. Jones, C. W., and B. T. Pickering. Intra‐axonal transport and turnover of neurohypophysial hormones in the rat. J. Physiol. London 227: 553–565, 1972.
 269. Jongkind, J. F. Neurophysin. In: Progress in Brain Research. Topics in Neuroendocrinology, edited by J. Ariëns Kappers and J. T. Schadé. Amsterdam: Elsevier, 1972, vol. 38, p. 59–67.
 270. Jongkind, J. F., and D. F. Swaab. The distribution of thiamine diphosphate‐phosphohydrolase in the neurosecretory nuclei of the rat following osmotic stress. Histochemie 11: 319–324, 1967.
 271. Jörgensen, C. B., and L. O. Larsen. Neuroendocrine mechanisms in lower vertebrates. In: Neurosecretion, edited by L. Martini and W. Ganong. New York: Academic, 1967, vol. II, p. 485–528.
 272. Jörgensen, C. B., P. Rosenkilde, and K. G. Wingstrand. Regeneration of the neural lobe of the pituitary gland in the toad, Bufo bufo L. In: Bertil Hanström: Zoolgical Papers in Honour of His Sixty‐fifth Birthday, edited by K. G. Wingstrand. Lund: Zoological Institute, 1956.
 273. Juberthie‐Jupeau, L., and M. C. Juberthie. Dećharge par exocytose d'une catégorie de granules de neurosécrétion dans l'organe neurohémal d'un Myriapode. Compt. Rend. 277: 1357–1360, 1973.
 274. Kalimo, H. Ultrastructural studies on the hypothalamic neurosecretory neurons of the rat. I. The paraventricular neurones of the non‐treated rat. Z. Zellforsch. Mikroskop. Anat. 122: 283–300, 1971.
 275. Kandel, E. R. Electrical properties of hypothalamic neuroendocrine cells. J. Gen. Physiol. 47: 691–717, 1964.
 276. Kasuga, S., and H. Takahashi. Some observations on neurosecretory innervation in the pituitary gland of the medaka, Oryzias latipes. Bull. Fac. Fisheries Hokkaido Univ. 21: 79–89, 1970.
 277. Katz, B., and R. Miledi. A study of synaptic transmission in the absence of nerve impulses. J. Physiol. London 192: 407–436, 1967.
 278. Keen, P., and A. Livingston. Intraneural transport of noradrenaline in the rat. Mem. Soc. Endocrinol. 19: 671–682, 1970.
 279. Kent, C., and M. A. Williams. The nature of hypothalamo‐neurohypophyseal neurosecretion in the rat. A study by light‐ and electron microscope autoradiography. J. Cell Biol. 60: 554–570, 1974.
 280. Kerkut, G. A., A. Shapira, and R. J. Walker. The transport of 14C‐labelled material from CNS to and from muscle along a nerve trunk. Comp. Biochem. Physiol. 23: 729–748, 1967.
 281. Kinosita, H., K. Yagi, and M. Yasuda. Electrophysiological studies on the caudal neurosecretory system of fish. Dobutsugaku Zasshi 71: 371, 1962.
 282. Knowles, F. G. W. A highly organized structure within a neurosecretory vesicle. Nature 185: 710–711, 1960.
 283. Knowles, F. The ultrastructure of a crustacean neurohaemal organ. Mem. Soc. Endocrinol. 12: 71–81, 1962.
 284. Knowles, F. The inter‐relation of secretory and nervous function in the central nervous system of lower animals. In: Comparative Neurochemistry, edited by D. Richter. New York: Pergamon, 1964, p. 3–20.
 285. Knowles, F. Neuroendocrine correlations at the level of ultrastructure. Arch. Anat. Microscopy. Morphol. Exptl. 54: 343–358, 1965.
 286. Knowles, F. Evidence for a dual control, by neurosecretion, of hormone synthesis and hormone release in the pituitary of the dogfish Scylliorhinus stellaris. Phil. Trans. Roy. Soc. London Ser. B 249: 435–456, 1965.
 287. Knowles, F. Neuronal properties of neurosecretory cells. In: Neurosecretion, edited by F. Stutinsky, Berlin: Springer Verlag, 1967, p. 8–19.
 288. Knowles, F., and L. Vollrath. (editors). Neurosecretion: The Final Neuroendocrine Pathway. Berlin: Springer Verlag, 1974.
 289. Knowles, F., and H. A. Bern. The function of neurosecretion in neuroendocrine regulation. Nature 210: 271–272, 1966.
 290. Knowles, F. G. W., and D. B. Carlisle. Endocrine control in the Crustacea. Biol. Rev. 31: 396–473, 1956.
 291. Knowles, F., and L. Vollrath. A functional relationship between neurosecretory fibers and pituicytes in the eel. Nature 208: 1343, 1966.
 292. Knowles, F., and L. Vollrath. Neurosecretory innervation of the pituitary of the eels Anguilla and Conger. I. The structure and ultrastructure of the neurointermediate lobe under normal and experimental conditions. Phil. Trans. Roy. Soc. London Ser. B 250: 311–327, 1966.
 293. Knowles, F., and L. Vollrath. Neurosecretory innervation of the pituitary of the eels Anguilla and Conger. II. The structure and innervation of the pars distalis at different stages of the life cycle. Phil. Trans. Roy. Soc. London Ser. B 250: 329–342, 1966.
 294. Kobayashi, H., H. A. Bern, R. S. Nishioka, and Y. Hyodo. The hypothalamo‐hypophyseal neurosecretory system of the parakeet, Melopsittacus undulatus. Gen. Comp. Endocrinol. 1: 545–563, 1961.
 295. Kobayashi, H., and T. Matsui. Fine structure of the median eminence and its functional significance. In: Frontiers in Neuroendocrinology, edited by W. F. Ganong and L. Martini. London: Oxford Univ. Press, 1969, p. 3–46.
 296. Kobayashi, H., T. Matsui, and S. Ishii. Functional electron microscopy of the hypothalamic median eminence. Intern. Rev. Cytol. 29: 281–381, 1970.
 297. Koelle, G. B. A proposed dual neurohumoral role of acetylcholine: its functions at the pre‐ and post‐synaptic sites. Nature 190: 208–211, 1961.
 298. Koike, H., M. Eisenstadt, and J. H. Schwartz. Axonal transport of newly synthesized acetylcholine in an identified neuron of Aplysia. Brain Res. 37: 152–159, 1972.
 299. Koizumi, K., T. Ishikawa, and C. McC. Brooks. Control of activity of neurons in the supraoptic nucleus. J. Neurophysiol. 27: 878–892, 1964.
 300. Koizumi, K., and H. Yamashita. Studies of antidromically identified neurosecretory cells of the hypothalamus by intracellular and extracellular recordings. J. Physiol. London 221: 683–705, 1972.
 301. Kreitner, D., and P. Laget. Etude des activités bioélectriques unitaires du noyau préoptique des Salmonidés. Compt. Rend. Soc. Biol. 165: 547–553, 1971.
 302. Krisch, B., K. Becker, and W. Bargmann. Exocytose in Hinterlappen der Hypophyse. Z. Zellforsch. Mikroskop. Anat. 123: 47–55, 1972.
 303. Krishnan Nair, V. S. Neurosecretory flow in the periesophageal tract of Jonespeltis splendidus (Diplopoda, Myriapoda). Experientia 29: 207–208, 1973.
 304. Krogh, I. M. Light microscopy of living neurosecretory cells of the corpus cardiacum of Schistocerca gregaria. Acta Zool. 54: 73–80, 1973.
 305. Krsulovic, J., and G. Bruckner. Morphologic characteristics of pituicytes in different functional stages. Z. Zellforsch. Mikroskop. Anal. 99: 210–220, 1969.
 306. Krsulovic, J., A. Ermisch, and G. Sterba. Electron microscopic and autoradiographic study on the neurosecretory system of albino rats with special consideration of the pituicyte problem. In: Aspects of Neuroendocrinology, edited by W. Bargmann and B. Scharrer. Berlin: Springer Verlag, 1969, p. 166–172.
 307. Kupfermann, I. Stimulation of egglaying by extracts of neuroendocrine cells (bag cells) of abdominal ganglion of Aplysia. J. Neurophysiol. 33: 877–881, 1970.
 308. Kupfermann, I. Studies on the neurosecretory control of egg laying in Aplysia. Am. Zool. 12: 513–519, 1972.
 309. Kupfermann, I., and E. R. Kandel. Electrophysiological properties and functional interconnections of two symmetrical neurosecretory clusters (bag cells) in abdominal ganglia of Aplysia. J. Neurophysiol. 33: 865–876, 1970.
 310. Kurosumi, K., T. Matsuzawa, and S. Shibasaki. Studies on the fine structure of the pars nervosa and pars intermedia and their morphological interrelation in the normal rat hypophysis. Gen. Comp. Endocrinol. 1: 433–452, 1961.
 311. LaBella, F. S. Storage and secretion of neurohypophysial hormones. Can. J. Physiol. Pharmacol. 46: 335–345, 1968.
 312. LaBella, F. S., G. Beaulieu, and R. J. Reiffenstein. Evidence for the existence of separate vasopressin and oxytocin containing granules in the neurohypophysis. Nature 193: 173–174, 1962.
 313. LaBella, F. S., and M. Sanwal. Isolation of nerve endings from the posterior pituitary gland. J. Cell Biol. 25: 179–193, 1965.
 314. LaBella, F. S., S. H. Shin, S. R. Vivian, and R. Dular. Characterization of neurophysin polymorphs and trophin‐releasing peptides associated with neurophysin. Mem. Soc. Endocrinol. 19: 293–312, 1971.
 315. LaBella, F. S., S. Vivian, and E. Bindler. Amino acid composition of neurohypophysial secretory granules and Van Dyke protein. Biochem. Pharmacol. 16: 1126–1130, 1967.
 316. Lake, P. S. Changes in the histochemical nature of neurosecretory materials during axonal transport in the crab Paragrapsus gaimardii. Experientia 25: 1314, 1969.
 317. LaVail, J. H., and M. M. LaVail. Retrograde axonal transport in the central nervous system. Science 176: 1416–1417, 1972.
 318. Leatherland, J. F. Structure and ultrastructure of the neurohypophysis of the viviparous teleost, Cymatogaster aggregata Gibbons. Can. J. Zool. 48: 1087–1091, 1970.
 319. Leatherland, J. F. Histophysiology and innervation of the pituitary gland of the goldfish, Carassius auratus L.: a light and electron microscope investigation. Can. J. Zool. 50: 835–844, 1972.
 320. Le Beux, Y. J. An ultrastructural study of the neurosecretory cells of the medial vascular prechiasmatic gland. II. Nerve endings. Z. Zellforsch. Mikroskop. Anat. 127: 439–461, 1972.
 321. Lederis, K. Fine structure and hormone content of the hypothalamoneurohypophysial system of the rainbow trout (Salmo irideus) exposed to sea water. Gen. Comp. Endocrinol. 4: 638–661, 1964.
 322. Lederis, K. An electron microscopical study of the human neurohypophysis. Z. Zellforsch. Mikroskop. Anat. 65: 847–868, 1965.
 323. Lederis, K. Recent progress in research on the urophysis. Gen. Comp. Endocrinol. Suppl. 3: 339–344, 1972.
 324. Lederis, K., H. A. Bern, M. Medakovic, D. K. O. Chan, R. S. Nishioka, A. Letter, D. Swanson, R. Gunther, M. Tesanovic, and B. Horne. Recent functional studies on the caudal neurosecretory system of teleost fishes. In: Neurosecretion: The Final Neuroendocrine Pathway, edited by F. Knowles and L. Vollrath. Berlin: Springer Verlag, 1974, p. 94–103.
 325. Lederis, K., and K. Jayasena. Storage of neurohypophysial hormones and the mechanism for their release. In: Pharmacology and the Endocrine System and Related Drugs: the Neurohypophysis, edited by H. Heller and B. T. Pickering. Oxford: Pergamon, 1970, p. 111–154.
 326. Lederis, K., and A. Livingston. Acetylcholine and related enzymes in the neural lobe and anterior hypothalamus of the rabbit. J. Physiol. London 201: 695–709, 1969.
 327. Lentz, T. L. Fine structure of nerves in the regenerating limb of the newt Triturus. Am. J. Anat. 121: 647–670, 1967.
 328. Lentz, T. L. Fine structure of sensory ganglion cells during limb regeneration of the newt Triturus. J. Comp. Neurol. 131: 301–322, 1967.
 329. Leontovich, T. A. The neurons of the magnocellular neurosecretory nuclei of the dog's hypothalamus. A Golgi study. J. Hirnforsch. 11: 499–517, 1969.
 330. Leveque, T. F., and M. Small. The relationship of the pituicytes to the posterior lobe hormones. Endocrinology 65: 909–915, 1959.
 331. Lincoln, D. W. Milk ejection during alcohol anaesthesia in the rat. Nature 243: 227–229, 1973.
 332. Lincoln, D. W. Dynamics of oxytocin secretion. In: Neurosecretion: The Final Neuroendocrine Pathway, edited by F. Knowles and L. Vollrath. Berlin: Springer Verlag, 1974, p. 129–133.
 333. Lincoln, D. W., A. Hill, and J. B. Wakerley. The milk‐ejection reflex of the rat; an intermittent function not abolished by surgical levels of anaesthesia. J. Endocrinol. 57: 459–476, 1973.
 334. Lincoln, D. W., and J. B. Wakerley. Accelerated discharge of paraventricular neurosecretory cells correlated with reflex release of oxytocin during suckling. J. Physiol. London 222: 23P–24P, 1972.
 335. Livingston, A. Subcellular aspects of storage and release of neurohypophysial hormones. J. Endocrinol. 49: 357–372, 1971.
 336. Livingston, A. Ultrastructure of the rat neural lobe during recovery from hypertonic saline treatment. Z. Zellforsch. Mikroskop. Anat. 137: 361–374, 1973.
 337. Livingston, A. Neurotubules in the hypothalamo‐hypophysial system. J. Endocrinol. 57: xvii, 1973.
 338. Livingston, A., and K. Lederis. Functional ultrastructure of the neurohypophysis. Mem. Soc. Endocrinol. 19: 233–262, 1971.
 339. Lux, H. D., P. Schubert, G. W. Krutzberg, and A. Globus. Excitation and axonal flow: autoradiographic study on motorneurons intracellularly injected with a 3H‐amino acid. Exptl. Brain Res. 10: 197–204, 1970.
 340. Maddrell, S. H. P. The site of release of the diuretic hormone in Rhodnius — a new neurohaemal system in insects. J. Exptl. Biol. 45: 499–508, 1966.
 341. Maddrell, S. H. P. Neurosecretion in insects. In: Insects and Physiology, edited by J. W. L. Beament and J. E. Treherne. Edinburgh: Oliver and Boyd, 1967, p. 103–118.
 342. Malandra, B. Beobachtungen am neurosekretiorischen Zwischenhirnsystem der normalen, trächtigen und laktierenden Ratte. Z. Zellforsch. Mikroskop. Anat. 43: 594–610, 1956.
 343. Marks, B. H., K. K. Sakai, J. M. George, and A. Koestner. Angiotensin receptors in the organ‐cultured supraoptic nucleus. Endocrinology 92, Suppl. A73, 1973.
 344. Martini, L., and W. F. Ganong (editors). Neuroendocrinology. New York: Academic, vol. I, 1966.
 345. Martini, L., and W. F. Ganong (editors). Neuroendocrinology. New York: Academic, vol. II, 1967.
 346. Martini, L., and W F. Ganong (editors). Frontiers in Neuroendocrinology. London: Oxford, 1971.
 347. Mason, C. A. New features of the brain‐retrocerebral neuroendocrine complex of the locust Schistocera vaga (Scudder). Z. Zellforsch. Mirkoshop. Anat. 141: 19–32, 1973.
 348. Mason, C. A., and R. S. Nishioka. The use of the cobalt chloride‐ammonium sulfide precipitation technique for the delineation of invertebrate and vertebrate neurosecretory systems. In: Neurosecretion: The Final Neuroendocrine Pathway, edited by F. Knowles and L. Vollrath. Berlin: Springer Verlag, 1974, p. 48–58.
 349. Matsumoto, K. Morphological studies on the neurosecretion in crabs. Biol. J. Okayama Univ. 4: 103–176, 1958.
 350. Matthews, E. K., J. J. Legros, J. D. Grau, J. J. Nordmann, and J. J. Dreifuss. Release of neurohypophysial hormones by exocytosis. Nature New Biol. 241: 86–88, 1973.
 351. Mazzi, V. La neurosecrezione. Cultura Scuola 29: 189–192, 1969.
 352. Milburn, N. J. Neurosecretion in endings of motorneurones during limb regeneration in cockroaches. Am. Zoologist 11: 673, 1971.
 353. Moens, L. Identification and isolation of frog neurophysin. Gen. Comp. Endocrinol. 22: 337, 1974.
 354. Monroe, B. G. A comparative study of the ultrastructure of the median eminence, infundibular stem and neural lobe of the hypophysis of the rat. Z. Zellforsch. Mikroskop. Anat. 76: 405–432, 1967.
 355. Monroe, B. G., and D. E. Scott. Ultrastructural changes in the neural lobe of the hypophysis of the rat during lactation and suckling. J. Ultrastruct. Res. 14: 497–517, 1966.
 356. Mordue, A. J., and K. C. Highnam. Incorporation of cysteine into the cerebral neurosecretory system of adult desert locusts. Gen. Comp. Endocrinol. 20: 351–358, 1973.
 357. Morita, H., T. Ishibashi, and S. Yamashita. Synaptic transmission in neurosecretory cells. Nature 191: 183, 1961.
 358. Morris, J. F. The effect of different aldehydes on the ultra‐structure of posterior pituitary neurosecretory granules. J. Anat. 115: 150, 1973.
 359. Morris, J. F. A quantitative analysis of synaptic terminals in the paraventricular nucleus of the rat hypothalamus. J. Anat. 117: 213, 1974.
 360. Morris, J. F., and M. A. Cannata. Ultrastructural preservation of the dense core of posterior pituitary neurosecretory granules and its implication for hormone release. J. Endocrinol. 57: 517–529, 1973.
 361. Morris, J. F., and R. G. Dyer. Neurosecretion in the paraventricular nucleus of diencephalic islands. J. Anat. 110: 139–140, 1971.
 362. Morris, J. F., G. Tilly, and G. Hamilton. A quantitative approach to the ultrastructure of the posterior pituitary of the rat. Proc. European Anat. Congr., 3rd, Manchester, 1973, p. 68–70.
 363. Moss, R. I., R. E. J. Dyball, and B. A. Cross. Responses of antidromically identified supraoptic and paraventricular units to acetylcholine, noradrenaline, and glutamate applied iontophoretically. Brain Res. 35: 573–575, 1971.
 364. Moss, R. I., I. Urban, and B. A. Cross. Microelectrophoresis of cholinergic and aminergic drugs on paraventricular neurons. Am. J. Physiol. 223: 310–318, 1972.
 365. Mylroie, R., and H. Koenig. Soluble acidic lipoproteins of bovine neurosecretory granules: relation to neurophysins. J. Histochem. Cytochem. 19: 738–746, 1971.
 366. Nagasawa, J., W. W. Douglas, and R. A. Schulz. Neurosecretion — exocytosis may explain hormone release and origin of “synaptic vesicles.” Nature 227: 407–408, 1970.
 367. Nagasawa, J., W. W. Douglas, and R. A. Schulz. Micropinocytotic origin of coated and smooth microvesicles (“synaptic vesicles”) in neurosecretory terminals of posterior pituitary glands demonstrated by incorporation of horseradish peroxidase. Nature 232: 341–342, 1971.
 368. Nakai, Y. Electron microscopic observations on synapse like contacts between pituicytes and different types of nerve fibers in the anuran pars nervosa. Z. Zellforsch. Mikroskop. Anat. 110: 27–39, 1970.
 369. Negoro, H., and R. C. Holland. Inhibition of unit activity in the hypothalamic paraventricular nucleus following antidromic activation. Brain Res. 42: 385–402, 1972.
 370. Nicoll, R. A., and J. L. Barker. Excitation of supraoptic neurosecretory cells by angiotensin II. Nature New Biol. 223: 172–174, 1971.
 371. Nicoll, R. A., and J. L. Barker. The pharmacology of recurrent inhibition in the supraoptic neurosecretory system. Brain Res. 35: 501–511, 1971.
 372. Nishioka, R. S., H. A. Bern, and D. W. Golding. Innervation of the cephalopod optic gland. In: Aspects of Neuroendocrinology, edited by W. Bargmann and B. Scharrer. Berlin: Springer Verlag, 1970, p. 47–54.
 373. Nishioka, R. S., D. Zambrano, and H. A. Bern. Electron microscope radioautography of amino acid incorporation by suparoptic neurons of the rat. Gen. Comp. Endocrinol. 15: 477–495, 1970.
 374. Nordmann, J. J., R. Bianchi, J. J. Dreifuss, and K. B. Ruf. Release of posterior pituitary hormones from the entire hypothalamoneurohypophysial system in vitro. Brain Res. 25: 669–671, 1971.
 375. Nordmann, J. J., and J. J. Dreifuss. Hormone release evoked by electrical stimulation of rat neurohypophyses in the absence of action potentials. Brain Res. 45: 604–607, 1972.
 376. Nordmann, J. J., J. J. Dreifuss, and J. J. Legros. A correlation of release of polypeptide hormones and of immunoreactive neurophysin from isolated rat neurohypophysis. Experientia 27: 1344–1345, 1971.
 377. Normann, T. C. The neurosecretory system of the adult Calliphora erythrocephala. I. The fine structure of the corpus cardiacum with some observations on adjacent organs. Z. Zellforsch. Mikroskop. Anat. 87: 461–501, 1965.
 378. Normann, T. C. Experimentally induced exocytosis of neurosecretory granules. Exptl. Cell Res. 55: 285–287, 1969.
 379. Normann, T. C. The mechanism of hormone release from neurosecretory axon endings in the Calliphora erythrocephala. In: Aspects of Neuroendocrinology, edited by W. Bargmann and B. Scharrer. Berlin: Springer Verlag, 1970, p. 30–42.
 380. Normann, T. C. Heart activity and its control in the adult blowfly, Calliphora erythrocephala. J. Insect Physiol. 18: 1793–1810, 1972.
 381. Normann, T. C. Membrane potential of the corpus cardiacum neurosecretory cells of the blowfly, Calliphora erythrocephala. J. Insect Physiol. 19: 303–318, 1973.
 382. Norström, A. A functional study of the hypothalamo‐neurohypophysial system of the rat with the use of a newly developed method for localized administration of labelled precursors. Brain Res. 28: 131–142, 1971.
 383. Norström, A. Release in vitro of neurohypophysial proteins from neural lobe tissue slices and from isolated neurosecretory granules of the rat. Z. Zellforsch. Mikroskop. Anat. 129: 114–139, 1972.
 384. Norström, A., S. Enestrom, and A. Hamberger. Amino acid incorporation into proteins of the supraoptic nucleus of the rat after osmotic stress. Brain Res. 95–103, 1971.
 385. Norström, A., and H.‐A. Hansson. Isolation and characterization of neurosecretory granules of the rat posterior pituitary gland. Z. Zellforsch. Mikroskop. Anat. 129: 92–113, 1972.
 386. Norström, A., H.‐A. Hansson, and J. Sjöstrand. Effects of colchicine on axonal transport and ultrastructure of the hypothalamo‐neurohypophysial system of the rat. Z. Zellforsch. Mikroskop. Anat. 113: 271–293, 1971.
 387. Norström, A., and J. Sjöstrand. Axonal transport of neurohypophysial proteins in rats at some experimental conditions. Acta Physiol. Scand. Suppl. 357, 1971.
 388. Norström, A., and J. Sjöstrand. Axonal transport of proteins in the hypothalamo‐neurohypophysial system of the rat. J. Neurochem. 18: 29–39, 1971.
 389. Norström, A., and J. Sjöstrand. Transport and turnover of neurohypophysial proteins of the rat. J. Neurochem. 18: 2007–2016, 1971.
 390. Norström, A., and J. Sjöstrand. Effect of haemorrhage on the rapid axonal transport of neurohypophysial proteins of the rat. J. Neurochem. 18: 2017–2026, 1971.
 391. Norström, A., and J. Sjöstrand. Effects of salt‐loading, thirst, and water‐loading on transport and turnover of neurohypophysial proteins of the rat. J. Endocrinol. 52: 87–105, 1972.
 392. Novak, V. J. A. The phylogenetic origin of neurosecretion. Gen. Comp. Endocrinol. 4: 696–703, 1964.
 393. Novin, D., J. W. Sundsten, and B. A. Cross. Some properties of antidromically activated units in the paraventricular nucleus of the hypothalamus. Exptl. Neurol. 26: 330–341, 1970.
 394. Ochs, S., and D. Hollingsworth. Dependence of fast axoplasmic transport in nerve on oxidative metabolism. J. Neurochem. 18: 107–114, 1971.
 395. Olivieri‐Sangiacoma, C., and S. Correr. Ultrastructural features of rat pituitaries in organotypic culture. Z. Zellforsch. Mikroskop. Anat. 143: 107–116, 1973.
 396. Olsson, R. The evolution of neurosecretory cells and systems. Proc. Intern. Congr. Zool., Washington, D.C., 16th 3: 38–43, 1963.
 397. Oota, Y. On the synaptic vesicles in the neurosecretory organs of the carp, bullfrog, pigeon and mouse. Annotations Zool. Japon. 36: 167–172, 1963.
 398. Oota, Y., H. Kobayashi, R. S. Nishioka, and H. A. Bern. Relation between neurosecretory axon and ependymal terminals on capillary walls in the median eminence of several vertebrates. Neuroendocrinology 16: 127–136, 1974.
 399. Orkand, P. M., and E. A. Kravitz. Localization of the sites of gamma‐aminobutyric acid (GABA) uptake in lobster nerve‐muscle preparations. J. Cell Biol. 49: 75–89, 1971.
 400. Oshima, K., and A. Gorbman. Evidence for a doubly innervated secretory unit in the anuran pars intermedia. I. Electrophysiologic studies. Gen. Comp. Endocrinol. 13: 98–107, 1969.
 401. Palay, S. L. An electron microscope study of the neurohypophysis in normal, hydrated and dehydrated rats. Anat. Record 121: 348, 1955.
 402. Palay, S. L. The fine structure of the neurohypophysis. In: Ultrastructure and Cellular Chemistry of Neural Tissue, edited by H. Welsch. New York: Hoeber, 1957, p. 31–49.
 403. Periśić, M., and M. Cuénod. Synaptic transmission depressed by colchicine blockade of axoplasmic flow. Science 175: 1140–1142, 1972.
 404. Peter, R. E., and B. T. Pickering. Intraneuronal transport of neurohypophysial hormones in the goldfish. Gen. Comp. Endocrinol. 18: 599, 1972.
 405. Peterson, R. Synapses in the rat supraoptic nucleus. Anat. Record 151: 399, 1965.
 406. Peute, J., and J. C. A. Meij. Ultrastructural and functional aspects of the nucleus infundibularis ventralis in the green frog, Rana esculenta. Z. Zellforsch. Mikroskop. Anat. 144: 191–217, 1973.
 407. Picard, D. The neurosecretory cell of vertebrates. J. Neurovisceral Relations Suppl. IX: 23–52, 1969.
 408. Picard, D., and A. Stahl. La cellule neurosécretrice chez les vertébrés. Bull. Assoc. Anatomistes 51: 1–75, 1966.
 409. Picard, D., M. Michel‐Bechet, A. M. Athouël, and S. Rua. Granules neurosécrétoires, lysosomes et complexe GRL dans le noyau supra‐optique du rat. Bipolarité des complexes golgiens. Exptl. Brain Res. 14: 331–354, 1972.
 410. Pickering, B. T. A neurophysin from cod (Gadus morrhua) pituitary glands: isolation and properties. J. Endocrinol. 42: 143–152, 1968.
 411. Pickering, B. T., and C. W. Jones. The isolation of labelled neurohypophysial hormones from rat neural lobes after an intracisternal injection of [3H]tyrosine. J. Endocrinol. 46: vi, 1970.
 412. Pickering, B. T., and C. W. Jones. The biosynthesis and intraneuronal transport of neurohypophyseal hormones: preliminary studies in the rat. Mem. Soc. Endocrinol. 19: 337–351, 1971.
 413. Pickering, B. T., C. W. Jones, and G. D. Burford. Biochemical aspects of the hypothalamo‐neurohypophysial neurone. In: Neurosecretion: The Final Neuroendocrine Pathway, edited by F. Knowles and L. Vollrath. Berlin: Springer Verlag, 1974, p. 72–85.
 414. Pickford, M. The inhibitory effect of acetylcholine on diuresis in the dog and its pituitary transmission. J. Physiol. London 95: 226–238, 1939.
 415. Pickup, J. C., C. I. Johnston, S. Nakamura, L. O. Uttenthal, and D. B. Hope. Subcellular organization of neurophysins, oxytocin, 8‐lysine‐vasopressin and adenosine triphosphatase in porcine posterior pituitary lobes. Biochem. J. 132: 361–371, 1973.
 416. Pilgrim, C. Morphologische und funktionelle Untersuchungen zur Neurosekretbildung. Ergeb. Anat. Entwicklungsgesch. 41: 1–79, 1969.
 417. Pitman, R. M., E. D. Tweedle, and M. J. Cohen. Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176: 412–414, 1972.
 418. Pliska, V., J. F. McKelvy, and H. Sachs. Electrofocusing and gel electrophoresis of bovine neurophysins. Analytical and preparative experiments. European J. Biochem. 28: 110–115, 1972.
 419. Pliška, V., N. A. Thorn, and H. Vilhardt. In vitro uptake and breakdown of tritiated lysine‐vasopressin by bovine neurohypophyseal and cortical tissue. Acta Endocrinol. 67: 12–22, 1971.
 420. Poisner, A. M., and W. W. Douglas. Adenosine triphosphate and adenosine triphosphatase in hormone‐containing granules of the posterior pituitary gland. Science 160: 203–204, 1968.
 421. Poisner, A. M., and W. W. Douglas. A possible mechanism of release of posterior pituitary hormones involving adenosine triphosphate and an adenosine triphosphatase in neurosecretory granules. Mol. Pharmacol. 4: 531–540, 1968.
 422. Polenov, A. L., and M. A. Belenkii. Electron‐microscopic investigation of the ultrastructure of the neurosecretory elements of the posterior lobe of the hypophysis in albino mice. Dokl. Akad. Nauk. SSR 154: 940, 1964.
 423. Pomerat, C. M., W. J. Hendelman, C. W. Raiborn, and J. F. Mossey. Dynamic activities of nervous tissue in vitro. In: The Neuron, edited by H. Hyden. Amsterdam: Elsevier, 1967, p. 119–178.
 424. Priymak, E. K. H., and F. Hajos. Synapses on the supraoptic neurosecretory neurons of the rat: an electron microscopic study. Acta Morphol. Acad. Sci. Hung. 18: 55–61, 1970.
 425. Quennedey, A. Innervation de type neurosécréteur dans la glande sternale de Kalotermes flavicollis (Isoptera). Etude ultrastructurale. J. Insect Physiol. 15: 1807–1814, 1969.
 426. Raisman, G. An ultrastructural study of the effect of hypophysectomy on the supraoptic nucleus of the rat. J. Comp. Neurol. 147: 181–208, 1973.
 427. Reichardt, L. Electron microscopic and histochemical observations on the supraoptic nucleus of normal and dehydrated rats. Acta Physiol. Scand. Suppl. 329: 1–79, 1969.
 428. Robertson, D. R. The ultimobranchial body in Rana pipiens. III. Sympathetic innervation of the secretory parenchyma. Z. Zellforsch. Mikroskop. Anat. 78: 328–340, 1967.
 429. Robinson, A. G., F. F. Ciarochi, and C. H. Lewis. Independent secretion of two neurophysins in humans. Endocrinology 92, Suppl. A85, 1973.
 430. Rodriguez, E. M. Ultrastructure of the neurohaemal region of the toad median eminence. Z. Zellforsch. Mikroskop. Anat. 93: 182–212, 1969.
 431. Rodriguez, E. M. Morphological and functional relationships between the hypothalamo‐neurohypophysial system and cerebrospinal fluid. In: Aspects of Neuroendocrinology, edited by W. Bargmann and B. Scharrer. Berlin: Springer Verlag, 1970, p. 352–365.
 432. Rodriguez, E. M. The comparative morphology of neural lobes of species with different neurohypophysial hormones. Mem. Soc. Endocrinol. 19: 263–292, 1970.
 433. Rodriguez, E. M. Comparative and functional morphology of the median eminence. In: Brain‐Endocrine Interaction. Median Eminence: Structure and Function, edited by K. M. Knigge, D. E. Scott, and A. Weindl. Basel: Karger, 1972, p. 319–334.
 434. Rodriguez, E. M., and H.‐D. Dellmann. Ultrastructure and hormonal content of the proximal stump of the transected hypothalamohypophysial tract of the frog (Rana pipiens). Z. Zellforsch. Mikroskop. Anat. 104: 449–479, 1970.
 435. Rodriguez, E. M., and A. Gimemez. Comparative aspects of nervous control of pars intermedia. Gen. Comp. Endocrinol. Suppl. 3: 108–113, 1972.
 436. Rodriguez, E. M., and J. La Pointe. Histology and ultra‐structure of the neural lobe of the lizard, Klauberina riversiana. Z. Zellforsch. Mikroskop. Anat. 95: 37–57, 1969.
 437. Rodriguez, E. M., J. La Pointe, and H.‐D. Dellmann. The nervous control of the pars intermedia of an amphibian and a reptilian species. Mem. Soc. Endocrinol. 19: 827–837, 1971.
 438. Rodriguez Echandia, E. L., A. Zamora, and R. S. Piezzi. Organelle transport in constricted nerve fibers of the toad, Bufo arenanum. Z. Zellforsch. Mikroskop. Anat. 104: 419–428, 1970.
 439. Rohlich, P., B. Aros, and B. Vigh. Elektronenmikroskopische Untersuchung der Neurosekretion im Cerebralganglion des Regenwurmes (Lumbricus terrestris). Z. Zellforsch. Mikroskop. Anat. 58: 524–545, 1962.
 440. Rohlich, P., B. Vigh, I. Teichmann, and B. Aros. Electron microscopy of the median eminence of the rat. Acta Biol. Hung. 15: 431–457, 1965.
 441. Rufener, C. Autophagy of secretory granules in the rat neurohypophysis. Neuroendocrinology 13: 314–320, 1973/74.
 442. Sachs, H. Vasopressin biosynthesis. II. Incorporation of [35S]cysteine into vasopressin and protein associated with cell fractions. J. Neurochem. 10: 299–311, 1963.
 443. Sachs, H. Neurosecretion. Aduan. Enzymol. 32: 327–372, 1969.
 444. Sachs, H. Neurosecretion. In: Handbook of Neurochemistry, edited by A. Lajtha. New York: Pergamon, 1970, vol. 4, p. 373–428.
 445. Sachs, H. Secretion of neurohypophysial hormones. Mem. Soc. Endocrinol. 19: 965–973, 1971.
 446. Sachs, H., P. Fawcett, Y. Takabatake, and R. Portanova. Biosynthesis and release of vasopressin and neurophysin. Recent Progr. Hormone Res. 25: 447–484, 1969.
 447. Sachs, H., R. Goodman, J. Osinchak, and J. McKelvy. Supraoptic neurosecretory neurons of the guinea pig in organ culture. Biosynthesis of vasopressin and neurophysin. Proc. Natl. Acad. Sci. US 68: 2782–2786, 1971.
 448. Sachs, H., R. Goodman, S. Shin, A. Shainberg, and D. Pearson. Vasopressin and neurophysin biosynthesis in hypothalamic organ cultures. In: Endocrinology, edited by R. O. Scow. New York: Excerpta Medica American Elsevier, 1973, p. 573–578.
 449. Sachs, H., and E. W. Haller. Further studies on the capacity of the neurohypophysis to release vasopressin. Endocrinology 83: 251–262, 1968.
 450. Sachs, H., and J. Osinchak. Incorporation of tritiated uridine into RNA of pituicytes of rat neural lobes. J. Cell Biol. 35: 186A, 1967.
 451. Sachs, H., D. Pearson, A. Shainberg, S. Shin, G. Bryce, S. Malamed, and T. Mowles. Studies on the hypothalamo‐neurohypophysial complex in organ culture. In: Recent Studies of Hypothalamic Function, edited by K. Leders and K. E. Cooper. Basel: Karger, 1974, p. 50–66.
 452. Sachs, H., R. Portanova, E. Haller, and L. Share. Cellular processes concerned with vasopressin biosynthesis, storage and release. In: Neurosecretion, edited by F. Stutinsky. Berlin: Springer Verlag, 1967, p. 146–154.
 453. Sachs, H., S. Saito, and D. Sunde. Biochemical studies on the neurosecretory and neuroglial cells of the hypothalamo‐neurohypophysial complex. Mem. Soc. Endocrinol. 19: 325–336, 1971.
 454. Sachs, H. A., and Y. Takabatake. Evidence for a precursor in vasopressin biosynthesis. Endocrinology 75: 943–948, 1964.
 455. Sakharov, D. A., and J. Salanki. Study of neurosecretory cells of Helix pomatia by intracellular dye injection. Experientia 27: 655–656, 1971.
 456. Santolaya, R. C., T. E. Bridges, and K. Lederis. Elementary granules, small vesicles and exocytosis in the rat neurohypophysis after acute haemorrhage. Z. Zellforsch. Mikroskop. Anat. 125: 277–288, 1972.
 457. Sathyanesan, A. G. Hypothalamohypophyseal neurosecretory system of fishes under some experimental conditions. Gen. Comp. Endocrinol. Suppl. 2: 268–274, 1969.
 458. Saxena, R. N., M. Wada, and H. Kobayashi. The implantation of puromycin into the neurosecretory nuclei of the rat. Z. Zellforsch. Mikroskop. Anat. 134: 327–335, 1972.
 459. Scharrer, B. Über sekretorischtätige Nervenzellen bei wirbellosen Tieren. Naturwissenshaften 25: 131–138, 1937.
 460. Scharrer, B. Neurosecretion. XI. The effects of nerve section on the intercerebralis‐cardiacum‐allatum system of the insect Leucophaea maderae. Biol. Bull. 102: 261–272. 1952.
 461. Scharrer, B. Neurosecretion. XIII. The ultrastructure of the corpus cardiacum of the insect Leucophaea maderae. Z. Zellforsch. Mikroskop. Anat. 60: 761–796, 1963.
 462. Scharrer, B. Recent progress in the study of neuroendocrine mechanisms in insects. Arch. Anat. Microscop. Morphol. Exptl. 54: 331–342, 1965.
 463. Scharrer, B. The neurosecretory neurone in neuroendocrine regulatory mechanisms. Am. Zoologist 7: 161–169, 1967.
 464. Scharrer, B. Neurosecretion. XIV. Ultrastructural study of sites of release of neurosecretory material in lattarian insects. Z. Zellforsch. Mikroskop. Anat. 89: 1–16, 1968.
 465. Scharrer, B. Neurohumors and neurohormones: definitions and terminology. J. Neurovisceral Relations Suppl. IX: 1–20, 1969.
 466. Scharrer, B. General principles of neuroendocrine communication. In: The Neurosciences. Second Study Program, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1970, p. 519–529.
 467. Scharrer, B. Concepts of neurochemical mediation. Neurocirugia 29: 257–262, 1971.
 468. Scharrer, B. Comparative aspects of neuroendocrine communication. Gen. Comp. Endocrinol. Suppl. 3: 515–517, 1972.
 469. Scharrer, B. Neuroendocrine communication (neurohormonal, neurohumoral and intermediate). Progr. Brain Res. 38: 7–18, 1972.
 470. Scharrer, B. Neural control of endocrine glands in invertebrates. In: Endocrinology, edited by R. O. Scow. New York: American Elsevier Excerpta Medica, 1973, p. 210–214.
 471. Scharrer, B., and S. B. Kater. Neurosecretion. XV. An electron microscopic study of the corpus cardiacum of Periplaneta americana after experimentally induced hormone release. Z. Zellforsch. Mikroskop. Anat. 95: 177–186, 1969.
 472. Scharrer, B., and M. Weitzman. Current problems in invertebrate neurosecretion. In: Aspects of Neuroendocrinology, edited by W. Bargmann and B. Scharrer. Berlin: Springer Verlag, 1970, p. 1–23.
 473. Scharrer, E. Die Lichtempfindlichkeit blinder Elritzen (Untersuchungen über das Zwischenhirn der Fische). Z. Vergl. Physiol. 7: 1–38, 1928.
 474. Scharrer, E. The final common path in neuroendocrine integration. Arch. Anat. Microscop. Morphol. Exptl. 54: 359–370, 1965.
 475. Scharrer, E. Principles of neuroendocrine integration. In: Endocrines and the Central Nervous System. Association for Research in Nervous and Mental Disease, edited by R. Levine. Baltimore: Williams & Wilkins, 1966, vol. 43, p. 1–35.
 476. Scharrer, E., and S. Brown. Neurosecretion. XII. The formation of neurosecretory granules in the earthworm Lumbricus terrestris. Z. Zellforsch. Mikroskop. Anat. 54: 530–540, 1961.
 477. Scharrer, E., and B. Scharrer. Neuroendocrinology. New York: Columbia Univ. Press, 1963.
 478. Schiebler, T. H. Cytochemische und elektronmikroskopische Untersuchungen an granulären Fraktionen der Neurohypophyse des Rindes. Z. Zellforsch. Mikroskop. Anat. 36: 563–576, 1952.
 479. Schmitt, F. The molecular biology of neuronal fibrous proteins. Neurosci. Res. Program Bull. 6: 119–144, 1968.
 480. Schramm, M., Z. Selinger, Y. Salomon, E. Eytan, and S. Batzri. Secretory granule pseudopodia ‐ pseudopodia formation by secretory granules. Nature 240: 203–205, 1972.
 481. Schulz, H., H. Unger, and H. Schwarzberg. The influence of intraventricularly administered glutamic acid and oxytocin upon the firing rate of hypothalamic neuronal areas. Acta Biol. Med. Ger. 30: 197–202, 1973.
 482. Schulz, H., H. Unger, H. Schwarzberg, G. Pommerich, and R. Stolze. Neuronenaktivität hypothalamischer Kerngebiete von Kaninchen nach intraventrikulärer Applikation von Vasopressin und Oxytocin. Experientia 27: 1482–1483, 1971.
 483. Scott, D. E. Ultrastructural changes in the neural lobe of the kangaroo rat (Dipodomys merriami) following intraperitoneal injection of hypertonic sodium chloride. Neuroendocrinology 4: 347–367, 1969.
 484. Scott, D. E., G. K. Dudley, A. Weindl, and R. J. Joynt. An autoradiographic analysis of hypothalamic magnocellular neurons. Z. Zellforsch. Mikroskop. Anat. 138: 421–437, 1973.
 485. Seshan, K. R., and R. Levi‐Montalcini. Neuronal properties of nymphal and adult insect neurosecretory cells in vitro. Science 182: 291–293, 1973.
 486. Shivers, R. R. Possible sites of release of neurosecretory granules in the sinus gland of the crayfish, Orconectes nais. Z. Zellforsch. Mikroskop. Anat. 97: 38–44, 1969.
 487. Shon, F., and J. S. Kelly. Autoradiographic localization of [3H]GABA and [3H]glutamate over satellite glial cells. Brain Res. 66: 275–288, 1974.
 488. Simpson, L. Morphological studies of possible neuroendocrine structures in Helisoma tenue (Gastropoda: Pulmonata). Z. Zellforsch. Mikroskop. Anat. 102: 570–593, 1969.
 489. Simpson, L., H. A. Bern, and R. S. Nishioka. Survey of evidence for neurosecretion in gastropod molluscs. Am. Zoologist 6: 123–138, 1966.
 490. Sloper, J. C. The experimental and cytological investigation of neurosecretion in the hypothalamus and pituitary. In: The Pituitary Gland, edited by G. W. Harris and B. T. Donovan. London: Butterworths, 1966, p. 131–239.
 491. Sloper, J. C. Hypothalamic neurosecretion. The validity of the concept of neurosecretion and its physiological and pathological implication. Brit. Med. Bull. 22: 209–215, 1966.
 492. Sloper, J. C. The validity of current concepts of hypothalamo‐neurohypophysial neurosecretion. Progr. Brain Res. 38: 123–145, 1972.
 493. Sloper, J. C., D. J. Arnott, and B. C. King. Sulphur metabolism in the pituitary and hypothalamus of the rat: a study of radioisotope‐uptake after the injection of [35S]dl‐cysteine, methionine, and sodium sulphate. J. Endocrinol. 20: 9–23, 1960.
 494. Smith, D. S., U. Jarlfors, and R. Beranek. The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J. Cell Biol. 46: 199–219, 1970.
 495. Smith, U. The origin of small vesicles in neurosecretory axons. Tissue Cell 2: 427–433, 1970.
 496. Smith, U. Uptake of ferritin into neurosecretory terminals. Phil. Trans. Roy. Soc. London Ser. B 261: 391–394, 1971.
 497. Smith, U., and D. S. Smith. Observations on the secretory processes in the corpus cardiacum of the stick insect, Carausius morosus. J. Cell Sci. 1: 59–66, 1966.
 498. Smoller, C. G. Neurosecretory processes extending into the third ventricle: secretory or sensory? Science 147: 882–884, 1965.
 499. Smoller, C. G. Ultrastructural studies on the developing neurohypophysis of the Pacific treefrog, Hyla reguilla. Gen. Comp. Endocrinol. 7: 44–73, 1966.
 500. Speidel, C. G. Gland‐cells of internal secretion in the spinal cord of the skates. Carnegie Inst. Wash. Publ. 13: 1–31, 1919.
 501. Stahl, A., and R. Seite. Cytologie des cellules nerveuses de l'hypothalamus. Pubbl. Staz. Zool. Napoli Suppl. 24, 1954.
 502. Sterba, G., and G. Bruckner. Zur Funktion der ependymalen Glia in der Neurohypophysis. Z. Zellforsch. Mikroskop. Anat. 81: 457–473, 1967.
 503. Sterba, G., K. Kabisch, B. Schneider, and G. Hoheisel. Storing of secretory material inside the perinuclear space. Experientia 28: 934–936, 1972.
 504. Stetson, M. H. Formation of secondary neurohemal organs in the median eminence of the white‐crowned sparrow and Japanese quail. Gen. Comp. Endocrinol. 13: 392–398, 1969.
 505. Stoeckart, R., H. G. Jansen, and A. J. Kreike. Ultra‐structural evidence for exocytosis in the median eminence of the rat. Z. Zellforsch. Mikroskop. Anat. 131: 99–107, 1972.
 506. Stoeckart, R., A. J. Kreike, and H. G. Jansen. Sizes of granular vesicles in the rat median eminence, with special reference to the zona granulosa. Z. Zellforsch. Mikroskop. Anat. 146: 501–515, 1973.
 507. Strumwasser, F. Types of information stored in single neurons. In: Invertebrate Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 291–319.
 508. Strumwasser, F. Membrane and intracellular mechanism governing endogenous activity in neurons. In: Physiological and Biochemical Aspects of Nervous Integration, edited by F. D. Carlson. New Jersey: Prentice Hall, 1968, p. 329–341.
 509. Stutinsky, F. Neurosecretion. Proc. Intern. Symp. Neurosecretion, 4th, Strasbourg, 1966.
 510. Stutinsky, F. Bases morphologiques et expérimentales de la neurosécrétion hypothalamique. Acta Neurol. Belg. 69: 566–580, 1969.
 511. Stutinsky, F., and Y. Guerne. Role des catécholamines dans la libération des hormones posthypophysaires. Compt. Rend. 275: 573–576, 1972.
 512. Sunde, D., J. McKelvy, and H. Sachs. Studies on RNA methylation and dissociation between RNA and protein biosynthesis in neural lobes of dehydrated rats. Brain Res. 47: 237–253, 1972.
 513. Sunde, D., J. Osinchak, and H. Sachs. Nucleic acid metabolism of the neuroglial cells of the rat neural lobe. Brain Res. 47: 195–216, 1972.
 514. Sunde, D., and H. Sachs. Fractionation of RNA of the rat neural lobe labeled in vitro: comparison with RNA of cerebral cortex labeled in vivo. Brain Res. 47: 217–235, 1972.
 515. Sundsten, J. W., D. Novin, and B. A. Cross. Identification and distribution of paraventricular units excited by stimulation of the neural lobe of the hypophysis. Exptl. Neurol. 26: 316–329, 1970.
 516. Sundsten, J. W., and C. H. Sawyer. Osmotic activation of neurohypophysial hormone release in rabbits with hypothalamic islands. Exptl. Neurol. 4: 548–561, 1961.
 517. Takabatake, Y., and H. Sachs. Vasopressin biosynthesis. III. In vitro studies. Endocrinology 75: 934–942, 1964.
 518. Talanti, S. A., V. Hila, and M. Kekki. The kinetics of 35S‐labelled cysteine in the hypothalamic‐hypophyseal tract of the rat, studied by autoradiography. Z. Zellforsch. Mikroskop. Anat. 124: 342–353, 1972.
 519. Tasso, F. Localisation cytochimique ultrastructurale de glycoprotéins dans les granules neurosécrétoires de la post‐hypophyse du rat. J. Microscopie 18: 115–118, 1973.
 520. Thomsen, E. Studies on the transport of neurosecretory material in Calliphora erythrocephala by means of ligaturing experiments. J. Exptl. Biol. 31: 322–330, 1954.
 521. Thomsen, M. Observations on the cytology of neurosecretion in various insects (Diptera and Hymenoptera). Publ. Staz. Zool. Napoli Suppl. 24: 46–47, 1954.
 522. Thorn, N. A. Role of calcium in the release of vasopressin and oxytocin from posterior pituitary protein. Acta Endocrinol. 50: 357–364, 1965.
 523. Thorn, N. A. In vitro studies of release mechanism for vasopressin in rats. Acta Endocrinol. 53: 644–654, 1966.
 524. Unnithan, G. C., H. A. Bern, and K. K. Nayar. Ultra‐structural analysis of the neuroendocrine apparatus of On‐copeltus fasciatus (Heteroptera). Acta Zool. 52: 117–143, 1971.
 525. Uttenthal, L. O., and D. B. Hope. The isolation of three neurophysins from porcine posterior pituitary lobes. Biochem. J. 116: 899–909, 1970.
 526. Uttenthal, L. O., B. G. Livett, and D. B. Hope. Release of neurophysin together with vasopressin by Ca++‐dependent mechanism. Phil. Trans. Roy. Soc. London Ser. B 261: 379–380, 1971.
 527. Uvnäs, B. An attempt to explain nervous transmitter release as due to nerve impulse‐induced cation exchange. Acta Physiol. Scand. 87: 168–176, 1973.
 528. Van Der Kloot, W. G. Neurosecretion in insects. Ann. Rev. Entomol. 5: 35–52, 1960.
 529. Verney, E. B. The antidiuretic hormone and the factors which determine its release. Proc. Roy. Soc. London Ser. B 135: 25–106, 1947.
 530. Vigh‐Teichman, I., and B. Vigh. Structure and function of the liquor contacting neurosecretory system. In: Aspects of Neuroendocrinology, edited by W. Bargmann and B. Scharrer. Berlin: Springer, 1970, p. 329–337.
 531. Vilhardt, H. Uptake of tritiated lysine‐vasopressin by isolated secretory granules from bovine neurohypophysis. Acta Endocrinol. 68: 417–424, 1971.
 532. Vilhardt, H., and G. Holmer. Lipid composition of membranes of secretory granules and plasma membranes from bovine neurohypophyses. Acta Endocrinol. 71: 638–648, 1972.
 533. Vincent, J. D., E. Arnauld, and A. Nicolescu‐Catargi. Osmoreceptors and neurosecretory cells in the supraoptic nucleus of unanaesthetized monkeys. Brain Res. 45: 278–281, 1972.
 534. Vincent, J. D., and J. N. Hayward. Activity of single cells in the osmoreceptor‐supraoptic nuclear complex in the hypothalamus of the waking rhesus monkey. Brain Res. 23: 105–108, 1970.
 535. Vitry, G., J. Fondarai, and A. Cougard. Sur les modifications des grains de neurosécrétat de la neurohypophyse, après stimulation électrique des noyaux supra‐optiques chez le rat. Compt. Rend. Soc. Biol. 165: 361–364, 1971.
 536. Vollrath, L. Uber die neurosekretorische Innervation der Adenohypophyse von Teleostiern, insbesondere von Hippocampus cuda and Tinca tinca. Z. Zellforsch. Mikroskop. Anat. 78: 234–260, 1967.
 537. Vollrath, L. Uber die Herkunft “synaptischer” Bläschen in neurosekretorischen Axonem. Z. Zellforsch. Mikroskop. Anat. 99: 146–152, 1969.
 538. Wakerley, J. B., and D. W. Lincoln. Phasic discharge of antidromically identified units in the paraventricular nucleus of the hypothalamus. Brain Res. 25: 192–194, 1971.
 539. Wakerley, J. B., and D. W. Lincoln. The milk‐ejection reflex of the rat: a 20‐ to 40‐fold acceleration in the firing of paraventricular neurons during oxytocin release. J. Endocrinol. 57: 477–493, 1973.
 540. Watari, N. Fine structure of nervous elements in the pancreas of some vertebrates. Z. Zellforsch. Mikroskop. Anat. 85: 291–314, 1968.
 541. Watkins, W. B. Neurophysins of the human pituitary gland. J. Endocrinol. 51: 595–596, 1971.
 542. Watkins, W. B. Neurophysins of the sheep. Biochem. J. 126: 759–760, 1972.
 543. Watkins, W. B. Neurophysin and the neurosecretory fibres of the sheep infundibulum. Z. Zellforsch. Mikroskop. Anat. 145: 471–478, 1973.
 544. Watkins, W. B. The isolation and biochemical characterization of three neurophysins of the sheep. J. Endocrinol. 59: 17–29, 1973.
 545. Watkins, W. B., and H. K. Ellis. The designation of the major guinea‐pig neural lobe protein as a neurophysin. J. Endocrinol. 59: 31–41, 1973.
 546. Watkins, W. B., and J. J. Evans. Demonstration of neurophysin in the hypothalamo‐neurohypophysial system of the normal and dehydrated rat by the use of cross‐species reactive anti‐neurophysins. Z. Zellforsch. Mikroskop. Anat. 131: 149–170, 1972.
 547. Weinstein, H., S. Malamed, and H. Sachs. Isolation of vasopressin‐containing granules from the neurohypophysis of the dog. Biochem. Biophys. Acta 50: 386–389, 1961.
 548. Weiss, P. A. Neuronal dynamic and axonal flow. V. The semisolid state of the moving axonal column. Proc. Natl. Acad. Sci. US 69: 620–623, 1972.
 549. Weiss, P. A. Neuronal dynamics and axonal flow: axonal peristalsis. Proc. Natl. Acad. Sci. US 69: 1309–1312, 1972.
 550. Weiss, P., and H. B. Hiscoe. Experiments on the mechanism of nerve growth. J. Exptl. Zool. 107: 315–396, 1948.
 551. Weitzman, M. Ultrastructural study on the release of neurosecretory material from the sinus gland of the land crab, Gecarcinus lateralis. Z. Zellforsch. Mikroskop. Anat. 94: 147–154, 1969.
 552. Weneck, B., and J. F. Morris. A quantitative assessment of the ultrastructural changes in the supraoptic nucleus of the rat after hypophysectomy. J. Anat. 117: 213, 1974.
 553. Weyer, F. Ueber drüsenartige Nervenzellen im Gehirn der Honigbiene, Apis mellifica L. Zool. Anz. 112: 137–141, 1935.
 554. Whitaker, S., and F. S. Labella. Cholinesterase in the posterior and intermediate lobes of the pituitary. Z. Zellforsch. Mikroskop. Anat. 142: 69–88, 1973.
 555. Whitaker, S., F. S. Labella, and M. Sanwal. Electron microscopic histochemistry of lysosomes in neurosecretory nerve endings and pituicytes of rat posterior pituitary. Z. Zellforsch. Mikroskop. Anat. 111: 493–504, 1970.
 556. Whitten, J. M. Connective tissue membranes and their apparent role in transporting neurosecretory and other secretory products in insects. Gen. Comp. Endocrinol. 4: 176–192, 1964.
 557. Wilkens, J. L., and M. I. Mote. Neuronal properties of the neurosecretory cells in the fly Sarcophaga bullata. Experientia 26: 275–276, 1970.
 558. Wilson, D. L., and R. W. Berry. The effect of synaptic stimulation on RNA and protein metabolism in the R2 soma of Aplysia. J. Neurobiol. 3: 369–379, 1972.
 559. Wittkowski, W. Synaptische Strukturen und Elementargranula in der Neurohypophyse des Meerschweinchens. Z. Zellforsch. Mikroskop. Anat. 82: 434–458, 1967.
 560. Wittkowski, W. Nervenfasern mit ultrastrukturell verschiedenen Elementargranula im Hypophysenhinterlappen des Rhesusaffen. Z. Zellforsch. Mikroskop. Anat. 107: 499–507, 1970.
 561. Wolffe, D. E. The epiphyseal cell: an electron‐microscopic study of its intercellular relations and intracellular morphology in the pineal body of the albino rat. In: Progress in Brain Research. Structure and Function of the Epiphysis Cerebri, edited by J. Ariëns Kappers and J. P. Schadé. Amsterdam: Elsevier, 1965, vol. 10, p. 332–386.
 562. Wuu, T. C., S. Crumm, and M. Saffran. Amino acid sequence of porcine neurophysin I. J. Biol. Chem. 246: 6043–6063, 1971.
 563. Yagi, K., T. Azuma, and K. Matsuda. Neurosecretory cells: capable of conducting impulses in rats. Science 154: 778–779, 1966.
 564. Yagi, K., and H. A. Bern. Electrophysiologic analysis of the response of the caudal neurosecretory system of Tilapia mossambica to osmotic manipulations. Gen. Comp. Endocrinol. 5: 509–526, 1965.
 565. Yagi, K., H. A. Bern, and I. R. Hagadorn. Action potentials of neurosecretory neurons in the leech Theromyzon rude. Gen. Comp. Endocrinol. 3: 490, 1963.
 566. Yagi, K., S. Iwasaki, Y. Sawaki, and Y. Satow. Electrophysiological studies on the neurosecretory neuron. Med. J. Osaka Univ. 21: 75–90, 1971.
 567. Yagi, K., and S. Yoshida (editors). Neuroendocrine Control. New York: Wiley, 1973.
 568. Yamashita, H., K. Koizumi, and C. McC. Brooks. Electrophysiological studies of neurosecretory cells in the cat hypothalamus. Brain Res. 20: 462–466, 1970.
 569. Yeo, B. K., M. F. Lockett, and H. Heller. Inhibition of the release of the neurohypophysial hormones of rats by catecholamines, in vitro. Australian J. Exptl. Biol. Med. Sci. 50: 527–533, 1972.
 570. Zambrano, D. Innervation of the teleost pituitary. Gen. Comp. Endocrinol. Suppl. 3: 22–31, 1972.
 571. Zambrano, D. Innervation of the teleost and dipnoan pituitaries. In: Endocrinology, edited by R. O. Scow. New York: American Elsevier Excerpta Medica, 1973, p. 215–219.
 572. Zambrano, D., and E. De Robertis. The secretory cycle of supraoptic neurons in the rat. A structural‐functional correlation. Z. Zellforsch. Mikroskop. Anat. 73: 414–431, 1966.
 573. Zambrano, D., and E. De Robertis. Ultrastructural aspects of the inhibition of neurosecretion by puromycin. Z. Zellforsch. Mikroskop. Anat. 76: 458–470, 1967.
 574. Zambrano, D., R. S. Nishioka, and H. A. Bern. The innervation of the pituitary gland of teleost fishes. In: Median Eminence: Structure and Function, edited by K. M. Knigge, D. E. Scott, and A. Weindl. Basel: Karger, 1972, p. 50–66.
 575. Zimmerman, E. A., K. C. Hsu, A. G. Robinson, P. W. Carmel, A. G. Frantz, and M. Tannenbaum. Studies of neurophysin secreting neurons with immunoperoxidase techniques employing antibody to bovine neurophysin. I. Light microscopic findings in monkey and bovine tissues. Endocrinology 92: 931–940, 1973.
References in Addendum
 1. Arnauld, E., B. Dufy, and J.‐D. Vincent. Hypothalamic supraoptic neurones: rates and patterns of action potential firing during water deprivation in the unanaesthetized monkey. Brain Res. 100: 315–325, 1975.
 2. Barker, J. L., M. S. Ifshin, and H. Gainer. Studies on bursting pacemaker potential activity in molluscan neurons. III. Effects of hormones. Brain Res., 84: 501–513, 1975.
 3. Burnstock, G. Do some nerve cells release more than one transmitter? Neuroscience 1: 239–248, 1976.
 4. Cross, B. A., R. E. J. Dyball, R. G. Dyer, C. W. Jones, D. W. Lincoln, J. F. Morris, and B. T. Pickering. Endocrine neurons. Recent Progr. Hormone Res. 31: 243–294, 1975.
 5. Finlayson, L. H. and M. P. Osborne. Secretory activity of neurons and related electrical activity. Advan. Comp. Physiol. Biochem. 6: 165–258, 1975.
 6. Harris, M. C., J. J. Dreifuss, and J. J. Legros. Excitation of phasically firing supraoptic neurones during vasopressin release. Nature 258: 80–82, 1975.
 7. Heap, P. F., C. W. Jones, J. F. Morris, and B. T. Pickering. Movement of neurosecretory product through the anatomical compartments of the neural lobe of the pituitary gland. Cell Tissue Res. 156: 483–497, 1975.
 8. Knowles, F. and L. Vollrath (editors). Neurosecretion: The Final Neuroendocrine Pathway. Berlin: Springer Verlag, 1974. (Proc. Intern. Symp. Neurosecretion, VI, London, 1973.)
 9. Koizumi, K., T. Ishikawa, and C. McC. Brooks. The existence of facilitatory axon collaterals in neurosecretory cells of the hypothalamus. Brain Res., 63: 408–413, 1973.
 10. Léránth, Cs., L. Záborsky, J. Marton, and M. Palkovits. Quantitative studies on the supraoptic nucleus in the rat. I. Synaptic organization. Exptl. Brain Res. 22: 509–523, 1975.
 11. Luqui, I. J., and C. A. Fox. The supraoptic nucleus and the supraopticohypophysial tract in the monkey (Macaca mulatta). J. Comp. Neurol. 168: 7–40, 1976.
 12. Maddrell, S. H. P. Neurosecretion. In: Insect Neurobiology, edited by J. E. Treherne. Amsterdam: North‐Holland, 1974, p. 307–355.
 13. Mason, C. A., G. Clarke, and D. W. Lincoln. Collaterals of neurosecretory cells in the rat's paraventricular nucleus: visualization by extracellular staining of single neurons with cobalt. Brain Res. In Press.
 14. Morris, J. F. Hormone storage in individual neurosecretory granules of the pituitary gland. A quantitative ultra‐structural approach to hormone storage in the neural lobe. J. Endocrinol. 68: 208–224, 1976.
 15. Morris, J. F. Distribution of neurosecretory granules among the anatomical compartment of the neurosecretory processes of the pituitary gland: a quantitative ultrastructural approach to hormone storage in the neural lobe. J. Endocrinol. 68: 225–234, 1976.
 16. Nordmann, J. J. Hormone release and Ca uptake in the rat neurohypophysis. In: Calcium Transport in Contraction and Secretion, edited by E. Carafoli et al. Amsterdam: North‐Holland, 1975, p. 281–286.
 17. Polenov, A. L. (editor). Proc. Intern. Symp. Neurosecretion, VII, Leningrad, 1976. Berlin: Springer Verlag. In Press.
 18. Silverman, A. J. Ultrastructural studies on the localization of neurohypophysial hormones and their carrier proteins. J. Histochem. Cytochem. 24: 816–828, 1976.
 19. Swann, R. W., and B. T. Pickering. Incorporation of radioactive precursors into the membrane and contents of neurosecretory granules of the rat neurohypophysis as a method of studying their fate. J. Endocrinol. 68: 95–108, 1976.
 20. Vandesande, F. and K. Dierickx. Identification of the vasopressin producing and of the oxytocin producing neurons in the hypothalamic magnocellular neurosecretory system of the rat. Cell Tissue Res. 164: 153–162, 1975.
 21. Wakerley, J. B., D. A. Poulain, R. E. J. Dyball, and B. A. Cross. Activity of phasic neurosecretory cells during haemorrhage. Nature 258: 82–84, 1975.
 22. Záborsky, L., Cs. Léránth, G. B. Makara, and M. Palkovits. Quantitative studies on the supraoptic nucleus in the rat. II. Afferent fiber connection. Exptl. Brain Res. 22: 525–540, 1975.
 23. Zimmerman, E. A., and J. L. Antunes. Organization of the hypothalamic‐pituitary system: current concepts from immunohistochemical studies. J. Histochem. Cytochem. 24: 807–815, 1976.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Carol Ann Mason, Howard A. Bern. Cellular Biology of the Neurosecretory Neuron. Compr Physiol 2011, Supplement 1: Handbook of Physiology, The Nervous System, Cellular Biology of Neurons: 651-689. First published in print 1977. doi: 10.1002/cphy.cp010118