Comprehensive Physiology Wiley Online Library

Organization of Invertebrate Motor Systems

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Properties of Muscle
1.1 Anatomic Organization
1.2 Contraction Speed
1.3 Strength and Extent of Contraction
1.4 Thresholds for Excitation‐Contraction Coupling
1.5 Correlations with Innervation
1.6 Dependence of Tension on Recent History
2 Motor Neurons and the Motor Unit
2.1 Motor Neuron Morphology
2.2 Correlations Between Motor Neuron Morphology and Function
2.3 Neuromuscular Transmission
2.4 Excitation‐Contraction Coupling
2.5 Peripheral Motor Unit Organization
2.6 Matching of Central and Peripheral Properties
2.7 Ontogeny and Regeneration
3 Reflex Organization
3.1 Proprioceptive Reflexes
3.2 Exteroreceptive Reflexes
3.3 Righting Reflexes
3.4 Optomotor Reflexes
3.5 Control of Reflex Excitability
4 Central Organization of Motor Systems
4.1 Structure of Motor Programs
4.2 Storage of Motor Programs
4.3 Release of Motor Programs by Command Elements
4.4 Central Versus Peripheral Control of Motor Output
4.5 Development of Pattern‐Generating Networks
4.6 Complex Behavioral Phenomena
5 Conclusion
Figure 1. Figure 1.

Catch property of arthropod muscle. Membrane potential (upper trace in each record) and tension (lower trace) were recorded from a single barnacle muscle fiber during stepwise depolarizations. Following the second depolarization, the tension remains at a higher level, i.e., it depends on the immediate stimulus history. In B and C, 0.5‐ and 1.0‐s repolarizations are interpolated without influencing the catch.

From Wilson et al. 939
Figure 2. Figure 2.

Morphology of invertebrate motor neurons (B‐E, G, H), cobalt injection (C and D), or combined structural and functional techniques (E). A: lateral giant interneuron of crayfish. B: lobster swimmeret power‐stroke motor neuron. C: locust wing‐elevator motor neuron (no. 113). D: locust wing‐depressor motor neuron (no. 127). E: probably the common inhibitor neuron of the cockroach. F: giant interneuron in the sixth abdominal ganglion of the cockroach. G: leech motor neuron. H: the motor giant of the crayfish. A and B are seen in anterior view, while C‐H are seen from the dorsal aspect.

A, adapted from Selverston & Kennedy 781; B, adapted from Davis 189; C and D, adapted from Burrows 108; E, adapted from Crossman et al. 178; F, adapted from Harris & Smyth 347; G, adapted from Purvis & McMahan 724; H, adapted from Selverston & Kennedy 781
Figure 3. Figure 3.

Soma maps of motor neurons in a variety of invertebrate motor systems showing that antagonistic motor neuron somas tend to be intermingled. C and D are dorsal views, while the remainder are ventral views. A: buccal ganglion of Pleurobranchaea showing somas of motor neurons that withdraw and evert the proboscis as revealed by back injection of nerve roots with CoCl2 followed by physiological confirmation. B: metathoracic ganglion of the locust showing positions of somas of leg motor neurons on one side. C: segmental ganglion of the leech showing motor neurons supplying the body wall muscles. D: mesothoracic ganglion of the locust showing somas of flight motor neurons. E: abdominal ganglion of the lobster showing somas of swimmeret motor neurons. F: abdominal ganglion of the lobster showing somas of abdominal flexor and extensor muscles.

A, adapted from Siegler et al. 793; B, adapted from Burrows & Hoyle 113; C, adapted from Stuart 812; D, adapted from Bentley 55; E, adapted from Davis 190; F, adapted from Otsuka et al. 668
Figure 4. Figure 4.

Properties of a small (A), medium (B), and large (C) motor neuron innervating the main power‐stroke muscle of the lobster Homarus. (1), soma diameters; (2), axonal conduction velocities; (3), amplitudes of action potentials recorded with two extracellular electrodes at different positions on the motor nerve; (4), amplitudes of excitatory junctional potentials (EJP's) recorded from a single muscle fiber (upper trace in each record); (5), adaptation to a maintained intracellular depolarizing current; and (6), facilitation properties of extracellular EJP's (upper trace in each record) during 50‐Hz stimulation. Note antifacilitation of the EJP's produced by the largest motor neuron. Time marks in (5) (lowest trace), 1/10 ms.

From Davis 190
Figure 5. Figure 5.

Inhibitory and excitatory neuromuscular synapses on muscle fibers of the claw opener in a crustacean. A: inhibitory (I) and excitatory (E) axons, the latter forming a neuromuscular synapse (SY); calibration, 1 μm. B: axoaxonal synapse between the inhibitory axon (I) and an excitatory terminal (E); calibration, 0.45 μm. At this magnification, the more elliptical shape of the vesicles in the inhibitory element is clear.

From Sherman & Atwood 787
Figure 6. Figure 6.

Physiological features of crustacean neuromuscular junctions. A: responses from fast (A1) and slow (A2) divisions of the lateral flexor muscle of Squilla. In A1 the top trace is zero membrane potential, the second trace is tension, and the third trace is the membrane potential recorded intracellularly from a single muscle fiber. Vertical calibration, 30 mV; horizontal calibration, 200 ms. In A2 the top traces in each record show tension, and the bottom traces are the membrane potential of a single muscle fiber. The number above each record in A2 gives the stimulus frequency in Hz. Vertical calibration, 30 mV; horizontal calibration, 300 ms. B: range of facilitation properties shown by the terminals of a single motor neuron on different fibers in the claw‐stretcher muscle of the crab Hyas. Top record, a high Fe terminal; bottom record, low Fe terminal. Stimulus frequency in each case, 1 Hz, followed by 10 Hz, then 1 Hz. Vertical calibration, 15 mV; horizontal calibration, 750 ms. C: membrane responses that are intermediate between fast and slow in a claw‐stretcher muscle fiber of the crab Grapsus. Junctions that exhibit facilitation at 10 Hz produce spikes (electrically excitable responses) on adequate depolarization. Vertical calibration, 20 mV; horizontal calibration, 0.5 s. D: changes in membrane potential and conductance caused by stimulation of the peripheral inhibitor axon supplying the slow abdominal flexor of the lobster Homarus. Constant‐current hyperpolarizing pulses were injected into a single muscle fiber before (lower trace) and during (middle trace) stimulation of the inhibitor at 120 Hz. The inhibitory junctional potentials were depolarizing, and the conductance increased approximately fourfold during inhibition. Time marks (upper trace), 10 ms; vertical calibration, 10 mV.

A, from Burrows & Hoyle 112; B, from Sherwood & Atwood 787; C, from Atwood & Bittner 25; D, from Kennedy & Evoy 492
Figure 7. Figure 7.

Types of motor unit organization found in invertebrate muscles. For discussion see text.

Figure 8. Figure 8.

Peripheral arrangements and central reflex connections of stretch or tension receptors (Sr) and skeletal muscles. In each case the tension receptor excites activity in the motor neuron innervating the working muscle. A: parallel arrangement. The muscle responds to imposed load by shortening in the familiar resistance (myotatic) reflex; since the contraction unloads the receptor, the system is unresponsive to loads imposed during active movement. B: series arrangement. The muscle responds to imposed loads by shortening, which further excites the receptor during active contraction, but lacks an absolute length reference. C: stretch receptor in series with specialized receptor muscle, which is coactivated with the working muscle. This arrangement compensates for loads imposed during active contraction and also has an absolute length reference.

Figure 9. Figure 9.

Reflex organization in the swimmeret system of the lobster. ▴, Excitatory connections; ○, inhibitory connections. Sensory influences, proprioceptors, and setae are all activated during the power stroke. The proprioceptors excite all excitatory motor neurons; reciprocity between antagonistic muscles originates in the opposite influences of the setae. Both sensory sources reciprocally influence excitors and peripheral inhibitors to a given muscle.

From Davis 193
Figure 10. Figure 10.

Load‐compensating arrangement of muscle receptor organ (MRO) and extensor muscles in the crayfish abdomen. The shared motoneuron innervates parallel working and receptor muscles, and may be activated selectively by central command interneurons. The muscle receptor organ responds both to lengthening of the receptor muscle and to its contraction, and connects centrally with an identified motoneuron (no. 2) which innervates the working muscle exclusively. Thus loads opposing a commanded extension generate proportional excitation in the load compensating servo loop, which supplies additional tension to the working muscle to overcome the load.

From Kennedy 489. Originally published by the University of California Press; reprinted by permission of The Regents of the University of California
Figure 11. Figure 11.

Equilibrium reactions of the lobster Homarus in response to roll. A and B: compensatory responses of the anterior appendages and eyes, respectively. C–E: righting responses of the claws, swimmerets, and uropods, respectively. Heavy arrows in D show directions of water currents.

Adapted from Davis 191
Figure 12. Figure 12.

A model incorporating demonstrated neuronal components to explain various features of equilibrium reactions in the lobster Homarus. Arrowheads designate excitatory influences. The model explains how either the right or left statocyst can alone control the righting responses of the appendages of one side, even though the afferent responses of the two statocysts to roll in one direction are opposite.

Adapted from Davis 183
Figure 13. Figure 13.

Positive‐feedback optomotor responses in the lobster Homarus. A: treadmill apparatus used to study the responses. The lobster is clamped in place above the striped belt and separated from it by a transparent Plexiglas platform. Thus the animal can see the stripes but cannot feel the belt movements. B–D: limb movements and electromyograms (emg) during backward movement of the belt beneath the animal. B, typical response of a walking leg; C, rapidly diminishing response; D, responses of two motor systems, the legs, and swimmerets (continuous records). In all records the lowest trace shows the treadmill speed (above the horizontal line; 1 vertical mark per cm of belt movement) and time marks (below the line; 1/100 ms). Arrows in D show increments in treadmill velocity; note corresponding increments in locomotor activity.

From Davis & Ayers 194. Copyright 1972 by the American Association for the Advancement of Science
Figure 14. Figure 14.

Summary of types of optomotor responses (left column) and hypothetical neuronal circuitry that can account for the corresponding responses (right column). A: the relatively simple case of forward locomotion only (e.g., flight in some insects). B: the more complex case of bidirectional locomotion (e.g., walking in lobsters). The models consist of lateral and medial motion detectors in the eyes and command centers for forward flight (A) or forward and backward walking (B). Turning is presumed to result from differential power output on the two sides (A) or oppositely directed locomotion on the two sides (B).

Figure 15. Figure 15.

Neural circuits controlling gill movements in Aplysia. Arrowheads represent excitatory synapses, while circles represent inhibitory synapses. A: centrally commanded movements. Int II probably represents several closely coupled interneurons. B: reflex gill‐withdrawal movements. The sensory input from the siphon (Sensory N) is direct (monosynaptic excitation) or mediated by interneuronal excitation and inhibition.

Adapted from Kandel 521. Copyright 1969 by the American Association for the Advancement of Science
Figure 16. Figure 16.

Examples of the major classes of motor programs. A: noncyclic. B: noncyclic, phasic program. C and D; cyclic programs. In A, recordings were made from the segmental superficial flexor nerve of the abdomen in an intact crayfish after removal of leg support (halfway through the upper record). This stimulus causes cessation of activity in flexor excitors 1–4, 6, and activation of the inhibitor 5. Continuous records. Time mark, 1 s. In B, electromyograms were recorded from the raptorial leg of Squilla during the rapid strike. From top to bottom, traces represent lateral flexor activity (ceases at the open arrow), lateral extensor activity, and limb movement (the strike occurs at the closed arrow). C, intracellular recordings from different pairs of somas of neurons involved in the pyloric cycle of the lobster stomatogastric rhythm. D, summary of the lobster stomatogastric rhythm. Upper graph, the pyloric cycle. Lower graph, the gastric cycle.

A, from Larimer & Eggleston 534; B, from Burrows 105; C, from Maynard 582; D, upper graph, adapted from Maynard 582; D, lower graph, adapted from Mulloney & Selverston 635
Figure 17. Figure 17.

Terminology for motor programs. L, latency; P, period. In H, cyclic output is shown at low‐output (left) and high‐output (right) frequencies, with amplitude inversely related to period. See text for further explanation.

Figure 18. Figure 18.

Known neural mechanisms for generating synergism (A) and antagonism (B) in motor systems. Synergism can result from excitatory (▵) coupling between motor neurons [A 1] or from common excitatory inputs to synergic motor neurons [A (2)]. Antagonism can result from reciprocal or unidirectional inhibitory (○) coupling between motor neurons supplying antagonistic muscles [B (1)]; from fixed delays in excitatory couplings between antagonistic motor neurons [B (2)]; or from opposite synaptic inputs from the same presynaptic source. Flex, flexor; ext, extensor. See text for further description.

B (3
Figure 19. Figure 19.

Summary of the neuronal circuitry in the abdominal ganglion controlling the heart and blood pressure of Aplysia. ▵, Excitatory connections; ○, inhibitory ones. The main features of interest are: 1) reciprocal inhibition between two command interneurons in the network (Int. II and the double‐action L10); and 2) lack of interactions at the level of motor neurons, e.g., (LDm).

Adapted from Koester et al. 503
Figure 20. Figure 20.

Demonstrated circuits of neurons that participate in the stomatogastric rhythm of the lobster. A: the pyloric rhythm (cf. Fig. 16D). B: the gastric rhythm (cf. Fig. 16D). The main features illustrated are electrical couplings between synergists (capacitance symbols in A, resistance symbols in B) and in some cases between antagonists (B), and chemical inhibition between antagonists (○ in A, • in B) and in some cases between synergists (A and B).

A, from Maynard 582; B, from Mulloney & Selverston 635
Figure 21. Figure 21.

Identified neuronal circuitry involving two locust flight neurons, namely 113 (a wing elevator) and 127 (a wing depressor). Rectangles represent delays at unknown numbers of synapses. Arrowheads represent excitatory connections, while circles represent inhibitory ones. The main features shown are: 1) delayed excitation between ipsilateral antagonists, and 2) delayed excitation between contralateral synergists, 3) descending excitation of the wing depressor, and 4) descending excitation and inhibition of the wing elevator. The structure of motor neurons 113 and 127 is shown in Figure 2

Adapted from Burrows 107
Figure 22. Figure 22.

Known and hypothetical neural mechanisms for generating rhythmic alternating motor output to antagonistic muscles; flex, flexor; ext, extensor. Arrows indicate excitatory connections; circles represent inhibitory ones. A: oscillation as a property of a single neuron; B: coupled oscillator neurons; C: oscillation as a network property; C (1): a reciprocal inhibitory network; C (2), a neuropilar network in which propagated changes in potential represent the oscillation. As noted in the text, the class of models exemplified in A and B will work only if the extensor motor neurons have a continuous endogenous or exogenous source of excitation.

Figure 23. Figure 23.

Oscillator neuron(s) in the lobster ventilatory system. A: intracellular recording from an oscillator neuron in the subesophageal ganglion while recording associated, spontaneous motor output extracellularly (lower two traces). B: imposed depolarization of the oscillator neuron inhibits activity of one group of motor neurons and excites antagonists. C: imposed hyperpolarization has the opposite effects. Vertical calibration for intracellular records, 34 mV; horizontal calibration, 310 ms.

From Mendelson 598. Copyright 1971 by the American Association for the Advancement of Science
Figure 24. Figure 24.

Central organization underlying swimming in Tritonia. Arrowheads represent chemical excitatory connections; circles, inhibitory connections and capacitance symbols, electrical connections. TGN, trigger neurons; GEN, general excitor neurons; DFN, dorsal flexor neurons; VFN, ventral flexor neurons; TeN, hypothetical terminator neurons. Sensory input is filtered through the network of trigger neurons and thence to dorsal flexion neurons. These activate general excitors, which presumably function to maintain excitation within the network even after the sensory stimulus ends. Terminator neurons are proposed to account for the apparently active termination of bursts.

Adapted from Willows et al. 921
Figure 25. Figure 25.

Schematization of a hypothetical model to account for rhythmic motor output. The sine waves (a–c) represent excitatory input to motor neurons having different thresholds (1–3). The chief features of the model are: 1) the excitation is sinusoidal; 2) the amplitude of the excitation is inversely related to period; and 3) the details of motor activity are determined by differences in motor neuron threshold that are related to motor neuron size.

From Davis 190
Figure 26. Figure 26.

Properties of a swimmeret command interneuron in the lobster Homarus. A: electrical stimulation of the interneuron causes rhythmic, alternating discharge to antagonistic swimmeret muscles. RS, return stroke; PS, power stroke. B: tactile stimulation of the ventral abdomen causes the interneuron (INT) to discharge and also elicits rhythmic swimmeret output. The third and fourth traces are a stimulus monitor and a time base (100 marks/s).

From Davis & Kennedy 196
Figure 27. Figure 27.

Behavioral effects of stimulating command interneurons in the circumeosophageal connectives of the crayfish, based on tracings from single frames of motion pictures. A: posture before (left) and after (right) stimulation of a command fiber for abdominal extension. B: same for claw elevation. C and D: position in one connective of fibers for forward and backward walking, respectively. E: the defense posture, as seen at different times following initiation of command fiber stimulation at 20/s at t + 0 s.

Adapted from Bowerman & Larimer 79,80
Figure 28. Figure 28.

Preeclosion behavior of the silk moth. Upper record, abdominal movements recorded on a kymograph drum. The activity is divided into three characteristic periods, namely: (1) the first hyperactive period; (2) the quiescent period; and (3) the second hyperactive period. Arrow marks the movement of adult emergence. Lower record, integrated electrical activity from an abdominal nerve of a deafferented nerve cord following application of eclosion hormone 40 min before the first burst. Note general similarity to the normal records in the upper record. Calibration refers to lower record.

From Truman & Sokolove 854. Copyright 1972 by the American Association for the Advancement of Science
Figure 29. Figure 29.

The behavioral hierarchy of the mollusc Pleurobranchaea. Unidirectional arrows from one behavioral act to another indicate that the former takes precedence over the latter. Bidirectional arrows indicate mutual compatibility (i.e., the two behavioral acts can occur together). The escape response takes precedence over all other behavioral acts. See text for further description.

From Davis et al. 202


Figure 1.

Catch property of arthropod muscle. Membrane potential (upper trace in each record) and tension (lower trace) were recorded from a single barnacle muscle fiber during stepwise depolarizations. Following the second depolarization, the tension remains at a higher level, i.e., it depends on the immediate stimulus history. In B and C, 0.5‐ and 1.0‐s repolarizations are interpolated without influencing the catch.

From Wilson et al. 939


Figure 2.

Morphology of invertebrate motor neurons (B‐E, G, H), cobalt injection (C and D), or combined structural and functional techniques (E). A: lateral giant interneuron of crayfish. B: lobster swimmeret power‐stroke motor neuron. C: locust wing‐elevator motor neuron (no. 113). D: locust wing‐depressor motor neuron (no. 127). E: probably the common inhibitor neuron of the cockroach. F: giant interneuron in the sixth abdominal ganglion of the cockroach. G: leech motor neuron. H: the motor giant of the crayfish. A and B are seen in anterior view, while C‐H are seen from the dorsal aspect.

A, adapted from Selverston & Kennedy 781; B, adapted from Davis 189; C and D, adapted from Burrows 108; E, adapted from Crossman et al. 178; F, adapted from Harris & Smyth 347; G, adapted from Purvis & McMahan 724; H, adapted from Selverston & Kennedy 781


Figure 3.

Soma maps of motor neurons in a variety of invertebrate motor systems showing that antagonistic motor neuron somas tend to be intermingled. C and D are dorsal views, while the remainder are ventral views. A: buccal ganglion of Pleurobranchaea showing somas of motor neurons that withdraw and evert the proboscis as revealed by back injection of nerve roots with CoCl2 followed by physiological confirmation. B: metathoracic ganglion of the locust showing positions of somas of leg motor neurons on one side. C: segmental ganglion of the leech showing motor neurons supplying the body wall muscles. D: mesothoracic ganglion of the locust showing somas of flight motor neurons. E: abdominal ganglion of the lobster showing somas of swimmeret motor neurons. F: abdominal ganglion of the lobster showing somas of abdominal flexor and extensor muscles.

A, adapted from Siegler et al. 793; B, adapted from Burrows & Hoyle 113; C, adapted from Stuart 812; D, adapted from Bentley 55; E, adapted from Davis 190; F, adapted from Otsuka et al. 668


Figure 4.

Properties of a small (A), medium (B), and large (C) motor neuron innervating the main power‐stroke muscle of the lobster Homarus. (1), soma diameters; (2), axonal conduction velocities; (3), amplitudes of action potentials recorded with two extracellular electrodes at different positions on the motor nerve; (4), amplitudes of excitatory junctional potentials (EJP's) recorded from a single muscle fiber (upper trace in each record); (5), adaptation to a maintained intracellular depolarizing current; and (6), facilitation properties of extracellular EJP's (upper trace in each record) during 50‐Hz stimulation. Note antifacilitation of the EJP's produced by the largest motor neuron. Time marks in (5) (lowest trace), 1/10 ms.

From Davis 190


Figure 5.

Inhibitory and excitatory neuromuscular synapses on muscle fibers of the claw opener in a crustacean. A: inhibitory (I) and excitatory (E) axons, the latter forming a neuromuscular synapse (SY); calibration, 1 μm. B: axoaxonal synapse between the inhibitory axon (I) and an excitatory terminal (E); calibration, 0.45 μm. At this magnification, the more elliptical shape of the vesicles in the inhibitory element is clear.

From Sherman & Atwood 787


Figure 6.

Physiological features of crustacean neuromuscular junctions. A: responses from fast (A1) and slow (A2) divisions of the lateral flexor muscle of Squilla. In A1 the top trace is zero membrane potential, the second trace is tension, and the third trace is the membrane potential recorded intracellularly from a single muscle fiber. Vertical calibration, 30 mV; horizontal calibration, 200 ms. In A2 the top traces in each record show tension, and the bottom traces are the membrane potential of a single muscle fiber. The number above each record in A2 gives the stimulus frequency in Hz. Vertical calibration, 30 mV; horizontal calibration, 300 ms. B: range of facilitation properties shown by the terminals of a single motor neuron on different fibers in the claw‐stretcher muscle of the crab Hyas. Top record, a high Fe terminal; bottom record, low Fe terminal. Stimulus frequency in each case, 1 Hz, followed by 10 Hz, then 1 Hz. Vertical calibration, 15 mV; horizontal calibration, 750 ms. C: membrane responses that are intermediate between fast and slow in a claw‐stretcher muscle fiber of the crab Grapsus. Junctions that exhibit facilitation at 10 Hz produce spikes (electrically excitable responses) on adequate depolarization. Vertical calibration, 20 mV; horizontal calibration, 0.5 s. D: changes in membrane potential and conductance caused by stimulation of the peripheral inhibitor axon supplying the slow abdominal flexor of the lobster Homarus. Constant‐current hyperpolarizing pulses were injected into a single muscle fiber before (lower trace) and during (middle trace) stimulation of the inhibitor at 120 Hz. The inhibitory junctional potentials were depolarizing, and the conductance increased approximately fourfold during inhibition. Time marks (upper trace), 10 ms; vertical calibration, 10 mV.

A, from Burrows & Hoyle 112; B, from Sherwood & Atwood 787; C, from Atwood & Bittner 25; D, from Kennedy & Evoy 492


Figure 7.

Types of motor unit organization found in invertebrate muscles. For discussion see text.



Figure 8.

Peripheral arrangements and central reflex connections of stretch or tension receptors (Sr) and skeletal muscles. In each case the tension receptor excites activity in the motor neuron innervating the working muscle. A: parallel arrangement. The muscle responds to imposed load by shortening in the familiar resistance (myotatic) reflex; since the contraction unloads the receptor, the system is unresponsive to loads imposed during active movement. B: series arrangement. The muscle responds to imposed loads by shortening, which further excites the receptor during active contraction, but lacks an absolute length reference. C: stretch receptor in series with specialized receptor muscle, which is coactivated with the working muscle. This arrangement compensates for loads imposed during active contraction and also has an absolute length reference.



Figure 9.

Reflex organization in the swimmeret system of the lobster. ▴, Excitatory connections; ○, inhibitory connections. Sensory influences, proprioceptors, and setae are all activated during the power stroke. The proprioceptors excite all excitatory motor neurons; reciprocity between antagonistic muscles originates in the opposite influences of the setae. Both sensory sources reciprocally influence excitors and peripheral inhibitors to a given muscle.

From Davis 193


Figure 10.

Load‐compensating arrangement of muscle receptor organ (MRO) and extensor muscles in the crayfish abdomen. The shared motoneuron innervates parallel working and receptor muscles, and may be activated selectively by central command interneurons. The muscle receptor organ responds both to lengthening of the receptor muscle and to its contraction, and connects centrally with an identified motoneuron (no. 2) which innervates the working muscle exclusively. Thus loads opposing a commanded extension generate proportional excitation in the load compensating servo loop, which supplies additional tension to the working muscle to overcome the load.

From Kennedy 489. Originally published by the University of California Press; reprinted by permission of The Regents of the University of California


Figure 11.

Equilibrium reactions of the lobster Homarus in response to roll. A and B: compensatory responses of the anterior appendages and eyes, respectively. C–E: righting responses of the claws, swimmerets, and uropods, respectively. Heavy arrows in D show directions of water currents.

Adapted from Davis 191


Figure 12.

A model incorporating demonstrated neuronal components to explain various features of equilibrium reactions in the lobster Homarus. Arrowheads designate excitatory influences. The model explains how either the right or left statocyst can alone control the righting responses of the appendages of one side, even though the afferent responses of the two statocysts to roll in one direction are opposite.

Adapted from Davis 183


Figure 13.

Positive‐feedback optomotor responses in the lobster Homarus. A: treadmill apparatus used to study the responses. The lobster is clamped in place above the striped belt and separated from it by a transparent Plexiglas platform. Thus the animal can see the stripes but cannot feel the belt movements. B–D: limb movements and electromyograms (emg) during backward movement of the belt beneath the animal. B, typical response of a walking leg; C, rapidly diminishing response; D, responses of two motor systems, the legs, and swimmerets (continuous records). In all records the lowest trace shows the treadmill speed (above the horizontal line; 1 vertical mark per cm of belt movement) and time marks (below the line; 1/100 ms). Arrows in D show increments in treadmill velocity; note corresponding increments in locomotor activity.

From Davis & Ayers 194. Copyright 1972 by the American Association for the Advancement of Science


Figure 14.

Summary of types of optomotor responses (left column) and hypothetical neuronal circuitry that can account for the corresponding responses (right column). A: the relatively simple case of forward locomotion only (e.g., flight in some insects). B: the more complex case of bidirectional locomotion (e.g., walking in lobsters). The models consist of lateral and medial motion detectors in the eyes and command centers for forward flight (A) or forward and backward walking (B). Turning is presumed to result from differential power output on the two sides (A) or oppositely directed locomotion on the two sides (B).



Figure 15.

Neural circuits controlling gill movements in Aplysia. Arrowheads represent excitatory synapses, while circles represent inhibitory synapses. A: centrally commanded movements. Int II probably represents several closely coupled interneurons. B: reflex gill‐withdrawal movements. The sensory input from the siphon (Sensory N) is direct (monosynaptic excitation) or mediated by interneuronal excitation and inhibition.

Adapted from Kandel 521. Copyright 1969 by the American Association for the Advancement of Science


Figure 16.

Examples of the major classes of motor programs. A: noncyclic. B: noncyclic, phasic program. C and D; cyclic programs. In A, recordings were made from the segmental superficial flexor nerve of the abdomen in an intact crayfish after removal of leg support (halfway through the upper record). This stimulus causes cessation of activity in flexor excitors 1–4, 6, and activation of the inhibitor 5. Continuous records. Time mark, 1 s. In B, electromyograms were recorded from the raptorial leg of Squilla during the rapid strike. From top to bottom, traces represent lateral flexor activity (ceases at the open arrow), lateral extensor activity, and limb movement (the strike occurs at the closed arrow). C, intracellular recordings from different pairs of somas of neurons involved in the pyloric cycle of the lobster stomatogastric rhythm. D, summary of the lobster stomatogastric rhythm. Upper graph, the pyloric cycle. Lower graph, the gastric cycle.

A, from Larimer & Eggleston 534; B, from Burrows 105; C, from Maynard 582; D, upper graph, adapted from Maynard 582; D, lower graph, adapted from Mulloney & Selverston 635


Figure 17.

Terminology for motor programs. L, latency; P, period. In H, cyclic output is shown at low‐output (left) and high‐output (right) frequencies, with amplitude inversely related to period. See text for further explanation.



Figure 18.

Known neural mechanisms for generating synergism (A) and antagonism (B) in motor systems. Synergism can result from excitatory (▵) coupling between motor neurons [A 1] or from common excitatory inputs to synergic motor neurons [A (2)]. Antagonism can result from reciprocal or unidirectional inhibitory (○) coupling between motor neurons supplying antagonistic muscles [B (1)]; from fixed delays in excitatory couplings between antagonistic motor neurons [B (2)]; or from opposite synaptic inputs from the same presynaptic source. Flex, flexor; ext, extensor. See text for further description.

B (3


Figure 19.

Summary of the neuronal circuitry in the abdominal ganglion controlling the heart and blood pressure of Aplysia. ▵, Excitatory connections; ○, inhibitory ones. The main features of interest are: 1) reciprocal inhibition between two command interneurons in the network (Int. II and the double‐action L10); and 2) lack of interactions at the level of motor neurons, e.g., (LDm).

Adapted from Koester et al. 503


Figure 20.

Demonstrated circuits of neurons that participate in the stomatogastric rhythm of the lobster. A: the pyloric rhythm (cf. Fig. 16D). B: the gastric rhythm (cf. Fig. 16D). The main features illustrated are electrical couplings between synergists (capacitance symbols in A, resistance symbols in B) and in some cases between antagonists (B), and chemical inhibition between antagonists (○ in A, • in B) and in some cases between synergists (A and B).

A, from Maynard 582; B, from Mulloney & Selverston 635


Figure 21.

Identified neuronal circuitry involving two locust flight neurons, namely 113 (a wing elevator) and 127 (a wing depressor). Rectangles represent delays at unknown numbers of synapses. Arrowheads represent excitatory connections, while circles represent inhibitory ones. The main features shown are: 1) delayed excitation between ipsilateral antagonists, and 2) delayed excitation between contralateral synergists, 3) descending excitation of the wing depressor, and 4) descending excitation and inhibition of the wing elevator. The structure of motor neurons 113 and 127 is shown in Figure 2

Adapted from Burrows 107


Figure 22.

Known and hypothetical neural mechanisms for generating rhythmic alternating motor output to antagonistic muscles; flex, flexor; ext, extensor. Arrows indicate excitatory connections; circles represent inhibitory ones. A: oscillation as a property of a single neuron; B: coupled oscillator neurons; C: oscillation as a network property; C (1): a reciprocal inhibitory network; C (2), a neuropilar network in which propagated changes in potential represent the oscillation. As noted in the text, the class of models exemplified in A and B will work only if the extensor motor neurons have a continuous endogenous or exogenous source of excitation.



Figure 23.

Oscillator neuron(s) in the lobster ventilatory system. A: intracellular recording from an oscillator neuron in the subesophageal ganglion while recording associated, spontaneous motor output extracellularly (lower two traces). B: imposed depolarization of the oscillator neuron inhibits activity of one group of motor neurons and excites antagonists. C: imposed hyperpolarization has the opposite effects. Vertical calibration for intracellular records, 34 mV; horizontal calibration, 310 ms.

From Mendelson 598. Copyright 1971 by the American Association for the Advancement of Science


Figure 24.

Central organization underlying swimming in Tritonia. Arrowheads represent chemical excitatory connections; circles, inhibitory connections and capacitance symbols, electrical connections. TGN, trigger neurons; GEN, general excitor neurons; DFN, dorsal flexor neurons; VFN, ventral flexor neurons; TeN, hypothetical terminator neurons. Sensory input is filtered through the network of trigger neurons and thence to dorsal flexion neurons. These activate general excitors, which presumably function to maintain excitation within the network even after the sensory stimulus ends. Terminator neurons are proposed to account for the apparently active termination of bursts.

Adapted from Willows et al. 921


Figure 25.

Schematization of a hypothetical model to account for rhythmic motor output. The sine waves (a–c) represent excitatory input to motor neurons having different thresholds (1–3). The chief features of the model are: 1) the excitation is sinusoidal; 2) the amplitude of the excitation is inversely related to period; and 3) the details of motor activity are determined by differences in motor neuron threshold that are related to motor neuron size.

From Davis 190


Figure 26.

Properties of a swimmeret command interneuron in the lobster Homarus. A: electrical stimulation of the interneuron causes rhythmic, alternating discharge to antagonistic swimmeret muscles. RS, return stroke; PS, power stroke. B: tactile stimulation of the ventral abdomen causes the interneuron (INT) to discharge and also elicits rhythmic swimmeret output. The third and fourth traces are a stimulus monitor and a time base (100 marks/s).

From Davis & Kennedy 196


Figure 27.

Behavioral effects of stimulating command interneurons in the circumeosophageal connectives of the crayfish, based on tracings from single frames of motion pictures. A: posture before (left) and after (right) stimulation of a command fiber for abdominal extension. B: same for claw elevation. C and D: position in one connective of fibers for forward and backward walking, respectively. E: the defense posture, as seen at different times following initiation of command fiber stimulation at 20/s at t + 0 s.

Adapted from Bowerman & Larimer 79,80


Figure 28.

Preeclosion behavior of the silk moth. Upper record, abdominal movements recorded on a kymograph drum. The activity is divided into three characteristic periods, namely: (1) the first hyperactive period; (2) the quiescent period; and (3) the second hyperactive period. Arrow marks the movement of adult emergence. Lower record, integrated electrical activity from an abdominal nerve of a deafferented nerve cord following application of eclosion hormone 40 min before the first burst. Note general similarity to the normal records in the upper record. Calibration refers to lower record.

From Truman & Sokolove 854. Copyright 1972 by the American Association for the Advancement of Science


Figure 29.

The behavioral hierarchy of the mollusc Pleurobranchaea. Unidirectional arrows from one behavioral act to another indicate that the former takes precedence over the latter. Bidirectional arrows indicate mutual compatibility (i.e., the two behavioral acts can occur together). The escape response takes precedence over all other behavioral acts. See text for further description.

From Davis et al. 202
References
 1. Abbott, B. C., F. Lang, and I. Parnas. Physiological properties of the heart and cardiac ganglion of Limulus polyphemus. Comp. Biochem. Physiol. 28: 149–158, 1969.
 2. Abraham, F. D., J. Palka, H. V. S. Peeke, and A. O. D. Willows. Model neural systems and strategies for the neurobiology of learning. Behav. Biol. 7: 1–24, 1972.
 3. Abraham, F. D., and A. O. D. Willows. Plasticity of a fixed action pattern in the sea slug Tritonia diomedia. Commun. Behav. Biol. A 6: 271–280, 1972.
 4. Alexander, R. D. Aggressiveness, territoriality, and sexual behavior in field crickets (Orthoptera: Gryllidae). Behaviour 17: 130–223, 1961.
 5. Alexandrowicz, J. S. The innervation of the heart of the crustacea. I. Decapoda. Quart. J. Microscop. Sci. 75: 181–249, 1932.
 6. Alexandrowicz, J. S. Muscle receptor organs in the abdomen of Homarus vulgaris and Palinurus vulgaris. Quart. J. Microscop. Sci. 92: 163–199, 1951.
 7. Alexandrowicz, J. S., and M. Whitear. Receptor elements in the coxal region of Decapod Crustacea. J. Marine Biol. Assoc. UK 36: 603–628, 1957.
 8. Alving, B. O. Spontaneous activity in isolated somata of Aplysia pacemaker neurons. J. Gen. Physiol. 51: 29–45, 1968.
 9. Anderson, M., and I. M. Cooke. Neural activation of the heart of the lobster Homarus americanus. J. Exptl. Biol. 55: 449–468, 1971.
 10. Ansell, A. D., and E. R. Trueman. Burrowing in Mercenaria mercenaria (L). (Bivalvia, Veneridae). J. Exptl. Biol. 46: 105–115, 1967.
 11. Aranda, L. C., and J. V. Luco. Further studies on an electrical correlate to learning: experiments in an isolated insect ganglion. Physiol. Behav. 4: 123–137, 1969.
 12. Arch, S. Polypeptide secretion from the isolated parietovisceral ganglion of Aplysia californica. J. Gen. Physiol. 59: 47–59, 1972.
 13. Aréchiga, H., and C. A. G. Wiersma. The effect of motor activity on the reactivity of single visual units in the crayfish. J. Neurobiol. 1: 53–70, 1969.
 14. Aréchiga, H., and C. A. G. Wiersma. Circadian rhythm of responsiveness in crayfish visual units. J. Neurobiol. 1: 71–85, 1969.
 15. Arshavsky, Y. I., M. B. Berkinblit, O. J. Fuxon, J. M. Gelfand, and G. N. Orlovsky. Origin of modulation in neurones of the ventral spinocerebellar tract during locomotion. Brain. Res. 43: 276–279, 1972.
 16. Arvanitaki, A., and N. Chalozonitis. Electrical properties and temporal organization in oscillatory neurons (Aplysia). In: Neurobiology of Invertebrates, edited by J. Salanki. New York: Plenum, 1968, p. 169–200.
 17. Ashley, C. C., and E. B. Ridgway. On the relationship between membrane potential, calcium transient and tension in single barnacle muscle fibres. J. Physiol. London 209: 105–130, 1970.
 18. Atwood, H. L. “Fast” and “slow” responses in Nephrops. Comp. Biochem. Physiol. 10: 77–81, 1963.
 19. Atwood, H. L. Excitation and inhibition in crab muscle fibers. Comp. Biochem. Physiol. 16: 409–426, 1965.
 20. Atwood, H. L. Crustacean neuromuscular mechanisms. Am. Zoologist 7: 527–551, 1967.
 21. Atwood, H. L. Variation in physiological properties of crustacean motor synapses. Nature 215: 57–58, 1967.
 22. Atwood, H. L. Z and T tubules in stomach muscles of the spiny lobster. J. Cell Biol. 50: 264–268, 1971.
 23. Atwood, H. L. An attempt to account for the diversity of crustacean muscles. Am. Zoologist 13: 357–378, 1973.
 24. Atwood, H. L. Crustacean muscle. In: Structure and Function of Muscle (2nd ed.), edited by G. Bourne. New York: Academic, 1972, vol. 1, part 1, p. 422–490.
 25. Atwood, H. L., and G. D. Bittner. Matching of excitatory and inhibitory inputs to crustacean muscle fibers. J. Neurophysiol. 34: 157–170, 1971.
 26. Atwood, H. L., and B. S. Dorai Raj. Tension development and membrane responses in phasic and tonic muscle fibers of a crab. J. Cellular Comp. Physiol. 64: 55–72, 1964.
 27. Atwood, H. L., F. Hoyle, and T. Smyth. Mechanical and electrical responses of singly innervated crab‐muscle fibers. J. Physiol. London 180: 449–482, 1965.
 28. Atwood, H. L., F. Lang, and W. A. Morin. Synaptic vesicles: selective depletion in crayfish excitatory and inhibitory axons. Science 176: 1353–1355, 1972.
 29. Atwood, H. L., and W. A. Morin. Neuromuscular and axoaxonal synapses of the crayfish opener muscle. J. Ultrastruct. Res. 32: 351–369, 1970.
 30. Atwood, H. L., and I. Parnas. Synaptic transmission in crustacean muscles with dual motor innervation. Comp. Biochem. Physiol. 27: 381–404, 1968.
 31. Atwood, H. L., I. Parnas, and C. A. G. Wiersma. Inhibition in crustacean phasic neuromuscular systems. Comp. Biochem. Physiol. 20: 163–177, 1967.
 32. Atwood, H. L., and C. A. G. Wiersma. Command interneurons in the crayfish central nervous system. J. Exptl. Biol. 46: 249–261, 1967.
 33. Baerends, G. P. Ethological studies of insect behavior. Ann. Rev. Entomol. 4: 207–234, 1959.
 34. Bailey, D. F., and M. S. Laverack. Aspects of the neurophysiology of Buccinum undatum L. (Gastropoda). I. Central responses to stimulation of the osphradium. J. Exptl. Biol. 44: 131–148, 1966.
 35. Bailey, D. F., and M. S. Laverack. Aspects of the neurophysiology of Buccinum undatum L. (Gastropoda). III. Central organization. J. Exptl. Biol. 44: 149–162, 1966.
 36. Baker, P. F., A. L. Hodgkin, and E. B. Ridgway. Depolarization and calcium entry in squid giant axons. J. Physiol. London 218: 709–755, 1971.
 37. Bangert, H. Untersuchungen zur Koordination der Kopf und Beinbeivegungen beim Haushuhn. Z. Tierpsychol. 17: 143–164, 1960.
 38. Bárány, M. ATPase activity of myosin correlated with speed of muscle shortening. J. Gen. Physiol. 50 Suppl.: 197–218, 1967.
 39. Barber, S. B., and J. W. S. Pringle. Functional aspects of flight in belostomatid bugs (Heteroptera). Proc. Roy. Soc. London Ser. B 164: 21–39, 1965.
 40. Barnes, W. J. P., and G. A. Horridge. Interaction of the movements of the two eyecups in the crab Carcinus. J. Exptl. Biol. 50: 651–671, 1969.
 41. Barnes, W. J. P., and G. A. Horridge. Two‐dimensional records of the eyecup movements of the crab Carcinus. J. Exptl. Biol. 50: 673–682, 1969.
 42. Barnes, W. J. P., C. P. Spirito, and W. H. Evoy. Nervous control of walking in the crab, Cardisoma guanhumi. II. Role of resistance reflexes in walking. Z. Vergleich. Physiol. 76: 16–31, 1972.
 43. Barth, G. Untersuchungen über Myochordotonalorgane bei dekapoden Crustaceen. Z. Wiss. Zool. Abt. A. 145: 576–624, 1934.
 44. Bastian, J. Neuro‐muscular mechanisms controlling a flight maneuver in the honeybee. J. Comp. Physiol. 77: 126–140, 1972.
 45. Bastian, J., and H. Esch. The nervous control of the indirect flight muscles of the honeybee. Z. Vergleich. Physiol. 67: 307–324, 1970.
 46. Baust, J. G. Temperature‐induced neural adaptations of motoneuron discharge in the Alaskan beetle Pterostichus brevicornis (Carabidae), Comp. Biochem. Physiol. 41A: 205–213, 1972.
 47. Bayliss, L. E. Living Control Systems. San Francisco: Freeman, 1966.
 48. Baylor, D. A., and J. G. Nicholls. Changes in extracellular potassium concentration produced by neuronal activity in the central nervous system of the leech. J. Physiol. London 203: 555–569, 1969.
 49. Baylor, D. A., and J. G. Nicholls. After‐effects of nerve impulses on signalling in the central nervous system of the leech. J. Physiol. London 203: 571–589, 1969.
 50. Baylor, D. A., and J. G. Nicholls. Patterns of regeneration between individual nerve cells in the central nervous system of the leech. Nature 232: 268–269, 1971.
 51. Belton, P. Innervation and neural excitation of ventral muscle fibres of larvae of the waxmoth Galleria mellonella. J. Insect Physiol. 15: 731–741, 1969.
 52. Bennett, M. V. L. Neural control of electric organs. In: The Central Nervous System and Fish Behavior, edited by D. Ingle. Chicago: Univ. of Chicago Press, 1968, p. 147–169.
 53. Bentley, D. R. Intracellular activity in cricket neurons during the generation of behaviour patterns. J. Insect Physiol. 15: 677–699, 1969.
 54. Bentley, D. R. Intracellular activity in cricket neurons during generation of song patterns. Z. Vergleich. Physiol. 62: 267–283, 1969.
 55. Bentley, D. R. A topological map of the locust flight system motoneurons. J. Insect Physiol. 16: 905–918, 1970.
 56. Bentley, D. R. Genetic control of an insect neuronal network. Science 174: 1139–1141, 1971.
 57. Bentley, D. Postembryonic development of insect motor systems. In: Developmental Neurobiology of Arthropods, edited by D. Young. Cambridge: Cambridge Univ. Press, 1973, p. 179–202.
 58. Bentley, D. R., and R. R. Hoy. Postembryonic development of adult motor patterns in crickets: a neural analysis. Science 170: 1409–1411, 1970.
 59. Bentley, D. R., and R. R. Hoy. Genetic control of the neural network generating cricket (Teleogryllus gryllus) song patterns. Animal Behav. 20: 478–492, 1972.
 60. Bentley, D. R., and W. Kutsch. The neuromuscular mechanism of stridulation in crickets (Orthoptera: Gryllidae) J. Exptl. Biol. 45: 151–164, 1966.
 61. Bergman, R. A. Motor nerve endings of twitch muscle fibers in Hippocampus hudsonius. J. Cell Biol. 32: 751–757, 1967.
 62. Berl, S., S. Puszkin, and W. J. Nicklas. Actomyosin‐like protein in brain. Science 179: 441–446, 1973.
 63. Bernays, E. A., W. M. Blaney, and R. F. Chapman. Changes in chemoreceptor sensilla on the maxillary palps of Locusta migratoria in relation to feeding. J. Exptl. Biol. 57: 745–753, 1972.
 64. Bernays, E. A., and R. F. Chapman. The control of changes in peripheral sensilla associated with feeding in Locusta migratoria (L.). J. Exptl. Biol. 57: 755–763, 1972.
 65. Bernays, E. A., and A. J. Mordue. Changes in the palp tip sensilla of Locusta migratoria in relation to feeding: the effects of different levels of hormone. Comp. Biochem. Physiol. 45A: 451–454, 1973.
 66. Berry, M. S. Electrotonic coupling between identified large cells in the buccal ganglia of Planorbis corneus. J. Exptl. Biol. 57: 173–185, 1972.
 67. Bethe, A. Studien über die Plasticität des Nervensystems. I. Arachnoideen und Crustaceen. Pfluegers Arch. Ges. Physiol. 224: 793–820, 1930.
 68. Birukow, G. Vergleichende Untersuchungen über das Helligkeits‐und Farbensehen bei Amphibien. Z. Vergleich. Physiol. 32: 348–382, 1950.
 69. Bishop, L. G., and D. G. Keehn. Neural correlates of the optomotor response in the fly. Kybernetik 6: 288–295, 1967.
 70. Bishop, L. G., D. G. Keehn, and G. D. McCann. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. J. Neurophysiol. 31: 509–525, 1968.
 71. Bittner, G. D. Differentiation of nerve terminals in the crayfish opener muscle and its functional significance. J. Gen. Physiol. 51: 731–758, 1968.
 72. Bittner, G. D. Degeneration and regeneration in custacean neuromuscular systems. Am. Zool. 13: 379–408, 1973.
 73. Bittner, G. D., and D. Kennedy. Quantitative aspects of transmitter release. J. Cell Biol. 47: 585–592, 1971.
 74. Blankenship, J. E., H. Wachtel, and E. R. Kandel. Ionic mechanisms of excitatory, inhibitory and dual synaptic actions mediated by an identified interneuron in abdominal ganglion of Aplysia. J. Neurophysiol. 34: 76–92, 1971.
 75. Bliss, J. C. Visual information processing in the beetle Lixus. In: Optical Processing, edited by D. K. Pollock, C. J. Koesler, and J. T. Tippett. Baltimore: Spartan, 1962, p. 124–144.
 76. Boettiger, E. G., and E. Furshpan. The mechanics of flight movements in Diptera. Biol. Bull. 102: 200–211, 1952.
 77. Boistel, J. The synaptic transmission and related phenomena in insects. Advan. Insect Physiol. 5: 1–64, 1968.
 78. Bowerman, R. F. A muscle receptor organ in the scorpion postabdomen. II. Reflexes evoked by MRO stretch and release. J. Comp. Physiol. 81: 147–157, 1972.
 79. Bowerman, R. F., and J. L. Larimer. Command fibers in the circumesophageal connectives of crayfish. I. Tonic fibers. J. Exptl. Biol. 60: 95–117, 1974.
 80. Bowerman, R. R., and J. L. Larimer. Command fibers in the circumesophageal connectives of crayfish. II. Phasic fibers. J. Exptl. Biol. 60: 119–134, 1974.
 81. Bracho, H., and R. K. Orkand. Effect of calcium on excitatory neuromuscular transmission in the crayfish. J. Physiol. London 206: 61–71, 1970.
 82. Brady, J. Control of the circadian rhythm of activity in the cockroach. I. The role of the corpora cardiaca, brain and stress. J. Exptl. Biol. 47: 153–163, 1967.
 83. Brady, J. Control of the circadian rhythm of activity in the cockroach. II. The role of the subesophageal ganglion and ventral nerve cord. J. Exptl. Biol. 47: 165–178, 1967.
 84. Brady, J. Control of the circadian rhythm of activity in the cockroach. III. A possible role of the blood‐electrolytes. J. Exptl. Biol. 49: 39–47, 1968.
 85. Braitenberg, V., and C. Taddei‐Ferretti. Landing reaction of Musca domestica: dependence on dimensions and position of the stimulus. J. Exptl. Biol. 52: 233–256, 1970.
 86. Brandt, P. W., J. P. Reuben, L. Girardier, and H. Grundfest. Correlated morphological and physiological studies on isolated single muscle fibers. I. Fine structure of the crayfish muscle fiber. J. Cell Biol. 24: 233, 1965.
 87. Brenner, H. R. Evidence for peripheral inhibition in an arachnid muscle. J. Comp. Physiol. 80: 227–231, 1972.
 88. Brodwick, M. S., and D. Junge. Post‐stimulus hyperpolarization and slow potassium conductance increase in Aplysia giant neurone. J. Physiol. London 223: 549–570, 1972.
 89. Brown, H. F. Electrophysiological investigations of the heart of Squilla mantis. I. The ganglionic nerve trunk. J. Exptl. Biol. 41: 689–700, 1964.
 90. Brown, M. C. Some effects of receptor muscle contraction on the responses of slowly adapting abdominal stretch receptors of the crayfish. J. Exptl. Biol. 46: 445–458, 1967.
 91. Bruner, J., and D. Kennedy. Habituation: occurrence at a neuromuscular junction. Science 169: 92–94, 1970.
 92. Budelmann, B.‐V. Die Arbeitsweise der Statolithenorgane von Octopus vulgaris. Z. Vergleich. Physiol. 70: 278–312, 1970.
 93. Buller, A. J., J. C. Eccles, and R. M. Eccles. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol. London 150: 417–439, 1960.
 94. Bullock, T. H. Physiological mapping of giant nerve fiber systems in polychaete annelids. Physiol. Comp. Oecol. 1: 1–14, 1948.
 95. Bullock, T. H. Simple systems for the study of learning mechanisms. Neurosci. Res. Program Bull. 4 (2): 105–233, 1966.
 96. Bullock, T. H., and C. A. Terzuolo. Diverse forms of activity in the somata of spontaneous and integrating ganglion cells. J. Physiol. London 138: 341–364, 1957.
 97. Burgers, A. C. J. Optomotor reactions of Xenopus laevis. Physiol. Comp. Oecol. 2: 272–281, 1951.
 98. Burke, R. E. On the central nervous system control of fast and slow twitch motor units. In: New Developments in Electromyography and Clinical Neurophysiology, edited by J. Desmedt. Basel: Karger, 1973, vol. III, p. 69–94.
 99. Burke, R. E., D. N. Levine, F. E. Zajac III, P. Tsairis, and W. K. Engel. Mammalian motor units: physiological‐histochemical correlation in three types in cat gastrocnemius. Science 174: 709–712, 1971.
 100. Burke, R. E., P. Rudomin, and F. E. Zajac III. Catch property in single mammalian motor units. Science 168: 122, 124, 1970.
 101. Burke, W. An organ for proprioception and vibration sense in Carcinus maenas. J. Exptl. Biol. 31: 127–138, 1954.
 102. Burke, W., and B. L. Ginsborg. The electrical properties of the slow muscle membrane. J. Physiol. London 132: 586–598, 1956.
 103. Burkhardt, D. Die Erregungstvorgänge sensibler Ganglienzellen in Abhängigkeit von der Temperatur. Biol. Zentralbl. 78: 22–61, 1959.
 104. Burns, B. D., and G. C. Salmoiraghi. Repetitive firing of respiratory neurones during their burst activity. J. Neurophysiol. 23: 27–46, 1960.
 105. Burrows, M. The mechanics and neural control of the prey capture strike in the mantid shrimps Squilla and Hemisquilla. Z. Vergleich. Physiol. 62: 361–381, 1969.
 106. Burrows, M. Physiological and morphological properties of the metathoracic common inhibitory neuron of the locust. J. Comp. Physiol. 82: 59–78, 1973.
 107. Burrows, M. The role of delayed excitation in the co‐ordination of some metathoracic flight motoneurons of a locust. J. Comp. Physiol. 83: 135–164, 1973.
 108. Burrows, M. The morphology of an elevator and a depressor motoneuron of the hindwing of a locust. J. Comp. Physiol. 83: 165–178, 1973.
 109. Burrows, M., and G. A. Horridge. The action of the eyecup muscles of the crab, Carcinus, during optokinetic movements. J. Exptl. Biol. 49: 223–250, 1968.
 110. Burrows, M., and G. A. Horridge. Motoneurone discharges to the eyecup muscles of the crab Carcinus. J. Exptl. Biol. 49: 251–267, 1968.
 111. Burrows, M., and G. A. Horridge. Eyecup withdrawal in the crab Carcinus and its interaction with the optokinetic response. J. Exptl. Biol. 49: 285–297, 1968.
 112. Burrows, M., and G. Hoyle. Neuromuscular physiology of the strike mechanism of the mantis shrimp, Hemisquilla. J. Exptl. Zool. 179: 379–394, 1972.
 113. Burrows, M., and G. Hoyle. Neural mechanisms underlying behavior in the locust Schistocerea gregaria. III. Topography of limb motoneurons in the metathoracic ganglion. J. Neurobiol. 4: 167–186, 1973.
 114. Burrows, M., and G. Hoyle. The mechanism of rapid running in the ghost crab Ocypode ceratophthalmia. J. Exptl. Biol. 58: 327–350, 1973.
 115. Burrows, M., and A. O. D. Willows. Neuronal co‐ordination of rhythmic maxilliped beating in Brachyuran and Anomuran Crustacea. Comp. Biochem. Physiol. 31: 121–135, 1969.
 116. Bursey, C. R., and R. A. Pax. Cardioregulatory nerves in Limulus polyphemus. Comp. Biochem. Physiol. 35: 41–48, 1970.
 117. Bursey, C. R., and R. A. Pax. Microscopic anatomy of the cardiac ganglion of Limulus polyphemus. J. Morphol. 130: 385–396, 1970.
 118. Burton, A. J. Directional change in a flying beetle. J. Exptl. Biol. 54: 575–585, 1971.
 119. Bush, B. M. H. Peripheral reflex inhibition in the claw of the crab Carcinus maenas (L.). J. Exptl. Biol. 39: 71–88, 1962.
 120. Bush, B. M. H. Proprioceptive reflexes in the legs of Carcinus maenas (L.). J. Exptl. Biol. 39: 89–105, 1962.
 121. Bush, B. M. H. A comparative study of certain limb reflexes in decapod crustaceans. Comp. Biochem. Physiol. 10: 273–290, 1963.
 122. Bush, B. M. H. Leg reflexes from chordotonal organs in the crab, Carcinus maenas. Comp. Biochem. Physiol. 15: 567–587, 1965.
 123. Bush, B. M. H., and A. Roberts. Resistance reflexes from a crab muscle receptor without impulses. Nature 218: 1171–1173, 1968.
 124. Bush, B. M. H., and A. Roberts. Coxal muscle receptors in the crab: the receptor potentials of S and T fibres in response to ramp stretches. J. Exptl. Biol. 55: 813–832, 1971.
 125. Callec, J. J., J. C. Guillet, Y. Pichon, and J. Boistel. Further studies on synaptic transmission in insects. II. Relations between sensory information and its synaptic integration at the level of a single giant axon in the cockroach. J. Exptl. Biol. 55: 123–149, 1971.
 126. Camhi, J. Locust wind receptors. I. Transducer mechanics and sensory response. J. Exptl. Biol. 50: 335–348, 1969.
 127. Camhi, J. Locust wind receptors. II. Interneurons in the cervical connective. J. Exptl. Biol. 50: 349–362, 1969.
 128. Camhi, J. M. Locust wind receptors. III. Contribution to flight initiation and lift control. J. Exptl. Biol. 50: 363–374, 1969.
 129. Camhi, J. M. Yaw‐correcting postural changes in locusts. J. Exptl. Biol. 52: 519–531, 1970.
 130. Camhi, J. M. Sensory control of abdomen posture in flying locusts. J. Exptl. Biol. 52: 519–531, 1970.
 131. Camhi, J. M., and M. Hinkle. Attentiveness to sensory stimuli: central control in locusts. Science 175: 550–553, 1972.
 132. Carew, T. J., V. F. Castellucci, and E. R. Kandel. An analysis of dishabituation and sensitization of the gill‐withdrawal reflex in Aplysia. Intern. J. Neurosci. 2: 79–98, 1971.
 133. Carew, T. J., and E. R. Kandel. Mediation of inking behavior in Aplysia californica by an identified neuron in the abdominal ganglion (Abstract). Federation Proc. 32: 368, 1973.
 134. Carew, T. J., H. M. Pinsker, and E. R. Kandel. Long‐term habituation of a defensive withdrawal reflex in Aplysia. Science 175: 451–454, 1972.
 135. Carew, T. J., J. H. Schwartz, and E. R. Kandel. Innervation of Aplysia gill muscle fibers by two identified excitatory motor neurons using different chemical transmitters (Abstract). Physiologist 15: 100, 1972.
 136. Carlson, A. J. The nervous origin of the heartbeat in Limulus. Am. J. Physiol. 12: 67–74, 1904.
 137. Carpenter, D. O. Temperature effects on pacemaker generation, membrane potential, and critical firing threshold in Aplysia neurons. J. Gen. Physiol. 50: 1469–1484, 1968.
 138. Carpenter, D. O. Membrane potential produced directly by the Na+ pump. Comp. Biochem. Physiol. 35: 371–385, 1970.
 139. Carpenter, D. O., and B. O. Alving. A contribution of an electrogenic Na+ pump to membrane potential in Aplysia neurons. J. Gen. Physiol. 52: 1–21, 1968.
 140. Carpenter, D., and R. Gunn. The dependence of pacemaker discharge of Aplysia neurons upon Na+ and Ca++, J. Cellular Physiol. 75: 121–128, 1970.
 141. Castellucci, V., H. Pinsker, I. Kupfermann, and E. R. Kandel. Neuronal mechanisms of habituation and dishabituation of the gill‐withdrawal reflex in Aplysia. Science 167: 1745–1748, 1970.
 142. Cedar, H., E. R. Kandel, and J. H. Schwartz. Cyclic adenosine monophosphate in the nervous system of Aplysia californica. J. Gen. Physiol. 60: 558–569, 1972.
 143. Cedar, H., and J. H. Schwartz. Cyclic adenosine monophosphate in the nervous system of Aplysia californica. II. Effect of serotonin and dopamine. J. Gen. Physiol. 60: 570–587, 1972.
 144. Chapman, G. The hydrostatic skeleton in the invertebrates. Biol. Rev. 33: 338–371, 1958.
 145. Chapman, G. The hydraulic system of Urechis caupo Fisher and MacGinitie. J. Exptl. Biol. 49: 657–667, 1968.
 146. Chapple, W. D. Motoneuron responses to visual stimuli in Oncopeltus fasciatus Dallas. J. Exptl. Biol. 45: 401–410, 1967.
 147. Chapple, W. D. Role of the abdomen in the regulation of shell position in the hermit crab Pagurus pollicarus. J. Comp. Physiol. 82: 317–332, 1972.
 148. Clarac, F. Proprioception by the ischio‐meropodite region in legs of the crab Carcinus mediterraneus C. Z. Vergleich. Physiol. 61: 224–245, 1968.
 149. Clarac, F. Fonctions proprioceptives au niveau de la région basi‐ischio‐méropodite chez Astacus leptodactylus. Z. Vergleich. Physiol. 68: 1–24, 1970.
 150. Clarac, F., and M. Coulmance. La Marche latérale du crabe (Carcinus). Coordination des mouvements articulaires et régulation proprioceptive. Z. Vergleich. Physiol. 73: 408–438, 1971.
 151. Clarac, F., and M. R. Dando. Tension receptor reflexes in the walking legs of the crab Cancer pagurus. Nature 243: 94–95, 1973.
 152. Clarac, F., and C. Masson. Anatomie comparée des propriocepteurs de la région basi‐ischio‐méropodite chez certains Crustacés décapodes. Z. Vergleich. Physiol. 65: 242–273, 1969.
 153. Clarac, F., W. Wales, and M. S. Laverack. Stress detection at the autotomy plane in the decapod crustacea. II. The function of receptors associated with the cuticle of the basiischiopodite. Z. Vergleich. Physiol. 73: 383–407, 1971.
 154. Clarac, F., and J. P. Vedel. Etude des relations fonctionnelles entre le muscle fléchisseur accessoire et les organes sensoriels chordotonaux et myochordotonaux des appendices locomoteurs de la langouste Palinurus vulgaris. Z. Vergleich. Physiol. 72: 386–410, 1971.
 155. Cochrane, D. G., H. Y. Elder, and P. N. R. Usherwood. Physiology and ultrastructure of phasic and tonic skeletal muscle fibres in the locust, Schistocerca gregaria. J. Cell Sci. 10: 419–441, 1972.
 156. Coggeshall, R. E. The muscle cells of the follicle of the ovotestis in Aplysia as the probable target organ for bag cell extract. Am. Zoologist 12: 521–523, 1972.
 157. Coggshall, J. C. Sufficient stimuli for the landing response in Oncopeltus fasciatus. Naturwissenshaften 58: 100–101, 1971.
 158. Coggshall, J. C. The landing response and visual processing in the milkweed bug, Oncopeltus fasciatus. J. Exptl. Biol. 57: 401–413, 1972.
 159. Cohen, M. I. Discharge patterns of brain‐stem respiratory neurons in relation to carbon dioxide tension. J. Neurophysiol. 31: 142–165, 1968.
 160. Cohen, M. J. The function of receptors in the statocyst of the lobster Homarus americanus. J. Physiol. London 130: 9–34, 1955.
 161. Cohen, M. J. Muscle fibers and efferent nerves in a crustacean receptor muscle. Quart. J. Microscop. Sci. 104: 551–559, 1963.
 162. Cohen, M. J. The crustacean myochondotonal organ as a proprioceptive system. Comp. Biochem. Physiol. 8: 223–243, 1963.
 163. Cohen, M. J. The peripheral organization of sensory systems. In: Neural Theory and Modeling, edited by R. F. Reiss. Stanford, Calif.: Stanford Univ. Press, p. 273–292, 1964.
 164. Cohen, M. J., and A. Hess. Fine structural differences in “fast” and “slow” muscle fibers of the crab. Am. J. Anat. 121: 285–304, 1967.
 165. Cohen, M. J., and J. W. Jacklet. The functional organization of motor neurons in an insect ganglion. Phil. Trans. Roy. Soc. London Ser. B 252: 563–571, 1967.
 166. Cole, R. A., and B. M. Twarog. Relaxation of catch in a molluscan smooth muscle. I. Effects of drugs which act on the adenyl cyclase system. Comp. Biochem. Physiol. 43A: 321–330, 1972.
 167. Collett, T. Visual neurones in the anterior optic tract of the privet hawk moth. J. Comp. Physiol. 78: 396–433, 1972.
 168. Collett, T., and A. D. Blest. Binocular, directionally selective neurones, possibly involved in the optomotor response of insects. Nature 212: 1330–1333, 1966.
 169. Collewijn, H. Oculomotor reactions in the cuttlefish, Sepia officinalis. J. Exptl. Biol. 52: 369–384, 1970.
 170. Connor, J. A. Burst activity and cellular interaction in the pacemaker ganglion of the lobster heart. J. Exptl. Biol. 50: 275–297, 1969.
 171. Cook, A. Habituation in a freshwater snail (Limnaea stagnalis). Animal Behav. 178: 463–474, 1970.
 172. Cooke, I. M. The sites of action of pericardial organ extract and 5‐hydroxytryptamine in the decapod crustacean heart. Am. Zoologist 6: 107–121, 1966.
 173. Corning, W. C., and R. Lahue. Invertebrate strategies in comparative learning studies. Am. Zoologist 12: 455–469, 1972.
 174. Courchesne, E., and G. W. Barlow. Effect of isolation on components of aggressive and other behavior in the hermit crab, Pagurus samuelis. Z. Vergleich Physiol. 75: 32–48, 1971.
 175. Craig, W. Appetites and aversions as constituents of instincts. Biol. Bull. 34: 91–107, 1918.
 176. Grossman, A. R., G. A. Kerkut, R. M. Pitman, and R. J. Walker. Electrically excitable nerve cell bodies in the central ganglia of two insect species, Periplaneta americana and Schistocerca gregaria. Investigation of cell geometry and morphology by intracellular dye injection. Comp. Biochem. Physiol. 40A: 579–594, 1971.
 177. Crossman, A. R., G. A. Kerkut, and R. J. Walker. Electrophysiological studies on the axon pathways of specified nerve cells in the central ganglia of two insect species, Periplaneta americana and Schistocerea gregaria. Comp. Biochem. Physiol. 43A: 393–415, 1972.
 178. Dagan, D., and I. Parnas. Giant fibre and small fibre pathways involved in the evasive response of the cockroach, Periplaneta americana. J. Exptl. Biol. 52: 313–324, 1970.
 179. Daly, J. M., S. M. Evans, and J. Morley. Changes in behavior associated with pair formation in the polychaete Harmothoë imbricata (L.). Marine Behav. Physiol. 1: 49–69, 1972.
 180. Dando, M. R., and A. I. Selverston. Command fibres from the supraoesophageal ganglion to the stomatogastric ganglion in Panulirus argus. J. Comp. Physiol. 78: 138–175, 1972.
 181. Davis, W. J. Quantitative analysis of swimmeret beating in the lobster. J. Exptl. Biol. 48: 643–662, 1968.
 182. Davis, W. J. Lobster righting responses and their neural control. Proc. Roy. Soc. London Ser. B 170: 435–456, 1968.
 183. Davis, W. J. The neuromuscular basis of lobster swimmeret beating. J. Exptl. Zool. 168: 363–378, 1968.
 184. Davis, W. J. Cricket wing movements during stridulation. Animal Behav. 16: 72–73, 1968.
 185. Davis, W. J. The neural control of swimmeret beating in the lobster. J. Exptl. Biol. 50: 99–118, 1969.
 186. Davis, W. J. Reflex organization in the swimmeret system of the lobster: I. Intrasegmental reflexes. J. Exptl. Biol. 51: 547–563, 1969.
 187. Davis, W. J. Reflex organization in the swimmeret system of the lobster. II. Reflex dynamics. J. Exptl. Biol. 51: 565–573, 1969.
 188. Davis, W. J. Motoneuron morphology and synaptic contacts: determination by intracellular dye injection. Science 168: 1358–1360, 1970.
 189. Davis, W. J. Functional significance of motoneuron size and soma position in swimmeret system of the lobster. J. Neurophysiol. 34: 274–288, 1971.
 190. Davis, W. J. The integrative action of the nervous system in crustacean equilibrium reactions. In: Gravity and the Organism, edited by S. A. Gordon and M. J. Cohen. Chicago: Univ. of Chicago Press, 1971, p. 237–247.
 191. Davis, W. J. Development of locomotor patterns in absence of peripheral sense organs and muscles. Proc. Natl. Acad. Sci. US 70: 954–958, 1973.
 192. Davis, W. J. Neuronal organization and ontogeny in the lobster swimmeret system. In: Control of Posture and Locomotion, edited by R. B. Stein, K. B. Pearson, R. S. Smith, and J. B. Redford. New York: Plenum, 1974, p. 437–455.
 193. Davis, W. J., and J. L. Ayers, Jr. Locomotion: control by positive feedback optokinetic responses. Science 177: 183–185, 1972.
 194. Davis, W. J., and K. B. Davis. Ontogeny of a simple locomotor system: role of the periphery in specifying the development of the central nervous system. Am. Zoologist 13: 409–425, 1973.
 195. Davis, W. J., and D. Kennedy. Command interneurons controlling swimmeret movements in the lobster. I. Types of effects on motoneurons. J. Neurophysiol. 35: 1–12, 1972.
 196. Davis, W. J., and D. Kennedy. Command interneurons controlling swimmeret movements in the lobster. II. Interaction of effects on motoneurons. J. Neurophysiol. 35: 13–19, 1972.
 197. Davis, W. J., and D. Kennedy. Command interneurons controlling swimmeret movements in the lobster. III. Temporal relationships among bursts in the different motoneurons. J. Neurophysiol. 35: 20–29, 1972.
 198. Davis, W. J., and G. J. Mpitsos. Behavioral choice and habituation in the marine mollusk Pleurobranchaea californica MacFarland (Gastropoda, Opisthobranchia). Z. Vergleich Physiol. 75: 207–232, 1971.
 199. Davis, W. J., G. J. Mpitsos, and J. M. Pinneo. The behavioral hierarchy of the mollusk Pleurobranchaea. I. The dominant position of the feeding behavior. J. Comp. Physiol. 90: 207–224, 1974.
 200. Davis, W. J., G. J. Mpitsos, and J. M. Pinneo. The behavioral hierarchy of the mollusk Pleurobranchaea. II. Hormonal suppression of feeding associated with egg laying. J. Comp. Physiol. 90: 225–243, 1974.
 201. Davis, W. J., G. J. Mpitsos, M. V. S. Siegler, and J. M. Pinneo. Neuronal substrates of behavioral hierarchies and associative learning in the mollusk Pleurobranchaea. Am. Zoologist. 14: 1037–1050, 1974.
 202. Davis, W. J., and R. K. Murphey. Bursting patterns of swimmeret motoneurones in the lobster, simulated with a digital computer. J. Exptl. Biol. 50: 119–128, 1969.
 203. Davis, W. J., M. V. S. Siegler, and G. J. Mpitsos. Distributed neuronal oscillators and efference copy in the feeding system of Pleurobranchaea. J. Neurophysiol. 36: 258–274, 1973.
 204. Del Castillo, J., M. Anderson, and D. S. Smith. Proventriculus of a marine annelid: muscle preparation with the longest recorded sarcomere. Proc. Natl. Acad. Sci. US 69: 1669–1672, 1972.
 205. Del Castillo, J., and B. Katz. Quantal components of the end‐plate potential. J. Physiol. London 124: 560–573, 1954.
 206. Del Castillo, J., W. C. De Mello, and T. Morales. The initiation of action potentials in the somatic musculature of Ascaris lumbricoides. J. Exptl. Biol. 46: 263–279, 1967.
 207. Delcomyn, F. The locomotion of the cockroach Periplaneta americana. J. Exptl. Biol. 54: 443–452, 1971.
 208. Delcomyn, F. The effect of limb amputation on locomotion in the cockroach Periplaneta americana. J. Exptl. Biol. 54: 453–469, 1971.
 209. Delcomyn, F. Computer aided analysis of a locomotor leg reflex in the cockroach Periplaneta americana. Z. Vergleich. Physiol. 74: 427–445, 1971.
 210. Dennis, M. J. Electrophysiology of the visual system in a nudibranch mollusc. J. Neurophysiol. 30: 1439–1465, 1967.
 211. Dethier, V. G. The physiology and histology of the contact chemoreceptors of the blowfly. Quart. Rev. Biol. 30: 348–371, 1955.
 212. Dethier, V. G. Chemosensory input and taste discrimination in the blowfly. Science 161: 389–391, 1968.
 213. Dethier, V. G., R. L. Solomon, and L. H. Turner. Sensory input and central excitation and inhibition in the blowfly. J. Comp. Physiol. Psychol. 60: 303–313, 1965.
 214. Dijkgraaf, S. The statocyst of Octopus vulgaris as a rotation receptor. Publ. Staz. Zool. Napoli 32: 62–87, 1961.
 215. Dingle, H. Turn alternation by bugs on causeways as a delayed compensatory response and the effects of varying visual inputs and length of straight path. Animal Behav. 13: 171–177, 1965.
 216. Dingle, H. A statistical and information analysis of aggressive communication in the mantis shrimp Gonodactylus bredini Manning. Animal Behav. 17: 561–575, 1969.
 217. Dorai Raj, B. S. Diversity of crab muscle fibers innervated by a single motor axon. J. Cellular Comp. Physiol. 64: 41–64, 1964.
 218. Dorsett, D. A. The pedal neurons of Aplysia punctata. J. Exptl. Biol. 48: 127–140, 1968.
 219. Dorsett, D. A., A. O. D. Willows, and G. Hoyle. Centrally generated nerve impulse sequences determining swimming behavior in Tritonia. Nature 224: 711–712, 1969.
 220. Dorsett, D. A., A. O. D. Willows, and G. Hoyle. The neuronal basis of behavior in Tritonia. IV. The central origin of a fixed action pattern demonstrated in the isolated brain. J. Neurobiol. 4: 287–300, 1974.
 221. Dowling, J. E., and F. S. Werblin. Synaptic organization of the vertebrate retina. Vision Res. Suppl. 3: 1–15, 1971.
 222. Dudel, J. Potential changes in crayfish motor nerve terminal during repetitive stimulation. Pfluegers Arch. Ges. Physiol. 282: 323–337, 1965.
 223. Dudel, J., and S. W. Kuffler. The quantal nature of transmission and spontaneous miniature potentials at the crayfish neuromuscular junction. J. Physiol. London 155: 514–529, 1961.
 224. Dudal, J., and S. W. Kuffler. Mechanism of facilitation at the crayfish neuromuscular junction. J. Physiol. London 155: 530–542, 1961.
 225. Dudel, J., and S. W. Kuffler. Presynaptic inhibition at the crayfish neuromuscular junction. J. Physiol. London 155: 543–562, 1961.
 226. Dugard, J. J. Directional changes in flying locusts. J. Insect Physiol. 13: 1055–1064, 1967.
 227. Eberhard, W. Computer simulation of orb‐web construction. Am. Zoologist 9: 229–238, 1969.
 228. Eckert, B. Über das Zusammenwirken des errengenden und des hemmenden Neurons des M. Abductor der Krebsschere beim Ablauf von Reflexen des myotätischen Typus. Z. Vergleich. Physiol. 41: 500–526, 1959.
 229. Eckert, R. Electrical interaction of paired ganglion cells in the leech. J. Gen. Physiol. 46: 573–578, 1963.
 230. Eckert, R. Bioelectric control of ciliary activity. Science 176: 473–481, 1972.
 231. Eckert, R., and Y. Naitoh. Passive electrical properties of Paramecium and problems of ciliary coordination. J. Gen. Physiol. 55: 467–483, 1970.
 232. Eckert, R., and Y. Naitoh. Bioelectric control of locomotion in the ciliates. J. Protozool. 19: 237–243, 1972.
 233. Eckert, R., Y. Naitoh, and K. Friedman. Sensory mechanisms in Paramecium. I. Tow components of the electric response to mechanical stimulation of the anterior surface. J. Exptl. Biol. 56: 683–694, 1972.
 234. Edwards, J. S., and J. Palka. Neural regeneration: delayed formation of central contacts by insect sensory cells. Science 172: 591–594, 1971.
 235. Edwards, J. S., and T. S. Sahota. Regeneration of a sensory system: the formation of central connections by normal and transplanted cerci of the house cricket Acheta domesticus. J. Exptl. Zool. 166: 387–396, 1968.
 236. Eisenstein, E. M. Learning and memory in isolated insect ganglia. Advan. Insect Physiol. 9: 111–181, 1972.
 237. Eisenstein, E. M., and M. J. Cohen. Learning in an isolated prothoracic insect ganglion. Animal Behav. 13: 104–108, 1965.
 238. Eisenstein, E. M., and G. H. Krasilovsky. Studies of learning in isolated insect ganglia. In: Invertebrate Nervous Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 329–332.
 239. Elder, H. Y. High frequency muscles used in sound production by a katydid. II. Ultrastructure of the singing muscles. Biol. Bull. 141: 434–448, 1971.
 240. Ellis, C. H. The mechanism of extension in the leg of spiders. Biol. Bull. 86: 41–50, 1942.
 241. Elsner, N. Kommandofasern im Zentralnervensystem der Heuschrecke Gastrimargus africanus (Oedipodinae). Zool. Anz. 33: 465–471, 1969.
 242. Elsner, N., and F. Huber. Die Organisation des Werbegesanges der Heuschrecke Gomphocerippus rufus in Abhängigkeit von zentralen und peripheren Bedingungen. Z. Vergleich. Physiol. 65: 389–423, 1969.
 243. Emson, P., R. J. Walker, and G. A. Kerkut. Chemical changes in a molluscan ganglion associated with learning. Comp. Biochem. Physiol. 40B: 223–239, 1972.
 244. Esch, H. Wagging movements in the wasp Polistes versicolor vulgaris Bequaert. Z. Vergleich. Physiol. 72: 221–225, 1971.
 245. Esch, H., and J. A. Bastian. How do newly recruited honey bees approach a food site? Z. Vergleich. Physiol. 68: 175–181, 1970.
 246. Eskin, A. Properties of the Aplysia visual system: in vitro entrainment of the circadian rhythm and centrifugal regulation of the eye. Z. Vergleich, Physiol. 74: 353–371, 1971.
 247. Evans, H. E. Comparative Ethology of Digger Wasps of the Genus Bembix. New York: Cornell Univ. Press, 1957.
 248. Evans, H. E. The behavior patterns of solitary wasps. Ann. Rev. Entomol. 11: 123–154, 1966.
 249. Evoy, W. H., W. J. P. Barnes, and C. P. Spirito. Interactions between central commands and reflexes in crab walking legs. Am. Zoologist 10: 500–501, 1970.
 250. Evoy, W. H., and M. J. Cohen. Sensory and motor interaction in the locomotor reflexes of crabs. J. Exptl. Biol. 51: 151–169, 1969.
 251. Evoy, W. H., and M. J. Cohen. Central and peripheral control of arthropod movements. Advan. Comp. Physiol. Biochem. 4: 225–266, 1971.
 252. Evoy, W. H., and C. R. Fourtner. Nervous control of walking in the crab, Cardisoma guanhumi. III. Proprioceptive influences on intra‐ and intersegmental coordination. J. Comp. Physiol. 83: 303–318, 1973.
 253. Evoy, W. H., and D. Kennedy. The central nervous organization underlying control of antagonistic muscles in the crayfish. I. Types of command fibers. J. Exptl. Zool. 165: 223–238, 1967.
 254. Evoy, W. H., D. Kennedy, and D. M. Wilson. Discharge patterns of neurones supplying tonic abdominal flexor muscles in the crayfish. J. Exptl. Biol. 46: 393–411, 1967.
 255. Eyzaguirre, C., and S. W. Kuffler. Processes of excitation in the dendrites and in the soma of single isolated sensory nerve cells of the lobster and crayfish. J. Gen. Physiol. 39: 87–119, 1955.
 256. Fahrenbach, W. H. The fine structure of fast and slow crustacean muscles. J. Cell Biol. 35: 69–79, 1967.
 257. Farley, R. D., and J. F. Case. Sensory modulation of ventilative pacemaker output in the cockroach, Periplaneta americana. J. Insect Physiol. 14: 591–601, 1968.
 258. Farley, R. D., J. F. Case, and K. D. Roeder. Pacemaker for tracheal ventilation in the cockroach, Periplaneta americana (L.). J. Insect Physiol. 13: 1713–1728, 1967.
 259. Fatt, P., and B. Katz. Distributed “end‐plate potentials” of crustacean muscle fibres. J. Exptl. Biol. 29: 433–439, 1953.
 260. Fedde, M. R., P. D. DeWet, and R. L. Kitchell. Motor unit recruitment pattern and tonic activity in respiratory muscles of Gallus domesticus. J. Neurophysiol. 32: 995–1004, 1969.
 261. Fermi, G., and W. Reichardt. Optomotorische Reaktionen der Fliege Musca domestica. Kybernetik 2: 15–28, 1963.
 262. Fields, H. L. Proprioceptive control of posture in the crayfish abdomen. J. Exptl. Biol. 44: 455–468, 1966.
 263. Fields, H. L., W. H. Evoy, and D. Kennedy. Reflex role played by efferent control of an invertebrate stretch receptor. J. Neurophysiol. 30: 859–874, 1967.
 264. Fields, H. L., and D. Kennedy. Functional role of muscle receptor organs in the crayfish. Nature 206: 1235–1237, 1965.
 265. Fourtner, C. R., and W. H. Evoy. Nervous control of walking in the crab, Cardisoma guanhumi. IV. Effects of myochordotonal organ ablation. J. Comp. Physiol. 83: 319–329, 1973.
 266. Fourtner, C. R., and R. A. Pax. Chelicerate neuromuscular systems: the distal flexior of the mero‐carpopodite of Limulus polyphemus (L). Comp. Biochem. Physiol. 41: 617–627, 1972.
 267. Fourtner, C. R., C. D. Drewes, and R. A. Pax. Rhythmic motor outputs co‐ordinating the respiratory movement of the gill plates of Limulus polyphemus. Comp. Biochem. Physiol. 38A: 751–762, 1971.
 268. Frank, E. Matching of facilitation at the neuromuscular junction of the lobster: a possible case for influence of muscle on nerve. J. Physiol. London 233: 635–658, 1973.
 269. Franzini‐Armstrong, C. Natural variability in the length of thick and thin filaments in single fibres from a crab, Portunus depurator. J. Cell Sci. 6: 559–592, 1970.
 270. Frazier, T. T., E. R. Kandel, I. Kupfermann, R. Waziri, and R. E. Coggeshall. Morphological and functional properties of identified neurons in the abdominal ganglion of Aplysia californica. J. Neurophysiol. 30: 1288–1351, 1967.
 271. Free, J. B. Stimuli eliciting mating behaviour of bumblebee (Bombus pratorum L.) males. Behaviour 40: 55–61, 1971.
 272. Frisch, K. V. Honeybees: do they use direction and distance information provided by their dancers? Science 158: 1072–1075, 1967.
 273. Frisch, K. V. The Dance Language and Orientation of Bees. Cambridge, Mass. Harvard Univ. Press, 1967.
 274. Furshpan, E. J., and D. D. Potter. Transmission at the giant motor synapses of the crayfish. J. Physiol. London 145: 289–325, 1959.
 275. Gainer, H. Electrophysiological behavior of an endogenously active neurosecretory cell. Brain Res. 39: 403–418, 1972.
 276. Gardner, B. T. Hunger and sequential responses in the hunting behavior of salticid spiders. J. Comp. Physiol. Psychol. 58: 167–173, 1964.
 277. Gardner, B. Hunger and characteristics of the prey in the hunting behavior of salticid spiders. J. Comp. Physiol. Psychol. 62: 475–479, 1966.
 278. Gardner, D. Bilateral symmetry and interneuronal organization in the buccal ganglia of Aplysia. Science 173: 550–553, 1971.
 279. Gardner, D., and E. R. Kandel. Diphasic postsynaptic potential: a chemical synapse capable of mediating conjoint excitation and inhibition. Science 176: 675–678, 1972.
 280. Gelperin, A. Control of crop emptying in the blowfly. J. Insect Physiol. 12: 331–345, 1966.
 281. Gelperin, A. Investigations of a foregut receptor essential to taste threshold regulation in the blowfly. J. Insect Physiol. 12: 829–841, 1966.
 282. Gelperin, A. Abdominal sensory neurons providing negative feedback to the feeding behavior of the blowfly. Z. Vergleich. Physiol. 72: 17–31, 1971.
 283. Gelperin, A. Regulation of feeding. Ann. Rev. Entomol. 16: 365–378, 1971.
 284. Gelperin, A. Neural control systems underlying insect feeding behavior. Am. Zool. 12: 489–496, 1972.
 285. Gelperin, A., and V. G. Dethier. Long‐term regulation of sugar intake by the blowfly. Physiol. Zool. 40: 218–228, 1967.
 286. Gerstein, G. L., and D. H. Perkel. Mutual temporal relationships among neuronal spike trains. Statistical techniques for display and analysis. Biophys. J. 12: 453–473, 1972.
 287. Getting, P. A. The sensory control of motor output in fly proboscis extension. Z. Vergleich. Physiol. 74: 103–120, 1971.
 288. Gettrup, E. Phasic stimulation of a thoracic stretch receptor in locusts. J. Exptl. Biol. 40: 323–333, 1963.
 289. Gettrup, E. Sensory regulation of wing twisting in locusts. J. Exptl. Biol. 44: 1–15, 1966.
 290. Geweke, M. Antennen und Stirn‐Scheitelhaare von Locusta migratoria L. als Lufströmungs‐Sinnesorgane ber der Flugsteuerung. J. Comp. Physiol. 80: 57–94, 1972.
 291. Gilai, A., and I. Parnas. Neuromuscular physiology of the closer muscles in the pedysalp of the scorpion Leiurus guinquestriatus. J. Exptl. Biol. 52: 325–344, 1970.
 292. Gilhousen, H. C. The use of vision and of the antennae in the learning of crayfish. Univ. Calif. Berkeley Publ. Physiol. 7: 73–89, 1927.
 293. Gillary, H. L., and D. Kennedy. Pattern generation in a crustacean motoneuron. J. Neurophysiol. 32: 595–606, 1969.
 294. Gillary, H. L., and D. Kennedy. Neuromuscular effects of impulse pattern in a crustacean motoneuron. J. Neurophysiol. 32: 607–612, 1969.
 295. Godden, D. H. The neural basic for locust jumping. Am. Zoologist 9: 1139, 1970.
 296. Godden, D. H. The motor innervation of the leg musculature and motor output during thanatosis in the stick insect Carausius morosus Br. J. Comp. Physiol. 80: 201–225, 1972.
 297. Godden, D. H., and T. H. Goldsmith. Photoinhibition of arousal in the stick insect Carausius. Z. Vergleich. Physiol. 76: 135–145, 1972.
 298. Goodman, L. Hair receptors in locusts. Hair plates on the first cervical sclerites of the Orthoptera. Nature 183: 1006–1007, 1959.
 299. Goodman, L. H. The landing responses of insects. I. The landing resonse of the fly Lucilia sericata and other calliphorinae. J. Exptl. Biol. 37: 854–878, 1960.
 300. Goodman, L. J. The role of certain optomotor reactions in regulating stability in the rolling plane during flight in the desert locust, Schistocerca gregaria. J. Exptl. Biol. 42: 385–407, 1965.
 301. Gorman, A. L. F., and M. Mirolli. The input‐output organization of a pair of giant neurones in the mollusc. Anisodoris nubilis (MacFarland). J. Exptl. Biol. 51: 615–634, 1969.
 302. Gorman, A. L. F., and M. Mirolli. Axonal localization of an excitatory post‐synaptic potential in a molluscan neurone. J. Exptl. Biol. 53: 727–736, 1970.
 303. Götz, K. G. Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2: 77–92, 1964.
 304. Götz, K. G. Behavioral analysis of the visual system of the fruitfly Drosophila. In: Proceedings of the Symposium on Information Processing in Sight Sensory Systems, edited by P. W. Nyl. Pasadena: Calif. Inst. Tech., 1965, 85–100.
 305. Götz, K. G. Flight control in Drosophila by visual perception of motion. Kybernetik 4: 199–208, 1968.
 306. Götz, K. G. Movement discrimination in insects. In: Processing of Optical Data by Organisms and by Machines, edited by W. Reichart, New York: Academic, 1969, p. 494–509.
 307. Götz, K. G. Fractionation of Drosophila populations according to optomotor traits. J. Exptl. Biol. 52: 419–436, 1970.
 308. Götz, K. G. Processing of cues from the moving environment in the Drosophila navigation system. In: Information Processing in the Visual Systems of Arthropods, edited by R. Wehner. New York: Springer‐Verlag, 1972, p. 255–263.
 309. Götz, K. G., and C. Gambke. Zum Bewegungssehen des Mehlkäfers Tenebrio molitor. Kybernetik 4: 225–228, 1968.
 310. Gould, J. L., M. Henerey, and M. C. Macleod. Communication of direction by the honey bee. Science 169: 544–554, 1970.
 311. Govind, C. K., H. L. Atwood, and F. Lang. Synaptic differentiation in a regenerating crab limb muscle. Proc. Natl. Acad. Sci. US 70: 822–826, 1973.
 312. Govind, C. K., and J. W. T. Dandy. Non‐fibrillar muscles and the start and cessation of flight in the milkweed bug, Oncopeltus. J. Comp. Physiol. 77: 398–417, 1972.
 313. Graham, D. A behavioral analysis of the temporal organisation of walking movements in the first instar and adult stick insect (Carausius morosus). J. Comp. Physiol. 81: 23–52, 1972.
 314. Grampp, W. Firing with multiple‐spike discharges in the slowly adapting stretch receptor neuron of the lobster. Acta Physiol. Scand. 66: 484–494, 1966.
 315. Grampp, W. Multiple‐spike discharge evoking after‐depolarizations in the slowly adapting stretch receptor neuron of the lobster. I. The labile and the fast after‐depolarization. Acta Physiol. Scand. 67: 100–105, 1966.
 316. Grampp, W. Multiple‐spike discharge evoking after‐depolarizations in the slowly adapting stretch receptor neuron of the lobster. II. The slow after‐depolarization. Acta Physiol. Scand. 67: 116–126, 1966.
 317. Granit, R., C. G. Phillips, S. Skoglund, and G. Steg. Differentiation of tonic from phasic alpha ventral horn cells by stretch, pinna and crossed extensor reflexes. J. Neurophysiol. 20: 470–481, 1957.
 318. Gray, J. Aspects of animal locomotion. Proc. Roy. Soc. London Ser. B 128: 28–62, 1939.
 319. Gray, J., and H. W. Lissmann. The effect of de‐afferentation upon the locomotory activity of amphibian limbs. J. Exptl. Biol. 17: 227–236, 1940.
 320. Gray, J., and H. W. Lissmann. Further observations on the effect of de‐afferentation on the locomotory activity of amphibian limbs. J. Exptl. Biol. 23: 121–132, 1946.
 321. Gray, J., H. W. Lissman, and R. J. Pumphrey. The mechanism of locomotion in the leech (Hirudo medicinalis Ray). J. Exptl. Biol. 15: 408–430, 1938.
 322. Gray, J., and A. Sand. The locomotory rhythm of the dogfish (Scyllium cornicula). J. Exptl. Biol. 13: 200–209, 1936.
 323. Günther, J. Giant motor neurons in the earthworm. Comp. Biochem. Physiol. 42A: 967–973, 1972.
 324. Guth, L. “Trophic” influences of nerve on muscle. Physiol. Rev. 48: 645–687, 1968.
 325. Guth, L., P. K. Watson, and W. C. Brown. Effects of cross‐reinnervation on some chemical properties of red and white muscles of rat and cat. Exptl. Neurol. 20: 52–69, 1968.
 326. Guthrie, D. M. Multipolar stretch receptors and the insect leg reflex. J. Insect Physiol. 13: 1637–1644, 1967.
 327. Guthrie, D. M., and J. R. Banks. The development of patterned activity by implanted ganglia and their peripheral connexions in Periplaneta americana. J. Exptl. Biol. 50: 255–273, 1969.
 328. Gwilliam, G. F., and J. C. Bradbury. Activity patterns in the isolated central nervous system of the barnacle and their relation to behavior. Biol. Bull. 141: 502–513, 1971.
 329. Gyr, J. W. Is a theory of direct visual perception adequate? Psychol. Bull. 77: 246–261, 1972.
 330. Hagiwara, S. Nervous activities of the heart in crustacea. Ergeb. Biol. 24: 284–311, 1961.
 331. Hagiwara, S., and T. H. Bullock. Intracellular potentials in pacemaker and integrative neurons of the lobster cardiac ganglion. J. Cellular Comp. Physiol. 50: 25–47, 1957.
 332. Hagiwara, S. M. P. Kenkart, and Y. Kidokoro. Excitation‐contraction coupling in Amphioxus muscle cells. J. Physiol. London 219: 233–251, 1971.
 333. Hagiwara, S., and H. Morita. Electrotonic transmission between two nerve cells in leech ganglion. J. Neurophysiol. 25: 721–731, 1962.
 334. Hagiwara, S., and A. Watanabe. Discharges in motoneurons of cicada. J. Cellular Comp. Physiol. 47: 415–428, 1956.
 335. Hagiwara, S., A. Watanabe, and N. Saito. Potential changes in syncytial neurons of lobster cardiac ganglion. J. Neurophysiol. 22: 554–572, 1959.
 336. Hagopian, M., and D. Spiro. The filament lattice of cockroach thoracic muscle. J. Cell Biol. 36: 433–442, 1968.
 337. Hammond, R. A. Changes of internal hydrostatic pressure and body shape in Acanthocephalus ranae. J. Exptl. Biol. 45: 197–204, 1966.
 338. Hammond, R. A. The proboscis mechanism of Acanthocephalus ranae. J. Exptl. Biol. 45: 205–213, 1966.
 339. Hanegan, J. L., and J. E. Heath. Temperature dependence of the neural control of the moth flight system. J. Exptl. Biol. 53: 629–639, 1971.
 340. Hanson, J., and J. Lowy. Structure and function of the contractile apparatus in the muscles of invertebrate animals. In: Structure and Function of Muscle, edited by G. H. Bourne. New York: Academic, 1960, p. 264–335.
 341. Harcombe, E. S., and R. J. Wyman. Diagonal locomotion in de‐afferented toads. J. Exptl. Biol. 53: 255–263, 1970.
 342. Harmon, L. D. Neuromimes: action of a reciprocally inhibitory pair. Science 146: 1323–1325, 1964.
 343. Harmon, L. D., and E. R. Lewis. Neural modeling. Physiol. Rev. 46: 513–591, 1966.
 344. Harris, C. L., and T. Smyth, Jr. Delayed firing of giant axons in the American cockroach. J. Insect Physiol. 17: 1565–1577, 1971.
 345. Harris, C. L., and T. J. Smyth, Jr. Structural details of cockroach giant axons revealed by injected dye. Comp. Biochem. Physiol. 40A: 295–303, 1971.
 346. Hartline, D. K. Impulse identification and axon mapping of the nine neurons in the cardiac ganglion of the lobster Homarus americanus. J. Exptl. Biol. 47: 327–340, 1967.
 347. Hartline, D. K., and I. M. Cooke. Postsynaptic membrane response predicted from presynaptic input pattern in lobster cardiac ganglion. Science 164: 1080–1082, 1969.
 348. Hartline, H. K., H. C. Wagner, and F. Ratliff. Inhibition in the eye of Limulus. J. Gen. Physiol. 39: 651–673, 1956.
 349. Haskell, P. T. (editor). Insect behaviour. London: Roy. Entomol. Soc., 1966. (Symp. no. 3.).
 350. Hassenstein, B. Ommatidienraster und afferente Bewegungs‐Integration (Versuche am Rüsselkäfer Chlorophanus viridis). Z. Vergleich. Physiol. 33: 301–326, 1951.
 351. Hayes, W. N., D. R. Hertzler, and D. K. Hogberg. Visual responsiveness and habituation in the turtle. J. Comp. Physiol. Psychol. 65: 331–335, 1968.
 352. Hayes, W. N., and L. C. Ireland. Optokinetic responses of the guinea pig. J. Comp. Physiol. Psychol. 68: 199–202, 1969.
 353. Hazlett, B. A. Factors affecting the aggressive behavior of the hermit crab Calcinus tibrien. Z. Tierpsychol. 23: 655–671, 1966.
 354. Hazlett, B. A. Size relationship and aggressive behavior in the hermit crab Clibanarius vittatus. Z. Tierpsychol. 25: 608–614, 1968.
 355. Hazlett, B. A. Communicatory effect of body position in Pagurus bernhardus (L.) (Decapoda, Anomura). Crustaceana 14: 210–214, 1968.
 356. Hazlett, B. A. Chemical and chemotactic stimulation of feeding behavior in the hermit crab Petrochirus diogenes. Comp. Biochem. Physiol. 39A: 665–670, 1971.
 357. Hazlett, B. A. Responses to agonistic postures by the spider crab Microphrys bicornutus. Marine Behav. Physiol. 1: 85–92, 1972.
 358. Hazlett, B. Stereotypy of agonistic movements in the spider crab Microphorys bicornutus. Behaviour 42: 270–278, 1972.
 359. Hazlett, B. A., and W.‐H. Bossert. A statistical analysis of the aggressive communication of some hermit crabs. Animal Behav. 13: 357–373, 1965.
 360. Hecht, S., and G. Wald. The visual acuity and intensity discrimination of Drosophila. J. Gen. Physiol. 17: 517–547, 1934.
 361. Hecht, S., and E. Wolf. The visual acuity of the honey bee. J. Gen. Physiol. 12: 727–760, 1929.
 362. Heide, G. Flugsteuerung durch nicht‐fibrilläre Flugmuskeln bei der Schmeissfliege Calliphora. Z. Vergleich. Physiol. 59: 456–460, 1968.
 363. Heiligenberg, W. The stimulation of territorial singing in house crickets. Z. Vergleich. Physiol. 53: 114–129, 1966.
 364. Heinrich, B., and G. A. Bartholomew. An analysis of preflight warmup in the sphinx moth, Manduca sexta. J. Exptl. Biol. 55: 223–239, 1971.
 365. Heisenberg, M. Comparative behavioral studies on two visual mutants of Drosophila. J. Comp. Physiol. 80: 119–136, 1972.
 366. Heisenberg, M. Behavioral diagnostics; a way to analyze visual mutants of Drosophila. In: Information Processing in the Visual System of Arthropods, edited by R. Wehner. New York: Springer‐Verlag, 1972, p. 215–230.
 367. Helmholtz, H. Von. Treatise on Physiological Optics (3rd ed.), edited and translated by P. C. Southall. Menasha, Wis.: Optical Soc. Am., 1925, vol. 3.
 368. Henneman, E. Relation between size of neurons and their susceptibility to discharge. Science 126: 1345–1347, 1957.
 369. Henneman, E., and C. B. Olson. Relations between structure and function in the design of skeletal muscles. J. Neurophysiol. 28: 581–598, 1965.
 370. Henneman, E., G. Somjen, and D. O. Carpenter. Functional significance of cell size in spinal motoneurons. J. Neurophysiol. 28: 560–580, 1965.
 371. Heran, H., and M. Lindauer. Windkompensation und Seitenwind‐korrektur der Bienen beim Flug über Wasser. Z. Vergleich. Physiol. 47: 39–55, 1963.
 372. Herz, M. J., H. V. S. Keeke, and E. J. Wyers. Temperature and conditioning in the earthworm, Lumbricus terrestris. Animal Behav. 12: 502–507, 1964.
 373. Herz, M. J., H. V. S. Peeke, and E. J. Wyers. A new response in the earthworm: classical conditioning of the extension response to vibratory stimulation. Physiol. Behav. 2: 409–411, 1967.
 374. Hess, A., and G. Pilar. Slow fibers in the extraocular muscles of the cat. J. Physiol. London 169: 780–793, 1963.
 375. Heyer, C. B., S. G. Kater, and U. L. Karlsson. Neuromuscular systems in molluscs. Am. Zool. 13: 247–270, 1973.
 376. Hidaka, T., Y. Ito, H. Kuriyama, and N. Tashiro. The neuromuscular transmission in the longitudinal layer of somatic muscle of the earthworm. J. Exptl. Biol. 50: 405–416, 1969.
 377. Hinde, R. A. Animal Behavior. New York: McGraw‐Hill, 1966.
 378. Hinkle, M., and J. M. Camhi. Locust motoneurons: bursting activity correlated with axon diameter. Science 175: 553–556, 1972.
 379. Hodgkin, A. L., and A. F. Huxley. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. London 116: 497–506, 1952.
 380. Hodgkin, A. L., and A. F. Huxley. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. London 117: 500–544, 1952.
 381. Hodgson, E. S., and K. D. Roeder. Electrophysiological studies of arthropod chemoreception. I. General properties of the labellar chemoreceptors of diptera. J. Cellular Comp. Physiol. 48: 51–76, 1956.
 382. Holst, E. Von. Relations between the central nervous system and the peripheral organs. Brit. J. Animal Behav. 2: 89–94, 1954.
 383. Holst, E. Von, and H. Mittelstadt. Das Reafferenzprincip. Naturwissenschaften 37: 464–476, 1950.
 384. Horn, G. Physiological and psychological aspects of selective perception. In: Advances in the Study of Behavior, edited by D. S. Lehrman, R. A. Hinde, and E. Shaw. London: Academic, 1965, vol. 1, p. 155–215.
 385. Horridge, G. A. Relations between nerves and cilia in ctenophores. Am. Zool. 5: 357–375, 1965.
 386. Horridge, G. A. Optokinetic memory in the crab Carcinus. J. Exptl. Biol. 44: 233–245, 1966.
 387. Horridge, G. A. Optokinetic memory in the locust. J. Exptl. Biol. 44: 255–261, 1966.
 388. Horridge, G. A. Optokinetic responses of the crab Carcinus to a single moving light. J. Exptl. Biol. 44: 263–274, 1966.
 389. Horridge, G. A. Adaptation and other phenomena in the optokinetic response of the crab Carcinus. J. Exptl. Biol. 44: 285–295, 1966.
 390. Horridge, G. A. Study of a system, as illustrated by the optokinetic response. Symp. Soc. Exptl. Biol. 20: 179–198, 1966.
 391. Horridge, G. A. Perception of polarization plane, colour and movement in two dimensions by the crab Carcinus. Z. Vergleich. Physiol. 55: 207–224, 1967.
 392. Horridge, G. A., and M. Burrows. Tonic and phasic systems in parallel in the eyecup responses of the crab Carcinus. J. Exptl. Biol. 49: 269–284, 1968.
 393. Horridge, G. A., and M. Burrows. The onset of the fast phase in the optokinetic response of the crab Carcinus. J. Exptl. Biol. 49: 299–313, 1968.
 394. Horridge, G. A., and M. Burrows. Efferent copy and voluntary eyecup movement in the crab, Carcinus. J. Exptl. Biol. 49: 315–324, 1968.
 395. Horridge, G. A., and D. C. Sandeman. Nervous control of optokinetic responses in the crab Carcinus. Proc. Roy. Soc. London Ser. B 161: 216–246, 1964.
 396. Horridge, G. A., J. H. Scholes, S. Shaw, and J. Tunstall. Extracellular recordings from single neurones in the optic lobe and brain of the locust. In: The Physiology of the Insect Central Nervous System, edited by J. E. Treherne and J. W. L. Beament. New York: Academic, 1965, p. 165–202.
 397. Horridge, G. A., and P. R. B. Shepheard. Perception of movement by the crab. Nature 209: 267–269, 1966.
 398. Hotta, Y., and S. Benzer. Abnormal electroretinograms in mutants of Drosophila. Nature 222: 354–356, 1969.
 399. Hoy, R. R. Degeneration and regeneration in abdominal flexor motor neurons in the crayfish. J. Exptl. Zool. 172: 219–232, 1969.
 400. Hoy, R. R., G. D. Bittner, and D. Kennedy. Regeneration in crustacean motoneurons: evidence for axonal fusion. Science 156: 251–252, 1967.
 401. Hoy, R. R., and R. C. Paul. Genetic control of song specificity in crickets. Science 180: 82–83, 1973.
 402. Hoyle, G. Potassium ions and insect nerve muscle. J. Exptl. Biol. 30: 121–135, 1953.
 403. Hoyle, G. Changes in the blood potassium concentration of the African migratory locust (Locusta migratoria migratorioides R & F) during food deprivation, and the effect on neuromuscular activity. J. Exptl. Biol. 31: 260–270, 1954.
 404. Hoyle, G. The anatomy and innervation of locust skeletal muscle. Proc. Roy. Soc. London Ser. B 143: 281–292, 1955.
 405. Hoyle, G. Neuromuscular mechanisms of a locust skeletal muscle. Proc. Roy. Soc. London Ser. B 143: 343–367, 1955.
 406. Hoyle, G. Diversity of striated muscle. Am. Zoologist 7: 435–450, 1967.
 407. Hoyle, G. Correlated physiological and ultrastructural studies on specialized muscles. Ia. Neuromuscular physiology of the levator of the eyestalk of Podophthalmus vigil (Weber). J. Exptl. Zool. 167: 471–486, 1968.
 408. Hoyle, G. Resting tension, “negative” contraction and “break” contraction in specialized crustacean muscle fibers. J. Exptl. Zool. 167: 551–566, 1968.
 409. Hoyle, G. Comparative aspects of muscle. Ann. Rev. Physiol. 31: 43–84, 1969.
 410. Hoyle, G. Cellular mechanisms underlying behaviour‐neuroethology. In: Advances in Insect Physiology, edited by J. W. L. Beament, J. E. Treherne, and V. B. Wigglesworth. London: Academic, 1970, vol. 7, p. 349–444.
 411. Hoyle, G., and M. Burrows. Neural mechanisms underlying behavior in the locust Shistocerca gregaria. I. Physiology of identified motoneurons in the metathoracic ganglion. J. Neurobiol. 4: 3–41, 1973.
 412. Hoyle, G., and M. Burrows. Neural mechanisms underlying behavior in the locust Shistocerca gregaria. II. Integrative activity in metathoracic neurons. J. Neurobiol. 4: 43–67, 1973.
 413. Hoyle, G., J. H. McAlaer, and A. Selverston. Mechanism of supercontraction in a striated muscle. J. Cell Biol. 26: 621–640, 1965.
 414. Hoyle, G., and P. A. McNeill. Correlated physiological and ultrastructural studies on specialized muscles. Ib. Ultrastructure of white and pink fibers of the levator of the eyestalk of Podophthalmus vigil (Weber). J. Exptl. Zool. 167: 487–522, 1968.
 415. Hoyle, G., and P. A. McNeill. Correlated physiological and ultrastructural studies on specialised muscles. Ic. Neuromuscular junctions in the eyestalk levator muscles of Podophthalmus vigil (Weber). J. Exptl. Zool. 167: 523–550, 1968.
 416. Hoyle, G., and T. Smyth. Neuromuscular physiology of giant muscle fibers of a barnacle, Balanus nubilus Darwin. Comp. Biochem. Physiol. 10: 291–314, 1963.
 417. Hoyle, G., and A. O. D. Willows. Neuronal basis of behavior in Tritonia. II. Relationship of muscular contraction to nerve impulse pattern. J. Neurobiol. 4: 239–254, 1974.
 418. Hüber, F. Untersuchungen über die Funktion des Zentralnervensystems und insbesondere des Gehirns bei der Forthewegung und der Lauterzeugung der Grillen. Z. Vergleich Physiol. 44: 60–132, 1960.
 419. Hüber, F. Central nervous control of sound production in crickets and some speculations on its evolution. Evolution 16: 429–442, 1962.
 420. Hüber, F. Brain controlled behavior in Orthopterans. In: The Physiology of the Insect Central Nervous System, edited by J. E. Treherne and J. W. L. Beament. New York: Academic, 1965, p. 233–246.
 421. Hüber, F. Central control of movements and behavior of invertebrates. In: Invertebrate Nervous Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 333–351.
 422. Hughes, G. M. The co‐ordination of insect movements. II. The effect of limb amputation and the cutting of commissures in the cockroach (Blatta orientalis). J. Exptl. Biol. 34: 306–333, 1957.
 423. Hughes, G. M., and C. A. G. Wiersma. The co‐ordination of swimmeret movements in the crayfish, Procambarus clarkii (Girard). J. Exptl. Biol. 37: 657–670, 1960.
 424. Huxley, A. F., and R. Niederggerke. Interference microscopy of living muscle fibres. Nature 173: 971–973, 1954.
 425. Huxley, T. H. The Crayfish (4th ed.). London: Paul, 1884.
 426. Ikeda, K., and E. G. Boettiger. Studies on the flight mechanism of insects. II. The innervation and electrical activity of the fibrillar muscles of the bumble‐bee, Bombus. J. Insect Physiol. 11: 779–789, 1965.
 427. Ikeda, K., and E. G. Boettiger. Studies on the flight mechanism of insects. III. The innervation and electrical activity of the basalar fibrillar flight muscle of the beetle, Oryctes rhinoceros. J. Insect Physiol. 11: 791–802, 1965.
 428. Ikeda, K., and W. D. Kaplan. Patterned neural activity of a mutant Drosophila melanogaster. Proc. Natl. Acad. Sci. US 66: 765–772, 1970.
 429. Ikeda, K., and W. D. Kaplan. Unilaterally patterned neural activity of gynandromorphs, mosaic for a neurological mutant of Drosophila melanogaster. Proc. Natl. Acad. Sci. US 67: 1480–1487, 1970.
 430. Ikeda, K., and C. A. G. Wiersma. Autogenic rhythmicity in the abdominal ganglia of the crayfish: the control of swimmeret movements. Comp. Biochem. Physiol. 12: 107–115, 1964.
 431. Iles, J. F. Structure and synaptic activation of the fast coxal depressor motoneurone of the cockroach, Periplaneta americana. J. Exptl. Biol. 56: 647–656, 1972.
 432. Iles, J. F., and K. G. Pearson. Coxal depressor muscles of the cockroach and the role of peripheral inhibition. J. Exptl. Biol. 55: 151–164, 1971.
 433. Irisawa, H., and K. Hama. Contact of adjacent nerve fibres in the cardiac nerve of mantis shrimp. Japan. J. Physiol. 15: 323–330, 1965.
 434. Irisawa, H., and A. Irisawa. The electrocardiogram of a stomatopod. Biol. Bull. 112: 358–362, 1957.
 435. Jacklet, J. W. Circadian locomotor activity in Aplysia. J. Comp. Physiol. 79: 325–341, 1972.
 436. Jacklet, J. W., and M. J. Cohen. Synaptic connections between a transplanted insect ganglion and muscles of the host. Science 156: 1638–1640, 1967.
 437. Jacklet, J. W., and M. J. Cohen. Nerve regeneration: correlation of electrical, histological and behavioral events. Science 156: 1640–1643, 1967.
 438. Jahan‐Parwar, B., M. Smith, and R. Von Baumgarten. Activation of neurosecretory cells in Aplysia by osphradial stimulation. Am. J. Physiol. 216: 1246–1257, 1969.
 439. Jahromi, S. S., and H. L. Atwood. Ultrastructural features of crayfish phasic and tonic muscle fibers. Can. J. Zool. 45: 601–606, 1967.
 440. Jahromi, S. S., and H. L. Atwood. Correlation of structure, speed of contraction, and total tension in fast and slow abdominal muscle fibers of the lobster (Homarus americanus). J. Exptl. Zool. 171: 25–38, 1969.
 441. Jahromi, S. S., and H. L. Atwood. Structural features of muscle fibers in the cockroach leg. J. Insect Physiol. 15: 2255–2262, 1969.
 442. Jahromi, S. S., and H. L. Atwood. Structural and contractile properties of lobster leg‐muscle fibers. J. Exptl. Zool. 176: 475–486, 1971.
 443. Jansen, J. K. S., and J. G. Nicholls. Regeneration and changes in synaptic connections between individual nerve cells in the central nervous system of the leech. Proc. Natl. Acad. Sci. US 69: 636–639, 1972.
 444. Johnson, D. L. Honeybees: do they use the direction information contained in their dance maneuver? Science 155: 844–847, 1967.
 445. Johnson, W., P. D. Soden, and E. R. A. Truman. A study in jet propulsion: an analysis of the motion of the squid, Loligo vulgaris. J. Exptl. Biol. 56: 155–165, 1972.
 446. Johnstone, J. R., and R. F. Mark. Evidence for efference copy for eye movements in fish. Comp. Biochem. Physiol. 30: 931–939, 1969.
 447. Johnstone, J. R., and R. F. Mark. The efference copy neuron. J. Exptl. Biol. 54: 403–414, 1972.
 448. Jones, M. D. R. The acoustic behaviour of the bush cricket Pholidoptera griseoaptera. 1. Alternation, synchronism and rivalry between males. J. Exptl. Biol. 45: 15–30, 1966.
 449. Jones, M. D. R. The acoustic behaviour of the bush cricket Pholidoptera griseoaptera. 2. Interaction with artificial sound signals. J. Exptl. Biol. 45: 31–44, 1966.
 450. Jones, M. D. R., H. Hill, and A. M. Hope. The circadian flight activity of the mosquito Anopheles gambiae: phase setting by the light regime. J. Exptl. Biol. 47: 503–511, 1967.
 451. Jones, H. D., and E. R. Trueman. Locomotion of the limpet, Patella vulgata L. J. Exptl. Biol. 52: 201–216, 1970.
 452. Josephson, R. K., and K. W. Flessa. Cryolite: a medium for the study of burrowing aquatic organisms. Limnol. Oceanogr. 17: 134–135, 1972.
 453. Josephson, R. K., and R. C. Halverson. High frequency muscles used in sound production by a katydid. I. Organization of the motor system. Biol. Bull. 141: 411–433, 1971.
 454. Junge, D., and C. L. Stevens. Cyclic variation of potassium conductance in a burst‐generating neurone in Aplysia. J. Physiol. London 235: 155–181, 1973.
 455. Kahan, L. Neural control of postural muscles in Callianassa californiensis and three other species of decapod crustaceans. Comp. Biochem. Physiol. 40A: 1–18, 1971.
 456. Kaiser, W., and L. G. Bishop. Directionally selective motion detecting units in the optic lobe of the honeybee. Z. Vergleich. Physiol. 67: 403–413, 1970.
 457. Kalmus, H. The optomotor responses of some eye mutants of Drosophila. J. Genetics 45: 206–213, 1943.
 458. Kalmus, H. Lack of optomotor reactions in a white‐eyed mutant of Culex molestus. Nature 157: 502–513, 1946.
 459. Kalmus, H. Optomotor reactions in Drosophila and Musca. Physiol. Comp. Oecol. 1: 127–147, 1949.
 460. Kalmus, H. Insects as mathematicians. Nature 202: 1156–1160, 1964.
 461. Kammer, A. E. Muscle activity during flight in some large lepidoptera. J. Exptl. Biol. 47: 277–295, 1967.
 462. Kammer, A. E. Motor patterns during flight and warm‐up in lepidoptera. J. Exptl. Biol. 48: 89–111, 1968.
 463. Kammer, A. E. Thoracic temperature, shivering, and flight in the monarch butterfly, Danaus plexippus (L.). Z. Vergleich. Physiol. 68: 334–344, 1970.
 464. Kammer, A. E. A comparative study of motor patterns during pre‐flight warm‐up in hawkmoths. Z. Vergleich. Physiol. 70: 45–56, 1970.
 465. Kammer, A. E. The motor output during turning flight in a hawkmoth, Manduca septa. J. Insect Physiol. 17: 1073–1086, 1971.
 466. Kammer, A. E. Influence of acclimation temperature on the shivering behavior of the butterfly Danaus plexippus (L.). Z. Vergleich. Physiol. 72: 364–369, 1971.
 467. Kammer, A. E., and B. Heinrich. Neural control of bumblebee fibrillar muscles during shivering. J. Comp. Physiol. 78: 337–345, 1972.
 468. Kandel, E. R. An invertebrate system for the cellular analysis of simple behaviors and their modification. In: The Neurosciences: Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, Mass.: MIT Press, 1974, p. 347–370.
 469. Kandel, E. R., V. Castellucci, H. Pinsker, and I. Kupfermann. The role of synaptic plasticity in the short‐term modification of behavior. In: Short‐Term Changes in Neural Activity and Behavior, edited by G. Horn and R. A. Hinde. Cambridge: Cambridge Univ. Press, 1970, p. 281–322.
 470. Kandel, E. R., W. T. Frazier, R. Waziri, and R. E. Coggeshall. Direct and common connections among identified neurons in Aplysia. J. Neurophysiol. 30: 1352–1376, 1967.
 471. Kandel, E. R., W. T. Frazier, and R. E. Coggeshall. Opposite synaptic actions mediated by different branches of an identifiable interneuron in Aplysia. Science 155: 346–349, 1967.
 472. Kandel, E. R., and D. Gardner. The synaptic actions mediated by the different branches of a single neuron. Res. Publ. Assoc. Res. Nervous Mental Disease 50: 91–146, 1972.
 473. Kandel, E. R., and I. Kupfermann. The functional organization of invertebrate ganglia. Ann. Rev. Physiol. 32: 193–258, 1970.
 474. Kandel, E. R., and W. A. Spencer. Cellular neurophysiological approaches in the study of learning. Physiol. Rev. 48: 65–134, 1968.
 475. Kandel, E. R., and L. Tauc. Mechanism of heterosynaptic facilitation in the giant cell of the abdominal ganglion of Aplysia depilans. J. Physiol. London 181: 28–47, 1965.
 476. Kandel, E. R., and L. Tauc. Input organization of two symmetrical giant cells in the snail brain. J. Physiol. London 183: 269–286, 1966.
 477. Kandel, E. R., and H. Wachtel. The functional organization of neural aggregates in Aplysia. In: Physiological and Biochemical Aspects of Nervous Integration, edited by F. D. Carlson. Englewood Cliffs, N.J.: Prentice Hall, p. 17–65, 1968.
 478. Kater, S. B., C. Heyer, and J. P. Hegman. Neuromuscular transmission in the gastropod mollusk, Helisoma trivolvis: identification of motoneurons. Z. Vergleich. Physiol. 74: 127–139, 1971.
 479. Kater, S. B., and C. R. S. Kaneko. An endogenously bursting neuron in the gastropod mollusk, Helisoma trivolvis. Characterization of activity in vivo. J. Comp. Physiol. 79: 1–14, 1972.
 480. Kater, S. B., C. Nicholson, and W. J. Davis. A guide to intracellular staining techniques. In: Intracellular Staining in Neurobiology, edited by S. B. Kater and C. Nicholson. New York: Springer Verlag, 1973, p. 307–327.
 481. Kater, S. B., and H. C. F. Rowell. Integration of sensory and centrally programmed components in generation of cyclical feeding activity of Helisoma trivolvis. J. Neurophysiol. 36: 142–155, 1973.
 482. Katz, B., and R. Miledi. The role of calcium in neuromuscular facilitation. J. Physiol. London 195: 481–492, 1968.
 483. Katz, B., and S. Thesleff. On the factors which determine the amplitude of the miniature end‐plate potential. J. Physiol. London 137: 267–278, 1957.
 484. Kendig, J. J. Motor neurone coupling in locust flight. J. Exptl. Biol. 48: 389–404, 1968.
 485. Kennedy, D. Neural photoreception in a lamellibranch mollusc. J. Gen. Physiol. 44: 277–299, 1960.
 486. Kennedy, D. The comparative physiology of invertebrate central neurons. Advan. Comp. Physiol. Biochem. 2: 117–184, 1966.
 487. Kennedy, D. The control of output by central neurons. In: The Interneuron, edited by M. A. B. Brazier. Berkeley: Univ. of Calif. Press, 1969, p. 21–36.
 488. Kennedy, D. Fifteenth Bowditch lecture. Crayfish interneurons. Physiologist 14: 5–30, 1971.
 489. Kennedy, D. Connections among neurons of different types in crustacean nervous systems. In: Neurosciences: Third Study Program, edited by F. O. Schmitt and F. G. Worden. Cambridge, Mass.: MIT Press, 1974, p. 379–388.
 490. Kennedy, D., and W. H. Evoy. The distribution of pre‐ and postsynaptic inhibition at crustacean neuromuscular junctions. J. Gen. Physiol. 49: 457–468, 1966.
 491. Kennedy, D., W. H. Evoy, B. Dane, and J. T. Hanawalt. The central nervous organization underlying control of antagonistic muscles in the crayfish. II. Coding of position by command fibers. J. Exptl. Zool. 165: 239–248, 1967.
 492. Kennedy, D., W. H. Evoy, and J. T. Hanawalt. Release of coordinated behavior in crayfish by single central neurons. Science 154: 917–919, 1966.
 493. Kennedy, D., A. I. Selverston, and M. P. Remler. Analysis of restricted neural networks. Science 164: 1488–1496, 1969.
 494. Kennedy, D., and K. Takeda. Reflex control of abdominal flexor muscles in the crayfish. I. The twitch system. J. Exptl. Biol. 43: 211–227, 1965.
 495. Kennedy, D., and K. Takeda. Reflex control of abdominal flexor muscles in the crayfish. II. The tonic system. J. Exptl. Biol. 43: 229–246, 1965.
 496. Kennedy, J. S. The visual responses of flying mosquitoes. Proc. Zool. Soc. London A109: 221–242, 1939.
 497. Kerkut, G. A., P. C. Emson, and P. W. Beesley. Effect of leg‐raising learning on protein synthesis and ChE activity in the cockroach CNS. Comp. Biochem. Physiol. 41B: 635–645, 1972.
 498. Kling, V., and G. Szekely. Simulation of rhythmic nervous activities. I. Function of networks with cyclic inhibitions. Kybernetic 5: 89–103, 1968.
 499. Knapp, M. F., and P. J. Mill. The contratile mechanism in obliquely striated body wall muscle of the earthworm Lumbricus terrestris. J. Cell Sci. 8: 413–425, 1971.
 500. Kobayashi, M. Electrical and mechanical activities in the radula protractor of a mollusc, Rapana thomasiana. J. Comp. Physiol. 78: 1–10, 1972.
 501. Koester, J., E. Mayeri, G. Liebeswar, and E. R. Kandel. Neuronal control of circulation in Aplysia. II. Interneurons. J. Neurophysiol. 37: 476–496, 1974.
 502. Kosaka, K. Electrophysiological and electron microscopic studies on the neuromuscular junction of the crayfish stretch receptors. Japan J. Physiol. 19: 160–175, 1969.
 503. Krasne, F. B. Escape from recurring tactile stimulation in Branchiomma vesiculosum. J. Exptl. Biol. 42: 307–322, 1965.
 504. Krasne, F. B. Excitation and habituation of the crayfish escape reflex: the depolarizing response in lateral giant fibers of the isolated abdomen. J. Exptl. Biol. 50: 29–46, 1969.
 505. Krasne, F., and J. Bryan. Habituation: regulation through presynaptic inhibition. Science 182: 590–592, 1973.
 506. Krasne, F. B., and Ch. A. Stirling. Synapses of crayfish abdominal ganglia with special attention to afferent and efferent connections of the lateral giant fibers. Z. Zellforsch. Mikroskop. Anat. 127: 526–544, 1972.
 507. Krasne, F. B., and K. S. Woodsmall. Waning of the crayfish escape response as a result of repeated stimulation. Animal Behav. 17: 416–424, 1969.
 508. Kriebel, M. E., M. V. L. Bennett, S. G. Waxman, and G. D. Pappas. Oculomotor neurons in fish: electrotonic coupling and multiple sites of impulse initiation. Science 24: 520–524, 1969.
 509. Kristan, W. Characterization of connectivity among invertebrate motor neurons by cross‐correlation of spike trains. In: Neurosciences: Third Study Program, edited by F. O. Schmitt and F. Worden. Cambridge, Mass.: MIT Press, 1973.
 510. Kropp, B., and E. V. Enzmann. Photic stimulation and leg movements in the crayfish. J. Gen. Physiol. 16: 905–910, 1933, p. 371–377.
 511. Kuffler, S. W. Mechanisms of activation and motor control of stretch receptors in lobster and crayfish. J. Neurophysiol. 17: 558–574, 1954.
 512. Kuffler, S. W., and C. Eyzaguirre. Synaptic inhibition in an isolated nerve cell. J. Gen. Physiol. 39: 155–184, 1955.
 513. Kuffler, S. W., and E. M. Vaughan Williams. Small‐nerve junctional potentials. The distribution of small motor nerves to frog skeletal muscle, and the membrane characteristics of the fibers they innervate. J. Physiol. London 121: 289–317, 1953.
 514. Kunze, P. Eye‐stalk reactions of the ghost crab Ocypode. In: Neural Theory and Modeling, edited by R. F. Reiss. Stanford, Calif.: Stanford Univ. Press, 1964, p. 293–305.
 515. Kupfermann, I. Stimulation of egg laying: possible neuroendocrine function of bag cells of abdominal ganglion of Aplysia californica. Nature 216: 814–815, 1967.
 516. Kupfermann, I., V. Castellucci, H. Pinsker, and E. R. Kandel. Neuronal correlates of habituation and dishabituation of the gill‐withdrawal reflex in Aplysia. Science 167: 1743–1745, 1970.
 517. Kupfermann, I., and J. Cohen. The control of feeding by identified neurons in the buccal ganglion of Aplysia. Am. Zoologist 11: 667, 1971.
 518. Kupfermann, I., and E. R. Kandel. Reflex function of some identified cells in Aplysia. Federation Proc. 27: 348, 1968.
 519. Kupfermann, I., and E. R. Kandel. Neuronal controls of a behavioral response mediated by the abdominal ganglion of Aplysia. Science 164: 847–850, 1969.
 520. Kupfermann, I., and H. Pinsker. A behavioral modification of the feeding reflex in Aplysia californica. Commun. Behav. Biol. A2: 13–17, 1968.
 521. Kupfermann, I., H. Pinsker, V. Castellucci, and E. R. Kandel. Central and peripheral control of gill movements in Aplysia. Science 174: 1252–1256, 1971.
 522. Kutsch, W., and F. Hüber. Zentrale versus periphere Kontrolle des Gesanges von Grillen (Gryllus campestris). Z. Vergleich. Physiol. 67: 140–159, 1970.
 523. Kutsch, W., and D. Otto. Evidence for spontaneous song production independent of head ganglia in Gryllus campestris L. J. Comp. Physiol. 81: 115–119, 1972.
 524. Kutsch, W., and P. N. R. Usherwood. Studies of the innervation and electrical activity of flight muscles in the locust, Shistocerca gregaria. J. Exptl. Biol. 52: 299–312, 1970.
 525. Kuwasawa, K., and R. B. Hill. Interaction of inhibitory and excitatory junctional potentials in the control of a myogenic myocardium: the ventricle of Busycon canaliculatum. Experientia 28: 800–801, 1972.
 526. Land, M. F. Orientation by jumping spiders in the absence of visual feedback. J. Exptl. Biol. 54: 119–139, 1971.
 527. Land, M. F. Stepping movements made by jumping spiders during turns mediated by the lateral eyes. J. Exptl. Biol. 57: 15–40, 1972.
 528. Lang, F. Intracellular studies on pacemaker and follower neurones in the cardiac ganglion of Limulus. J. Exptl. Biol. 54: 815–826, 1971.
 529. Lang, F., A. Sutterlin, and C. L. Prosser. Electrical and mechanical properties of the closer muscle of the Alaskan king crab Paralithodes camtschatica. Comp. Biochem. Physiol. 32: 615–628, 1970.
 530. Larimer, J. L. The effects of temperature on the activity of the caudal photoreceptor. Comp. Biochem. Physiol. 22: 683–700, 1967.
 531. Larimer, J. L., and A. C. Eggleston. Motor programs for abdominal positioning in crayfish. Z. Vergleich. Physiol. 74: 388–402, 1971.
 532. Larimer, J. L., A. C. Eggleston, L. M. Masukawa, and D. Kennedy. The different connections and motor outputs of lateral and medial giant fibres in the crayfish. J. Exptl. Biol. 54: 391–402, 1971.
 533. Larimer, J. L., and D. Kennedy. Innervation patterns of fast and slow muscle in the uropods of crayfish. J. Exptl. Biol. 51: 119–133, 1969.
 534. Larimer, J. L., and D. Kennedy. The central nervous control of complex movements in the uropods of crayfish. J. Exptl. Biol. 51: 135–150, 1969.
 535. Larramendi, L. M. H., L. Fickenscher, and N. Lemkey‐Johnston. Synaptic vesicles of inhibitory and excitatory terminals in the cerebellum. Science 156: 967–969, 1967.
 536. Lashley, K. S. Experimental analysis of instinctive behavior. Psychol. Rev. 45: 445–471, 1938.
 537. Laverack, M. S. Responses of a receptor associated with the buccal mass of Aplysia dactylomela. Comp. Biochem. Physiol. 33: 471–473, 1970.
 538. Law, P. K., and H. L. Atwood. Membrane resistance change induced by nitrate and other anions in long and short sarcomere muscle fibres of crayfish. Comp. Biochem. Physiol. 40A: 265–271, 1971.
 539. Lawry, J. V., Jr. Neuromuscular mechanisms of burrow irrigation in the echiuroid worm Urechis caupo Fisher and MacGinitie. I. Anatomy of the neuromuscular system and activity of intact animals. J. Exptl. Biol. 45: 343–356, 1966.
 540. Lee, R. M. Aplysia behavior: effects of contingent water‐level variation. Commun. Behav. Biol. 4: 157–164, 1970.
 541. Leenders, H. J. Catch, peak tension and ATPase activity in glycerinated oyster adductor. Comp. Biochem. Physiol. 31: 187–196, 1969.
 542. Lettvin, J. Y., H. R. Maturana, W. S. McCulloch, and W. H. Pitts. What the frog's eye tells the frog's brain. Proc. IRE 47: 1950–1959, 1959.
 543. Levine, J. R., and D. Tracey. Structure and function of the giant motoneuron of Drosophila. J. Comp. Physiol. 87: 213–235, 1973.
 544. Levitan, M., L. Tauc, and J. P. Segundo. Electrical transmission among neurons in the buccal ganglion of a mollusc, Navanax inermis. J. Gen. Physiol. 55: 484–496, 1970.
 545. Leyton, R. A., and E. H. Sonnenblick. Cardiac muscle of the horseshoe crab, Limulus polyphemus. I. Ultrastructure. J. Cell Biol. 48: 101–119, 1971.
 546. Leyton, R. A., and W. C. Ullrick. Z‐disc ultrastructure in scutal depressor fibers of the barnacle. Science 168: 127–128, 1970.
 547. Lickey, M. E. Learned behavior in Aplysia vaccaria. J. Comp. Physiol. Psychol. 66: 712–718, 1968.
 548. Lickey, M. E. Seasonal modulation and non‐24‐hour entrainment of a circadian rhythm in a single neuron. J. Comp. Physiol. Psychol. 68: 9–17, 1969.
 549. Linder, T. M. Calcium and facilitation at two classes of crustacean neuromuscular synapses. J. Gen. Physiol. 61: 56–73, 1973.
 550. Lindstedt, K. J. Chemical control of feeding behavior. Comp. Biochem. Physiol. 39A: 553–581, 1971.
 551. Lissmann, H. W. The mechanism of locomotion in gastropod molluscs. I. Kinematics. J. Exptl. Biol. 21: 58–69, 1945.
 552. Livengood, I. R., and K. Kusano. Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. J. Neurophysiol. 35: 170–186, 1972.
 553. Llinás, R., J. R. Blinks, and C. Nicholson. Calcium transient in presynaptic terminals of squid giant synapse: detection with aequorin. Science 176: 1127–1129, 1972.
 554. Llinás, R., and C. Nicholson. Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J. Neurophysiol. 34: 532–551, 1971.
 555. Loeb, J. Forced Movements, Tropisms and Animal Conduct. Philadelphia: Lippincott, 1918.
 556. Loher, W., and F. Hüber. Nervous and endocrine control of behaviour in a grasshopper (Gomphocerus rufus L., Acrididae). Symp. Soc. Exptl. Biol. 20: 381–400, 1966.
 557. Lømo, T., and J. Rosenthal. Control of ACh sensitivity by muscle activity in the rat. J. Physiol. London 221: 493–513, 1972.
 558. Lorenz, K. Über die Bildung des Instinktbegriffes. Naturwissenschaften 25: 289–300, 307–318, 324–331, 1937.
 559. Lorenz, K. The comparative method in studying innate behaviour patterns. Symp. Soc. Exptl. Biol. 4: 221–268, 1950.
 560. Lowy, J., B. M. Millman, and J. Hanson. Structure and function in smooth tonic muscles of lamellibranch molluscs. Proc. Roy. Soc. London Ser. B 160: 525–536, 1964.
 561. Lowy, J., and P. J. Vibert. Structure and organization of actin in a molluscan smooth muscle. Nature 215: 1254–1255, 1967.
 562. Macagno, E. R., V. Lopresti, and C. Levinthal. Structure and development of neuronal connections in isogenic organisms: variations and similarities in the optic system of Daphnia magna. Proc. Natl. Acad. Sci. US 70: 57–61, 1973.
 563. Mackay, A. R., and A. Gelperin. Pharmacology and reflex responsiveness of the heart in the giant garden slug, Limax maximus. Comp. Biochem. Physiol. 43A: 877–896, 1972.
 564. Macmillan, D. L., and M. R. Dando. Tension receptors on the apodemes of muscles in the walking legs of the crab, Cancer magister. Marine Behav. Physiol. 1: 185–208, 1972.
 565. Maldonado, H., and L. Levin. Distance estimation and the monocular cleaning reflex in preying mantis. Z. Vergleich. Physiol. 56: 258–267, 1967.
 566. Maldonado, H., L. Levin, and J. C. Barros Pita. Hit distance and the predatory strike of the praying mantis. Z. Vergleich. Physiol. 56: 237–257, 1967.
 567. Manning, A. An Introduction to Animal Behavior. Menlo Park, Calif.: Addison‐Wesley, 1967.
 568. Marchiafava, P. L. The effect of temperature change on membrane potential and conductance in Aplysia giant nerve cell. Comp. Biochem. Physiol. 34: 847–852, 1970.
 569. Märkl, H. Proprioceptive gravity perception in Hymenoptera. In: Gravity and the Organism, edited by S. A. Gordon and M. J. Cohen. Chicago: Univ. of Chicago Press, 1971, p. 185–194.
 570. Markl, H., and S. Fuchs. Klopfsignale mit Alarmfunktion bei Rossameisen (Camponotus, Formicidae, Hymenoptera). Z. Vergleich. Physiol. 76: 204–225, 1972.
 571. Marler, P., and W. J. Hamilton. Mechanisms of Animal Behavior. New York: Wiley, 1966.
 572. Mautz, D. Der Kommunikationseffekt der Schwänzeltänze bei Apis mellifica carnica (Pollm.). Z. Vergleich. Physiol. 72: 197–220, 1971.
 573. Mayeri, E. A relaxation oscillator description of the burst‐generating mechanism in the cardiac ganglion of the lobster, Homarus americanus. J. Gen. Physiol. 62: 473–488, 1973.
 574. Mayeri, E. Functional organization of the cardiac ganglion of the lobster, Homarus americanus. J. Gen. Physiol. 62: 448–472, 1973.
 575. Mayeri, E., J. Koester, I. Kupfermann, G. Liebeswar, and E. R. Kandel. Neural control of circulation in Aplysia. I. Motoneurons. J. Neurophysiol. 37: 458–475, 1974.
 576. Mayeri, E., I. Kupfermann, J. Koester, and E. R. Kandel. Neural coordination of heart rate and gill contraction in Aplysia. Am. Zoologist 11: 667, 1971.
 577. Maynard, D. M. Activity in a crustacean ganglion. I. Cardioinhibition and acceleration in Panulirus argus. Biol. Bull. 104: 156–170, 1953.
 578. Maynard, D. M. Activity in a crustacean ganglion. II. Pattern and interaction in burst formation. Biol. Bull. 109: 420–436, 1955.
 579. Maynard, D. M. Simpler networks. Ann. NY Acad. Sci. 193: 59–72, 1972.
 580. McCann, G. D. The fundamental mechanism of motion detection in the insect visual system. Kybernetik 12: 64–73, 1973.
 581. McCann, G. D., and J. C. Dill. Fundamental properties of intensity, form and motion perception in the visual systems of Calliphora phaenicia and Musca domestica. J. Gen. Physiol. 53: 385–413, 1969.
 582. McCann, G. D., and D. H. Fender. Computer data processing and systems analysis applied to research on visual perception. In: Neural Theory and Modeling, edited by R. F. Reiss. Stanford, Calif.: Stanford Univ. Press, 1964, p. 232–252.
 583. McCann, G. D., and S. F. Foster. Binocular interactions of motion detection fibers in the optic lobes of flies. Kybernetik 8: 193–203, 1971.
 584. McCann, G. D., and G. F. Macginitie. Optomotor response studies of insect vision. Proc. Roy. Soc. London Ser. B 163: 369–401, 1965.
 585. McFarlane, I. D. Control of preparatory feeding behaviour in the sea anemone Tealia felina. J. Exptl. Biol. 53: 211–220, 1970.
 586. McKay, J. M. Central control of an insect sensory interneurone. J. Exptl. Biol. 53: 137–145, 1970.
 587. McNeill, P., M. Burrows, and G. Hoyle. Fine structure of muscles controlling the strike of the mantis shrimp, Hemisquilla. J. Exptl. Zool. 179: 395–416, 1972.
 588. McPherson, A., and J. Tokunaga. The effects of cross‐innervation on the myoglobin concentration of tonic and phasic muscles. J. Physiol. London 188: 121–130, 1967.
 589. Mellon, DeF., Jr. Nerve pathways and reflex siphon withdrawal in the surf clam. J. Exptl. Biol. 43: 455–472, 1965.
 590. Mellon, DeF., Jr. Junctional physiology and motor nerve distribution in the fast adductor muscle of the scallop. Science 160: 1018–1020, 1968.
 591. Mellon, DeF., Jr. The reflex control of rhythmic motor output during swimming in the scallop. Z. Vergleich. Physiol. 62: 318–336, 1969.
 592. Mellon, DeF., Jr., and D. J. Prior. Components of a response programme involving inhibitory and excitatory reflexes in the surf calm. J. Exptl. Biol. 53: 711–725, 1970.
 593. Mellon, DeF., Jr., and J. E. Treherne. Exchanges of sodium ions in the central nervous system of Anodonta cygnea. J. Exptl. Biol. 51: 287–296, 1969.
 594. Mendell, L. M., and E. Henneman. Terminals of single Ia fibers: location, density and distribution within a pool of 300 homonymous motoneurons. J. Neurophysiol. 34: 171–187, 1971.
 595. Mendelson, M. Oscillator neurons in crustacean ganglia. Science 171: 1170–1173, 1971.
 596. Menzell, R. Spectral response of moving detection and “sustaining” fibers in the optic lobe of the bee. J. Comp. Physiol. 82: 135–150, 1973.
 597. Messenger, J. B. Optomotor responses and nystagmus in intact, blinded statocystless cuttlefish (Sepia officinalis L.) J. Exptl. Biol. 53: 789–796, 1970.
 598. Meyer, H. W. Visuell Schlüsselreize für die Auslösung der Beutefanghandlung beim Bachivasserläufer Velia caprai (Hemiptera, Heteroptera). 1. Untersuchung der räumlichen und zeitlichen Reizparameter mit formverschiedenen Attrappen. Z. Vergleich. Physiol. 72: 260–297, 1971.
 599. Meyer, H. W. Visuelle Schlüsselreize für die Auslösung der Beutefanghandlung beim Bachivasserläufer Velia caprai (Hemiptera, Heteroptera). 2. Untersuchung der Wirkung zeitlichen Reizmuster mit Flimmerlicht. Z. Vergleich. Physiol. 72: 298–342, 1971.
 600. Miledi, R., and C. R. Slater. The action of calcium on neuronal synapses in the squid. J. Physiol. London 184: 473–498, 1966.
 601. Miles, F. A. Centrifugal control of the avian retina. I. Receptive field properties of retinal ganglion cells. Brain Res. 48: 65–92, 1972.
 602. Mill, P. J. Neural patterns associated with ventilatory movements in dragonfly larvae. J. Exptl. Biol. 52: 167–175, 1970.
 603. Mill, P. J., and G. M. Hughes. The nervous control of ventilation in dragonfly larvae. J. Exptl. Biol. 44: 297–316, 1966.
 604. Mill, P. J., and R. S. Pickard. A review of the types of ventilation and their neural control in Aeshnid larvae. Odonatologica 1: 41–50, 1972.
 605. Millecchia, R., and G. F. Gwilliam. Photoreception in a barnacle: electrophysiology of the shadow reflex pathway in Balanus cariosus. Science 177: 438–441, 1972.
 606. Miller, A. J. Significance of sensory inflow to the swallowing reflex. Brain Res. 43: 147–159, 1972.
 607. Miller, P. L. The derivation of the motor command to the spiracles of the locust. J. Exptl. Biol. 46: 349–371, 1967.
 608. Miller, P. L. Rhythmic activity in the insect nervous system. I. Ventilatory coupling of a mantid spiracle. J. Exptl. Biol. 54: 587–597, 1971.
 609. Miller, P. L. Rhythmic activity in the insect nervous system. II. Sensory and electrical stimulation of ventilation in a mantid. J. Exptl. Biol. 54: 599–607, 1971.
 610. Miller, T., and P. N. R. Usherwood. Studies of cardio‐regulation in the cockroach, Periplaneta americana. J. Exptl. Biol. 54: 329–348, 1971.
 611. Millman, B. M., and G. F. Elliott. X‐ray diffraction from contracting molluscan muscle. Nature 206: 824–825, 1965.
 612. Milsum, J. H. Biological Control Systems Analysis. New York: McGraw‐Hill, 1966.
 613. Milsum, J. H. (editor.). Positive Feedback. New York: Pergamon, 1968.
 614. Mimura, K. Movement discrimination by the visual system of flies. Z. Vergleich. Physiol. 73: 105–138, 1971.
 615. Mimura, K. Neural mechanisms subserving directional selectivity of movement in the optic lobe of the fly. J. Comp. Physiol. 80: 409–438, 1972.
 616. Mittelstadt, H. Prey capture in mantids. In: Recent Advances in Invertebrate Physiology, edited by B. T. Scheer. Eugene: Univ. of Oregon Press, 1957.
 617. Mittenthal, J. E., and J. J. Wine. Connectivity patterns of crayfish giant interneurons: visualization of synaptic regions with cobalt dye. Science 179: 182–184, 1973.
 618. Möhl, B. The control of foregut movements by the stomatogastric nervous system in the European house cricket Acheta domesticus L. J. Comp. Physiol. 80: 1–28, 1972.
 619. Moore, G. P., J. P. Segundo, D. H. Perkel, and H. Levitan. Statistical signs of synaptic interactions in neurons. Biophys. J. 9: 876–900, 1970.
 620. Morrow, J. E., and B. L. Smithson. Learning sets in an invertebrate. Science 164: 850–851, 1969.
 621. Möss, D. Sinnesorgane im Bereich des Flügels der Feldgrille (Gryllus campestris L.) und ihre Bedeutung für die Kontrolle der Singbewegung und die Einstellung der Flügelläge. Z. Vergleich. Physiol. 73: 53–83, 1971.
 622. Mpitsos, G. J. Physiology of vision in the mollusk Lima scabra. J. Neurophysiol. 36: 371–383, 1973.
 623. Mpitsos, G. J., and W. J. Davis. Learning: classical and avoidance conditioning in the mollusk Pleurobranchaea. Science 180: 317–321, 1973.
 624. Mulloney, B. Interneurons in the central nervous system of flies and the start of flight. Z. Vergleich. Physiol. 64: 243–253, 1969.
 625. Mulloney, B. Organization of flight motoneurons of Diptera. J. Neurophysiol. 33: 86–95, 1970.
 626. Mulloney, B. Impulse patterns in the flight motor neurons of Bombus californicus and Oncopeltus fasciatus. J. Exptl. Biol. 52: 59–77, 1970.
 627. Mulloney, B. Structure of the giant fibers of earthworms. Science 168: 994–996, 1970.
 628. Mulloney, B., and A. I. Selverston. Antidromic action potentials fail to demonstrate known interactions between neurons. Science 177: 69–72, 1972.
 629. Mulloney, B., and A. I. Selverston. Organization of the stomatogastric ganglion in the spiny lobster. I. Neurons driving the lateral teeth. J. Comp. Physiol. 91: 1–32, 1974.
 630. Mulloney, B., and A. I. Selverston. Organization of the stomatogastric ganglion of the spiny lobster. III. Coordination of the two subsets of the gastric system. J. Comp. Physiol. 91: 53–78, 1974.
 631. Muramoto, A. Proprioceptive reflex of the PD organ of Procambarus clarkii by passive movement and vibration stimulus. J. Fac. Sci. Hokkaido Univ. Ser. VI. 15: 522–534, 1965.
 632. Murayama, K. Proprioceptive reflex responses of the efferent axons to passive and active movements in the cheliped of the crayfish. J. Fac. Sci. Hokkaido Univ. Ser. VI 15: 510–521, 1965.
 633. Murphey, R. K. Sensory aspects of the control of orientation to prey by the waterstrider, Gerris remigis. Z. Vergleich. Physiol. 72: 168–185, 1971.
 634. Murphey, R. K. Motor control of orientation to prey by the waterstrider, Garris remigis. Z. Vergleich. Physiol. 72: 150–167, 1971.
 635. Murphey, R. K. Characterization of an insect neuron which cannot be visualized in situ. In: Intracellular Staining Techniques in Neurobiology, edited by S. B. Kater and C. Nicholson. New York: Springer Verlag, 1973, p. 135–150.
 636. Murphey, R. K., and M. D. Zaretsky. Orientation to calling song by female crickets, Scapsipedus marginatus (Gryllidae). J. Exptl. Biol. 56: 335–352, 1972.
 637. Nachtigall, W. Electrophysiologische und kinematische Untersuchungen über Start und Stop des Flugmotors von Fliegen. Z. Vergleich. Physiol. 61: 1–20, 1968.
 638. Nachtigall, W., and D. M. Wilson. Neuro‐muscular control of dipteran flight. J. Exptl. Biol. 47: 77–97, 1967.
 639. Naitoh, Y., and R. Eckert. Ionic mechanisms controlling behavioral responses of Paramecium to mechanical stimulation. Science 164: 963–965, 1969.
 640. Naitoh, Y., and R. Eckert. Ciliary orientation: controlled by cell membrane or by intracellular fibrils? Science 166: 1633–1635, 1969.
 641. Naitoh, Y., R. Eckert, and K. Friedman. A regenerative calcium response in Paramecium. J. Exptl. Biol. 56: 667–681, 1972.
 642. Naitoh, Y., and H. Kaneko. Reactivated triton‐extracted models of Paramecium: modification of ciliary movement by calcium ions. Science 176: 523–524, 1972.
 643. Naylor, E., and B. G. Williams. Effects of eyestalk removal on rhythmic locomotor activity in Carcinus. J. Exptl. Biol. 49: 107–116, 1968.
 644. Nelson, M. C. Classical conditioning in the blowfly (Phormis regina): associative and excitatory factors. J. Comp. Physiol. Psychol. 77: 353–368, 1971.
 645. Neville, A. C. Motor unit distribution of the dorsal longitudinal flight muscles in locusts. J. Exptl. Biol. 40: 123–136, 1963.
 646. Nicholls, J. G., and D. A. Baylor. Specific modalities and receptive fields of sensory neurons in the CNS of the leech. J. Neurophysiol. 31: 740–756, 1968.
 647. Nicholls, J. G., and D. Purves. Monosynaptic chemical and electrical connexions between sensory and motor cells in the central nervous system of the leech. J. Physiol. London 209: 647–667, 1970.
 648. Noda, H., R. B. Freeman, Jr., and O. D. Creutzfeldt. Neural correlates of eye movements in the visual cortex of the cat. Science 175: 661–664, 1972.
 649. Nordlander, R. H., and M. Singer. Electron microscopy of severed motor fibers in the crayfish. Z. Zellforsch. Mikroskop. Anat. 126: 157–181, 1972.
 650. Northrop, R. B., and E. F. Guignon. Information processing in the optic lobes of the lubber grasshopper. J. Insect Physiol. 16: 691–713, 1970.
 651. Nottebohm, F. Ontogeny of bird song. Science 167: 950–956, 1970.
 652. Odhiambo, T. R. The metabolic effects of the corpus allatum hormone in the male desert locust. II. Spontaneous locomotor activity. J. Exptl. Biol. 45: 51–63, 1966.
 653. Olesen, J. The hydraulic mechanism of labial extension and jet propulsion in dragonfly nymphs. J. Comp. Physiol. 81: 53–55, 1972.
 654. Oliver, G. W. O., P. V. Taberner, J. T. Rick, and G. A. Kerkut. Changes in GABA level, GAD and ChE activity in CNS of an insect during learning. Comp. Biochem. Physiol. 38B: 529–535, 1971.
 655. Olivo, R. F. Motor aspects of reflex foot withdrawal in the razor clam. Comp. Biochem. Physiol. 35: 787–807, 1970.
 656. Olivo, R. F. Central pathways involved in reflex foot withdrawal in the razor clam. Comp. Biochem. Physiol. 35: 809–825, 1970.
 657. Omand, E. A Peripheral sensory basis for behavioral regulation. Comp. Biochem. Physiol. 38A: 265–278, 1971.
 658. Orlovskii, G. N., and A. G. Feldman. On the role of afferent activity for the generation of stepping movements. Neurophysiology 4: 401–409, 1972.
 659. Ortiz, C. L. Crayfish neuromuscular junction: facilitation with constant nerve terminal potential. Experientia 28: 1035–1036, 1972.
 660. Ortiz, C. L., and H. Bracho. Effect of reduced calcium on excitatory transmitter release at the crayfish neuromuscular junction. Comp. Biochem. Physiol. 41: 805–812, 1972.
 661. Osborne, M. P. Supercontraction in the muscles of the blowfly larva: an ultrastructural study. J. Insect Physiol. 13: 1471–1482, 1967.
 662. Otani, T., and T. H. Bullock. Effects of presetting the membrane potential of the soma of spontaneous and integrating ganglion cells. Physiol. Zool. 32: 104–114, 1959.
 663. Otsuka, M., E. A. Kravitz, and D. D. Potter. Physiological and chemical architecture of a lobster ganglion with particular reference to gamma‐aminobutyrate and glutamate. J. Neurophysiol. 30: 725–752, 1967.
 664. Otte, D. Simple versus elaborate behavior in grasshoppers. An analysis of communication in the genus Syrbula. Behaviour 42: 291–322, 1972.
 665. Otto, D. Untersuchungen zur zentralnervösen Kontrolle der Lauterzeugung von Grillen. Z. Vergleich. Physiol. 74: 227–271, 1971.
 666. Pabst, H., and D. Kennedy. Cutaneous mechanoreceptors influencing motor output in the crayfish abdomen. Z. Vergleich. Physiol. 57: 190–208, 1967.
 667. Page, C. H., and P. G. Sokolove. Crayfish muscle receptor organ: role in regulation of postural flexion. Science 175: 647–650, 1972.
 668. Palese, V. J., J. L. Becker, and R. A. Pax. Cardiac ganglion of Limulus: intracellular activity in the unipolar cells. J. Exptl. Biol. 53: 411–423, 1970.
 669. Palka, J. An inhibitory process influencing visual responses in a fibre of the ventral nerve cord of locusts. J. Insect Physiol. 13: 235–248, 1967.
 670. Palka, J. Discrimination between movements of eye and object by visual interneurones of crickets. J. Exptl. Biol. 50: 723–732, 1969.
 671. Palka, J. Moving movement detectors. Am. Zoologist 12: 497–505, 1972.
 672. Palka, J., and K. S. Babu. Toward the physiological analysis of defensive responses of scorpions. Z. Vergleich. Physiol. 55: 286–298, 1967.
 673. Parker, A. H. The predatory behavior and life history of Pisilus tipuliformis (Reduviidae, Hemiptera). Entomol. Exptl. Appl. 8: 1–12, 1965.
 674. Parker, G. A. Reproductive behaviour of Sepsis cympsea (L.) (Diptera: Sepsidae). I. A preliminary analysis of the reproductive strategy and its associated behaviour patterns. Behaviour 41: 172–206, 1972.
 675. Parnas, I. Differential block at high frequency of branches of a single axon innervating two muscles. J. Neurophysiol. 35: 903–914, 1972.
 676. Parnas, I., B. C. Abbott, and F. Lang. Electrophysiological properties of Limulus heart and effect of drugs. Am. J. Physiol. 217: 1814–1822, 1969.
 677. Parnas, I., B. C. Abbott, B. Shapiro, and F. Lang. Neuromuscular system of Limulus leg closer muscle. Comp. Biochem. Physiol. 26: 467–478, 1968.
 678. Parnas, I., and A. L. Atwood. Phasic and tonic neuromuscular systems in the abdominal extensor muscles of the crayfish and rock lobster. Comp. Biochem. Physiol. 18: 701–723, 1966.
 679. Partridge, L. D. Signal‐handling characteristics of load‐moving skeletal muscle. Am. J. Physiol. 210: 1178–1191, 1966.
 680. Pasztor, V. M. The neurophysiology of respiration in decapod Crustacea. I. The motor system. Can. J. Zool. 46: 585–596, 1968.
 681. Patten, W., and W. A. Redenbaugh. Studies on Limulus. II. The nervous system of Limulus polyphemus with observations upon the general anatomy. J. Morphol. 16: 99–200, 1899.
 682. Paul, D. H. Swimming behavior of the sand crab, Emerita analoga (Crustacea, Anomura). I. Analysis of the uropod stroke. Z. Vergleich. Physiol. 75: 233–258, 1971.
 683. Paul, D. H. Swimming behavior of the sand crab, Emerita analoga (Crustacea, Anomura). II. Morphology and physiology of the uropod neuromuscular system. Z. Vergleich. Physiol. 75: 259–285, 1971.
 684. Paul, D. H. Swimming behavior of the sand crab, Emerita analoga (Crustacea Anomura). III. Neuronal organization of uropod beating. Z. Vergleich. Physiol. 75: 286–302, 1971.
 685. Paul, D. H. Decremental conduction over “giant” afferent processes in an arthropod. Science 176: 680–682, 1972.
 686. Peachey, L. D. Membrane systems of crab fibers. Am. Zoologist 7: 505–513, 1967.
 687. Peachey, L. D. Muscle. Ann. Rev. Physiol. 30: 401–440, 1968.
 688. Peachey, L. D., and A. F. Huxley. Structural identification of twitch and slow striated muscle fibers of the frog. J. Cell Biol. 13: 177–180, 1962.
 689. Pearson, K. G. Central programming and reflex control of walking in the cockroach. J. Exptl. Biol. 56: 173–193, 1972.
 690. Pearson, K. G. Function of peripheral inhibitory axons in insects. Am. Zoologist 13: 321–330, 1973.
 691. Pearson, K. G., and S. J. Bergman. Common inhibitory motoneurones in insects. J. Exptl. Biol. 50: 445–472, 1969.
 692. Pearson, K. G., and A. B. Bradley. Specific regeneration of excitatory motoneurons to leg muscles in the cockroach. Brain Res. 47: 492–496, 1972.
 693. Pearson, K. G., and J. F. Iles. Discharge patterns of coxial levator and depressor motoneurones of the cockroach, Periplaneta americana. J. Exptl. Biol. 52: 139–156, 1970.
 694. Pearson, K. G., and J. F. Iles. Innervation of coxial depressor muscles in the cockroach, Periplaneta americana. J. Exptl. Biol. 54: 215–232, 1971.
 695. Pearson, K. G., and J. F. Iles. Nervous mechanisms underlying intersegmental coordination of leg movements during walking in the cockroach. J. Exptl. Biol. 58: 725–744, 1973.
 696. Peeke, H. V. S., M. J. Herz, and E. J. Wyers. Amount of training, intermittant reinforcement and resistance to extinction in the earthworm Lumbricus terrestris. Animal Behav. 13: 566–574, 1965.
 697. Peeke, H. V. S., M. J. Herz, and E. J. Wyers. Forward conditioning, backward conditioning and pseudo‐conditioning in the earthworm. J. Comp. Physiol. Psychol. 46: 534–536, 1967.
 698. Peretz, B. Central neuron initiation of periodic gill movements. Science 166: 1167–1172, 1969.
 699. Peretz, B. Habituation and dishabituation in the absence of a central nervous system. Science 169: 379–381, 1970.
 700. Peretz, B., and D. B. Howieson. Central influence on peripherally mediated habituation of an Aplysia gill withdrawal response. J. Comp. Physiol. 84: 1–8, 1973.
 701. Perkel, D. H., G. L. Gerstein, and G. P. Moore. Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys. J. 7: 419–440, 1967.
 702. Pichon, Y., R. B. Moreton, and J. E. Treherne. A quantitative study of the ionic basis of extraneuronal potential changes in the central nervous system of the cockroach (Periplaneta americana L.) J. Exptl. Biol. 54: 757–777, 1971.
 703. Pickard, R. S., and P. J. Mill. Ventilatory muscle activity in intact preparations of aeshnid dragonfly larvae. J. Exptl. Biol. 56: 527–536, 1972.
 704. Piek, T., and P. Mantel. A study of the different types of action potentials and miniature potentials in insect muscles. Comp. Biochem. Physiol. 34: 935–951, 1970.
 705. Pinsker, H., I. Kupfermann, V. Castellucci, and E. R. Kandel. Habituation and dishabituation of the gill‐withdrawal reflex in Aplysia. Science 167: 1740–1743, 1970.
 706. Pitman, R. M., C. D. Tweedle, and M. J. Cohen. Branching of central neurons: intracellular cobalt injection for light and electron microscopy. Science 176: 412–414, 1971.
 707. Pitman, R. M., C. D. Tweedle, and M. J. Cohen. Electrical responses of insect central neuron: augmentation by nerve section or colchicine. Science 178: 507–509, 1972.
 708. Pittendrigh, C. The circadian oscillation in Drosophila pseudoobscura pupae: a model for the photoperiodic clock. Z. Pflanzenphysiol. 54: 275–307, 1966.
 709. Pond, C. M. Neuromuscular activity and wing movements at the start of flight of Periplaneta americana and Schistocerca gregaria. J. Comp. Physiol. 78: 192–209, 1972.
 710. Pond, C. M. The initiation of flight in unrestrained locusts. Shistocerca gregaria. J. Comp. Physiol. 80: 163–178, 1972.
 711. Porter, R., and R. B. Muir. The meaning for motoneurones of the temporal pattern of natural activity in pyramidal tract neurones of conscious monkeys. Brain Res. 34: 127–142, 1971.
 712. Preston, R. J., and R. M. Lee. Feeding behavior in Aplysia californica: role of chemical and tactile stimuli. J. Comp. Physiol. Psychol. 82: 368–381, 1973.
 713. Pringle, J. W. S. The reflex mechanism of the insect leg. J. Exptl. Biol. 17: 8–17, 1940.
 714. Pringle, J. W. S. Proprioception in arthropods. In: The Cell and the Organism, edited by J. A. Ramsay and V. B. Wigglesworth. Cambridge: Cambridge Univ. Press, 1961.
 715. Prior, D. J. Electrophysiological analysis of peripheral neurones and their possible role in the local reflexes of a mollusc. J. Exptl. Biol. 57: 133–145, 1972.
 716. Prior, D. J. A neural correlate of behavioural stimulus intensity discrimination in a mollusc. J. Exptl. Biol. 57: 147–160, 1972.
 717. Prosser, C. L. Single unit analysis of the heart ganglion in Limulus polyphemus. J. Cellular Comp. Physiol. 21: 295–305, 1943.
 718. Purves, D., and U. J. McMahan. The distribution of synapses on a physiologically identified motor neuron in the central nervous system of the leech. J. Cell Biol. 55: 205–220, 1972.
 719. Rankin, M. A., R. L. Caldwell, and H. Dingle. An analysis of a circadian rhythm of oviposition in Oncopeltus fasciatus. J. Exptl. Biol. 56: 353–359, 1972.
 720. Rees, D., and P. N. R. Usherwood. Fine structure of normal and degenerating motor axons and nerve‐muscle synapses in the locust, Schistocerca gregaria. Comp. Biochem. Physiol. 43A: 83–101, 1972.
 721. Reichardt, W. Movement perception in insects. In: Processing of Optical Data by Organisms and by Machines, edited by W. Reichardt. New York: Academic, 1969.
 722. Reichardt, W., and H. Wenking. Optical detection and fixation of objects by fixed flying flies. Naturwissenschaften 56: 424–425, 1969.
 723. Reimer, A. A. Chemical control of feeding behavior in Palythoa (Zoanthidea, Coelenterata). Comp. Biochem. Physiol. 40A: 19–38, 1971.
 724. Remler, M. P., A. I. Selverston, and D. Kennedy. Lateral giant fibers of crayfish: location of somata by dye injection. Science 162: 281–283, 1968.
 725. Renshaw, B. Influence of discharge of motoneurons upon excitation of neighboring motoneurons. J. Neurophysiol. 4: 167–183, 1941.
 726. Rilling, S., H. Mittelstadt, and K. D. Roeder. Prey recognition in the preying mantis. Behaviour 14: 164–184, 1959.
 727. Ripley, S. H., B. M. H. Bush, and A. Roberts. Crab muscle receptor which responds without impulses. Nature 218: 1170–1171, 1968.
 728. Roberts, A. Recurrent inhibition in the giant‐fibre system of the crayfish and its effect on the excitability of the escape response. J. Exptl. Biol. 48: 545–567, 1968.
 729. Roberts, A. Some features of the central co‐ordination of a fast movement in the crayfish. J. Exptl. Biol. 49: 645–656, 1968.
 730. Roberts, M. B. V. Facilitation in the rapid response of the earthworm, Lumbricus terrestris L. J. Exptl. Biol. 45: 141–150, 1966.
 731. Robinson, C. A., and R. F. Nunnemacher. The musculature of the eyestalk of the crayfish, Orconectes virilis. Crustaceana 11: 77–82, 1966.
 732. Robinson, M. H. The Javanese stick insect, Orxines macklotti de Haan (Phasmatodea, Phasmidae). Entomol. Monthly Mag. 100: 253–259, 1964.
 733. Robinson, M. H. The defensive behavior of the Javanese stick insect, Orxines macklotti de Haan (Phasmatodea, Phasmidae). Entomol. Monthly Mag. 104: 46–54, 1968.
 734. Robinson, M. H. The startle display of Balboa tibialis (Brunner) (Orthoptera, Tettigoniidae). Entomol. Monthly Mag. 104: 88–90, 1968.
 735. Robinson, M. H. The defensive behavior of Pterinoxylus spinulosus (Redtenbacher), a winged stick insect from Panama (Phasmatodea). Psyche 75: 195–207, 1968.
 736. Robinson, M. H. The defensive behaviour of the stick insect Incotophasma martini (Griffini) (Orthoptera: Phasmatidae). Proc. Roy. Entomol. Soc. London Ser. A 43: 183–187, 1968.
 737. Robinson, M. H. Predatory behavior of Argiope argentata (Fabricius). Am. Zoologist 9: 161–173, 1969.
 738. Robson, E. A. The behavior and neuromuscular system of Gonactinia prolifera, a swimming sea‐anemone. J. Exptl. Biol. 55: 611–640, 1971.
 739. Roeder, K. D. The control of tonus and locomotor activity in the praying mantis (Mantis religiosa L.) J. Exptl. Zool. 76: 353–374, 1957.
 740. Roeder, K. D., L. Tozian, and E. A. Weiant. Endogenous nerve activity and behaviour in the mantis and cockroach. J. Insect Physiol. 4: 45–62, 1960.
 741. Rosenbluth, J. Obliquely striated muscle. III. Contraction mechanism of Ascaris body muscle. J. Cell Biol. 34: 15–33, 1967.
 742. Rosenbluth, J. Sarcoplasmic reticulum of an unusually fast‐acting crustacean muscle. J. Cell Biol. 42: 534–547, 1969.
 743. Roth, L. M. An experimental laboratory study of the sexual behavior of Aedes aegypti (I.). Am. Midland Naturalist 40: 265–352, 1948.
 744. Rovner, J. S. Territoriality in the sheet‐web spider Linyphia triangularis (Clerck) (Araneae, Linyphiidae). Z. Tierpsychol. 25: 232–242, 1968.
 745. Rowell, C. H. F. Central control of insect segmental reflex. I. Inhibition by different parts of the central nervous system. J. Exptl. Biol. 41: 559–572, 1964.
 746. Rowell, C. H. F. An acridid auditory interneurone: II. Habituation, variation in response level and central control. J. Exptl. Biol. 51: 247–260, 1969.
 747. Rowell, C. H. F. Central control of an insect segmental reflex. II. Analysis of the inhibitory input from the metathoracic ganglion. J. Exptl. Biol. 50: 191–202, 1969.
 748. Rowell, C. H. F. Incremental and decremental processes in the insect central nervous system. In: Short‐term Changes in Neural Activity and Behavior, edited by G. Horn and R. A. Hinde. Cambridge, Mass.: Cambridge Univ. Press, 1970.
 749. Rowell, C. H. F. Variable responsiveness of a visual interneurone in the free‐moving locust, and its relation to behaviour and arousal. J. Exptl. Biol. 55: 727–747, 1971.
 750. Rowell, C. H. F. Antennal cleaning, arousal and visual interneurone responsiveness in a locust. J. Exptl. Biol. 55: 749–761, 1971.
 751. Rowell, C. H. F. The orthopteran descending movement detector (DMD) neurones: a characterisation and review. Z. Vergleich. Physiol. 73: 167–194, 1971.
 752. Rowell, C. H. F., and G. Horn. Dishabituation and arousal in the response of single nerve cells in an insect brain. J. Exptl. Biol. 49: 171–183, 1968.
 753. Rowell, C. H. G., and J. M. McKay. An acridid auditory interneurone. I. Functional connexions and response to single sounds. J. Exptl. Biol. 51: 231–245, 1969.
 754. Ruegg, J. C. Tropomyosin‐paramyosin system and “prolonged contraction” in a molluscan smooth muscle. Proc. Roy. Soc. London Ser. B 160: 536–542, 1964.
 755. Runion, H. I., and P. N. R. Usherwood. Tarsal receptors and leg reflexes in the locust and grasshopper. J. Exptl. Biol. 49: 421–436, 1968.
 756. Russell, I. J., and B. L. Roberts. Inhibition of spontaneous lateralline activity by efferent nerve stimulation. J. Exptl. Biol. 57: 77–82, 1972.
 757. Ryall, R. W., M. F. Piercy, and C. Polosa. Intersegmental and intrasegmental distribution of mutual inhibition of Renshaw cells. J. Neurophysiol. 34: 700–707, 1971.
 758. Salanki, J., and I. Varanka. Central determination of the rhythmic adductor activity in the fresh‐water mussel Anodonta cygnea L., Pelecypoda. Comp. Biochem. Physiol. 41A: 465–474, 1972.
 759. Salmoiraghi, G. C., and R. Von Baumgarten. Intracellular potentials from respiratory neurones in the brain‐stem of the cat and the mechanism of rhythmic respiration. J. Neurophysiol. 24: 203–218, 1961.
 760. Sandeman, D. C. Excitation and inhibition of the reflex eye withdrawal of the crab Carcinus. J. Exptl. Biol. 46: 475–485, 1967.
 761. Sandeman, D. C. The synaptic link between the sensory and motoneurones in the eye‐withdrawal reflex of the crab. J. Exptl. Biol. 50: 87–98, 1969.
 762. Sandeman, D. C. The site of synaptic activity and impulse initiation in an identified motoneurone in the crab brain. J. Exptl. Biol. 50: 771–784, 1969.
 763. Sandeman, D. C. Integrative properties of a motoneuron in the brain of the crab Carcinus. Z. Vergleich. Physiol. 64: 450–464, 1969.
 764. Sandeman, D. C. The excitation and electrical coupling of four identified motoneurons in the brain of the Australian mud crab, Scylla serrata. Z. Vergleich. Physiol. 72: 111–130, 1971.
 765. Sandeman, D. C., and A. Okajima. Statocyst‐induced eye movements in the crab Scylla serrata. I. The sensory input from the statocyst. J. Exptl. Biol. 57: 187–204, 1972.
 766. Schaeffer, A. A. Spiral movement in man. J. Morphol. Physiol. 45: 293–398, 1928.
 767. Schaller, F. Die optomotorische Komponente bei der Flugsteuerung der Insekten. Zool. Beitr. 5: 493–496, 1960.
 768. Schneider, P. Vergleichende Untersuchungen zur Steuerung der Flüggeschwindigkeit bei Calliphora vicira. Z. Wiss. Zool. 173: 114–173, 1965.
 769. Schöne, H. Agonistic and sexual display in aquatic and semi‐terrestrial brachyuran crabs. Am. Zoologist 8: 641–654, 1968.
 770. Schone, H. Gravity receptors and gravity orientation in crustacea. In: Gravity and the Organism, edited by S. A. Gordon and M. J. Cohen. Chicago: Univ. of Chicago Press, 1971, p. 223–235.
 771. Schöne, H., and H. Schöne. Integrated function of statocyst and antennular proprioceptive organ in the spiny lobster. Naturwissenschaften 54: 289, 1967.
 772. Schrameck, J. E. Crayfish swimming: alternating motor output and giant fiber activity. Science 169: 698–700, 1970.
 773. Segundo, J. P., G. P. Moore, L. J. Stensaas, and T. H. Bullock. Sensitivity of neurones in Aplysia to temporal patterns of arriving impulses. J. Exptl. Biol. 40: 643–667, 1963.
 774. Segundo, J. P., D. H. Perkel, and G. P. Moore. Spike probability in neurones: influence of temporal structure in the train of synaptic events. Kybernetik 3: 67–82, 1966.
 775. Selverston, A. I., and D. Kennedy. Structure and function of identified nerve cells in the crayfish. Endeavour 28: 107–113, 1969.
 776. Selverston, A. I., and B. Mulloney. Organization of the stomatogastric ganglion in the spiny lobster. II. Neurons driving the medial tooth. J. Comp. Physiol. 91: 33–51, 1974.
 777. Selverston, A. I., and M. P. Remler. Neural geometry and activation of crayfish fast flexor motoneurons. J. Neurophysiol. 35: 797–814, 1972.
 778. Seymour, M. K. Locomotion and coelomic pressure in Lumbricus terrestris L. J. Exptl. Biol. 51: 47–58, 1969.
 779. Seymour, M. K. The giant nerve fibres of Arenicola marina (L.) Comp. Biochem. Physiol. 41A: 457–464, 1972.
 780. Sherman, R. G., and H. L. Atwood. Synaptic facilitation: long‐term neuromuscular facilitation in crustaceans. Science 171: 1248–1250, 1971.
 781. Sherman, R. G., and H. L. Atwood. Correlated electrophysiological and ultrastructural studies of a crustacean motor unit. J. Gen. Physiol. 59: 586–615, 1972.
 782. Sherrington, C. The Integrative Action of the Nervous System. New Haven: Yale Univ. Press, 1906. [Yale paperbound, 1961 ed.].
 783. Sherrington, C. S. Nervous rhythm arising from rivalry of antagonistic reflexes: reflex stepping as outcome of double reciprocal innervation. Proc. Roy. Soc. London Ser. B 86: 233–261, 1913.
 784. Shibuya, T. On the pacemaker mechanism of the heart of the squill, Squilla oratoria de Haan. Japan J. Zool. 13: 221–238, 1961.
 785. Shik, M. L., G. N. Orlovskii, and F. V. Severia. Organization of locomotor synergism. Biofizika 11: 879–886, 1966.
 786. Siegel, I. Heritability and threshold determinations of the optomotor response in Drosophila. Animal Behav. 15: 299–306, 1967.
 787. Siegler, M. V. S., G. J. Mpitsos, and W. J. Davis. Motor organization and generation of rhythmic feeding output in buccal ganglion of Pleurobranchaea. J. Neurophysiol. 37: 1173–1196, 1974.
 788. Singer, J. J., and A. L. Goldberg. Cyclic AMP and transmission at the neuromuscular junction. In: Role of Cyclic AMP in Cell Function, edited by P. Greengard and E. Costa. New York: Raven, 1970, p. 335–348.
 789. Smith, Dean O. Central nervous control of presynaptic inhibition in the crayfish claw. J. Neurophysiol. 35: 333–343, 1972.
 790. Smyth, T., and W. J. Yurkiewicz. Visual reflex control of indirect flight muscles in the sheep blowfly. Comp. Biochem. Physiol. 17: 1175–1180, 1966.
 791. Snyder, N. F. R., and H. A. Snyder. Defenses of the Florida apple snail (Pomacea paludosa). Behaviour 40: 175–215, 1971.
 792. Sokolove, P. G. Crayfish stretch receptor and motor unit behavior during abdominal extension. J. Comp. Physiol. 84: 251–266, 1973.
 793. Sokolove, P. G., and W. Tatton. Analysis of postural motoneuron activity in crayfish abdomen. I. Reciprocity, symmetry and gradient of activity. J. Neurophysiol. 38: 313–331, 1975.
 794. Sokolove, P. G., and W. Tatton. Analysis of postural motoneuron activity in crayfish abdomen. II. Motoneuron cross connections. J. Neurophysiol. 38: 332–346, 1975.
 795. Somjen, G., D. O. Carpenter, and E. Henneman. Responses of motoneurones of different sizes to graded stimulation of supraspinal centers of the brain. J. Neurophysiol. 28: 958–965, 1965.
 796. Spira, M. E., and M. V. L. Bennett. Synaptic control of electrotonic coupling between neurons. Brain Res. 37: 294–300, 1972.
 797. Spirito, C. P. Reflex control of the opener and stretcher muscles in the cheliped of the fiddler crab, Uca pugnax. Z. Vergleich. Physiol. 68: 211–228, 1970.
 798. Spirito, C. P., W. H. Evoy, and W. J. P. Barnes. Nervous control of walking in the crab, Cardisoma guanhumi. 1. Characteristics of resistance reflexes. Z. Vergleich. Physiol. 76: 1–15, 1972.
 799. Stark, L. Neurological Control Systems: Studies in Bioengineering. New York: Plenum, 1968.
 800. Stein, P. S. G. Intersegmental coordination of swimmeret motoneuron activity in crayfish. J. Neurophysiol. 34: 310–318, 1971.
 801. Stinnakre, J., and L. Tauc. Central neuronal response to the activation of osmoreceptors in the osphradium of Aplysia. J. Exptl. Biol. 51: 347–361, 1969.
 802. Stretton, A. O. W., and E. A. Kravitz. Neuronal geometry: determination with a technique of intracellular dye injection. Science 162: 132–134, 1968.
 803. Strumwasser, F. The demonstration and manipulation of a circadian rhythm in a single neuron. In: Circadian Clocks, edited by J. Aschoff. Amsterdam: North Holland, 1965, p. 442–462.
 804. Strumwasser, F. Types of information stored in single neurons. In: Invertebrate Nervous Systems, edited by C. A. G. Wiersma. Chicago: Univ. of Chicago Press, 1967, p. 291–319.
 805. Strumwasser, F. Membrane and intracellular mechanisms governing endogenous activity in neurons. In: Physiological and Biochemical Aspects of Nervous Integration. Englewood Cliffs, N. J.: Prentice Hall, 1968.
 806. Strumwasser, F. The cellular basis of behavior in Aplysia. J. Psychiat. Res. 8: 237–257, 1971.
 807. Strumwasser, F., J. W. Jacklet, and R. B. Alvarez. A seasonal rhythm in the neural extract induction of behavioral egg‐laying in Aplysia. Comp. Biochem. Physiol. 29: 197–206, 1969.
 808. Stuart, A. E. Physiological and morphological properties of motoneurons in the central nervous system of the leech. J. Physiol. London 209: 627–646, 1970.
 809. Swihart, S. L. Single unit activity in the visual pathway of the butterfly Feliconius erato. J. Insect Physiol. 14: 1589–1601, 1968.
 810. Swihart, S. L. Modelling the butterfly visual pathway. J. Insect Physiol. 18: 1915–1928, 1972.
 811. Szekely, G. Logical network for controlling limb movements in urodela. Acta Physiol. Acad. Sci. Hung. 27: 285–289, 1965.
 812. Székely, G., G. Czéh, and G. Vörös. The activity pattern of limb muscles in freely moving normal and deafferented newts. Exptl. Brain Res. 9: 53–62, 1969.
 813. Székely, G., and G. Czéh. Muscle activities of partially innervated limbs during locomotion in Ambystoma. Acta Physiol. Acad. Sci. Hung. 40: 269–286, 1971.
 814. Szent‐Györgyi, A. G., C. Cohen, and J. Kendrick‐Jones. Paramyosin and the filaments of molluscan “catch” muscles. II. Native filaments: isolation and characterization. J. Mol. Biol. 56: 239–258, 1971.
 815. Takeda, K., and D. Kennedy. Soma potentials and modes of activation of crayfish motoneurons. J. Cellular Comp. Physiol. 64: 165–182, 1964.
 816. Takeda, K., and D. Kennedy. The mechanism of discharge pattern formation in crayfish interneurons. J. Gen. Physiol. 48: 435–453, 1965.
 817. Takeuchi, A., and N. Takeuchi. Localized action of gamma‐aminobutyric acid on the crayfish muscle. J. Physiol. London 177: 225–238, 1965.
 818. Takeuchi, A., and N. Takeuchi. On the permeability of the presynaptic terminal of the crayfish neuromuscular junction during synaptic inhibition and the action of gamma‐aminobutyric acid. J. Physiol. London 183: 433–449, 1966.
 819. Takeuchi, A., and N. Takeuchi. A study of the inhibitory action of gamma‐aminobutyric acid on neuromuscular transmission in the crayfish. J. Physiol. London 183: 418–432, 1966.
 820. Talens, A. De, F. Perez, and C. Taddei‐Ferretti. Landing reaction of Musca domestica. Dependence on dimensions and position of the stimulus. J. Exptl. Biol. 52: 233–256, 1970.
 821. Tashiro, N. Mechanical properties of the longitudinal and circular muscle in the earthworm. J. Exptl. Biol. 55: 101–110, 1971.
 822. Tashiro, N., and T. Yamamoto. The phasic and tonic contraction in the longitudinal muscle of the earthworm. J. Exptl. Biol. 55: 111–122, 1971.
 823. Tauc, L. Site of origin and propagation of spike in the giant neuron of Aplysia. J. Gen. Physiol. 45: 1077–1099, 1962.
 824. Tauc, L. Identification of active membrane areas in the giant neuron of Aplysia. J. Gen. Physiol. 45: 1099–1115, 1962.
 825. Tauc, L. Transmission in invertebrate and vertebrate ganglia. Physiol. Rev. 47: 521–593, 1967.
 826. Tauc, L., and G. M. Hughes. Modes of initiation and propagation of spikes in the branching axons of molluscan neurons. J. Gen. Physiol. 46: 533–549, 1965.
 827. Taylor, R. C. Water‐vibration reception: a neurophysiological study in unrestrained crayfish. Comp. Biochem. Physiol. 27: 795–805, 1968.
 828. Taylor, R. C. Environmental factors which control the sensitivity of a single crayfish interneuron. Comp. Biochem. Physiol. 33: 911–921, 1970.
 829. Tazaki, K. The effects of tetrodotoxin on the slow potential and spikes in the cardiac ganglion of a crab, Eriocheir japonicus. Japan. J. Physiol. 21: 529–536, 1971.
 830. Tazaki, K. Small synaptic potentials in burst activity of large neurons in the lobster cardiac ganglion. Japan. J. Physiol. 21: 645–658, 1971.
 831. Tazaki, K. Electrical interaction among large cells in the cardiac ganglion of the lobster, Panulirus japonicus. J. Exptl. Zool. 180: 85–94, 1972.
 832. Tazaki, K. The burst activity of different cell regions and intercellular co‐ordination in the cardiac ganglion of the crab, Eriocheir japonicus. J. Exptl. Biol. 57: 713–726, 1972.
 833. Tazaki, K. Impulse activity and pattern of large and small neurones in the cardiac ganglion of the lobster, Penulirus japonicus. J. Exptl. Biol. 58: 473–486, 1973.
 834. Terzuolo, C. A., and Y. Washizu. Relation between stimulus strength, generator potential and impulse frequency in stretch receptor of crustacea. J. Neurophysiol. 25: 56–66, 1962.
 835. Thomas, R. C., and V. J. Wilson. Recurrent interactions between motoneurons of known location in the cervical cord of the cat. J. Neurophysiol. 30: 661–674, 1967.
 836. Thompson, E. L. An analysis of the learning process in the snail, Physa gyrina Say. Behav. Monogr. 3: 1–89, 1917.
 837. Thorson, J. Dynamics of motion perception in the desert locust. Science 145: 69–71, 1964.
 838. Thorson, J. Small signal analysis of a visual reflex in the locust. I. Input parameters. Kybernetik 3: 41–52, 1966.
 839. Thorson, J. Small signal analysis of a visual reflex in the locust. II. Frequency dependence. Kybernetik 3: 53–66, 1966.
 840. Tinbergen, N. The Study of Instinct. New York: Oxford Univ. Press, 1951.
 841. Toevs, L. A., and R. W. Brackenbury. Bag cell‐specific proteins and the humoral control of egg laying in Aplysia californica. Comp. Biochem. Physiol. 29: 207–216, 1969.
 842. Treherne, J. E., DeF. Mellon, Jr., and A. D. Carlson. The ionic basis of axonal conduction in the central nervous system of Anodonta cygnea (Mollusca: Eulamellibranchia). J. Exptl. Biol. 50: 711–722, 1969.
 843. Trueman, E. R. The fluid dynamics of the bivalve molluscs, Mya and Margaritifera. J. Exptl. Biol. 45: 369–382, 1966.
 844. Trueman, E. R. Observations on the burrowing of Arenicola marina. J. Exptl. Biol. 44: 93–118, 1966.
 845. Trueman, E. R. The mechanism of burrowing of some naticid gastropods in comparison with that of other molluscs. J. Exptl. Biol. 48: 663–678, 1968.
 846. Trueman, E. R., and A. Packard. Motor performance of some cephalopods. J. Exptl. Biol. 49: 495–507, 1968.
 847. Truman, J. W. Physiology of insect ecdysis. I. The eclosion behavior of saturniid moths and its hormonal release. J. Exptl. Biol. 54: 805–814, 1971.
 848. Truman, J. W., and P. G. Sokolove. Silk moth eclosion: hormonal triggering of a centrally programmed pattern of behavior. Science 175: 1491–1493, 1972.
 849. Twarog, B. M. The regulation of catch in a molluscan muscle. J. Gen. Physiol. Suppl. 50: 157–169, 1967.
 850. Tyrer, N. M. Innervation of the abdominal intersegmental muscles in the grasshopper. I. Axon counts using unconventional techniques for the electron microscope. J. Exptl. Biol. 55: 305–314, 1971.
 851. Tyrer, N. M. Innervation of the abdominal intersegmental muscles in the grasshopper. II. Physiological analysis. J. Exptl. Biol. 55: 315–324, 1971.
 852. Uchizono, K. Characteristics of excitatory and inhibitory synapses in the central nervous system of the cat. Nature 207: 642–643, 1965.
 853. Uchizono, K. Inhibitory synapses on the stretch receptor neurone of the crayfish. Nature 214: 833–834, 1967.
 854. Usherwood, P. N. R. Response of insect muscles to denervation. I. Resting potential changes. J. Insect Physiol. 9: 247–255, 1963.
 855. Usherwood, P. N. R. Response of insect muscles to denervation. II. Changes in neuromuscular transmission. J. Insect Physiol. 9: 811–825, 1963.
 856. Usherwood, P. N. R. Insect neuromuscular mechanisms. Am. Zoologist 7: 553–583, 1967.
 857. Usherwood, P. N. R. A critical study of the evidence for peripheral inhibitory axons in insects. J. Exptl. Biol. 49: 201–222, 1968.
 858. Usherwood, P. N. R., and H. Grundfest. Peripheral inhibition in skeletal muscles of insects. J. Neurophysiol. 28: 497–518, 1965.
 859. Usherwood, P. N. R., and H. I. Runion. Analysis of the mechanical responses of metathoracic extensor tibiae muscles of free‐walking locusts. J. Exptl. Biol. 52: 39–58, 1970.
 860. Usherwood, P. N. R., H. I. Runion, and J. I. Campbell. Structure and physiology of a chordotonal organ in the locust leg. J. Exptl. Biol. 48: 305–323, 1968.
 861. Viala, G., and P. Buser. Activites locomotrices rhythmiques stérotypées chez le lapin sous anesthésie légère. Exptl. Brain Res. 8: 346–363, 1969.
 862. Wachtel, H., and E. R. Kandel. A direct connection mediating both excitation and inhibition. Science 158: 1206–1208, 1967.
 863. Wachtel, H., and E. R. Kandel. Conversion of synaptic excitation to inhibition at a dual chemical synapse. J. Neurophysiol. 34: 56–68, 1971.
 864. Waldron, I. Mechanisms for the production of the motor output pattern in flying locusts. J. Exptl. Biol. 47: 201–212, 1967.
 865. Waldron, I. Neural mechanism by which controlling inputs influence motor output in the flying locust. J. Exptl. Biol. 47: 213–228, 1967.
 866. Waldron, I. The mechanism of coupling of the locust flight oscillator to oscillatory inputs. Z. Vergleich. Physiol. 57: 331–347, 1968.
 867. Warner, G. F. Behaviour of two species of grapsid crab during intraspecific encounters. Behaviour 36: 9–19, 1970.
 868. Watanabe, A. The interaction of electrical activity among neurons of lobster cardiac ganglion. Japan. J. Physiol. 8: 305–318, 1958.
 869. Watanabe, A., and T. H. Bullock. Modulation of activity of one neuron by subthreshold slow potentials in another in lobster cardiac ganglion. J. Gen. Physiol. 43: 1031–1045, 1960.
 870. Watanabe, A., S. Obara, and Y. Akoyama. Pacemaker potentials for the periodic burst discharge in the heart ganglion of a stomatopod, Squilla oratoria. J. Gen. Physiol. 50: 839–862, 1967.
 871. Watanabe, A., S. Obara, T. Akiyama, and K. Yumoto. Electrical properties of the pacemaker neurons in the heart ganglion of a stomatopod, Squilla oratoria. J. Gen. Physiol. 50: 813–838, 1967.
 872. Watanabe, A., and K. Takeda. The spread of excitation among neurons in the heart ganglion of the stomatopod, Squilla oratoria. J. Gen. Physiol. 46: 773–801, 1963.
 873. Waterman, T. H., C. A. G. Wiersma, and B. M. H. Bush. Afferent visual responses in the optic nerve of the crab Podophthalmus. J. Cell. Comp. Physiol. 63: 135–155, 1964.
 874. Weevers, R. De G. The physiology of a lepidopteran muscle receptor. III. The stretch reflex. J. Exptl. Biol. 45: 229–249, 1966.
 875. Weevers, R. De G. A preparation of Aplysia fasciata for intrasomatic recording and stimulation of single neurones during locomotor movements. J. Exptl. Biol. 54: 659–676, 1971.
 876. Weis‐Fogh, T. An aerodynamic sense organ stimulating and regulating flight in locusts. Nature 163: 873–874, 1949.
 877. Weis‐Fogh, T. Flying insects and gravity. In: Gravity and the Organism, edited by S. A. Gordon and M. J. Cohen. Chicago: Univ. of Chicago Press, 1971, p. 177–183.
 878. Weiss, P. A study of motor coordination and tonus in deafferented limbs of amphibia. Am. J. Physiol. 115: 461–475, 1936.
 879. Wells, M. J., and J. Wells. Conditioning and sensitization in snails. Animal Behav. 19: 305–312, 1971.
 880. Wendler, G. Laufen und Stehen der Stabheuschrecke Carausius morosus: Sinnesborstenfelder in den Beingelenken als Glieder von Regelkreisen. Z. Vergleich. Physiol. 48: 198–250, 1964.
 881. Wendler, G. The coordination of walking movements in arthropods. Symp. Soc. Exptl. Biol. 20: 229–249, 1966.
 882. Wendler, G. Gravity orientation in insects: the role of different mechanoreceptors. In: Gravity and the Organism, edited by S. A. Gordon and M. J. Cohen. Chicago: Univ. of Chicago Press, 1971, p. 195–199.
 883. Wenner, A. M. Honeybees: do they use the distance information contained in their dance maneuver? Science 155: 847–849, 1967.
 884. Wenner, A. M. Honeybees: do they use direction and distance information provided by their dancers? Science 158: 1075–1077, 1967.
 885. Wenner, A. M., P. H. Wells, D. L. Johnson, and F. J. Rohlf. An analysis of the waggle dance and recruitment in honey bees. Physiol. Zool. 40: 317–344, 1967.
 886. Wenner, A. M., P. H. Wells, and D. L. Johnson. Honey bee recruitment to food sources: olfaction or language? Science 164: 84–88, 1969.
 887. Whitear, M. The fine structure of crustacean proprioreceptors. II. The thoracico‐coxal organs in Carcinus, Pagurus and Astacus. Phil. Trans. Roy. Soc. London Ser. B 248: 437–456, 1965.
 888. Wiersma, C. A. G. Function of the giant fibers of the central nervous system of the crayfish. Proc. Soc. Exptl. Biol. Med. 38: 661–662, 1938.
 889. Wiersma, C. A. G. Giant nerve fiber system of the crayfish. A contribution to comparative physiology of synapse. J. Neurophysiol. 10: 23–38, 1947.
 890. Wiersma, C. A. G. The neurons of arthropods. Cold Spring Harbor Symp. Quant. Biol. 20: 155–163, 1952.
 891. Wiersma, C. A. G. Inhibitory neurons: a survey of the history of their discovery and of their occurrence. In: Nervous Inhibition, edited by E. Florey. London: Pergamon, 1961, pp. 1–7.
 892. Wiersma, C. A. G. Regulative mechanisms for the discharges of specific interneurons. In: The Interneuron. edited by M. A. B. Brazier. Los Angeles: University of Calif. Press, 1969, p. 113–129. (UCLA Forum Med. Sci. 11.).
 893. Wiersma, C. A. G., and R. T. Adams. The influence of nerve impulse sequence on the contractions of different crustacean muscles. Physiol. Comp. Oecol. 2: 20–33, 1950.
 894. Wiersma, C. A. G., and E. G. Boettiger. Unidirectional movement fibers from a proprioceptive organ of the crab, Carcinus maenas. J. Exptl. Biol. 36: 102–112, 1959.
 895. Wiersma, C. A. G., and L. Fiore. Factors regulating the discharge frequency in optomotor fibres of Carcinus maenas. J. Exptl. Biol. 54: 497–505, 1971.
 896. Wiersma, C. A. G., and L. Fiore. Unidirectional rotation neurones in the optomotor system of the crab, Carcinus. J. Exptl. Biol. 54: 507–513, 1971.
 897. Wiersma, C. A. G., E. J. Furshpan, and P. Florey. Physiological and pharmacological observations on muscle receptor organs of the crayfish, Cambarus clarkii Girard. J. Exptl. Biol. 30: 136–150, 1953.
 898. Wiersma, C. A. G., and G. M. Hughes. On the functional anatomy of neuronal units in the abdominal cord of the crayfish, Procambarus clarkii Girard. J. Comp. Neurol. 116: 209–228, 1961.
 899. Wiersma, C. A. G., and K. Ikeda. Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp. Biochem. Physiol. 12: 509–525, 1964.
 900. Wiersma, C. A. G., and E. Novitski. The mechanism of the nervous regulation of the crayfish heart. J. Exptl. Biol. 19: 255–265, 1942.
 901. Wiersma, C. A. G., and T. Oberjat. The selective responsiveness of various crayfish oculomotor fibers to sensory stimuli. Comp. Biochem. Physiol. 26: 1–16, 1968.
 902. Wiersma, C. A. G., and S. H. Ripley. Innervation patterns of crustacean limbs. Physiol. Comp. Oecol. 2: 391–409, 1952.
 903. Wiersma, C. A. G., and T. Yamaguchi. Integration of visual stimuli by the crayfish central nervous system. J. Exptl. Biol. 47: 409–431, 1967.
 904. Wiersma, C. A. G., and T. Yamaguchi. The integration of visual stimuli by the rock lobster. Vision Res. 7: 197–204, 1967.
 905. Wiersma, C. A. G., and K. Yanagisawa. On types of interneurons responding to visual stimulation present in the optic nerve of the rock lobster, Panulirus interruptus. J. Neurobiol. 2: 291–309, 1971.
 906. Wiersma, C. A. G., and B. York. Properties of seeing fibers in the rock lobster: field structure, habituation, attention and distraction. Vision Res. 12: 627–640, 1972.
 907. Wiese, K. Das mechanorezeptorische Beuteortungs system von Notonecta. I. Die Funktion des tarsalen Scolopidial Organs. J. Comp. Physiol. 78: 83–102, 1972.
 908. Wilkens, J. L., and B. R. McMahon. Aspects of branchial irrigation in the lobster Homarus americanus. I. Functional analysis of scaphognathite beat, water pressures and currents. J. Exptl. Biol. 56: 469–479, 1972.
 909. Wilkens, L. A., and J. L. Larimer. The CNS photoreceptor of crayfish: morphology and synaptic activity. J. Comp. Physiol. 80: 389–408, 1972.
 910. Williams, B. G., and E. Naylor. Spontaneously induced rhythm of tidal periodicity in laboratory‐reared Carcinus. J. Exptl. Biol. 47: 229–234, 1967.
 911. Williams, B. G., and E. Naylor. Synchronization of the locomotor tidal rhythm of Carcinus. J. Exptl. Biol. 51: 715–725, 1969.
 912. Willows, A. O. D. Behavioral acts elicited by stimulation of single, identifiable brain cells. Science 157: 570–574, 1967.
 913. Willows, A. O. D. Behavioral acts elicited by stimulation of single, identifiable nerve cells. In: Physiological and Biochemical Aspects of Nervous Integration, edited by F. D. Carlson. Englewood Cliffs, N.J.: Prentice‐Hall, 1968, p. 217–243.
 914. Willows, A. O. D., D. A. Dorsett, and G. Hoyle. The neuronal basis of behavior in Tritonia. I. Functional organization of the central nervous system. J. Neurobiol. 4: 207–237, 1973.
 915. Willows, A. O. D., D. A. Dorsett, and G. Hoyle. The neuronal basis of behavior in Tritonia. III. Neuronal mechanism of a fixed action pattern. J. Neurobiol. 4: 255–285, 1973.
 916. Willows, A. O. D., and G. Hoyle. Correlation of behavior with the activity of single, identifiable neurons in the brain of Tritonia. Symp. Biol. Hung. 8: 443–461, 1968.
 917. Willows, A. O. D., and G. Hoyle. Neuronal network triggering a fixed action pattern. Science 166: 1549–1551, 1969.
 918. Wilson, D. M. Nervous control of movement in cephalopods. J. Exptl. Biol. 37: 57–72, 1960.
 919. Wilson, D. M. The central nervous control of flight in a locust. J. Exptl. Biol. 38: 471–490, 1961.
 920. Wilson, D. M. Bifunctional muscles in the thorax of grasshoppers. J. Exptl. Biol. 39: 669–677, 1962.
 921. Wilson, D. M. The lift control reaction of flying locust. J. Exptl. Biol. 41: 183–190, 1964.
 922. Wilson, D. M. Proprioceptive leg reflexes in cockroaches. J. Exptl. Biol. 43: 397–409, 1965.
 923. Wilson, D. M. Insect walking. Ann. Rev. Entomol. 11: 103–123, 1966.
 924. Wilson, D. M. Central nervous mechanisms for the generation of rhythmic behaviour in arthropods. Symp. Soc. Exptl. Biol. 20: 199–228, 1966.
 925. Wilson, D. M. Stepping patterns in tarantula spiders. J. Exptl. Biol. 47: 133–151, 1967.
 926. Wilson, D. M. Inherent asymmetry and reflex modulation of the locust flight motor pattern. J. Exptl. Biol. 48: 631–641, 1968.
 927. Wilson, D. M. Neural operations in arthropod ganglia. In: The Neurosciences: Second Study Program, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1970, p. 397–409.
 928. Wilson, D. M. Stabilizing mechanisms in insect flight. In: Gravity and the Organism, edited by S. A. Gordon and M. J. Cohen. Chicago: Univ. of Chicago Press, 1971, p. 169–174.
 929. Wilson, D. M., and W. J. Davis. Nerve impulse patterns and reflex control in the crayfish claw motor system. J. Exptl. Biol. 43: 193–210, 1965.
 930. Wilson, D. M., and E. Gettrup. A stretch reflex controlling wingbeat frequency in grasshoppers. J. Exptl. Biol. 40: 171–186, 1963.
 931. Wilson, D. M., and R. R. Hoy. Optomotor reaction, locomotory bias and reactive inhibition in the milkweed bug Oncopeltus and the beetle Zophobas. Z. Vergleich. Physiol. 58: 136–152, 1968.
 932. Wilson, D. M., and J. L. Larimer. The catch property of ordinary muscle. Proc. Natl. Acad. Sci. US 61: 909–916, 1968.
 933. Wilson, D. M., D. O. Smith, and P. Dempster. Length and tension hysteresis during sinusoidal and step function stimulation of arthropod muscle. Am. J. Physiol. 218: 916–922, 1970.
 934. Wilson, D. M., and T. Weis‐Fogh. Patterned activity of coordinated motor units, studied in flying locusts. J. Exptl. Biol. 39: 643–667, 1962.
 935. Wilson, D. M., and R. J. Wyman. Motor output patterns during random and rhythmic stimulation of locust thoracic ganglion. Biophys. J. 5: 121–143, 1965.
 936. Wilson, D. M., and R. J. Wyman. Phasically unpatterned nervous control of Dipteran flight. J. Insect Physiol. 9: 859–865, 1963.
 937. Wine, J. T. Escape reflex circuit in crayfish: interganglionic interneurons activated by the giant command neurons. Biol. Bull. 141: 408, 1971.
 938. Wine, J. T., and F. B. Krasne. The organization of escape behavior in the crayfish. J. Exptl. Biol. 56: 1–18, 1972.
 939. Winlow, W., and M. S. Laverack. The control of hindgut motility in the lobster, Homarus gammarus (L.) 1. Analysis of hindgut movements and receptor activity. Marine Behav. Physiol. 1: 1–27, 1972.
 940. Winlow, W., and M. S. Laverack. The control of hindgut motility in the Lobster, Homarus gammarus (L.) 2. Motor output. Marine Behav. Physiol. 1: 29–47, 1972.
 941. Winlow, W., and M. S. Laverack. The control of hindgut motility in the lobster, Homarus gammarus (L.) 3. Structure of the sixth abdominal ganglion (6 A.G.) and associated ablation and microelectrode studies. Marine Behav. Physiol. 1: 93–121, 1972.
 942. Wolda, H. Response decrement in the prey catching activity of Notonecta glauca L. (Hemiptera). Arch. Neerl. Zool. 14: 61–89, 1961.
 943. Wood, J., and R. J. Von Baumgarten. Activity recorded from the statocyst nerve of Pleurobranchaea californica during rotation and at different tilts. Comp. Biochem. Physiol. 43A: 495–512, 1972.
 944. Wuerker, R. B., A. M. McPhedran, and E. Henneman. Properties of motor units in a heterogeneous pale muscle (M. gastrocnemius) of the cat. J. Neurophysiol. 28: 85–99, 1965.
 945. Wyers, E. J., H. V. S. Peeke, and M. J. Herz. Partial reinforcement and resistance to extinction in the earthworm. J. Comp. Physiol. Psychol. 57: 113–116, 1964.
 946. Wyman, R. J. Probabilistic characterization of simultaneous nerve impulse sequences controlling Dipteran flight. Biophys. J. 5: 447–471, 1965.
 947. Wyman, R. J. Multistable firing patterns among several neurons. J. Neurophysiol. 29: 807–833, 1966.
 948. Wyman, R. J. Lateral inhibition in a motor output system. I. Reciprocal inhibition in Dipteran flight motor system. J. Neurophysiol. 32: 297–306, 1969.
 949. Wyman, R. J. Lateral inhibition in a motor output system. II. Diverse forms of patterning. J. Neurophysiol. 32: 307–314, 1969.
 950. Wyman, R. J. Patterns of frequency variation in Dipteran flight motor units. Comp. Biochem. Physiol. 35: 1–16, 1970.
 951. Wyman, R. J. Neural networks driving flight motoneurone rhythms in Diptera. In: Neurobiology of Invertebrates, edited by J. Salanki. Tihany, Hungary: Hung. Acad. Sci., 1973, p. 287–307.
 952. Wyse, G. A. Intracellular and extracellular motor neuron activity underlying rhythmic respiration in Limulus. J. Comp. Physiol. 81: 259–276, 1972.
 953. Wyse, G. A., and N. K. Dwyer. The neuromuscular basis of coxal feeding and locomotory movements in Limulus. Biol. Bull. 144: 567–579, 1973.
 954. Yadava, R. P. S., and M. V. Smith. Aggressive behavior of Apis mellifera L. Workers toward introduced queens. I. Behaviour 39: 212–236, 1971.
 955. Young, E. The motoneurons of the mesothoracic ganglion of Periplaneta americana. J. Insect Physiol. 15: 1175–1179, 1969.
 956. Young, D. Specific re‐innervation of limbs transplanted between segments in the cockroach, Periplaneta americana. J. Exptl. Biol. 57: 305–316, 1972.
 957. Zaretsky, M. D. Specificity of the calling song and short term changes in the phonotactic response by female crickets Scapsipedus marginatus (Gryllidae). J. Comp. Physiol. 79: 153–172, 1972.
 958. Zollman, J. R., and H. Gainer. Electrophysiological properties of nerve cell bodies in the sixth abdominal ganglion of the Maine lobster, Homarus americanus. Comp. Biochem. Physiol. 38A: 407–433, 1971.
 959. Zucker, R. S. Crayfish escape behavior and central synapses. I. Neural circuit exciting lateral giant fiber. J. Neurophysiol. 35: 599–620, 1972.
 960. Zucker, R. S. Crayfish escape behavior and central synapses. II. Physiological mechanisms underlying behavioral habituation. J. Neurophysiol. 35: 621–637, 1972.
 961. Zucker, R. S. Crayfish escape behavior and central synapses. III. Electrical junctions and dendrite spikes in fast flexon motoneurons. J. Neurophysiol. 35: 638–651, 1972.
 962. Zucker, R. S. Theoretical implications of the size principle of motoneuron recruitment. J. Theoret. Biol. 38: 587–596, 1973.
 963. Zucker, R. S., D. Kennedy, and A. I. Selverston. Neuronal circuit mediating escape responses in crayfish. Science 173: 645–650, 1971.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Donald Kennedy, William J. Davis. Organization of Invertebrate Motor Systems. Compr Physiol 2011, Supplement 1: Handbook of Physiology, The Nervous System, Cellular Biology of Neurons: 1023-1087. First published in print 1977. doi: 10.1002/cphy.cp010127