Comprehensive Physiology Wiley Online Library

Anatomy of the Descending Pathways

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Anatomical Techniques
1.1 Visualization of Neurons and Their Processes
1.2 Tracing of Axons and Identification of Their Terminals by Techniques of Anterograde Labeling
1.3 Identification of Cells of Origin of Fiber Systems by Retrograde Labeling
1.4 Identification of Neurons and Tracing of Their Axons
2 Anatomy of Spinal Cord and Brain Stem
2.1 Spinal Cord
2.2 Brain Stem
3 Descending Pathways
3.1 Descending Brain Stem Pathways
3.2 Descending Cortical Pathways
4 Synthesis
4.1 Grouping of Descending Pathways on the Basis of Their Terminal Distribution
4.2 Functional Epilogue
Figure 1. Figure 1.

Distribution of the different motoneuronal cells columns in the cervical and lumbosacral enlargements that innervate the various groups of limb muscles in cat. Note that motoneuronal cell groups innervating proximal muscles are distributed throughout the major portion of the enlargements. Cell group y in the S1 segment distributes its fibers by way of pudendal nerve to muscles of pelvic diaphragm and vesical and rectal sphincters.

From Kuypers 789, by permission of S. Karger AG, Basel
Figure 2. Figure 2.

Distribution of retrogradely HRP‐labeled neurons in cat cervical cord after HRP injections at different spinal levels. Note that after L6 injections the labeled long propriospinal neurons are concentrated in lamina VIII and adjoining parts of lamina VII, whereas after T1 injections short propriospinal neurons in the dorsal and lateral part of laminae V and VII are also labeled.

Adapted from Molenaar and Kuypers 490
Figure 3. Figure 3.

Distribution of ascending and descending propriospinal fibers in cat, based on silver‐impregnated anterograde fiber degeneration. Distribution of descending fibers has been obtained by hemisecting the cord at T1–T2 in animals in which cord had previously been hemisected at C2 on that same side 80 wk earlier. After such a survival time the descending degeneration resulting from the C2 hemisection can no longer be demonstrated.

From Giovanelli‐Barilari and Kuypers 216
Figure 4. Figure 4.

Left: distribution of propriospinal fibers from different portions of lateral and ventral funiculi to the various motoneuronal cell groups in cat L7 ventral horn. Right: distribution of neurons in different parts of intermediate zone that distribute their fibers to the various portions of lateral and ventral funiculi in cat. Data based on findings obtained by means of silver‐impregnated anterograde axon degeneration and by means of retrograde cell degeneration.

Adapted from Molenaar, Rustioni, and Kuypers 491
Figure 5. Figure 5.

Distribution of rubrospinal, long propriospinal, and bulbar reticulospinal fibers in gray matter of cat cervical and lumbosacral cord. Note that termination of long propriospinal and reticulospinal fibers in the enlargements occupy mainly the ventromedial part of intermediate zone, but in upper cervical and upper lumbar region occupy almost the entire width of ventral horn. Distributions of rubrospinal and reticulospinal fibers are represented according to Petras 553.

From Giovanelli‐Barilari and Kuypers 216
Figure 6. Figure 6.

Left: brain stem connections to eye muscle nuclei. Middle and right: distribution of propriobulbar fibers from medial and lateral parts of bulbar lateral tegmental field to bulbar motor nuclei V, VII, and XII. Prl, preinterstitial area; RN, red nucleus; PC, posterior commissure; BC, brachium conjunctivum; PP, pontine paramedian reticular formation; PH, prepositus hypoglossi nucleus; R, raphe nucleus; PV, principal sensory trigeminal nucleus; SVC, spinal V complex; CN, cochlear nuclei; NV, trigeminal nerve; MED TEG, bulbar medial tegmental field; LAT TEG, bulbar lateral tegmental field.

Figure 7. Figure 7.

Distribution of retrograde HRP‐labeled neurons in a C2 spinal hemisected cat after HRP injections on the other side at T1. Asterisks in superior colliculus indicate locations of retrogradely labeled neurons after HRP injections at C2. F, fornix; SC, superior colliculus; RN, red nucleus; IC, inferior colliculus; RFp, pontine reticular formation; LP, ventrolateral pontine tegmentum; BC, brachium conjunctivum; SC, nucleus subcoeruleus; TRS, rubrospinal tract; NVL, lateral vestibular nucleus; RB, restiform body; MV, medial vestibular nucleus; DV, descending vestibular nucleus; OLS, superior olive; OLI, inferior olive; R, raphe; SVC, spinal trigeminal complex; NTS, solitary nucleus; NCG, dorsal column nuclei cuneatus and gracilis; LR, lateral reticular nucleus; NRA, retroambiguus nucleus.

From Kuypers and Maisky 381
Figure 8. Figure 8.

Distribution of medially descending brain stem pathways, which terminate characteristically in area of long propriospinal neurons in intermediate one and in addition terminate also in bulbar medial reticular formation. Note that some of these pathways also project to medial part of facial nucleus, innervating external ear muscles and platysma. Note further that tectospinal fibers and medullary reticulospinal fibers also distribute to lateral parts of intermediate zone. CH OPT, optic chiasm; IC, interstitial nucleus of Cajal; RN, red nucleus; BC, brachium conjunctivum; Vm, trigeminal motor nucleus; VEST COMPL, vestibular complex; S, superior vestibular nucleus; L, lateral vestibular nucleus; M, medial vestibular nucleus; D, descending (spinal) vestibular nucleus; PREP HYP, nucleus prepositus hypoglossi; sol n, solitary nucleus; n dors x, dorsal motor nucleus of the vagus; N. INTERCAL., nucleus intercalatus.

Figure 9. Figure 9.

Trajectory and terminal distribution of laterally descending brain stem pathway, which are derived from contralateral magnocellular red nucleus, Edinger‐Westphal nucleus, ventrolateral pontine tegmentum, and raphe nuclei. Many of these pathways characteristically distribute fibers to bulbar lateral tegmental field, area of dorsal column nuclei, and dorsal and lateral part of the spinal intermediate zone, which contains short propriospinal neurons. Some of these pathways also distribute fibers to lamina I of spinal dorsal horn (asterisks). OPT CH, optic chiasm; HYPOTH, hypothalamus; THALAM, thalamus; EW, Edinger‐Westphal nucleus; IC, interstitial nucleus of Cajal; RN, red nucleus; BC, brachium conjunctivum; PV, principal sensory trigeminal nucleus; R, raphe nuclei; DCN, dorsal column nuclei cuneatus and gracilis; LAT TEG, bulbar lateral tegmental field; CN, cochlear nuclei; MED TEG, medial tegmental field; SVC, spinal V complex.

Figure 10. Figure 10.

Trajectory and terminal distribution of descending fibers from nucleus subcoeruleus (left) and from raphe nuclei and caudal medullary medial reticular formation (middle) to somatic motoneuronal cell groups in spinal cord. Right: descending brain stem fibers from amygdala, hypothalamus, nucleus laterodorsalis tegmenti, cell group A5, and raphe nuclei to autonomic motoneuronal cell groups of solitary‐dorsal vagal complex and intermediolateral nuclei of thoracic and sacral cord. CH OPT, optic chiasm; HYPOTH, hypothalmus; SUP COLL, superior colliculus; INF COLL, inferior colliculus; SUBCOERUL, nucleus subcoeruleus; R, raphe nuclei; LAT‐DORS TEGM. N, nucleus laterodorsalis tegmenti; N DORS X, dorsal motor nucleus of vagus; N SOL, solitary nucleus.

Figure 11. Figure 11.

Schematic indicating distribution of corticospinal fibers from left hemisphere over the various funiculi (DF, dorsal funiculus; LF, lateral funiculus; VF, ventral funiculus) in different mammalian species and distribution of these fibers to laminae V to VIII of intermediate zone and to motoneuronal cell groups in different parts of spinal cord. Notations at left for each animal: maximum diameter of pyramidal fibers, then reference number of work on which data are based.

Figure 12. Figure 12.

Distribution of corticospinal fibers from left hemisphere to low cervical spinal gray matter in opossum, cat, rhesus monkey, and chimpanzee.

Drawing based on data of Flindt‐Egebak 195, Kuypers and Brinkman 373,376, and Martin and Fisher 449
Figure 13. Figure 13.

A: Reconstruction of an axon collateral of corticospinal neuron at C3 and C4 in cat. Wide rostrocaudal extension of a single axon collateral is characteristic of corticospinal branches. Broken lines and dashed and dotted line show borders of gray matter at level of entry of the collateral into it and level of the central canal, respectively. Arrow indicates injection site of HRP.

Adapted from Futami et al. 788.] B: Transverse reconstruction of a corticospinal axon originating from monkey motor cortex. Ulnar nerve motoneurons (upper two motor nuclei) and radial nerve motonuerons (lower two motor nuclei) labeled by method of retrograde transport of HRP. This axon branch projects to different motoneuron groups, and close contacts of terminal boutons with proximal dendrites of some of HRP‐labeled motoneurons (presumably functional synapses) could be identified in these motor nuclei with light microscope. [From Shinoda et al. 791
Figure 14. Figure 14.

Distribution of corticospinal fibers in low cervical intermediate zone and motoneuronal cell groups in cat, adult monkey, and 4‐day‐old monkey as observed in silver‐impregnated anterograde fiber degeneration studies.

Adapted from Kuypers 372, copyright 1962 by the American Association for the Advancement of Science
Figure 15. Figure 15.

Trajectory and terminal distribution of cortical fibers from left hemisphere to the various bulbar cell groups in goat, cat, and rhesus monkey. Note presence in goat of Bagley's bundle (BB), which distributes fibers mainly to ipsilateral lateral tegmental field. Note also absence of corticobulbar projections to bulbar Vm, motor nucleus VII, and motor nucleus XII in goat and cat, and presence of such connections in rhesus monkey. IC, internal capsule; CP, cerebral peduncle; BB, Bagley's bundle; P, pyramidal tract; BC, brachium conjunctivum; CN, cochlear nuclei; DCN, dorsal column nuclei; lat tegm, bulbar lateral tegmental field; SVC, spinal trigeminal complex; PD, pyramidal decussation.

Figure 16. Figure 16.

Origin of cortical projections to different cell groups in brain stem and spinal cord in monkey. Note that cortical projections to superior colliculus, nucleus of posterior commissure, bulbar medial tegmental field, parafascicular nucleus, and dorsomedial part of parvocellular red nucleus (left and middle diagrams, both rows) are derived mainly from frontal areas rostral to precentral gyrus. Note that projections to magnocellular red nucleus, nucleus tegmenti pedunculopontinus, center median, and ventrolateral part of parvocellular red nucleus (middle diagram, upper row, left and middle diagrams, lower row) are primarily derived from precentral gyrus. Note also that cortical projections to bulbar lateral tegmental field and spinal intermediate zone (upper row, right) are derived from precentral gyrus and rostrally adjoining areas, whereas those of bulbar and spinal motoneuronal cell groups are mainly derived from caudal part of precentral gyrus. Note further that cortical projections to spinal V complex, spinal dorsal horn, and dorsal column nuclei (left, both rows) are derived mainly from postcentral and parietal areas and secondary sensory cortex but that projections to dorsal column nuclei are also derived from caudal part of precentral gyrus.

Figure 17. Figure 17.

Distribution of degenerating precentral corticospinal fibers to the different parts of spinal intermediate zone and motoneuronal cell groups in monkey after lesions in different parts of precentral corticospinal area. Note that after lesions of hand and foot representation areas the degenerating fibers are mainly distributed to dorsal and lateral parts, dl, of contralateral intermediate zone and to motoneuronal cell groups, mn, of distal extremity muscles. Note also that degenerating fibers, which are distributed bilaterally to ventromedial part, vm, of intermediate zone are most numerous after lesions along central sulcus between hand and foot representation areas and after lesions of anterior part of corticospinal area, in which cases only a few degenerating fibers are distributed to motoneuronal cell groups. Upper right: differential origin of projections to ventromedial part of intermediate zone and motoneuronal cell groups.

Adapted from Kuypers and Brinkman 376
Figure 18. Figure 18.

Distribution of degenerating cortical fibers from different parts of frontal lobe to brain stem in monkey. Note differences in distributions of cortical fibers to superior colliculus, red nucleus, and pontine and medullary reticular formation after lesions in different frontal areas.

From Kuypers and Lawrence 380
Figure 19. Figure 19.

Rhesus monkey, 5 mo after bilateral pyramidotomy, reaching for morsel of food held in forceps (left) and grasping it (right). Note opening and closing of hand relatively independent of arm movements.

From Lawrence and Kuypers 399
Figure 20. Figure 20.

Left: rhesus monkey with intact pyramidal tracts taking morsels of food from 8‐mm diam food well using index finger alone. Right: rhesus monkey 2 mo after bilateral pyramidotomy taking morsel of food from large food well by flexing all fingers in concert.

From Lawrence and Kuypers 790, copyright 1965 by the American Association for the Advancement of Science


Figure 1.

Distribution of the different motoneuronal cells columns in the cervical and lumbosacral enlargements that innervate the various groups of limb muscles in cat. Note that motoneuronal cell groups innervating proximal muscles are distributed throughout the major portion of the enlargements. Cell group y in the S1 segment distributes its fibers by way of pudendal nerve to muscles of pelvic diaphragm and vesical and rectal sphincters.

From Kuypers 789, by permission of S. Karger AG, Basel


Figure 2.

Distribution of retrogradely HRP‐labeled neurons in cat cervical cord after HRP injections at different spinal levels. Note that after L6 injections the labeled long propriospinal neurons are concentrated in lamina VIII and adjoining parts of lamina VII, whereas after T1 injections short propriospinal neurons in the dorsal and lateral part of laminae V and VII are also labeled.

Adapted from Molenaar and Kuypers 490


Figure 3.

Distribution of ascending and descending propriospinal fibers in cat, based on silver‐impregnated anterograde fiber degeneration. Distribution of descending fibers has been obtained by hemisecting the cord at T1–T2 in animals in which cord had previously been hemisected at C2 on that same side 80 wk earlier. After such a survival time the descending degeneration resulting from the C2 hemisection can no longer be demonstrated.

From Giovanelli‐Barilari and Kuypers 216


Figure 4.

Left: distribution of propriospinal fibers from different portions of lateral and ventral funiculi to the various motoneuronal cell groups in cat L7 ventral horn. Right: distribution of neurons in different parts of intermediate zone that distribute their fibers to the various portions of lateral and ventral funiculi in cat. Data based on findings obtained by means of silver‐impregnated anterograde axon degeneration and by means of retrograde cell degeneration.

Adapted from Molenaar, Rustioni, and Kuypers 491


Figure 5.

Distribution of rubrospinal, long propriospinal, and bulbar reticulospinal fibers in gray matter of cat cervical and lumbosacral cord. Note that termination of long propriospinal and reticulospinal fibers in the enlargements occupy mainly the ventromedial part of intermediate zone, but in upper cervical and upper lumbar region occupy almost the entire width of ventral horn. Distributions of rubrospinal and reticulospinal fibers are represented according to Petras 553.

From Giovanelli‐Barilari and Kuypers 216


Figure 6.

Left: brain stem connections to eye muscle nuclei. Middle and right: distribution of propriobulbar fibers from medial and lateral parts of bulbar lateral tegmental field to bulbar motor nuclei V, VII, and XII. Prl, preinterstitial area; RN, red nucleus; PC, posterior commissure; BC, brachium conjunctivum; PP, pontine paramedian reticular formation; PH, prepositus hypoglossi nucleus; R, raphe nucleus; PV, principal sensory trigeminal nucleus; SVC, spinal V complex; CN, cochlear nuclei; NV, trigeminal nerve; MED TEG, bulbar medial tegmental field; LAT TEG, bulbar lateral tegmental field.



Figure 7.

Distribution of retrograde HRP‐labeled neurons in a C2 spinal hemisected cat after HRP injections on the other side at T1. Asterisks in superior colliculus indicate locations of retrogradely labeled neurons after HRP injections at C2. F, fornix; SC, superior colliculus; RN, red nucleus; IC, inferior colliculus; RFp, pontine reticular formation; LP, ventrolateral pontine tegmentum; BC, brachium conjunctivum; SC, nucleus subcoeruleus; TRS, rubrospinal tract; NVL, lateral vestibular nucleus; RB, restiform body; MV, medial vestibular nucleus; DV, descending vestibular nucleus; OLS, superior olive; OLI, inferior olive; R, raphe; SVC, spinal trigeminal complex; NTS, solitary nucleus; NCG, dorsal column nuclei cuneatus and gracilis; LR, lateral reticular nucleus; NRA, retroambiguus nucleus.

From Kuypers and Maisky 381


Figure 8.

Distribution of medially descending brain stem pathways, which terminate characteristically in area of long propriospinal neurons in intermediate one and in addition terminate also in bulbar medial reticular formation. Note that some of these pathways also project to medial part of facial nucleus, innervating external ear muscles and platysma. Note further that tectospinal fibers and medullary reticulospinal fibers also distribute to lateral parts of intermediate zone. CH OPT, optic chiasm; IC, interstitial nucleus of Cajal; RN, red nucleus; BC, brachium conjunctivum; Vm, trigeminal motor nucleus; VEST COMPL, vestibular complex; S, superior vestibular nucleus; L, lateral vestibular nucleus; M, medial vestibular nucleus; D, descending (spinal) vestibular nucleus; PREP HYP, nucleus prepositus hypoglossi; sol n, solitary nucleus; n dors x, dorsal motor nucleus of the vagus; N. INTERCAL., nucleus intercalatus.



Figure 9.

Trajectory and terminal distribution of laterally descending brain stem pathway, which are derived from contralateral magnocellular red nucleus, Edinger‐Westphal nucleus, ventrolateral pontine tegmentum, and raphe nuclei. Many of these pathways characteristically distribute fibers to bulbar lateral tegmental field, area of dorsal column nuclei, and dorsal and lateral part of the spinal intermediate zone, which contains short propriospinal neurons. Some of these pathways also distribute fibers to lamina I of spinal dorsal horn (asterisks). OPT CH, optic chiasm; HYPOTH, hypothalamus; THALAM, thalamus; EW, Edinger‐Westphal nucleus; IC, interstitial nucleus of Cajal; RN, red nucleus; BC, brachium conjunctivum; PV, principal sensory trigeminal nucleus; R, raphe nuclei; DCN, dorsal column nuclei cuneatus and gracilis; LAT TEG, bulbar lateral tegmental field; CN, cochlear nuclei; MED TEG, medial tegmental field; SVC, spinal V complex.



Figure 10.

Trajectory and terminal distribution of descending fibers from nucleus subcoeruleus (left) and from raphe nuclei and caudal medullary medial reticular formation (middle) to somatic motoneuronal cell groups in spinal cord. Right: descending brain stem fibers from amygdala, hypothalamus, nucleus laterodorsalis tegmenti, cell group A5, and raphe nuclei to autonomic motoneuronal cell groups of solitary‐dorsal vagal complex and intermediolateral nuclei of thoracic and sacral cord. CH OPT, optic chiasm; HYPOTH, hypothalmus; SUP COLL, superior colliculus; INF COLL, inferior colliculus; SUBCOERUL, nucleus subcoeruleus; R, raphe nuclei; LAT‐DORS TEGM. N, nucleus laterodorsalis tegmenti; N DORS X, dorsal motor nucleus of vagus; N SOL, solitary nucleus.



Figure 11.

Schematic indicating distribution of corticospinal fibers from left hemisphere over the various funiculi (DF, dorsal funiculus; LF, lateral funiculus; VF, ventral funiculus) in different mammalian species and distribution of these fibers to laminae V to VIII of intermediate zone and to motoneuronal cell groups in different parts of spinal cord. Notations at left for each animal: maximum diameter of pyramidal fibers, then reference number of work on which data are based.



Figure 12.

Distribution of corticospinal fibers from left hemisphere to low cervical spinal gray matter in opossum, cat, rhesus monkey, and chimpanzee.

Drawing based on data of Flindt‐Egebak 195, Kuypers and Brinkman 373,376, and Martin and Fisher 449


Figure 13.

A: Reconstruction of an axon collateral of corticospinal neuron at C3 and C4 in cat. Wide rostrocaudal extension of a single axon collateral is characteristic of corticospinal branches. Broken lines and dashed and dotted line show borders of gray matter at level of entry of the collateral into it and level of the central canal, respectively. Arrow indicates injection site of HRP.

Adapted from Futami et al. 788.] B: Transverse reconstruction of a corticospinal axon originating from monkey motor cortex. Ulnar nerve motoneurons (upper two motor nuclei) and radial nerve motonuerons (lower two motor nuclei) labeled by method of retrograde transport of HRP. This axon branch projects to different motoneuron groups, and close contacts of terminal boutons with proximal dendrites of some of HRP‐labeled motoneurons (presumably functional synapses) could be identified in these motor nuclei with light microscope. [From Shinoda et al. 791


Figure 14.

Distribution of corticospinal fibers in low cervical intermediate zone and motoneuronal cell groups in cat, adult monkey, and 4‐day‐old monkey as observed in silver‐impregnated anterograde fiber degeneration studies.

Adapted from Kuypers 372, copyright 1962 by the American Association for the Advancement of Science


Figure 15.

Trajectory and terminal distribution of cortical fibers from left hemisphere to the various bulbar cell groups in goat, cat, and rhesus monkey. Note presence in goat of Bagley's bundle (BB), which distributes fibers mainly to ipsilateral lateral tegmental field. Note also absence of corticobulbar projections to bulbar Vm, motor nucleus VII, and motor nucleus XII in goat and cat, and presence of such connections in rhesus monkey. IC, internal capsule; CP, cerebral peduncle; BB, Bagley's bundle; P, pyramidal tract; BC, brachium conjunctivum; CN, cochlear nuclei; DCN, dorsal column nuclei; lat tegm, bulbar lateral tegmental field; SVC, spinal trigeminal complex; PD, pyramidal decussation.



Figure 16.

Origin of cortical projections to different cell groups in brain stem and spinal cord in monkey. Note that cortical projections to superior colliculus, nucleus of posterior commissure, bulbar medial tegmental field, parafascicular nucleus, and dorsomedial part of parvocellular red nucleus (left and middle diagrams, both rows) are derived mainly from frontal areas rostral to precentral gyrus. Note that projections to magnocellular red nucleus, nucleus tegmenti pedunculopontinus, center median, and ventrolateral part of parvocellular red nucleus (middle diagram, upper row, left and middle diagrams, lower row) are primarily derived from precentral gyrus. Note also that cortical projections to bulbar lateral tegmental field and spinal intermediate zone (upper row, right) are derived from precentral gyrus and rostrally adjoining areas, whereas those of bulbar and spinal motoneuronal cell groups are mainly derived from caudal part of precentral gyrus. Note further that cortical projections to spinal V complex, spinal dorsal horn, and dorsal column nuclei (left, both rows) are derived mainly from postcentral and parietal areas and secondary sensory cortex but that projections to dorsal column nuclei are also derived from caudal part of precentral gyrus.



Figure 17.

Distribution of degenerating precentral corticospinal fibers to the different parts of spinal intermediate zone and motoneuronal cell groups in monkey after lesions in different parts of precentral corticospinal area. Note that after lesions of hand and foot representation areas the degenerating fibers are mainly distributed to dorsal and lateral parts, dl, of contralateral intermediate zone and to motoneuronal cell groups, mn, of distal extremity muscles. Note also that degenerating fibers, which are distributed bilaterally to ventromedial part, vm, of intermediate zone are most numerous after lesions along central sulcus between hand and foot representation areas and after lesions of anterior part of corticospinal area, in which cases only a few degenerating fibers are distributed to motoneuronal cell groups. Upper right: differential origin of projections to ventromedial part of intermediate zone and motoneuronal cell groups.

Adapted from Kuypers and Brinkman 376


Figure 18.

Distribution of degenerating cortical fibers from different parts of frontal lobe to brain stem in monkey. Note differences in distributions of cortical fibers to superior colliculus, red nucleus, and pontine and medullary reticular formation after lesions in different frontal areas.

From Kuypers and Lawrence 380


Figure 19.

Rhesus monkey, 5 mo after bilateral pyramidotomy, reaching for morsel of food held in forceps (left) and grasping it (right). Note opening and closing of hand relatively independent of arm movements.

From Lawrence and Kuypers 399


Figure 20.

Left: rhesus monkey with intact pyramidal tracts taking morsels of food from 8‐mm diam food well using index finger alone. Right: rhesus monkey 2 mo after bilateral pyramidotomy taking morsel of food from large food well by flexing all fingers in concert.

From Lawrence and Kuypers 790, copyright 1965 by the American Association for the Advancement of Science
References
 1. Abzug, C., M. Maeda, B. W. Peterson, and V. J. Wilson. Cervical branching of lumbar vestibulospinal axons. J. Physiol. London 243: 499–522, 1974.
 2. Achenbach, K. E., and D. C. Goodman. Cerebellar projections to pons, medulla and spinal cord in the albino rat. Brain Behav. Evol. 1: 43–57, 1968.
 3. Akagi, Y. The localization of the motor neurons innervating the extraocular muscles in the oculomotor nuclei of the cat and rabbit, using horseradish peroxidase. J. Comp. Neurol. 181: 745–762, 1978.
 4. Akert, K., and C. Sandri. Significance of the Maillet method for cytochemical studies of synapses. In: Golgi Centennial Symposium: Perspectives in Neurobiology, edited by M. Santini. New York: Raven Press, 1975, p. 387–399. (Golgi Centennial Symp., 1973.).
 5. Albano, J. E., T. T. Norton, and W. C. Hall. Laminar origin of projections from the superficial layers of the superior colliculus in the tree shrew, Tupaia glis. Brain Res. 173: 1–11, 1979.
 6. Albe‐Fessard, D., J. Boivie, G. Grant, and A. Levante. Labelling of the cells in the medulla oblongata and the spinal cord of the monkey after injections of horseradish peroxidase in the thalamus. Neurosci. Lett. 1: 75–80, 1975.
 7. Albe‐Fessard, D., A. Levante, and Y. Lamour. Origin of spinothalamic and spinoreticular pathways in cat and monkeys. Adv. Neurol. 4: 157–166, 1974.
 8. Alstermark, B., A. Lundberg, U. Norrsell, and E. Sybirska. Role of C3–C4 propriospinal neurones in forelimb movements in the cat. Acta Physiol. Scand. 105: A24–A25, 1979.
 9. Altman, J., and M. B. Carpenter. Fiber projections of the superior colliculus in the cat. J. Comp. Neurol. 116: 157–177, 1961.
 10. Andersen, P., J. C. Eccles, R. F. Schmidt, and T. Yokota. Identification of relay cells and interneurons in the cuneate nucleus. J. Neurophysiol. 27: 1080–1095, 1964.
 11. Anderson, F. D. The structure of a chronically isolated segment of the cat spinal cord. J. Comp. Neurol. 120: 297–315, 1963.
 12. Anderson, M. E. Cerebellar and cerebral inputs to physiologically identified efferent cell groups in the red nucleus of cat. Brain Res. 30: 49–66, 1971.
 13. Anderson, M. E., M. Yoshida, and V. J. Wilson. Influence of superior colliculus on cat neck motoneurons. J. Neurophysiol. 34: 898–907, 1971.
 14. Anderson, M. E., M. Yoshida, and V. J. Wilson. Tectal and tegmental influences on cat forelimb and hindlimb motoneurons. J. Neurophysiol. 35: 462–470, 1972.
 15. Anderson, W. J., M. W. Stromberg, and E. J. Hinsman. Morphological characteristics of dendrite bundles in the lumbar spinal cord of the rat. Brain Res. 110: 215–227, 1976.
 16. Angaut, P., and D. Bowsher. Cerebello‐rubral connexions in the cat. Nature London 208: 1002–1003, 1965.
 17. Armand, J., and R. Aurenty. Dual organization of motor corticospinal tract in the cat. Neurosci. Lett. 6: 1–7, 1977.
 18. Armand, J., and H. G. J. M. Kuypers. Organisation des projections contralatérales et bilatérales des faisceaux corticospinaux chez le chat. C. R. Acad. Sci. Ser. D 285: 1455–1458, 1977.
 19. Armand, J., Y. Padel, and A. M. Smith. Somatotopic organization of the corticospinal tract in cat motor cortex. Brain Res. 74: 209–227, 1974.
 20. Armstrong, D. M., and R. F. Schild. Spino‐olivary neurones in the lumbo‐sacral cord of the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Res. 168: 176–179, 1979.
 21. Armstrong, J., and P. R. Stephens. A modified chrome‐silver paraffin wax technique for staining neural end‐feet. Stain. Technol. 35: 71–75, 1960.
 22. Asanuma, H., S. D. Stoney, Jr., and W. D. Thompson. Characteristics of cervical interneurons which mediate cortical motor outflow to distal forelimb muscles of cats. Brain Res. 27: 79–95, 1971.
 23. Asanuma, H., P. Zarzecki, E. Jankowska, T. Hongo, and S. Marcus. Projections of individual pyramidal tract neurons to lumbar motor nuclei of the moneky. Exp. Brain Res. 34: 73–89, 1979.
 24. Astruc, J. Corticofugal connections of area 8 (frontal eye field) in Macaca mulatta. Brain Res. 33: 241–256, 1971.
 25. Axelsson, S., A. Bjorklund, B. Falck, O. Lindvall, and L. A. Svensson. Glyoxylic acid condensation: a new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta Physiol. Scand. 87: 57–62, 1973.
 26. Bagley, C. Cortical motor mechanism of the sheep brain. Arch. Neurol. Psychiatry 7: 417–453, 1922.
 27. Bandler, R. Evidence for a bilateral “glomerular” projection from the red nucleus to the spinal nucleus of the trigeminal nerve in the cat. Neurosci. Lett. 8: 211–217, 1978.
 28. Bargmann, W. Neurosecretion. Int. Rev. Cytol. 19: 183–201, 1966.
 29. Barnard, J. W. The hypoglossal complex of vertebrates. J. Comp. Neurol. 72: 489–524, 1940.
 30. Barnes, S. Degeneration in hemiplegia: with special reference to a ventrolateral pyramidal tract, the accessory fillet and Pick's bundle. Brain 24: 463–501, 1901.
 31. Barondes, S. M. On the site of synthesis of the mitochondrial protein of nerve endings. J. Neurochem. 13: 721–727, 1966.
 32. Basbaum, A. I., C. H. Clanton, and H. L. Fields. Opiate and stimulus‐produced analgesia: functional anatomy of a medullospinal pathway. Proc. Natl. Acad. Sci. USA 73: 4685–4688, 1976.
 33. Basbaum, A. I., C. H. Clanton, and H. L. Fields. Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J. Comp. Neurol. 178: 209–224, 1978.
 34. Basbaum, A. I., and H. L. Fields. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J. Comp. Neurol. 187: 513–532, 1979.
 35. Baton, R. R., A. Jayaraman, D. Ruggiero, and M. B. Carpenter. Fastigial efferent projections in the monkey: An autoradiographic study. J. Comp. Neurol. 174: 281–305, 1977.
 36. Bautista, N. S., and H. A. Matzke. A degeneration study of the course and extent of the pyramidal tract of the opossum. J. Comp. Neurol. 124: 367–376, 1965.
 37. Beall, J. E., R. F. Martin, A. E. Applebaum, and W. D. Willis. Inhibition of primate spinothalamic tract neurons by stimulation in the region of the nucleus raphe magnus. Brain Res. 114: 328–333, 1976.
 38. Beckstead, R. M., V. B. Domesick, and W. J. H. Nauta. Efferent connections of the substantia nigra and ventral tegmental area in rat. Brain Res. 175: 191–217, 1979.
 39. Benevento, L. A., and J. H. Fallon. The ascending projections of the superior colliculus in the rhesus monkey (Macaca mulatta). J. Comp. Neurol. 160: 339–361, 1975.
 40. Bentivoglio, M., H. G. J. M. Kuypers, C. E. Catsman‐Berrevoets, and O. Dann. Fluorescent retrograde neuronal labeling in rat by means of substances binding specifically to adenine‐thymine rich DNA. Neurosci. Lett. 12: 235–240, 1979.
 41. Bentivoglio, M., D. van der Kooy, and H. G. J. M. Kuypers. The organization of the efferent projections of the substantia nigra in the rat: a retrograde fluorscent double labeling study. Brain Res. 174: 1–17, 1979.
 42. Beran, R. L., and G. F. Martin. Reticulospinal fibers of the opossum, Didelphis virginiana. I. Origin. J. Comp. Neurol. 141: 453–466, 1971.
 43. Berger, A. J. Dorsal respiratory group neurons in the medulla of cat: spinal projections, responses to lung inflation and superior laryngeal nerve stimulation. Brain Res. 135: 231–254, 1977.
 44. Berkley, K. J., and D. C. Mash. Somatic sensory projections to the pretectum in the cat. Brain Res. 158: 445–449, 1978.
 45. Berman, A. L. The Brain Stem of the Cat. A Cytoarchitectonic Atlas with Stereotaxic Coordinates. Madison: Univ. of Wisconsin Press, 1968.
 46. Berman, N. Connections of the pretectum in the cat. J. Comp. Neurol. 174: 227–254, 1977.
 47. Bernhard, C. G., and E. Bohm. Cortical representation and functional significance of the cortico‐motoneuronal system. Arch. Neurol. Psychiatry 72: 473–502, 1954.
 48. Bernhard, C. G., E. Bohm, and I. Petersen. Investigations on the organization of the corticospinal system in monkeys (Macaca mulatta). Acta Physiol. Scand. 29 Suppl. 106: 79–105, 1953.
 49. Bernhard, C. G., and B. Rexed. The localization of the premotor interneurons discharging through the peroneal nerve. J. Neurophysiol. 8: 387–392, 1945.
 50. Bernstein, J. J. Relationship of cortico‐spinal tract growth to age and body weight in the rat. J. Comp. Neurol. 127: 207–218, 1966.
 51. Berrevoets, C. E., and H. G. J. M. Kuypers. Pericruciate cortical neurons projecting to brain stem reticular formation, dorsal column nuclei and spinal cord in the cat. Neurosci. Lett. 1: 257–262, 1975.
 52. Beusekom, G. T. Fibre Analysis of the Anterior and Lateral Funiculi of the Cord in the Cat. Leiden: Eduardo Ydo, 1955.
 53. Bianchi, A. L. Localisation et étude des neurones respiratoires bulbaires. Mise en jeu antidromique par stimulation spinale ou vagale. J. Physiol. Paris 63: 5–40, 1971.
 54. Biedenbach, M. A., and A. L. Towe. Fiber spectrum and functional properties of pyramidal tract neurons in the American opossum. J. Comp. Neurol. 140: 421–430, 1970.
 55. Bienfang, D. C. Location of the cell bodies of the superior rectus and inferior oblique motoneurons in the cat. Exp. Neurol. 21: 455–466, 1968.
 56. Bienfang, D. C. The course of direct projections from the abducens nucleus to the contralateral medial rectus subdivision of the oculomotor nucleus in the cat. Brain Res. 145: 277–289, 1978.
 57. Bjorklund, A., O. Lindvall, and L. A. Svensson. Mechanisms of fluorophore formation in the histochemical glyoxylic acid method for monoamines. Histochemie 32: 113–131, 1972.
 58. Bjorklund, A., and G. Skagerberg. Evidence for a major spinal cord projection from the diencephalic A11 dopamine cell group in the rat using transmitter‐specific fluorescent retrograde tracing. Brain Res. 177: 170–176, 1979.
 59. Bjorklund, A., and G. Skagerberg. Simultaneous use of retrograde fluorescent tracers and fluorescence histochemistry for convenient and precise mapping of monoaminergic projections and collateral arrangements in the CNS. J. Neurosci. Methods 1: 261–277, 1979.
 60. Blessing, W. W., and J. P. Chalmers. Direct projection of catecholamine (presumably dopamine)‐containing neurons from hypothalamus to spinal cord. Neurosci. Lett. 11: 35–40, 1979.
 61. Blessing, W. W., J. P. Chalmers, and P. R. C. Howe. Distribution of catecholamine‐containing cell bodies in the rabbit central nervous system. J. Comp. Neurol. 179: 407–424, 1978.
 62. Blum, B. Microphysiological characterization of output channels and of impulse propagation from the sensorimotor cortex. Including through pyramidal tract collaterals to the center median nucleus of the cat and of the monkey. Int. J. Neurol. 8: 178–189, 1971.
 63. Blum, B., L. M. Halpern, and A. A. Ward. Microelectrode studies of the afferent connections and efferent projections of neurons in the sensorimotor cortex of the cat. Exp. Neurol. 20: 156–173, 1968.
 64. Bodian, D. A new method for staining nerve fibers and nerve endings in mounted paraffin sections. Anat. Rec. 65: 89–97, 1936.
 65. Bodian, D. Spinal projections of brain stem in rhesus monkey, deduced from retrograde chromatolysis. Anat. Rec. 94: 512–513, 1946.
 66. Bok, S. T. Das Rückenmark. In: Handbuch der mikroscopischen Anatomie des Menschen, edited by W. von Mollendorf. Berlin: Springer‐Verlag, 1928, p. 478–578.
 67. Brech, A. J., G. Gordon, and T. P. S. Powell. Corticofugal cells responding antidromically to stimulation of the cuneate or gracile nuclei of the cat. Brain Res. 128: 39–52, 1977.
 68. Brink, E. E., J. I. Morrell, and D. W. Pfaff. Localization of lumbar epaxial motoneurons in the rat. Brain Res. 170: 23–41, 1979.
 69. Brodal, A. Modification of Gudden method for study of cerebral localization. Arch. Neurol. Psychiatry 43: 46–58, 1940.
 70. Brodal, A. Anatomy of the vestibular nuclei and their connections. In: Handbook of Sensory Physiology, Vestibular System, Basic Mechanisms, edited by H. H. Kornhuber. Berlin: Springer‐Verlag, 1974, vol. 6, pt. 1, p. 239–352.
 71. Brodal, A. The Reticular Formation of the Brain Stem. Anatomical Aspects and Functional Correlations. London: Oliver & Boyd, 1957.
 72. Brodal, A., and A. Gogstad. Rubro‐cerebellar connexions. An experimental study in the cat. Anat. Rec. 118: 455–485, 1954.
 73. Brodal, A., and O. Pompeiano. The vestibular nuclei in the cat. J. Anat. 91: 438–454, 1957.
 74. Brodal, A., and O. Pompeiano. The origin of ascending fibers of the medial longitudinal fasciculus from the vestibular nuclei. An experimental study in the cat. Acta Morphol. Neerl. Scand. 1: 306–328, 1958.
 75. Brodal, A., T. Szabo, and A. Torvik. Corticofugal fibers to sensory trigeminal nuclei and nucleus of solitary tract. An experimental study in the cat. J. Comp. Neurol. 106: 527–552, 1956.
 76. Brodal, A., E. Taber, and F. Walberg. The raphe nuclei of the brain stem in the cat. II. Efferent connections. J. Comp. Neurol. 114: 239–259, 1960.
 77. Brodal, A., F. Walberg, and E. Taber. The raphe nuclei of the brain stem in the cat. III. Afferent connections. J. Comp. Neurol. 114: 261–279, 1960.
 78. Broere, G. Corticofugal Fibers in Some Mammals. An Experimental Study with Special Emphasis on the Cortico‐Spinal System. Oegstgeest, The Netherlands: De Kempenaer, 1971.
 79. Brown, L. T. Projections and termination of the corticospinal tract in rodents. Exp. Brain Res. 13: 432–450, 1971.
 80. Brown, L. T. Corticorubral projections in the rat. J. Comp. Neurol. 154: 149–168, 1974.
 81. Brown, L. T. Rubrospinal projections in the rat. J. Comp. Neurol. 154: 169–188, 1974.
 82. Bryan, R. N., D. L. Trevino, and W. D. Willis. Evidence for a common location of alpha and gamma motoneurons. Brain Res. 38: 193–196, 1972.
 83. Bucher, V. M., and S. M. Bürgi. Some observations on the fiber connections of the di‐ and mesencephalon in the cat. II. Fiber connections of the pretectal region and the posterior commissure. J. Comp. Neurol. 96: 139–177, 1952.
 84. Bumke, O. C. E. Ueber Variationen im Verlauf der Pyramidenbahn. Arch. Psychiatr. Nervenkr. 42: 1–18, 1907.
 85. Bunt, A. H., R. D. Lund, and J. S. Lund. Retrograde axonal transport of horseradish peroxidase by ganglion cells of albino rat retina. Brain Res. 73: 215–228, 1974.
 86. Bürgi, S. Ueber die zentralen Haubenbahnen. Studien an der Sammlung von W. R. Hess. Schweiz. Med. Wochenschr. 2: 57–67, 1954.
 87. Bürgi, S. Das Tectum Opticum. Seine Verbindungen bei der Katze und seine Bedeutung beim Menschen. Dtsch. Z. Nervenheilk. 176: 701–729, 1957.
 88. Bürgi, S., and V. M. Bucher. Some fiber systems passing through the mesencephalic tegmentum in the cat. In: Progress in Neurobiology, edited by J. A. Kapper. Amsterdam: Elsevier 1956, p. 256–263.
 89. Burke, R. E., and P. Rudomin. Spinal neurons and synapses. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 2, chapt. 24, p. 877–944.
 90. Burke, R. E., P. L. Strick, K. Kanda, C. C. Kim, and B. Walmsley. Anatomy of medial gastrocnemius and soleus motor nuclei in cat spinal cord. J. Neurophysiol. 40: 667–680, 1977.
 91. Burton, H., and A. D. Loewy. Projections to the spinal cord from medullary somatosensory relay nuclei. J. Comp. Neurol. 173: 773–792, 1977.
 92. Busch, H. F. M. An Anatomical Analysis of the White Matter in the Brain Stem of the Cat. Assen, The Netherlands: Van Gorcum, 1961.
 93. Busch, H. F. M. Anatomical aspects of the anterior and lateral funiculi at the spinobulbar junction. In: Progress in Brain Research. Organization of the Spinal Cord, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1964, vol. 11, p. 223–235.
 94. Büttner‐Ennever, J. A. Pathways from the pontine reticular formation to structures controlling horizontal and vertical eye movements in the monkey. In: Control of Gaze by Brain Stem Neurons. Development in Neurosciences, edited by R. Baker and A. Berthoz. Amsterdam: Elsevier/North‐Holland, 1977, vol. 1, p. 89–98.
 95. Buxton, D. F., and D. C. Goodman. Motor function and the corticospinal tracts in the dog and raccoon. J. Comp. Neurol. 129: 341–360, 1967.
 96. Buys, R. M. Intra‐ and extrahypothalamic vasopressin and oxytocin pathways in the rat. Pathways to the limbic system, medulla oblongata and spinal cord. Cell Tissue Res. 192: 423–435, 1978.
 97. Cajal, S. R. Histologie du Système Nerveux de l'Homme et des Vertébrés. Madrid: Instituto Ramón y Cajal, 1952.
 98. Campbell, C. B. G., D. Yashon, and J. A. Jane. The origin, course and termination of corticospinal fibers in the slow loris, Nycticelus coucang (Boddaert). J. Comp. Neurol. 127: 101–112, 1966.
 99. Carlsson, A., B. Falck, K. Fuxe, and N. A. Hillarp. Cellular localization of monoamines in the spinal cord. Acta Physiol. Scand. 60: 112–119, 1964.
 100. Carpenter, M. B., J. W. Harbison, and P. Peter. Accessory oculomotor nuclei in the monkey: projections and effects of discrete lesions. J. Comp. Neurol. 140: 131–154, 1970.
 101. Carpenter, M. B., and P. Peter. Accessory oculomotor nuclei in the monkey. J. Hirnforsch. 12: 405–418, 1970/1971.
 102. Carpenter, M. B., and N. L. Strominger. Cerebello‐oculomotor fibers in the rhesus monkey. J. Comp. Neurol. 123: 211–230, 1964.
 103. Carstens, E., and D. L. Trevino. Laminar origins of spinothalamic projections in the cat as determined by the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 182: 151–166, 1978.
 104. Casagrande, V. A., J. K. Harting, W. C. Hall, I. T. Diamond, and G. F. Martin. Superior colliculus of the tree shrew: a structural and functional subdivision into superficial and deep layers. Science 177: 444–447, 1972.
 105. Castiglioni, A. J., M. C. Gallaway, and J. D. Coulter. Origins of descending spinal connections from brain stem in money. Soc. Neurosci. Abstr. 3: 268, 1977.
 106. Castiglioni, A. J., M. C. Gallaway, and J. D. Coulter. Spinal projections from the midbrain in monkey. J. Comp. Neurol. 178: 329–346, 1978.
 107. Catsman‐Berrevoets, C. E., and H. G. J. M. Kuypers. Cells of origin of cortical projections to dorsal column nuclei, spinal cord and bulbar medial reticular formation in the rhesus monkey. Neurosci. Lett. 3: 245–252, 1976.
 108. Catsman‐Berrevoets, C. E., and H. G. J. M. Kuypers. Differential laminar distribution of corticothalamic neurons projecting to the VL and the center median. An HRP study in the cynomolgus monkey. Brain Res. 154: 359–365, 1978.
 109. Catsman‐Berrevoets, C. E., and H. G. J. M. Kuypers. The location of the precentral area 4 cortical neurons projecting to thalamic VL nucleus, centre median, red nucleus, brain reticular formation, dorsal column nuclei and spinal cord in cat and monkey. Neurosci. Lett. Suppl. 1: 157, 1978.
 110. Catsman‐Berrevoets, C. E., and H. G. J. M. Kuypers. Differences in distribution of cortico‐spinal axon collaterals to thalamus and midbrain tegmentum in cat, demonstrated by means of double retrograde fluorescent labeling of cortical neurons. Neurosci. Lett. Suppl. 3: 133, 1979.
 111. Catsman‐Berrevoets, C. E., H. G. J. M. Kuypers, and R. N. Lemon. Cells of origin of the frontal projections to magnocellular and parvocellular red nucleus and superior colliculus in cynomolgus monkey. An HRP study. Neurosci. Lett. 12: 41–46, 1979.
 112. Cesaro, P., J. Nguyen‐Legros, B. Berger, C. Alvarez, and D. Albe‐Fessard. Double labelling of branched neurons in the central nervous system of the rat by retrograde axonal transport of horseradish peroxidase and iron dextran complex. Neurosci. Lett. 15: 1–7, 1979.
 113. Chambers, W. W., and C. N. Liu. Cortico‐spinal tract of the cat. An attempt to correlate the pattern of degeneration with deficits in reflex activity following neocortical lesions. J. Comp. Neurol. 108: 23–55, 1957.
 114. Chan‐Palay, V. Cerebellar Dentate Nucleus: Organization, Cytology and Transmitters. Berlin: Springer‐Verlag, 1977.
 115. Cheek, M. D., A. Rustioni, and D. L. Trevino. Dorsal column nuclei projections to the cerebellar cortex in cats as revealed by the use of the retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164: 31–46, 1975.
 116. Chu, N. S., and F. E. Bloom. The catecholamine‐containing neurons in the cat dorsolateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Res. 66: 1–21, 1974.
 117. Chung, J. M., K. Chung, and R. D. Wurster. Sympathetic preganglionic neurons of the cat spinal cord: horseradish peroxidase study. Brain Res. 91: 126–131, 1975.
 118. Chung, K., J. M. Chung, F. W. Lavelle, and R. D. Wurster. Sympathetic neurons in the cat spinal cord projecting to the stellate ganglion. J. Comp. Neurol. 185: 23–30, 1979.
 119. Cirello, J., and F. R. Calaresu. Descending hypothalamic pathways with cardiovascular function in the cat: a silver impregnation study. Exp. Neurol. 57: 561–580, 1977.
 120. Clough, J. F. M., C. G. Phillips, and J. D. Sheridan. The short‐latency projection from the baboon's motor cortex to fusimotor neurones of the forearm and hand. J. Physiol. London 216: 257–279, 1971.
 121. Cohen, D., W. W. Chambers, and J. M. Sprague. Experimental study of the efferent projections from the cerebellar nuclei to the brain stem of the cat. J. Comp. Neurol. 109: 233–259, 1958.
 122. Cohen, F. L. Effects of various lesions on crossed and uncrossed descending inspiratory pathways in the cervical spinal cord of the cat. J. Neurosurg. 39: 589–595, 1973.
 123. Colonnier, M. Experimental degeneration in the cerebral cortex. J. Anat. 98: 47–53, 1964.
 124. Colonnier, M., and E. G. Gray. Degeneration in the cerebral cortex. In: Electronmicroscopy, edited by S. S. Breese, Jr. New York: Academic, 1962, vol. 2 p. 113–114. (Int. Congr. Electronmicroscopy, 5th, 1962.).
 125. Commissiong, J. W., S. O. Hellström, and N. H. Neff. A new projection from locus coeruleus to the spinal ventral columns: histochemical and biochemical evidence. Brain Res. 148: 207–213, 1978.
 126. Conrad, L. C. A., and D. W. Pfaff. Efferents from medial basal forebrain and hypothalamus in the rat. II. An autoradiographic study of the anterior hypothalamus. J. Comp. Neurol. 169: 221–261, 1976.
 127. Conradi, S., J. O. Kellerth, and C. H. Berthold. Electron microscopic studies of serially sectioned cat spinal a‐motoneurons. II. A method for the description of architecture and synaptology of the cell body and proximal dendritic segments. J. Comp. Neurol. 184: 741–754, 1979.
 128. Coote, J. H., and V. H. Macleod. The influence of bulbospinal monoaminergic pathways on sympathetic nerve activity. J. Phyisol. London 241: 453–475, 1974.
 129. Corazza, R., E. Fadiga, and P. L. Permeggiani. Patterns of pyramidal activation of cat's motoneurons. Arch. Ital. Biol. 101: 337–364, 1963.
 130. Coulter, J. D., L. Ewing, and C. Carter. Origin of primary sensorimotor cortical projections to lumbar spinal cord of cat and monkey. Brain Res. 103: 366–372, 1976.
 131. Coulter, J. D., and E. G. Jones. Differential distribution of corticospinal projections from individual cytoarchitectonic fields in the monkey. Brain Res. 129: 335–340, 1977.
 132. Courville, J. The nucleus of the facial nerve. The relation between cellular groups and peripheral branches of the nerve. Brain Res. 1: 338–354, 1966.
 133. Courville, J. Rubrobulbar fibres to the facial nucleus and the lateral reticular nucleus (nucleus of the lateral funiculus). An experimental study in the cat with silver impregnation methods. Brain Res. 1: 317–337, 1966.
 134. Courville, J. Somatotopical organization of the projection from the nucleus interpositus anterior of the cerebellum to the red nucleus. An experimental study in the cat with silver impregnation methods. Exp. Brain Res. 2: 191–215, 1966.
 135. Courville, J., and A. Brodal. Rubro‐cerebellar connections in the cat: an experimental study with silver impregnation methods. J. Comp. Neurol. 126: 471–486, 1966.
 136. Courville, J., and S. Otabe. The rubro‐olivary projection in the macaque: an experimental study with silver impregnation methods. J. Comp. Neurol. 158: 479–495, 1974.
 137. Cowan, W. M., D. I. Gottlieb, A. E. Hendrickson, J. L. Price, and T. A. Woolsey. The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res. 37: 21–51, 1972.
 138. Crevel, H., and W. J. C. Verhaart. The “exact” origin of the pyramidal tract. A quantitative study in the cat. J. Anat. 97: 495–515, 1963.
 139. Crevel, H., and W. J. C. Verhaart. The rate of secondary degeneration in the central nervous system. 1. Pyramidal tract of the cat. J. Anat. 97: 429–464, 1963.
 140. Crutcher, K. A., and A. O. Humbertson. The organization of monoamine neurons within the brain stem of the North American opossum (Didelphis virginiana). J. Comp. Neurol. 179: 195–222, 1978.
 141. Crutcher, K. A., A. O. Humbertson, and G. F. Martin. The origin of brain stem spinal pathways in the North American opossum (Didelphis virginiana). Studies using horseradish peroxidase method. J. Comp. Neurol. 179: 169–194, 1978.
 142. Cullheim, S., and J.‐O. Kellerth. Combined light and electron microscopic tracing of neurons, including axons and synaptic terminals, after intracellular injection of horseradish peroxidase. Neurosci. Lett. 2: 307–313, 1976.
 143. Cummings, J. P., and D. L. Felten. A raphe dendrite bundle in the rabbit medulla. J. Comp. Neurol. 183: 1–24, 1979.
 144. Czarkowska, J., E. Jankowska, and E. Sybirska. Axonal projections of spinal interneurones excited by group I afferents in the cat, revealed by intracellular staining with horseradish peroxidase. Brain Res. 118: 115–118, 1976.
 145. Dahlström, A., and K. Fuxe. Evidence for the existence of monoamine‐containing neurons in the central nervous system. I. Demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol. Scand. 62 Suppl. 232: 5–55, 1964.
 146. Dahlström, A., and K. Fuxe. Evidence for the existence of monoamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta Physiol. Scand. 64 Suppl. 247: 6–36, 1965.
 147. Dalsgaard, C. J., and L. G. Elfvin. Spinal origin of preganglionic fibers projecting onto the superior cervical ganglion and inferior mesenteric ganglion of the guinea pig, as demonstrated by the horseradish peroxidase technique. Brain Res. 172: 139–144, 1979.
 148. Darian‐Smith, I., G. Phillips, and R. D. Ryan. Functional organization in trigeminal main sensory and rostral spinal nuclei of the cat. J. Physiol. London 168: 129–146, 1963.
 149. Dart, A. M. Cells of the dorsal column nuclei projecting down into the spinal cord. J. Physiol. London 219: 29P–31P, 1971.
 150. De Groat, W. C., I. Nadelhaft, C. Morgan, and T. Schauble. Horseradish peroxidase tracing of visceral efferent and primary afferent pathways in the cat's sacral spinal cord using benzidine processing. Neurosci. Lett. 10: 103–108, 1978.
 151. Dejerine, J. Anatomie des Centres Nerveux. Paris: Rueff, 1901.
 152. Dekker, J. J., and H. G. J. M. Kuypers. Quantitative EM study of projection terminals in the rat's AV thalamic nucleus. Autoradiographic and degeneration techniques compared. Brain Res. 117: 399–422, 1976.
 153. Dekker, J. J., D. G. Lawrence, and H. G. J. M. Kuypers. The location of longitudinally running dendrites in the ventral horn of the cat spinal cord. Brain Res. 51: 319–325, 1973.
 154. Demirjian, C., R. Grossman, R. Meyer, and R. Katzman. The catecholamine pontine cellular groups locus coeruleus, A4, subcoeruleus in the primate Cebus apella. Brain Res. 115: 395–411, 1976.
 155. Denny‐Brown, D. The Cerebral Control of Movement. Springfield, IL: Thomas, 1966.
 156. Denny‐Brown, D., and E. H. Botterell. The motor functions of the agranular frontal cortex. Res. Publ. Assoc. Nerv. Ment. Dis. 27: 235–345, 1948.
 157. De Olmos, J. A cupric‐silver method for impregnation of terminal axon degeneration and its further use in staining granular argyrophilic structures. Brain Behav. Evol. 2: 213–237, 1969.
 158. De Olmos, J., and L. Heimer. Mapping of collateral projections with the HRP method. Neurosci. Lett. 6: 107–114, 1977.
 159. De Robertis, E. Submicroscopic changes of the synapse after nerve section in the acoustic ganglion of the guinea pig. An electron microscope study. J. Biophys. Biochem Cytol. 2: 503–512, 1956.
 160. DeSantis, M., V. Limwongse, and D. Rigamonti. Somatotopy in the trigeminal motor nucleus of the rat: field potentials recorded in the neuron pool after retrograde transport of horseradish peroxidase. Neurosci. Lett. 10: 95–98, 1978.
 161. Deschenes., M. Dual origin of fibers projecting from motor cortex to S1 in cat. Brain Res. 132: 159–162, 1977.
 162. Destombes, J., and J. P. Ripert. Ultrastructural observations of the abducens nucleus of the cat after injection of horseradish peroxidase into the lateral rectus muscle. Exp. Brain Res. 28: 63–71, 1977.
 163. Deuschl, G., and M. Illert. Location of lumbar preganglionic sympathetic neurones in the cat. Neurosci. Lett. 10: 49–54, 1978.
 164. De Vito, J. L. Projections from the cerebral cortex to the intralaminar nuclei in the monkey. J. Comp. Neurol. 136: 193–201, 1969.
 165. De Vito, J. L., and O. A. Smith. Subcortical projections of the prefrontal lobe of the monkey. J. Comp. Neurol. 123: 413–424, 1964.
 166. Dilly, P. N., P. D. Wall, and K. E. Webster. Cells of origin of the spinothalamic tract in the cat and rat. Exp. Neurol. 21: 550–562, 1968.
 167. Dom, R., W. Falls, and G. F. Martin. The motor nucleus of the facial nerve in the opossum (Didelphis marsupialis virginiana) its organization and connections. J. Comp. Neurol. 152: 373–402, 1973.
 168. Donatelle, J. M. Growth of the corticospinal tract and the development of placing reactions in the postnatal rat. J. Comp. Neurol. 175: 207–232, 1977.
 169. Droz, B., and C. P. Leblond. Axonal migration of proteins in the central nervous system and peripheral nerves as shown by autoradiography. J. Comp. Neurol. 121: 325–346, 1963.
 170. Dunkerley, G. B., and D. Duncan. A light and electron microscopic study of the normal and the degenerating corticospinal tract in the rat. J. Comp. Neurol. 137: 155–184, 1969.
 171. Duron, B., N. Marlot, N. Larnicol, M. C. Jung‐Caillol, and J. M. Macron. Somatotopy in the phrenic motor nucleus of the cat as revealed by retrograde transport of horseradish peroxidase. Neurosci. Lett. 14: 159–163, 1979.
 172. Eccles, J. C., R. A. Nicoll, T. Rantucci, H. Táboříková, and T. J. Willey. Topographic studies on medial reticular nucleus. J. Neurophysiol. 39: 109–118, 1976.
 173. Eccles, J. C., T. Rantucci, P. Scheid, and H. Táboříková. Somatotopic studies on red nucleus: spinal projection level and respective receptive fields. J. Neurophysiol. 38: 965–980, 1975.
 174. Edwards, S. B. The ascending and descending projections of the red nucleus in the cat: an experimental study using an autoradiographic tracing method. Brain Res. 48: 45–63, 1972.
 175. Edwards, S. B. Autoradiographic studies of the projections of the midbrain reticular formation: descending projections of nucleus cuneiformis. J. Comp. Neurol. 161: 341–358, 1975.
 176. Edwards, S. B., and C. K. Henkel. Superior colliculus connections with the extraocular motor nuclei in the cat. J. Comp. Neurol. 179: 451–467, 1978.
 177. Elger, C. E., E. J. Speckman, H. Caspers, and R. W. C. Janzen. Corticospinal connections in the rat. I. Monosynaptic and polysynaptic responses of cervical motoneurons to epicortical stimulation. Exp. Brain Res. 28: 385–404, 1977.
 178. Endo, K., T. Araki, and N. Yagi. The distribution and pattern of axon branching of pyramidal tract cells. Brain Res. 57: 484–491, 1973.
 179. Engberg, I., A. Lundberg, and R. W. Ryall. Reticulospinal inhibition of transmission in reflex pathways. J. Physiol. London 194: 201–223, 1968.
 180. Erulkar, S. D., J. M. Sprague, B. L. Whitsel, S. Dogan, and P. J. Jannetta. Organization of the vestibular projection to the spinal cord of the cat. J. Neurophysiol. 29: 626–664, 1966.
 181. Euler, C., J. N. Hayward, I. Martilla, and R. J. Wyman. The spinal connections of the inspiratory neurones of the ventrolateral nucleus of the cat's solitarius. Brain Res. 61: 23–33, 1973.
 182. Faden, A. I., and J. M. Petras. An intraspinal sympathetic preganglionic pathway: anatomical evidence in the dog. Brain Res. 144: 358–362, 1978.
 183. Falck, B., N. A. Hillarp, G. Thieme, and A. Torp. Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10: 348–354, 1962.
 184. Fanardjan, V. V., and D. S. Sarkisjan. Intracellular investigation of antidromic and synaptic activation of red nucleus neurons in the cat. Sechenov Physiol. J. USSR 55: 121–131, 1969.
 185. Faulkner, R. F., and J. E. Hyde. Coordinated eye and body movements evoked by brainstem stimulation in decerebrated cats. J. Neurophysiol. 21: 171–182, 1958.
 186. Faull, R. L. M. The cerebellofugal projections in the brachium conjunctivum of the rat. II. The ipsilateral and contralateral descending pathways. J. Comp. Neurol. 178: 519–536, 1978.
 187. Faull, R. L. M., and J. B. Carman. The cerebellofugal projections in the brachium conjunctivum of the rat. I. The contralateral ascending pathway. J. Comp. Neurol. 178: 495–518, 1978.
 188. Felix, D., and M. Wiesendanger. Pyramidal and non‐pyramidal motor cortical effects on distal forelimb muscles of monkeys. Exp. Brain Res. 12: 81–91, 1971.
 189. Felten, D. L., and J. P. Cummings. The raphe nuclei of the rabbit brain stem. J. Comp. Neurol. 187: 199–244, 1979.
 190. Felten, D. L., A. M. Laties, and M. B. Carpenter. Monoamine‐containing cell bodies in the squirrel monkey brain. Am. J. Anat. 139: 153–166, 1974.
 191. Fetz, E. E., P. D. Cheney, and D. C. German. Corticomotoneuronal connections of precentral cells detected by postspike averages of EMG activity in behaving monkeys. Brain Res. 114: 505–510, 1976.
 192. Fields, H. L., A. I. Basbaum, C. H. Clanton, and S. D. Anderson. Nucleus raphe magnus inhibition of spinal cord dorsal horn neurons. Brain Res. 126: 441–453, 1977.
 193. Fink, R. P., and L. Heimer. Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res. 4: 369–374, 1967.
 194. Fisher, A. M., J. K. Harting, G. F. Martin, and M. I. Stuber. The origin, course and termination of corticospinal fibers in the armadillo (Dasypus novemcinctus mexicanus). J. Neurol. Sci. 8: 347–361, 1969.
 195. Flindt‐Egebak, P. Autoradiographical demonstration of the projections from the limb areas of the feline sensorimotor cortex to the spinal cord. Brain Res. 136: 153–156, 1977.
 196. Flumerfelt, B. A., and P. R. Lewis. Cholinesterase activity in the hypoglossal nucleus of the rat and changes produced by axotomy: a light and electron microscopic study. J. Anat. 119: 309–331, 1975.
 197. Flumerfelt, B. A., S. Otabe, and J. Courville. Distinct projections to the red nucleus from the dentate and interposed nuclei in the monkey. Brain Res. 50: 408–414, 1973.
 198. Fox, J. E. Reticulospinal neurones in the rat. Brain Res. 23: 35–40, 1970.
 199. Frankfurter, A., J. T. Weber, G. J. Royce, N. L. Strominger, and J. K. Harting. An autoradiographic analysis of the tecto‐olivary projection in primates. Brain Res. 118: 245–257, 1976.
 200. Fukushima, K., N. Hirai, and S. Rapoport. Direct excitation of neck flexor motoneurones by the interstitiospinal tract. Brain Res. 160: 358–362, 1979.
 201. Fukushima, K., B. W. Peterson, Y. Uchino, J. D. Coulter, and V. J. Wilson. Direct fastigiospinal fibers in the cat. Brain Res. 126: 538–542, 1977.
 202. Fukushima, K., N. G. Pitts, and B. W. Peterson. Responses of neck motoneurons to stimulation of the interstitial nucleus of Cajal. Soc. Neurosci. Abstr. 3: 154, 1977.
 203. Fukushima, T., and F. W. L. Kerr. Organization of trigeminothalamic tracts and other thalamic afferent systems of brain‐stem in the rat: presence of gelatinosa neurons with thalamic connections. J. Comp. Neurol. 183: 169–184, 1979.
 204. Fukuyama, U. Ueber eine substantielle Verschmelzung des roten Kerns mit den Nebenokulomotoriuskernen (Bechterew und Darkschewitsch) bei Affen. Arb. Anat. Inst. Kais. Jpn. Univ. Sendai 23: 1–122, 1940.
 205. Fulton, J. F., and D. Sheehan. Uncrossed lateral pyramidal tract in higher primates. J. Anat. 69: 181–187, 1935.
 206. Futami, T., Y. Shinoda, and J. Yokota. Spinal axon collaterals of corticospinal neurons identified by intracellular injection of horseradish peroxidase. Brain Res. 164: 279–284, 1979.
 207. Fuxe, K. Evidence for the existence of monoamine‐containing neurons in the central nervous system. IV. The distribution of monoamine terminals in the central nervous system. Acta. Physiol. Scand. 64 Suppl. 247: 37–85, 1965.
 208. Gacek, R. R. Localization of neurons supplying the extraocular muscles in the kitten using horseradish peroxidase. Exp. Neurol. 44: 381–403, 1974.
 209. Gall, F. J., and C. Spurzheim. Anatomie et Physiologie du Système Nerveux en Général et du Cerveaux en Particulier. Paris: Schoell, 1810–1819, vols I, II.
 210. Gallaway, M. C., A. J. Castiglioni, R. D. Foreman, and J. D. Coulter. Origins of spinal projections from the caudal medulla in monkey. Soc. Neurosci. Abstr. 3: 271, 1977.
 211. Garey, L. J., E. G. Jones, and T. P. S. Powell. Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. J. Neurol. Neurosurg. Psychiatry 31: 135–157, 1968.
 212. Garver, D. L., and J. R. Sladek. Monoamine distribution in primate brain. I. Catecholamine‐containing perikarya in the brain stem of Macaca speciosa. J. Comp. Neurol. 159: 289–304, 1975.
 213. Geffen, L. Biochemical and histochemical methods of tracing transmitter‐specific neuronal molecules. In: The Use of Axonal Transport for Studies of Neuronal Connectivity, edited by M. Cowan and M. Cuénod. Amsterdam: Elsevier, 1975, p. 307–346.
 214. Ghez, C. Input‐output relations of the red nucleus in the cat. Brain Res. 98: 93–108, 1975.
 215. Gilbert, C. D., and J. P. Kelly. The projections of cells in different layers of the cat's visual cortex. J. Comp. Neurol. 163: 81–105, 1975.
 216. Giok, S. P. Localization of Fibre Systems Within the White Matter of the Medulla Oblongata and the Cervical Cord in Man. Leiden: Eduardo Ydo, 1956.
 217. Giovanelli‐Barilari, M., and H. G. J. M. Kuypers. Propriospinal fibers interconnecting the spinal enlargements in the cat. Brain Res. 14: 321–330, 1969.
 218. Glees, P. Terminal degeneration within the central nervous system as studied by a new silver method. J. Neuropathol. Exp. Neurol. 5: 54–59, 1946.
 219. Glees, P. Experimental Neurology. Oxford: Clarendon Press, 1961.
 220. Gobel, S., and W. M. Falls. Anatomical observations of horseradish peroxidase‐filled terminal primary axonal arborizations in layer II of the substantia gelatinosa of Rolando. Brain Res. 175: 335–340, 1979.
 221. Goebel, H. H., A. Komatzuzaki, M. B. Bender, and B. Cohen. Lesions of the pontine tegmentum and conjugate gaze paralysis. Arch. Neurol. Chicago 24: 431–440, 1971.
 222. Goldby, F. An experimental investigation of the motor cortex and pyramidal tract of Echidna aculeata. J. Anat. 73: 509–524, 1939.
 223. Goldby, F., and G. N. Kacker. A survey of the pyramidal system in the coypu rat, Myocastor coypus. J. Anat. 97: 517–531, 1963.
 224. Goldman, P. S., and W. J. H. Nauta. Autoradiographic demonstration of a projection from the prefrontal association cortex to the superior colliculus in the rhesus monkey. Brain Res. 116: 145–149, 1976.
 225. Goldman, P. S., and W. J. H. Nauta. An intricately patterned prefrontocaudate projection in the rhesus monkey. J. Comp. Neurol. 171: 369–385, 1977.
 226. Goode, G. E., and D. E. Haines. Origin, course and termination of corticospinal fibers in a prosimian primate (Galago). Brain Behav. Evol. 12: 334–361, 1975.
 227. Goode, G. E., and M. Streesai. An electron microscopic study of rubrospinal projections to the lumbar spinal cord of the opossum. Brain Res. 143: 61–70, 1978.
 228. Goodman, D. C., L. E. Jarrard, and J. F. Nelson. Corticospinal pathways and their sites of termination in the albino rat. Anat. Rec. 154: 462–463, 1966.
 229. Gordon, G., and C. H. Paine. Functional organization in nucleus gracilis of the cat. J. Physiol. London 153: 331–349, 1961.
 230. Gorska, T., and E. Sybirska. Effects of red nucleus and pyramidal lesions on forelimb movements in cats. Neurosci. Lett. Suppl. 1: 127, 1978.
 231. Grafstein, B. Axonal transport: the intracellular traffic of the neuron. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 1, chapt. 19, p. 691–717.
 232. Graham, J. An autoradiographic study of the efferent connections of the superior colliculus in the cat. J. Comp. Neurol. 173: 629–654, 1977.
 233. Graham, R. C., and M. J. Karnovsky. The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultra‐structural cytochemistry by a new technique. J. Histochem. Cytochem. 14: 291–302, 1966.
 234. Gray, E. G., and L. H. Hamlyn. Electron microscopy of experimental degeneration in the avian optic tectum. J. Anat. London 96: 309–316, 1962.
 235. Graybiel, A. M. Anatomical organization of retinotectal afferents in the cat: an autoradiographic study. Brain Res. 96: 1–23, 1975.
 236. Graybiel, A. M. Some efferents of pretectal region in cat. Anat. Rec. 178: 365, 1974.
 237. Graybiel, A. M. Wallerian degeneration and anterograde tracer methods. In: The Use of Axonal Transport for Studies of Neuronal Connectivity, edited by M. Cowan and M. Cuénod. Amsterdam: Elsevier, 1975, p. 173–216.
 238. Graybiel, A. M. Direct and indirect preoculomotor pathways of the brainstem: an autoradiographic study of the pontine reticular formation in the cat. J. Comp. Neurol. 175: 37–78, 1977.
 239. Graybiel, A. M. Organization of oculomotor pathways in the cat and rhesus monkey. In: Control of Gaze by Brain Stem Neurons. Development in Neurosciences, edited by R. Baker and A. Berthoz. Amsterdam: Elsevier/North‐Holland, 1977, vol. 1, p. 79–88.
 240. Graybiel, A. M., and E. A. Hartwieg. Some afferent connections of the oculomotor complex in the cat: an experimental study with tracer techniques. Brain Res. 81: 543–551, 1974.
 241. Graybiel, A. M., H. J. W. Nauta, R. J. Lasek, and W. J. H. Nauta. A cerebello‐olivary pathway in the cat: an experimental study using autoradiographic tracing techniques. Brain Res. 58: 205–211, 1973.
 242. Griffin, G., L. R. Watkins, and D. J. Mayer. HRP pellets and slow‐release gels: two new techniques for greater localization and sensitivity. Brain Res. 168: 595–601, 1979.
 243. Grillner, S., T. Hongo, and S. Lund. Interaction between inhibitory pathways from the Deiter's nucleus and la afferents to flexor motoneurons. Acta Physiol. Scand. 68 Suppl. 277: 61, 1966.
 244. Grillner, S., T. Hongo, and S. Lund. Reciprocal effects between two descending bulbospinal systems with monosynaptic connections to spinal motoneurons. Brain Res. 10: 477–480, 1968.
 245. Grillner, S., T. Hongo, and S. Lund. The vestibulospinal tract. Effects on alpha‐motoneurons in the lumbosacral cord in cat. Exp. Brain Res. 10: 94–120, 1970.
 246. Grillner, S., and S. Lund. The origin of a descending pathway with monosynaptic action on flexor motoneurons. Acta Physiol. Scand. 74: 274–284, 1968.
 247. Groos, W. P., L. K. Ewing, C. M. Carter, and J. D. Coulter. Organization of corticospinal neurons in the cat. Brain Res. 143: 393–419, 1978.
 248. Guilbaud, G., J. L. Oliveras, G. Giesler, Jr., and J. M. Besson. Effects induced by stimulation of the centralis inferior nucleus of the raphe on dorsal horn interneurons in cat's spinal cord. Brain Res. 126: 335–360, 1977.
 249. Gurevitch, N. R., and T. V. Belozerova. Rubrospinal synaptic influences on lumbar motoneurons in the rat. Neurophysiology USSR 3: 274–284, 1971.
 250. Gwyn, D. G. Acetylcholinesterase activity in the red nucleus of the rat. Effects of rubrospinal tractotomy. Brain Res. 35: 447–461, 1971.
 251. Gwyn, D. G., and B. A. Flumerfelt. A comparison of the distribution of cortical and cerebellar afferents in red nucleus of the rat. Brain Res. 69: 130–135, 1974.
 252. Gwyn, D. G., and J. H. Wolstencroft. Ascending and descending cholinergic fibers in cat spinal cord: histochemical evidence. Science 153: 1543–1544, 1966.
 253. Haartsen, A. B. Cortical Projections to Mesencephalon, Pons, Medulla Oblongata and Spinal Cord. An Experimental Study in the Goat and the Rabbit. Leiden: Eduardo Ydo, 1962.
 254. Haartsen, A. B., and W. J. C. Verhaart. Cortical projections to brain stem and spinal cord in the goat by way of the pyramidal tract and the bundle of Bagley. J. Comp. Neurol. 129: 189–202, 1967.
 255. Haggqvist, G. Analyse der Faserverteilung in einem Rückenmarksquerschnitt (Th3). Z. Mikrosk. Anat. Forsch. 39: 1–34, 1936.
 256. Haggqvist, G. Faseranalytischen Studien über die Pyramidenbahn. Acta Psychiatr. Neurol. 12: 457–466, 1937.
 257. Hanaway, J., and J. M. Smith. Synaptic fine structure and the termination of corticospinal fibers in the lateral basal region of the cat spinal cord. J. Comp. Neurol. 183: 471–486, 1979.
 258. Hancock, M. B. Cells of origin of hypothalamo‐spinal projections in the rat. Neurosci. Lett. 3: 179–184, 1976.
 259. Hancock, M. B., and C. L. Fougerousse. Spinal projections from the nucleus locus coeruleus and nucleus subcoeruleus in the cat and monkey as demonstrated by the retrograde transport of horseradish peroxidase. Brain Res. Bull. 1: 229–234, 1976.
 260. Hancock, M. B., and C. A. Peveto. Preganglionic neurons in the sacral spinal cord of the rat: an HRP study. Neurosci. Lett. 11: 1–5, 1979.
 261. Hanker, J. S., P. E. Yates, C. B. Metz, and A Rustioni. A new specific sensitive and noncarcinogenic reagent for the demonstration of horseradish peroxidase (HRP). Histochem. J. 9: 789–792, 1977.
 262. Hardy, H., and L. Heimer. A safer and more sensitive substitute for diaminobenzidine in the light microscopic demonstration of retrograde and anterograde axonal transport of HRP. Neurosci. Lett. 5: 235–240, 1977.
 263. Harting, J. K. Descending pathways from the superior colliculus: an autoradiographic analysis in the rhesus monkey (Macaca mulatta). J. Comp. Neurol. 173: 583–612, 1977.
 264. Harting, J. K., W. C. Hall, I. T. Diamond, and G. F. Martin. Anterograde degeneration study of the superior colliculus in Tupaia glis: evidence for a subdivision between superficial and deep layers. J. Comp. Neurol. 148: 361–386, 1973.
 265. Harting, J. K., and G. F. Martin. Neocortical projections to the pons and medulla oblongata of the nine‐banded armadillo (Dasypus novemcinctus). J. Comp. Neurol. 138: 483–500, 1970.
 266. Harting, J. K., and C. R. Noback. Corticospinal projections from the pre‐ and postcentral gyri in the squirrel monkey (Saimiri sciureus). Brain Res. 24: 322–328, 1970.
 267. Hartman, B. K. Immunofluorescence of dopamine beta‐hydroxylase: application of improved methodology to the localization of the peripheral and central noradrenergic nervous system. J. Histochem. Cyctochem. 21: 312–332, 1973.
 268. Hartman‐von Monakow, K., K. Akert, and H. Künzle. Projections of precentral and premotor cortex to the red nucleus and other midbrain areas in Macaca fascicularis. Exp. Brain Res. 34: 91–106, 1979.
 269. Hashikawa, T., and K. Kawamura. Identification of cells of origin of tectopontine fibers in the cat superior colliculus: an experimental study with the horseradish peroxidase method. Brain Res. 130: 65–79, 1977.
 270. Hassler, R. Thalamo‐corticale Systeme der Körperhaltung und der Augenbewegungen. In: Structure and Function of the Cerebral Cortex, edited by D. B. Tower and J. P. Schadé. Amsterdam: Elsevier, 1960. p. 124–130. (Proc. Int. Mtng. Neurobiol., 2nd, Amsterdam, 1959.).
 271. Hassler, R., and W. R. Hess. Experimentelle und anatomische Befunde über die Drehbewegungen und ihre nervösen Apparate. Arch. Psychiatr. Nervenkr. 192: 488–526, 1954.
 272. Hassler, R., and K. Muhs‐Clement. Architektonischer Aufbau des sensomotorischen und pariëtalen Cortex der Katze. J. Hirnforsch. 6: 377–420, 1964.
 273. Hatschek, R. Zur vergleichenden Anatomie des Nucleus ruber tegmenti. Arb. Neurol. Inst. Univ. Wien. 15: 89–136, 1907.
 274. Hayes, N. L., and A. Rustioni. Dual projections of single neurons are visualized simultaneously: use of enzymatically inactive (3H) HRP. Brain Res. 165: 321–326, 1979.
 275. Heffner, R., and B. Masterton. Variation in form of the pyramidal tract and its relationship to digital dexterity. Brain Behav. Evol. 12: 161–200, 1975.
 276. Hendrickson, A. Electronmicroscopic autoradiography: identification of origin of synaptic terminals in normal nervous tissue. Science 165: 194–196, 1969.
 277. Hendrickson, A. E. Electronmicroscopic distribution of axoplasmic transport. J. Neurol. 144: 381–398, 1972.
 278. Hendry, I. A. Localization of horseradish peroxidase by in situ perfusion with substrate mixture. Brain Res. 156: 97–101, 1978.
 279. Henkel, C. K., and S. B. Edwards. The paralemniscal reticular formation: secondary projections of the uncrossed connections of the superior colliculus. Anat. Rec. 187: 603, 1977.
 280. Henkel, C. K., and S. B. Edwards. The superior colliculus control of pinna movements in the cat: possible anatomical connections. J. Comp. Neurol. 182: 763–776, 1978.
 281. Hess, W. R., S. Bürgi, and V. Bucher. Motorische Funktion des Tektal‐ und Tegmentalgebietes. Monatsschr. Psychiat. Neurol. 112: 1–52, 1946.
 282. Hicks, S. P., and C. J. D'Amato. Motor‐sensory and visual behavior after hemispherectomy in newborn and mature rats. Exp. Neurol. 29: 416–438, 1970.
 283. Hicks, S. P., and C. J. D'Amato. Locating corticospinal neurons by retrograde axonal transport of horseradish peroxidase. Exp. Neurol. 56: 410–420, 1977.
 284. Highstein, S. M., M. Yamamoto, I. Shimoyama, R. J. Maciewicz, and A. Steinacker. Cells relaying labyrinthine signals to the IIIrd nucleus through the brachium conjunctivum in the rabbit. Soc. Neurosci. Abstr. 3: 155, 1977.
 285. Hinman, A., and M. Carpenter. Efferent fiber projections of the red nucleus in the cat. J. Comp. Neurol. 113: 61–82, 1959.
 286. Hinsley, J. C., S. W. Ranson, and H. H. Dixon. Responses elicited by stimulation of the mesencephalic tegmentum in the cat. Arch. Neurol. Psychiatry 24: 966–977, 1930.
 287. Hirose, K. Ueber eine bulbospinale Bahn. Folia Neuro‐Biol. Leipzig 10: 371–382, 1916.
 288. Hockfield, S., and S. Gobel. Neurons in and near nucleus caudalis with long ascending projection axons demonstrated by retrograde labeling with horseradish peroxidase. Brain Res. 139: 333–339, 1978.
 289. Hoff, E. C. Central nerve terminals in the mammalian spinal cord and their examination by experimental degeneration. Proc. Roy Soc. London 111: 175–188, 1932.
 290. Hökfelt, T., K. Fuxe, M. Goldstein, and O. Johansson. Immunohistochemical evidence for the existence of adrenaline neurons in the rat brain. Brain Res. 66: 235–251, 1974.
 291. Holmes, G., and W. P. May. On the exact origin of the pyramidal tracts in man and other mammals. Brain 132: 1–43, 1909.
 292. Holmquist, B., and A. Lundberg. On the organization of the supraspinal inhibitory control of interneurons in various spinal reflex arcs. Arch. Ital. Biol. 97: 340–356, 1959.
 293. Holstege, G., and H. G. J. M. Kuypers. Propriobulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. I. An anterograde degeneration study in the cat. Brain 100: 239–264, 1977.
 294. Holstege, G., and H. G. J. M. Kuypers. Descending brain stem pathways from the nucleus subcoeruleus and the pontine tegmentum to the spinal cord in the cat, a labeled leucine tracing study. Neurosci. Lett. Suppl. 1: 128, 1978.
 295. Holstege, G., H. G. J. M. Kuypers, and R. C. Boer. Anatomical evidence for direct brain stem projections to the somatic motoneuronal cell groups and autonomic preganglionic cell groups in cat spinal cord. Brain Res. 171: 329–333, 1979.
 296. Holstege, G., H. G. J. M. Kuypers, and J. J. Dekker. The organization of the bulbar fibre connections to the trigeminal, facial and hypoglossal motor nuclei. II. An autoradiographic study in cat. Brain 100: 265–286, 1977.
 297. Hongo, T., E. Jankowska, and A. Lundberg. The rubrospinal tract. I. Effects on alpha‐motoneurons innervating hindlimb muscles in cats. Exp. Brain Res. 7: 344–364, 1969.
 298. Hongo, T., E. Jankowska, and A. Lundberg. The rubrospinal tract. IV. Effects on interneurons. Exp. Brain Res. 15: 54–78, 1972.
 299. Hopkins, D. A., and G. Holstege. Amygdaloid projections to the mesencephalon, pons and medulla oblongata in the cat. Exp. Brain Res. 32: 529–547, 1978.
 300. Hopkins, D. A., and D. G. Lawrence. On the absence of a rubrothalamic projection in the monkey with observations on some ascending mesencephalic projections. J. Comp. Neurol. 161: 269–293, 1975.
 301. Hore, J., and R. Porter. The role of the pyramidal tract in the production of cortically evoked movements in the brush‐tailed possum (Trichosurus vulpecula). Brain Res. 30: 232–234, 1971.
 302. Hosoya, Y., and M. Matsushita. Identification and distribution of the spinal and hypophyseal projection neurons in the paraventricular nucleus of the rat. A light and electron microscopic study with the horseradish peroxidase method. Exp. Brain Res. 35: 315–331, 1979.
 303. Hubbard, J. E., and V. Di Carlo. Fluorescence histochemistry of monoamine‐containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). I. The locus coeruleus. J. Comp. Neurol. 147: 553–566, 1973.
 304. Hubbard, J. E., and V. Di Carlo. Fluorescence histochemistry of monoamine‐containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). II. Catecholamine‐containing groups. J. Comp. Neurol. 153: 369–384, 1974.
 305. Hubbard, J. E., and V. Di Carlo. Fluorescence histochemistry of monoamine‐containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). III. Serotonin‐containing groups. J. Comp. Neurol. 153: 385–398, 1974.
 306. Hubel, D. H., S. Levay, and T. N. Wiesel. Mode of termination of retinotectal fibers in macaque monkey: an autoradiographic study. Brain Res. 96: 25–40, 1975.
 307. Hughes, J. R., and J. A. Mazurowski. Studies on the supracallosal mesial cortex of unanesthetized, conscious mammals II. Monkey. A. Movements elicited by electrical stimulation. Electroencephalogr. Clin. Neurophysiol. 14: 477–485, 1962.
 308. Hultborn, H. Transmission in the pathway of reciprocal 1a inhibition to motoneurones and its control during the tonic stretch reflex. In: Progress in Brain Research. Understanding the Stretch Reflex, edited by S. Homma. Amsterdam: Elsevier, 1976, vol. 44, p. 235–255.
 309. Humphrey, D. R., and R. R. Rietz. Cells of origin of corticorubral projections from the arm area of primate motor cortex and their synaptic actions in the red nucleus. Brain Res. 110: 162–169, 1976.
 310. Hyde, J. E., and S. Toczek. Functional relation of interstitial nucleus to rotatory movements evoked from zona incerta stimulation. J. Neurophysiol. 25: 455–466, 1962.
 311. Illert, M., and R. Tanaka. Integration in descending motor pathways controlling the forelimb in the cat. 4. Corticospinal inhibition of forelimb motoneurones mediated by short propriospinal neurones. Exp. Brain Res. 31: 131–141, 1978.
 312. Ingram, W. R., S. W. Ransom, and F. I. Hannett. The direct stimulation of the red nucleus in cats. J. Neurol. Psychopathol. 12: 219–230, 1932.
 313. Ingram, W. R., S. W. Ranson, F. I. Hannett, F. R. Zeiss, and E. T. Terwilliger. Results of stimulation of the tegmentum with the Horseley‐Clarke stereotaxic apparatus. Arch. Neurol. Psychiatry 28: 513–541, 1932.
 314. Ishikawa, M., S. Shimada, and C. Tanaka. Histochemical mapping of catecholamine neurons and fiber pathways in the pontine tegmentum of the dog. Brain. Res. 86: 1–16, 1975.
 315. Ito, M., T. Hongo, M. Yoshida, Y. Okada, and K. Obata. Antidromic and trans‐synaptic activation of Deiters' neurones induced from the spinal cord. Jpn. J. Physiol. 14: 638–658, 1964.
 316. Ito, M., M. Udo, and N. Mano. Long inhibitory and excitatory pathways converging onto cat reticular and Deiters' neurons and their relevance to reticulofugal axons. J. Neurophysiol. 33: 210–226, 1970.
 317. Itoh, K., A. Konishi, S. Nomura, N. Mizuno, Y. Nakamura, and T. Sugimoto. Application of coupled oxidation reaction to electron microscopic demonstration of horseradish peroxidase: cobalt‐glucose oxidase method. Brain Res. 175: 341–346, 1979.
 318. Jacobson, S., and J. Q. Trojanowski. The cells of origin of the corpus callosum in rat, cat and rhesus monkey. Brain Res. 74: 149–155, 1974.
 319. Jacobson, S., and J. Q. Trojanowski. Cortico‐thalamic neurons and thalamocortical terminal fields: an investigation in rat using horseradish peroxidase and autoradiography. Brain Res. 85: 385–401, 1975.
 320. Jane, J. A., C. B. G. Campbell, and D. Yashon. Pyramidal tract: a comparison of two prosimian primates. Science 147: 153–155, 1965.
 321. Jane, J. A., D. Yashon, W. De Meyer, and P. C. Bucy. The contribution of the precentral gyrus to the pyramidal tract of man. J. Neurosurg. 26: 244–248, 1967.
 322. Jankowska, E., and S. Lindström. Morphological identification of Renshaw cells. Acta Physiol. Scand. 81: 428–430, 1971.
 323. Jankowska, E., and S. Lindström. Morphology of interneurones mediating 1a reciprocal inhibition of montoneurones in the spinal cord of the cat. J. Physiol. London 226: 805–823, 1972.
 324. Jankowska, E., A. Lundberg, W. J. Roberts, and D. Stuart. A long propriospinal system with direct effect on motoneurones and on interneurones in the cat lumbosacral cord. Exp. Brain Res. 21: 169–194, 1974.
 325. Jankowska, E., Y. Padel, and R. Tanaka. Disynaptic inhibition of spinal motoneurones from the motor cortex in the monkey. J. Physiol. London 258: 467–487, 1976.
 326. Jankowska, E., J. Rastad, and J. Westman. Intracellular application of horseradish peroxidase and its light and electron microscopical appearance in spinocervical tract cells. Brain Res. 105: 557–562, 1976.
 327. Jankowska, E., and D. O. Smith. Antidromic activation of Renshaw cells and their axonal projections. Acta Physiol. Scand. 88: 198–214, 1973.
 328. Jones, B. E., and R. Y. Moore. Catecholamine‐containing neurons of the nucleus locus coeruleus in the cat. J. Comp. Neurol. 157: 43–52, 1974.
 329. Jones, E. G., J. D. Coulter, H. Burton, and R. Porter. Cells of origin and terminal distribution of corticostriatal fibers arising in the sensory‐motor cortex of monkeys. J. Comp. Neurol. 173: 53–80, 1977.
 330. Jones, E. G., and S. P. Wise. Size, laminar and columnar distribution of efferent cells in the sensory‐motor cortex of monkeys. J. Comp. Neurol. 175: 391–438, 1977.
 331. Jung, R., and R. Hassler. The extrapyramidal motor system. In: Handbook of Physiology. Neurophysiology, edited by H. W. Magoun. Washington, DC: Am. Physiol. Soc., 1960, sect. 1., vol. II, chapt. 35, p. 863–927.
 332. Karamanlidis, A. N., H. Michaloudi, O. Mangana, and R. P. Saigal. Trigeminal ascending projections in the rabbit, studied with horseradish peroxidase. Brain Res. 156: 110–116, 1978.
 333. Kawamura, K., A. Brodal, and G. Hoddevik. The projection of the superior colliculus onto the reticular formation of the brain stem. An experimental anatomical study in the cat. Exp. Brain Res. 19: 1–19, 1974.
 334. Kawamura, K., and T. Hashikawa. Cell bodies of origin of reticular projections from the superior colliculus in the cat: an experimental study with the use of horseradish peroxidase as a tracer. J. Comp. Neurol. 182: 1–16, 1978.
 335. Kawamura, S., and E. Kobayashi. Identification of laminar origin of some tecto‐thalamic fibers in the cat. Brain Res. 91: 281–285, 1975.
 336. Kawamura, K., T. Konno, and M. Chiba. Cells of origin of corticopontine and corticotectal fibers in the medial and lateral banks of the middle suprasylvian sulcus in the cat. An experimental study with the horseradish peroxidase method. Neurosci. Lett. 9: 129–135, 1978.
 337. Kawana, E., K. Akert, and H. Bruppacher. Enlargement of synaptic vesicles as an early sign of terminal degeneration in the rat caudate nucleus. J. Comp. Neurol. 142: 297–308, 1971.
 338. Keller, A. D., and W. K. Hare. The rubrospinal tracts in the monkey. Effects of experimental section. Arch. Neurol. Psychiatry 32: 1253–1272, 1934.
 339. Kennard, M. A. Reorganization of motor function in the cerebral cortex of monkeys deprived of motor and premotor areas in infancy. J. Neurophysiol. 1: 477–496, 1938.
 340. Kennard, M. A., and L. Ectors. Forced circling in monkeys following lesions of the frontal lobes. J. Neurophysiol. 1: 45–54, 1938.
 341. Kievit, J., and H. G. J. M. Kuypers. Organization of the thalamo‐cortical connexions to the frontal lobe in the rhesus monkey. Exp. Brain Res. 29: 299–322, 1977.
 342. King, J. S., M. H. Bowman, and G. F. Martin. The red nucleus of the opossum (Didelphis marsupialis virginiana): a light and electron microscopic study. J. Comp. Neurol. 143: 157–184, 1971.
 343. King, J. S., R. M. Dom, J. B. Conner, and G. F. Martin. An experimental light and electron microscopic study of cerebellorubral projections in the opossum. Didelphis marsupialis virginiana. Brain Res. 52: 61–78, 1973.
 344. King, J. S., R. M. Dom, and G. F. Martin. Anatomical evidence for an intrinsic neuron in the red nucleus. Brain Res. 67: 317–323, 1974.
 345. King, J. S., G. F. Martin, and J. B. Conner. A light and electron microscopic study of corticorubral projections in the opossum (Didelphis marsupialis virginiana). Brain Res. 38: 251–265, 1972.
 346. King, J. S., R. C. Schwyn, and C. A. Fox. The red nucleus in the monkey (Macaca mulatta): a Golgi and an electron microscopic study. J. Comp. Neurol. 142: 75–108, 1971.
 347. Kirk, G. R., and J. E. Breazile. Maturation of the corticospinal tract in the dog. Exp. Neurol. 35: 394–397, 1972.
 348. Kirkwood, P. A., and T. A. Sears. Monosynaptic excitation of thoracic expiratory motoneurones from lateral respiratory neurones in the medulla of the cat. J. Physiol. London. 234: 87–89, 1973.
 349. Klüver, H., and E. Barrera. A method for the combined staining of cells and fibers in the nervous system. J. Neuropathol. Exp. Neurol. 12: 400–403, 1953.
 350. Kneisley, L. W., M. P. Biber, and J. H. La Vail. A study of the origin of brain stem projections to monkey spinal cord using the retrograde transport method. Exp. Neurol. 60: 116–139, 1978.
 351. Konishi, A., M. Sato, N. Mizuno, K. Ithoh, S. Nomura, and T. Sugimoto. An electron microscope study of the Onuf's nucleus in the cat. Brain Res. 156: 333–338, 1978.
 352. Konishi, M. Fluorescence microscopy of the spinal cord of the dog, with special reference to the autonomic lateral horn cells. Arch. Histol. Jpn. Niigata Jpn. 30: 33–44, 1968.
 353. Kostyuk, P. G., and V. A. Maisky. Propriospinal projections in the lumbar spinal cord of the cat. Brain Res. 39: 530–535, 1972.
 354. Kostyuk, P. G., and A. I. Pilyavsky. A possible direct interneuronal pathway from rubrospinal tract to motoneurones. Brain Res. 14: 526–529, 1969.
 355. Kostyuk, P. G., and G. G. Skibo. An electron microscopic analysis of rubrospinal tract termination in the spinal cord of the cat. Brain Res. 85: 511–516, 1975.
 356. Kostyuk, P. G., D. A. Vasilenko, and E. Lang. Propriospinal pathways in the dorsolateral funiculus and their effects on lumbosacral motoneuronal pools. Brain Res. 28: 233–249, 1971.
 357. Krammer, E. B., T. Rath, and M. F. Lischka. Somatotopic organization of the hypoglossal nucleus: a HRP study in the rat. Brain Res. 170: 533–537, 1979.
 358. Krieg, W. J. S. Connections of the Frontal Cortex of the Monkey. Springfield, IL: Thomas, 1954.
 359. Kristensson, K., and Y. Olsson. Retrograde axonal transport of protein. Brain Res. 29: 363–365, 1971.
 360. Kristensson, K., and Y. Olsson. Uptake and retrograde transport of horseradish peroxidase in hypoglossal neurons. Electron microscopic localization in the neuronal perikaryon. Acta Neuropathol. 19: 1–9, 1971.
 361. Kristensson, K., and Y. Olsson. Retrograde transport of horseradish peroxidase in transected axons. I. Time relationships between transport and induction of chromatolysis. Brain Res. 79: 101–109, 1974.
 362. Kume, M., M. Uemura, K. Matsuda, R. Matsushima, and N. Mizuno. Topographical representation of peripheral branches of the facial nerve within the facial nucleus. A HRP study in the cat. Neurosci. Lett. 8: 5–8, 1978.
 363. Künzle, H. Thalamic projections from the precentral motor cortex in Macaca fascicularis. Brain Res. 105: 253–267, 1976.
 364. Künzle, H. Evidence for selective axon‐terminal uptake and retrograde transport of label in cortico‐ and rubropsinal systems after injections of 3H‐Proline. Exp. Brain Res. 28: 125–132, 1977.
 365. Künzle, H. An autoradiographic analysis of the efferent conections from premotor and adjacent prefrontal regions (areas 6 and 9) in Macaca fascicularis. Brain Behav. Evol. 15: 185–234, 1978.
 366. Künzle, H., and K. Akert. Efferent connections of cortical area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. J. Comp. Neurol. 173: 147–164, 1977.
 367. Künzle, H., K. Akert, and R. H. Wurtz. Projection of area 8 (frontal eye field) to superior colliculus in the monkey. An autoradiographic study. Brain Res. 117: 487–492, 1976.
 368. Künzle, H., and M. Cuenod. Differential uptake of (3H) proline and (3H) leucine by neurons: its importance for the autoradiographic tracing of pathways. Brain Res. 62: 213–217, 1973.
 369. Kuypers, H. G. J. M. An anatomical analysis of cortico‐bulbar connexions to the pons and lower brain stem in the cat. J. Anat. 92: 189–218, 1958.
 370. Kuypers, H. G. J. M. Corticobulbar connexions to the pons and lower brain stem in man. An anatomical study. Brain 81: 364–388, 1958.
 371. Kuypers, H. G. J. M. Some projections from the peri‐central cortex to the pons and lower brain stem in monkey and chimpanzee. J. Comp. Neurol. 110: 221–255, 1958.
 372. Kuypers, H. G. J. M. Central cortical projections to motor and somato‐sensory cell groups. An experimental study in the rhesus monkey. Brain 83: 161–184, 1960.
 373. Kuypers, H. G. J. M. Corticospinal connections: postnatal development in the rhesus monkey. Science 138: 678–680, 1962.
 374. Kuypers, H. G. J. M. The descending pathways to the spinal cord, their anatomy and function. In: Progress in Brain Research. Organization of the Spinal Cord, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1964, vol. 11, p. 178–200.
 375. Kuypers, H. G. J. M. The anatomical organization of the descending pathways and their contributions to motor control especially in primates. In: Human Reflexes, Pathophysiology of Motor Systems, Methodology of Human Reflexes. New Developments in Electromyography and Clinical Neurophysiology, edited by J. E. Desmedt. Basel: Karger, 1973, vol. 3, p. 38–68.
 376. Kuypers, H. G. J. M. From motor control to conscious experience. In: Cerebral Correlates of Conscious Experience, edited by P. A. Buser and A. Rougeul‐Buser. Amsterdam: Elsevier/North‐Holland, 1978, p. 95–110. (INSERM Symp. 6th.).
 377. Kuypers, H. G. J. M., M. Bentivoglio, D. Van Der Kooy, and C. E. Catsman‐Berrevoets. Retrograde transport of bisbenzimide and propidium iodide through axons to their parent cell bodies. Neurosci. Lett. 12: 1–7, 1979.
 378. Kuypers, H. G. J. M., and J. Brinkman. Precentral projections to different parts of the spinal intermediate zone in the rhesus monkey. Brain Res. 24: 29–48, 1970.
 379. Kuypers, H. G. J. M., C. E. Catsman‐Berrevoets, and R. E. Padt. Retrograde axonal transport of fluorescent substances in the rat's forebrain. Neurosci. Lett. 6: 127–135, 1977.
 380. Kuypers, H. G. J. M., W. R. Fleming, and J. W. Farinholt. Descending projections to spinal motor and sensory cell groups in the monkey: cortex versus subcortex. Science 132: 38–40, 1960.
 381. Kuypers, H. G. J. M., W. R. Fleming, and J. W. Farinholt. Subcorticospinal projections in the rhesus monkey. J. Comp. Neurol. 118: 107–137, 1962.
 382. Kuypers, H. G. J. M., and D. G. Lawrence. Cortical projections to the red nucleus and the brain stem in the rhesus monkey. Brain Res. 4: 151–188, 1967.
 383. Kuypers, H. G. J. M., and V. A. Maisky. Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci. Lett. 1: 9–14, 1975.
 384. Kuypers, H. G. J. M., and V. A. Maisky. Funicular trajectories of descending brain stem pathways in cat. Brain Res. 136: 159–165, 1977.
 385. Kuypers, H. G. J. M., and D. Pandya. Comments on the cortical projections to the center median in the chimpanzee. In: The Thalamus, edited by D. P. Purpura and M. D. Yahr. New York: Columbia Univ. Press, 1966, p. 122–127.
 386. Kuypers, H. G. J. M., and J. D. Tuerk. The distribution of the cortical fibres within the nuclei cuneatus and gracilis in the cat. J. Anat. 98: 143–162, 1964.
 387. Kuzuhara, S., I. Kanazawa, and T. Nakanishi. Topographical localization of the Onuf's nuclear neurons innervating the rectal and vesical striated muscles: a retrograde fluorescent double labeling in cat and dog. Neurosci. Lett. 6: 125–130, 1980.
 388. Ladpli, R., and A. Brodal. Experimental studies of commissural and reticular formation projections from the vestibular nuclei in the cat. Brain Res. 8: 65–96, 1968.
 389. Lance, J. W., and R. L. Manning. Origin of the pyramidal tract in cat. J. Physiol. London 124: 385–399, 1954.
 390. Landgren, S., C. G. Phillips, and R. Porter. Cortical fields of origin of the monosynaptic pyramidal pathways to some alpha motoneurones of the baboon's hand and forearm. J. Physiol. London 161: 112–125, 1962.
 391. Lang, W., J. A. Büttner‐Ennever, and U. Büttner. Vestibular projections to the monkey thalamus: an autoradiographic study. Brain Res. 177: 3–18, 1979.
 392. Lankamp, D. J. Fiber Composition of the Pedunculus Cerebri (Crus cerebri) in Man. Leiden: Luctor et Emergo, 1967.
 393. Lasek, R., B. S. Joseph, and D. G. Whitlock. Evaluation of a radioautographic neuroanatomical tracing method. Brain Res. 8: 319–336, 1968.
 394. Lassek, A. M. The human pyramidal tract. IV. A study of the mature, myelinated fibers of the pyramid. J. Comp. Neurol. 76: 217–225, 1942.
 395. Lassek, A. M. The human pyramidal tract. V. Postnatal changes in the axons of the pyramids. Arch. Neurol. Psychiatry 47: 422–427, 1942.
 396. Lassek, A. M. The pyramidal tract: basic considerations of corticospinal neurons. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 27: 106–128, 1948.
 397. Lassek, A. M. A study of the effect of complete frontal lobe extirpations on the fiber components of the pyramidal tract. J. Comp. Neurol. 96: 121–125, 1952.
 398. Lassek, A. M. The Pyramidal Tract. Its Status in Medicine. Springfield IL: Thomas, 1955.
 399. La eVail, J. H., and M. M. La Vail. Retrograde axonal transport in the central nervous system. Science 176: 1416–1417, 1972.
 400. Lawrence, D. G., and D. A. Hopkins. The development of motor control in the rhesus monkey: evidence concerning the role of corticomotoneuronal connections. Brain 99: 235–254, 1976.
 401. Lawrence, D. G., and H. G. J. M. Kuypers. Pyramidal and non‐pyramidal pathways in monkeys: anatomical and functional correlation. Science 148: 973–975, 1965.
 402. Lawrence, D. G., and H. G. J. M. Kuypers. The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91: 1–14, 1968.
 403. Lawrence, D. G., and H. G. J. M. Kuypers. The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brain‐stem pathways. Brain 91: 15–36, 1968.
 404. Leichnetz, G. R., L. Watkins, G. Griffin, R. Murfin, and D. J. Mayer. The projection from nucleus raphe magnus and other brainstem nuclei to the spinal cord in the rat: a study using the HRP blue‐reaction. Neurosci. Lett. 8: 119–124, 1978.
 405. Leonard, C. M. The prefrontal cortex of the rat. I. Cortical projection of the mediodorsal nucleus. II. Efferent connections. Brain Res. 12: 321–343, 1969.
 406. Levin, P. M. The efferent fibers of the frontal lobe of the monkey Macaca mulatta. J. Comp. Neurol. 63: 369–419, 1936.
 407. Levitt, P., and R. Y. Moore. Origin and organization of brainstem catecholamine innervation in the rat. J. Comp. Neurol. 186: 505–528, 1979.
 408. Lewandowsky, M. Untersuchungen über die Leitungsbahnen des Truncus cerebri und ihren Zusammenhang mit denen der Medulla spinalis und des Cortex cerebri. In: Weitere Beitrage zur Hirnanatomie. Neurol, edited by O. v. Vogt. Jena: Fischer, 1904. Arb. II., p. 60–150.
 409. Lewis, P. R., B. A. Flumerfelt, and C. C. D. Shute. The use of cholinesterase techniques to study topographical localization in the hypoglossal nucleus of the rat. J. Anat. 110: 203–213, 1971.
 410. Lewis, R., and G. S. Brindley. The extrapyramidal cortical motor map. Brain 88: 397–406, 1965.
 411. Light, A. R., and C. B. Metz. The morphology of the spinal cord efferent and afferent neurons contributing to the ventral roots of the cat. J. Comp. Neurol. 179: 501–516, 1978.
 412. Liu, C. N., and W. W. Chambers. An experimental study of the corticospinal system in the monkey (Macaca mulatta). J. Comp. Neurol. 123: 257–284, 1965.
 413. Lloyd, D. P. C. The spinal mechanism of the pyramidal system in cats. J. Neurophysiol. 4: 525–546, 1941.
 414. Lloyd, D. P. C. Mediation of descending long spinal reflex activity. J. Neurophysiol. 5: 435–458, 1942.
 415. Loewy, A. D., and H. Burton. Efferent projections from nuclei of the solitary tract in the cat. Soc. Neurosci. Abstr. 3: 23, 1977.
 416. Loewy, A. D., S. McKellar, and C. B. Saper. Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res. 174: 309–314, 1979.
 417. Loewy, A. D., and C. B. Saper. Edinger‐Westphal nucleus: projections to the brain stem and spinal cord in the cat. Brain Res. 150: 1–27, 1978.
 418. Loewy, A. D., C. B. Saper, and R. P. Baker. Descending projections from the pontine micturition center. Brain Res. 172: 533–539, 1979.
 419. Loewy, A. D., C. B. Saper, and N. D. Yamodis. Re‐evaluation of the efferent projections of the Edinger‐Westphal nucleus in the cat. Brain Res. 141: 153–159, 1978.
 420. Løken, A. C., and A. Brodal. A somatotopic pattern in the human lateral vestibular nucleus. Arch. Neurol. Chicago 23: 350–357, 1970.
 421. Lorente de No, R. Anatomy of the eighth nerve. The central projections of the nerve endings of the internal ear. Laryngoscope 43: 1–38, 1933.
 422. Luhan, J. A. Long survival after unilateral stab wound of medulla with unusual pyramidal tract distribution. Arch. Neurol. Chicago 1: 427–434, 1959.
 423. Lund, J. S., R. D. Lund, A. E. Hendrickson, A. H. Bunt, and A. F. Fuchs. The origin of efferent pathways from the primary visual cortex. Area 17 of the Macaque monkey as shown by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 164: 287–303, 1975.
 424. Lund, S., and P. Pompeiano. Descending pathways with monosynaptic action on motoneurones. Experientia 21: 602–603, 1965.
 425. Lundberg, A. The excitatory control of the 1a inhibitory pathway. In: Excitatory Synaptic Mechanisms, edited by P. Andersen and J. K. S. Jansen. Oslo: Universiteitsforlaget, 1970, p. 330–340.
 426. Lundberg, A., and P. Voorhoeve. Effects from the pyramidal tract on spinal reflex arcs. Acta Physiol. Scand. 56: 201–219, 1962.
 427. Lynch, G., C. Gall, P. Mensah, and C. W. Cotman. Horseradish peroxidase histochemistry: a new method for tracing efferent projections in the central nervous system. Brain Res. 65: 373–380, 1974.
 428. Lynch, G., R. L. Smith, P. Mensah, and C. W. Cotman. Tracing the dentate gyrus mossy fiber system with horseradish peroxidase histochemistry. Exp. Neurol. 40: 516–524, 1973.
 429. Lyon, M. J. Localization of the efferent neurons of the tensor tympani muscle of the newborn using horseradish peroxidase. Exp. Neurol. 49: 439–455, 1975.
 430. Lyon, M. J. The central location of the motor neurons to the stapedius muscle in the cat. Brain Res. 143: 437–444, 1978.
 431. Mabuchi, M. Corticofugal projections to the subthalamic nucleus, the red nucleus and the adjacent areas in the monkey. Proc. Jpn. Acad. 43: 818, 1967.
 432. Mabuchi, M. Rotatory head response evoked by stimulating and destroying the interstitial nucleus and surrounding region. Exp. Neurol. 27: 175–193, 1970.
 433. Mabuchi, M., and T. Kusama. The cortico‐rubral projection in the cat. Brain Res. 2: 254–273, 1966.
 434. Mabuchi, M., and T. Kusama. Mesodiencephalic projections to the inferior olive and the vestibular and perihypoglossal nuclei. Brain Res. 17: 133–136, 1970.
 435. Maciewicz, R. J. Afferents to the lateral suprasylvian gyrus of the cat traced with horseradish peroxidase. Brain Res. 78: 139–143, 1974.
 436. Maciewicz, R. J., K. Eager, C. R. S. Kaneko, and S. M. Highstein. Vestibular and medullary brain stem afferents to the abducens nucleus in the cat. Brain Res. 123: 229–240, 1977.
 437. Maeda, T., C. Pin, D. Salvert, M. Ligier, and M. Jouvet. Les neurones contenant des catécholamines du tegmentum pontique et leurs voies de projection chez le chat. Brain Res. 57: 119–152, 1973.
 438. Magni, F., and W. D. Willis. Antidromic activation of neurones of the reticular formation of the brain stem. Nature 198: 592–594, 1963.
 439. Magni, F., and W. D. Willis. Identification of reticular formation neurons by intercellular recording. Arch. Ital. Biol. 101: 681–702, 1963.
 440. Malmgren, L., and Y. Olsson. A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport. Brain Res. 148: 279–294, 1978.
 441. Malmgren, L., Y. Olsson, T. Olsson, and K. Kristensson. Uptake and retrograde axonal transport of various exogeneous macromolecules in normal and crushed hypoglossal neurones. Brain Res. 153: 477–494, 1978.
 442. Manghi, E. Il fascio piramidale laterale diretto nel gatto. Boll. Soc. Ital. Biol. Sper. 32: 1491–1493, 1956.
 443. Mannen, H. Morphological analysis of an individual neuron with Golgi's method. In: Golgi Centennial Symposium: Perspectives in Neurobiology, edited by M. Santini. New York: Raven Press, 1975, p. 61–70. (Golgi Centennial Symp., 1973.).
 444. Marinesco, G. Recherches sur les localisations motrices spinales. Semaine Méd. Paris 29: 225–231, 1904.
 445. Martin, G. F. Efferent tectal pathways of the opossum (Didelphis virginiana). J. Comp. Neurol. 135: 209–224, 1969.
 446. Martin, G. F., M. S. Beattie, J. C. Bresnahan, C. K. Henkel, and H. C. Hughes. Cortical and brain stem projections to the spinal cord of the american opossum (Didelphis marsupialis virginiana). Brain Behav. Evol. 12: 270–310, 1975.
 447. Martin, G. F., J. C. Bresnahan, C. K. Henkel, and D. Megirian. Corticobulbar fibres in the North American opossum (Didelphis marsupialis virginiana) with notes on the Tasmanian brush‐tailed possum (Trichosurus vulpecula) and other marsupials. J. Anat. 120: 439–484, 1975.
 448. Martin, G. F., and R. Dom. Rubrobulbar projections of the opossum (Didelphis virginiana). J. Comp. Neurol. 139: 199–214, 1970.
 449. Martin, G. F., and R. Dom. The rubro‐spinal tract of the opossum (Didelphis virginiana). J. Comp. Neurol. 138: 19–30, 1970.
 450. Martin, G. F., and R. Dom. Reticulospinal fibers of the opossum (Didelphis virginiana). II. Course, caudal extent and distribution. J. Comp. Neurol. 141: 467–484, 1971.
 451. Martin, G. F., R. Dom, S. Katz, and J. S. King. The organization of projection neurons in the opossum red nucleus. Brain Res. 78: 17–34, 1974.
 452. Martin, G. F., and A. M. Fisher. A further evaluation of the origin, the course and the termination of the opossum corticospinal tract. J. Neurol. Sci. 7: 177–187, 1968.
 453. Martin, G. F., A. O. Humbertson, C. Laxson, and W. M. Panneton. Evidence for direct bulbospinal projections to laminae IX, X and the intermediolateral cell column. Studies using axonal transport techniques in the North American opossum. Brain Res. 170: 165–171, 1979.
 454. Martin, G. F., A. O. Humbertson, L. C. Laxson, W. M. Panneton, and I. Tschismadia. Spinal projections from mesencephalic and pontine reticular formation in North American opossum: a study using axonal transport techniques. J. Comp. Neurol. 187: 373–400, 1979.
 455. Martin, G. F., D. Megirian, and J. B. Conner. The origin course and termination of the corticospinal tract of the Tasmanian potoroo (Potorous apicalis). J. Anat. 111: 263–281, 1972.
 456. Martin, G. F., D. Megirian, and A. Roebuck. The corticospinal tract of the marsupial phalanger (Trichosurus vulpecula). J. Comp. Neurol. 139: 245–258, 1970.
 457. Martin, G. F., D. Megirian, and A. Roebuck. Corticobulbar projections of the marsupial phalanger (Trichosurus vulpecula). I. Projections to the pons and medulla oblongata. J. Comp. Neurol. 142: 275–296, 1971.
 458. Martin, R. F., L. M. Jordan, and W. D. Willis. Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions. J. Comp. Neurol. 182: 77–88, 1979.
 459. Massion, J. The mammalian red nucleus. Physiol. Rev. 47: 383–436, 1967.
 460. Matsuda, K., M. Uemura, M. Kume, R. Matsushima, and N. Mizuno. Topographical representation of mosticatory muscles in the motor trigeminal nucleus in the rabbit: a HRP study. Neurosci. Lett. 8: 1–14, 1978.
 461. Matsuda, K., M. Uemura, Y. Takeuchi, M. Kume, R. Matsushima, and N. Mizuno. Localization of motoneurons innervating the posterior belly of the digastric muscle: a comparative anatomical study by the HRP method. Neurosci. Lett. 12: 47–52, 1979.
 462. Matsushita, M. Some aspects of the interneuronal connections in cat's spinal gray matter. J. Comp. Neurol. 136: 57–80, 1969.
 463. Matsushita, M. The axonal pathways of spinal neurons in the cat. J. Comp. Neurol. 138: 391–418, 1970.
 464. Matsushita, M., and Y. Hosoya. Cells of origin of the spinocerebellar tract in the rat, studied with the method of retrograde transport of horseradish peroxidase. Brain Res. 173: 185–200, 1979.
 465. Matsushita, M., Y. Hosoya, and M. Ikeda. Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J. Comp. Neurol. 184: 81–106, 1979.
 466. Matsushita, M., and M. Ikeda. Propriospinal fiber connections of the cervical motor nuclei in the cat: a light and electron microscope study. J. Comp. Neurol. 150: 1–32, 1973.
 467. Matsushita, M., M. Ikeda, and Y. Hosoya. The location of spinal neurons with long descending axons (long descending propriospinal tract neurons) in the cat: a study with the horseradish peroxidase technique. J. Comp. Neurol. 184: 63–80, 1979.
 468. Matsushita, M., and T. Ueyama. Ventral motor nucleus of the cervical enlargement in some mammals; its specific afferents from the lower cord levels and cytoarchitecture. J. Comp. Neurol. 150: 33–52, 1973.
 469. Matthews, M. A., W. D. Willis, and V. Williams. Dendrite bundles in lamina IX of cat spinal cord: a possible source for electrical interaction between motoneurons? Anat. Rec. 171: 313–328, 1971.
 470. Maunz, R. A., N. G. Pitts, and B. W. Peterson. Cat spinoreticular neurons: locations, responses and changes in responses during repetitive stimulation. Brain Res. 148: 365–379, 1978.
 471. McAllen, R. M., and K. M. Spyer. The location of cardiac vagal preganglionic motoneurones in the medulla of the cat. J. Physiol. London 258: 187–204, 1976.
 472. McLaughlin, B. J. Propriospinal and supraspinal projections to the motor nuclei in the cat spinal cord. J. Comp. Neurol. 144: 475–500, 1972.
 473. McLaughlin, B. J., R. Barber, K. Saito, E. Roberts, and J. Y. Wu. Immunocytochemical localization of glutamate decarboxylase in rat spinal cord. J. Comp. Neurol. 164: 305–321, 1975.
 474. McMasters, R. E., A. H. Weiss, and M. B. Carpenter. Vestibular projections to the nuclei of the extraocular muscles. Degeneration resulting from discrete partial lesions of the vestibular nuclei in the monkey. Am. J. Anat. 118: 163–194, 1966.
 475. Meessen, H., and J. Olzewski. A Cytoarchitectonic Atlas of the Rhombencephalon of the Rabbit. Basel: Karger, 1949.
 476. Mehler, W. R. Double descending pathways originating from the superior cerebellar peduncle. An example of neural species differences. Anat. Rec. 157: 374, 1967.
 477. Mehler, W. R. Some neurological species differences—a posteriori. Ann. NY Acad. Sci. 167: 424–468, 1969.
 478. Mergner, T., O. Pompeiano, and N. Corvaja. Vestibular projections to the nucleus intercalatus of Staderini mapped by retrograde transport of horseradish peroxidase. Neurosci. Lett. 5: 309–314, 1977.
 479. Merrill, E. G. The lateral respiratory neurones of the medulla: their associations with nucleus ambiguus, nucleus retroambigualis, the spinal accessory nucleus and the spinal cord. Brain Res. 24: 11–28, 1970.
 480. Mesulam, M. M. The blue reaction product in horseradish peroxidase neurohistochemistry: incubation parameters and visibility. J. Histochem. Cytochem. 24: 1273–1280, 1976.
 481. Mesulam, M. M. A horseradish peroxidase method for the identification of the efferents of acetyl cholinesterase‐containing neurons. J. Histochem. Cytochem. 24: 1281–1286, 1976.
 482. Mettler, F. A. Extracortical connections of the primate frontal cerebral cortex. II. Corticofugal connections. J. Comp. Neurol. 86: 119–166, 1947.
 483. Miller, R. Distribution and properties of commissural and other neurons in cat sensory motor cortex. J. Comp. Neurol. 164: 361–373, 1975.
 484. Miller, R. A., and N. L. Strominger. Efferent connections of the red nucleus in the brainstem and spinal cord of the Rhesus monkey. J. Comp. Neurol. 152: 327–345, 1973.
 485. Miller, S. Excitatory and inhibitory propriospinal pathways from lumbosacral to cervical segments in the cat. Acta Physiol. Scand. 80: 25A–26A, 1970.
 486. Miller, S., D. J. Reitsma, and F. G. A. Vander eMeché. Excitatory ascending propriospinal actions between lumbosacral and cervical segments in the cat. J. Physiol. London 218: 76P–77P, 1971.
 487. Minckler, J., R. M. Klemme, and D. Minckler. The course of efferent fibers from the human premotor cortex. J. Comp. Neurol. 81: 259–277, 1944.
 488. Mitchell, R. A., and A. J. Berger. Neural regulation of respiration. Am. Rev. Respir. Dis. 3: 206–224, 1975.
 489. Mizuno, N., A. Konishi, and M. Sato. Localization of masticatory motoneurons in the cat and rat by means of retrograde axonal transport of horseradish peroxidase. J. Comp. Neurol. 164: 105–115, 1975.
 490. Mizuno, N., and Y. Nakamura. Rubral fibers to the facial nucleus in the rabbit. Brain Res. 28: 545–549, 1971.
 491. Modianos, D., and D. Pfaff. Medullary reticular formation lesions and lordosis reflex in female rats. Brain Res. 171: 334–338, 1979.
 492. Molenaar, I. The distribution of propriospinal neurons projecting to different motoneuronal cell groups in the cat's brachial cord. Brain Res. 158: 203–206, 1978.
 493. Molenaar, I., and H. G. J. M. Kuypers. Cells of origin of propriospinal fibers and of fibers ascending to supraspinal levels. A HRP study in cat and rhesus monkey. Brain Res. 152: 429–450, 1978.
 494. Molenaar, I., A. Rustioni, and H. G. J. M. Kuypers. The location of cells of origin of the fibers in the ventral and the lateral funiculus of the cat's lumbo‐sacral cord. Brain Res. 78: 239–254, 1974.
 495. Moll, L., and H. G. J. M. Kuypers. Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198: 317–319, 1977.
 496. Monnier, M. Syndromes déviationnels provoqués par l'excitation et la destruction du système réticulaire bulbo‐protubérantiel chez le chat. Monatsschr. Psychiatr. Neurol. 107: 84–102, 1943.
 497. Monnier, M. L'organisation des fonctions motrices chez les primates. Schweiz. Arch. Neurol. Psychiatr. 57: 325–349, 1946.
 498. Moolenaar, G. M., and H. K. Rucker. Autoradiographic study of brain stem projections from fastigial pressor areas. Brain Res. 114: 492–496, 1976.
 499. Morgan, C., I. Nadelhaft, and W. C. De Groat. Location of bladder preganglionic neurons within the sacral parasympathetic nucleus of the cat. Neurosci. Lett. 14: 189–194, 1979.
 500. Murray, E. A., and J. D. Coulter. Corticospinal projections from the medial cerebral hemisphere in monkey. Soc. Neurosci. Abstr. 3: 275, 1977.
 501. Murray, H. M. Rubrobulbar projections in the tree shrew (Tupaia). Soc. Neurosci. Abstr. 3: 59, 1977.
 502. Murray, H. M., and M. E. Gurule. Origin of the rubrospinal tract of the rat. Neurosci. Lett. 14: 19–24, 1979.
 503. Murray, H. M., and D. E. Haines. The rubrospinal tract in a Prosimian primate (Galago senegalensis). Brain Behav. Evol. 12: 311–333, 1975.
 504. Murray, H. M., D. E. Haines, and I. Cote. The rubrospinal tract of the tree shrew (Tupaia glis). Brain Res. 116: 317–322, 1976.
 505. Mussen, A. T. Cerebellum and red nucleus. Arch. Neurol. Psychiatry 31: 110–126, 1934.
 506. Nadelhaft, I., C. Morgan, I. Schauble, and W. C. de Groat. Localization of the sacral autonomic (parasympathetic) nucleus in the spinal cord of cat and monkey by the horseradish peroxidase technique. Soc. Neurosci. Abstr. 3: 24, 1977.
 507. Naito, H., K. Tanimura, N. Taga, and Y. Hosoya. Microelectrode study on the subnuclei of the oculomotor nucleus in the cat. Brain Res. 81: 215–231, 1974.
 508. Nakayma, S., and R. Von Baumgarten. Lokalisierung absteigender Atmungsbahnen im Rückenmark der Katze mittels antidromer Reizung. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 281: 231–244, 1964.
 509. Nathan, P. W. The descending respiratory pathway in man. J. Neurol. Neurosurg. Psychiatry 26: 487–499, 1963.
 510. Nathan, P. W., and M. C. Smith. Long descending tracts in man I. Review of present knowledge. Brain 78: 248–303, 1955.
 511. Nathan, P. W., and M. C. Smith. Fasciculi proprii of the spinal cord in man. Brain 82: 610–668, 1959.
 512. Nauta, H. J. W., and M. Cole. Efferent projections of the subthalamic nucleus: an autoradiographic study in monkey and cat. J. Comp. Neurol. 180: 1–16, 1978.
 513. Nauta, W. J. H., and P. A. Gygax. Silver impregnation of degenerating axons in the central nervous system: a modified technique. Stain Technol. 29: 91–94, 1954.
 514. Nauta, W. J. H., and W. Haymaker. Hypothalamic nuclei and fiber connections. In: The Hypothalamus, edited by W. Haymaker, E. Anderson, and W. J. H. Nauta. Springfield, IL: Thomas, 1969. p. 136–209.
 515. Nauta, W. J. H., and W. R. Mehler. Projections of the lentiform nucleus in the monkey. Brain Res. 1: 3–42, 1966.
 516. Newson Davis, J., and F. Plum. Separation of descending spinal pathways to respiratory motoneurons. Exp. Neurol. 34: 78–94, 1972.
 517. Nieoullon, A., and L. Rispal‐Padel. Somatotopic localization in cat motor cortex. Brain Res. 105: 405–422, 1976.
 518. Nobin, A., and A. Björklund. Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol. Scand. Suppl. 388: 1–40, 1973.
 519. Nosaka, S., T. Yamamoto, and K. Yasanuga. Localization of vagal cardioinhibitory preganglionic neurons within rat brain stem. J. Comp. Neurol. 186: 79–92, 1979.
 520. Nyberg‐Hansen, R. The location and termination of tectospinal fibers in the cat. Exp. Neurol. 9: 212–227, 1964.
 521. Nyberg‐Hansen, R. Origin and termination of fibers from the vestibular nuclei descending in the medial longitudinal fasciculus. An experimental study with silver impregnation methods in the cat. J. Comp. Neurol. 122: 355–367, 1964.
 522. Nyberg‐Hansen, R. Sites and mode of termination of reticulo‐spinal fibers in the cat. An experimental study with silver impregnation methods. J. Comp. Neurol. 124: 71–100, 1965.
 523. Nyberg‐Hansen, R. Functional organization of descending supraspinal fibre systems to the spinal cord. Anatomical observations and physiological correlations. Ergeb. Anat. Entwicklungsesch. 39: 6–47, 1966.
 524. Nyberg‐Hansen, R. Sites of termination of interstitiospinal fibers in the cat. An experimental study with silver impregnation methods. Arch. Ital. Biol. 104: 98–111, 1966.
 525. Nyberg‐Hansen, R. Do cat spinal motoneurones receive direct supraspinal fibre connections? A supplementary silver study. Arch. Ital. Biol. 107: 67–78, 1969.
 526. Nyberg‐Hansen, R., and A. Brodal. Sites of termination of corticospinal fibers in the cat. An experimental study with silver impregnation methods. J. Comp. Neurol. 120: 369–391, 1963.
 527. Nyberg‐Hansen, R., and A. Brodal. Sites and mode of termination of rubrospinal fibres in the cat. An experimental study with silver impregnation methods. J. Anat. 98: 235–253, 1964.
 528. Nyberg‐Hansen, R., and T. A. Mascitti. Sites and mode of termination of fibers of the vestibulospinal tract in the cat. An experimental study with silver impregnation methods. J. Comp. Neurol. 122: 369–383, 1964.
 529. Nyberg‐Hansen, R., and E. Rinvik. Some comments on the pyramidal tract, with special reference to its individual variations in man. Acta Neurol. Scand. 39: 1–30, 1963.
 530. Nygren, L. G., and L. Olson. A new major projection from locus coeruleus: the main source of noradrenergic nerve terminals in the ventral and dorsal columns of the spinal cord. Brain Res. 132: 85–93, 1977.
 531. Oliveras, J. L., S. Bourgoin, F. Hery, J. M. Besson, and M. Hamon. The topographical distribution of serotoninergic terminals in the spinal cord of the cat: biochemical mapping by the combined use of microdissection and microassay procedures. Brain Res. 138: 393–406, 1977.
 532. Oliveras, J. L., F. Redjemi, G. Guilbaud, and J. M. Besson. Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain 1: 139–145, 1975.
 533. Olson, L., and K. Fuxe. On the projections from the locus coeruleus noradrenaline neurons: the cerebellar innervation. Brain Res. 28: 165–171, 1971.
 534. Olsson, T., and K. Kristensson. A simple histochemical method for double labelling of neurons by retrograde axonal transport. Neurosci. Lett. 8: 265–268, 1978.
 535. Olzewski, J., and D. Baxter. Cytoarchitecture of the Human Brain Stem. Basel: Karger, 1954.
 536. Onuf, B. Notes on the arrangement and function of the cell groups in the sacral region of the spinal cord. J. Nerv. Ment. Dis. 26: 498–504, 1899.
 537. Onuf, B. On the arrangement and function of the cell groups of the sacral region of the spinal cord in man. Arch. Neurol. Psychopathol. 3: 387–411, 1900.
 538. Orioli, F. L., and F. A. Mettler. The rubro‐spinal tract in Macaca mulatta. J. Comp. Neurol. 106: 299–318, 1956.
 539. Padel, Y., J. Armand, and A. M. Smith. Topography of rubrospinal units in the cat. Exp. Brain Res. 14: 363–371, 1972.
 540. Padel, Y., A. M. Smith, and J. Armand. Topography of projections from the motor cortex to rubrospinal units in the cat. Exp. Brain Res. 17: 315–332, 1973.
 541. Palay, S. L., and V. Chan‐Palay. General morphology of neurons and neuroglia. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle. Bethesda, Maryland: Am. Physiol. Soc, 1977, sect. 1, vol. I., pt. 1, chapt. 2, p. 5–38.
 542. Palkovits, M., and D. M. Jacobowitz. Topographic atlas of catecholamine and acetylcholinesterase‐containing neurons in the rat brain. II. Hindbrain (mesencephalon, rhombencephalon). J. Comp. Neurol. 157: 29–42, 1974.
 543. Panneton, W. M., and G. F. Martin. The organization of midbrain‐facial systems. Soc. Neurosci. Abstr. 3: 276, 1977.
 544. Panneton, W. M., and G. F. Martin. Midbrain projections to the trigeminal, facial and hypoglossal nuclei in the opossum. A study using axonal transport techniques. Brain Res. 168: 493–511, 1979.
 545. Papez, J. W. Reticulo‐spinal tracts in the cat. Marchi method. J. Comp. Neurol. 41: 365–399, 1926.
 546. Papez, J. W. Subdivisions of the facial nucleus. J. Comp. Neurol. 43: 159–191, 1927.
 547. Papez, J. W., and W. A. Stotler. Connections of the red nucleus. Arch. Neurol. Psychiatry 44: 776–791, 1940.
 548. Passingham, R., H. Perry, and F. Wilkinson. Failure to develop a precision grip in monkeys with unilateral neocortical lesions made in infancy. Brain Res. 145: 410–414, 1978.
 549. Pearce, G. W. Some cortical projections to the midbrain reticular formation. In: Structure and Function of the Cerebral Cortex, edited by D. B. Tower and J. P. Schadé. Amsterdam: Elsevier, 1960, p. 131–138. (Proc. Int. Mtng. Neurobiol., 2nd, Amsterdam, 1959.).
 550. Peterson, B. W., M. E. Anderson, and M. Filion. Responses of ponto‐medullary reticular neurons to cortical, tectal and cutaneous stimuli. Exp. Brain Res. 21: 19–44, 1974.
 551. Peterson, B. W., and J. D. Coulter. A new long projection from the vestibular nuclei in the cat. Brain Res. 122: 351–356, 1977.
 552. Peterson, B. W., R. A. Maunz, N. G. Pitts, and R. G. Mackel. Patterns of projection and branching of reticulospinal neurons. Exp. Brain Res. 23: 333–351, 1975.
 553. Peterson, B. W., N. G. Pitts, and K. Fukushima. Reticulospinal connections with limb and axial motoneurons. Exp. Brain Res. 36: 1–20, 1979.
 554. Peterson, B. W., N. G. Pitts, K. Fukushima, and R. Mackel. Reticulospinal excitation and inhibition of neck motoneurons Exp. Brain Res. 32: 471–489, 1978.
 555. Petras, J. M. Some fiber connections of the precentral and postcentral cortex with the basal ganglia, thalamus and subthalamus. Trans. Am. Neurol. Assoc. 90: 274–275, 1965.
 556. Petras, J. M. Cortical, tectal and tegmental fiber connections in the spinal cord of the cat. Brain Res. 6: 275–324, 1967.
 557. Petras, J. M. Corticospinal fibers in New World and Old World simians. Brain Res. 8: 206–208, 1968.
 558. Petras, J. M. Some efferent connections of the motor and somatosensory cortex of simian primates and felid, canid and procyonid carnivores. Ann. NY Acad. Sci. 167: 469–505, 1969.
 559. Petras, J. M., and J. F. Cummings. Autonomic neurons in the spinal cord of the Rhesus monkey: a correlation of the findings of cytoarchitectonics and sympathectomy with fiber degeneration following dorsal rhizotomy. J. Comp. Neurol. 146: 189–218, 1972.
 560. Petras, J. M., and A. I. Faden. The origin of sympathetic preganglionic neurons in the dog. Brain Res. 144: 353–357, 1978.
 561. Petras, J. M., and R. A. W. Lehman. Corticospinal fibers in the raccoon. Brain Res. 3: 195–197, 1966.
 562. Philips, C. G., and R. Porter. The pyramidal projection to motoneurones of some muscle groups of the baboon's forelimb. In: Progress in Brain Research. Physiology of Spinal Neurons, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1964, vol. 12, p. 222–242.
 563. Pickel, V. M., M. Segal, and F. E. Bloom. A radioautographic study of the efferent pathways of the nucleus locus coeruleus. J. Comp. Neurol. 155: 15–42, 1974.
 564. Pin, C., B. Jones, and M. Jouvet. Topographie des neurones monoaminergiques du tronc cérébral du chat: étude par histofluorescence. C. R. Soc. Biol. 162: 2136–2141, 1968.
 565. Poirier, L. J., and G. Bouvier. The red nucleus and its efferent nervous pathways in the monkey. J. Comp. Neurol. 128: 223–243, 1966.
 566. Poitras, D., and A. Parent. Atlas of the distribution of monoamine‐containing nerve cell bodies in the brain stem of the cat. J. Comp. Neurol. 179: 699–718, 1978.
 567. Poljak, S. Die Struktureigentümlichkeiten des Rückenmarkes bei den Chiropteren. Z. Anat. Entwicklungsgesch. 74: 507–576, 1924.
 568. Pompeiano, O. Analisi degli effetti della stimolazione elettrica del nucleo rosso nel gatto decerebrato. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. Rend. 22: 100–103, 1957.
 569. Pompeiano, O., and A. Brodal. Experimental demonstration of a somatotopical origin of rubrospinal fibers in the cat. J. Comp. Neurol. 108: 225–252, 1957.
 570. Pompeiano, O., and A. Brodal. The origin of the vestibulospinal fibers in the cat. An experimental‐anatomical study, with comments on the descending medial longitudinal fasciculus. Arch. Ital. Biol. 95: 166–195, 1957.
 571. Pompeiano, O., and F. Walberg. Descending connections to the vestibular nuclei. An experimental study in the cat. J. Comp. Neurol. 108: 465–504, 1957.
 572. Precht, W., J. Grippo, and A. Wagner. Contribution of different types of central vestibular neurons to the vestibulospinal system. Brain Res. 4: 119–123, 1967.
 573. Preston, J. B., M. C. Shende, and K. Uemura. The motor cortex‐pyramidal system: patterns of facilitation and inhibition on motoneurons innervating limb musculature of cat and baboon and their possible adaptive significance. In: Neurophysiological Basis of Normal and Abnormal Motor Activities, edited by M. D. Yahr and D. P. Purpura. New York: Raven, 1967, p. 61–72. (Symp. Parkinsons's Dis. Info. Res. Ctr., 3rd, New York, 1966.).
 574. Preston, J. B., and D. G. Whitlock. Intracellular potentials recorded from motoneurons following precentral gyrus stimulation in primate. J. Neurophysiol. 24: 91–100, 1961.
 575. Provis, J. The organization of the facial nucleus of the brush‐tailed possum (Trichosurus vulpecula). J. Comp. Neurol. 172: 177–188, 1977.
 576. Pubols, B. H. Retrograde degeneration study of somatic sensory thalamocortical connections in brain of Virginia opossum. Brain Res. 7: 232–251, 1968.
 577. Raczkowski, D., and I. T. Diamond. Cells of origin of several efferent pathways from the superior colliculus in Galago senegalensis. Brain Res. 146: 351–357, 1978.
 578. Rafols, J. A., and H. A. Matzke. Efferent projections of the superior colliculus in the opossum. J. Comp. Neurol. 138: 147–160, 1970.
 579. Raisman, G., and M. R. Matthews. Degeneration and regeneration of synapses. In: Structure and Function of Nervous Tissue, edited by G. H. Bourne. New York: Academic, 1972, vol. V, p. 61–104.
 580. Rall, W. Core conduction theory and cable properties of neurons. In: Handbook of Physiology. The Nervous System, edited by J. M. Brookhart and V. B. Mountcastle, Bethesda, MD: Am. Physiol. Soc., 1977, sect. 1, vol. I, pt. 1, chapt. 3, p. 36–97.
 581. Ramon‐Moliner, E. The Golgi‐Cox technique. In: Contemporary Research Methods in Neuroanatomy, edited by W. J. H. Nauta and O. E. Ebbeson, Berlin: Springer‐Verlag, 1970, p. 32–55. (Proc. Int. Conf. Inst. Perinatal Physiol., San Juan, 1969.).
 582. Rapoport, S. Location of sternocleidomastoid and trapezius motoneurons in the cat. Brain Res. 156: 339–344, 1978.
 583. Rasdolsky, I. Beiträge zur Architektur der grauen Substanz des Rückenmarks (Unter Benutzung einer neuen Methode der Färbung der Nervenfasernkollateralen). Virchows Arch. Pathol. Anat. Physiol. 257: 356–363, 1925.
 584. Rasdolsky, J. Über die Endigung der extraspinalen Bewegungssysteme im Rückenmark. Z. Gesamte. Neurol. Psychiatr. 86: 360–374, 1923.
 585. Rasmussen, G. L. Selective silver impregnation of synaptic endings. In: New Research Techniques of Neuroanatomy, edited by W. F. Windle. Springfield, IL: Thomas, 1957, p. 27–39.
 586. Ravizza, R. J., R. B. Straw, and P. D. Long. Laminar origin of efferent projections from auditory cortex in the golden Syrian hamster. Brain Res. 114: 497–500, 1976.
 587. Raymond, J., D. Dememes, and R. Marty. Voies et projections vestibulaires ascendantes emanant des noyaux primaires: étude radioautographique. Brain Res. 111: 1–12, 1976.
 588. Redlich, E. Beiträge zur Anatomie und Physiologie der motorischen Bahnen bei der Katze. Monatsschr. Psychiatr. Neurol. 5: 41–51, 1899.
 589. Redlich, E. Beiträge zur Anatomie und Physiologie der motorischen Bahnen bei der Katze. Monatsschr. Psychiatr. Neurol. 5: 112–128, 1899.
 590. Redlich, E. Beiträge zur Anatomie und Physiologie der motorischen Bahnen bei der Katze. Monatsschr. Psychiatr. Neurol. 5: 192–206, 1899.
 591. Reed, A. F. The nuclear masses in the cervical spinal cord of Macaca mulatta. J. Comp. Neurol. 72: 187–206, 1940.
 592. Rees, S., and J. Hore. The motor cortex of the brush‐tailed possum (Trichosurus vulpecula): motor representation, motor function and the pyramidal tract. Brain Res. 20: 439–451, 1970.
 593. Rexed, B. The cytoarchitectonic organization of the spinal cord in the cat. J. Comp. Neurol. 96: 415–493, 1952.
 594. Rexed, B. A cytoarchitectonic atlas of the spinal cord in the cat. J. Comp. Neurol. 100: 297–379, 1954.
 595. Richmond, F. J. R., D. A. Scott, and V. C. Abrahams. Distribution of motoneurones to the neck muscles, biventer cervicis, splenius and complexus in the cat. J. Comp. Neurol. 181: 451–464, 1978.
 596. Rinvik, E., and F. Walberg. Demonstration of a somatotopically arranged cortico‐rubral projection in the cat. An experimental study with silver methods. J. Comp. Neurol. 120: 393–407, 1963.
 597. Robson, J. A., and W. C. Hall. Connections of layer VI in striate cortex of grey squirrel. (Scirus carolinensis). Brain Res. 93: 133–139, 1975.
 598. Romagnano, M. A., and R. J. Maciewicz. Peroxidase labeling of motor cortex neurons projecting to the ventrolateral nucleus in the cat. Brain Res. 83: 469–473, 1975.
 599. Romanes, G. J. The motor cell columns of the lumbo‐sacral spinal cord of the cat. J. Comp. Neurol. 94: 313–363, 1951.
 600. Romeis, B. Mikroscopische Technik. Munich: R. Oldenbourg, 1948.
 601. Rose, P. K. Morphology of motoneurones in the upper cervical spinal cord of the adult cat. J. Physiol. London 272: 37P–38P, 1977.
 602. Rose, P. K., and F. J. R. Richmond. A morphological description of motoneurons in the upper cervical spinal cord of the adult cat. Soc. Neurosci. Abstr. 3: 277, 1977.
 603. Rossi, G. F., and A. Brodal. Corticofugal fibers to the brain stem reticular formation. An experimental study in the cat. J. Anat. 90: 42–62, 1956.
 604. Roucoux, A., and M. Crommelinck. Eye movements evoked by superior colliculus stimulation in the alert cat. Brain Res. 106: 349–363, 1976.
 605. Russell, J. R., and W. DeMeyer. The quantitive cortical origin of pyramidal axons of Macaca rhesus, with some remarks on slow rate of axolysis. Neurology 11: 96–108, 1961.
 606. Rustioni, A. Non‐primary afferents to the nucleus gracilis from the lumbar cord of the cat. Brain Res. 51: 81–95, 1973.
 607. Rustioni, A. Spinal neurons project to the dorsal column nuclei of rhesus monkeys. Science 196: 656–658, 1977.
 608. Rustioni, A., and A. B. Kaufman. Identification of cells of origin of non‐primary afferents to the dorsal column nuclei of the cat. Exp. Brain Res. 27: 1–14, 1977.
 609. Rustioni, A., H. G. J. M. Kuypers, and G. Holstege. Propriospinal projections from the ventral and lateral funiculi to the motoneurons of the lumbosacral cord of the cat. Brain Res. 35: 255–275, 1971.
 610. Rustioni, A., and I. Molenaar. Dorsal column nuclei afferents in the lateral funiculus of the cat: distribution pattern and absence of sprouting after chronic deafferentation. Exp. Brain Res. 23: 1–12, 1975.
 611. Sadun, A. Differential distribution of cortical terminations in the cat red nucleus. Brain Res. 99: 145–151, 1975.
 612. Salmoiraghi, G. C., and B. D. Burns. Notes on mechanism of rhythmic respiration. J. Neurophysiol. 23: 14–26, 1960.
 613. Sandri, C., H. Ris, and K. Akert. Comparison of active zones in spinal cord of anesthetized and unanesthetized rats: a high voltage electron microscope study. Brain Res. 159: 247–253, 1978.
 614. Saper, C. B., A. D. Loewy, L. W. Swanson, and W. M. Cowan. Direct hypothalamo‐autonomic connections. Brain Res. 117: 305–312, 1976.
 615. Sasaki, K., A. Namikawa, and S. Hashiramoto. The effect of midbrain stimulation upon alpha motoneurones in lumbar spinal cord of the cat. Jpn. J. Physiol. 10: 303–316, 1960.
 616. Sato, M., N. Mizuno, and A. Konishi. Localization of motoneurons innervating perineal muscles: a HRP study in cat. Brain Res. 140: 149–154, 1978.
 617. Satoh, K., M. Tohyama, T. Sakumoto, K. Yamamoto, and N. Shimizu. Descending projection of the nucleus tegmentalis latero‐dorsalis to the spinal cord: studied by the horseradish peroxidase method following 6‐hydroxy‐dopa administration. Neurosci. Lett. 8: 9–15, 1979.
 618. Satoh, K., M. Tohyama, K. Yamamoto, T. Sakumoto, and N. Shimizu. Noradrenaline innervation of the spinal cord studied by the horseradish peroxidase method combined with monoamine oxidase staining. Exp. Brain Res. 30: 175–186, 1977.
 619. Satomi, H., K. Takahashi, H. Ise, and T. Yamamoto. Identification of the superior salivatory nucleus in the cat as studied by the HRP method. Neurosci. Lett. 14: 135–139, 1979.
 620. Satomi, H., T. Yamamoto, H. Ise, and K. Takahashi. Identification of the inferior salivatory nucleus in the cat as studied by HRP bathings of the transected glossopharyngeal nerve root. Neurosci. Lett. 11: 259–263, 1979.
 621. Satomi, H., T. Yamamoto, H. Ise, and H. Takatama. Origins of the parasympathetic preganglionic fibers to the cat intestine as demonstrated by the horseradish peroxidase method. Brain Res. 151: 571–578, 1978.
 622. Scheibel, M. E., and A. B. Scheibel. Structural substrates for integrative patterns in the brain stem reticular core. In: Reticular Formation of the Brain, edited by H. H. Jasper, L. D. Proctor, A. S. Knighton, W. C. Noshap, and R. T. Costello, Boston: Little Brown, 1958, p. 31–55.
 623. Scheibel, M. E., and A. B. Scheibel. Spinal motoneurons, interneurons and Renshaw cells. A Golgi study. Arch. Ital. Biol. 104: 328–353, 1966.
 624. Scheibel, M. E., and A. B. Scheibel. Organization of spinal motoneuron dendrites in bundles. Exp. Neurol., 28: 106–112, 1970.
 625. Scheibel, M. E., and A. B. Scheibel. Inhibition and the Renshaw cell a structural critique. Brain Behav. Evol. 4: 53–93, 1971.
 626. Schimert, J. S. Die Endigungsweise des Tractus vestibulospinalis. Z. Anat. Entwicklungsgesch. 108: 761–767, 1938.
 627. Schoen, J. H. R. Comparative aspects of the descending fiber systems in the spinal cord. In: Progress in Brain Research. Organization of the Spinal Cord, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1964, vol. 11, p. 203–222.
 628. Schoen, J. H. R. The corticofugal projection in the brain stem and spinal cord in man. Psychiatr. Neurol. Neurochir. 72: 121–128, 1969.
 629. Schoen, J. H. R. Some supplementary data concerning the central tegmental tract in man. Acta Morphol. Neerl. Scand. 10: 380–381, 1972.
 630. Schonbach, J., C. Schonbach, and M. Cuenod. Rapid phase of exoplasmic flow and synaptic proteins: an electron microscopical autoradiographic study. J. Comp. Neurol. 141: 485–498, 1971.
 631. Sears, T. A. Pathways of supra‐spinal origin regulating the activity of respiratory motoneurones. In: Muscular Afferents and Motor Control, edited by R. Granit. Stockholm: Almqvist and Wiksell, 1966, p. 187–196. (Proc. Nobel Symp. I. Stockholm, 1965.).
 632. Shapovalov, A. I. Posttetanic potentiation of monosynaptic and disynaptic actions from supraspinal structures on lumbar motoneurons. J. Neurophysiol. 32: 948–959, 1969.
 633. Shapovalov, A. I. Extrapyramidal monosynaptic and disynaptic control of mammalian alpha‐motoneurons. Brain Res. 40: 105–115, 1972.
 634. Shapovalov, A. I. Extrapyramidal control of primate motoneurons. In: New Developments in Electromyography and Clinical Neurophysiology, edited by J. E. Desmedt. Basel: Karger, 1973, vol. 3, p. 145–158.
 635. Shapovalov, A. I. Neuronal organization and synaptic mechanisms of supraspinal motor control in vertebrates. Rev. Physiol. Biochem. Pharmacol. 72: 1–54, 1975.
 636. Shapovalov, A. I., and N. R. Gurevitch. Monosynaptic and disynaptic reticulospinal actions on lumbar motoneurons of the rat. Brain Res. 21: 249–263, 1970.
 637. Shapovalov, A. I., and O. A. Karamian. Short‐latency interstitiospinal and rubrospinal synaptic influences on alpha‐motoneurons. Byull. Eksp. Biol. Med. 66: 1297–1300, 1968.
 638. Shapovalov, A. I., O. A. Karamjan, G. G. Kurchavyi, and Z. A. Repina. Synaptic actions evoked from the red nucleus on spinal alpha‐motoneurons in the Rhesus monkey. Brain Res. 32: 325–348, 1971.
 639. Shigenaga, Y., M. Takabatake, T. Sugimoto, and A. Sakai. Neurons in marginal layer of trigeminal nucleus caudalis project to ventrobasal complex (VB) and posterior nuclear group (PO) demonstrated by retrograde labeling with horseradish peroxidase. Brain Res. 166: 391–396, 1979.
 640. Shinoda, Y., A. P. Arnold, and H. Asanuma. Spinal branching of corticospinal axons in the cat. Exp. Brain Res. 26: 215–234, 1976.
 641. Shinoda, Y., C. Ghez, and A. Arnold. Spinal branching of rubrospinal axons in the cat. Exp. Brain Res. 30: 203–218, 1977.
 642. Shinoda, Y., P. Zarzecki, and H. Asanuma. Spinal branching of pyramidal tract neurons in the monkey. Exp. Brain Res. 34: 59–72, 1979.
 643. Shinoda, Y., J. Yokota, and T. Futami. Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci. Lett. In press.
 644. Shriver, J. E., and C. R. Noback. Cortical projections to the lower brain stem and spinal cord in the three shrew (Tupaia glis). J. Comp. Neurol. 130: 25–54, 1967.
 645. Siegel, J. Behavioral relations of medullary reticular formation cells. Exp. Neurol. 65: 691–698, 1979.
 646. Siegel, J., P. M. Saxton, and T. Hageman. Descending projections to the region of the gigantocellular tegmental field of the medulla oblongata. Soc. Neurosci. Abstr. 3: 71, 1977.
 647. Siegel, J. M., and D. J. McGinty. Pontine reticular formation neurons: relationship of discharge to motor activity. Science 196: 678–680, 1977.
 648. Siegel, J. M., and D. J. McGinty. Pontine reticular formation and motor activity. Science 199: 207–208, 1978.
 649. Skinner, R. D., J. D. Coulter, and A. B. Chatt. Origins of the long descending and ascending propriospinal pathways in cat and monkey. Soc. Neurosci. Abstr. 3: 508, 1977.
 650. Skinner, R. D., and R. S. Remmel. Monosynaptic inputs to lumbar interneurons from the lateral vestibulospinal tract and the medial longitudinal fasciculus. Neurosci. Lett. 10: 259–264, 1978.
 651. Skultety, F. M. Circus movements in cats following midbrain stimulation through chronically implanted electrodes. J. Neurophysiol. 25: 152–164, 1962.
 652. Smith, A. M., and J. Courville. The origin of the rubrospinal tract in primates as shown by the retrograde transport of horseradish peroxidase. Soc. Neurosci. Abstr. 2: 551, 1976.
 653. Snow, P. J., P. K. Rose, and A. Brown. Tracing axons and axon collaterals of spinal neurones using intracellular injection of horseradish peroxidase. Science 191: 312–313, 1976.
 654. Sprague, J. M. A study of motor cell localization in the spinal cord of the rhesus monkey. Am. J. Anat. 82: 1–26, 1948.
 655. Sprague, J. M., and W. W. Chambers. Control of posture by reticular formation and cerebellum in the intact, anesthetized and unanesthetized and in the decerebrated cat. Am. J. Physiol. 176: 52–64, 1954.
 656. Sprague, J. M., and H. Ha. The terminal fields of dorsal root fibers in the lumbosacral cord of the cat, and the dendritic organization of the motor nuclei. In: Progress in Brain Research. Organization of the Spinal Cord, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1964, vol. 11, p. 120–154.
 657. Sprague, J. M., and T. H. Meikle. The role of the superior colliculus in visually guided behavior. Exp. Neurol. 11: 115–146, 1965.
 658. Stein, B. M., and M. B. Carpenter. Central projections of portions of the vestibular ganglion innervating specific parts of the labyrinth in the rhesus monkey. Am. J. Anat. 120: 281–318, 1967.
 659. Sterling, P., and H. G. J. M. Kuypers. Anatomical organization of the brachial spinal cord of the cat. I. Distribution of dorsal root fibers. Brain Res. 4: 1–15, 1967.
 660. Sterling, P., and H. G. J. M. Kuypers. Anatomical organization of the brachial spinal cord of the cat. II. The motoneuron plexus. Brain Res. 4: 16–32, 1967.
 661. Sterling, P., and H. G. J. M. Kuypers. Anatomical organization of the brachial spinal cord of the cat. III. The propriospinal connections. Brain Res. 7: 419–443, 1968.
 662. Stern, K. Note on nucleus ruber magnocellularis and its efferent pathway in man. Brain 61: 284–289, 1938.
 663. Steward, O., S. A. Scoville, and S. L. Vinsant. Analysis of collateral projections with a double retrograde labeling technique. Neurosci. Lett. 5: 1–6, 1977.
 664. Stewart, W. A., and R. B. King. Fiber projections from the nucleus caudalis of the spinal trigeminal nucleus. J. Comp. Neurol. 121: 271–286, 1963.
 665. Streit, P., and J. C. Reubi. A new and sensitive staining method for axonally transported horseradish peroxidase in the pigeon visual system. Brain Res. 126: 530–537, 1977.
 666. Strick, P. L., R. E. Burke, K. Kanda, C. C. Kim, and B. Walmsley. Differences between alpha and gamma motoneurons labeled with horseradish peroxidase by retrograde transport. Brain Res. 113: 582–588, 1976.
 667. Strominger, N. L. A comparison of the pyramidal tracts in two species of edentate. Brain Res. 15: 259–262, 1969.
 668. Strominger, N. L., T. C. Truscott, R. A. Miller, and G. J. Royce. An autoradiographic study of the rubroolivary tract in the rhesus monkey. J. Comp. Neurol. 183: 33–46, 1979.
 669. Sugimoto, T., K. Itoh, and N. Mizuno. Direct projections from the Edinger‐Westphal nucleus of the cerebellum and spinal cord in the cat: an HRP study. Neurosci. Lett. 9: 17–22, 1978.
 670. Sugimoto, T., K. Itoh, N. Mizuno, S. Nomura, and A. Konishi. The site of origin of the cardiac preganglionic fibers of the vagus nerve: an HRP study in the cat. Neurosci. Lett. 12: 53–58, 1979.
 671. Swank, R. L. Aberrant pyramidal fascicles in the cat. J. Comp. Neurol. 60: 355–359, 1934.
 672. Swank, R. L. The relationship between the circumolivary pyramidal fascicles and the pontobulbar body in man. J. Comp. Neurol. 60: 309–317, 1934.
 673. Swank, R. L., and H. A. Davenport. Marchis staining method: studies of some of the underlying mechanism involved. Stain Technol. 9: 11–19, 1934.
 674. Swanson, L. W. Immunohistochemical evidence for a neurophysin containing autonomic pathway arising in the paraventricular nucleus of the hypothalamus. Brain Res. 128: 346–353, 1977.
 675. Swanson, L. W., and B. K. Hartman. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine‐beta‐hydroxylase as a marker. J. Comp. Neurol. 163: 467–505, 1975.
 676. Szekely, G. Anatomy and synaptology of the optic tectum. In: Handbook of Sensory Physiology. Central Processing of Vision Information, edited by R. Jung. Berlin: Springer‐Verlag, 1973, vol. 7, pt. 3, sect. B, p. 1–26.
 677. Szentagothai, J. Die zentrale Innervation der Augenbewegungen. Arch. Psychiatr. Nervenkr. 116: 721–760, 1943.
 678. Szentagothai, J. Short propriospinal neurons and intrinsic connections of the spinal gray matter. Acta Morphol. Acad. Sci. Hung. 1: 81–94, 1951.
 679. Szentagothai, J. Synaptic architecture of the spinal motoneuron pool. In: Recent Advances in Clinical Neurophysiology, edited by L. Widén. Amsterdam: Elsevier, 1967, p. 4–19.
 680. Szentagothai, J. Propriospinal pathways and their synapses. In: Progress in Brain Research. Organization of the Spinal Cord, edited by J. C. Eccles and J. P. Schadé. Amsterdam: Elsevier, 1969, vol. 11, p. 155–177.
 681. Szentagothai, J., and K. Rajkovits. Der Hirnnervenanteil der Pyramidenbahn und der prämotorische Apparat motorischer Hirnnervenkerne. Arch. Psychiatr. Nervenkr. 197: 335–354, 1958.
 682. Szentagothai‐Schimert, J. Die Endigungsweise der absteigenden Rückenmarksbahnen. Z. Anat. Entwicklungsgesch. 11: 322–330, 1941.
 683. Szteyn, S., J. Welento, and Z. Milart. Centres of efferent tracts of the brain stem in the sheep. Anat. Anz. 121: 29–37, 1967.
 684. Taber, E. The cytoarchitecture of the brain stem of the cat. 1. Brain stem nuclei of cat. J. Comp. Neurol. 116: 27–69, 1961.
 685. Taber, E., A. Brodal, and F. Walberg. The raphe nuclei of the brain stem in the cat. 1. Normal topography and cytoarchitecture and general discussion. J. Comp. Neurol. 114: 161–187, 1960.
 686. Tanaka, T., Y. Takeuchi, and K. Nakano. Cells of origin of the spina‐facial pathway in the cat: a horseradish peroxidase study. Brain Res. 142: 580–585, 1978.
 687. Tarlov, E. The rostral projections of the primate vestibular nuclei. An experimental study in the macaque baboon and chimpanzee. J. Comp. Neurol. 135: 27–56, 1969.
 688. Tarlov, E. Organization of vestibulo‐oculomotor projections in the cat. Brain Res. 20: 159–179, 1970.
 689. Tarlov, E., and S. R. Tarlov. The representation of extraocular muscles in the oculomotor nuclei: experimental studies in the cat. Brain. Res. 34: 37–52, 1971.
 690. Taylor, A. C., and P. Weiss. Demonstration of axonal flow by the movement of tritium‐labeled protein in mature optic nerve fibers. Proc. Natl. Acad. Sci. USA 54: 1521–1527, 1965.
 691. Ten eDonkelaar, H. J. Descending pathways from the brain stem to the spinal cord in some reptiles. I. Origin. J. Comp. Neurol. 167: 421–442, 1976.
 692. Ten eDonkelaar, H. J. Descending pathways from the brain stem to spinal cord in some reptiles. II. Course and site of termination. J. Comp. Neurol. 167: 443–464, 1976.
 693. Ten eDonkelaar, H. J., and R. De Boer‐Van Huizen. Cells of origin of pathways descending to the spinal cord in a lizard (Lacerta gallotti). Neurosci. Lett. 9: 123–128, 1978.
 694. Ten eDonkelaar, H. J., and R. De Boer‐Van Huizen. Cells of origin of propiospinal and ascending supraspinal fibres in a lizard (Lacerta gallotti). Neurosci. Lett. 4: 285–290, 1978.
 695. Testa, C. Functional implications of the morphology of spinal ventral horn neurons of the cat. J. Comp. Neurol. 123: 425–444, 1964.
 696. Thomas, D. M., R. P. Kaufmann, J. M. Sprague, and W. W. Chambers. Experimental studies of the vermal cerebellar projections in the brain stem of the cat (fastigiobulbar tract). J. Anat. 90: 371–385, 1956.
 697. Thulin, C. A. Effects of electrical stimulation of the red nucleus on the alpha motor system. Exp. Neurol. 7: 464–480, 1963.
 698. Tigges, J., S. Nakagawa, and M. Tigges. Effects of area 4 in a South American monkey (Saimiri). I. Terminations in the spinal cord. Brain Res. 171: 1–11, 1979.
 699. Tobias, T. J., and F. F. Ebner. Thalamocortical projections from the mediodorsal nucleus in the Virginia opossum. Brain Res. 52: 79–96, 1973.
 700. Todo, K., T. Yamamoto, H. Satomi, H. Ise, H. Takatama, and K. Takahashi. Origins of vagal preganglionic fibers to the sino‐atrial and atrio‐ventricular node regions in the cat heart as studied by the horseradish peroxidase method. Brain Res. 130: 545–550, 1977.
 701. Tohyama, M., K. Sakai, D. Salvert, M. Touret, and M. Jouvet. Spinal projections from the lower brain stem in the cat as demonstrated by the horseradish peroxidase technique. I. Origins of the reticulo‐spinal tracts and their funicular trajectories. Brain Res. 173: 383–404, 1979.
 702. Tohyama, M., K. Sakai, M. Touret, D. Salvert, and M. Jouvet. Spinal projections from the lower brain stem in the cat as demonstrated by the horseradish peroxidase technique. II. Projections from the dorsolateral pontine tegmentum and raphe nuclei. Brain Res. 176: 215–231, 1979.
 703. Torvik. A. Afferent connections to the sensory trigeminal nuclei, the nucleus of the solitary tract and adjacent structures. An experimental study in the rat. J. Comp. Neurol. 106: 51–132, 1956.
 704. Torvik, A. The spinal projection from the nucleus of the solitary tract. An experimental study in the cat. J. Anat. 91: 314–322, 1957.
 705. Torvik, A., and A. Brodal. The origin of reticulospinal fibers in the cat. An experimental study. Anat. Rec. 128: 113–137, 1957.
 706. Towe, A. L. Motor cortex and the pyramidal system. In: Efferent Organization and the Integration of Behavior, edited by J. D. Maser. New York: Academic, 1973, p. 67–97.
 707. Tower, S., D. Bodian, and H. Howe. Isolation of intrinsic and motor mechanism of the monkey's spinal cord. J. Neurophysiol. 4: 388–397, 1941.
 708. Tower, S. S. Pyramidal lesion in the monkey. Brain 63: 36–90, 1940.
 709. Tredici, G., G. Pizzini, and A. Miani. The ultrastructure of the red nucleus of the cat. J. Submicrosc. Cytol. 5: 29–48, 1973.
 710. Trevino, D. L., and E. Carstens. Confirmation of the location of spinothalamic neurons in the cat and monkey by the retrograde of horseradish peroxidase. Brain Res. 98: 177–182, 1975.
 711. Trevino, D. L., J. D. Coulter, and W. D. Willis. Location of cells of origin of spinothalamic tract in lumbar enlargement of the monkey. J. Neurophysiol. 36: 750–761, 1973.
 712. Trevino, D. L., R. Maunz, R. N. Bryan, and W. D. Willis. Location of cells of origin of the spinothalamic tract in the lumbar enlargement of cat. Exp. Neurol. 34: 64–77, 1972.
 713. Tsukahara, N., and D. R. G. Fuller. Conductance changes during pyramidally induced postsynaptic potentials in red nucleus neurons. J. Neurophysiol. 32: 35–42, 1969.
 714. Tsukahara, N., D. R. G. Fuller, and V. B. Brooks. Collateral pyramidal influences on the corticorubrospinal system. J. Neurophysiol. 31: 467–484, 1968.
 715. Tsukahara, N., H. Hultborn, F. Murakami, and Y. Fujito. Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. J. Neurophysiol. 38: 1359–1372, 1975.
 716. Tsukahara, N., K. Toyama, and K. Kosaka. Electrical activity of red nucleus neurones investigated with intracellular microelectrodes. Exp. Brain Res. 4: 18–33, 1967.
 717. Ullah, M. Localization of the phrenic nucleus in the spinal cord of the rabbit. J. Anat. 125: 377–386, 1978.
 718. Ungerstedt, U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol. Scand. Suppl. 367: 1–48, 1971.
 719. Vacca, L. L., S. L. Rosario, E. A. Zimmerman, P. Tomashefsky, N. G. Py, and K. C. Hsu. Application of immunoperoxidase techniques to localize horseradish peroxidase‐tracer in the central nervous system. J. Histochem. Cytochem. 23: 208–215, 1975.
 720. Valverde, F. A new type of cell in the lateral reticular formation of the brain stem. J. Comp. Neurol. 117: 189–195, 1961.
 721. Valverde, F. Reticular formation of the pons and medulla oblongata. A Golgi study. J. Comp. Neurol. 116: 71–100, 1961.
 722. Valverde, F. Reticular formation of the albino rat's brain stem cytoarchitecture and corticofugal connections. J. Comp. Neurol. 119: 25–49, 1962.
 723. Valverde, F. The pyramidal tract in rodents. A study of its relations with the posterior column nuclei, dorsolateral reticular formation of the medulla oblongata, and cervical spinal cord. Z. Zellforsch. Mikrosk. Anat. 71: 297–363, 1966.
 724. Van der Kooy, D., H. G. J. M. Kuypers, and C. E. Catsman‐Berrevoets. Single mammillary body cells with divergent axon collaterals. Demonstration by a simple fluorescent retrograde double labeling technique in the rat. Brain Res. 158: 189–196, 1978.
 725. Vandesande, F. A critical review of immunocytochemical methods for light microscopy. J. Neurosci. Methods 1: 3–23, 1979.
 726. Vandesande, F., J. DeMey, and K. Dierickx. Identification of neurophysin producing cells. I. The origin of neurophysin‐like substance containing nerve fibers of external region of median eminence of the rat. Cell Tissue Res. 151: 187–200, 1974.
 727. Vandesande, F., K. Dierickx, and J. DeMey. Identification of the vasopressin‐neurophysin II and the oxytocin‐neurophysin I producing neurons in the bovine hypothalamus. Cell Tissue Res. 156: 189–200, 1975.
 728. Vasilenko, D. A. Propriospinal pathways in the ventral funicles of the cat spinal cord: their effects on lumbosacral motoneurones. Brain Res. 93: 502–506, 1975.
 729. Vasilenko, D. A., and A. I. Kostyukov. Brain stem and primary afferent projections to the ventromedial group of propriospinal neurones in the cat. Brain Res. 117: 141–146, 1976.
 730. Verhaart, W. J. C. Hypertrophy of pes pedunculi and pyramid as result of degeneration of contralateral corticofugal fiber tracts. J. Comp. Neurol. 92: 1–15, 1950.
 731. Verhaart, W. J. C. The rubrospinal tract in the cat, the monkey and the ape, its location and fibre content. Monatsschr. Psychiatr. Neurol. 129: 487–500, 1955.
 732. Verhaart, W. J. C. Pyramidal tract in the cord of the elephant. J. Comp. Neurol. 121: 45–49, 1963.
 733. Verhaart, W. J. C. The pyramidal tract of tupaia, compared to that in other primates. J. Comp. Neurol. 126: 43–50, 1966.
 734. Verhaart, W. J. C. The non‐crossing of the pyramidal tract in procavia capensis (Storr) and other instances of absence of the pyramidal crossing. J. Comp. Neurol. 131: 387–392, 1967.
 735. Verhaart, W. J. C. Comparative Anatomical Aspects of the Mammalian Brain Stem and the Cord. Assen, The Netherlands: Van Gorcum, 1970, vol. 1.
 736. Verhaart, W. J. C. The pyramidal tract in the primates. In: Advances in Primatology. The Primate Brain, edited by C. R. Noback and W. Montagna. New York: Appleton, 1970, vol. 1, p. 83–108.
 737. Verhaart, W. J. C., and W. Kramer. The uncrossed pyramidal tract. Acta Psychiatr. Neurol. Scand. 27: 181–200, 1952.
 738. Verhaart, W. J. C., and N. J. A. Noorduyn. The cerebral peduncle and the pyramid. Acta Anat. 45: 315–343, 1961.
 739. Verhaart, W. J. C., and M. R. Sopers‐Jurgens. Aspects of comparative anatomy of the mammalian brainstem. Acta Morphol. Neerl. Scand. 1: 246–255, 1957.
 740. Vierck, C. J. Jr., R. H. Brooks, and D. C. Goodman. Forced movement resulting from midbrain stimulation in the rat. Brain Behav. Evol. 1: 519–528, 1968.
 741. Voogd, J. The Cerebellum of the Cat. Assen, The Netherlands: Van Gorcum, 1964.
 742. Wagman, I. H. Eye movements induced by electrical stimulation of cerebrum in monkeys and their relationship to bodily movements. In: The Oculomotor System, edited by M. B. Bender. New York: Harper, 1964, p. 18–39.
 743. Walberg, F. Descending connections to the inferior olive. An experimental study in the cat. J. Comp. Neurol. 104: 77–174, 1956.
 744. Walberg, F. Corticofugal fibres to the nuclei of the dorsal columns. An experimental study in the cat. Brain 80: 273–287, 1957.
 745. Walberg, F., D. Bowsher, and A. Brodal. The termination of primary vestibular fibers in the vestibular nuclei in cat. An experimental study with silver methods. J. Comp. Neurol. 110: 391–419, 1958.
 746. Walberg, F., and A. Brodal. Pyramidal tract fibres from temporal and occipital lobes. An experimental study in the cat. Brain 76: 491–508, 1953.
 747. Walberg, F., O. Pompeiano, A. Brodal, and J. Jansen. The fastigiovestibular projection in the cat. An experimental study with silver impregnation methods. J. Comp. Neurol. 118: 49–76, 1962.
 748. Walberg, F., O. Pompeiano, L. E. Westrum, and E. Hauglieh‐Hanssen. Fastigioreticular fibers in the cat. An experimental study with silver methods. J. Comp. Neurol. 119: 187–199, 1962.
 749. Waldron, H. A., and D. G. Gwyn. Descending nerve tracts in the spinal cord of the rat. I. Fibers from the midbrain. J. Comp. Neurol. 137: 143–154, 1969.
 750. Walker, E. A., and J. F. Fulton. Hemidecortication in chimpanzee, baboon, macaque, cat and coati: a study in encephalization. J. Nerv. Ment. Dis. 87: 677–700, 1938.
 751. Waller, A. Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog and observations of the alterations produced thereby in the structure of their primitive fibers. Philos. Trans. R. Soc. London Ser. B. 140: 423–469, 1850.
 752. Ware, C. B., and E. J. Mufson. Spinal cord projections from the medial cerebellar nucleus in tree shrew (Tupaia glis). Brain Res. 171: 383–400, 1979.
 753. Warner, G., and C. R. R. Watson. The rubrospinal tract in a diprotodont marsupial (Trichosurus vulpecula). Brain Res. 41: 180–183, 1972.
 754. Warwick, R. Representation of the extra‐ocular muscles in the oculomotor nuclei of the monkey. J. Comp. Neurol. 98: 449–504, 1953.
 755. Warwick, R., and G. A. G. Mitchell. The phrenic nucleus of the rhesus monkey. J. Anat. 89: 562–563, 1955.
 756. Watson, C. R. R. The corticospinal tract of the quokka wallaby (Setonix brachyurus). J. Anat. 109: 127–133, 1971.
 757. Watson, C. R. R. An experimental study of the corticospinal tract of the kangaroo. J. Anat. 110: 501, 1971.
 758. Webber, Ch. L. Jr., R. D. Wurster, and J. M. Chung. Cat phrenic nucleus architecture as revealed by horseradish peroxydase mapping. Exp. Brain Res. 35: 395–406, 1979.
 759. Weber, J. T., G. F. Martin, M. Behan, M. F. Huerta, and J. K. Harting. The precise origin of the tectospinal pathway in three common laboratory animals: a study using the horseradish peroxidase method. Neurosci. Lett. 11: 121–127, 1979.
 760. Weisberg, J. A., and A. Rustioni. Cortical cells projecting to the dorsal column nuclei of cats. An anatomical study with the horseradish peroxidase technique. J. Comp. Neurol. 168: 425–437, 1976.
 761. Weisberg, J. A., and A. Rustioni. Cortical cells projecting to the dorsal column nuclei of rhesus monkeys. Exp. Brain Res. 28: 521–528, 1977.
 762. Weisberg, J. A., and A. Rustioni. Differential projections of cortical sensorimotor areas upon the dorsal column nuclei of cats. J. Comp. Neurol. 184: 401–422, 1979.
 763. West, D. C., and J. H. Wolstencroft. Location and conduction velocity of raphespinal neurones in nucleus raphe magnus and raphe pallidus in the cat. Neurosci. Lett. 5: 147–151, 1977.
 764. White, R. P., and H. E. Himwich. Circus movements and excitation of striatal and mesodiencephalic centers in rabbits. J. Neurophysiol. 20: 81–90, 1957.
 765. Willis, W. D., L. H. Haber, and R. F. Martin. Inhibition of spinothalamic tract cells and interneurons by brain stem stimulation in the monkey. J. Neurophysiol. 40: 968–981, 1977.
 766. Wilson, M. E., and M. J. Toyne. Retino‐tectal and corticotectal projections in Macaca mulatta. Brain Res. 24: 395–406, 1970.
 767. Wilson, V. J., M. Kato, B. W. Peterson, and R. M. Wylie. A single‐unit analysis of the organization of Deiters' nucleus. J. Neurophysiol. 30: 603–619, 1967.
 768. Wilson, V. J., R. M. Wylie, and L. A. Marco. Projection to spinal cord from the medial and the descending vestibular nuclei of the cat. Nature 215: 429–430, 1967.
 769. Wilson, V. J., R. M. Wylie, and L. A. Marco. Organization of the medial vestibular nucleus. J. Neurophysiol. 31: 166–175, 1968.
 770. Wilson, V. J., and M. Yoshida. Comparison of effects of stimulation of Deiters' nucleus and medial longitudinal fasciculus on neck, forelimb, and hindlimb motoneurons. J. Neurophysiol. 32: 743–758, 1969.
 771. Wilson, V. J., and M. Yoshida. Monosynaptic inhibition of neck motoneurones by the medial vestibular nucleus. Exp. Brain Res. 9: 365–380, 1969.
 772. Wilson, V. J., M. Yoshida, and R. H. Schor. Supraspinal monosynaptic excitation and inhibition of thoracic back motoneurons. Exp. Brain Res. 11: 282–295, 1970.
 773. Wirth, F. P., J. L. O'Leary, J. M. Smith, and A. B. Jenny. Monosynaptic corticospinal‐motoneuron path in the raccoon. Brain Res. 77: 344–348, 1974.
 774. Wise, S. P. The laminar organization of certain afferent and efferent fiber systems in the rat somatosensory cortex. Brain Res. 90: 139–142, 1975.
 775. Wise, S. P., and E. G. Jones. The organization and postnatal development of the commissural projection of the rat somatic sensory cortex. J. Comp. Neurol. 168: 313–344, 1976.
 776. Wise, S. P., and E. G. Jones. Somatotopic and columnar organization in the corticotectal projection of the rat somatic sensory cortex. Brain Res. 133: 223–235, 1977.
 777. Witanen, J. T. Selective silver impregnation of degenerating axons and axon terminals in the central nervous system of the monkey (Macaca mulatta). Brain Res. 14: 546–548, 1969.
 778. Wolstencroft, J. H. Reticulospinal neurones. J. Physiol. London 174: 91–108, 1964.
 779. Wong‐Riley, M. T. T. Demonstration of geniculocortical and callosal projection neurons in the squirrel monkey by means of retrograde axonal transport of horseradish peroxidase. Brain Res. 79: 267–272, 1974.
 780. Woolsey, C. N. Organization of somatic sensory and motor areas of the cerebral cortex. In: Biological and Biochemical Bases of Behavior, edited by H. F. Harlow and C. N. Woolsey. Madison: Univ. of Wisconsin Press, 1958, p. 63–81.
 781. Woolsey, C. N., and H. T. Chang. Activation of the cerebral cortex by antidromic volleys in the pyramidal tract. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 27: 146–162, 1948.
 782. Woolsey, C. N., T. Gorska, A. Wetzel, T. C. Erickson, F. Earls, and J. M. Allman. Complete unilateral section of the pyramidal tract at the medullary level in Macaca mulatta. Brain Res. 40: 119–123, 1972.
 783. Woolsey, C. N., P. H. Settlage, D. R. Meyer, W. Spencer, P. Hamuy, and A. M. Travis. Patterns of localization in the precentral and “supplementary” motor areas and their relation to the concept of a premotor area. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 30: 238–264, 1950.
 784. Yamamoto, T., H. Satomi, H. Ise, and K. Takahashi. Evidence of the dual innervation of the cat stomach by the vagal dorsal motor and medial solitary nuclei as demonstrated by the horseradish peroxidase method. Brain Res. 122: 125–131, 1977.
 785. Yamamoto, T., H. Satomi, H. Ise, H. Takatoma, and K. Takahashi. Sacral spinal innervations of the rectal and vesical smooth muscles and the sphincteric striated muscles as demonstrated by the horseradish peroxidase method. Neurosci. Lett. 7: 41–47, 1978.
 786. Yassin, I. B. H. M., and S. K. Leong. Localization of neurons supplying the temporalis muscle in the rat and monkey. Neurosci. Lett. 11: 63–68, 1979.
 787. Yorke, C. H., and V. S. Caviness. Interhemispheric neocortical connections of the corpus callosum in the normal mouse: a study based on anterograde and retrograde methods. J. Comp. Neurol. 164: 233–246, 1975.
 788. Zecha, A. The “pyramidal tract” and other telencephalic efferents in birds. Acta Morphol. Neerl. Scand. 5: 194–195, 1962.
 789. Zemlan, F. P., and D. W. Pfaff. Topographical organization in medullary reticulospinal systems as demonstrated by the horseradish peroxidase technique. Brain Res. 174: 161–166, 1979.
 790. Zimmerman, E. A., W. W. Chambers, and C. N. Liu. An experimental study of the anatomical organization of the corticobulbar system in the albino rat. J. Comp. Neurol. 123: 301–324, 1964.
 791. Zulch, K. J. Pyramidal and parapyramidal motor systems in man. In: Cerebral Localization: An Otrified Foerster Symposium, edited by K. J. Zulch, O. Creutzfeldt, and G. C. Galbraith. Berlin: Springer‐Verlag, 1975, p. 32–47.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

H. G. J. M. Kuypers. Anatomy of the Descending Pathways. Compr Physiol 2011, Supplement 2: Handbook of Physiology, The Nervous System, Motor Control: 597-666. First published in print 1981. doi: 10.1002/cphy.cp010213