Comprehensive Physiology Wiley Online Library

Emotion

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 What is Emotion?
2 Brain and Emotion: Historical Landmarks
2.1 Sham Rage
2.2 Papez Circuit
2.3 Psychic Blindness
2.4 Visceral Brain and Limbic System
3 Organization of Limbic Forebrain
3.1 Current Status of Limbic System Concept
3.2 Basic Circuits of Limbic Forebrain
4 Emotional Evaluation: Central Coding of Stimulus Significance
4.1 Sensorilimbic Connections and Emotion
4.2 Parallel Sensory Pathways to Amygdala: Unique Roles in Emotional Processing
4.3 Neurotransmission and Modulation in Affective Processing Pathways
5 Neural Systems Governing Emotional Expression
5.1 Expression of Emotional Behavior
5.2 Expression of Autonomic Changes Associated With Emotional Behavior
5.3 Emotional Expression: Conclusions
6 Mechanisms of Emotional Experience
7 Brain Mechanisms of Emotion: Conclusions
Figure 1. Figure 1.

Cerebral localization of emotional behavior. Lesion strategies used by early investigators to identify brain areas necessary for expression of emotional behavior are illustrated on midsagittal diagram of cat brain. Transection of midbrain through plane a abolishes integrated emotional responses, allowing expression of only isolated components of emotional behavior. In contrast, emotional behavior survives removal of cerebral cortex (tissue rostral to plane b). Such observations suggested to Cannon 43 and Bard 16 that brain areas below cortex but above midbrain mediate emotional behavior. AC, anterior commissure; CC, corpus callosum; H, hypothalamus; IC, inferior colliculus; OB, olfactory bulb; OC, optic chiasm; S, septum; SC, superior colliculus; T, thalamus.

Adapted from Cannon 43 and Kaada 150
Figure 2. Figure 2.

Papez circuit. Papez proposed that connections between hypothalamus, anterior thalamic nucleus, cingulate gyrus, and hippocampus formed essential emotional network of brain. Sensory input could enter circuit via projections through dorsal thalamus to neocortex and through subcortical projections from ventral thalamus to hypothalamus.

Adapted from Papez 244
Figure 3. Figure 3.

Visceral brain. MacLean 196 described neural substrates of emotion as “visceral brain,” a group of phylogenetically old structures centered around hippocampus. He suggested that correlation of inputs from exteroceptive and interoceptive sensory modalities by hippocampus gives rise to conscious emotional experiences, whereas discharge of hippocampus through hypothalamus accounts for expression of emotional behavior and associated visceral responses. MacLean later introduced the term “limbic system” to refer to this central emotional network.

From MacLean 196, reprinted by permission of Elsevier Science Publishing Co., Inc. Copyright 1949 by The American Psychosomatic Society, Inc
Figure 4. Figure 4.

Limbic lobe. Midsagittal section through human (A) and monkey (B) brain illustrating cortical regions of limbic lobe (hatched area).

From Damasio and Van Hoesen 61
Figure 5. Figure 5.

Dorsomedial and basolateral divisions of limbic forebrain. Dorsomedial division (A) is centered around hippocampus, whereas amygdala is focal point of basolateral division (B).

From Livingston and Escobar 187. Copyright 1971, American Medical Association
Figure 6. Figure 6.

Connections between sensory cortex and limbic forebrain. Sensory inputs are relayed through thalamus to primary receiving areas (koniocortices). Koniocortices project locally to unimodal association areas, which in turn project to areas in which sensory input converges (polymodal association zones) and to limbic forebrain. Polymodal cortex projects to complex (supramodal) association cortex and to limbic areas. Limbic areas also receive inputs from supramodal cortex and some limbic areas (rhinal cortices and hippocampus) qualify as supramodal cortex.

Based on Jones and Powell 147, Mesulam et al. 211, and Swanson 317
Figure 7. Figure 7.

Projections from acoustic thalamus to subcortical forebrain. Cells in areas of rat acoustic thalamus [projection field of inferior colliculus (A)] give rise to fibers terminating in several regions of subcortical forebrain (B), including amygdala, posterior caudate nucleus‐putamen, and hypothalamus. ACE, central nucleus of amygdala; AL, lateral nucleus of amygdala; CI, internal capsule; CPU, caudate nucleus‐putamen; IC, inferior colliculus; MGD, MGM, MGV, dorsal, medial, and ventral divisions of medial geniculate body; MZ, marginal zone; PIN, posterior intralaminar nucleus; PL, posterior limitans nucleus; PP, peripeduncular region; SG, suprageniculate nucleus; SPFL, lateral component of subparafascicular nucleus; VMH, ventromedial nucleus of hypothalamus.

Adapted from LeDoux et al. 180
Figure 8. Figure 8.

Unit activity in amygdala during stimulus evaluation. Top: at end of tone warning signal, a shutter opened to show monkey syringe filled with fruit juice (rewarding) or saline (aversive). Although amygdala cell being recorded from responded to both stimuli, response was greater to rewarding stimulus. Bottom: peristimulus histograms for cell on 10 rewarding and 10 saline trials (bin width, 10 ms).

From Sanghera et al. 290
Figure 9. Figure 9.

Lesions of subcortical, but not cortical, auditory processing areas disrupt conditioning of emotional responses to acoustic stimuli. A: conditioned emotional response in rat consists of increases in mean arterial pressure (MAP) and suppression of locomotor activity (freezing) in presence of tone previously paired with foot shock. MAP response is measured during 10‐s presentation of tone and freezing response during 120‐s presentation. Bilateral destruction of medial geniculate body (MG) or inferior colliculus (IC) disrupted conditioning of emotional responses, whereas ablation of auditory cortex bilaterally had no effect. These data suggest that emotional conditioning depends on relay of acoustic signals through IC to MG and from there to target other than auditory cortex. Critical projection from MG involves amygdala (see Fig. 10). B: representative lesions of auditory cortex (left), MG (center), and IC (right). CG, central gray; CP, cerebral peduncle; IC, inferior colliculus; LL, lateral lemniscus; MG, medial geniculate body; ML, medial lemniscus; PP, peripeduncular region; RN, red nucleus; SC, superior colliculus; SN, substantia nigra.

Adapted from LeDoux et al. 183
Figure 10. Figure 10.

Neural pathway mediating fear conditioning. Conditioning of autonomic and behavioral emotional responses to acoustic stimuli in rat is mediated by sensory signals ascending in primary auditory pathway through IC to MG and then relayed to subcortical region involving dorsal aspects of amygdala, including lateral and central nuclei and fundus striati. In amygdala, pathways mediating autonomic and behavioral responses diverge. Autonomic changes involve connections between dorsal amygdala and lateral hypothalamus (see Fig. 14), and projections from amygdala to or through midbrain mediate behavioral responses (not illustrated). Although auditory pathways decussate in the brain stem, they are illustrated as a homolateral projection here for convenience. ABL, basolateral amygdala; ABM, basomedial amygdala; ACE, central amygdala; AL, lateral amygdala; AM, medial amygdala; CG, central gray; CP, cerebral peduncle; CPU, caudate nucleus‐putamen; CS, conditioned stimulus; F, fornix; FST, fundus striati; IC, inferior colliculus; LH, lateral hypothalamus; MG, medial geniculate body; MRF, midbrain reticular formation; OT, optic tract; PP, peripeduncular region; SN, substantia nigra; ST, stria terminalis; THAL, thalamus; VMH, ventromedial hypothalamus.

Data from LeDoux et al. 183 and Iwata et al. 140,141
Figure 11. Figure 11.

Sensory projections to amygdala and emotional evaluation. Amygdala receives inputs from various exteroceptive and interoceptive sensory modalities (dashed lines). Density of dashed input lines to amygdala signifies extent to which sensory signal is processed before reaching amygdala. Inputs arriving from various cortical association fields have been transformed more than inputs arriving directly from thalamus or nucleus tractus solitarii (NTS). Different inputs may mediate unique aspects of emotional processing, each capable of initiating changes in emotional behavior and autonomic and humoral activity.

Figure 12. Figure 12.

Forms of aggressive behavior. A: affective attack, characterized by emotional display (hissing, baring of teeth) and autonomic reactivity (piloerection, changes in blood pressure), elicited by electrical stimulation of ventromedial region of hypothalamus. B: predatory attack, behavior pattern associated with food acquisition and consumption, elicited by electrical stimulation of lateral areas of hypothalamus.

From Flynn 92
Figure 13. Figure 13.

Contribution of norepinephrine to defensive behavior. Changes in monoaminergic transmitter concentration in brain stem and adrenal gland during rage behavior produced by amygdala stimulation. DA, dopamine; E, epinephrine; NE, norepinephrine; ns, not significant.

From Reis 264
Figure 14. Figure 14.

Destruction of intrinsic neurons in lateral hypothalamus disrupts autonomic but not behavioral components of conditioned fear. A: polygraph tracings illustrating arterial pressure response elicited by acoustic conditioned stimulus (CS) previously paired with foot shock in normal rats and rats receiving bilateral injections of ibotenic acid in lateral (LH) or medial (MH) hypothalamus. B: quantitative, computer‐assisted reconstruction of conditioned pressor response. Pressor response in LH group is significantly smaller than in normal and MH groups. LH lesions reduced pressor response to level seen in unoperated rats given nonassociative (pseudoconditioned) presentations of CS and foot shock. C: neither LH nor MH lesions affected conditioned emotional behavior (freezing). D: typical area of cell loss (hatched areas) produced by injection of ibotenic acid into lateral hypothalamus. E: cell loss in medial hypothalamus produced by ibotenic acid injection. F: location of labeled neurons in hypothalamus after injection of retrograde axonal marker into spinal cord. Various findings suggest spinal projecting neurons in lateral hypothalamus mediate autonomic but not behavioral responses associated with conditioned fear. Afferent connections mediating fear conditioning involve projections from medial geniculate body to amygdala (see Fig. 10). Values illustrated (B, C) represent mean ± SE.

From Iwata et al. 140
Figure 15. Figure 15.

Amygdala central nucleus and conditioned bradycardia in rabbit. A: mean percentage of change in heart rate to 5‐s acoustic conditioned stimulus (CS) relative to pre‐CS base‐line period during aversive classical conditioning. Each group consisted of 8 subjects. Data points represent group means for 15 trial blocks. Large ace, group with bilateral lesions damaging >50% of amygdala central nucleus; small ace, group sustaining bilateral lesions damaging <50% of central amygdala; unop cond, unoperated control group; surg cond, surgical control group; unop pseudo, unoperated control group receiving random, unpaired presentations of CS and eye shock. B: heart rate response produced by medial central nucleus stimulation in awake, loosely restrained rabbit. Upper trace depicts stimulation period, a 1.0‐s stimulus train (40 μA, 100 Hz, 0.5 ms). Lower trace is cardiotachograph response. C: thionin‐stained frontal section of rabbit brain showing recording electrode tract coursing through amygdala central nucleus. At conclusion of recording session small marker lesions were made at 1‐mm intervals. Arrow depicts region in which neurons of type shown in D were located. ACE, amygdala central nucleus; Bl, basolateral nucleus; Bm, basomedial nucleus; La, lateral nucleus; Me, medial nucleus; OT, optic tract. D : oscilloscope traces show responses of an amygdala central nucleus neuron to presentation of tone (CS+) paired with shock, and second tone (CS‐) never paired with shock during differential classical conditioning. A 5.0‐s pre‐CS base‐line period begins on left. Onset of each 5.0‐s CS is indicated by dashed vertical line. Calibration bar = 1.0 s. Note preferentially increased activity to CS+. In neurons of this type, magnitudes of neuronal responses to CS+ often were correlated with magnitudes of concomitant bradycardic response.

Adapted from Kapp et al. 152 and Pascoe and Kapp 245
Figure 16. Figure 16.

Interhemispheric attribution. Tests involving split‐brain patient in whom either hemisphere could read and execute simple motor commands, but only left could speak. Commands were presented to left visual field, and thus to the right hemisphere, as patient fixated on spot in center of screen. In each instance right hemisphere correctly performs commanded action. Left hemisphere has not seen command and thus does not really know why behavior was performed but readily offers explanations as if it knows. Such explanations are based on observations of overt behavior performed by right hemisphere.

From Gazzaniga and LeDoux 103
Figure 17. Figure 17.

Limbic seizures. Seizure activity starting in right hippocampus (RB1) and involving right amygdala (RA1) and right parahippocampal gyrus (RC1). Seizure remains largely in limbic areas. Neocortical areas (RC3–5, RFS1–5) are minimally involved. Seizure ultimately becomes bilateral. Note experiential phenomena associated with seizure.

From Gloor et al. 107


Figure 1.

Cerebral localization of emotional behavior. Lesion strategies used by early investigators to identify brain areas necessary for expression of emotional behavior are illustrated on midsagittal diagram of cat brain. Transection of midbrain through plane a abolishes integrated emotional responses, allowing expression of only isolated components of emotional behavior. In contrast, emotional behavior survives removal of cerebral cortex (tissue rostral to plane b). Such observations suggested to Cannon 43 and Bard 16 that brain areas below cortex but above midbrain mediate emotional behavior. AC, anterior commissure; CC, corpus callosum; H, hypothalamus; IC, inferior colliculus; OB, olfactory bulb; OC, optic chiasm; S, septum; SC, superior colliculus; T, thalamus.

Adapted from Cannon 43 and Kaada 150


Figure 2.

Papez circuit. Papez proposed that connections between hypothalamus, anterior thalamic nucleus, cingulate gyrus, and hippocampus formed essential emotional network of brain. Sensory input could enter circuit via projections through dorsal thalamus to neocortex and through subcortical projections from ventral thalamus to hypothalamus.

Adapted from Papez 244


Figure 3.

Visceral brain. MacLean 196 described neural substrates of emotion as “visceral brain,” a group of phylogenetically old structures centered around hippocampus. He suggested that correlation of inputs from exteroceptive and interoceptive sensory modalities by hippocampus gives rise to conscious emotional experiences, whereas discharge of hippocampus through hypothalamus accounts for expression of emotional behavior and associated visceral responses. MacLean later introduced the term “limbic system” to refer to this central emotional network.

From MacLean 196, reprinted by permission of Elsevier Science Publishing Co., Inc. Copyright 1949 by The American Psychosomatic Society, Inc


Figure 4.

Limbic lobe. Midsagittal section through human (A) and monkey (B) brain illustrating cortical regions of limbic lobe (hatched area).

From Damasio and Van Hoesen 61


Figure 5.

Dorsomedial and basolateral divisions of limbic forebrain. Dorsomedial division (A) is centered around hippocampus, whereas amygdala is focal point of basolateral division (B).

From Livingston and Escobar 187. Copyright 1971, American Medical Association


Figure 6.

Connections between sensory cortex and limbic forebrain. Sensory inputs are relayed through thalamus to primary receiving areas (koniocortices). Koniocortices project locally to unimodal association areas, which in turn project to areas in which sensory input converges (polymodal association zones) and to limbic forebrain. Polymodal cortex projects to complex (supramodal) association cortex and to limbic areas. Limbic areas also receive inputs from supramodal cortex and some limbic areas (rhinal cortices and hippocampus) qualify as supramodal cortex.

Based on Jones and Powell 147, Mesulam et al. 211, and Swanson 317


Figure 7.

Projections from acoustic thalamus to subcortical forebrain. Cells in areas of rat acoustic thalamus [projection field of inferior colliculus (A)] give rise to fibers terminating in several regions of subcortical forebrain (B), including amygdala, posterior caudate nucleus‐putamen, and hypothalamus. ACE, central nucleus of amygdala; AL, lateral nucleus of amygdala; CI, internal capsule; CPU, caudate nucleus‐putamen; IC, inferior colliculus; MGD, MGM, MGV, dorsal, medial, and ventral divisions of medial geniculate body; MZ, marginal zone; PIN, posterior intralaminar nucleus; PL, posterior limitans nucleus; PP, peripeduncular region; SG, suprageniculate nucleus; SPFL, lateral component of subparafascicular nucleus; VMH, ventromedial nucleus of hypothalamus.

Adapted from LeDoux et al. 180


Figure 8.

Unit activity in amygdala during stimulus evaluation. Top: at end of tone warning signal, a shutter opened to show monkey syringe filled with fruit juice (rewarding) or saline (aversive). Although amygdala cell being recorded from responded to both stimuli, response was greater to rewarding stimulus. Bottom: peristimulus histograms for cell on 10 rewarding and 10 saline trials (bin width, 10 ms).

From Sanghera et al. 290


Figure 9.

Lesions of subcortical, but not cortical, auditory processing areas disrupt conditioning of emotional responses to acoustic stimuli. A: conditioned emotional response in rat consists of increases in mean arterial pressure (MAP) and suppression of locomotor activity (freezing) in presence of tone previously paired with foot shock. MAP response is measured during 10‐s presentation of tone and freezing response during 120‐s presentation. Bilateral destruction of medial geniculate body (MG) or inferior colliculus (IC) disrupted conditioning of emotional responses, whereas ablation of auditory cortex bilaterally had no effect. These data suggest that emotional conditioning depends on relay of acoustic signals through IC to MG and from there to target other than auditory cortex. Critical projection from MG involves amygdala (see Fig. 10). B: representative lesions of auditory cortex (left), MG (center), and IC (right). CG, central gray; CP, cerebral peduncle; IC, inferior colliculus; LL, lateral lemniscus; MG, medial geniculate body; ML, medial lemniscus; PP, peripeduncular region; RN, red nucleus; SC, superior colliculus; SN, substantia nigra.

Adapted from LeDoux et al. 183


Figure 10.

Neural pathway mediating fear conditioning. Conditioning of autonomic and behavioral emotional responses to acoustic stimuli in rat is mediated by sensory signals ascending in primary auditory pathway through IC to MG and then relayed to subcortical region involving dorsal aspects of amygdala, including lateral and central nuclei and fundus striati. In amygdala, pathways mediating autonomic and behavioral responses diverge. Autonomic changes involve connections between dorsal amygdala and lateral hypothalamus (see Fig. 14), and projections from amygdala to or through midbrain mediate behavioral responses (not illustrated). Although auditory pathways decussate in the brain stem, they are illustrated as a homolateral projection here for convenience. ABL, basolateral amygdala; ABM, basomedial amygdala; ACE, central amygdala; AL, lateral amygdala; AM, medial amygdala; CG, central gray; CP, cerebral peduncle; CPU, caudate nucleus‐putamen; CS, conditioned stimulus; F, fornix; FST, fundus striati; IC, inferior colliculus; LH, lateral hypothalamus; MG, medial geniculate body; MRF, midbrain reticular formation; OT, optic tract; PP, peripeduncular region; SN, substantia nigra; ST, stria terminalis; THAL, thalamus; VMH, ventromedial hypothalamus.

Data from LeDoux et al. 183 and Iwata et al. 140,141


Figure 11.

Sensory projections to amygdala and emotional evaluation. Amygdala receives inputs from various exteroceptive and interoceptive sensory modalities (dashed lines). Density of dashed input lines to amygdala signifies extent to which sensory signal is processed before reaching amygdala. Inputs arriving from various cortical association fields have been transformed more than inputs arriving directly from thalamus or nucleus tractus solitarii (NTS). Different inputs may mediate unique aspects of emotional processing, each capable of initiating changes in emotional behavior and autonomic and humoral activity.



Figure 12.

Forms of aggressive behavior. A: affective attack, characterized by emotional display (hissing, baring of teeth) and autonomic reactivity (piloerection, changes in blood pressure), elicited by electrical stimulation of ventromedial region of hypothalamus. B: predatory attack, behavior pattern associated with food acquisition and consumption, elicited by electrical stimulation of lateral areas of hypothalamus.

From Flynn 92


Figure 13.

Contribution of norepinephrine to defensive behavior. Changes in monoaminergic transmitter concentration in brain stem and adrenal gland during rage behavior produced by amygdala stimulation. DA, dopamine; E, epinephrine; NE, norepinephrine; ns, not significant.

From Reis 264


Figure 14.

Destruction of intrinsic neurons in lateral hypothalamus disrupts autonomic but not behavioral components of conditioned fear. A: polygraph tracings illustrating arterial pressure response elicited by acoustic conditioned stimulus (CS) previously paired with foot shock in normal rats and rats receiving bilateral injections of ibotenic acid in lateral (LH) or medial (MH) hypothalamus. B: quantitative, computer‐assisted reconstruction of conditioned pressor response. Pressor response in LH group is significantly smaller than in normal and MH groups. LH lesions reduced pressor response to level seen in unoperated rats given nonassociative (pseudoconditioned) presentations of CS and foot shock. C: neither LH nor MH lesions affected conditioned emotional behavior (freezing). D: typical area of cell loss (hatched areas) produced by injection of ibotenic acid into lateral hypothalamus. E: cell loss in medial hypothalamus produced by ibotenic acid injection. F: location of labeled neurons in hypothalamus after injection of retrograde axonal marker into spinal cord. Various findings suggest spinal projecting neurons in lateral hypothalamus mediate autonomic but not behavioral responses associated with conditioned fear. Afferent connections mediating fear conditioning involve projections from medial geniculate body to amygdala (see Fig. 10). Values illustrated (B, C) represent mean ± SE.

From Iwata et al. 140


Figure 15.

Amygdala central nucleus and conditioned bradycardia in rabbit. A: mean percentage of change in heart rate to 5‐s acoustic conditioned stimulus (CS) relative to pre‐CS base‐line period during aversive classical conditioning. Each group consisted of 8 subjects. Data points represent group means for 15 trial blocks. Large ace, group with bilateral lesions damaging >50% of amygdala central nucleus; small ace, group sustaining bilateral lesions damaging <50% of central amygdala; unop cond, unoperated control group; surg cond, surgical control group; unop pseudo, unoperated control group receiving random, unpaired presentations of CS and eye shock. B: heart rate response produced by medial central nucleus stimulation in awake, loosely restrained rabbit. Upper trace depicts stimulation period, a 1.0‐s stimulus train (40 μA, 100 Hz, 0.5 ms). Lower trace is cardiotachograph response. C: thionin‐stained frontal section of rabbit brain showing recording electrode tract coursing through amygdala central nucleus. At conclusion of recording session small marker lesions were made at 1‐mm intervals. Arrow depicts region in which neurons of type shown in D were located. ACE, amygdala central nucleus; Bl, basolateral nucleus; Bm, basomedial nucleus; La, lateral nucleus; Me, medial nucleus; OT, optic tract. D : oscilloscope traces show responses of an amygdala central nucleus neuron to presentation of tone (CS+) paired with shock, and second tone (CS‐) never paired with shock during differential classical conditioning. A 5.0‐s pre‐CS base‐line period begins on left. Onset of each 5.0‐s CS is indicated by dashed vertical line. Calibration bar = 1.0 s. Note preferentially increased activity to CS+. In neurons of this type, magnitudes of neuronal responses to CS+ often were correlated with magnitudes of concomitant bradycardic response.

Adapted from Kapp et al. 152 and Pascoe and Kapp 245


Figure 16.

Interhemispheric attribution. Tests involving split‐brain patient in whom either hemisphere could read and execute simple motor commands, but only left could speak. Commands were presented to left visual field, and thus to the right hemisphere, as patient fixated on spot in center of screen. In each instance right hemisphere correctly performs commanded action. Left hemisphere has not seen command and thus does not really know why behavior was performed but readily offers explanations as if it knows. Such explanations are based on observations of overt behavior performed by right hemisphere.

From Gazzaniga and LeDoux 103


Figure 17.

Limbic seizures. Seizure activity starting in right hippocampus (RB1) and involving right amygdala (RA1) and right parahippocampal gyrus (RC1). Seizure remains largely in limbic areas. Neocortical areas (RC3–5, RFS1–5) are minimally involved. Seizure ultimately becomes bilateral. Note experiential phenomena associated with seizure.

From Gloor et al. 107
References
 1. Abrahams, V. C., S. M. Hilton, and J. L. Malcolm. Sensory connexions to the hypothalamus and mid‐brain, and their role in the reflex activation of the defence reaction. J. Physiol. Lond. 164: 1–16, 1962.
 2. Abrahams, V. C., S. M. Hilton, and Z. Zbrozyna. Active muscle vasodilatation produced by stimulation of the brain stem: its significance in the defence reaction. J. Physiol. Lond. 154: 491–513, 1960.
 3. Adams, D. B. Brain mechanisms for offense, defense, and submission. Behav. Brain Sci. 2: 201–242, 1979.
 4. Aggleton, J. P., M. J. Burton, and R. E. Passingham. Cortical and subcortical afferents to the amygdala of the rhesus monkey (Macaca mulatta). Brain Res. 190: 347–368, 1980.
 5. Aggleton, J. P., and R. E. Passingham. Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatto). J. Comp. Physiol. Psychol. 95: 961–977, 1981.
 6. Akert, K., R. A. Gruesen, C. N. Woolsey, and D. R. Meyer. Klüver‐Bucy syndrome in monkeys with neocortical ablations of temporal lobe. Brain 84: 480–497, 1961.
 7. Alho, H., E. Costa, P. Ferrero, M. Fujimoto, D. Cosenza‐Murphy, and A. Guidotti. Diazepam‐binding inhibitor: a neuropeptide located in selected neuronal populations of rat brain. Science Wash. DC 229: 179–182, 1985.
 8. Allikmets, L. H. Cholinergic mechanisms in aggressive behaviour. Med. Biol. 52: 19–30, 1974.
 9. Andén, N. E., A. Carlssön, A. Dahlström, K. Fuxe, N. A. Hillarp, and K. Larsson. Demonstration and mapping out of nigro‐neostriatal dopamine neurons. Life Sci. 3: 523–530, 1964.
 10. Andrezik, J. A., V. Chan‐Palay, and S. L. Palay. The nucleus paragigantocellularis lateralis in the rat. Demonstration of afferents by the retrograde transport of horseradish peroxidase. Anat. Embryol. 161: 373–390, 1981.
 11. Arnold, M. B. Emotion and Personality. New York: Columbia Univ. Press, 1960.
 12. Axelrod, J., and T. D. Reisine. Stress hormones: their interaction and regulation. Science Wash. DC 224: 452–459, 1984.
 13. Bailey, P., and G. von Bonin. The Isocortex of Man. Urbana: Univ. of Illinois Press, 1951.
 14. Bandler, R. J. Induction of “rage” following microinjections of glutamate into midbrain but not hypothalamus of cats. Neurosci. Lett. 30: 183–188, 1982.
 15. Bandler, R. J., and T. McCulloch. Afferents to a midbrain periaqueductal grey region involved in the “defense reaction” in the cat as revealed by horseradish peroxidase. II. The diencephalon. Behav. Brain Res. 13: 279–285, 1984.
 16. Bard, P. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am. J. Physiol. 84: 490–515, 1928.
 17. Bard, P. The central representation of the sympathetic system. Arch. Neurol. Psychiatry 22: 230–246, 1929.
 18. Bard, P., and V. B. Mountcastle. Some forebrain mechanisms involved in expression of rage with special reference to suppression of angry behavior. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 27: 362–404, 1948.
 19. Bard, P., and D. M. Rioch. A study of four cats deprived of neocortex and additional parts of the forebrain. Bull. Johns Hopkins Hosp. 60: 73–147, 1937.
 20. Barone, R. C., M. J. Wayner, S. L. Scharoun, R. Guevara‐Aguilar, and H. U. Aguilar‐Baturoni. Afferent connections to the lateral hypothalamus: a horseradish peroxidase study in the rat. Brain Res. Bull. 7: 75–88, 1981.
 21. Baxter, B. Comparison of the behavioral effects of electrical or chemical stimulation applied at the same brain loci. Exp. Neurol. 19: 412–432, 1967.
 22. Bazett, H. C., and W. G. Penfield. A study of the Sherrington decerebrate animal in the chronic as well as the acute condition. Brain 45: 185–265, 1922.
 23. Bem, D. J. Self‐perception: an alternative interpretation to cognitive dissonance phenomena. Psychol. Rev. 74: 183–200, 1972.
 24. Ben‐Ari, Y. Transmitters and modulators in the amygdaloid complex: a review. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier, 1981, p. 163–174.
 25. Ben‐Ari, Y., and G. Le Gal. La Salle. Relationship between spontaneous and evoked unit activity in the amygdala of the cat. Brain Res. 32: 474–478, 1971.
 26. BjoUrklund, A., and O. Lindvall. Dopamine‐containing systems in the CNS. In: Handbook of Chemical Neuroanatomy. Classical Transmitters in the CNS, edited by A. Björklund, T. Hökfelt, and M. Kuhar. Amsterdam: Elsevier, 1984, vol. 2, p. 55–122.
 27. Blanchard, D. C., and R. J. Blanchard. Innate and conditioned reactions to threat in rats with amygdaloid lesions. J. Comp. Physiol. Psychol. 81: 281–290, 1972.
 28. Bloch‐Rojas, S., A. Toro, and T. Pinto‐Hamuy. Cardiac versus somatomotor conditioned responses in neodecorticate rats. J. Comp. Physiol. Psychol. 58: 233–236, 1965.
 29. Bowlby, J. Attachment and Loss: Attachment. New York: Basic, 1969, vol. 1.
 30. Brady, J. V., and W. J. H. Nauta. Subcortical mechanisms in emotional behavior: the duration of affective changes following septal and habenular lesions in the albino rat. J. Comp. Physiol. Psychol. 48: 412–420, 1955.
 31. Broca, P. Anatomie comparée des circonvolutions cérébrales. Le grand lobe limbique et la scissure limbique dans le série des mammifères. Rev. Anthropol. ser. 2, vol. 1: 385–498, 1878.
 32. Brodal, A. Neurological Anatomy. New York: Oxford Univ. Press, 1982.
 33. Brown, K. A., and J. S. Buchwald. Acoustic responses and plasticity of limbic units in cats. Exp. Neurol. 40: 608–631, 1973.
 34. Brown, S., and A. Schafer. An investigation into the functions of the occipital and temporal lobes of the monkey's brain. Philos. Trans. R. Soc. Lond. B Biol. Sci. 179: 303–327, 1888.
 35. Buchanan, S. L., and D. A. Powell. Cingulate cortex: its role in Pavlovian conditioning. J. Comp. Physiol. Psychol. 96: 755–774, 1982.
 36. Buck, R. Nonverbal behavior and the theory of emotion: the facial feedback hypothesis. J. Pers. Soc. Psychol. 42: 506–517, 1980.
 37. Bucy, P. C., and H. Klüver. An anatomical investigation of the temporal lobe in the monkey (Macaca mulatta). J. Comp. Neurol. 103: 151–252, 1955.
 38. Butter, C. M., M. Mishkin, and A. F. Mirsky. Emotional responses toward humans in monkeys with selective frontal lesions. Physiol. Behav. 3: 213–215, 1968.
 39. Calford, M. B. The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J. Neurosci. 3: 2350–2364, 1983.
 40. Calford, M. B., and L. M. Aitkin. Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J. Neurosci. 3: 2365–2380, 1983.
 41. Candland, D. K. Emotion. Belmont, CA: Wadsworth, 1977.
 42. Cannon, W. B. The James‐Lange theory of emotions: a critical examination and an alternative theory. Am. J. Psychol. 39: 106–124, 1927.
 43. Cannon, W. B. Bodily Changes in Pain, Hunger, Fear, and Rage (2nd ed.). New York: Appleton, 1929.
 44. Cannon, W. B. Again the James‐Lange and the thalamic theories of emotion. Psychol. Rev. 38: 281–295, 1931.
 45. Cannon, W. B., and S. W. Britton. Pseudoaffective medulliadrenal secretion. Am. J. Physiol. 72: 283–294, 1925.
 46. Carli, G., A. Malliani, and A. Zanchetti. Midbrain course of descending pathways mediating sham rage behavior. Exp. Neurol. 7: 210–223, 1963.
 47. Casey, K. L. Neural mechanisms of pain. In: Handbook of Perception. Feeling and Hurting, edited by E. C. Carterette and M. P. Friedman. New York: Academic, 1978, vol. 6, p. 183–230.
 48. Cechetto, D. F., and F. R. Calaresu. Units in the amygdala responding to activation of carotid baro‐ and chemoreceptors. Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R832–R836, 1984.
 49. Cechetto, D. F., J. Ciriello, and F. Calaresu. Afferent connections to cardiovascular sites in the amygdala: a horseradish peroxidase study in the cat. J. Auton. Nerv. Syst. 8: 97–110, 1983.
 50. Chow, K. L. Effects of partial extirpation of posterior association cortex on visually mediated behavior in monkey. Comp. Psychol. Monogr. 20: 187–217, 1951.
 51. Clemente, C. D., and M. H. Chase. Neurological substrates of aggressive behavior. Annu. Rev. Physiol. 35: 329–356, 1973.
 52. Cohen, D. H. The functional neuroanatomy of a conditioned response. In: Neural Mechanisms of Goal‐Directed Behavior and Learning, edited by R. F. Thompson, L. H. Hicks, and V. B. Shvyrkov. New York: Academic, 1980, p. 283–302.
 53. Cohen, D. H., and P. A. Obrist. Interactions between behavior and the cardiovascular system. Circ. Res. 37: 693–706, 1975.
 54. Collier, G. Emotional Expression. Hillsdale, NJ: Erlbaum, 1985.
 55. Coote, J. H., S. M. Hilton, and A. W. Zbrozyna. The ponto‐medullary area integrating the defence reaction in the cat and its influence on muscle blood flow. J. Physiol. Lond. 229: 257–274, 1973.
 56. Cowey, A., and C. G. Gross. Effects of foveal prestriate and inferotemporal lesions on visual discriminations by rhesus monkeys. Exp. Brain Res. 11: 128–144, 1970.
 57. Coyle, J. T., and R. Schwarcz. The use of excitatory amino acids as selective neurotoxins. In: Handbook of Chemical Neuroanatomy. Methods in Chemical Neuroanatomy, edited by A. Björklund and T. Hökfelt. Amsterdam: Elsevier, 1983, vol. 1, p. 508–527.
 58. Cragg, B. G. The topography of the afferent projections in the circumstriate visual cortex of the monkey studied by the Nauta method. Vision Res. 9: 733–746, 1969.
 59. Cuénod, M., K. L. Casey, and P. D. MacLean. Unit analysis of visual input to posterior limbic cortex. I. Photic stimulation. J. Neurophysiol. 28: 1101–1117, 1965.
 60. Dagi, T. F., and C. E. Poletti. Reformation of the Papez circuit: absence of hippocampal influence on cingulate cortex unit activity in the primate. Brain Res. 259: 229–236, 1983.
 61. Damasio, A. R., and G. Van Hoesen. Emotional disturbances associated with focal lesions of the limbic frontal lobe. In: Neuropsychology of Human Emotion, edited by K. M. Heilman and P. Satz. New York: Guilford, 1983, p. 85–110.
 62. Darwin, C. The Expression of the Emotions in Man and Animals. Chicago, 1872. [Republished by Univ. of Chicago Press, 1965.]
 63. Davis, M., and D. I. Astrachan. Conditioned fear and startle magnitude: effects of footshock or backshock intensities used in training. J. Exp. Psychol. Anim. Behav. Processes 4: 95–103, 1978.
 64. Deets, A. C., H. F. Harlow, S. D. Singh, and A. J. Bloomquist. Effects of bilateral lesions of the frontal granular cortex on the social behavior of rhesus monkeys. J. Comp. Physiol. Psychol. 72: 452–461, 1970.
 65. Delgado, J. M. R. Free behavior and brain stimulation. Int. Rev. Neurobiol. 6: 349–449, 1964.
 66. Diamond, I. T., and K. L. Chow. Biological psychology. In: Psychology: A Study of a Science. Biologically Oriented Fields, edited by S. Koch. New York: McGraw‐Hill, 1962, vol. 4, study 2, p. 158–241.
 67. Diamond, I. T., E. G. Jones, and T. P. S. Powell. The association connections of the auditory cortex of the cat. Brain Res. 11: 560–579, 1968.
 68. Domesick, V. Cross‐roads of limbic and basal ganglia circuitry: neuroanatomical substrates of mood and movement (Abstract). World Congr. Biol. Psychiatry, 4th, 1985, p. 18.
 69. Douglas, R. J. The hippocampus and behavior. Psychol. Bull. 67: 416–442, 1967.
 70. Douglas, R. J., and K. H. Pribram. Learning and limbic lesions. Neuropsychologia 4: 197–219, 1966.
 71. Downer, J. D. C. Changes in visual gnostic function and emotional behavior following unilateral temporal lobe damage in the “split‐brain” monkey. Nature Lond. 191: 50–51, 1961.
 72. Droogleever Fortuyn, J., and J. M. Minderhoud. Efferent connections of the supra‐geniculate nucleus in the albino rat. J. Comp. Neurol. 124: 203–213, 1965.
 73. Duffy, E. Emotion: an example of the need for reorientation in psychology. Psychol. Rev. 41: 184–198, 1934.
 74. Duncan, P. M. Effects of temporary septal dysfunction on conditioning and performance of fear responses in rats. J. Comp. Physiol. Psychol. 74: 340–348, 1971.
 75. Dusser de Barenne, J. G. Recherches expérimentales surles fonctions du système nerveux central, faites en particulier sur deux chats donc le néopallium a été enlevé. Arch. Neurol. Physiol. 4: 31–123, 1920.
 76. Ebner, F. A comparison of primitive forebrain organization in metatherian and eutherian mammals. Ann. NY Acad. Sci. 167: 241–257, 1969.
 77. Edwards, M. A., and D. B. Adams. Role of midbrain central gray in pain‐induced defensive boxing in rats. Physiol. Behav. 13: 113–121, 1974.
 78. Eichelman, B. S., and N. B. Thoa. The aggressive monoamines. Biol. Psychiatry 6: 143–164, 1973.
 79. Ekman, P. Expression and the nature of emotion. In: Approaches to Emotion, edited by K. Scherer and P. Ekman. Hillsdale, NJ: Erlbaum, 1984, p. 319–343.
 80. Ekman, P., and W. V. Friesen. Nonverbal leakage and cues to deception. Psychiatry Wash. DC 32: 88–105, 1969.
 81. Ekman, P., R. W. Levinson, and W. V. Friesen. Autonomic nervous system activity distinguishes among emotions. Science Wash. DC 221: 1208–1210, 1983.
 82. Eliasson, S., B. Folkow, P. Lindgren, and B. Uvnäs. Activation of sympathetic vasodilator nerves to the skeletal muscles in the cat by hypothalamic stimulation. Acta Physiol. Scand. 23: 333–351, 1951.
 83. Ellis, M. E., and R. P. Kesner. The noradrenergic system of the amygdala and aversive information processing. Behav. Neurosci. 97: 399–415, 1983.
 84. Erulkar, S. D. Physiological studies of the inferior colliculus and medial geniculate complex. In: Handbook of Sensory Physiology. Auditory System. Physiology (CNS), Behavioral Studies, Psychoacoustics, edited by W. D. Keidel and W. D. Neff. Berlin: Springer‐Verlag, 1974, vol. 5, pt. 2, p. 145–198.
 85. Ettlinger, G., E. Iwai, M. Mishkin, and H. E. Rosvold. Visual discrimination in the monkey following serial ablation of inferotemporal and preoccipital cortex. J. Comp. Physiol. Psychol. 65: 110–117, 1968.
 86. Fallon, J. H. Histochemical characterization of dopaminergic, noradrenergic and serotonergic projections to the amygdala. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier, 1981, p. 175–184.
 87. Fernandez de Molina, A., and R. W. Hunsperger. Central representation of affective reactions in forebrain and brain stem: electrical stimulation of amygdala, stria terminalis, and adjacent structures. J. Physiol. Lond. 145: 251–265, 1959.
 88. Fernandez de Molina, A., and R. W. Hunsperger. Organization of the subcortical system governing defence and flight reactions in the cat. J. Physiol. Lond. 160: 200–213, 1962.
 89. Ferrero, P., A. Guidotti, B. Conti‐Tronconi, and E. Costa. A brain octadecaneuropeptide generated by tryptic digestion of DBI (diazepam binding inhibitor) functions as a proconflict ligand of benzodiazepine recognition sites. Neuropharmacology 23: 1359–1362, 1984.
 90. Ferreyra, H., H. Kannan, and K. Koizumi. Influences of the limbic system on hypothalamo‐neurohypophysial system. Brain Res. 264: 31–45, 1983.
 91. Flechsig, P. Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet 2: 1027–1029, 1901.
 92. Flynn, J. P. The neural basis of aggression in cats. In: Neurophysiology and Emotion, edited by D. C. Glass. New York: Rockefeller Univ. Press, 1967, p. 40–60.
 93. Fonberg, E. Control of emotional behavior through the hypothalamus and amygdaloid complex. In: Physiology, Emotion, and Psychosomatic Illness, edited by D. Hill. Amsterdam: Elsevier, 1972, p. 131–162. (Ciba Found. Symp. 8.)
 94. Fonberg, E. The normalizing effect of lateral amygdalar lesions upon the dorsomedial amygdalar syndrome in dogs. Acta Neurobiol. Exp. 33: 449–466, 1973.
 95. Fuchs, S. A. G., H. M. Edinger, and A. Siegel. The organization of the hypothalamic pathways mediating affective defense behavior in the cat. Brain Res. 330: 77–92, 1985.
 96. Fuster, J. M., and A. A. Uyeda. Reactivity of limbic neurons of the monkey to appetitive and aversive signals. Electroencephalogr. Clin. Neurophysiol. 30: 281–293, 1971.
 97. Gabriel, M., S. E. Slatwick, and J. D. Miller. Multiple unit activity of the rabbit medial geniculate nucleus in conditioning, extinction, and reversal. Physiol. Psychol. 4: 124–134, 1976.
 98. Gaffan, D., and S. Harrison. Inferotemporal outflow to amygdala and frontal lobe in discrimination and reinforcement in the monkey. Soc. Neurosci. Abstr. 11: 461, 1985.
 99. Gallagher, M., B. S. Kapp, J. P. Pascoe, and R. P. Rapp. A neuropharmacology of the amygdala systems which contribute to learning and memory. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier, 1981, p. 343–354.
 100. Gaston, K. E. Brain méchanisms of conditioned taste aversion learning: a review of the literature. Physiol. Psychol. 6: 340–353, 1978.
 101. Gazzaniga, M. S. The Bisected Brain. New York: Appleton‐Century‐Crofts, 1970.
 102. Gazzaniga, M. S. The Social Brain. New York: Basic, 1985.
 103. Gazzaniga, M. S., and J. E. LeDoux. The Integrated Mind. New York: Plenum, 1978.
 104. Gellhorn, E. Motion and emotion. Psychol. Rev. 71: 457–472, 1964.
 105. Geschwind, N. The disconnexion syndromes in animals and man. Brain 88: 237–294, 1965.
 106. Gloor, P. Amygdala. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H.W. Magoun. Washington, DC: Am. Physiol. Soc., 1960, sect. 1, vol. II, chapt. 58, p. 1395–1420.
 107. Gloor, P., A. Olivier, L. F. Quesney, F. Andermann, and S. Horowitz. The role of the limbic system in experimental phenomena of temporal lobe epilepsy. Ann. Neurol. 12: 129–144, 1982.
 108. Glusman, M. The hypothalamic “savage” syndrome. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 52: 52–90, 1974.
 109. Goltz, F. Der Hund ohne Grosshirn. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 51: 570–614, 1892.
 110. Goodchild, A. K., R. A. L. Dampney, and R. J. Bandler. A method for evoking physiological responses by stimulation of cell bodies, but not axons of passage, within localized regions of the central nervous system. J. Neurosci. Methods 6: 351–363, 1982.
 111. Grant, S. J., and D. E. Redmond. The neuroanatomy and pharmacology of the nucleus locus coeruleus. In: Psychopharmacology of Clonidine, edited by H. Lal and S. Fielding. New York: Liss, 1981, p. 5–27.
 112. Gray, J. A. The Neuropsychology of Anxiety. New York: Oxford Univ. Press, 1982.
 113. Gray, J. A. Precis of “The neuropsychology of anxiety: an enquiry into the functions of the septo‐hippocampal system” Behav. Brain Sci. 5: 469–534, 1982.
 114. Graybiel, A. M. Some ascending connections of the pulvinar and nucleus lateralis posterior of the thalamus in the cat. Brain Res. 44: 99–125, 1972.
 115. Graybiel, A. M. The thalamo‐cortical projection of the so called posterior nuclear group: a study with anterograde degeneration methods in the cat. Brain Res. 49: 229–244, 1973.
 116. Gross, C. G. Inferotemporal cortex and vision. In: Progress in Physiological Psychology, edited by E. Stellar and J. M. Sprague. New York: Academic, 1973, vol. 5, p. 77–123.
 117. Gross, C. G., D. B. Bender, and C. E. Rocha‐Miranda. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science Wash. DC 166: 1303–1306, 1969.
 118. Guldin, W. O., and H. J. Markowitsch. Cortical and thalamic afferent connections of the insular and adjacent cortex of the rat. J. Comp. Neurol. 215: 153–183, 1983.
 119. Guldin, W. O., and H. J. Markowitsch. Cortical and thalamic afferent connections of the insular and adjacent cortex of the cat. J. Comp. Neurol. 229: 393–418, 1984.
 120. Gunne, L.‐M., and D. J. Reis. Changes in brain catecholamines associated with electrical stimulation of amygdaloid nucleus. Life Sci. 11: 804–809, 1963.
 121. Halgren, E. The amygdala contribution to emotion and memory: current studies in humans. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. Amsterdam: Elsevier, 1981, p. 395–408.
 122. Harrison, J. M., and M. E. Howe. Anatomy of the afferent auditory nervous system in mammals. In: Handbook of Sensory Physiology. Auditory System. Anatomy, Physiology (Ear), edited by W. D. Keidel and W. D. Neff. Berlin: Springer‐Verlag, 1974, vol. 5, pt. 1, p. 283–336.
 123. Harvey, J. A., L. E. Jacobson, and H. F. Hunt. Effect of lesions in the septal area on conditioned fear and discriminated instrumental punishment in the albino rat. J. Comp. Physiol. Psychol. 59: 37–48, 1965.
 124. Head, H. Release function in the nervous system. Proc. R. Soc. Lond. B Biol. Sci. 92: 184–187, 1921.
 125. Hernandez‐Peon, R., G. Chavez‐Ibarra, P. J. Morgane, and C. Timo‐Laria. Limbic cholinergic pathways involved in sleep and emotional behavior. Exp. Neurol. 8: 93–111, 1963.
 126. Herrick, C. J. The functions of the olfactory parts of the cerebral cortex. Proc. Natl. Acad. Sci. USA 19: 7–14, 1933.
 127. Herrick, C. J., and G. H. Bishop. A comparative survey of the spinal lemniscus system. In: Reticular Formation of the Brain, edited by H. H. Jasper, L. C. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello. Boston, MA: Little, Brown, 1958, p. 353–360.
 128. Hess, W. R., and M. Brügger. Das subkorticale Zentrum der affektiven Abwehrreaktion. Helv. Physiol. Pharmacol. Acta 1: 33–52, 1943.
 129. Hilton, S. M. Ways of viewing the central nervous control of the circulation—old and new. Brain Res. 87: 213–219, 1975.
 130. Hilton, S. M. The defense reaction as a paradigm for cardiovascular control. In: Integrative Functions of the Autonomic Nervous System, edited by C. McC. Brooks, K. Koizumi, and A. Sato. Amsterdam: Elsevier, 1979, p. 443–449.
 131. Hilton, S. M., J. M. Marshall, and R. J. Timms. Ventral medullary relay neurones in the pathway from the defence areas of the cat and their effect on blood pressure. J. Physiol. Lond. 345: 149–166, 1983.
 132. Hilton, S. M., and A. W. Zbrozyna. Amygdaloid region for defence reactions and its efferent pathway to the brain stem. J. Physiol. Lond. 165: 160–173, 1963.
 133. Horel, J. A., and E. G. Keating. Partial Klüver‐Bucy syndrome produced by cortical disconnection. Brain Res. 16: 281–284, 1969.
 134. Horel, J. A., and E. G. Keating. Recovery from a partial Klüver‐Bucy syndrome in the monkey produced by disconnection. J. Comp. Physiol. Psychol. 79: 105–114, 1972.
 135. Horel, J. A., E. G. Keating, and L. J. Misantone. Partial Klüver‐Bucy syndrome produced by destroying temporal neocortex or amygdala. Brain Res. 94: 347–359, 1975.
 136. Hunsperger, R. W. Affektreaktionen auf elektrische Reizung im Hirnstamm der Katze. Helv. Physiol. Pharmacol. Acta 14: 70–92, 1956.
 137. Hunsperger, R. W. Les représentations centrales des réactions affectives dans le cerveau antérieur et dans le tranc cérébral. Neuro‐chirurgie 5: 207–233, 1959.
 138. Igic, R., P. Stern, and E. Basagio. Changes in emotional behavior after application of cholinesterase inhibition in the septal and amygdala region. Neuropharmacology 9: 73–75, 1970.
 139. Issacson, R. L. The Limbic System. New York: Plenum, 1982.
 140. Iwata, J., J. E. LeDoux, M. P. Meeley, S. Arneric, and D. J. Reis. Intrinsic neurons in the amygdaloid field projected to by the medial geniculate body mediate emotional responses conditioned to acoustic stimuli. Brain Res. 383: 195–214, 1986.
 141. Iwata, J., J. E. LeDoux, and D. J. Reis. Destruction of intrinsic neurons in the lateral hypothalamus disrupts cardiovascular but not behavioral conditioned emotional responses. Brain Res. 368: 161–166, 1986.
 142. Jacobs, B. J., and D. J. McGinty. Participation of the amygdala in complex stimulus recognition and behavioral inhibition: evidence from unit studies. Brain Res. 36: 431–436, 1972.
 143. James, W. What is an emotion? Mind 9: 188–205, 1884.
 144. James, W. Principles of Psychology. New York: Holt, 1890.
 145. Jones, B., and M. Mishkin. Limbic lesions and the problem of stimulus‐reinforcement associations. Exp. Neurol. 36: 362–377, 1972.
 146. Jones, E. G. The thalamus. In: Chemical Neuroanatomy, edited by P. Emson. New York: Raven, 1983.
 147. Jones, E. G., and T. P. S. Powell. An experimental study of converging sensory pathways within the cerebral cortex of the monkey. Brain 93: 793–820, 1970.
 148. Kaada, B. R. Somato‐motor, autonomic and electrocorticographic responses to electrical stimulation of “rhinencephalic” and other forebrain structures in primates, cat and dog. Acta Physiol. Scand. 24, Suppl. 83: 1–285, 1951.
 149. Kaada, B. R. Cingulate, posterior orbital, anterior insular and temporal pole cortex. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H. W. Magoun. Washington, DC: Am. Physiol. Soc., 1960, sect. 1, vol. II, chapt. 55, p. 1345–1372.
 150. Kaada, B. R. Brain mechanisms related to aggressive behavior. In: Aggression and Defense—Neural Mechanisms and Social Patterns, edited by C. Clemente and D. B. Lindsley. Berkeley: Univ. of California Press, 1967, p. 95–133.
 151. Kapp, B. S., R. C. Frysinger, M. Gallagher, and J. Haselton. Amygdala central nucleus lesions: effects on heart rate conditioning in the rabbit. Physiol. Behav. 23: 1109–1117, 1979.
 152. Kapp, B. S., J. P. Pascoe, and M. A. Bixler. The amygdala: a neuroanatomical systems approach to its contributions to aversive conditioning. In: The Neuropsychology of Memory, edited by N. Butters and L. R. Squire. New York: Guilford, 1984, p. 473–488.
 153. Karplus, J. P., and A. Kreidl. Gehirn und Sympathicus. I. Zwischenhirnbasis und Halssympathicus. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 129: 138–144, 1909.
 154. Karplus, J. P., and A. Kreidl. Gehirn und Sympathicus. VII. Über Beziehungen der Hypothalamuszentren zu Blutdruck und innerer Sekretion. Pfluegers Arch. Gesamte Physiol. Menschen Tiere 215: 667–670, 1927.
 155. Kelly, J. B. Effects of auditory cortical lesions on sound localization by the rat. J. Neurophysiol. 44: 1161–1174, 1980.
 156. Kemp, J. M., and T. P. S. Powell. The cortico‐striatal projection in the monkey. Brain 93: 525–546, 1968.
 157. Kennard, M. A. The cingulate gyrus in relation to consciousness. J. Nerv. Ment. Dis. 126: 34–39, 1955.
 158. King, F. A. Effects of septal and amygdaloid lesions on emotional behavior and conditioned avoidance responses in the rat. J. Nerv. Ment. Dis. 126: 57–63, 1958.
 159. Kling, A. Influence of temporal lobe lesions on radio‐telemetered electrical activity of amygdala to social stimuli in monkey. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier, 1981, p. 271–280.
 160. Klüver, H., and P. C. Bucy. “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Am. J. Physiol. 119: 352–353, 1937.
 161. Klüver, H., and P. C. Bucy. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry 42: 979–1000, 1939.
 162. Koob, G. F., K. Thatcher‐Britton, D. R. Britton, D. C. Roberts, and F. E. Bloom. Destruction of the locus coeruleus or the dorsal NE bundle does not alter the release of punished responding by ethanol and chlordiazepoxide. Physiol. Behav. 33: 479–485, 1984.
 163. Krettek, J. E., and J. L. Price. A direct input from the amygdala to the thalamus and cerebral cortex. Brain Res. 67: 169–174, 1974.
 164. Krettek, J. E., and J. L. Price. The cortical projection of the medio‐dorsal nucleus and adjacent thalamic nuclei in the rat. J. Comp. Neurol. 171: 157–192, 1977.
 165. Krettek, J. E., and J. L. Price. Amygdaloid projections to subcortical structures within the basal forebrain and brainstem in the rat and cat. J. Comp. Neurol. 178: 225–253, 1978.
 166. Krettek, J. E., and J. L. Price. A description of the amygdaloid complex in the rat and cat with observations on intraamygdaloid axonal connections. J. Comp. Neurol. 178: 255–280, 1978.
 167. Krieg, W. S. J. Connections of the cerebral cortex in the albino rat. A topography of the cortical areas. J. Comp. Neurol. 84: 221–275, 1946.
 168. Krieg, W. J. S. Connections of the Cerebral Cortex. Evanston, IL: Brain, 1963.
 169. Kuypers, H. G. J. M., M. K. Szwarcbart, M. Mishkin, and H. E. Rosvold. Occipitotemporal corticocortical connections in the rhesus monkey. Exp. Neurol. 11: 245–262, 1965.
 170. Lacey, J., and B. Lacey. Some autonomic‐central nervous system interrelationships. In: Physiological Correlates of Emotion, edited by P. Black. New York: Academic, 1970, p. 205–227.
 171. Laird, J. D. Self‐attribution of emotion: the effects of expressive behavior on the quality of emotional experience. J. Pers. Soc. Psychol. 29: 475–486, 1974.
 172. Lange, C. G. The emotions. In: The Emotions, edited by K. Dunlap. Baltimore, MD: Williams & Wilkins, 1922, p. 33–90.
 173. Lashley, K. S. Thalamo‐cortical connections of the rat's brain. J. Comp. Neurol. 75: 67–121, 1941.
 174. Lasiter, P. S., and D. L. Glanzman. Cortical substrates of taste aversion learning: involvement of dorsolateral amygdaloid nuclei and temporal neocortex in taste aversion learning. Behav. Neurosci. 99: 257–276, 1985.
 175. Lazarus, R. S. Thoughts on the relation between emotion and cognition. In: Approaches to Emotion, edited by K. R. Scherer and P. Ekman. Hillsdale, NJ: Erlbaum, 1984, p. 247–258.
 176. LeDoux, J. E. Cognition and emotion: processing functions and neural systems. In: Handbook of Cognitive Neuroscience, edited by M. S. Gazzaniga. New York: Plenum, 1984, p. 357–368.
 177. LeDoux, J. E. Brain, mind, and language. In: Brain and Mind, edited by D. A. Oakley. London: Methuen, 1985, p. 197–216.
 178. LeDoux, J. E. Neurobiology of emotion. In: Mind and Brain, edited by J. E. LeDoux and W. Hirst. New York: Cambridge Univ. Press, 1986, p. 301–354.
 179. LeDoux, J. E., J. Iwata, D. Pearl, and D. J. Reis. Disruption of auditory but not visual learning by destruction of intrinsic neurons in the medial geniculate body of the rat. Brain Res. 371: 395–399, 1986.
 180. LeDoux, J. E., D. A. Ruggiero, and D. J. Reis. Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J. Comp. Neurol. 242: 182–213, 1985.
 181. LeDoux, J. E., A. Sakaguchi, J. Iwata, and D. J. Reis. Interruption of projections from the medial geniculate body to an archi‐neostriatal field disrupts the classical conditioning of emotional responses to acoustic stimuli in the rat. Neuroscience 17: 615–627, 1986.
 182. LeDoux, J. E., A. Sakaguchi, and D. J. Reis. Alpha‐methyl‐DOPA dissociates hypertension, cardiovascular reactivity, and emotional behavior in spontaneously hypertensive rats. Brain Res. 259: 69–76, 1983.
 183. LeDoux, J. E., A. Sakaguchi, and D. J. Reis. Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned by acoustic stimuli. J. Neurosci. 4: 683–698, 1984.
 184. Liebman, J. M., D. J. Mayer, and J. C. Liebeskin. Mesencephalic central gray lesions and fear‐motivated behavior in rats. Brain Res. 23: 353–370, 1970.
 185. Lin, C. S., P. J. May, and W. C. Hall. Nonintralaminar thalamostriatal projection in the grey squirrel (Sciurus carolinensis) and tree shrew (Tupia glis). J. Comp. Neurol. 230: 33–46, 1984.
 186. Lindsley, D. B. Emotions. In: Handbook of Experimental Psychology, edited by S. S. Stevens. New York: Wiley, 1951, p. 473–516.
 187. Livingston, K. E., and A. Escobar. Anatomical bias of the limbic system concept. Arch. Neurol. 24: 17–21, 1971.
 188. Locke, S. The projections of the magnocellular medial geniculate body. J. Comp. Neurol. 116: 179–194, 1961.
 189. Loewy, A. D. Raphe pallidus and raphe obscurus projections to the intermediolateral cell column in the rat. Brain Res. 222: 129–133, 1981.
 190. Loewy, A. D., S. McKellar, and C. B. Saper. Direct projections from the A5 catecholamine cell group to the intermediolateral cell column. Brain Res. 174: 309–314, 1979.
 191. Lorente de Nä, R. Cerebral cortex: architecture, intracortical projections, motor projections. In: Physiology of the Nervous System, edited by J. F. Fulton. New York: Oxford Univ. Press, 1938, p. 291–340.
 192. Lubar, J. F. Effect of medial cortical lesions on the avoidance behavior of the cat. J. Comp. Physiol. Psychol. 58: 38–46, 1964.
 193. Lubar, J. F., and R. Numan. Behavioral and physiological studies of septal functions and related medial cortical structures. Behav. Biol. 8: 1–25, 1973.
 194. Lyon, M. The role of central midbrain structures in conditioned responding to aversive noise in the rat. J. Comp. Neurol. 122: 407–429, 1964.
 195. Machne, X., and J. P. Segundo. Unitary responses to afferent volleys in amygdaloid complex. J. Neurophysiol. 19: 232–240, 1956.
 196. MacLean, P. D. Psychosomatic disease and the visceral brain. Recent developments bearing on the Papez theory of emotion. Psychosom. Med. 11: 338–353, 1949.
 197. MacLean, P. D. Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr. Clin. Neurophysiol. 4: 407–418, 1952.
 198. MacLean, P. D. The triune brain, emotion and scientific bias. In: The Neurosciences: Second Study Program, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1970, p. 336–348.
 199. MacLean, P. D. Sensory and perceptive factors in emotional functions of the triune brain. In: Explaining Emotions, edited by A. O. Rorty. Berkeley: Univ. of California Press, 1980, p. 9–36.
 200. MacLean, P. D., and G. Creswell. Anatomical connections of the visual system with limbic cortex of monkey. J. Comp. Neurol. 138: 147–202, 1970.
 201. MacLean, P. D., and J. M. R. Delgado. Electrical and chemical stimulation of frontotemporal portion of limbic system in the waking animal. Electroencephalogr. Clin. Neurophysiol. 5: 91–100, 1953.
 202. Malmo, R. B. Activation: a neuropsychological dimension. Psychol. Bull. 66: 367–386, 1959.
 203. Mancia, G., and A. Zanchetti. Hypothalamic control of autonomic functions. In: Handbook of the Hypothalamus. Behavioral Studies of the Hypothalamus, edited by P. J. Morgane and J. Panksepp. New York: Dekker, 1981, vol. 3, p. 147–202.
 204. Mandler, G. Mind and Emotion. New York: Wiley, 1975.
 205. Marks, I. M. Fears and Phobias. London: Heinemann, 1969.
 206. Marley, E. Behavioral and electrophysiological effects of catecholamines. Pharmacol. Rev. 18: 753, 1966.
 207. Marshall, L. B., and O. A. Smith. Prefrontal control of conditioned suppression and associated cardiovascular variables in the monkey (Macaca mulatta) J. Comp. Physiol. Psychol. 88: 21–35, 1975.
 208. Martin, G. K., and R. D. Fitzgerald. Heart rate and somatomotor activity in rats during signalled escape and yoked classical conditioning. Physiol. Behav. 25: 519–526, 1980.
 209. Masserman, J. H. Is the hypothalamus a center of emotion? Psychosom. Med. 3: 3–25, 1941.
 210. Mehler, W. R., J. K. Pretorius, K. D. Phelan, and P. W. Mantyh. Diencephalic afferent connections of the amygdala in the squirrel monkey with observation and comments on the cat and rat. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier, 1981, p. 105–120.
 211. Mesulam, M. M., G. Van Hoesen, D. N. Pandya, and N. Geschwind. Limbic and sensory connections of the IPL in the rhesus monkey. Brain Res. 136: 393–414, 1977.
 212. Mettler, F. A. Corticofugal fiber connections of the cortex of Macaca mulatta. The occipital region. J. Comp. Neurol. 61: 221–256, 1935.
 213. Mishkin, M. Visual discrimination performance following partial ablations of the temporal lobe. II. Ventral surface versus hippocampus. J. Comp. Physiol. Psychol. 47: 187–193, 1954.
 214. Mishkin, M. Visual mechanisms beyond the striate cortex. In: Frontiers of Physiological Psychology, edited by R. N. Russel. New York: Academic, 1965, p. 93–119.
 215. Mishkin, M. Cortical visual areas and their interactions. In: Brain and Human Behavior, edited by A. G. Karczmar and J. C. Eccles. Heidelberg, FRG: Springer‐Verlag, 1972, p. 187–208.
 216. Mishkin, M. Memory in monkeys severely impaired by combined but not by separate removal of amygdala and hippocampus. Nature Lond. 273: 297–298, 1978.
 217. Mishkin, M. Analogous models for tactual and visual learning. Neuropsychologia 17: 139–151, 1979.
 218. Mishkin, M., and J. Aggleton. Multiple functional contributions of the amygdala in the monkey. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. Amsterdam: Elsevier, 1981, p. 409–420.
 219. Mondlock, J. M., and M. Davis. Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Soc. Neurosci. Abstr. 10: 133, 1984.
 220. Mondlock, J. M., and M. Davis. The role of various amygdala projection areas (bed nucleus of stria terminalis, rostral lateral hypothalamus, substantia nigra) in fear‐enhanced acoustic startle. Soc. Neurosci. Abstr. 11: 331, 1985.
 221. Morest, D. K. The lateral tegmental system of the midbrain and the medial geniculate body: study with Golgi and Nauta methods in cat. J. Anat. 99: 611–634, 1965.
 222. Morison, R. S., and E. W. Dempsey. A study of the thalamocortical relations. Am. J. Physiol. 135: 281–292, 1942.
 223. Myers, R. D. Behavioral changes after intradiencephalic chemical stimulation of cats with chronically implanted cannulae. Proc. East. Psychol. Assoc., 32nd Annu. Meet, 1961.
 224. Myers, R. D. Handbook of Drug and Chemical Stimulation of the Brain: Behavioral, Pharmacological, and Physiological Aspects. New York: Van Nostrand Reinhold, 1974.
 225. Myers, R. E. Role of prefrontal and anterior temporal cortex in social behavior and affect in monkeys. Acta Neurobiol. Exp. Warsaw 32: 567–579, 1973.
 226. Nagy, J., K. Zambo, and L. Decsi. Anti‐anxiety action of diazepam after intra‐amygdaloid application in the rat. Neuropharmacology 18: 573–576, 1979.
 227. Nakao, H. Emotional behavior produced by hypothalamic stimulation. Am. J. Physiol. 194: 411–418, 1958.
 228. Nauta, W. J. H. Hippocampal projections and related neural pathway to the mid‐brain in the cat. Brain 81: 319–341, 1958.
 229. Nauta, W. J. H. Some efferent connections of the prefrontal cortex in the monkey. In: The Frontal Granular Cortex and Behavior, edited by J. M. Warren and K. Akert. New York: McGraw‐Hill, 1964, p. 397–407.
 230. Nauta, W. J. H. The problem of the frontal lobe: a reinterpretation. J. Psychiatr. Res. 8: 167–187, 1971.
 231. Nauta, W. J. H. Neural associations of the frontal lobe. Aćta Neurobiol. Exp. Warsaw 32: 125–140, 1973.
 232. Nauta, W. J. H., and H. J. Karten. A general profile of the vertebrate brain, with sidelights on the ancestry of cerebral cortex. In: The Neurosciences: Second Study Program, edited by F. O. Schmitt. New York: Rockefeller Univ. Press, 1970, p. 7–26.
 233. Nauta, W. J., and H. G. J. M. Kuypers. Some ascending pathways in the brainstem reticular formation. In: Reticular Formation of the Brain, edited by H. H. Jasper and L. D. Proctor. Boston, MA: Little, Brown, 1958, p. 3–30.
 234. Nauta, H. J. W., M. B. Pritz, and R. J. Lasek. Afferents to the rat caudatoputamen studied with horseradish peroxidase: an evaluation of a retrograde neuroanatomical research method. Brain Res. 67: 219–238, 1974.
 235. O'Keefe, J., and H. Bouma. Complex sensory properties of certain amygdala units in the freely moving cat. Exp. Neurol. 23: 384–398, 1969.
 236. O'Keefe, J., and L. Nadel. The Hippocampus as a Cognitive Map. Oxford, UK: Clarendon, 1978.
 237. Oldfield, B. J., A. Hou‐Yu, and A.‐J. Silverman. A combined electron microscopic HRP and immunocytochemical study of the limbic projections to rat hypothalamic nuclei containing vasopressin and oxytocin neurons. J. Comp. Neurol. 231: 221–231, 1985.
 238. Ono, T., M. Fukuda, H. Nishino, K. Sasaki, and K.‐I. Muramoto. Amygdaloid neuronal responses to complex visual stimuli in an operant feeding situation in the monkey. Brain Res. Bull. 11: 515–518, 1983.
 239. Ottersen, O. P. Afferent connections to the amygdaloid complex of the rat with some observations in the cat. III. Afferents from the lower brainstem. J. Comp. Neurol. 202: 335–356, 1981.
 240. Ottersen, O. P., and Y. Ben‐Ari. Afferent connections to the amygdaloid complex of the rat and cat. J. Comp. Neurol. 187: 401–424, 1979.
 241. Pandya, D. N., and H. G. J. M. Kuypers. Cortico‐cortical connections in the rhesus monkey. Brain Res. 13: 13–36, 1969.
 242. Pandya, D. N., G. W. Van Hoesen, and M.‐M. Mesulam. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp. Brain Res. 42: 319–330, 1981.
 243. Panksepp, J. Hypothalamic integration of behavior. In: Handbook of the Hypothalamus. Behavioral Studies of the Hypothalamus, edited by P. J. Morgane and J. Panksepp. New York: Dekker, 1981, vol. 3, p. 289–431.
 244. Papez, J. W. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 79: 217–224, 1937.
 245. Pascoe, J., and B. S. Kapp. Electrophysiological characteristics of amygdaloid central nucleus neurons during pavlovian fear conditioning in the rabbit. Behav. Brain Res. 16: 117–133, 1985.
 246. Pechtel, C., T. MacAvoy, M. Levitt, A. Kling, and J. H. Masserman. The cingulates and behavior. J. Nerv. Ment. Dis. 126: 148–151, 1958.
 247. Peretz, E. The effects of lesions of the anterior cingulate cortex on the behavior of the rat. J. Comp. Physiol. Psychol. 33: 540–548, 1960.
 248. Peters, A., and E. G. Jones. The Cerebral Cortex. New York: Plenum, 1984.
 249. Pinto‐Hamuy, T., H. G. Santibáñez, and A. Rojas. Learning and retention of a visual conditioned response in neodecorticate rats. J. Comp. Physiol. Psychol. 56: 19–24, 1963.
 250. Plutchick, R. Emotion: A Psychoevolutionary Synthesis. New York: Harper & Row, 1980.
 251. Poggio, G. F., and V. B. Mountcastle. A study of the functional contributions of the lemniscal and spinothalamic systems to somatic sensibility. Bull. Johns Hopkins Hosp. 106: 266–316, 1960.
 252. Porrino, L. J., A. M. Crane, and P. C. Goldman‐Rakic. Direct and indirect pathways from the amygdala to the frontal lobe in rhesus monkeys. J. Comp. Neurol. 198: 121–136, 1981.
 253. Powell, E. W., and P. F. Robinson. Cinguloseptal projections in the squirrel monkey. Brain Res. 96: 310–316, 1975.
 254. Powell, G. E. Brain and Personality. London: Saxon, 1979.
 255. Pribram, K. H. Emotion: steps toward a neuropsychological theory. In: Neurophysiology and Emotion, edited by D. C. Glass. New York: Rockefeller Univ. Press, 1967, p. 3–40.
 256. Pribram, K. H., and M. Bagshaw. Further analysis of the temporal lobe syndrome utilizing frontotemporal ablations. J. Comp. Neurol. 99: 347–375, 1953.
 257. Radna, R. J., and P. D. MacLean. Vagal elicitation of respiratory‐type and other unit responses in striopallidum of squirrel monkeys. Brain Res. 213: 29–44, 1981.
 258. Radna, R. J., and P. D. MacLean. Vagal elicitation of respiratory‐type and other unit responses in basal limbic structures of squirrel monkeys. Brain Res. 213: 45–61, 1981.
 259. Raisman, G. The connections of the septum. Brain 89: 317–348, 1966.
 260. Ramón y Cajal, S. Histologie du système nerveux de l'homme et des vertèbres. Paris: Maloine, 1909.
 261. Ranson, S. W., and H. W. Magoun. The hypothalamus. Ergeb. Physiol. Biol. Chem. Exp. Pharmakol. 41: 56–163, 1939.
 262. Rapaport, D. Emotions and Memory. New York: International Univ. Press, 1950, p. 282.
 263. Redmond, D. E., Y. H. Huang, D. R. Snyder, and J. W. Maas. Behavioral effects of stimulation of the nucleus locus coeruleus in the stump‐tailed monkey Macaca arctoides. Brain Res. 116: 502–510, 1976.
 264. Reeves, A. G., and F. Plum. Hyperphagia, rage, and dementia accompanying a ventromedial hypothalamic neoplasm. Arch. Neurol. 20: 616–624, 1969.
 265. Reis, D. J. The relationship between brain norepinephrine and aggressive behavior. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 50: 266–296, 1972.
 266. Reis, D. J. Central neurotransmitters in aggression. Res. Publ. Assoc. Res. Nerv. Ment. Dis. 52: 119–148, 1974.
 267. Reis, D. J., and K. Fuxe. Brain norepinephrine: evidence that neuronal release is essential for sham rage behavior following brainstem transection in cat. Proc. Natl. Acad. Sci. USA 64: 108–112, 1969.
 268. Reis, D. J., and L.‐M. Gunne. Brain catecholamines: relation to defense reaction evoked by brain stimulation in cat. Science Wash. DC 149: 450–451, 1965.
 269. Reis, D. J., M. Miura, and L.‐M. Gunne. Brain catecholamines: relation to the defense reaction evoked by acute brainstem transection in cat. Science Wash. DC 156: 1768–1770, 1967.
 270. Reis, D. J., D. Moorhead, and G. F. Wooten. Differential regulation of blood flow to red and white muscle in sleep and defense behavior. Am. J. Physiol. 217: 541–546, 1969.
 271. Ricardo, J. A., and E. T. Koh. Anatomical evidence of direct projections from the nucleus of the solitary tract to the hypothalamus, amygdala, and other forebrain structures in the rat. Brain Res. 153: 1–26, 1978.
 272. Roberts, W. W., M. L. Steinberg, and L. W. Means. Hypothalamic mechanisms for sexual, aggressive, and other motivational behaviors in the opossum, Didelphis virginiana J. Comp. Physiol. Psychol. 64: 1–15, 1967.
 273. Rolls, E. T. Responses of amygdala neurons in the primate. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier, 1981, p. 383–393.
 274. Rolls, E. T., M. K. Sanghera, and A. Roper‐Hall. The latency of activation of neurons in the lateral hypothalamus and substantia innominata during feeding in the monkey. Brain Res. 164: 121–135, 1979.
 275. Romaniuk, A. Representation of aggression and flight reactions in the hypothalamus of the cat. Acta Biol. Exp. Warsaw 25: 177–186, 1965.
 276. Rose, J. E., and C. M. Woolsey. Cortical connections and functional organization of thalamic auditory system of cat. In: Biological and Biochemical Bases of Behavior, edited by H. F. Harlow and C. N. Woolsey. Madison: Univ. of Wisconsin Press, 1958, p. 127–150.
 277. Rosenkilde, C. E., R. H. Bauer, and J. M. Fuster. Single cell activity in ventral prefrontal cortex of behaving monkeys. Brain Res. 209: 375–394, 1981.
 278. Ross, C. A., D. A. Armstrong, D. A. Ruggiero, V. M. Pickel, T. H. Joh, and D. J. Reis. Adrenaline neurons in the rostral ventrolateral medulla innervate thoracic spinal cord: a combined immunocytochemical and retrograde transport demonstration. Neurosci. Lett. 25: 257–262, 1981.
 279. Ross, C. A., D. A. Ruggiero, D. H. Park, T. H. Joh, A. F. Sved, J. Fernandez‐Pardal, J. M. Saavedra, and D. J. Reis. Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J. Neurosci. 4: 474–494, 1984.
 280. Ross, C. A., D. A. Ruggiero, and D. J. Reis. Afferent projections to cardiovascular portions of the nucleus of the tractus solitarius in the rat. Brain Res. 223: 402–408, 1981.
 281. Rothmann, H. Zusammenfassender Bericht ueber den Rothmannschen grosshirnlosen Hund nach klinischer und anatomischer Untersuchung. Z. Gesamte Neurol. Psychiatr. 87: 247–313, 1923.
 282. Rotter, A., N. J. M. Birdsall, A. S. V. Burgen, P. M. Field, E. C. Hulme, and G. Raisman. Muscarinic receptors in the central nervous system of the rat. I. Technique for autoradiographic localization of the binding of 3H propylbenzilylcholine mustard and its distribution in the forebrain. Brain Res. Rev. 1: 141–165, 1979.
 283. Royce, J. Cells of origin of subcortical afferents to the caudate nucleus. A horseradish peroxidase study in the cat. Brain Res. 153: 465–475, 1978.
 284. Ruggiero, D. A., H. Baker, T. H. Joh, and D. J. Reis. Distribution of catecholamine neurons in the hypothalamus and preoptic region of mouse. J. Comp. Neurol. 223: 556–582, 1984.
 285. Ruggiero, D. A., C. A. Ross, M. Anwar, D. H. Park, T. H. Joh, and D. J. Reis. Distribution of neurons containing phenylethanolamine N‐methyltransferase in medulla and hypothalamus of rat. J. Comp. Neurol. 239: 127–154, 1985.
 286. Russchen, F. T. Amygdalopetal projections in the cat. II. Subcortical afferent connections. A study with retrograde tracing techniques. J. Comp. Neurol. 207: 157–176, 1982.
 287. Ryugo, D. K., and H. P. Killackey. Differential telencephalic projections of ventral and medial division of the medial geniculate body of the rat. Brain Res. 82: 173–177, 1974.
 288. Ryugo, D. K., and N. M. Weinberger. Differential plasticity of morphologically distinct neuron populations in the medial geniculate body of the cat during classical conditioning. Behav. Biol. 22: 275–301, 1978.
 289. Sakaguchi, A., J. E. LeDoux, and D. J. Reis. Sympathetic nerves and adrenal medulla: contributions to cardiovascular‐conditioned emotional responses in spontaneously hypertensive rats. Hypertension Dallas 5: 728–738, 1983.
 290. Sakaguchi, A., J. E. LeDoux, A. Sved, and D. J. Reis. Strain differences in fear between spontaneously hypertensive and normotensive rats is mediated by adrenal cortical hormones. Neurosci. Lett. 46: 59–64, 1984.
 291. Sanghera, M. K., E. T. Rolls, and A. Roper‐Hall. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol. 63: 610–626, 1979.
 292. Saper, C. B. Anatomical substrates for the hypothalamic control of the autonomic nervous system. In: Integrative Functions of the Autonomic Nervous System, edited by C. McC. Brooks, K. Koizumi, and A. Sato. Tokyo: Univ. of Tokyo Press, 1979, p. 333–341.
 293. Saper, C. B. Convergence of autonomic and limbic connections in the insular cortex of the rat. J. Comp. Neurol. 210: 163–173, 1982.
 294. Saper, C. B., A. D. Loewy, L. W. Swanson, and W. M. Cowan. Direct hypothalamo‐autonomic projections. Brain Res. 117: 305–312, 1976.
 295. Saper, C. B., L. W. Swanson, and W. M. Cowan. The efferent connections of the ventromedial nucleus of the hypothalamus of the rat. J. Comp. Neurol. 169: 409–442, 1976.
 296. Schachter, S. Cognition and centralist‐peripheralist controversies in motivation and emotion. In: Handbook of Psychobiology, edited by M. S. Gazzaniga and C. B. Blakemore. New York: Academic, 1975, p. 529–564.
 297. Schachter, S., and J. E. Singer. Cognitive, social, and physiological determinants of emotional state. Psychol. Rev. 69: 379–399, 1962.
 298. Schneiderman, N., D. H. van Dercar, A. L. Yehle, A. A. Manning, T. Golden, and E. Schneiderman. Vagal compensatory adjustment: relationship to heart‐rate classical conditioning in rabbits. J. Comp. Physiol. Psychol. 68: 175–183, 1969.
 299. Schreiner, L. H., and A. Kling. Behavioral changes following rhinencephalic injury in cat. J. Neurophysiol. 16: 643–659, 1953.
 300. Schwaber, J. S., B. S. Kapp, G. A. Higgins, and P. R. Rapp. Amygdaloid and basal forebrain direct connections with the nucleus of the solitary tract and the dorsal motor nucleus. J. Neurosci. 2: 1424–1438, 1982.
 301. Semmes, J., M. Mishkin, and R. K. Deuel. Somesthetic discrimination learning after partial nonsensorimotor lesions in monkeys. Cortex 5: 331–350, 1969.
 302. Shipley, M. T. Presubiculum afferents to the entorhinal area and the Papez circuit. Brain Res. 67: 162–168, 1974.
 303. Shipley, M. T. Insular cortex projection to the nucleus of the solitary tract and brainstem visceromotor regions in the mouse. Brain Res. Bull. 8: 138–148, 1982.
 304. Siegel, A., and H. Edinger. Neural control of aggression and rage behavior. In: Handbook of the Hypothalamus. Behavioral Studies of the Hypothalamus, edited by P. J. Morgane and J. Panksepp. New York: Dekker, 1981, vol. 3, p. 203–240.
 305. Siegel, A., H. Edinger, and A. Koo. Suppression of attack behavior in the cat by the prefrontal cortex: role of the mediodorsal thalamic nucleus. Brain Res. 127: 185–190, 1977.
 306. Siegel, A., H. Edinger, and H. Lowenthal. Effects of electrical stimulation of the medial aspect of the prefrontal cortex upon attack behavior in cats. Brain Res. 66: 467–479, 1974.
 307. Siegel, A., H. Edinger, and S. Ogami. The topographical organization of the hippocampal projection to the septal area: a comparative neuroanatomical analysis in the gerbil, rat, rabbit, and cat. J. Comp. Neurol. 157: 359–378, 1974.
 308. Siegel, A., and D. Skog. Effects of electrical stimulation of the septum upon attack behavior elicited from the hypothalamus in the cat. Brain Res. 23: 371–380, 1970.
 309. Singhal, R. L., and J. I. Telner. A perspective: psycho‐pharmacological aspects of aggression in animals and man. Psychiatr. J. Univ. Ottawa 8: 145–153, 1983.
 310. Skedsvold, P., and D. A. Powell. Parasagittal knife cuts lateral to the bed nucleus of the stria terminalis and medial to the amygdala severely attenuate the cardiac orienting reflex and classically conditioned bradycardia in the rabbit. Soc. Neurosci. Abstr. 11: 1111, 1985.
 311. Smith, G. P. Adrenal hormones and emotional behavior. In: Progress in Physiological Psychology, edited by E. Stellar and J. M. Sprague. New York: Academic, 1973, vol. 5, p. 299–351.
 312. Smith, O. A., C. A. Astley, J. L. De Vito, J. M. Stein, and R. E. Walsh. Functional analysis of hypothalamic control of the cardiovascular responses accompanying emotional behavior. Federation Proc. 29: 2487–2494, 1980.
 313. Smith, O. A., and J. L. De Vito. Central neural integration for the control of autonomic responses associated with emotion. Annu. Rev. Neurosci. 7: 43–65, 1984.
 314. Stebbins, W. C., and O. A. Smith. Cardiovascular concomitants of the conditioned emotional response in the monkey. Science Wash. DC 144: 881–883, 1964.
 315. Sudakov, K., P. D. MacLean, A. Reeves, and R. Marino. Unit study of exteroceptive inputs to claustrocortex in awake, sitting, squirrel monkey. Brain Res. 28: 19–34, 1971.
 316. Sumal, K. K., W. W. Blessing, T. H. Joh, D. J. Reis, and V. M. Pickel. Ultrastructural evidence that vagal afferents terminate on catecholaminergic neurons in the nucleus tractus solitarius. Soc. Neurosci. Abstr. 8: 429, 1982.
 317. Sunshine, J., and M. Mishkin. A visual‐limbic pathway serving visual associative functions in rhesus monkeys. (Abstract) Federation Proc. 34: 440, 1975.
 318. Swanson, L. W. The hippocampus and the concept of the limbic system. In: Neurobiology of the Hippocampus, edited by W. Seifert. London: Academic, 1983, p. 3–19.
 319. Swanson, L. W., and W. M. Cowan. Autoradiographic studies of the development and connections of the septal area in the rat. In: The Septal Nuclei, edited by J. F. De France. New York: Plenum, 1976, p. 37–64.
 320. Swanson, L. W., and W. M. Cowan. An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat. J. Comp. Neurol. 172: 49–84, 1977.
 321. Swanson, L. W., and W. M. Cowan. The connections of the septal region in the rat. J. Comp. Neurol. 186: 621–656, 1979.
 322. Swanson, L. W., and G. J. Mogenson. Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptive behavior. Brain Res. Rev. 3: 1–34, 1981.
 323. Swanson, L. W., G. J. Mogenson, C. R. Gerfen, and P. Robinson. Evidence for a projection from the lateral preoptic area and substantia innominata to the “mesencephalic locomotor region” in the rat. Brain Res. 295: 161–178, 1984.
 324. Swanson, L., and P. E. Sawchenko. Hypothalamic integration: organization of the paraventricular and supraoptic nuclei. Annu. Rev. Neurosci. 6: 269–324, 1983.
 325. Ter Horst, G. J., P. G. M. Luiten, and F. Kuipers. Descending pathways from hypothalamus to dorsal motor vagus and ambiguous nuclei in the rat. J. Auton. Nerv. Syst. 11: 59–75, 1984.
 326. Thoa, B., B. Eichelman, and K. Y. Ng. Shock‐induced aggression: effects of 6‐hydroxydopamine and other pharmacological agents. Brain Res. 43: 467–475, 1972.
 327. Thompson, A. F., and A. E. Walker. Behavioral alterations following lesions of the medial surface of the temporal lobe. Arch. Neurol. Psychiatry 65: 251–252, 1951.
 328. Thompson, R. A Behavioral Atlas of the Rat Brain. New York: Oxford Univ. Press, 1978.
 329. Thompson, R. F., T. W. Berger, and J. Madden IV. Cellular processes of learning and memory in the mammalian CNS. Annu. Rev. Neurosci. 6: 447–491, 1983.
 330. Thorpe, S. J., E. T. Rolls, and S. Maddison. The orbitofrontal cortex: neuronal activity in the behaving monkey. Exp. Brain Res. 490: 93–115, 1983.
 331. Timms, R. J. Cortical inhibition and facilitation of the defence reaction. J. Physiol. Lond. 266: 98P–99P, 1977.
 332. Tomkins, S. S. Affect, Imagery, Consciousness. New York: Springer‐Verlag, 1962.
 333. Tsaltas, E., J. A. Gray, and M. Fillenz. Alleviation of response suppression to conditioned aversive stimuli by lesions of the dorsal noradrenergic bundle. Behav. Neurosci. 13: 115–127, 1984.
 334. Turner, B. The cortical sequence and terminal distribution of sensory related afferents to the amygdaloid complex of the rat and monkey. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier, 1981.
 335. Turner, B., K. C. Gupta, and M. Mishkin. The locus and cytoarchitecture of the projection areas of the olfactory bulb in Macaca mulatta. J. Comp. Neurol. 177: 381–396, 1978.
 336. Turner, B., and M. Herkenham. An autoradiographic study of thalamo‐amygdaloid connections in the rat (Abstract). Anat. Rec. 199: 260A, 1981.
 337. Turner, B. H., M. Mishkin, and M. Knapp. Organization of the amygdalopetal projections from modality‐specific cortical association areas in the monkey. J. Comp. Neurol. 191: 515–543, 1980.
 338. Turner, B. H., and J. Zimmer. The architecture and some of the interconnections of the rat amygdala and lateral periallocortex. J. Comp. Neurol. 227: 540–557, 1984.
 339. Ursin, H., and B. R. Kaada. Function localization within the amygdaloid complex in the cat. Electroencephalogr. Clin. Neurophysiol. 12: 1–20, 1960.
 340. Uvnäs, B. Central cardiovascular control. In: Handbook of Physiology. Neurophysiology, edited by J. Field and H. W. Magoun. Washington, DC: Am. Physiol. Soc., 1960, sect. 1, vol. II, chapt. 44, p. 1131–1162.
 341. Valverde, F. Amygdaloid projection field. In: Progress in Brain Research. The Rhinencephalon and Related Structures, edited by W. Bargmann and J. P. Schadé. Amsterdam: Elsevier, 1963, vol. 3, p. 20–30.
 342. Valzelli, L. Psychobiology of Aggression and Violence. New York: Raven, 1981.
 343. Van der Kooy, D., L. Y. Koda, J. F. McGinty, C. R. Gerfen, and F. E. Bloom. The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J. Comp. Neurol. 224: 1–24, 1984.
 344. Van der Kooy, D., J. F. McGinty, L. Y. Koda, C. R. Gerfen, and F. E. Bloom. Visceral cortex: a direct connection from prefrontal cortex to the solitary nucleus in the rat. Neurosci. Lett. 33: 123–127, 1982.
 345. Van Hoesen, G. W., D. Benjamin, and A. K. Afifi. Limbic cortical input to area 6 in the monkey. Anat. Rec. 199: 262–263, 1981.
 346. Van Hoesen, G. W., and D. N. Pandya. Some connections of the entorhinal (area 28) and perirhinal (area 35) cortices of the rhesus monkey. III. Efferent connections. Brain Res. 95: 39–59, 1975.
 347. Van Hoesen, G. W., D. N. Pandya, and N. Butters. Cortical afferents to the entorhinal cortex of the rhesus monkey. Science Wash. DC 175: 1471–1473, 1972.
 348. Van Hoesen, G. W., E. H. Yeterian, and R. Lavizza‐Mourey. Widespread corticostriate projections from temporal cortex in monkey. J. Comp. Neurol. 199: 205–219, 1981.
 349. Vazquez, A. J., and J. E. P. Toman. Some interactions of nicotine with other drugs upon central nervous function. Ann. NY Acad. Sci. 142: 201–215, 1967.
 350. Veening, J. G. Subcortical afferents of the amygdaloid complex in the rat: an HRP study. Neurosci. Lett. 8: 197–202, 1978.
 351. Vinogradova, O. S. Functional organization of the limbic system in the process of registration of information: facts and hypotheses. In: The Hippocampus, edited by R. L. Issacson and K. H. Pribram. New York: Plenum, 1975, p. 3–69.
 352. Vogt, B. A., and M. W. Miller. Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices. J. Comp. Neurol. 216: 192–210, 1983.
 353. Von Bonin, G., H. W. Garol, and W. S. McCulloch. The functional organization of the occipital lobe. Biol. Symp. 7: 165–192, 1942.
 354. Warembourg, M. Localization of steroid receptors in the amygdaloid complex. In: The Amygdaloid Complex, edited by Y. Ben‐Ari. New York: Elsevier, 1981, p. 203–208.
 355. Wasman, M., and J. P. Flynn. Directed attack elicted from hypothalamus. Arch. Neurol. 6: 220–227, 1962.
 356. Weiskrantz, L. Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J. Comp. Physiol. Psychol. 49: 381–391, 1956.
 357. Weiskrantz, L. Experiments on the r.n.s (real nervous system) and monkey memory. Proc. R. Soc. Lond. B Biol. Sci. 171: 335–352, 1968.
 358. Weiss, J. M., B. S. McEwen, M. T. Silva, and M. Kalkui. Pituitary‐adrenal alterations and fear responding. Am. J. Physiol. 218: 864–868, 1971.
 359. Wendt, J. R., and D. Albe‐Fessard. Sensory responses of the amygdala with special reference to somatic afferent pathways. Colloq. Int. Cent. Natl. Rech. Sci. 107: 171–200, 1962.
 360. Wheatley, M. E. The hypothalamus and affective behavior in cats: a study of the effects of experimental lesions, with anatomic correlations. Arch. Neurol. Psychiatry 52: 296–316, 1944.
 361. White, L. E. A morphologic concept of the limbic lobe. In: International Review of Neurobiology, edited by C. C. Pfeiffer and J. R. Smythies. New York: Academic, 1965, vol. 8, p. 1–34.
 362. Whitlock, D. G., and W. J. H. Nauta. Subcortical projections from the temporal neocortex in Macaca mulatta. J. Comp. Neurol. 106: 183–212, 1956.
 363. Winer, J., and D. R. Morest. The medial division of the medial geniculate body of the cat: implications for thalamic organization. J. Neurosci. 3: 2629–2651, 1983.
 364. Woodruff, M. L., R. H. Baisden, and J. R. Douglas. Effects of cingulate and fornix lesions on emotional behavior in rabbits (Oryctolague cunculus). Exp. Neurol. 74: 379–395, 1981.
 365. Woodworth, R. S., and C. S. Sherrington. A pseudoaffective reflex and its spinal path. J. Physiol. Lond. 31: 234–243, 1904.
 366. Yakovlev, P. I. Motility, behavior, and the brain: stereodynamic organization and neural coordinates of behavior. J. Nerv. Ment. Dis. 107: 313–335, 1948.
 367. Young, W. S., III, and M. J. Kuhar. Radiohistochemical localization of benzodiazepine receptors in rat brain. J. Pharmacol. Exp. Ther. 212: 337–346, 1980.
 368. Zaborszky, L. Afferent connections of the medial basal hypothalamus. Adv. Anat. Embryol. Cell Biol. 69: 1–107, 1982.
 369. Zajonc, R. B. Feeling and thinking: preferences need no inferences. Am. Psychol. 35: 151–175, 1980.
 370. Zajonc, R. B. The interaction of affect and cognition. In: Approaches to Emotion: A Book of Readings, edited by K. R. Scherer and P. Ekman. Hillsdale, NJ: Erlbaum, 1984, p. 239–246.
 371. Zajonc, R. B. On primacy of affect. In: Approaches to Emotion: A Book of Readings, edited by K. R. Scherer and P. Ekman. Hillsdale, NJ: Erlbaum, 1984, p. 259–270.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Joseph E. LeDoux. Emotion. Compr Physiol 2011, Supplement 5: Handbook of Physiology, The Nervous System, Higher Functions of the Brain: 419-459. First published in print 1987. doi: 10.1002/cphy.cp010510