Comprehensive Physiology Wiley Online Library

Cellular Basis of Physiological and Pathological Myocardial Growth

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Morphometric Analysis of Cell Size and Number in the Ventricular Myocardium
1.1 Myocyte Dimensional Properties and Number: Methodological Considerations
1.2 Confocal Microscopic Measurements of Myocyte Cell Volume
2 Morphometric Analysis of the Coronary Vasculature
3 Physiological Myocardial Growth: Maturation of the Heart
3.1 Ventricular Remodeling
3.2 Myocyte Adaptations
3.3 Cytoplasmic Adaptations in Myocytes
3.4 Capillary Adaptations
3.5 Conclusions
4 Aging of the Heart
4.1 Aging and Ventricular Remodeling
4.2 Aging and Myocyte Number
4.3 Aging and Myocyte Reactive Hypertrophy
4.4 Aging and the Coronary Arterial and Capillary Tree
4.5 Conclusions
5 Pressure and Volume Overload Hypertrophy
5.1 Cardiac Hypertrophy and Ventricular Remodeling
5.2 Cardiac Hypertrophy and Myocyte Size, Shape, and Number
5.3 Cardiac Hypertrophy and Volume Composition of Myocytes
5.4 Cardiac Hypertrophy and the Coronary Arterial and Capillary Tree
5.5 Conclusions
6 Ischemic Cardiomyopathy
6.1 Ischemic Cardiomyopathy and Ventricular Remodeling
6.2 Ischemic Cardiomyopathy, Myocyte Cell Loss, and Ventricular Function
6.3 Ischemic Cardiomyopathy and Myocyte Cellular Hypertrophy and Hyperplasia
6.4 Ischemic Cardiomyopathy and Volume Composition of Myocytes
6.5 Ischemic Cardiomyopathy and the Coronary Capillary Tree
6.6 null
Figure 1. Figure 1.

Schematic graph of equation 7.

Figure 2. Figure 2.

Sections of plastic‐embedded tissue of ventricular myocardium with myofibers oriented transversely (A) and longitudinally (B).

several myocyte nuclear profiles (arrows) are seen in the center of transversely sectioned cells.

Mid‐sections of myocyte nuclei are shown. The nuclear envelope is defined at both ends, and clusters of mitochondria are visible at the nuclear poles. Methylene blue and safranin staining.

A and B: bars = 10 μm.

Figure 3. Figure 3.

Three‐dimensional optical section reconstruction by confocal microscopy of a left ventricular myocyte from a dog heart and

a right ventricular myocyte from a rat heart.

Fluorescein and propidium iodide staining. A and B: bars = 50 μm.

Figure 4. Figure 4.

Confocal microscopic images of cross‐sectional areas of two rat ventricular myocytes on the surface of a microscopic slide. These images were obtained by three‐dimensional optical reconstruction in the Z‐plane of the cell. A and B: bars = 10 μm.

Figure 5. Figure 5.

Schematic representation of a vessel profile in the myocardium and

its projection on sectioning plane.

L, major axis; D, minor axis. See text for details.

Figure 6. Figure 6.

Effects of postnatal development on wall thickness, mural number of myocytes, myocyte diameter, and aggregate length of myocytes in the left ventricle of the rat heart. Results are presented as mean ± SD.

Figure 7. Figure 7.

Effects of postnatal development on the capillary properties implicated in tissue oxygenation in the rat left ventricle. Results are presented as mean ± SD.

Figure 8. Figure 8.

Light microscopic tissue sections of methacrylate‐embedded left ventricular myocardium collected from a 74‐year‐old woman.

Two small foci of replacement fibrosis located in the subendocardial region of the wall.

An area of interstitial fibrosis separating individual myocytes. Hematoxylin and eosin staining.

A: bar = 50 μm. B: bar = 10 μm.

Figure 9. Figure 9.

Effects of aging on the number of mononucleated and binucleated myocytes in the left and right ventricles of the male and female heart. Male heart: left ventricle = mononucleated myocytes: y = 6.4 − 0.05 ×; r = 0.84, p = 0.0001; binucleated myocytes: y = 0.3 − 0.005 ×; r = 0.63; p = 0.0001; right ventricle = mononucleated myocytes: y = 2.2 − 0.02 ×; r = 0.84; p = 0.0001; binucleated myocytes: y = 0.16 + 0.001 ×; r = 0.45; p = 0.0003. Female heart: left ventricle = mononucleated myocytes: y = 3.8 − 0.002 ×; r = 0.09; p = 0.5; binucleated myocytes: y = 0.7 − 0.0004 ×; r = 0.08; p = 0.5; right ventricle: mononucleated myocytes: y = 1.07 − 0.0002 ×; r = 0.03; p = 0.82; binucleated myocytes: y = 0.36 − 0.00008 ×; r = 0.03; p = 0.82.

Figure 10. Figure 10.

Effects of aging on myocyte cell volume in the left and right ventricles of the female and male human heart. Female heart: left ventricle: y = 19,718 + 0.5 X; r = 0.0049; p = 0.97; Right ventricle: y = 17,204 + 10.6 X; r = 0.057; p = 0.68. Male heart; left ventricle: y = 19,406 + 158 X; r = 0.45; p = 0.001; Right ventricle: y = 15,106 + 167 X; r = 0.63; p = 0.0001.

Figure 11. Figure 11.

Changes in the volume fraction of capillary lumen, capillary luminal surface per unit volume of myocytes, and diffusion distance for oxygen in the left and right ventricular myocardium of Sprague‐Dawley rats at 3, 11, and 19 months of age. *Indicates a statistically significant difference from 3‐month‐old rats. **Indicates a statistically significant difference from 11‐month‐old rats. Results are presented as mean ± SD.

Figure 12. Figure 12.

Effects of age on length density of arterioles 6–20 μm in diameter in the principal layers of the left ventricular wall. *Indicates a statistically significant difference from 4‐month‐old rats. **Indicates a statistically significant difference from 12‐month‐old rats. Results are presented as mean ± SD.

Figure 13. Figure 13.

Mitotic index in myocytes from control hearts (Controls), and hearts affected by ischemic cardiomyopathy (IC) and idiopathic dilated cardiomyopathy (IDC). Results are presented as means ±SD. *Indicates a statistically significant difference from controls.

Reproduced from 243; copyright © 1998 National Academy of Sciences, USA
Figure 14. Figure 14.

Papillary muscle hypertrophy, eight days after abdominal aortic stenosis (AAS) in rats. Relationships between the anatomical characteristics of the papillary muscle and the structural properties of myocytes. *Indicates a statistically significant difference between sham‐operated (SO) and aorticbanded rats. Results are presented as mean ± SD.

Figure 15. Figure 15.

Effects of chronic pulmonary artery banding (PAB) on wall thickness, myocyte diameter, and transmural number of myocytes in the right ventricular wall. *Indicates a statistically significant difference between sham operated (SO) and PAB rats. Results are presented as mean ± SD

Figure 16. Figure 16.

Effects of chronic pulmonary artery banding (PAB) on the ratio of capillary profiles to myocyte profiles, number of capillaries across the wall, and aggregate length of capillaries in the right ventricle. * Indicates a statistically significant difference between sham‐operated (SO) and PAB rats. Results are presented as mean ± SD

Figure 17. Figure 17.

Effects of occlusion of the left main coronary artery on left ventricular chamber diameter, ventricular wall (open bars), and septal (hatched bars) thickness, and number of myocytes and capillaries across the wall and septum. * Indicates a statistically significant difference between infarcted and sham operated (SO) rats. Results are presented as mean ± SD.

Figure 18. Figure 18.

Effects of chronic coronary artery narrowing on left ventricular wall thickness and chamber diameter, at six subsequent levels from the basal to the apical region of the heart. Sham‐operated animals (open circles). Coronary artery narrowed animals with left ventricular failure (solid circles). *Indicates a value that is statistically significantly different from the corresponding value in sham‐operated rats. Results are presented as mean ± SD.

Figure 19. Figure 19.

Ischemic cardiomyopathy in humans: Relative amounts of segmental, replacement, and interstitial fibrosis in the myocardium. *Indicates a value that is statistically significantly different from the corresponding value in control hearts. Results are presented as mean ± SD.

Figure 20. Figure 20.

Ischemic cardiomyopathy in humans: Total number of myocyte nuclei in the ventricle. LV: Left Ventricle; RV: Right Ventricle. *Indicates a value that is statistically significant different from the corresponding value in control hearts. Results are presented as mean ± SD.

Figure 21. Figure 21.

Graphic comparison of myocyte cell volume measured in the border and remote regions of infarcted left ventricles. The upper linear regression line corresponds to the data collected in the border zone, whereas the lower regression line represents the values obtained in the remote region. Comparison of the two regression lines demonstrates a statistically significant difference between the two slopes (p < 0.001).

Figure 22. Figure 22.

Effects of coronary artery narrowing (CAN) on the total number of mononucleated and binucleated myocytes in the right and left ventricles. *Indicates a statistically significant difference between CAN and sham‐operated (SO) rats. Results are presented as mean ± SD.



Figure 1.

Schematic graph of equation 7.



Figure 2.

Sections of plastic‐embedded tissue of ventricular myocardium with myofibers oriented transversely (A) and longitudinally (B).

several myocyte nuclear profiles (arrows) are seen in the center of transversely sectioned cells.

Mid‐sections of myocyte nuclei are shown. The nuclear envelope is defined at both ends, and clusters of mitochondria are visible at the nuclear poles. Methylene blue and safranin staining.

A and B: bars = 10 μm.



Figure 3.

Three‐dimensional optical section reconstruction by confocal microscopy of a left ventricular myocyte from a dog heart and

a right ventricular myocyte from a rat heart.

Fluorescein and propidium iodide staining. A and B: bars = 50 μm.



Figure 4.

Confocal microscopic images of cross‐sectional areas of two rat ventricular myocytes on the surface of a microscopic slide. These images were obtained by three‐dimensional optical reconstruction in the Z‐plane of the cell. A and B: bars = 10 μm.



Figure 5.

Schematic representation of a vessel profile in the myocardium and

its projection on sectioning plane.

L, major axis; D, minor axis. See text for details.



Figure 6.

Effects of postnatal development on wall thickness, mural number of myocytes, myocyte diameter, and aggregate length of myocytes in the left ventricle of the rat heart. Results are presented as mean ± SD.



Figure 7.

Effects of postnatal development on the capillary properties implicated in tissue oxygenation in the rat left ventricle. Results are presented as mean ± SD.



Figure 8.

Light microscopic tissue sections of methacrylate‐embedded left ventricular myocardium collected from a 74‐year‐old woman.

Two small foci of replacement fibrosis located in the subendocardial region of the wall.

An area of interstitial fibrosis separating individual myocytes. Hematoxylin and eosin staining.

A: bar = 50 μm. B: bar = 10 μm.



Figure 9.

Effects of aging on the number of mononucleated and binucleated myocytes in the left and right ventricles of the male and female heart. Male heart: left ventricle = mononucleated myocytes: y = 6.4 − 0.05 ×; r = 0.84, p = 0.0001; binucleated myocytes: y = 0.3 − 0.005 ×; r = 0.63; p = 0.0001; right ventricle = mononucleated myocytes: y = 2.2 − 0.02 ×; r = 0.84; p = 0.0001; binucleated myocytes: y = 0.16 + 0.001 ×; r = 0.45; p = 0.0003. Female heart: left ventricle = mononucleated myocytes: y = 3.8 − 0.002 ×; r = 0.09; p = 0.5; binucleated myocytes: y = 0.7 − 0.0004 ×; r = 0.08; p = 0.5; right ventricle: mononucleated myocytes: y = 1.07 − 0.0002 ×; r = 0.03; p = 0.82; binucleated myocytes: y = 0.36 − 0.00008 ×; r = 0.03; p = 0.82.



Figure 10.

Effects of aging on myocyte cell volume in the left and right ventricles of the female and male human heart. Female heart: left ventricle: y = 19,718 + 0.5 X; r = 0.0049; p = 0.97; Right ventricle: y = 17,204 + 10.6 X; r = 0.057; p = 0.68. Male heart; left ventricle: y = 19,406 + 158 X; r = 0.45; p = 0.001; Right ventricle: y = 15,106 + 167 X; r = 0.63; p = 0.0001.



Figure 11.

Changes in the volume fraction of capillary lumen, capillary luminal surface per unit volume of myocytes, and diffusion distance for oxygen in the left and right ventricular myocardium of Sprague‐Dawley rats at 3, 11, and 19 months of age. *Indicates a statistically significant difference from 3‐month‐old rats. **Indicates a statistically significant difference from 11‐month‐old rats. Results are presented as mean ± SD.



Figure 12.

Effects of age on length density of arterioles 6–20 μm in diameter in the principal layers of the left ventricular wall. *Indicates a statistically significant difference from 4‐month‐old rats. **Indicates a statistically significant difference from 12‐month‐old rats. Results are presented as mean ± SD.



Figure 13.

Mitotic index in myocytes from control hearts (Controls), and hearts affected by ischemic cardiomyopathy (IC) and idiopathic dilated cardiomyopathy (IDC). Results are presented as means ±SD. *Indicates a statistically significant difference from controls.

Reproduced from 243; copyright © 1998 National Academy of Sciences, USA


Figure 14.

Papillary muscle hypertrophy, eight days after abdominal aortic stenosis (AAS) in rats. Relationships between the anatomical characteristics of the papillary muscle and the structural properties of myocytes. *Indicates a statistically significant difference between sham‐operated (SO) and aorticbanded rats. Results are presented as mean ± SD.



Figure 15.

Effects of chronic pulmonary artery banding (PAB) on wall thickness, myocyte diameter, and transmural number of myocytes in the right ventricular wall. *Indicates a statistically significant difference between sham operated (SO) and PAB rats. Results are presented as mean ± SD



Figure 16.

Effects of chronic pulmonary artery banding (PAB) on the ratio of capillary profiles to myocyte profiles, number of capillaries across the wall, and aggregate length of capillaries in the right ventricle. * Indicates a statistically significant difference between sham‐operated (SO) and PAB rats. Results are presented as mean ± SD



Figure 17.

Effects of occlusion of the left main coronary artery on left ventricular chamber diameter, ventricular wall (open bars), and septal (hatched bars) thickness, and number of myocytes and capillaries across the wall and septum. * Indicates a statistically significant difference between infarcted and sham operated (SO) rats. Results are presented as mean ± SD.



Figure 18.

Effects of chronic coronary artery narrowing on left ventricular wall thickness and chamber diameter, at six subsequent levels from the basal to the apical region of the heart. Sham‐operated animals (open circles). Coronary artery narrowed animals with left ventricular failure (solid circles). *Indicates a value that is statistically significantly different from the corresponding value in sham‐operated rats. Results are presented as mean ± SD.



Figure 19.

Ischemic cardiomyopathy in humans: Relative amounts of segmental, replacement, and interstitial fibrosis in the myocardium. *Indicates a value that is statistically significantly different from the corresponding value in control hearts. Results are presented as mean ± SD.



Figure 20.

Ischemic cardiomyopathy in humans: Total number of myocyte nuclei in the ventricle. LV: Left Ventricle; RV: Right Ventricle. *Indicates a value that is statistically significant different from the corresponding value in control hearts. Results are presented as mean ± SD.



Figure 21.

Graphic comparison of myocyte cell volume measured in the border and remote regions of infarcted left ventricles. The upper linear regression line corresponds to the data collected in the border zone, whereas the lower regression line represents the values obtained in the remote region. Comparison of the two regression lines demonstrates a statistically significant difference between the two slopes (p < 0.001).



Figure 22.

Effects of coronary artery narrowing (CAN) on the total number of mononucleated and binucleated myocytes in the right and left ventricles. *Indicates a statistically significant difference between CAN and sham‐operated (SO) rats. Results are presented as mean ± SD.

References
 1. Adler, C. P. Polyploidization and augmentation of heart muscle cells during normal cardiac growth and in cardiac hypertrophy. In: The Development and Regenerative Potential of Cardiac Muscle, edited by J. O. Oberpriller, J. O. Oberpriller, and A. Mauro. New York: Harwood Academic Publishers, 1991: 227–252.
 2. Adler, C. P. and U. Costabel. Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics. Recent Adv. Stud. Cardiol. Struct. Metab. 6: 343–355, 1975.
 3. Adler, C. P. and U. Costabel. Myocardial DNA and cell number under the influence of cytostatics. I. Post‐mortem investigations of human hearts. Virchows. Arch. Cell Pathol. 32: 109–125, 1980.
 4. Adler, C. P. and H. Friedburg. Myocardial DNA content, ploidy level and cell number in geriatric hearts: post mortem examination of human myocardium in old age. J. Mol. Cell. Cardiol. 18: 39–53, 1986.
 5. Adler, C. P. and W. Sandritter. Numerische Hyperplasie der Herzmuskelzellenbei Herzhypertrophie. Deutsch. Med. Wochenschr. 48: 1895–1897, 1971.
 6. Aherne, W. A. and M. S. Dunnill. Morphometry. London, Edward Arnold, 1982.
 7. Albin, R., R. T. Dowell, R. Zak, and M. Rabinowitz. Synthesis and degradation of mitochondrial components in hypertrophied rat heart. Biochem. J. 136: 629–637, 1973.
 8. Anderson, P. G., S. P. Bishop, and S. B. Digerness. Vascular remodeling and improvement of coronary reserve after hydralazine treatment in spontaneously hypertensive rats. Circ. Res. 64: 1127–1136, 1989.
 9. Anversa, P., C. Beghi, Y. Kikkawa, and G. Olivetti. Myocardial infarction in rats: infarct size, myocyte hypertrophy and capillary growth. Circ. Res. 58: 26–37, 1986.
 10. Anversa, P., C. Beghi, V. Levicky, S. L. McDonald, and Y. Kikkawa. Morphometry of right ventricular hypertrophy induced by strenuous exercise in rat. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H856–H861, 1982.
 11. Anversa, P., C. Beghi, V. Levicky, S. L. McDonald, Y. Kikkawa, and G. Olivetti. Effects of strenuous exercise on the quantitative morphology of left ventricular myocardium in the rat. J. Mol. Cell. Cardiol. 17: 585–595, 1985.
 12. Anversa, P., C. Beghi, S. L. McDonald, V. Levicky, Y. Kikkawa, and G. Olivetti. Morphometry of right ventricular hypertrophy induced by myocardial infarction in the rat. Am. J. Pathol. 116: 504–513, 1984.
 13. Anversa, P. and J. M. Capasso. Cardiac hypertrophy and ventricular remodeling. Lab. Invest. 64: 441–445, 1991.
 14. Anversa, P. and J. M. Capasso. Loss of intermediate‐sized coronary arteries and capillary proliferation following left ventricular failure in rats. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H1552–H1560, 1991.
 15. Anversa, P., D. Fitzpatrick, S. Argani, and J. M. Capasso. Myocyte mitotic division in the aging mammalian rat heart. Circ. Res. 69: 1159–1164, 1991.
 16. Anversa, P., M. Hagopian, and A. V. Loud. Quantitative radioautographic localization of protein synthesis in experimental cardiac hypertrophy. Lab. Invest. 29: 282–292, 1973.
 17. Anversa, P., B. Hiler, R. Ricci, G. Guideri, and G. Olivetti. Myocyte loss and myocyte hypertrophy in the aging rat heart. J. Am. Coll. Cardiol. 8: 1441–1448, 1986.
 18. Anversa, P. and J. Kajstura. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ. Res. 83: 1–14, 1998.
 19. Anversa, P., J. Kajstura, W. Cheng, K. Reiss, E. Cigola, and G. Olivetti. Insulin‐like growth factor‐1 and myocyte growth: the danger of a dogma. Part I. Postnatal myocardial development: normal growth. Cardiovasc. Res. 32: 219–225, 1996.
 20. Anversa, P., J. Kajstura, W. Cheng, K. Reiss, E. Cigola, and G. Olivetti. Insulin‐like growth factor‐1 and myocyte growth: the danger of a dogma. Part II. Induced myocardial growth: pathologic hypertrophy. Cardiovasc. Res. 32: 484–495, 1996.
 21. Anversa, P., J. Kajstura, and G. Olivetti. Myocyte death in heart failure. Curr. Opin. Cardiol. 11: 245–251, 1996.
 22. Anversa, P., J. Kajstura, K. Reiss, F. Quaini, A. Baldini, G. Olivetti, and E. H. Sonnenblick. Ischemic cardiomyopathy: myocyte cell loss, myocyte cellular hypertrophy, and myocyte cellular hyperplasia. In: Annals of the New York Academy of Sciences, edited by W. C. Claycomb and P. Di Nardo. New York: The New York Academy of Sciences, 1995: 47–64.
 23. Anversa, P., A. Leri, C. A. Beltrami, S. Guerra, and J. Kajstura. Myocyte death and growth in the failing heart. Lab. Invest. 78: 767–786, 1998.
 24. Anversa, P., V. Levicky, C. Beghi, S. L. McDonald, and Y. Kikkawa. Morphometry of exercise‐induced right ventricular hypertrophy in the rat. Circ. Res. 52: 57–64, 1983.
 25. Anversa, P., P. Li, A. Malhotra, X. Zhang, M. V. Herman, and J. M. Capasso. Effects of hypertension and coronary constriction on cardiac function, morphology, and contractile proteins in rats. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H713–724, 1993.
 26. Anversa, P., P. Li, E. H. Sonnenblick, and G. Olivetti. Effects of aging on quantitative structural properties of coronary vasculature and microvasculature in rats. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H1062–H1073, 1994.
 27. Anversa, P., P. Li, X. Zhang, G. Olivetti, and J. M. Capasso. Ischemic myocardial injury and ventricular remodeling. Cardiovasc. Res. 27: 145–157, 1993.
 28. Anversa, P., A. V. Loud, F. Giacomelli, and J. Wiener. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. II. Ultrastructure of myocytes and interstitium. Lab. Invest. 38: 597–609, 1978.
 29. Anversa, P., A. V. Loud, V. Levicky, and G. Guideri. Left ventricular failure induced by myocardial infarction. I. Myocyte hypertrophy. Am. J. Physiol. 248 (Heart Circ. Physiol. 17): H876–H882, 1985.
 30. Anversa, P., A. V. Loud, V. Levicky, and G. Guideri. Left ventricular failure induced by myocardial infarction: II. Tissue morphometry. Am. J. Physiol. 248 (Heart Circ. Physiol. 17): H883–H889, 1985.
 31. Anversa, P., A. V. Loud, and L. Vitali‐Mazza. Morphometry and autoradiography of early hypertrophic changes in the ventricular myocardium of adult rat. A light microscopic study. Lab. Invest. 33: 125–129, 1975.
 32. Anversa, P., A. V. Loud, and L. Vitali‐Mazza. Morphometry and autoradiography of early hypertrophic changes in the ventricular myocardium of adult rat. An electron microscopic study. Lab. Invest. 35: 475–483, 1976.
 33. Anversa, P., M. Melissari, C. Beghi, and G. Olivetti. Structural compensatory mechanisms in rat heart in early spontaneous hypertension. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H739–H746, 1984.
 34. Anversa, P., M. Melissari, A. Tardini, and G. Olivetti. Connective tissue accumulation in the left coronary artery of young SHR. Hypertension 6: 526–529, 1984.
 35. Anversa, P., G. Olivetti, P. G. Bracchi, and A. V. Loud. Postnatal development of the M‐band in rat cardiac myofibrils. Circ. Res. 48: 561–568, 1981.
 36. Anversa, P., G. Olivetti, A. Leri, Y. Liu, and J. Kajstura. Myocyte cell death and ventricular remodeling. Curr. Opin. Nephrol. Hypertens. 6: 169–176, 1997.
 37. Anversa, P., G. Olivetti, P. Li, M. V. Herman, and J. M. Capasso. Myocardial infarction, cardiac anatomy and ventricular loading. Cardioscience 4: 55–62, 1993.
 38. Anversa, P., G. Olivetti, and A. V. Loud. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. I. Hypertrophy, hyperplasia and binucleation of myocytes. Circ. Res. 46: 495–502, 1980.
 39. Anversa, P., G. Olivetti, and A. V. Loud. Morphometric studies of left ventricular hypertrophy. In: Perspectives in Cardiovascular Research, vol 8, edited by R. C. Tarazi and J. B. Dunbar. New York: Raven, 1983: 27.
 40. Anversa, P., G. Olivetti, L. G. Meggs, E. H. Sonnenblick, and J. M. Capasso. Cardiac anatomy and ventricular loading after myocardial infarction. Circulation [Suppl. VII] 87: 22–27, 1983.
 41. Anversa, P., G. Olivetti, M. Melissari, and A. V. Loud. Morphometric study of myocardial hypertrophy induced by abdominal aortic stenosis. Lab. Invest. 40: 341–349, 1979.
 42. Anversa, P., G. Olivetti, M. Melissari, and A. V. Loud. Stereological measurement of cellular and subcellular hypertrophy and hyperplasia in the papillary muscle of adult rat. J. Mol. Cell. Cardiol. 12: 781–795, 1980.
 43. Anversa, P., T. Palackal, G. Olivetti, and J. M. Capasso. Hypertensive cardiomyopathy: myocyte nuclei hyperplasia in the mammalian heart. J. Clin. Invest. 85: 994–997, 1990.
 44. Anversa, P., T. Palackal, E. H. Sonnenblick, G. Olivetti, L. G. Meggs, and J. M. Capasso. Myocyte cell loss and myocyte cellular hyperplasia in the hypertrophied aging rat heart. Circ. Res. 67: 871–885, 1990.
 45. Anversa, P., E. Puntillo, P. Nikitin, G. Olivetti, J. M. Capasso, and E. H. Sonnenblick. Effects of age on the mechanical and structural properties of myocardium of Fischer 344 rats. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H1440–H1449, 1989.
 46. Anversa, P., R. Ricci, and G. Olivetti. Coronary capillaries during normal and pathological growth. Can. J. Cardiol. 2: 104–113, 1986.
 47. Anversa, P., R. Ricci, and G. Olivetti. Quantitative structural analysis of the myocardium during physiologic growth and induced cardiac hypertrophy: a review. J. Am. Coll. Cardiol. 7: 1140–1149, 1986.
 48. Anversa, P., R. Ricci, and G. Olivetti. Effects of exercise on the capillary vasculature of the rat heart. Circulation (Suppl I) 75: 1–12, 1987.
 49. Anversa, P. and E. H. Sonnenblick. Ischemic cardiomyopathy: pathophysiologic mechanisms. Prog. Cardiovasc. Dis. 33: 49–70, 1990.
 50. Anversa, P., L. Vitali‐Mazza, and A. V. Loud. Morphometric and autoradiographic study of developing ventricular and atrial myocardium in fetal rats. Lab. Invest. 33: 696–705, 1975.
 51. Anversa, P., X. Zhang, P. Li, and J. M. Capasso. Chronic coronary artery constriction leads to moderate myocyte loss and left ventricular dysfunction and failure in rats. J. Clin. Invest. 89: 618–629, 1992.
 52. Arai, S. and A. Machida. Myocardial cell in left ventricular hypertrophy. Tohoku J. Exp. Med. 108: 361–367, 1972.
 53. Arai, S., A. Machida, and T. Nakamura. Myocardial structure and vascularization of hypertrophied hearts. Tohoku J. Exp. Med. 95: 35–54, 1968.
 54. Arbustini, E., R. Pozzi, M. Grasso, A. Gavazzi, M. Diegoli, M. Bramerio, G. Graziano, C. Campana, L. Angoli, S. De Servi, L. Martinelli, C. Goggi, M. Vigano, and G. Specchia. Pathologic substrates and clinical correlates of coronary artery disease and chronic congestive heart failure requiring cardiac transplantation. Coronary Artery Dis. 2: 605–612, 1991.
 55. Arends, M. J., R. G. Morris, and A. H. Wyllie. Apoptosis: the role of endonuclease. Am. J. Pathol. 136: 593–608, 1990.
 56. Ashley, L. M. A determination of the diameters of myocardial fibers in man and other mammals. J. Anat. 77: 325–347, 1945.
 57. Assali, N. S., T. M. Kirschbaum, and P. V. Diltis, Jr. Effects of hyperbaric oxygen on uteroplacental and fetal circulation. Circ. Res. 22: 573–588, 1968.
 58. Assali, N. S., J. A. Morris, and R. Beck. Cardiovascular hemodynamics in the fetal lamb before and after lung expansion. Am. J. Physiol. 208: 122–129, 1965.
 59. Astorri, E., R. Bolognesi, B. Colla, A. Chizzola, and O. Visioli. Left ventricular hypertrophy: a cytometric study on 42 human hearts. J. Mol. Cell. Cardiol. 9: 763–775, 1977.
 60. Astorri, E., A. Chizzola, O. Visioli, P. Anversa, G. Olivetti, and L. Vitali‐Mazza. Right ventricular hypertrophy:a cytometric study on 55 human hearts. J. Mol. Cell. Cardiol. 2: 99–110, 1971.
 61. Averill, D. B., C. M. Ferrario, R. C. Tarazi, S. Sen, and R. Bajbus. Cardiac performance in rats with renal hypertension. Circ. Res. 38: 280–288, 1976.
 62. Bache, R. J. Effects of hypertrophy on the coronary circulation. Prog. Cardiovasc. Dis. 30: 403–440, 1988.
 63. Bardales, R. H., S. Hailey, S. S. Xie, R. F. Schaefer, and S. M. Hsu. In situ apoptosis assay for the detection of early acute myocardial infarction. Am. J. Pathol. 149: 821–829.
 64. Baroldi, G., G. Falzi, and P. Lampertico. The nuclear patterns of the cardiac muscle fiber. Cardiologia 51: 109–123, 1967.
 65. Batra, S., and K. Rakusan. Geometry of capillary networks in volume overloaded rat heart. Microvasc. Res. 42: 39–95, 1991.
 66. Bäurle, W. Die Coronarsklerose bei Hypertonie. Beitr. Pathol. Anat. 111: 108–128, 1950.
 67. Bell, R. D. and R. L. Rasmussen. Exercise and the myocardial capillary‐fiber ratio during growth. Growth 38: 237–244, 1974.
 68. Beltrami, C. A., C. Di Loreto, N. Finato, M. Rocco, D. Artico, E. Cigola, S. R. Gambert, G. Olivetti, J. Kajstura, and P. Anversa. Proliferating cell nuclear antigen (PCNA), DNA synthesis and mitosis in myocytes following cardiac transplantation in man. J. Mol. Cell. Cardiol. 29: 2789–2802, 1997.
 69. Beltrami, C. A., N. Finato, M. Rocco, G. A. Feruglio, C. Puricelli, E. Cigola, E. H. Sonnenblick, G. Olivetti, and P. Anversa. Structural basis of end‐stage failure in ischemic cardiomyopathy in humans. Circulation 89: 151–163, 1994.
 70. Beltrami, C. A., N. Finato, M. Rocco, G. A. Feruglio, C. Puricelli, E. Cigola, E. H. Sonnenblick, G. Olivetti, and P. Anversa. The cellular basis of dilated cardiomyopathy in humans. J. Mol. Cell. Cardiol. 27: 291–305, 1995.
 71. Beznak, M. The behavior of the weight of the heart and the blood pressure of albine rats under different conditions. J. Physiol. 124: 44–63, 1954.
 72. Bhatia, M. L. Circulatory adaptations in chronic severe anaemia. Ind. Heart J. 31: 132–137, 1979.
 73. Bishop, S. P. and P. Hine. Cardiac muscle cytoplasmic and nuclear development during canine neonatal growth. In Recent Advances in Studies on Cardiac Structure and Metabolism, edited by P. E. Roy, and P. Harris. Baltimore, University Park Press, 1975: 77.
 74. Bishop, S. P. and L. R. Melsen. Myocardial necrosis, fibrosis and DNA synthesis in experimental cardiac hypertrophy induced by sudden pressure overload. Circ. Res. 39: 238–245, 1976.
 75. Bishop, S. P., S. Oparil, R. H. Reynolds, and J. L. Drummond. Regional myocyte size in normotensive and spontaneously hypertensive rats. Hypertension 1: 378–383, 1979.
 76. Bloor, C. M. and A. S. Leon. Interaction of age and exercise on the heart and its blood supply. Lab. Invest. 22: 160–165, 1970.
 77. Booth, N. H., S. G. Hastings, M. L. Hopwood, and C. A. Maaske. Postnatal changes in the cardiac ventricles of the pig. Proc. Soc. Exp. Biol. Med. 122: 186–188, 1966.
 78. Borow, K. M., L. H. Green, T. Mann, L. J. Slon, E. Braunwald, J. J. Collins, L. Cohn, and W. Grossman. End systolic volume as a predictor of postoperative left ventricular performance in volume‐overload from valvular regurgitation. Am. J. Med. 68: 655–663, 1980.
 79. Breisch, E. A., F. C. White, H. K. Hammond, S. Flynn, and C. M. Bloor. Myocardial characteristics of thyroxine stimulated hypertrophy. A structural and functional study. Basic Res. Cardiol. 84: 345–358, 1989.
 80. Breisch, E. A., F. C. White, L. E. Nimmo, and C. M. Bloor. Cardiac vasculature and flow during pressure‐overload hypertrophy. Am. J. Physiol. 251 (Heart Circ. Physiol. 20): H1031–H1037, 1986.
 81. Brodsky, V. Y. A. Cell ploidy in the mammalian heart. In: The Development and Regenerative Potential of Cardiac Muscle, edited by J. O. Oberpriller, J. C. Oberpriller, and A. Mauro. New York: Harwood Academic Publishers, 1991: 253–292.
 82. Brodsky, W. Y., A. M. Arefyeva, and I. V. Uryvaeva. Mitotic polyploidization of mouse heart myocytes during the first postnatal week. Cell Tissue Res. 210: 133–144, 1980.
 83. Bruschke, A. V. G., W. L. Pruodfit, and F. M. Sones. Progress study of 590 consecutive nonsurgical cases of coronary disease followed 5–9 years: II: ventriculographic and other correlations. Circulation 47: 1154–1162, 1973.
 84. Buja, L. M. and J. T. Willerson. Clinicopathologic correlates of acute ischemic heart disease syndromes. Am. J. Cardiol. 47: 343–356, 1981.
 85. Buja, L. M. and J. T. Willerson. The role of coronary artery lesions in ischemic heart disease:insight from recent clinicopathologic, coronary arteriographic, and experimental studies. Hum. Pathol. 18: 451–461, 1987.
 86. Burlingame, P., J. A. Long, and E. Ogden. The blood pressure of the fetal rat and its response to renin and angiotonin. Am. J. Physiol. 137: 473–484, 1942.
 87. Buttrick, P., C. Perla, A. Malhotra, D. Geenen, and J. Scheuer. Effects of chronic dobutamine on cardiac mechanics and biochemistry after myocardial infarction in rats. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H473–H479, 1991.
 88. Campbell, S. E., A. M. Gerdes, and T. D. Smith. Comparison of regional differences in cardiac myocyte dimensions in rats, hamsters, and guinea pigs. Anat. Rec. 219: 53–59, 1987.
 89. Campisi, J. Replicative senescence:an old lives' tale?. Cell 84: 497–500, 1996.
 90. Capasso, J. M., S. Bruno, W. Cheng, P. Li, R. Rodgers, Z. Darzynkiewicz, and P. Anversa. Ventricular loading is coupled with DNA synthesis in adult cardiac myocytes after acute and chronic myocardial infarction in rats. Circ. Res. 71: 1379–1389, 1992.
 91. Capasso, J. M., S. Bruno, P. Li, X. Zhang, Z. Darzynkiewicz, and P. Anversa. Myocyte DNA synthesis with aging: correlation with ventricular loading in rats. J. Cell Physiol. 155: 635–648, 1993.
 92. Capasso, J. M., D. Fitzpatrick, and P. Anversa. Cellular mechanisms of ventricular failure: myocyte kinetics and geometry with age. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H1770–H1781, 1992.
 93. Capasso, J. M., M. J. Jeanty, T. Palackal, G. Olivetti, and P. Anversa. Ventricular remodeling induced by acute nonocclusive constriction of coronary artery in rats. Am. J. Physiol. 257 (Heart Circ. Physiol. 26: H1983–H1993, 1989.
 94. Capasso, J. M., P. Li, and P. Anversa. Nonischemic myocardial damage induced by nonocclusive constriction of coronary artery in rats. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H651–H661, 1991.
 95. Capasso, J. M., P. Li, X. Zhang, and P. Anversa. Heterogeneity of ventricular remodeling after acute myocardial infarction in rats. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H486–H495, 1992.
 96. Capasso, J. M., A. Malhotra, P. Li, X. Zhang, J. Scheuer, and P. Anversa. Chronic nonocclusive coronary artery constriction impairs ventricular function, myocardial structure, and cardiac contractile protein enzyme activity in rats. Circ. Res. 70: 148–162, 1992.
 97. Capasso, J. M., A. Malhotra, R. M. Remily, J. Scheuer, and E. H. Sonnenblick. Effects of age on mechanical and electrical performance or rat myocardium. Am. J. Physiol. 245 (Heart Circ. Physiol. 14): H72–H81, 1983.
 98. Capasso, J. M., A. Malhotra, J. Scheuer, and E. H. Sonnenblick. Myocardial biochemical, contractile and electrical performance after imposition of hypertension in young and old rats. Circ. Res. 58: 445–460, 1986.
 99. Capasso, J. M., T. Palackal, G. Olivetti, and P. Anversa. Severe myocardial dysfunction induced by ventricular remodeling in aging rat hearts. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1086–H1096, 1990.
 100. Capasso, J. M., T. Palackal, G. Olivetti, and P. Anversa. Left ventricular failure induced by long‐term hypertension in rats. Circ. Res. 66: 1400–1412, 1990.
 101. Capasso, J. M., E. Puntillo, G. Olivetti, and P. Anversa. Differences in load‐dependence of relaxation between the left and right ventricular myocardium as a function of age in rats. Circ. Res. 65: 1499–1507, 1989.
 102. Capasso, J. M., J. E. Strobeck, A. Malhotra, J. Scheuer, and E. H. Sonnenblick. Contractile behavior of rat myocardium after reversal of hypertensive hypertrophy. Am. J. Physiol. 242 (Heart Circ. Physiol. 11): H882–H889, 1982.
 103. Chalkley, D. T. The tetrakaidecahedron as the basis for the computation of cell volume and density. Science 118: 599–600, 1953.
 104. Charles River Technical Bulletin. Wilmington, Massachusetts: Charles River Laboratories, Inc., Vol 1, 1982: 1–12.
 105. Chen, Y., R. J. Torry, G. L. Baumbach, and R. J. Tomanek. Proportional arteriolar growth accompanies cardiac hypertrophy induced by volume overload. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H2132–H2137, 1994.
 106. Cheng, W., J. Coupet, P. Li, K. Reiss, C. V. Hamby, J. M. Capasso, L. G. Meggs, and P. Anversa. Coronary artery constriction in rats affects the activation of α1 adrenergic receptors in cardiac myocytes. Cardiovasc. Res. 28: 1070–1082, 1994.
 107. Cheng, W., J. Kajstura, J. A. Nitahara, B. Li, K. Reiss, Y. Liu, W. A. Clark, S. Krajewski, J. C. Reed, G. Olivetti, and P. Anversa. Programmed myocyte cell death affects the viable myocardium after infarction in rats. Exp. Cell. Res. 226: 316–327, 1996.
 108. Cheng, W., B. Li, J. Kajstura, P. Li, M. S. Wolin, E. H. Sonnenblick, T. H. Hintze, G. Olivetti, and P. Anversa. Stretch‐induced programmed myocyte cell death. J. Clin. Invest. 96: 2247–2259, 1995.
 109. Cheng, W., K. Reiss, J. Kajstura, K. Kowal, F. Quaini, and P. Anversa. Downregulation of the IGF‐1 system parallels the attenuation in the proliferative capacity of rat ventricular myocytes during postnatal development. Lab. Invest. 72: 646–655, 1995.
 110. Cheng, W., K. Reiss, P. Li, J. M. J. Chun, J. Kajstura, G. Olivetti, and P. Anversa. Aging does not affect the activation of the myocyte insulin‐like growth factor‐1 autocrine system after infarction and ventricular failure in Fischer 344 rats. Circ. Res. 78: 536–546, 1996.
 111. Chien, K. R., K. U. Knowlton, H. Zhu, and S. Chien. Regulation of cardiac gene expression during myocardial growth and hypertrophy:molecular studies of an adaptive physiologic response. FASEB J. 5: 3037–3046, 1991.
 112. Chilian, W. M., R. D. Wangler, K. G. Peters, R. J. Tomanek, and M. L. Marcus. Thyroxine‐induced left ventricular hypertrophy in the rat. Anatomical and physiological evidence for angiogenesis. Circ. Res. 57: 591–598, 1985.
 113. Chow, L. H., S. P. Yee, T. Pawson, and B. M. McManus. Progressive cardiac fibrosis and myocyte injury in v‐fps transgenic mice:a model for primary disorders of connective tissue in the heart?. Lab. Invest. 64: 457–462, 1991.
 114. Chrisman, R., P. B. Rittman, and R. J. Tomanek. Exercise induced myocardial capillary growth in the spontaneously hypertensive rat. Microvasc. Res. 30: 185–194, 1985.
 115. Clausen, J. P. Effect of physical training on cardiovascular adjustments to exercise in man. Physiol. Rev. 57: 779–815, 1977.
 116. Claycomb, W. C. DNA synthesis and DNA polymerase activity in differentiating cardiac muscle. Biochem. Biophys. Res. Commun. 54: 715–720, 1973.
 117. Claycomb, W. C. Biochemical aspects of cardiac muscle differentiation. Deoxyribonucleic acid synthesis and nuclear and cytoplasmic deoxyribonucleic acid polymerase activity. J. Biol. Chem. 250: 3229–3235, 1975.
 118. Claycomb, W. C. Cardiac‐muscle hypertrophy. Differentiation and growth of the heart cell during development. Biochem. J. 168: 599–601, 1977.
 119. Clubb, F. J. and S. P. Bishop. Formation of binucleated myocardial cells in the neonatal rats. An index for growth hypertrophy. Lab. Invest. 50: 571–577, 1984.
 120. Cluck, L., N. S. Talner, T. H. Gardner, and M. V. Kulovich. RNA concentrations in the ventricles of full‐term and premature rabbits following birth. Nature 202: 770–771, 1964.
 121. Coleman, G. L., S. W. Barthold, G. W. Osbaldiston, S. J. Foster, and A. M. Jonas. Pathological changes during aging in barrierreared Fischer rats. J. Gerontol. 32: 258–278, 1977.
 122. Colgan, J. A., M. L. Lazarus, and H. G. Sachs. Post‐natal development of the normal and cardiomyopathy Syrian hamste:a quantitative electron microscopic study. J. Mol. Cell. Cardiol. 10: 43–54, 1978.
 123. Cooper, G. IV, R. J. Tomanek, J. L. Ehrhardt, and M. L. Marcus. Chronic progressive pressure overload of the cat right ventricle. Circ. Res. 48: 488–497, 1981.
 124. Craft‐Cormney, C. and J. T. Hansen. Early ultrastructural changes in the myocardium following thyroxine‐induced hypertrophy. Virchows. Arch. B Cell Pathol. 33: 267–273, 1980.
 125. Csapo, A., T. Erdos, and C. R. Demattos. Stretch induced uterine growth, protein synthesis and function. Nature 207: 1378–1379, 1965.
 126. Dannenberg, A. L., D. Levy, and R. J. Garrison. Impact of age on echocardiographic left ventricular mass in a healthy population (The Framingham Study). Am. J. Cardiol. 64: 1066–1068, 1989.
 127. Darzynkiewicz, Z., S. Bruno, G. Del Bino, W. Gorczyca, M. A. Hotz, P. Lassota, and F. Traganos. Feature of apoptotic cells measured by flow cytometry. Cytometry 13: 795–808, 1992.
 128. Davies, P., J. Dewar, M. Tynan, and R. Ward. Post‐natal development changes in the length‐tension relationship of cat papillary muscles. J. Physiol. 253: 95–102, 1975.
 129. Dawes, G. S., J. C. Mott, and J. G. Widdicombe. The foetal circulation in the lamb. J. Physiol. 126: 563–587, 1954.
 130. DeFelice, A., R. Frering, and P. Horan. Time course of hemodynamic changes in rats with healed severe myocardial infarction. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H289–H296, 1989.
 131. Cruz, M. V., G. Anselmi, A. Pomero, and G. Monroy. A qualitative and quantitative study of the ventricles and great vessels of normal children. Am. Heart J. 60: 675–690, 1960.
 132. Dobbs, S. L., D. M. Roth, C. M. Bloor, and F. C. White. Effects of age on coronary collateral development. Coronary. Artery Dis. 2: 473–480, 1991.
 133. Dowell, R. T., and R. E. McManus. Pressure‐induced cardiac enlargement in neonatal and adult rats. Left ventricular functional characteristics and evidence of cardiac muscle cell proliferation in the neonate. Circ. Res. 42: 303–310, 1978.
 134. Dowell, R. T., C. M. Tipton, and R. J. Tomanek. Cardiac enlargement mechanisms with exercise training and pressure overload. J. Mol. Cell. Cardiol. 8: 407–418, 1976.
 135. Driscol, T. E. and R. W. Eckstein. Coronary inflow and outflow responses to coronary artery occlusion. Circ. Res. 20: 485–495, 1967.
 136. Duke, R. C., and J. J. Cohen. IL‐2 addiction: withdrawal of growth factor activates a suicide program in dependent T cells. Lymphokine Res. 5: 289–299, 1986.
 137. Dunn, F. G., P. Chandraratna, J. G. R. de Carvallo, L. L. Basta, and E. D. Frohlich. Pathophysiologic assessment of hypertensive heart disease with echocardiography. Am. J. Cardiol. 39: 789–795, 1977.
 138. Eckner, F. A. O., B. W. Brown, D. L. Davidson, and S. Glagov. Dimensions of normal human hearts. Arch. Pathol. 88: 497–507, 1969.
 139. Edwards, W. D. Applied anatomy of the heart. In: Cardiology: Fundamentals and Practice, edited by R. O. Brandenburgh, V. Fuster, E. R. Giuliani, and D. C. MccGoon. Chicago: Year Book, 1987, 47–112.
 140. Ehrich, W., C. De La Chapelle, and A. E. Cohn. Anatomical ontogeny. B. Man (a study of the coronary arteries). Am. J. Anat. 49: 241–282, 1931–32.
 141. Elias, H., A. Sokol, and A. Lazarowitz. Contributions to the geometry of sectioning. II. Circular cylinders. Z. Wiss Mikrosk 62: 20–31, 1954.
 142. Emery, J. L., and M. D. MacDonald. The weight of ventricles in the later weeks of intra‐uterine life. Br. Heart J. 22: 563–570, 1960.
 143. Factor, S. M., R. Bhan, T. Minase, H. Wolinsky, and E. H. Sonnenblick. Hypertensive‐diabetic cardiomyopathy in the rat: an experimental model of human disease. Am. J. Pathol. 102: 219–228, 1981.
 144. Factor, S. M., M. Flomenbau, M. J. Zhao, C. Eng, and T. F. Robinson. The effects of acutely increased ventricular cavity pressure on intrinsic myocardial connective tissue. J. Am. Coll. Cardiol. 12: 1582–1589, 1988.
 145. Factor, S. M., T. Minase, S. Cho, R. Dominitz, and E. H. Sonnenblick. Microvascular spasm in the cardiomyopathic Syrian hamster: a preventable cause of focal myocardial necrosis. Circulation 66: 342–354, 1982.
 146. Feldstein, M. L., L. Henquell, and C. R. Honig. Frequency analysis of coronary intercapillary distances: site of capillary control. Am. J. Physiol. 235: (Heart Circ. Physiol. 4) H321–H325, 1978.
 147. Field, B. J., R. O. Russell, J. T. Dowling, and C. E. Rackley. Regional left ventricular performance in the year following myocardial infarction. Circulation 46: 679–689, 1972.
 148. Fishbein, M. C., D. Maclean, and P. R. Maroko. Experimental myocardial infarction in the rat. Qualitative and quantitative changes during pathologic evolution. Am. J. Pathol. 90: 57–70, 1978.
 149. Fizelova, A. and A. Fizel. Cardiac hypertrophy and heart failure: dynamics of changes in proteins and nucleic acids. J. Mol. Cell. Cardiol. 1: 389–402, 1970.
 150. Fletcher, P. J., J. M. Pfeffer, M. A. Pfeffer, and E. Braunwald. Left ventricular diastolic pressure‐volume relations in rats with healed myocardial infarction. Circ. Res. 49: 618–626, 1981.
 151. Fliss, H. and D. Gattinger. Apoptosis in ischemic and reperfused rat myocardium. Circ. Res. 79: 949–956, 1996.
 152. Floderus, S. Untersuchungen über den Bau der menschlichen Hypophyse mit besonderer Berücksichtigung der quantitativenmikromorphologischen Verhältnisse. Acta. Pathol. Microbiol. Scand. 53 [Suppl.]: 1–276, 1944.
 153. Franciosa, J. A., M. Wilen, and S. Ziesche. Survival in men with severe chronic left ventricular failure due to either coronary heart disease or idiopathic dilated cardiomyopathy. Am. J. Cardiol. 51: 831–836, 1983.
 154. Fraticelli, A., R. Josephson, R. Danziger, E. Lakatta, and H. A. Spurgeon. Morphological and contractile characteristics of rat cardiac myocytes from maturation to senescence. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H259–H265, 1989.
 155. Friberg, P., M. Nordlander, S. Lundin, and B. Folkow. Effects of aging on cardiac performance and coronary flow in spontaneously hypertensive and normotensive rats. Acta. Physiol. Scand. 125: 1–11, 1985.
 156. Friedman, W. F. The intrinsic physiologic properties of the developing heart. In: Neonatal Heart Disease, edited by W. F. Friedman, M. Lesch, and E. H. Sonnenblick. New York: Grune & Stratton, 1973: 21–50.
 157. Fukuda, J‐I., J‐I. Hayashi, T. Yoshimura, S‐I. Ohtani, Y. Yamazaki, and S. Eguchi. Myocardial structure in volume‐overloaded hearts before and after valve replacement. Jpn. Circ. J. 50: 1033–1039, 1986.
 158. Gault, J. H., J. W. Covell, E. Braunwald, and J. Ross Jr. Left ventricular performance following correction of free aortic regurgitation. Circulation 42: 773–780, 1970.
 159. Gavras, H. Hypertension and congestive heart failure: benefits of converting enzyme inhibition (Captopril). J. Am. Coll. Cardiol. 1: 518–520, 1983.
 160. Gerdes, A. M., S. E. Campbell, and D. R. Hilbelink. Structural remodeling of cardiac myocytes in rats with arteriovenous fistulas. Lab. Invest. 59: 857–861, 1988.
 161. Gerdes, A. M., S. E. Kellerman, J. A. Moore, L. C. Clark, P. Y. Reaves, K. B. Malec, K. E. Muffly, P. P. McKeown, and D. D. Schocken. Structural remodeling of cardiac myocytes from patient with chronic ischemic heart disease. Circulation 85: 426–430, 1992.
 162. Gerdes, A. M., J. Kriseman, and S. P. Bishop. Changes in myocardial cell size and number during the development and reversal of hyperthyroidism in neonatal rats. Lab. Invest. 48: 598–602, 1983.
 163. Gerdes, A. M., J. A. Moore, J. M. Hines, P. A. Kirkland, and S. P. Bishop. Regional differences in myocyte size in normal rat hearts. Anat. Rec. 215: 420–426, 1986.
 164. Gerstenblith, G., J. Frederiksen, F. C. Yin, N. J. Fortuin, E. G. Lakatta, and M. L. Weisfeldt. Echocardiographic assessment of a normal adult aging population. Circulation 56: 273–278, 1977.
 165. Ginzton, L. E., R. Conant, D. M. Rodriques, and M. M. Laks. Functional significance of hypertrophy of the noninfarcted myocardium after myocardial infarction in humans. Circulation 80: 816–822, 1989.
 166. Goldstein, M. A., W. C. Claycomb, and A. Schwartz. DNA synthesis and mitosis in well‐differentiated mammalian cardiocytes. Science 183: 212–213, 1974.
 167. Goldstein, R. S., J. B. Tarloff, and J. B. Hook. Age‐related nephropathy in laboratory rats. FASEB J. 2: 2241–2251, 1988.
 168. Gottlieb, R. A., K. O. Burleson, R. A. Kloner, B. M. Bablor, and R. L. Engler. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J. Clin. Invest. 94: 1621–1628, 1994.
 169. Grabner, W., and P. Pfitzer. Number of nuclei in isolated myocardial cells of pigs. Virchows Arch. Cell Pathol. 15: 279–299, 1974.
 170. Grajek, S., M. Lesiak, M. Pyda, M. Zajac. S. T. Pardowski, and E. Kaczmarek. Hypertrophy or hyperplasia in cardiac muscle, post‐mortem human morphometric study. Eur. Heart J. 14: 40–47, 1993.
 171. Granger, C. B., M. K. Karimeddini, V. E. Smith, H. R. Shapiro, A. M. Katz, and A. L. Riba. Rapid ventricular filling in left ventricular hypertrophy. I. Physiologic hypertrophy. J. Am. Coll. Cardiol. 5: 862–868, 1985.
 172. Grant, C., D. G. Greene, and I. L. Bunnell. Left ventricular enlargement and hypertrophy. Am. J. Med. 39: 895–904, 1965.
 173. Greene, A. S., P. J. Tonellato, J. H. Lombard, and A. W. Cowley. Microvascular rarefaction and tissue vascular resistance in hypertension. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H126–H131, 1989.
 174. Grimm, A. F., K. V. Katele, S. A. Klein, and H. L. Lin. Growth of the rat heart: left ventricular morphology and sarcomere lengths. Growth 37: 189–201, 1973.
 175. Grossman, W., B. A. Carabello, S. Gunther, and M. A. Fifer. Ventricular wall stress and the development of cardiac hypertrophy and failure. In: Myocardial Hypertrophy and Failure, edited by N. R. Alpert. New York: Raven, 1983: 1–18.
 176. Grossman, W., D. Jones, L. P. McLaurin. Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 56: 56–64, 1975.
 177. Grove, D., K. G. Nair, and R. Zak. Biochemical correlates of cardiac hypertrophy, III: changes in DNA content: the relative contributions of polyploidy and mitotic activity. Circ. Res. 25: 463–471, 1969.
 178. Grove, D., R. Zak, K. G. Nair, and V. Aschenbrenner. Biochemical correlates of cardiac hypertrophy, IV: observations on the cellular organization of growth during myocardial hypertrophy in the rats. Circ. Res. 25: 473–485, 1969.
 179. Guarente, L. Do changes in chromosomes cause aging?. Cell. 86: 9–12, 1996.
 180. Guerra, S., A. Leri, X. Wang, N. Finato, C. Di Loreto, C. A. Beltrami, J. Kajstura, and P. Anversa. Myocyte death in the failing human heart is gender dependent. Circ. Res. 85: 856–866, 1999.
 181. Guideri, G., G. Olivetti, B. Hiler, R. Ricci, and P. Anversa. Increased incidence of isoproterenol‐induced ventricular fibrillation in aging rats. Can. J. Physiol. Pharmacol. 65: 504–508, 1987.
 182. Guidotti, G. G., B. Luneburg, and A. F. Borghetti. Amino acid uptake in isolated chick embryo heart cells. Effect of insulin. Biochem. J. 114: 97–105, 1969.
 183. Hachamovitch, R., P. Wicker, J. M. Capasso, and P. Anversa. Alterations of coronary blood flow and reserve with aging in Fischer 344 rats. Am. J. Physiol. 256 (Heart Circ. Physiol. 25): H66–H73, 1989.
 184. Hagopian, M., P. Anversa, and A. V. Loud. Quantitative radioautographic localization of newly synthesized protein in the postnatal rat heart. J. Mol. Cell. Cardiol. 7: 357–367, 1975.
 185. Hagopian, M. and D. Spiro. Derivation of the Z line in the embryonic chick heart. J. Cell Biol. 44: 683–687, 1970.
 186. Hallback, M., O. Isaksson, and E. Noresson. Consequences of myocardial structural adaptation on left ventricular compliance and the Frank‐Starling relationship in spontaneously hypertensive rats. Acta. Physiol. Scand. 94: 259–270, 1975.
 187. Hamrell, B. B., and N. R. Alpert. Cellular basis of the mechanical properties of hypertrophied myocardium. In: The Heart and Cardiovascular System, edited by H. A. Fozzard, R. B. Jennings, E. Haber, A. M. Katz, and H. E. Morgan. New York: Raven, 1986: 1507–1524.
 188. Hamrell, B. B., E. T. Roberts, J. L. Carkin, and C. L. Delaney. Myocyte morphology of free wall trabeculae in right ventricular pressure overload hypertrophy in rabbits. J. Mol. Cell. Cardiol. 18: 127–138, 1986.
 189. Harnarayan, C., M. A. Bennet, B. L. Pentecost, and D. B. Brewer. Quantitative study of infarcted myocardium in cardiogenic shock. Br. Heart J. 32: 728–732, 1970.
 190. Harrison, D. G., C. W. White, L. F. Hiratzka, D. B. Doty, D. H. Barnes, C. L. Eastham, and M. L. Marcus. The value of lesion cross‐sectional area determined by quantitative coronary angiography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenosis. Circulation 69: 1111–1119, 1984.
 191. Hatt, P. Y., K. Rakusan, P. Gastineau, M. Laplace, and F. Cluzeaud. Aorto‐caval fistula in the rat. An experimental model of heart volume overloading. Basic Res. Cardiol. 75: 105–108, 1980.
 192. Haug, H. Probleme und Methoden der Strukturzählung in Schnittpräparat. In: Quantitative Methods in Morphology, edited by E. R. Weibel, and H. Elias. New York: Springer‐Verlag, 1967: 58.
 193. Haunstetter, A. and Izumo, S. Apoptosis—Basic mechanisms and implications for cardiovascular disease. Circ. Res. 82: 1111–1129, 1998.
 194. Heck, C. F., S. J. Schumway, and M. Kape. The registry of the International Society for Heart Transplantation sixth official report 1989. J. Heart Transplant. 4: 241–276, 1989.
 195. Hegglin, R. Über Organvolumen und Organgewicht: Nebst Bemorkungen uber die Grobenbestimmungsmethoden. Z. Konstitutionslehre 18: 110–134, 1934.
 196. Hein, S., D. Scholz, N. Fujitani, T. Brand, A. Friedl, and J. Schaper. Altered expression of titin and contractile proteins in failing human myocardium. J. Mol. Cell. Cardiol. 26: 1291–1306, 1994.
 197. Heller, L. J., and W. V. Whitehorn. Age‐associated alterations in myocardial contractile properties. Am. J. Physiol. 222: 1613–1619, 1972.
 198. Hellerstein, H. K., and D. Santiago‐Stevenson. Atrophy of the heart: a correlative study of eighty‐five proved cases. Circulation 1: 93–126, 1950.
 199. Henquell, L., C. L. Odoroff, and C. R. Honig. Coronary intercapillary distance during growth: relation to PO2 and aerobic capacity. Am. J. Physiol. 231: 1852–1859, 1976.
 200. Henquell, L., C. L. Odoroff, and C. R. Honig. Intercapillary distance and capillary reserve in hypertrophied rat hearts beating in situ. Circ. Res. 41: 400–408, 1977.
 201. Henry, W. L., R. O. Bonow, J. S. Borer, J. H. Ware, K. M. Kent, D. R. Redwood, C. L. McIntosh, A. G. Morrow, and S. E. Epstein. Observations on the optimum time for operative intervention for aortic regurgitation. I. Evaluation of the results of aortic valve replacement in symptomatic patients. Circulation 61: 471–483, 1980.
 202. Henschel, E. Über Muskelfasermessungen und Kernveränderungen bei numerischer Hyperplasia des Myokards. Virchows. Arch. Pathol. Anat. 321: 283–294, 1952.
 203. Heron, M. I. and K. Rakusan. Geometry of coronary capillaries in hyperthyroid and hypothyroid rat heart. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H1024–H1031, 1994.
 204. Heron, M. I., and K. Rakusan. Geometry of coronary capillaries in hyperthyroid and hypothyroid rat heart. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H1024–H1031, 1994.
 205. Herzberg, R. M., R. Rubio, and R. M. Berne. Coronary occlusion and embolization: effect on blood flow in adjacent arteries. Am. J. Physiol. 210: 169–175, 1966.
 206. Heymann, M. A. and A. M. Rudolph. Effects of congenital heart disease on fetal and neonatal circulations. In: Neonatal Heart Disease, edited by W. F. Friedman, M. Lesch, and E. H. Sonnenblick. New York: Grune and Stratton, 1973: 51–79.
 207. Hinchliffe, J. R. Cell death in embryogenesis. In: Cell Death in Biology and Pathology, edited by I. D. Bowen and R. A. Lockshin. London: Chapman and Hall, 1981: 35–78.
 208. Hirokawa, K. A quantitative study on pre‐ and postnatal growth of human heart. Acta. Pathol. Jpn. 22: 613–624, 1972.
 209. Hislop, A. and L. Reid. Weight of the left and right ventricle of the heart during fetal life. J. Clin. Pathol. 25: 534–536, 1972.
 210. Hittinger, L. R., P. Shannon, S. P. Bishop, R. J. Gelpi, and S. F. Vatner. Subendomyocardial exhaustion of blood flow reserve and increased fibrosis in conscious dogs with heart failure. Circ. Res. 65: 971–980, 1989.
 211. Hochman, J. S. and B. H. Bulkley. Expansion of acute myocardial infarction. An experimental study. Circulation 65: 1446–1450, 1982.
 212. Hochman, J. S. and B. H. Bulkley. Pathogenesis of left ventricular aneurysms: an experimental study in the rat model. Am. J. Cardiol. 50: 83–88, 1982.
 213. Holtzer, H., T. M. Marshall, and H. Finck. Analysis of myogenesis by the use of fluorescent antimyosin. J. Biophys. Biochem. Cytol. 3: 705–723, 1957.
 214. Honing, C. R. and J. Bourdeau‐Martini. Extravascular component of oxygen transport in normal and hypertrophied hearts with special reference to oxygen therapy. Circ. Res. 34/35: (Suppl 2) II‐97–103, 1974.
 215. Hopkins, S. F., E. P. McCutcheon, and D. R. Wekstein. Postnatal changes in rat ventricular function. Circ. Res. 32: 685–691, 1973.
 216. Hoppeler, H., O. Mathieu, E. R. Weibel, R. Krauer, S. L. Lindstedt, and C. R. Taylor. Design of the mammalian respiratory system. VIII. Capillaries in skeletal muscles. Respir. Physiol. 44: 129–150, 1981.
 217. Hort, W. Quantitative histologische Untersuchungen an wachsenden Herzen. Virchows. Arch. Pathol. Anat. 323: 223–242, 1953.
 218. Hort, W. Quantitative Untersuchungen über die Kapillarisierung des Herzmuskels im Erwachsenen‐und Greisenalter, bei Hypertrophie und Hyperplasia. Virchows. Arch. Pathol. Anat. 327: 560–576, 1955
 219. Hort, W. Morphologische Untersuchungen an Herzen vor, während und nach der postnatalen Kreislaufumschaltung. Virchows. Arch. Pathol. Anat. 326: 458–484, 1955.
 220. Hort, W. Mikrometrische Untersuchungen an verschieden weiten Meerschweinchenherzen. Verhandl. Deutsch. Gesellsch. Kreislaufforsch. 23: 343–346, 1957.
 221. Hort, W., S. da Canalis, and H. Just. Untersuchungen bei chronischem experimentellen Herzinfarkt der Ratte. Arch. Kreisl‐Forsch. 44: 288–299, 1964.
 222. Hort, W. and H. Hort. Beiträge zur Histochemie der Blutgefäßendothelien und der Capillargrund häutchen. Virchows Arch. Pathol. Anat. 331: 591–615, 1958.
 223. Hort, W. and H. J. Severidt. Kapillarisierung und mikroskopische Veränderungen im Myokard bei angeborenen Herzfehlern. Virchows. Arch. Pathol. Anat. 341: 192–203, 1966.
 224. House, E. W. and H. E. Ederstrom. Anatomical changes with age in the heart and ductus arteriosus in the dog after birth. Anat. Rec. 160: 289–296, 1968.
 225. Huang, H., P. Li, C. V. Hamby, K. Reiss, L. G. Meggs, and P. Anversa. Alterations in angiotensin II receptor mediated signal transduction shortly after coronary artery constriction in the rat. Cardiovasc. Res. 28: 1564–1573, 1994.
 226. Hudlicka, O. Development of microcirculation: capillary growth and adaptation. In: Handbook of Physiology Section 2. The Cardiovascular System. Vol IV, Microcirculation Part 1, edited by E. M. Renkin, and C. C. Michel. Bethesda, MD: American Physiological Society, 1984: 165–216.
 227. Hudlická, O. Growth of capillaries in skeletal and cardiac muscle. Circ. Res. 50: 451–561, 1982.
 228. Hutchins, G. M. Structure of the aging heart. In: The Aging Heart. Aging (Vol 12), edited by M. L. Weisfeld. New York: Raven, 1980: 7–23.
 229. Isoyama, S., W. Grossman, and J. Y. Wei. Effect of age on myocardial adaptation to volume overload in the rat. J. Clin. Invest. 81: 1850–1857, 1988.
 230. Isoyama, S., J. Y. Wei, S. Izumo, P. Fort, F. J. Schoen, and W. Grossman. Effect of age on the development of cardiac hypertrophy produced by aortic constriction in the rat. Circ. Res. 61: 337–345, 1987.
 231. Itoh, G., J. Tamura, M. Suzuki, Y. Suzuki, H. Ikeda, M. Kioke, M. Nomura, T. Jie, and K. Ito. DNA fragmentation of human infarcted myocardial cells demonstrated by the nick end labeling and DNA agarose gel electrophoresis. Am. J. Pathol. 146: 1235–1331, 1995.
 232. Iwasaki, K., C. A. Cleiser, E. J. Masoro, C. A. McMahan, E. J. Seo, and B. P. Yu. The influence of dietary protein source on longevity and age‐related disease processes of Fischer rats. J. Gerontol 43: B5–B12, 1988.
 233. Jacobs, T. B., R. D. Bell, and J. D. McClements. Exercise, age and the development of the myocardial vasculature. Growth 48: 148–157, 1984.
 234. James, T. N. Morphologic substrates of sudden death: Summary. J. Am. Coll. Cardiol. 5: 81B–82B, 1985.
 235. James, T. N. Apoptosis in cardiac disease. Am. J. Med. 107: 606–620, 1999.
 236. Jarmakani, J. M., T. Nagatomo, M. Nakasawa, and G. A. Langer. Effect of hypoxia on myocardial high‐energy phosphates in the neonatal mammalian heart. Am. J. Physiol. 235 (Heart Circ. Physiol 4): H475–H481, 1978.
 237. Jazwinski, S. M. Longevity, genes, and aging. Science 273: 54–59, 1996.
 238. Jennings, R. B., H. M. Sommers, J. P. Kaltenbach, and J. J. West. Electrolyte alterations in acute myocardial ischemic injury. Circ. Res. 14: 260–269, 1964.
 239. Johnson, F. B., D. A. Sinclair, and L. Guarente. Molecular biology of aging. Cell 96: 291–302, 1999.
 240. Kajstura, J., W. Cheng, K. Reiss, W. A. Clark, E. H. Sonnenblick, S. Krajewski, J. C. Reed, G. Olivetti, and P. Anversa. Apoptotic and necrotic myocyte cell death are independent contributing variables of infarct size of rats. Lab. Invest. 74: 86–107, 1996.
 241. Kajstura, J., W. Cheng, K. Reiss, and P. Anversa. The IGF‐1‐IGF‐1 receptor system modulates myocyte proliferation but not myocyte cellular hypertrophy in vitro. Exp. Cell Res. 215: 273–283, 1994.
 242. Kajstura, J., W. Cheng, R. Sarangarajan, P. Li, B. Li, J. A. Nitahara, S. Chapnick, K. Reiss, G. Olivetti, and P. Anversa. Necrotic and apoptotic myocyte cell death in the aging heart of Fischer 344 rats. Am. J. Physiol. 271 (Heart, Circ. Physiol. 40): H1215–H1228, 1996.
 243. Kajstura, J., A. Leri, N. Finato, C. Di Loreto, C. A. Beltrami, and P. Anversa. Myocyte proliferation in end‐stage cardiac failure in humans. Proc. Natl. Acad. Sci. U.S.A. 95: 8801–8805, 1998.
 244. Kajstura, J., M. Mansukhani, W. Cheng, K. Reiss, S. Krajewski, J. C. Reed, F. Quaini, E. H. Sonnenblick, and P. Anversa. Programmed cell death and expression of the protooncogene bcl‐2 in myocytes during postnatal maturation of the heart. Exp. Cell Res. 219: 110–121, 1995.
 245. Kajstura, J., X. Zhang, Y. Liu, E. Szoke, W. Cheng, G. Olivetti, T. H. Hintze, and P. Anversa. The cellular basis of pacing‐induced dilated cardiomyopathy: myocyte cell loss and myocyte cellular reactive hypertrophy. Circulation. 92: 2306–2317, 1995.
 246. Kajstura, J., X. Zhang, K. Reiss, E. Szoke, P. Li, C. Lagrasta, W. Cheng, Z. Darzynkiewicz, G. Olivetti, and P. Anversa. Myocyte cellular hyperplasia and myocyte cellular hypertrophy contribute to chronic ventricular remodeling in coronary artery narrowing‐induced cardiomyopathy in rats. Circ. Res. 74: 383–400, 1994.
 247. Kannel, W. B. Implications of Framingham Study data for treatment of hypertension: impact of other risk factors, In: Frontiers in Hypertension Research, edited by J. H. Laragh, R. F. Buhler, and D. W. Seldin. New York: Springer‐Verlag, 1981: 17–21.
 248. Kannel, W. B. Role of blood pressure in cardiovascular morbidity and mortality. Prog. Cardiovasc. Dis. 17: 5–24, 1974.
 249. Kannel, W. B., P. Sorlie, and P. M. McNamara. Prognosis after initial myocardial infarction: the Framingham Study. Am. J. Cardiol. 44: 53–59, 1979.
 250. Karam, R., B. P. Healy, and P. Wicker. Coronary reserve is depressed in postmyocardial infarction reactive cardiac hypertrophy. Circulation 81: 238–246, 1990.
 251. Karsner, H. T., O. Saphir, and T. W. Todd. The state of the cardiac muscle in hypertrophy and atrophy. Am. J. Pathol. 1: 351–371, 1925.
 252. Kathke, N. Die Veränderungen der Coronararterienzweige des Myocards bei Hypertonie. Beitr. Path. Anat. 115: 405–422, 1955.
 253. Katz, A. M. Effects of ischemia on the contractile processes of heart muscle. Am. J. Cardiol. 32: 456–460, 1973.
 254. Katz, A. M., H. Takenaka, and J. Watras. The sarcoplasmic reticulum. In: The Heart and Cardiovascular System, edited by H. A. Fozzard, R. B. Jennings, E. Haber, A. M. Katz, and H. E. Morgan. New York: Raven, 1986: 731–746.
 255. Katzberg, A. A., B. B. Farmer, and R. A. Harris. The predominance of binucleation in isolated rat heart myocytes. Am. J. Anat. 149: 489–500, 1977.
 256. Kerr, A., W. J. Bommer, and S. Pilota. Coronary‐artery enlargement in experimental cardiac hypertrophy. Am. Heart J. 75: 144, 1968.
 257. Keul, J., H. H. Dickhuth, G. Simon, and M. Lehman. Effect of static and dynamic exercise on heart volume, contractility and left ventricular dimensions. Circ. Res. 48 (Suppl 1) I‐163–I‐170, 1981.
 258. Kirsehbaum, L. A. and M. D. Schneider. The cardiac cell cycle, pocket proteins, and p300. Trends. Cardiovasc. Med. 5: 230–235, 1995.
 259. Kitzman, D. W., D. G. Scholz, P. T. Hagen, D. M. Ilstrup, and W. D. Edwards. Age‐related changes in normal human hearts during the first 10 decades of life. Part II (Maturity): a quantitative anatomic study of 765 specimens from subjects 20 to 99 years old. Mayo Clin. Proc. 63: 137–146, 1988.
 260. Klopfenstein, H. S., and A. M. Rudolph. Postnatal changes in the circulation and responses to volume loading in sheep. Circ. Res. 42: 839–845, 1978.
 261. Korecky, B. and K. Rakusan. Normal and hypertrophic growth of the rat heart: changes in cell dimensions and number. Am. J. Physiol. 234 (Heart Circ. Physiol. 3): H123–H128, 1978.
 262. Korecky, B., S. Sweet, and K. Rakusan. Number of nuclei in mammalian cardiac myocytes. Can. J. Physiol. Pharmacol. 57: 1122–1129, 1979.
 263. Körner, F. Uber die direkte Teilung der Herzmuskelkerne. Z. Mikrosk. Anat. Forsch. 38: 441–470, 1935.
 264. Kozlovskis, P. L., A. M. Gerdes, M. Smets, J. A. Moore, G. Koch, A. L. Bassett, and R. J. Myerburg. Regional increase in myocyte volume after healing of myocardial infarction in cats. J. Mol. Cell. Cardiol. 23: 1459–1466, 1991.
 265. Krogh, A. The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (Lond.) 52: 409–415, 1919.
 266. Kubler, W., A. Schomig, and J. Senges. The conduction and cardiac sympathetic system. Metabolic aspects. J. Am. Coll. Cardiol. 5: 157B–161B, 1985.
 267. Laine, G. A. Microvascular changes in the heart during chronic arterial hypertension. Circ. Res. 62: 953–960, 1988.
 268. Laine, G. A. and H. J. Granger. Microvascular, interstitial, and lymphatic interactions in normal heart. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H834–H842, 1985.
 269. Lais, L. T., L. L. Rios, S. Boutelle, G. F. DiBona, and M. J. Brody. Arterial pressure development in neonatal and young spontaneously hypertensive rats. Blood Vessels 14: 277–284, 1977.
 270. Lakatta, E. G. Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73: 413–467, 1993.
 271. Lakatta, E. G., G. Gerstenblith, C. S. Angell, N. W. Shock, and M. L. Weisfeldt. Prolonged contraction duration in aged myocardium. J. Clin. Invest. 55: 61–68, 1975.
 272. Lakatta, E. G., J. H. Mitchell, A. Pomerance, and G. G. Rowe. Human aging: change in structure and function. J. Am. Coll. Cardiol. 10: 42A–47A, 1987.
 273. Lakatta, E. G. and F. C. P. Yin. Myocardial aging. Functional alterations and related cellular mechanisms. Am. J. Physiol. 244 (Heart Circ. Physiol. 13): H927–H941, 1982.
 274. Latimer, H. B. The weight and thickness of the two ventricular walls in the newborn dog heart. Anat. Rec. 152: 225–229, 1965.
 275. Lazarus, M. L., J. A. Colgan, and H. G. Sachs. Quantitative light and electron microscopic comparison of the normal and cardiomyopathic Syrian hamster heart. J. Mol. Cell. Cardiol. 8: 431–441, 1976.
 276. Lee, J. C., J. F. N. Taylor, and S. E. Downing. A comparison of ventricular weights and geometry in newborn, young, and adult mammals. J. Appl. Physiol. 38: 147–150, 1975.
 277. Legato, M. J. Cellular mechanisms of normal growth in the mammalian heart. I. Qualitative and quantitative features of ventricular architecture in the dog from birth to five months of age. Circ. Res. 44: 250–262, 1979.
 278. Legato, M. J. Cellular mechanisms of normal growth in the mammalian heart. II. A quantitative and qualitative comparison between the right and left ventricular myocytes in the dog from birth to five months of age. Circ. Res. 44: 263–279, 1979.
 279. Legault, F., J. L. Rovleau, C. Juneau, C. Rose, and K. Rakusan. Functional and morphological characteristics of compensated and decompensated cardiac hypertrophy in dogs with chronic infrarenal aorto‐caval fistulas. Circ. Res. 66: 846–459, 1990.
 280. Lenkiewicz, J. E., M. J. Davies, and D. Rosen. Collagen in human myocardium as a function of age. Cardiovasc. Res. 6: 549–555, 1972.
 281. Lesch, M., R. Gorlin, and E. H. Sonnenblick. Myocardial amino acid transport in the isolated rabbit ventricular papillary muscle: general characteristics and effects of passive stretch. Circ. Res. 27: 445–460, 1970.
 282. Levine, N. D., S. D. Rockoff, and E. Braunwald. An angiocardiographic analysis of the thickness of the left ventricular wall and cavity in aortic stenosis and other valvular lesions. Hemodynamic‐angiographic correlations in patients with obstruction to left ventricular outflow. Circulation 28: 339–345, 1963.
 283. Li, Q., B. Li, X. Wang, A. Leri, K. P. Jana, Y. Liu, J. Kajstura, R. Baserga, and P. Anversa. Overexpression of insulin‐like growth factor‐1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J. Clin. Invest. 100: 1991–1999, 1997.
 284. Li, P., C. Park, R. Micheletti, B. Li, W. Cheng, E. H. Sonnenblick, P. Anversa, and G. Bianchi. Myocyte performance during evolution of myocardial infarction in rats: effects of propionyl‐L‐carnitine. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H1702–H1713, 1995.
 285. Li, B., M. Setoguchi, X. Wang, A. M. Andreoli, A. Leri, A. Malhotra, J. Kajstura, and P. Anversa. Insulin‐like growth factor‐1 attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart. Circ. Res. 84: 1007–1019, 1999.
 286. Li, P., X. Zhang, J. M. Capasso, L. G. Meggs, E. H. Sonnenblick, and P. Anversa. Myocyte loss and left ventricular failure characterise the long term effects of coronary artery narrowing or renal hypertension in rats. Cardiovasc. Res. 27: 1066–1075, 1993.
 287. Lie, J. T. and P. I. Hammond. Pathology of the senescent heart: anatomic observations on 237 autopsy studies of patients 90 to 105 years old. Mayo Clin. Proc. 63: 552–564, 1988.
 288. Lin, H‐L., V. Kazimieras, and A. F. Grimm. Functional morphology of the pressure‐ and the volume‐hypertrophied rat heart. Circ. Res. 41: 830–836, 1977.
 289. Linzbach, A. J. Mikrometrische und histologische Analyse hypertropher menschlicher Herzen. Virchows Arch. Pathol. Anat. 314: 534–592, 1947.
 290. Linzbach, A. J. Herzhypertrophie und kritisches Herzgewicht. Klin. Wochenschr. 26: 459–463, 1948.
 291. Linzbach, A. J. Die Muskelfaserkonstante und das Wachstumsgesetz der menschlichen Herzkammern. Virchows Arch. Pathol. Anat. 318: 575–618, 1950.
 292. Linzbach, A. J. Die Anzahl der Herzmuskelkerne in normalen, über‐lasteten, atrophischen und mit Corhormon behandelten Herzkammern. Z. Kreislaufforsch. 41: 641–658, 1952.
 293. Linzbach, A. J. Quantitative Biologie und Morphologie des Wachstums. In: Handbuch der Allgemeinen Pathologie, Vol 6, edited by F. Büchner, E. Letterer, and F. Roulet. Berlin: Springer‐Verlag, 1955, 181–306.
 294. Linzbach, A. J. Über das Längenwachstum der Herzmuskelfasern und ihrer Kerne in Beziehung zur Herzdilatation. Virchows Arch. Pathol. Anat. 328: 165–181, 1956.
 295. Linzbach, A. J. Die Lebenswandlungen der Struktur des Herzens. Verhandl. Deutsch. Gesellsch. Kreislaufforsch. 24: 3–15, 1958.
 296. Linzbach, A. J. Heart failure from the point of view of quantitative anatomy. Am. J. Cardiol. 5: 370–382, 1960.
 297. Linzbach, A. J. and E. Akuomoa‐Boateng. Alternsveranderungen des menschlinchen Herzens: I Das Herzgewicht im Alter. Klin Wochenschr 51: 156–163, 1973.
 298. Litchfield, J. B. Blood pressure in infant rats. Physiol. Zool. 31: 1–6, 1958.
 299. Liu, Y., E. Cigola, W. Cheng, J. Kajstura, G. Olivetti, T. H. Hintze, and P. Anversa. Myocyte nuclear mitotic division and programmed myocyte cell death characterize the cardiac myopathy induced by rapid ventricular pacing in dogs. Lab. Invest. 73: 771–787, 1995.
 300. Liu, Z., D. R. Hilbelink, W. B. Crockett, and A. M. Gerdes. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. I. Developing and established hypertrophy. Circ. Res. 69: 52–58, 1991.
 301. Liu, Z., D. R. Hilbelink, and A. M. Gerdes. Regional changes in hemodynamics and cardiac myocyte size in rats with aortocaval fistulas. 2. Long‐term effects. Circ. Res. 69: 59–65, 1991.
 302. Liu, Y., A. Leri, B. Li, X. Wang, W. Cheng, J. Kajstura, and P. Anversa. Angiotensin II stimulation in vitro induces hypertrophy of normal and postinfarcted ventricular myocytes. Circ. Res. 82: 1145–1159, 1998.
 303. Lockshin, R. A. and Z. Xakeri. Programmed cell death and apoptosis. In: Apoptosis: The Molecular Basis of Cell Death, Current Communication Cell Mol. Biol., Vol 3, edited by L. D. Tomei and F. O. Cope. Cold Spring Harbor, N.Y.: Laboratory Press, 1991, 47–60.
 304. Lorell, B. H., I. Palacios, W. M. Daggett, M. L. Jacobs, B. N. Fowler, and J. B. Newell. Right ventricular distension and left ventricular compliance. Am. J. Physiol. 240 (Heart Circ. Physiol. 9): H87–H98, 1981.
 305. Loud, A. V. A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J. Cell Biol. 37: 27–46, 1968.
 306. Loud, A. V., and P. Anversa. Morphometric analysis of biological processes. Lab. Invest. 50: 250–261, 1984.
 307. Loud, A. V., P. Anversa, F. Giacomelly, and J. Wiener. Absolute morphometric study of myocardial hypertrophy in experimental hypertension. I. Determination of myocyte size. Lab. Invest. 38: 586–596, 1978.
 308. Loud, A. V., W. C. Barany, and B. A. Pack. Quantitative evaluation of cytoplasmic structures in electron micrographs. Lab. Invest. 14: 996–1008, 1965.
 309. Loud, A. V., C. Beghi, G. Olivetti, and P. Anversa. Morphometry of right and left ventricular myocardium after strenuous exercise in preconditioned rats. Lab. Invest. 51: 104–111, 1984.
 310. Lund, D. D. and R. J. Tomanek. Myocardial morphology in spontaneously hypertensive and aortic‐constricted rats. Am. J. Anat. 152: 141–152, 1978.
 311. MacLellan, W. R. and M. D. Schneider. Death by design. Programmed cell death in cardiovascular biology and disease. Circ. Res. 81: 137–144, 1997.
 312. Maeda, H., C. A. Gleiser, E. J. Masoro, I. Murata, C. A. McMahan, and B. P. Yu. Nutritional influences on aging of Fischer 344 rats: II. Pathology. J. Gerontol. 40: 671–688, 1985.
 313. Magid, N. M., M. S. Young, D. C. Wallerson, R. S. Goldweit, J. N. Carter, R. B. Devereux, and J. S. Borer. Hypertrophic and functional response to experimental chronic aortic regurgitation. J. Mol. Cell. Cardiol. 20: 239–246, 1988.
 314. Mainwood, G. W. and K. Rakusan. A model for intracellular energy transport. Can. J. Physiol. Pharmacol. 60: 98–102, 1982.
 315. Mall, G., G. Zimmer, S. Baden, and T. Mattfeldt. Capillary neoformation in the rat heart—stereological studies on papillary muscles in hypertrophy and physiological growth. Basic Res. Cardiol. 85: 531–540, 1990.
 316. Manasek, F. J. Embryonic development of the heart. I. A light and electron microscopic study of myocardial development in the early chick embryo. J. Morphol. 125: 329–365, 1968.
 317. Manasek, F. J. Mitosis in developing cardiac muscle. J. Cell Biol. 37: 191–196, 1968.
 318. Manasek, F. J. Histogenesis of the embryonic myocardium. Am. J. Cardiol. 25: 149–168, 1970.
 319. Marcus, M. L. The coronary circulation in health and disease. New York: McGraw‐Hill, 1983.
 320. Marino, T. A., S. Haldar, E. C. Williamson, K. Beaverson, R. A. Walter, D. R. Marino, C. Beatty, and K. E. Lipson. Proliferating cell nuclear antigen in developing and adult rat cardiac muscle cells. Circ. Res. 69: 1353–1360, 1991.
 321. Marino, T. A., R. L. Kent, C. E. Uboh, E. Fernandez, E. W. Thompson, and G. Cooper. Structural analysis of pressure versus volume overload hypertrophy of cat right ventricle. Am. J. Physiol. 249 (Heart Circ. Physiol. 18): H371–H379, 1985.
 322. Mark, G. E. and F. F. Strasser. Pacemaker activity and mitosis in cultures of newborn rat heart ventricle cells. Exp. Cell Res. 44: 217–233, 1966.
 323. Maruyama, Y., K. Ashikawa, S. Isoyama, H. Kanatsuka, E. Ino‐Oka, and T. Takishima. Mechanical interactions between four heart chambers with and without pericardium in canine hearts. Circ. Res. 50: 86–100, 1982.
 324. Maseri, A. and S. Chierchia. Coronary artery spasm: demonstration, definition, diagnosis and consequences. Prog. Cardiovasc. Dis. 25: 169–192, 1982.
 325. McCallister, B. D. and A. L. Brown, Jr. A quantitative study of myocardial mitochondria in experimental cardiac hypertrophy. Lab. Invest. 14: 692–700, 1965.
 326. McKay, R. G., M. A. Pfeffer, R. C. Pasternak, J. E. Markis, G. C. Come, C. Nakao, N. D. Alderman, J. J. Ferguson, R. D. Safian, and W. Grossman. Left ventricular remodeling after myocardial infarction: A corollary to infarct expansion. Circulation 74: 693–702, 1986.
 327. McNutt, N. S., and D. W. Fawcett. The ultrastructure of the cat myocardium. II. Atrial muscle. J. Cell Biol. 42: 46–67, 1969.
 328. Medugorac, I. Collagen content in different areas of normal and hypertrophied rat myocardium. Cardiovasc. Res. 14: 551–554, 1980.
 329. Medugorac, I. and R. Jacob. Characterization of left ventricular collagen in the rat. Cardiovasc. Res. 17: 15–21, 1983.
 330. Meerson, F. Z., T. A. Zaletayeva, S. S. Lagutchev, and M. G. Pshennikova. Structure and mass of mitochondria in the process of compensatory hyperfunction and hypertrophy of the heart. Exp. Cell. Res. 36: 568–578, 1964.
 331. Meggs, L. G., J. Coupet, H. Huang, W. Cheng, P. Li, J. M. Capasso, C. J. Homcy, and P. Anversa. Regulation of angiotensin II receptors on ventricular myocytes after myocardial infarction in rats. Circ. Res. 72: 1149–1162, 1993.
 332. Meggs, L. G., H. Huang, P. Li, J. M. Capasso, and P. Anversa. Chronic nonocclusive coronary artery constriction in rats. β‐adrenoreceptor signal transduction and ventricular failure. J. Clin. Invest. 88: 1940–1946, 1991.
 333. Meggs, L. G., H. Huang, P. Li, J. M. Capasso, and P. Anversa. Chronic coronary arterial stenosis impairs α1‐adrenoreceptor signaling and cardiac performance in rats. Am. J. Physiol. 263 (Heart Circ. Physiol. 31): H929–H938, 1992.
 334. Meggs, L. G., J. Tillotson, H. Huang, E. H. Sonnenblick, J. M. Capasso, and P. Anversa. Noncoordinate regulation of alpha‐1 adrenoreceptor coupling and reexpression of alpha skeletal actin in myocardial infarction‐induced left ventricular failure in rats. J. Clin. Invest. 86: 1451–1458, 1990.
 335. Mendéz, J., and A. Keys. Density and composition of mammalian muscle. Metabolism 9: 184–188, 1960.
 336. Mirsky, I. Ventricular and arterial wall stresses based on large deformation analyses. Biophys. J. 13: 1141–1159, 1973.
 337. Mirsky, I. Elastic properties of the myocardium: a quantitative approach with physiological and clinical applications. In: Handbook of Physiology, Vol 1: The Heart, edited by R. M. Berne, N. Sperelakis, and S. R. Geiger. Bethesda, MD: American Physiological Society, 1979: 497–531.
 338. Mirsky, I., J. M. Pfeffer, M. A. Pfeffer, and E. Braunwald. The contractile state as the major determinant in the evolution of left ventricular dysfunction in the spontaneously hypertensive rat. Circ. Res. 53: 767–778, 1983.
 339. Momomura, S. I., A. B. Bradley, and W. Grossman. Left ventricular pressure‐segment length relations and end‐diastolic distensibility in dogs with coronary stenoses. An angina physiology model. Circ. Res. 55: 203–214, 1984.
 340. Monganroth, J., B. J. Maron, W. L. Henry, and S. E. Epstein. Comparative left ventricular dimensions in trained athletes. Ann. Intern. Med. 82: 521–524, 1975.
 341. Morkin, E. Postnatal muscle fiber assembly: localization of newly synthesized myofibrillar proteins. Science 167: 1499–1501, 1970.
 342. Morkin, E. Activation of synthetic processes in cardiac hypertrophy. Circ. Res. [Suppl. II] 35: 37–48, 1974.
 343. Morkin, E. and T. P. Ashford. Myocardial DNA synthesis in experimental cardiac hypertrophy. Am. J. Physiol. 215: 1409–1413, 1968.
 344. Muir, A. R. An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit. J. Biophys. Biochem. Cytol. 3: 193–202, 1957.
 345. Muir, A. R. Further observations on the cellular structure of cardiac muscle. J. Anat. 99: 27–46, 1965.
 346. Munnell, J. F. and R. Getty. Nuclear lobulation and amitotic division associated with increasing cell size in the aging canine myocardium. J. Gerontol. 23: 363–369, 1968.
 347. Murray, J. F., P. Gold, and B. L. Johnson. The circulatory effects of hematocrit variations in normovolemic and hypervolemic dogs. J. Clin. Invest. 42: 1150–1159, 1963.
 348. Narula, J., N. Haider, R. Virmani, T. G. DiSalvo, F. D. Kolodgie, R. J. Rajjar, U. Schmidt, M. F. Semigran, G. W. Dec, and B. A. Shaw. Apoptosis in myocytes in end‐stage heart failure. N. Engl. J. Med. 335: 1182–1189.
 349. Oalmann, M. C., R. W. Palmer, M. A. Guzman, and R. A. Strong. Sudden death, coronary heart disease, atherosclerosis and myocardial lesions in young men. Am. J. Epidemiol. 112: 639–649, 1980.
 350. Oberhänsli, I., G. Brandon, G. Lacourt, and B. Friedli. Growth patterns of cardiac structures and changes in systolic time intervals in the newborn and infant. Acta Paediatr. Scand. 69: 239–247, 1980.
 351. Oberpriller, J. O., V. J. Ferrans, and R. J. Carroll. Changes in DNA content, number of nuclei and cellular dimensions of young rat atrial myocytes in response to left coronary artery ligation. J. Mol. Cell. Cardiol. 15: 31–42, 1983.
 352. Olivetti, G., R. Abbi, F. Quaini, J. Kajstura, W. Cheng, J. A. Nitahara, E. Quaini, C. Di Loreto, C. A. Beltrami, S. Krajewski, J. C. Reed, and P. Anversa. Apoptosis in the failing human heart. N. Engl. J. Med. 336: 1131–1141, 1997.
 353. Olivetti, G., P. Anversa, and A. Loud. Morphometric study of early postnatal development in the left and right ventricular myocardium of the rat. II. Tissue composition, capillary growth, and sarcoplasmic alterations. Circ. Res. 46: 503–512, 1980.
 354. Olivetti, G., J. M. Capasso, L. G. Meggs, E. H. Sonnenblick, and P. Anversa. Cellular basis of chronic ventricular remodeling after myocardial infarction in rats. Circ. Res. 68: 856–869, 1991.
 355. Olivetti, G., J. M. Capasso, E. H. Sonnenblick, and P. Anversa. Side‐to‐side slippage of myocytes participates in ventricular wall remodeling acutely after myocardial infarction in rats. Circ. Res. 67: 23–34, 1990.
 356. Olivetti, G., E. Cigola, R. Maestri, D. Corradi, C. Lagrasta, S. R. Gambert, and P. Anversa. Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart. J. Mol. Cell. Cardiol. 28: 1463–1477.
 357. Olivetti, G., G. Giordano, D. Corradi, M. Melissari, C. Lagrasta, S. R. Gambert, and P. Anversa. Gender differences and aging: effects on the human heart. J. Am. Coll. Cardiol. 26: 1068–1079, 1995.
 358. Olivetti, G., C. Lagrasta, R. Ricci, E. H. Sonnenblick, J. M. Capasso, and P. Anversa. Long‐term pressure‐induced cardiac hypertrophy: capillary and mast cell proliferation. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1766–H1772, 1989.
 359. Olivetti, G., C. Lagrasta, F. Quaini, R. Ricci, G. Moccia, J. M. Capasso, and P. Anversa. Capillary growth in anemia‐induced ventricular wall remodeling in the rat. Circ. Res. 65: 1182–1192, 1989.
 360. Olivetti, G., M. Melissari, T. Balbi, F. Quaini, E. Cigola, E. H. Sonnenblick, and P. Anversa. Myocyte cellular hypertrophy is responsible for ventricular remodeling in the hypertrophied heart of middle aged individuals in the absence of cardiac failure. Cardiovasc. Res. 28: 1199–1208, 1994.
 361. Olivetti, G., M. Melissari, T. Balbi, F. Quaini, E. H. Sonnenblick, and P. Anversa. Myocyte nuclear and possible cellular hyperplasia contribute to ventricular remodeling in the hypertrophic senescent heart in human. J. Am. Coll. Cardiol. 24: 140–149, 1994.
 362. Olivetti, G., M. Melissari, J. M. Capasso, and P. Anversa. Cardiomyopathy of the aging human heart. Circ. Res. 68: 1560–1568, 1991.
 363. Olivetti, G., M. Melissari, G. Marchetti, and P. Anversa. Quantitative structural changes of the rat thoracic aorta in early spontaneous hypertension. Tissue composition, and hypertrophy and hyperplasia of smooth muscle cells. Circ. Res. 51: 19–26, 1982.
 364. Olivetti, G., F. Quaini, C. Lagrasta, R. Ricci, G. Tiberti, J. M. Capasso, and P. Anversa. Myocyte cellular hypertrophy and hyperplasia contribute to ventricular wall remodeling in anemia‐induced cardiac hypertrophy in rats. Am. J. Pathol. 141: 227–239, 1992.
 365. Olivetti, G., F. Quaini, R. Sala, C. Lagrasta, D. Corradi, E. Bonacina, S. R. Gambert, E. Cigola, and P. Anversa. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J. Mol. Cell. Cardiol. 28: 2005–2016, 1996.
 366. Olivetti, G., R. Ricci, and P. Anversa. Hyperplasia of myocyte nuclei in long‐term cardiac hypertrophy in rats. J. Clin. Invest. 80: 1818–1822, 1987.
 367. Olivetti, G., R. Ricci, C. Beghi, G. Guideri, and P. Anversa. Response of the border zone to myocardial infarction in rats. Am. J. Pathol. 125: 476–483, 1986.
 368. Olivetti, G., R. Ricci, C. Lagrasta, E. Maniga, E. H. Sonnenblick, and P. Anversa. Cellular basis of wall remodeling in longterm pressure overload‐induced right ventricular hypertrophy in rats. Circ. Res. 63: 648–657, 1988.
 369. Olivetti, G., E. H. Sonnenblick, R. Ricci, E. Puntillo, and P. Anversa. Differences in the temporal effects of aging on the structure and function of rat myocardium. Coronary Artery Dis. 1: 240–250, 1990.
 370. Opie, L. H., D. Nathan, and W. F. Lubbe. Biochemical aspects of arrhythmogenesis and ventricular fibrillation. Am. J. Cardiol. 43: 131–148, 1979.
 371. Overy, H. R. and R. E. Priest. Mitotic cell division in postnatal cardiac growth. Lab. Invest. 15: 1100–1103, 1966.
 372. Packer, M. Sudden unexpected death in patients with congestive heart failure: A second frontier. Circulation 72: 681–685, 1985.
 373. Page, E. Quantitative ultrastructural analysis in cardiac membrane physiology. Am. J. Physiol. 235: C145–C158, 1978.
 374. Page, D. L., J. B. Caulfield, J. A. Kastor, R. W. DeSanctis, and C. A. Sanders. Myocardial changes associated with cardiogenic shock. N. Engl. J. Med. 285: 133–137, 1971.
 375. Page, E., J. Early, and B. Power. Normal growth of ultrastructures in rat left ventricular myocardial cells. Circ. Res. [Suppl. II] 35: 12–16, 1974.
 376. Page, E. and L. P. McCallister. Quantitative electron microscopic description of heart muscle cells. Application to normal, hypertrophied and thyroxin‐stimulated hearts. Am. J. Cardiol. 31: 172–181, 1973.
 377. Page, E., L. P. McCallister, and B. Power. Stereological measurements of cardiac ultrastructures implicated in excitation‐contraction coupling. Proc. Natl. Acad. Sci. U.S.A. 68: 1465–1466, 1971.
 378. Page, E., and P. I. Polimeni. Ultrastructural changes in the ischemic zone bordering experimental infarcts in rat left ventricles. Am. J. Pathol. 87: 81–104, 1977.
 379. Page, E., P. I. Polimeni, R. Zak, J. Earley, and M. Johnson. Myofibrillar mass in rat and rabbit heart muscle: correlation of microchemical and stereological measurements in normal and hypertrophic hearts. Circ. Res. 30: 430–439, 1972.
 380. Pantely, G. A. and J. D. Bristow. Ischemic cardiomyopathy. Prog. Cardiovasc. Dis. 27: 95–114, 1984.
 381. Papadimitriou, J. M., B. E. Hopkins, and R. R. Taylor. Regression of left ventricular dilation and hypertrophy after removal of volume overload. Circ. Res. 34: 127–135, 1974.
 382. Pfeffer, M. A. and E. Braunwald. Ventricular remodeling after myocardial infarction. Circulation 81: 1161–1172, 1990.
 383. Pfeffer, M. A., G. A. Lamas, D. E. Vaughan, A. F. Parisi, and E. Braunwald. Effect of captopril on progressive ventricular dilation after anterior myocardial infarction. N. Engl. J. Med. 319: 80–86, 1988.
 384. Pfeffer, J. M., M. A. Pfeffer, and E. Braunwald. Influence of chronic captopril therapy on the infarcted left ventricle of the rat. Circ. Res. 57: 84–95, 1985.
 385. Pfeffer, M. A., J. M. Pfeffer, M. C. Fishbein, P. J. Fletcher, J. Spadaro, R. A. Kloner, and E. Braunwald. Myocardial infarct size and ventricular function in rats. Circ. Res. 44: 503–512, 1979.
 386. Pfeffer, J. M., M. A. Pfeffer, M. C. Fishbein, and E. D. Frohlich. Cardiac function and morphology with aging in the spontaneously hypertensive rat. Am. J. Physiol. 237 (Heart Circ. Physiol. 6): H461–H468, 1979.
 387. Pfeffer, J. M., M. A. Pfeffer, P. J. Fletcher, and E. Braunwald. Alterations of cardiac performance in rats with established spontaneous hypertension. Am. J. Cardiol. 44: 994–998, 1979.
 388. Pfeffer, J. M., M. A. Pfeffer, P. J. Fletcher, and E. Braunwald. Progressive ventricular remodeling in rat myocardial infarction. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H1406–H1414, 1991.
 389. Pfeffer, M. A., J. M. Pfeffer, and E. D. Frohlich. Pumping ability of the hypertrophying left ventricle of the spontaneously hypertensive rat. Circ. Res. 38: 423–429, 1976.
 390. Pfeffer, J. M., M. A. Pfeffer, I. Mirsky, and E. Braunwald. Regression of left ventricular hypertrophy and prevention of left ventricular dysfunction by captopril in the spontaneously hypertensive rat. Proc. Natl. Acad. Sci. U.S.A. 79: 3310–3314, 1982
 391. Pfeffer, M. A., J. M. Pfeffer, C. Steinberg, and P. Finn. Survival after an experimental myocardial infarction: beneficial effects of long‐term therapy with captopril. Circulation 72: 406–412, 1985.
 392. Polimeni, P. I., and J. Al‐Sadir. Expansion of extracellular space in the nonischemic zone of the infarcted heart and concomitant changes in tissue electrolyte contents in the rat. Circ. Res. 37: 725–732, 1975.
 393. Quaini, F., E. Cigola, C. Lagrasta, G. Saccani, E. Quaini, C. Rossi, G. Olivetti, and P. Anversa. End‐stage cardiac failure in humans is coupled with the induction of proliferating cell nuclear antigen and nuclear mitotic division in ventricular myocytes. Circ. Res. 75: 1050–1063, 1994.
 394. Rabinowitz, M., V. Aschenbrenner, R. Albin, N. J. Gross, R. Zak, and K. G. Nair. Synthesis and turnover of heart mitochondria in normal hypertrophied and hypoxic rat. In: Cardiac Hypertrophy, edited by N. Alpert. New York: Academic, 1971: 283–299.
 395. Rakusan, K. Quantitative morphology of capillaries of the heart. Methods Achiev. Exp. Pathol. 5: 272–286, 1971.
 396. Rakusan, K. Postnatal development of the heart. In: Heart and Heart‐Like Organs, Vol 1, edited by G. H. Bourne. New York: Academic, 1980: 301–348.
 397. Rakusan, K. Cardiac growth, maturation, and aging. In: Growth of the Heart in Health and Disease, edited by R. Zak. New York: Raven, 1984: 131–164.
 398. Rakusan, K. Microcirculation in the stressed heart. In: The Stressed Heart, edited by M. J. Legato. Boston: Martinus Nijhoff, 1987: 107–123.
 399. Rakusan, K., S. Batra, and M. I. Heron. A new approach for quantitative evaluation of coronary capillaries in longitudinal sections. In: Oxygen Transport to Tissue XVI, edited by M. C. Hogan, O. Mathieu‐Costello, D. C. Poole, and P. D. Wager. New York: Plenum, 1994: 407–415.
 400. Rakusan, K., N. Cicutti, S. Kazda, and Z. Turek. Effect of Nifedipine on coronary capillary geometry in normotensive and hypertensive rats. Hypertension 24: 205–211, 1994.
 401. Rakusan, K., M. F. Flanagan, T. Geva, J. Southern, and R. Van Praagh. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure‐overload hypertrophy. Circulation 86: 38–46, 1992.
 402. Rakusan, K., J. Jelinek, B. Korecky, M. Soukupova, and O. Poupa. Postnatal development of muscle fibers and capillaries in the rat heart. Physiol. Bohemoslov. 14: 32–37, 1965.
 403. Rakusan, K. and B. Korecky. The effect of growth and aging on functional capillary supply of the rat heart. Growth 46: 275–281, 1982.
 404. Rakusan, K. and B. Korecky. Cell size in experimental cardio‐megaly. In: Perspectives in Cardiovascular Research, Vol 8, edited by R. C. Tarazi, and J. B. Dunbar. New York: Raven, 1983: 41–48.
 405. Rakusan, K., B. Korecky, and V. Mezl. Cardiac hypertrophy and/or hyperplasia? In: Biology of Myocardial Hypertrophy and Failure, Vol. 7, edited by N. Alpert. New York: Raven, 1982: 103–108.
 406. Rakusan, K., B. Korecky, Z. Roth, and O. Poupa. Development of the ventricular weight of the rat heart with special reference to the early phases of postnatal ontogenesis. Physiol. Bohemoslov. 12: 518–525, 1963.
 407. Rakusan, K., J. Moravec, and P. Y. Hatt. Regional capillary supply in the normal and hypertrophied rat heart. Microvasc. Res. 20: 319–326, 1980.
 408. Rakusan, K. and J. Nagai. Morphometry of arterioles and capillaries in hearts of senescent mice. Cardiovasc. Res. 28: 969–972, 1994.
 409. Rakusan, K. and O. Poupa. Changes in the diffusion distance in the rat heart muscle during development. Physiol. Bohemoslov. 12: 220–227, 1963.
 410. Rakusan, K. and O. Poupa. Capillaries and muscle fibers in the heart of old rats. Gerontologia 9: 107–112, 1964.
 411. Rakusan, K. and Z. Turek. Protamine inhibits capillary formation in growing rat hearts. Circ. Res. 57: 393–398, 1985.
 412. Rakusan, K. and P. Wicker. Morphometry of the small arteries and arterioles in the rat heart: effects of chronic hypertension and exercise. Cardiovasc. Res. 24: 278–284, 1990.
 413. Rakusan, K., P. Wicker, M. Abdul‐Samad, B. Healy, and Z. Turek. Failure of swimming exercise to improve capillarization in cardiac hypertrophy of renal hypertensive rats. Circ. Res. 61: 641–647, 1987.
 414. Recavvaren, S. and J. Arias‐Stella. Growth and development of the ventricular myocardium from birth to adult life. Br. Heart J. 26: 187–192, 1964.
 415. Regen, D. M., P. Anversa, and J. M. Capasso. Segmental calculation of left ventricular wall stresses. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H1411–H1421, 1993.
 416. Reiner, L., A. Mazzoleni, F. L. Rodriguez, and R. R. Freudenthal. The weight of the human heart: I. Normal cases. Arch. Pathol. 68: 58–73, 1959. 221
 417. Reiss, K., J. M. Capasso, H. Huang, L. G. Meggs, P. Li, and P. Anversa. ANG II receptors, c‐myc, and c‐jun in myocytes after myocardial infarction and ventricular failure. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H760–H769, 1993.
 418. Reiss, K., W. Cheng, A. Ferber, J. Kajstura, P. Li, B. Li, G. Olivetti, C. J. Homcy, R. Baserga, and P. Anversa. Over‐expression of insulin‐like growth factor‐1 in the heart is coupled with myocyte proliferation in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93: 8630–8635, 1996.
 419. Reiss, K., J. Kajstura, J. M. Capasso, T. A. Marino, and P. Anversa. Impairment of myocyte contractility following coronary artery narrowing is associated with activation of the myocyte IGF‐1 autocrine system, enhanced expression of late growth related genes, DNA‐synthesis and myocyte nuclear mitotic division in rats. Exp. Cell Res. 207: 348–360, 1993.
 420. Reiss, K., J. Kajstura, X. Zhang, P. Li, E. Szoke, G. Olivetti, and P. Anversa. Acute myocardial infarction leads to upregulation of the IGF‐1 autocrine system, DNA replication, and nuclear mitotic division in the remaining viable cardiac myocytes. Exp. Cell Res. 213: 463–472, 1994.
 421. Reiss, K., L. G. Meggs, P. Li, G. Olivetti, J. M. Capasso, and P. Anversa. Upregulation of IGF1, IGF‐1‐receptor and late growth related genes in ventricular myocytes acutely after infarction in rats. J. Cell. Physiol. 158: 160–168, 1993.
 422. Remington, R. D. Interpretation of the hypertension detection and follow‐up program. In: Frontiers in Hypertension Research, edited by J. H. Laragh, F. R. Buhler, and D. W. Seldin. New York: Springer‐Verlag, 1981, 15–16.
 423. Ritzer, T. F., A. A. Bove, and R. A. Carey. Left ventricular performance characteristics in trained and sedentary dogs. J. Appl. Physiol. 48: 130–138, 1980.
 424. Roberts, C. S. and W. C. Roberts. Cross‐sectional area of the proximal portions of the three major epicardial coronary arteries in 98 necropsy patients with different coronary events. Circulation 62: 953–959, 1980.
 425. Roberts, J. T. and J. T. Wearn. Quantitative changes in the capillary‐muscle relationship in human hearts during normal growth and hypertrophy. Am. Heart J. 21: 617–633, 1941.
 426. Roberts, W. C. The coronary arteries and left ventricle in clinically isolated angina pectoris: a necropsy analysis. Circulation 54: 388–390, 1976.
 427. Roberts, W. C. and A. A. Jones. Quantitation of coronary arterial narrowing at necropsy in sudden coronary death: analysis of 31 patients and comparison with 25 control subjects. Am. J. Cardiol. 44: 39–45, 1979.
 428. Roberts, W. C. Morphological features of the elderly heart. In: Cardiovascular Disease in the Elderly Patient, edited by D. D. Tresch and W. S. Aronow. New York: Marcel Dekker, 1994: 17–42.
 429. Roeske, W. R., R. M. Savage, R. A. O'Rouke, and C. M. Bloor. Clinicopathologic correlations in patients after myocardial infarction. Circulation 63: 36–45, 1981.
 430. Romero, T., J. Covell, and W. F. Friedman. A comparison of pressure–volume relations of the fetal, newborn and adult heart. Am. J. Physiol. 222: 1285–1290, 1972.
 431. Ross, J., Jr., E. Braunwald, and A. G. Morrow. Clinical and hemodynamic observations in pure mitral insufficiency. Am. J. Cardiol. 2: 11–23, 1958.
 432. Ross, J., E. H. Sonnenblick, R. R. Taylor, H. M. Spotnitz, and J. W. Covell. Diastolic geometry and sarcomere lengths in the chronically dilated canine left ventricle. Circ. Res. 28: 49–61, 1971.
 433. Rowlatt, U. F., H. J. A. Rimoldi, and M. Lev. The quantitative morphology of the normal child's heart. Pediatr. Clin. North Am. 10: 499–588, 1963.
 434. Rudolph, A. M. and M. A. Heymann. Circulatory changes with growth in the fetal lamb. Circ. Res. 26: 289–299, 1970.
 435. Rudolph, A. M. Congenital Disease of the Heart. Clinical Physiologic Considerations in Diagnosis and Management. Chicago: Year Book 1974.
 436. Rudolph, A. M. Fetal and neonatal pulmonary circulation. Annu. Rev. Physiol. 41: 383–395, 1979.
 437. Rudolph, A. M. and M. A. Heymann. The circulation of the fetus in utero: methods for studying distribution of blood flow, cardiac output and organ blood flow. Circ. Res. 21: 163–184, 1967.
 438. Rumyantsev, P. P. DNA synthesis and nuclear division in embryonical and postnatal histogenesis of myocardium. Arch. Anat. 47: 59–65, 1964.
 439. Sandritter, W. and C. P. Adler. Numerical hyperplasia in human heart hypertrophy. Experientia 27: 1435–1437, 1971.
 440. Sandritter, W. and C. P. Adler. Polyploidization of heart muscle nuclei as a prerequisite for heart growth and numerical hyperplasia in heart hypertrophy. Recent Adv. Stud. Cardiol. Struct. Metab. 12: 115–127, 1978.
 441. Sasaki, R., T. Morishita, S. Ichikawa, and S. Yamagata. Autoradiographic studies and mitosis of heart muscle cells in experimental cardiac hypertrophy. Tohoku J. Exp. Med. 102: 159–167, 1970.
 442. Sasaki, R., T. Morishita, and S. Yamagata. Mitosis of heart muscle cells in normal rats. Tohoku J. Exp. Med. 96: 405–411, 1968.
 443. Sasaki, R., Y. Watanabe, T. Morishita, and S. Yamagata. Estimation of the cell number of heart muscles in normal rats. Tohok J. Exp. Med. 95: 177–184, 1968.
 444. Sasayama, S., J. Ross, Jr., D. Franklin, C. M. Bloor, S. Bishop, and R. B. Dilley. Adaptation of the left ventricle to chronic pressure overload. Circ. Res. 38: 172–178, 1976.
 445. Schaper, J., S. Hein, D. Scholz and H. Mollnau. Multifacetted morphological alterations are present in the failing human heart. J. Mol. Cell. Cardiol. 27: 857–861, 1995.
 446. Scheuer, J. and A. K. Bahn. Cardiac contractile proteins: ATP‐ase activity and physiologic function. Circ. Res. 45: 1–12, 1979.
 447. Schlant, R. C., J. M. Felner, S. B. Heymsfield, C. A. Gilbert, N. B. Shulman, E. P. Tuttle, and B. A. Blumenstein. Echocar‐diographic studies of left ventricular anatomy and function in essential hypertension. Cardiovasc. Med. 2: 477–499, 1977.
 448. Schneider, R. and P. Pfitzer. Die Zahl der Kerne in isolierten Zellen des menschlichen Myokards. Virchows Arch. B. 12: 238–258, 1973.
 449. Schoenmackers, J. Die Herzkranzschlagadern bei der arterio‐kardialen Hypertrophie. Kreislaufforsch. 38: 321–336, 1949.
 450. Scholz, D., W. Diener, and J. Schaper. Altered nucleus/cytoplasm relationship and degenerative structural changes in human dilated cardiomyopathy. Cardioscience 5: 127–138, 1994.
 451. Scholz, D. G., D. W. Kitzman, P. T. Hagen, D. M. Ilstrup, and W. D. Edwards. Age‐related changes in normal human hearts during the first 10 decades of life. Part I (Growth): a quantitative anatomic study of 200 specimens from subjects from birth to 19 years old. Mayo Clin. Proc. 63: 126–136, 1988.
 452. Schuler, G., K. L. Peterson, A. Johnson, G. Francis, G. Dennis, J. Utley, P. O. Daily, W. Ashburn, and J. Ross Jr. Temporal response of left ventricular performance to mitral valve surgery. Circulation 59: 1218–1231, 1979.
 453. Schuster, E. H. and B. H. Bulkley. Ischemic cardiomyopathy: a clinicopathologic study of fourteen patients. Am. Heart J. 100: 506–512, 1980.
 454. Setoguchi, M., A. Leri, S. Wang, Y. Liu, A. De Luca, A. Giordano, T. H. Hintze, J. Kajstura, and P. Anversa. Activation of cyclins and cyclin‐dependent kinases, DNA synthesis, and myocyte mitotic division in pacing‐induced heart failure in dogs. Lab. Invest. 79: 1545–1558, 1999.
 455. Shahab, L. and A. Wollenberger. Amino acid incorporation into mitochondria from hypertrophying hearts of rats with aortic constriction. J. Mol. Cell. Cardiol. 1: 143–155, 1970.
 456. Sheridan, D. J., M. J. Cullen, and M. J. Tynan. Postnatal ultrastructural changes in the cat myocardium: a morphometric study. Cardiovasc. Res. 11: 536–540, 1977.
 457. Sheridan, D. J., M. J. Cullen, and M. J. Tynan. Qualitative and quantitative observations on ultrastructural changes during postnatal development in the cat myocardium. J. Mol. Cell. Cardiol. 11: 1173–1181, 1979.
 458. Shi, Y. F., B. M. Sahai, and D. R. Green. Cyclosporin A inhibits activation‐induced cell death in T‐cell hybridomas and thymocytes. Nature 339: 625–626, 1989.
 459. Shipley, R. A., W. Shipley, and J. T. Wearn. The capillary supply in normal and hypertrophied hearts of rabbits. J. Exp. Med. 65: 29–42, 1937.
 460. Shreiner, T. P., M. L. Weisfeldt, and N. W. Shock. Effects of age, sex and breeding status on the rat heart. Am. J. Physiol. 217: 176–180, 1969.
 461. Shub, C., A. L. Klein, P. K. Zachariah, K. R. Bailey, and J. Tajik. Determination of left ventricular mass by echocardiography in a normal population: effect of age and sex in addition to body size. Mayo Clin. Proc. 69: 205–211, 1994.
 462. Sjögren, A. L. Left ventricular wall thickness determined by ultrasound in 100 subjects without heart disease. Chest 60: 341–346, 1971.
 463. Smith, H. L. The relation of the weight of the heart to the weight of the body and the weight of the heart to age. Am. Heart J. 4: 79–93, 1928.
 464. Smith, S. H. and S. P. Bishop. Regional myocyte size in compensated right ventricular hypertrophy in the ferret. J. Mol. Cell. Cardiol. 17: 1005–1011, 1985.
 465. Smith, J. R. and O. M. Pereira‐Smith. Replicative senescence: implications for in vivo aging and tumor suppression. Science 273: 63–67, 1996.
 466. Sohal, R. S. and R. Weindruch. Oxidative stress, caloric restriction, and aging. Science 273: 59–63, 1996.
 467. Sadoshima, J., Y. Xu, H. S. Slayter, and S. Izumo. Autocrine release of angiotensin II mediates stretch‐induced hypertrophy of cardiac myocytes in vitro. Cell 75: 977–894, 1993.
 468. Sonnenblick, E. H., J. E. Strobeck, J. M. Capasso, and S. M. Factor. Ventricular hypertrophy: models and methods. In: Perspective in Cardiovascular Research, Vol 8, Cardiac Hypertrophy in Hypertension, edited by R. C. Tarazi and J. B. Dunbar. New York: Raven, 1983: 12–20.
 469. Soonpaa, M. H. and L. J. Field. Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ. Res. 83: 15–26, 1998.
 470. Sordahl, L. A., W. B. McCollum, W. G. Wood, and A. Schwartz. Mitochondrial and sarcoplasmic reticulum function in cardiac hypertrophy and failure. Am. J. Physiol. 224: 497–502, 1973.
 471. Spagnuolo, M., H. Kloth, A. Taranta, E. Doyle, and B. Pasternack. Natural history of rheumatic aortic regurgitation. Criteria predictive of death, congestive heart failure, and angina in young patients. Circulation 44: 368–389, 1971.
 472. Spinale, F. G., J. L. Zellner, M. Tomita, F. A. Crawford, and M. R. Zile. Relation between ventricular and myocyte remodeling with the development and regression of supraventricular tachycardia‐induced cardiomyopathy. Circ. Res. 69: 1058–1067, 1991.
 473. Spiro, D. and M. Hagopian. On the assemblage of myofibrils. In: Formation and Fate of Cell Organelles, edited by K. B. Warren. New York: Academic, 1967: 71–98.
 474. Spotnitz, W. D., H. M. Spotnitz, N. J. Truccone, T. S. Cottrell, W. Gersony, J. R. Malm, and E. H. Sonnenblick. Relations of ultrastructure and function: sarcomere dimensions, pressure‐volume curves, and geometry of the intact left ventricle of the immature canine heart. Circ. Res. 44: 679–691, 1979.
 475. Sproule, R. S., J. H. Mitchell, and W. F. Miller. Cardiopulmonary physiological response to heavy exercise in patients with anemia. J. Clin. Invest. 39: 378–388, 1960.
 476. Stevens‐Hooper, E. S. Use of colchicine for the measurement of mitotic rate in the intestinal epithelium. Am. J. Anat. 108: 231–244, 1961.
 477. Steward, D. M. and A. W. Martin. Hypertrophy of the denervated hemidiaphragm. Am. J. Physiol. 186: 497–500, 1956.
 478. Stockdale, F. E. and H. Holtzer. DNA synthesis and myogenesis. Exp. Cell Res. 24: 508–520, 1962.
 479. Stone, H. O., H. K. Thompson, Jr., and K. Schmidt‐Nilsen. Influence of erythrocytes on blood viscosity. Am. J. Physiol. 214: 913–918, 1968.
 480. Tadokoro, M. and S. Arai. Myocardial cell in right ventricular hypertrophy. Tohoku. J. Exp. Med. 106: 5–16, 1972.
 481. Takahashi, T., H. Schunkert, S. Isoyama, J. Y. Wei, B. Nadal‐Ginard, W. Grossman, and S. Izumo. Age related differences in the expression of protooncogene and contractile protein genes in response to pressure overload in the rat myocardium. J. Clin. Invest. 89: 939–946, 1992.
 482. Takanatsu, T., K. Nayanishi, M. Fukuda, and S. Fujita. Cytofluorimetric nuclear DNA‐determinations in infant, adolescence, adult and aging human hearts. Histochemistry 77: 485–494, 1983.
 483. Taussig, H. B. Congenital Malformation of the Heart. Vol. I: General Considerations. Cambridge: Harvard University Press, 1960.
 484. Taylor, G. J., J. O. Humphries, E. D. Mellitis, B. Pitt, R. A. Schulze, L. S. C. Griffith, and S. C. Achoff. Predictors of clinical course, coronary anatomy and left ventricular function after recovery from acute myocardial infarction. Circulation 62: 960–970, 1980.
 485. Tharp, G. D. and C. T. Wagner. Chronic exercise and cardiac vascularization. Eur. J. Appl. Physiol. 48: 97–104, 1982.
 486. Toma, B. S., R. D. Wangler, D. F. Dewitt, and H. V. Sparks. Effect of development on coronary vasodilator reserve in the isolated guinea pig heart. Circ. Res. 57: 538–544, 1985.
 487. Tomanek, R. J. Effects of age and exercise on the extent of the myocardial capillary bed. Anat. Rec. 167: 55–62, 1970.
 488. Tomanek, R. J. Coronary vasculature of the aging heart. In: The Aging Heart. Aging (Vol 12), edited by M. L. Weisfeld. New York: Raven, 1980: 115–135.
 489. Tomanek, R. J. Response of the coronary vasculature to myocardial hypertrophy. J. Am. Coll. Cardiol. 15: 528–533, 1990.
 490. Tomanek, R. J. Age as a modulator of coronary capillary angiogenesis. Circulation 86: 320–321, 1992.
 491. Tomanek, R. J. and M. R. Aydelott. Late onset renal hypertension in old rats alters left ventricular structure and function. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H531–H538, 1992.
 492. Tomanek, R. J., M. R. Aydelotte, K. E. Anderson, and R. J. Torry. Coronary blood flow in senescent rats with late‐onset hypertension. Am. J. Physiol. 264 (Heart Circ. Physiol. 33): H1854–H1860, 1993.
 493. Tomanek, R. J., M. R. Aydelott, and C. A. Butters. Late‐onset renal hypertension in old rats alters myocardial microvessels. Am. J. Physiol. 259 (Heart Circ. Physiol. 28): H1681–H1687, 1990.
 494. Tomanek, R. J., M. R. Aydelotte, and R. J. Torry. Remodeling of coronary vessels during aging in purebred beagles. Circ. Res. 69: 1068–1074, 1991.
 495. Tomanek, R. J., P. A. Barlow, P. M. Connell, Y. Chen, and R. J. Torry. Effects of hypothyroidism and hypertension on myocardial perfusion and vascularity in rabbits. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H1638–H1644, 1993.
 496. Tomanek, R. J., P. M. Connell, C. A. Butters, and R. J. Torry. Compensated coronary microvascular growth in senescent rats with thyroxine‐induced cardiac hypertrophy. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H419–H425, 1995.
 497. Tomanek, R. J., C. V. Gisolfi, C. A. Bauer, and P. J. Palmer. Coronary vasodilator reserve, capillarity and mitochondria in trained hypertensive rats. J. Appl. Physiol. 64: 1179–1185, 1988.
 498. Tomanek, R. J. and J. M. Hovanec. The effects of long‐term pressure overload and aging on the myocardium. J. Mol. Cell. Cardiol. 13: 471–488, 1981.
 499. Tomanek, R. J. and U. L. Karlsson. Myocardial ultrastructure of young and senescent rats. J. Ultrastruct. Res. 42: 201–220, 1973.
 500. Tomanek, R. J., P. J. Palmer, G. L. Peiffer, K. L. Schreiber, C. L. Eastham, and M. L. Marcus. Morphometry of canine coronary arteries, arterioles and capillaries during hypertension and left ventricular hypertrophy. Circ. Res. 58: 38–46, 1986.
 501. Tomanek, R. J., K. A. Schalk, M. L. Marcus, and D. G. Harrison. Coronary angiogenesis during long‐term hypertension and left ventricular hypertrophy in dogs. Circ. Res. 65: 352–359, 1989.
 502. Tomanek, R. J., J. C. Searls, and P. A. Lachenbruch. Quantitative changes in the capillary bed during developing, peak and stabilized cardiac hypertrophy in the spontaneously hypertensive rats. Circ. Res. 51: 295–304, 1982.
 503. Tomanek, R. J. and R. J. Torry. Growth of the coronary vasculature in hypertrophy: mechanisms and model dependence. Cell. Mol. Biol. Res. 40: 129–136, 1994.
 504. Tomanek, R. J., T. G. Wessel, and D. G. Harrison. Capillary growth and geometry during long‐term hypertension and myocardial hypertrophy in dogs. Am. J. Physiol. 261 (Heart Circ. Physiol. 30): H1011–H1018, 1993.
 505. Toshima, H., Y. Koga, H. Toshioka, T. Akijoshi, and N. Kimura. Echocardiographic classification of hypertensive heart disease. A correlative study with clinical features. Jpn. Heart J. 16: 377–393, 1975.
 506. Turek, Z., M. Grantner, K. Kubat, B. E. M. Ringnalda, and F. Kreuzer. Arterial blood gases, muscle fiber diameter and intercapillary distance in cardiac hypertrophy of rats with an old myocardial infarction. Pflugers Arch. 376: 209–215, 1978.
 507. Turek, Z., L. Hoofd, and K. Rakusan. Myocardial capillaries and tissue oxygenation. Can. J. Cardiol. 2: 98–103, 1986.
 508. Turek, Z. and K. Rakusan. Log normal distribution of intercapillary distance in normal and hypertrophic heart as estimated by the method of concentric circles: its effect on tissue oxygenation. Pflugers Arch. 391: 17–21, 1981.
 509. Turek, Z., K. Rakusan, J. Olders, L. Hoofd, and F. Kreuzer. Computed myocardial PO2 histograms: effects of various geometrical and functional conditions. J. Appl. Physiol. 70: 1845–1853, 1991.
 510. Underwood, E. E. Quantitative Stereology. Reading, Massachusetts, Addison‐Wesley, 1970.
 511. Urabe, Y., D. L. Mann, R. L. Kent, K. Nakano, R. J. Tomanek, B. A. Carabello, and G. Cooper, IV. Cellular and ventricular contractile dysfunction in experimental canine mitral regurgitation. Circ. Res. 70: 131–147, 1992.
 512. Vahouny, G. V., R. Wei, R. Starkweather, and C. Davis. Preparation of beating heart cells from adult rats. Science 167: 1616–1618, 1970.
 513. Vinten‐Johansen, J. and H. R. Weiss. Oxygen consumption in subepicardial and subendocardial regions of the canine left ventricle. The effector of experimental acute valvular aortic stenosis. Circ. Res. 46: 139–145, 1980.
 514. Vitali‐Mazza, L. and P. Anversa. Myocardial hypertrophy by arterio‐venous fistula in dogs. An ultrastructural quantitative study. In: Colloque les Surcharges Cardiaques (Heart Overloading), edited by P. Y. Hatt. Paris, INSERM, 1972: 55–57.
 515. Vitali‐Mazza, L., P. Anversa, F. Tedeschi, R. Mastandrea, V. Mavilla, and O. Visioli. Ultrastructural basis of acute left ventricular failure from severe acute aortic stenosis in the rabbit. J. Mol. Cell. Cardiol. 4: 661–671, 1972.
 516. Vliegen, H. W., A. Van Der Laarse, C. J. Cornelisse, and F. Eulderink. Myocardial changes in pressure overload‐induced left ventricular hypertrophy: a study on tissue composition, polyploidization and multinucleation. Eur. Heart J. 12: 488–494, 1991.
 517. Vliegen, H. W., A. M. Vossepoel, A. Laarse, F. Eulderink, and C. J. Cornelisse. Methodological aspects of flow cytometric analysis of DNA polyploidy in human heart tissue. Histochemistry 84: 348–354, 1986.
 518. Vogelberg, K. Die Lichtungsweite der Coronarostien an normalen und hypertrophen Herzen. Kreislaufforsch. 46: 101, 1957.
 519. Wachtlova, M., B. Ostadal, and V. Mares. Thyroxine‐induced cardiomegaly in rats of different age. Physiol. Bohemoslov. 34: 385–395, 1985.
 520. Wahlander, H., B. Haraldsson, and P. Friberg. Myocardial capillary diffusion capacity in rat hearts with cardiac hypertrophy due to pressure and volume overload. Am. J. Physiol. 265 (Heart Circ. Physiol. 34): H61–H68, 1993.
 521. Walston, A., J. C. Rembert, J. M. Fedor, and J. C. Greenfield, Jr. Regional myocardial blood flow after sudden aortic constriction in awake dogs. Circ. Res. 42: 419–425, 1978.
 522. Wangler, R. D., K. G. Peters, M. L. Marcus, and R. J. Tomanek. Effects of duration and severity of arterial hypertension and cardiac hypertrophy on coronary vasodilator reserve. Circ. Res. 51: 10–18, 1982.
 523. Warnes, C. A. and W. C. Roberts. Sudden coronary death: relation of amount and distribution of coronary narrowing at necropsy to previous symptoms of myocardial ischemia, left ventricular scarring and heart weight. Am. J. Cardiol. 54: 65–73, 1984.
 524. Warren, S. E., H. D. Royal, J. E. Markis, W. Grossman, and R. J. McKay. Time course of left ventricular dilatation after myocardial infarction: influence of infarct‐related artery and success of coronary thrombolysis. J. Am. Coll. Cardiol. 11: 12–19, 1988.
 525. Wearn, J. T. The extent of the capillary bed of the heart. J. Exp. Med. 47: 273–291, 1928.
 526. Wearn, J. T. Morphological and functional alterations of the coronary circulation. Harvey Lect. 35: 243–270, 1939–40.
 527. Weber, K. T. and C. G. Brilla. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin‐angiotensin‐aldosterone system. Circulation 83: 1849–1865, 1991.
 528. Weber, K. T., J. S. Janicki, S. G. Shroff, R. Pick, R. M. Chen, and R. I. Bashey. Collagen remodeling of the pressure‐overloaded, hypertrophied non‐human primate myocardium. Circ. Res. 62: 757–765, 1988.
 529. Wegelin, C. Über Arteriolosklerose im Myocard. Schweiz. Med. Wochenschr. 74: 57–60, 1944.
 530. Wegner, G. and E. Mölbert. Das Verhalten des Myokards bei der experimentellen suupravalvulären Aortenstenose: autoradiographische und elektronenmikroskopische Untersuchungen an Rattenherzen. Virchows Arch. A. Pathol. Anat. 341: 54–63, 1966.
 531. Wei, J. Y. Age and the cardiovascular system. N. Engl. J. Med. 237: 1735–1739, 1992.
 532. Wei, J. Y., H. A. Spurgeon, and E. G. Lakatta. Excitation–contraction coupling in rat myocardium: alterations with adult aging. Am. J. Physiol. 246 (Heart Circ. Physiol. 15): H784–H791, 1984.
 533. Weibel, E. R. Stereological principles for morphometry in electron microscopy cytology. Int. Rev. Cytol. 26: 235–302, 1969.
 534. Weibel, E. R. Oxygen demand and the size of respiratory structures in mammals. In: Evolution of Respiratory Processes, Vol 13 edited by S. C. Wood, and C. Lenfant. New York: Basel: Marcel Dekker, 1979: 289–346.
 535. Weibel, E. R. Stereological Methods, Vol 1: Practical Methods for Biological Morphometry. London, Academic, 1979.
 536. Weibel, E. R. Stereological Methods, Vol 2: Theoretical Foundations. London, Academic, 1980.
 537. Weibel, E. R. and R. P. Bolender. Sterological techniques for electron microscopic morphometry. In Principles and Techniques of Electron Microscopy, Vol 3, edited by M. A. Hayat. New York: Van Nostrand Reinhold, 1973: 239.
 538. Weibel, E. R. and D. Paumgartner. A principle for counting tissue structures on random sections. J. Appl. Physiol. 17: 343–348, 1962.
 539. Weibel, E. R. and D. Paumgartner. Integrated sterological and biochemical studies on hepatocytic membranes. II. Correction of section thickness effect on volume and surface density estimates. J. Cell Biol. 42: 584–587, 1978.
 540. Weibel, E. R., W. Stäubli, H. R. Gnägi, and F. A. Hess. Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J. Cell Biol. 42: 68–91, 1969.
 541. Weinstein, R. B. and E. D. Hay. DNA synthesis and mitosis in differentiated cardiac muscle cells of chick embryos. J. Cell Biol. 47: 310–316, 1970.
 542. Weisfeldt, M. L. Research on aging. In: Aging, Volume 12: The Aging Heart: Its Function and Response to Stress, edited by M. L. Weisfeldt. New York: Raven, 1980: 1–6.
 543. Weisfeld, M. L., W. A. Loeven, and N. W. Shock. Resting and active mechanical properties of trabeculae carneae from aged male rats. Am. J. Physiol. 220: 1921–1927, 1971.
 544. Weisfeldt, M. L., J. R. Wright, D. P. Shreiner, E. Lakatta, and N. W. Shock. Coronary flow and oxygen extraction in the perfused heart of senescent male rats. J. Appl. Physiol. 30: 44–49, 1971.
 545. Weisman, H. F., D. E. Bush, J. A. Mannisi, M. L. Weisfeldt, and B. Healy. Cellular mechanisms of myocardial infarct expansion. Circulation 78: 186–201, 1988.
 546. Weisman, H. F. and B. Healy. Myocardial infarct expansion, infarct extension and reinfarction: pathophysiologic concepts. Prog. Cardiovasc. Dis. 30: 73–110, 1987.
 547. Weitz, G. Über das unterschiedliche Verhalten der Lage der Herzmuskelfasern in kontrahiertem und dilatiertem Zustand. Med. Klin. 46: 1031–1032, 1951.
 548. White, C. W., C. B. Wright, D. B. Doty, L. F. Hiratza, C. L. Eastham, D. G. Harrison, and M. L. Marcus. Does the visual interpretation of the coronary arteriogram predict physiological significance of a coronary stenosis. N. Engl. J. Med. 310: 819–824, 1984.
 549. Wikman‐Coffelt, J., W. W. Parmley, and D. T. Mason. The cardiac hypertrophy process. Analyses of factors determining pathological vs. physiological development. Circ. Res. 45: 697–707, 1979.
 550. Wright, A. J. A. and O. Hudlická. Capillary growth and changes in heart performance induced by chronic bradycardial pacing in the rabbit. Circ. Res. 49: 469–478, 1981.
 551. Wyllie, A. H. Apoptosis and the regulation of cell numbers in normal and neoplastic tissue: an overview. Cancer Metast. Rev. 11: 95–103, 1992.
 552. Yin, F. C. P., H. A. Spurgeon, K. Rakusan, M. L. Weisfeldt, and E. G. Lakatta. Use of tibial length to quantify cardiac hypertrophy: application in the aging rat. Am. J. Physiol. 243 (Heart Circ. Physiol. 12): H941–H947, 1982.
 553. Yin, F. C. P., H. A. Spurgeon, M. L. Weisfeld, and E. G. Lakatta. Mechanical properties of myocardium from hypertrophied rat hearts: a comparison between hypertrophy induced by senescence and by aortic banding. Circ. Res. 46: 292–300, 1980.
 554. Zak, R. Development and proliferative capacity of cardiac muscle cells. Circ. Res. [Suppl. II] 35: 17–26, 1974.
 555. Zak, R. Overview of the growth process. In: Growth of the Heart in Health and Disease, edited by R. Zak. New York: Raven, 1984: 1–24.
 556. Zak, R., A. F. Martin, M. K. Reddy, and M. Rabinowitz. Control of protein balance in hypertrophied cardiac muscle. Circ. Res. 38: (Suppl I) 145–150, 1976.
 557. Zhang, X., D. E. Dostal, K. Reiss, W. Cheng, J. Kajstura, P. Li, H. Huang, E. H. Sonnenblick, L. G. Meggs, K. M. Baker, and P. Anversa. Identification and activation of the autocrine renin‐angiotensin system in adult ventricular myocytes in vivo. Am. J. Physiol. 269 (Heart Circ. Physiol. 38): H1791–H1802, 1995.
 558. Zhao, M. J., H. Zhang, T. F. Robinson, S. M. Factor, E. H. Sonnenblick, and C. Eng. Profound structural alterations of the extracellular collagen matrix in postischemic dysfunctional “stunned”) but viable myocardium. J. Am. Coll. Cardiol. 10: 1322–1334, 1987.
 559. Zimmer, H. G., A. M. Gerdes, S. Lortet, and G. Mall. Changes in heart function and cardiac cell size in rats with chronic myocardial infarction. J. Mol. Cell. Cardiol. 22: 1231–1243, 1990.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Piero Anversa, Giorgio Olivetti. Cellular Basis of Physiological and Pathological Myocardial Growth. Compr Physiol 2011, Supplement 6: Handbook of Physiology, The Cardiovascular System, The Heart: 75-144. First published in print 2002. doi: 10.1002/cphy.cp020102