Comprehensive Physiology Wiley Online Library

Molecular Analysis of Voltage‐Gated K+ Channel Diversity and Functioning in the Mammalian Heart

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Electrophysiological Diversity of Voltage‐Gated Myocardial K+ Channel Currents
1.1 Transient Outward K+ Current Channels, Ito
1.2 Delayed Rectifier K+ Currents, IK
1.3 Cellular/Regional Heterogeneity in Voltage‐Gated K+ Current Expression and Properties
2 Molecular Determinants of Voltage‐Gated Cardiac K+ Channels
2.1 Voltage‐Gated K+ Channel Pore‐Forming α Subunits
2.2 Accessory Subunits of Voltage‐Gated K+ Channels
2.3 Voltage‐Gated K+ Channels and the Cytoskeleton
3 Molecular Correlates of Functional Voltage‐Gated K+ Channels
3.1 Molecular Genetics of Cardiac Delayed Rectifier K+ Currents, IKr and IKs
3.2 Transgenic and Targeted Gene Deletion Approaches
3.3 Molecular Correlates of Other Voltage‐Gated Cardiac K+ Currents
4 Functional Consequences of in Vivo Alterations in Voltage‐Gated Myocardial K+ Channels
4.1 QT Prolongation
4.2 Atrioventricular Block
4.3 Ventricular Arrhythmia/Tachycardia
4.4 Pathophysiology
5 Summary, Conclusions, and Future Directions
Figure 1. Figure 1.

Action potential waveforms and propagation in the mammalian myocardium. A: Schematic representation of action potential waveforms recorded in different regions of the human heart; action potentials are displaced in time to reflect the temporal sequence of propagation. B: Schematic of a ventricular action potential labeled as follows: (0) depolarization; 1 early (fast) repolarization, which results in the “notch”; 2 plateau phase; 3 late (slower) phase of repolarization; and, 4 afterhyperpolarization/return to the resting membrane potential. C: Configuration of a typical scalar electrocardiogram with the various deflections (P, Q, R, S, T) and intervals (PR, QRS, QT) marked; QT intervals, however, must be corrected for variations in heart rate (see text).

Figure 2. Figure 2.

Differential expression of the transient outward K+ currents, Ito,f and Ito,s in mouse left ventricular myocytes. A: Whole‐cell outward K+ currents recorded from isolated adult C57BL6 mouse right ventricular (RV) myocytes and from left ventricular (LV) cells from the apex or septum; currents recorded in response to 4.5 sec depolarizing voltage steps from a holding potential of −70 mV to potentials between −20 and +60 mV in 20 mV increments are shown. As is evident, peak outward K+ densities are highest in RV myocytes, and peak outward K+ current densities are higher in cells from the apex than from septum. In addition, the decay phases of the currents are slower in LV septum, than LV apex or RV, cells. B: Mean ± SEM activation time constants, determined from single exponential fits to the rising phases of the currents, are plotted as a function of test potential; the solid lines represent the best single exponential fits to the data points and describe the voltage‐dependence of current activation. The rates of activation of Ito,f, Ito,s, and IK(slow) in mouse ventricular myocytes are similar, whereas Iss activates more slowly. C: Mean ± SEM inactivation time constants (determined from double or triple exponential fits to the decay phases of the outward currents) for Ito,f, Ito,s and IK(slow) are plotted as a function of test potential. D: Mean ± SEM normalized recovery data for Ito,f, Ito,s, and IK(slow). The rates of recovery of Ito,f, Ito,s and IK(slow) from steady‐state inactivation were determined using a three‐pulse protocol: cells were first depolarized to + 50 mV for 5 sec (to inactivate the currents), hyperpolarized to −70 mV for varying times (to allow recovery) and subsequently depolarized to +50 mV (to assess the extent of recovery). The amplitudes of Ito,f, Ito,s and IK(slow) evoked at +50 mV following each recovery period were then determined, and normalized to the current amplitudes evoked following the 10 sec recovery period. As is evident, Ito,f recovers very rapidly from inactivation, whereas Ito,s and IK(slow)) recover slowly.

Figure produced from data in Xu et al. 23 and Guo et al. 87,88
Figure 3. Figure 3.

Structure, expression and assembly of voltage‐gated K+ channel pore‐forming (α) subunits. A: Voltage‐gated K+ channel α subunits are integral membrane proteins with six transmembrane domains, intracellular N‐ and C‐termini, and a positively charged S4 region, placing them in the “S4 superfamily” of voltage‐gated ion channels. B: Alternative splicing of Kv α subunits will give rise to proteins with novel N‐and C‐termini that produce voltage‐gated K+ currents with distinct properties. C: Voltage‐gated outward K+ currents are produced on heterologous expression of Kv α subunits. In some cases, such as Kv4.2 illustrated here, the currents are rapidly activating and inactivating. Outward K+ currents with distinct time‐ and voltage‐dependent properties are observed on heterologous expression of the various Kv1.x, Kv2.x, Kv3.x, and Kv4.x subfamily members. D: Schematic of a “functional” voltage‐gated K+ channel illustrating four Kv α subunits contributing to a K+ selective pore.

Figure 4. Figure 4.

Accessory subunits and the formation of functional voltage‐gated K+ channels. A: Putative membrane topology and subunit composition of voltage‐gated K+ myocardial channels with minK (miRP1) or accessory β subunits. Although Kv α and β subunits appear to associate in 1:1 ratios, the functional stoichiometry of minK‐ and KvLQT1‐(or MiRP1‐ERG1)‐containing K+ channels has not been defined. B: Representations of voltage‐gated K+ channel biogenesis and interactions with the cytoskeleton. Channel biosynthesis and assembly occur in the endoplasmic reticulum, and accessory β and regulatory KChAP (KChIP) subunits appear to play roles in mediating the biochemical maturation of functional voltage‐gated K+ channels, as well as in regulating the cell surface expression of these channels. In addition to associations with β subunits/minK and/or the KChAPs/KChIPs, it has recently been suggested that voltage‐gated K+ channel α subunits also interact directly with cytoskeletal proteins, including α‐actinin‐2 and PDZ‐binding domain proteins that function to link the channels to the actin cytoskeleton.

Figure 5. Figure 5.

Molecular genetic dissection of the transient outward K+ currents Ilo,f and Ito,s in mouse ventricular myocytes. Representative outward K+ current waveforms recorded from adult C57BL6 mouse left ventricular (LV) apex and septum cells in response to 4.5 sec depolarizing voltage steps to −20 to + 50 mV from a holding potential of −70 mV (compare with Fig. 2A). Records from wild‐type, Kv4.2W362F‐expressing, Kv1.4‐/‐and Kv4.2W362F X Kv1.4‐/‐LV cells are displayed. Expression of Kv4.2W362F results in the loss of Ito,f, whereas targeted deletion of Kv1.4 eliminates Ito,s. Both Ito,f and Ito,s, however, are absent in cells from the Kv4.2W362F X Kv1.4‐/‐crossed animals, and the waveforms of the outward currents in LV apex and septum (from these animals) are indistinguishable.

Adapted from data in Guo et al. 87,88
Figure 6. Figure 6.

QT prolongation in mice lacking Ito,f, Ito,s or both Ito,f and Ito,s. Telemetric ECG recordings were obtained from conscious adult C57BL6 mice with the phenotypes indicated. QT intervals were determined using cursors, one placed at the beginning of the QRS complex and the other placed where the T wave voltage crosses the baseline. As is evident in the left panel, the QT interval is markedly prolonged in Kv4.2W362F X Kv1.4‐/‐mice compared with wild‐type Kv1.4‐/‐or Kv4.2W362F‐expressing animals. Average QT intervals and heart rates in individual (3 min) recording episodes were determined, and each point is represented (right panel). The variation in the observed QT intervals with heart rate in wild‐type, Kv4.2W362F‐Kv1.4‐/‐and Kv4.2W362F X Kv1.4‐/‐animals are plotted in the right panel. As expected, QT intervals vary with heart rate and must be corrected (QTc) for differences in rates (see text). The difference between Kv4.2W362F‐expressing and Kv4.2W362F X Kv1.4‐/‐mice is evident over a wild range of heart rates.

Records adapted from Guo et al. 87,88
Figure 7. Figure 7.

Functional consequences of changes in repolarizing voltage‐gated K+ currents. Atrioventricular block (A, B) and ventricular tachycardia (C, D) are evident in mice in which functional voltage‐gated K+ channel densities have been manipulated. Recordings illustrated were from Kv4.2W362F X Kv1.4‐/‐ (A, B, D) and Kv1.1N206Tag‐(C) expressing animals. A: Recordings from a Kv4.2W362F X Kv1.4‐/‐ mouse showing Mobitz type I second‐degree atrioventricular block, and occasionally (B) high‐degree atrioventricular block with multiple sequential dropped beats. B: Note that the QRS complex (indicated by the *) was generated by the subsidiary pacemaker. C: Surface EGG recording of an 11‐beat run of ventricular tacchycardia in a Kv1.1N206Tag‐expressing adult mouse. The sinus rate here was 530 beats per minute, and the rate of the ventricular tacchycardia was 570 beats per minute. D: Telemetric recording of a 7‐beat run of ventricular tacchycardia in a Kv4.2W362F X Kv1.4‐/‐ mouse. In both C and D, note the widened QRS complexes during nonsustained ventricular taccycardia.

Adapted from original data presented in London et al. (122; C) and Guo et al. (88; A, B, D)


Figure 1.

Action potential waveforms and propagation in the mammalian myocardium. A: Schematic representation of action potential waveforms recorded in different regions of the human heart; action potentials are displaced in time to reflect the temporal sequence of propagation. B: Schematic of a ventricular action potential labeled as follows: (0) depolarization; 1 early (fast) repolarization, which results in the “notch”; 2 plateau phase; 3 late (slower) phase of repolarization; and, 4 afterhyperpolarization/return to the resting membrane potential. C: Configuration of a typical scalar electrocardiogram with the various deflections (P, Q, R, S, T) and intervals (PR, QRS, QT) marked; QT intervals, however, must be corrected for variations in heart rate (see text).



Figure 2.

Differential expression of the transient outward K+ currents, Ito,f and Ito,s in mouse left ventricular myocytes. A: Whole‐cell outward K+ currents recorded from isolated adult C57BL6 mouse right ventricular (RV) myocytes and from left ventricular (LV) cells from the apex or septum; currents recorded in response to 4.5 sec depolarizing voltage steps from a holding potential of −70 mV to potentials between −20 and +60 mV in 20 mV increments are shown. As is evident, peak outward K+ densities are highest in RV myocytes, and peak outward K+ current densities are higher in cells from the apex than from septum. In addition, the decay phases of the currents are slower in LV septum, than LV apex or RV, cells. B: Mean ± SEM activation time constants, determined from single exponential fits to the rising phases of the currents, are plotted as a function of test potential; the solid lines represent the best single exponential fits to the data points and describe the voltage‐dependence of current activation. The rates of activation of Ito,f, Ito,s, and IK(slow) in mouse ventricular myocytes are similar, whereas Iss activates more slowly. C: Mean ± SEM inactivation time constants (determined from double or triple exponential fits to the decay phases of the outward currents) for Ito,f, Ito,s and IK(slow) are plotted as a function of test potential. D: Mean ± SEM normalized recovery data for Ito,f, Ito,s, and IK(slow). The rates of recovery of Ito,f, Ito,s and IK(slow) from steady‐state inactivation were determined using a three‐pulse protocol: cells were first depolarized to + 50 mV for 5 sec (to inactivate the currents), hyperpolarized to −70 mV for varying times (to allow recovery) and subsequently depolarized to +50 mV (to assess the extent of recovery). The amplitudes of Ito,f, Ito,s and IK(slow) evoked at +50 mV following each recovery period were then determined, and normalized to the current amplitudes evoked following the 10 sec recovery period. As is evident, Ito,f recovers very rapidly from inactivation, whereas Ito,s and IK(slow)) recover slowly.

Figure produced from data in Xu et al. 23 and Guo et al. 87,88


Figure 3.

Structure, expression and assembly of voltage‐gated K+ channel pore‐forming (α) subunits. A: Voltage‐gated K+ channel α subunits are integral membrane proteins with six transmembrane domains, intracellular N‐ and C‐termini, and a positively charged S4 region, placing them in the “S4 superfamily” of voltage‐gated ion channels. B: Alternative splicing of Kv α subunits will give rise to proteins with novel N‐and C‐termini that produce voltage‐gated K+ currents with distinct properties. C: Voltage‐gated outward K+ currents are produced on heterologous expression of Kv α subunits. In some cases, such as Kv4.2 illustrated here, the currents are rapidly activating and inactivating. Outward K+ currents with distinct time‐ and voltage‐dependent properties are observed on heterologous expression of the various Kv1.x, Kv2.x, Kv3.x, and Kv4.x subfamily members. D: Schematic of a “functional” voltage‐gated K+ channel illustrating four Kv α subunits contributing to a K+ selective pore.



Figure 4.

Accessory subunits and the formation of functional voltage‐gated K+ channels. A: Putative membrane topology and subunit composition of voltage‐gated K+ myocardial channels with minK (miRP1) or accessory β subunits. Although Kv α and β subunits appear to associate in 1:1 ratios, the functional stoichiometry of minK‐ and KvLQT1‐(or MiRP1‐ERG1)‐containing K+ channels has not been defined. B: Representations of voltage‐gated K+ channel biogenesis and interactions with the cytoskeleton. Channel biosynthesis and assembly occur in the endoplasmic reticulum, and accessory β and regulatory KChAP (KChIP) subunits appear to play roles in mediating the biochemical maturation of functional voltage‐gated K+ channels, as well as in regulating the cell surface expression of these channels. In addition to associations with β subunits/minK and/or the KChAPs/KChIPs, it has recently been suggested that voltage‐gated K+ channel α subunits also interact directly with cytoskeletal proteins, including α‐actinin‐2 and PDZ‐binding domain proteins that function to link the channels to the actin cytoskeleton.



Figure 5.

Molecular genetic dissection of the transient outward K+ currents Ilo,f and Ito,s in mouse ventricular myocytes. Representative outward K+ current waveforms recorded from adult C57BL6 mouse left ventricular (LV) apex and septum cells in response to 4.5 sec depolarizing voltage steps to −20 to + 50 mV from a holding potential of −70 mV (compare with Fig. 2A). Records from wild‐type, Kv4.2W362F‐expressing, Kv1.4‐/‐and Kv4.2W362F X Kv1.4‐/‐LV cells are displayed. Expression of Kv4.2W362F results in the loss of Ito,f, whereas targeted deletion of Kv1.4 eliminates Ito,s. Both Ito,f and Ito,s, however, are absent in cells from the Kv4.2W362F X Kv1.4‐/‐crossed animals, and the waveforms of the outward currents in LV apex and septum (from these animals) are indistinguishable.

Adapted from data in Guo et al. 87,88


Figure 6.

QT prolongation in mice lacking Ito,f, Ito,s or both Ito,f and Ito,s. Telemetric ECG recordings were obtained from conscious adult C57BL6 mice with the phenotypes indicated. QT intervals were determined using cursors, one placed at the beginning of the QRS complex and the other placed where the T wave voltage crosses the baseline. As is evident in the left panel, the QT interval is markedly prolonged in Kv4.2W362F X Kv1.4‐/‐mice compared with wild‐type Kv1.4‐/‐or Kv4.2W362F‐expressing animals. Average QT intervals and heart rates in individual (3 min) recording episodes were determined, and each point is represented (right panel). The variation in the observed QT intervals with heart rate in wild‐type, Kv4.2W362F‐Kv1.4‐/‐and Kv4.2W362F X Kv1.4‐/‐animals are plotted in the right panel. As expected, QT intervals vary with heart rate and must be corrected (QTc) for differences in rates (see text). The difference between Kv4.2W362F‐expressing and Kv4.2W362F X Kv1.4‐/‐mice is evident over a wild range of heart rates.

Records adapted from Guo et al. 87,88


Figure 7.

Functional consequences of changes in repolarizing voltage‐gated K+ currents. Atrioventricular block (A, B) and ventricular tachycardia (C, D) are evident in mice in which functional voltage‐gated K+ channel densities have been manipulated. Recordings illustrated were from Kv4.2W362F X Kv1.4‐/‐ (A, B, D) and Kv1.1N206Tag‐(C) expressing animals. A: Recordings from a Kv4.2W362F X Kv1.4‐/‐ mouse showing Mobitz type I second‐degree atrioventricular block, and occasionally (B) high‐degree atrioventricular block with multiple sequential dropped beats. B: Note that the QRS complex (indicated by the *) was generated by the subsidiary pacemaker. C: Surface EGG recording of an 11‐beat run of ventricular tacchycardia in a Kv1.1N206Tag‐expressing adult mouse. The sinus rate here was 530 beats per minute, and the rate of the ventricular tacchycardia was 570 beats per minute. D: Telemetric recording of a 7‐beat run of ventricular tacchycardia in a Kv4.2W362F X Kv1.4‐/‐ mouse. In both C and D, note the widened QRS complexes during nonsustained ventricular taccycardia.

Adapted from original data presented in London et al. (122; C) and Guo et al. (88; A, B, D)
References
 1. Abbott, G. W., F. Sesti, I. Splawski, M. E. Lehmann, K. W. Timothy, M. T. Keating, and S. A. Goldstein. MiRP1 forms IKr potassium channels with HERG and is associated with cardiac arrhythmia. Cell 97: 175–187, 1999.
 2. Accili, E. A., J. Kiehn, Q. Yang, Z. Wang, A. M. Brown, and B. A. Wible. Separable Kv‐beta subunit domains alter expression and gating of potassium channels. J. Biol. Chem. 272: 25824–25831, 1997.
 3. Accili, E. A., J. Kiehn, B. A. Wible, and A. M. Brown. Interactions among inactivating and noninactivating Kv‐beta subunits, and Kv‐alpha‐1.2, produce potassium currents with intermediate inactivation. J. Biol. Chem. 272: 28232–28236, 1997.
 4. Amos, G. J., E. Wettwer, F. Metzger, Q. Li, H. M. Himmel, and U. Ravens. Differences between outward currents of human atrial and subepicardial ventricular myocytes. J. Physiol, (Lond) 491: 31–50, 1996.
 5. An, W. F., M. R. Bowlby, M. Betty, J. Cao, H. P. Ling, G. Mendoza, J. N. Hinson, K. I. Mattson, B. W. Strassle, J. S. Trimmer, and K. J. Rhodes. Modulation of A‐type potassium channels by a family of calcium sensors. Nature 403: 553–556, 2000.
 6. Antzelevitch, C., S. Sicouri, A. Lukas, V. V. Nesterenko, D.‐W. Liu, and J. M. Didiego. Regional differences in the electrophysiology of ventricular cells: physiological implications. In: Cardiac Electrophysiology: From Cell To Bedside, edited by D. P. Zipes and J. Jalife. Philadelphia: W. B. Saunders, 1994: 228–245.
 7. Antzelevitch, C., W. Shimizu, G. X. Yan, S. Sicouri, J. Weissenburger, V. V. Nesterenko, A. Burashnikov, J. Di Diego, J. Saffitz, and G. P. Thomas. The M cell: its contribution to the ECG and to normal and abnormal electrical function of the heart. J. Cardiovasc. Electrophysiol. 10: 1124–1152, 1999.
 8. Anumonwo, J. M. B., L. C. Freeman, W. M. Kwok, and R. S. Kass. Potassium channels in the heart: electrophysiology and pharmacological regulation. Cardiovasc. Drug Rev. 9: 299–316, 1991.
 9. Anumonwo, J. M. B., L. C. Freeman, W. M. Kwok, and R. S. Kass. Delayed rectification in single cells isolated from guinea pig sinoatrial node. Am. J. Physiol. 262 (Heart Circ. Physiol. 31): H921–H925, 1992.
 10. Apkon, M., and J. M. Nerbonne. Characterization of two distinct depolarization‐activated K+ currents in isolated adult rat ventricular myocytes. J. Gen. Physiol. 97: 973–101, 1991.
 11. Babij, P., G. R. Askew, B. Nieuwenhuijsen, C. M. Su, T. R. Bridal, B. Jow, T. M. Argentieri, J. Kulik, L. J. DeGennaro, W. Spinelli, and T. J. Colatsky. Inhibition of cardiac delayed rectifier K+ current by overexpression of the long‐QT syndrome HERG G628S mutation in transgenic mice. Circ. Res. 83: 668–678, 1998.
 12. Backx, P. H. and E. Marban. Background potassium current active during the plateau of the action potential in guinea pig ventricular myocytes. Circ. Res. 72: 890–900, 1993.
 13. Bailly, P., J. P. Bénitah, M. Mouchoniere, G. Vassort, and P. Lorente. Regional alteration of the transient outward current in human left ventricular septum during compensated hypertrophy. Circulation 96: 1266–1274, 1997.
 14. Baker, L. C., B. London, B. R. Choi, G. Koren, and G. Salama. Enhanced dispersion of repolarization and refractoriness in transgenic hearts promotes reentrant ventricular tachycardia. Circ. Res. 86: 396–407, 2000.
 15. Balati, B., A. Varro, and J. G. Papp. Pharmacological modification of the dispersion of repolarization in the heart: importance of M cells. Cardiovasc. Drug Ther. 13: 491–505, 1999.
 16. Baldwin, T. J., M.‐L. Tsaur, G. A. Lopez, Y. N. Jan, and L. Y. Jan. Characterization of a mammalian cDNA for an inactivating voltage‐sensitive K+ channel. Neuron 7: 471–483, 1991.
 17. Balser, J. R., P. B. Bennett, and D. M. Roden. Time‐dependent outward currents in guinea pig ventricular myocytes: gating kinetics of the delayed rectifier. J. Gen. Physiol. 96: 835–863, 1990.
 18. Barhanin, J., F. Lesage, E. Guillemare, M. Fink, M. Lazdunski, and G. Romey. KvLQT1 and IsK (minK) proteins associate to form the IKs cardiac potassium current. Nature 384: 78–80, 1996.
 19. Barry, D. M. and J. M. Nerbonne. Myocardial potassium channels: electrophysiological and molecular diversity. Annu. Rev. Physiol. 58: 363–394, 1996.
 20. Barry, D. M., J. S. Trimmer, J. P. Merlie, and J. M. Nerbonne. Differential expression of voltage‐gated K+ channel subunits in adult rat heart: relationship to functional K+ channels. Circ. Res. 77: 361–369, 1995.
 21. Barry, D. M., H. Xu, R. B. Schuessler, and J. M. Nerbonne. Functional knockout of the transient outward current, long QT syndrome and cardiac remodelling in mice expressing a dominant negative Kv4α subunit. Circ. Res. 83: 560–567, 1998.
 22. Bénitah, J. P., A. M. Gomez, P. Bailly, J. P. Da Ponte, G. Berson, C. Delgado, and P. Lorente. Heterogeneity of the early outward current in ventricular cells isolated from normal and hypertrophied rat hearts. J. Physiol. (Lond.) 469: 111–138, 1993.
 23. Benndorf, K., and B. Nilius. Properties of an early outward current in single cells of the mouse ventricle. Gen. Physiol. Biophys. 7: 449–466, 1988.
 24. Benndorf, K., F. Markwardt, and B. Nilius. Two types of transient outward currents in cardiac ventricular cells of mice. Pflugers Arch. 409: 641–643, 1987.
 25. Berul, C. I., M. A. Aronovitz, P. J. Wang, and M. E. Mendelsohn. In vivo cardiac electrophysiology studies in the mouse. Circulation 94: 2641–2648, 1996.
 26. Beuckelmann, D. J., M. Näbauer, and E. Erdmann. Alterations in K+ currents in isolated human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73: 379–385, 1993.
 27. Biervert, C., B. C. Schroeder, C. Kubisch, S. F. Berkoviv, P. Propping, T. J. Jentsch, and O. K. Steinlein. A potassium channel mutation in neonatal human epilepsy. Science 279: 403–405, 1998.
 28. Blair, T. A., S. L. Roberds, M. M. Tamkun, and R. P. Hartshorne. Functional characterization of RK5, a voltage‐gated K+ channel cloned from the rat cardiovascular system. FEBS. Lett. 295: 211–213, 1991.
 29. Bosch, R. F., X. R. Zeng, J. B. Gramer, K. Popovic, C. Mewis, and V. Kuhlkamp. Ionic mechanisms of electrical remodelling in human atrial fibrillation. Cardiovasc. Res. 44: 121–131, 1999.
 30. Bou‐Abboud, E. and J. M. Nerbonne. Molecular correlates of the Ca++‐independent depolarization‐activated K+ currents in adult rat atrial myocytes. J. Physiol. (Lond.) 517: 407–420, 1999.
 31. Bou‐Abboud, E., H. Li, and J. M. Nerbonne. Molecular diversity of the repolarizing voltage‐gated K+ currents in mouse atrial myocytes. J. Physiol., Lond. 529: 345–358, 2000.
 32. Boutjdir, M., J. Y. Le Heuzey, T. Lavergne, S. Chauvaud, L. Guize, A. Carpentier, and P. Peronneau. Inhomogeneity of cellular refractoriness in human atrium: factor of arrhythmia? Pacing Clin. Electrophysiol. 9: 1095–1100, 1986.
 33. Boyden, P. A. and C. D. Jeck. Ion channel function in disease. Cardiovasc. Res. 29: 312–318, 1995.
 34. Boyle, W. A. and J. M. Nerbonne. A novel type of depolarization‐activated K+ current in isolated adult rat atrial myocytes. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H1236–H1247, 1991.
 35. Boyle, W. A. and J. M. Nerbonne. Two functionally distinct 4‐aminopyridine‐sensitive outward K+ currents in adult rat atrial myocytes. J. Gen. Physiol. 100: 1047–1061, 1992.
 36. Brady, P. A., A. E. Alekseev, L. A. Aleksandrova, L. A. Gomez, and A. Terzic. A disrupter of actin microfilaments impairs sulfonylurea‐inhibitory gating of cardiac KATP channels. Am. J. Physiol. 271 (Heart Circ. Physiol. 40): H2710–H2716, 1996.
 37. Brahmajothi, M. V., M. J. Morales, S. Liu, R. L. Rasmusson, D. L. Campbell, and H. C. Strauss. In situ hybridization reveals extensive diversity of K+ channel mRNA in isolated ferret cardiac myocytes. Circ. Res. 78: 1083–1089, 1996.
 38. Brahmajothi, M. V., D. L. Campbell, R. L. Rasmusson, M. J. Morales, J. M. Nerbonne, and H. C. Strauss. Distinct transient outward potassium current (to) phenotypes and distribution of fast‐inactivating potassium channel alpha subunits in ferret left ventricular myocytes. J. Gen. Physiol. 113: 581–600, 1999.
 39. Bryant, S. M., X. P. Wan, S. J. Shipsey, and G. Hart. Regional differences in the delayed rectifier currents (IKr and IKs) contribute to the differences in action potential duration in basal left ventricular myocytes in guinea pig. Cardiovasc. Res. 40: 322–331, 1998.
 40. Busch, A. E., K. Malloy, W. J. Groh, M. D. Varnum, J. P. Adelman, and J. Maylie. The novel class III antiarrhythmics NE‐10084 and NE‐10133 inhibit IsK channels expressed in Xenopusoocytes and IKs in guinea pig ventricular myocytes. Biochem. Biophys. Res. Commun. 202: 265–270, 1994.
 41. Butler, A., A. Wei, K. Baker, and L. Salkoff. A family of putative potassium channel genes in Drosophila. Science 243: 943–947, 1989.
 42. Campbell, D. L., R. L. Rasmusson, M. B. Comer, and H. C. Strauss. The calcium‐independent transient outward potassium current in isolated ferret right ventricular myocytes. I. Basic characterization, and kinetic analysis. J. Gen. Physiol. 101: 571–601, 1993.
 43. Campbell, D. L., R. L. Rasmusson, M. B. Comer, and H. C. Strauss. The cardiac calcium‐independent transient outward potassium current: kinetics, molecular properties, and role in ventricular repolarization. In: Cardiac Electrophysiology: From Cell to Bedside. 2nd ed., edited by D. P. Zipes and J. Jalife. Philadelphia: W. B. Saunders, 1995: 83–96.
 44. Castellano, A., M. D. Chiara, B. Mellströ, A. Molina, F. Monje, J. R. Naranjo, and J. Lopez‐Barneo. Identification and functional characterization of a K+ channel α subunit with regulatory properties specific to brain. J. Neurosci. 17: 4652–4661, 1997.
 45. Castellino, R. C., M. J. Morales, H. C. Strauss, and R. L. Rasmusson. Time‐ and voltage‐dependent modulation of a Kv1.4 channel by a β subunit (Kvβ3) cloned from ferret ventricle. Am. J. Physiol. 268 (Heart Circ. Physiol. 37): H385–H391, 1995.
 46. Chandy, K. G., and G. A. Gutman. Voltage‐gated K+ channel genes, in: Handbook of Receptors and Channels, edited by (R. A. North. Boca Raton, FL: CRC Press, 1995: 1–71.
 47. Chauhan, V. S., S. Tuvia, M. Buhusi, V. Bennett, and A. D. Grant. Abnormal cardiac Na+ channel properties and QT heart rate adaptative in neonatal arkyrin B knockout mice. Circ. Res. 86: 441–447, 2000.
 48. Clark, R. B., W. R. Giles, and Y. Imaizumi. Properties of the transient outward current in rabbit atrial cells. J. Physiol. (Lond.) 405: 147–168, 1988.
 49. Clark, R. B., R. A. Bouchard, E. Salinas‐Stefanson, J. Sanchez‐Chalupa, and W. R. Giles. Heterogeneity of action potential waveforms and potassium currents in rat ventricle. Cardiovasc. Res. 27: 1795–1799, 1993.
 50. Coetzee, W. A., Y. Amarillo, J. Chiu, A. Chow, D. Lau, T. Mc‐Cormack, H. Moreno, M. S. Nadal, A. Ozaita, D. Pountney, M. Saganich, E. Vega‐Saenz de Meira, and B. Rudy. Molecular diversity of K+ channels. Ann. N.Y. Acad. Sci. 868: 233–285, 1999.
 51. Comer, M. B., D. L. Campbell, R. L. Rasmusson, D. R. Lamson, M. J. Morales, Y. Zhang, and H. C. Strauss. Cloning and characterization of an Ito‐like potassium channel from ferret ventricle. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H1388–H1395, 1994.
 52. Coraboeuf, E. and E. Carmeliet. Existence of two transient outward currents in sheep Purkinje fibers. Pflugers Arch. 392: 352–359, 1982.
 53. Cordeiro, J. M., K. W. Spitzer, and W. R. Giles. Repolarizing K+ currents in rabbit heart Purkinje cells. J. Physiol. (Lond.) 508: 811–823, 1998.
 54. Covarrubias, M., A. Wei, and L. Salkoff. Shaker, Shal, Shab, and Shaw express independent K+ current systems. Neuron 7: 763–773, 1991.
 55. Covarrubias, M., A. Wei, L. Salkoff, and T. B. Vybas. Elimination of rapid potassium channel inactivation by phosphorylation of the inactivation gate. Neuron 13: 1403–1412, 1994.
 56. Curran, M. E., I. Splawski, K. W. Timothy, G. M. Vincent, E. D. Green, and M. T. Keating. A molecular basis for cardiac arrhythmia: herg mutations cause long QT syndrome. Cell 80: 795–803, 1995.
 57. Dan, P., B. Au, D. Fedida, and E. D. W. Moore. Colocalization of Kv1.5 and α‐actinin‐2 in HEK‐293 cells, and disruption by cytochalasin D. Biophys. J. 78: 425A, 2000.
 58. Deal, K. K., S. K. England, and M. M. Tamkun. Molecular physiology of cardiac potassium channels. Physiol. Rev. 76: 49–67, 1996.
 59. Deck, K. A., and W. Trautwein. Ionic currents in cardiac excitation. Pflugers Arch. 280: 63–80, 1964.
 60. Dixon, J. E. and D. McKinnon. Quantitative analysis of mRNA expression in atrial and ventricular muscle of rats. Circ. Res. 75: 252–260, 1994.
 61. Dixon, J. E., W. S. Shi, H. S. Wang, C. McDonald, H. Yu, R. S. Wymore, I. S. Cohen, and D. McKinnon. The role of the Kv4.3 K+ channel in ventricular muscle. A molecular correlate for the transient outward current. Circ. Res. 79: 659–668, 1996.
 62. Drewe, J. A., S. Verma, G. Freeh, and R. L. Joho. Distinct spatial and temporal expression patterns of K+ channel mRNAs from different subfamilies. J. Neurosci. 12: 538–548, 1992.
 63. Dudel, J., K. Peper, R. Rudel, and W. Trautwein. The dynamic chloride component of membrane current in Purkinje fibers. Pflugers Arch. 295: 197–212, 1967.
 64. England, S. K., V. N. Uebele, H. Shear, K. Kodali, P. B. Bennett, and M. M. Tamkun. Characterization of a K+ channel beta subunit expressed in human heart. Proc. Natl. Acad. Sci. U.S.A. 92: 6309–6313, 1995.
 65. England, S. K., V. N. Uebele, K. Kodali, P. B. Bennett, and M. M. Tamkun. A novel K+ channel beta subunit (hKvβ1.3) is produced via alternative mRNA splicing. J. Biol. Chem. 270: 28531–28534, 1995.
 66. Escande, D., A. Coulombe, J. F. Faivre, E. Deroubaix, and E. Corabouef. Two types of transient outward currents in adult human atrial cells. Am. J. Physiol. 252 (Heart Circ. Physiol. 21): H142–H148, 1987.
 67. Faivre, J. F., T. P. G. Calmels, S. Rouanet, J. L. Javre, B. Cheval, and A. Bril. Characterization of Kv4.3 in HEK‐293 cells: Comparison with the rat ventricular transient outward potassium current. Cardiovasc. Res. 41: 188–199, 1999.
 68. Fedida, D., and W. R. Giles. Regional variations in action potentials and transient outward current in myocytes isolated from rabbit left ventricle. J. Physiol. (Lond.) 442: 191–209, 1991.
 69. Fedida, D., B. Wible, Z. Wang, B. Fermini, F. Faust, S. Nattel, and A. M. Brown. Identity of a novel delayed rectifier current from human heart with a cloned K+ channel current. Circ. Res. 73: 210–216, 1993.
 70. Feng, J., B. Wible, G. R. Li, Z. Wang, and S. Nattel. Antisense oligonucleotides directed against Kv1.5 mRNA specifically inhibit ultrarapid delayed rectifier K+ current in cultured adult human atrial myocytes. Circ. Res. 80: 572–579, 1997.
 71. Fermini, B., Z. Wang, D. Duan, and S. Nattel. Differences in rate dependence of the transient outward current in rabbit and human atrium. Am. J. Physiol. 263 (Heart Circ. Physiol. 32): H1747–H1754, 1992.
 72. Fink, M., F. Duprat, F. Lesage, C. Heurteux, G. Romey, J. Barhanin, and M. Lazdunski. A new K+ channel β subunit to specifically enhance Kv2.2 (CDRK) expression. J. Biol. Chem. 271: 26341–26348, 1996.
 73. Fiset, C., R. B. Clark, Y. Shimoni, and W. R. Giles. Shal‐type channels contribute to the Ca2+‐independent transient outward K+ current in rat ventricle. J. Physiol. (Lond.) 500: 51–64, 1997.
 74. Fiset, C., R. B. Clark, T. S. Larsen, and W. R. Giles. A rapidly activating, sustained K+ current modulates repolarization and excitation‐contraction coupling in adult mouse ventricles. J. Physiol. (Lond.) 504: 557–563, 1998.
 75. Folander, K., J. S. Smith, J. Antanavage, C. Bennett, R. B. Stein, and R. Swanson. Cloning and expression of the delayed rectifier IsK channel from neonatal rat heart and diethylstilbestrol‐primed rat uterus. Proc. Natl. Acad. Sci. U.S.A. 87: 2975–2979, 1990.
 76. Follmer, C. H. and T. J. Colatsky. Block of delayed rectifier potassium current, IK, by flecainide and E‐4031 in cat ventricular myocytes. Circulation 82: 289–293, 1990.
 77. Fozzard, H. A. and M. Hiraoka. The positive dynamic current and its inactivation properties in cardiac Purkinje fibres. J. Physiol. (Lond.) 234: 569–586, 1973.
 78. Freeman, L. C., and R. S. Kass. Delayed rectifier potassium channels in ventricle and sinoatrial node of guinea pig: molecular and regulatory properties. Cardiovasc. Drugs Ther. 7: 627–635, 1993.
 79. Freeman, L. C., L. M. Pacioretty, N. S. Moise, R. S. Kass, and R. F. Gilmour, Jr. Decreased density of Ito in left ventricular myocytes from German Shepherd dogs with inherited arrhythmias. J. Cardiovasc. Electrophysiol. 8: 872–883, 1997.
 80. Furukawa, T., R. J. Myerburg, N. Furukawa, A. L. Bassett, and S. Kimura. Differences in transient outward currents of feline endocardial and epicardial myocytes. Circ. Res. 67: 1287–1291, 1990.
 81. Furukawa, T., S. Kimura, N. Furukawa, A. L. Bassett, and R. J. Myerburg. Potassium rectifier currents differ in myocytes of endocardial and epicardial origin. Circ. Res. 70: 91–103, 1992.
 82. Furukawa, T., T. Yamane, T. Terai, Y. Katayama, and M. Hiraoka. Functional linkage of the cardiac ATP‐sensitive K+ channel to the actin cytoskeleton. Pflugers Arch. 43: 504–512, 1996.
 83. Gadsby, D. C. Effects of β adrenergic catecholamines on membrane currents in cardiac cells. In: Cardiac Electrophysiology: A Textbook, edited by M. R. Rosen, M. J. Jansen, and A. L. Wit. Mt. Kisco, NY: Futura Publishing Co., 1990: 857–876.
 84. Giles, W. R., and Y. Imaizumi. Comparison of potassium currents in rabbit atrial and ventricular cells. J. Physiol. (Lond.) 405: 123–145, 1988.
 85. Giles, W. R., and A. C. Van Ginneken. A transient outward current in isolated cells from the crista terminalis of rabbit heart. J. Physiol (Lond.) 368: 243–264, 1985.
 86. Giles, W. R., R. B. Clark, and A. P. Braun. Ca2+‐independent transient outward current in mammalian heart. In: Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters, edited by M. Morad, Y. Kurachi, A. Noma, and M. Hosada. Amsterdam: Kluwer, 1996: 141–168.
 87. Goldstein, S. A. and C. Miller. Site‐specific mutations in a minimal voltage‐gated K+ channel alter ion selectivity and open channel block. Neuron 7: 403–408, 1991.
 88. Gomez, A. M., J.‐P. Bénitah, D. Henzel, A. Vinet, P. Lorente, and C. Delgado. Modulation of electrical heterogeneity by compensated hypertrophy in rat left ventricle. Am. J. Physiol. 272 (Heart Circ. Physiol. 41): H1078–H1086, 1997.
 89. Guo, W., H. Xu, B. London, and J. M. Nerbonne. Molecular basis of transient outward K+ diversity in mouse ventricular myocytes. J. Physiol. (Lond.) 521: 587–599, 1999.
 90. Guo, W., H. Li, B. London, and J. M. Nerbonne. Functional consequences of elimination of Ito,f and Ito,s: early afterdepolarizations, atrioventricular block and ventricular arrhythmias in mice lacking Kv1.4 and expressing a dominant negative Kv4 α subunit. Circ. Res. 87: 73–79, 2000.
 91. Himmel, H. M., E. Wettwer, Q. Li, and U. Ravens. Four different components contribute to outward current in rat ventricular myocytes. Am. J. Physiol. 277 (Heart Cir. Physiol. 46): H107–H1118, 1999.
 92. Hiraoka, M., and S. Kawano. Calcium‐sensitive and insensitive transient outward current in rabbit ventricular myocytes. J. Physiol. (Lond.) 410: 187–212, 1989.
 93. Honoré, E., B. Attali, G. Romey, C. Heurteaux, P. Ricard, F. Lesage, and M. Lazdunski. Cloning, expression, pharmacology and regulation of a delayed rectifier K+ channel in mouse heart. EMBO J. 10: 2805–2811, 1991.
 94. Horie, M., S. Hayashi, and C. Kawai. Two types of delayed rectifying K+ channels in atrial cells of guinea pig heart. Jpn. J. Physiol. 40: 479–490, 1990.
 95. Howarth, F. C., A. J. Levi, and J. C. Hancox. Characteristics of the delayed rectifier K current compared in myocytes isolated from the atrioventricular node and ventricle of the rabbit heart. Pflugers Arch. 431: 713–722, 1996.
 96. Hugnot, J. P., M. Salinas, F. Lesage, E. Guillemare, J. De Weile, C. Heurteaux, M. G. Mattei, and M. Lazdunski. Kv8.1, a new neuronal potassium channel subunit with specific inhibitory properties towards Shab and Shaw channels. EMBO J. 15: 3322–3331, 1996.
 97. Hume, J. R. and A. Uehara. Ionic basis of the different action potential configurations of single guinea‐pig atrial and ventricular myocytes. J. Physiol. (Lond.) 368: 525–544, 1985.
 98. Inoue, M. and I. Imanaga. Masking of A‐type K+ channel in guinea pig cardiac cells by extracellular Ca++. Am. J. Physiol. 264 (Cell Physiol. 33): C1434–C1438, 1993.
 99. Iost, N., L. Virag, M. Opincariu, J. Szecsi, A. Varro, and J. G. Papp. Delayed rectifier potassium current in undiseased human ventricular myocytes. Cardiovasc. Res. 40: 508–515, 1998.
 100. Ito, H. and K. Ono. A rapidly activating delayed rectifier K+ channel in rabbit sinoatrial node cells. Am. J. Physiol. 269 (Heart Circ. Physiol. 38): H443–H452, 1995.
 101. Jan, L. Y., and Y. N. Jan. Structural elements involved in specific K+ channel functions. Annu. Rev. Physiol. 54: 537–555, 1992.
 102. Jiang, M., J. Tseng‐Crank, and G. N. Tseng. Suppression of slow delayed rectifier current by a truncated isoform of KvLQT1 cloned from normal human heart. J. Biol. Chem. 272: 24109–24112, 1997.
 103. Jing, J., T. Peretz, D. Singer‐Lahat, D. Chikvashvili, W. B. Thornhill, and I. Lotan. Inactivation of a voltage‐dependent K+ channel by beta subunit modulation by a phosphorylation‐dependent interaction between the distal C terminus of alpha subunit and cytoskeleton. J. Biol. Chem. 272: 14021–14024, 1997.
 104. Johns, D. C., H. B. Nuss, and E. Marban. Suppression of neuronal and cardiac transient outward currents by viral gene transfer of dominant‐negative Kv4.2 constructs. J. Biol. Chem. 272: 31598–31603, 1997.
 105. Kääb, S., H. B. Nuss, N. Chiamvimonvat, B. O'Rourke, P. H. Pak, D. A. Kass, E. Marban, and G. F. Tomaselli. Ionic mechanism of action potential prolongation in ventricular myocytes from dogs with pacing‐induced heart failure. Circ. Res. 78: 262–273, 1996.
 106. Kääb, S., J. Dixon, J. Duc, D. Ashen, M. Näbauer, D. J. Beuckelmann, G. Steinbeck, D. McKinnon, and G. F. Tomaselli. Molecular basis of transient outward potassium current downregulation in human heart failure—a decrease in Kv4.3 mRNA correlates with a reduction in current density. Circulation 98: 1383–1393, 1998.
 107. Kamb, A., J. Tseng‐Crank, and M. A. Tanouye. Multiple components of the Drosophila Shaker gene may contribute to potassium channel diversity. Neuron 1: 421–430, 1988.
 108. Kennedy, M. E., J. Nemeco, S. Corey, K. Wickman, and D. E. Clapham. GIRK 4 confers appropriate processing and cell surface localization on G‐protein‐gated potassium channels. J. Biol. Chem. 274: 2571–2582, 1999.
 109. Kenyon, J. L. and W. R. Gibbons. Influence of chloride, potassium, and tetraethylammonium on the early outward current of sheep cardiac Purkinje fibers. J. Gen. Physiol. 73: 117–138, 1979.
 110. Kenyon, J. L. and W. R. Gibbons. 4‐Aminopyridine and the early outward current of sheep cardiac Purkinje fibers. J. Gen. Physiol. 73: 139–157, 1979.
 111. Kodama, I., M. R. Bayett, M. R. Nikmaram, M. Yamamoto, H. Honjo, and R. Niwa. Regional differences in effects of E‐4031 within the sinoatrial node. Am. J. Physiol. 276 (Heart Circ. Physiol. 45): H793–H802, 1999.
 112. Konarzewska, H., G. A. Peeters, and M. C. Sanguinetti. Re‐polarizing K+ currents in nonfailing human hearts: similarities between right‐septal subendocardial and left epicardial ventricular myocytes. Circulation 92: 1179–1187, 1995.
 113. Kong, W., S. Po, T. Yamagishi, M. D. Ashen, G. Stetten, and G. F. Tomaselli. Isolation and characterization of the human gene encoding Ito: further diversity by alternative mRNA splicing. Am. J. Physiol. 275 (Heart Circ. Physiol. 44): H1963–H1970, 1998.
 114. Kuperschmidt, S., D. Snyders, A. Raes, and D. Roden. A K+ channel splice variant common in human heart lacks a C terminal domain required for expression of rapidly activating delayed rectifier current. J. Biol. Chem. 273: 27231–27235, 1998.
 115. Lees‐Miller, J. P., C. Kondo, L. Wang and H. J. Duff. Electrophysiological characterization of an alternatively processed ERG K+ channel in mouse and human hearts. Circ. Res. 81: 719–726, 1997.
 116. Lesage, F., B. Attali, M. Lazdunski, and J. Barhanin. IsK, a slowly activating voltage‐sensitive K+ channel. Characterization of multiple cDNAs and gene organization in the mouse, FEBS. Lett. 301: 168–172, 1992.
 117. Levin, G., D. Chikvashvili, D. Singer‐Lahat, T. Peretz, W. B. Thornhill, and I. Lotan. Phosphorylation of a K+ channel alpha subunit modulates the inactivation conferred by a beta subunit. Involvement of cytoskeleton. J. Biol. Chem. 271: 29321–29328, 1996.
 118. Levitan, E. S. and K. Takimoto. Dynamic regulation of K+ channel gene expression in differentiated cells. J. Neurobiol. 37: 60–68, 1998.
 119. Li, G. R., J. Feng, L. Yue, M. Carrier, and S. Nattel. Evidence for two components of delayed rectifier K+ current in human ventricular myocytes. Circ. Res. 78: 689–696, 1996.
 120. Litovsky, S. H. and C. Antzelevitch. Transient outward current prominent in canine ventricular epicardium but not endocardium. Circ. Res. 72: 1092–1103, 1988.
 121. Liu, D.‐W. and C. Antzelevitch. Characteristics of the delayed rectifier current (IKr and IKs) in canine ventricular epicardial, midmyocardial, and endocardial myocytes. Circ. Res. 76: 351–365, 1995.
 122. Liu, D.‐W., G. A. Gintant, and C. Antzelevitch. Ionic basis for electrophysiological distinctions among epicardial, midmyocardial and epicardial myocytes. Circ. Res. 72: 671–687, 1993.
 123. London, B., M. C. Trudeau, K. P. Newton, A. K. Beyer, N. G. Copeland, D. J. Gilbert, N. A. Jenkins, C. A. Satler, and G. A. Robertson. Two isoforms of the mouse ether‐a‐go‐go‐related gene coassemble to form channels with properties similar to the rapidly activating component of the cardiac delayed rectifier K+ current. Circ. Res. 81: 870–878, 1997.
 124. London, B., D. W. Wang, J. A. Hill, and P. B. Bennett. The transient outward current in mice lacking the potassium channel gene Kv1.4. J. Physiol. (Lond.) 81: 870–878, 1998.
 125. London, B., A. Jeron, J. Zhou, P. Buckett, X. Han, G. F. Mitchell, and G. Koren. Long QT and ventricular arrhythmias in transgenic mice expressing the N terminus and the first transmembrane segment of a voltage‐gated potassium channel. Proc. Natl. Acad. Sci., U.S.A. 95: 2926–2931, 1998.
 126. London, B., E. Aydar, C. M. Lewarchik, J. S. Seibel, C. T. January, and G. A. Robertson. N‐ and C‐terminal isoforms of HERG in the human heart. Biophys. J. 74: A26, 1998.
 127. London, B., W. Gno, X.‐h. Pan, J. S. Lee, V. Shusterman, D. A. Logothetis, J. M. Nerbonne, and J. A. Hill. Targeted replacement of Kv1.5 in the mouse leads to loss of the 4‐aminopyridine sensitive component of Ik, slow and resistance to drug‐induced QT prolongation. Circ Res. 88: 940–946, 2001.
 128. MacKinnon, R. Determination of the subunit stoichiometry of a voltage‐activated potassium channel. Nature 350: 232–235, 1991.
 129. Main, M. C., S. M. Bryant, and G. Hart. Regional differences in action potential characteristics and membrane currents of guinea‐pig left ventricular myocytes. Exp. Physiol. 83: 747–761, 1998.
 130. Majumder, K., M. Debiasi, Z. Wang, and B. Wible. Molecular cloning and functional expression of a novel potassium channel β subunit from human atrium. FEBS Lett. 361: 13–16.
 131. Maltsev, V. A. and A. I. Undrovinas. Cytoskeleton modulates coupling between availability and activation of cardiac sodium channel. Am. J. Physiol. 273 (Heart Circ. Physiol. 42): H1832–H1840, 1997.
 132. Maruoka, N. D., B. Au, D. F. Steele, X. Zhang and D. Fedida. α‐Actinin‐2 couples cardiac Kv channels to the actin cytoskeleton and regulates current density. Biophys. J. 78: 452a, 2000 (abstract).
 133. Matsubara, H., E. R. Liman, P. Hess, and G. Koren. Pretranslational mechanisms determine the type of potassium channel expressed in the rat skeletal and cardiac muscles. J. Biol. Chem. 266: 13324–13328, 1991.
 134. Mays, D. J., J. M. Foose, L. H. Philipson, and M. M. Tamkun. Localization of the Kv1.5 K+ channel protein in explanted cardiac tissue. J. Clin. Invest. 96: 282–292, 1995.
 135. Mazzanti, M., R. Assandri, A. Ferroni, and D. DiFrancesco. Cytoskeletal control of rectification and expression of four sub‐states of cardiac inward rectifier K+ channels. FASEB. J. 10: 357–361, 1996.
 136. McDonald, T. V., Z. Yu, Z. Ming, E. Palma, M. B. Meyers, K. W. Wang, S. A. Goldstein, and G. I. Fishman. A minK‐HERG complex regulates the cardiac potassium current I(Kr). Nature 388: 289–292, 1997.
 137. McPhee, J. C., X. L. Dang, N. Davidson, and H. A. Lester. Evidence for a functional interaction between integrins and G protein‐activated inward rectifier K+ channels. J. Biol. Chem. 273: 34696–34702, 1998.
 138. Mitchell, G. F., A. Jeron, and G. Koren. Measurement of heart rate and Q‐T interval in the conscious mouse. Am. J. Physiol. 274 (Heart Circ. Physiol. 43): H747–H751, 1998.
 139. Mitcheson, J. S. and M. C. Sanguinetti. Biophysical properties and molecular basis of cardiac rapid and slow delayed rectifier potassium channels. Cell. Physiol. Biochem. 9: 201–216, 1999.
 140. Morales, M.J., R. C. Castellino, A. L. Crews, R. L. Rasmusson, and H. C. Strauss. A novel α subunit increases the rate of inactivation of specific voltage‐gated potassium channel α subunits. J. Biol. Chem. 270: 6272–6277, 1995.
 141. Muniz, Z. M., D. N. Parcej, and J. O. Dolly. Characterization of monoclonal antibodies against voltage‐dependent K+ channels raised using α‐dendrotoxin acceptors purified from bovine brain. Biochemistry 31: 12297–12303, 1992.
 142. Munk, A. A., R. A. Adjemian, J. Zhao, A. Ogbaghebriel, and A. Shrier. Electrophysiological properties of morphologically distinct cells isolated from the rabbit atrioventricular node. J. Physiol. (Lond.) 493: 801–818, 1996.
 143. Murai, T., A. Kakizuka, T. Takumi, H. Ohkubo, and S. Nakanishi. Molecular cloning and sequence analysis of human genomic DNA encoding a novel membrane protein which exhibits slowly activating potassium channel activity. Biochem. Biophys. Res. Commun. 61: 176–181, 1989.
 144. Näbauer, M. Electrical heterogeneity in the ventricular wall and the M cell. Cardiovasc. Res. 40: 248–250, 1998.
 145. Näbauer, M. and M. Kääb. Potassium channel down regulation in heart failure. Cardiovasc. Res. 37: 324–334, 1998.
 146. Näbauer, M., D. J. Beuckelmann, and E. Erdmann. Characteristics of transient outward current in human ventricular myocytes from patients with terminal heart failure. Circ. Res. 73: 386–394, 1993.
 147. Näbauer, M., D.J. Beuckelmann, P. Überfuhr, and G. Steinbeck. Regional differences in current density and rate dependent properties of the transient outward current in subepicardial and subendocardial myocytes of human left ventricle. Circulation 93: 168–177, 1996.
 148. Näbauer, M., A. Barth, and S. Kääb. A second calcium‐independent transient outward current present in human ventricular myocardium. Circulation 98: I–231, 1998.
 149. Nagaya, N. and Papazian, D. M. Potassium channel alpha and beta subunits assemble in the endoplasmic reticulum. J. Biol. Chem. 272: 3022–3027, 1997.
 150. Nakahira, K., G. Shi, K. J. Rhodes, and J. S. Trimmer. Selective interaction of voltage‐gated K+ channel α subunits with β subunits. J. Biol. Chem. 271: 7084–7089, 1996.
 151. Nakayama, T. and H. Irisawa. Transient outward current carried by potassium and sodium in quiescent atrioventricular node cells of rabbits. Circ. Res. 57: 65–73, 1985.
 152. Nattel, S. Electrophysiological remodeling: are ion channels static players or dynamic movers? J. Cardiovasc. Electrophysiol. 10: 1553–1556, 1999.
 153. Nattel, S., L. Yue, and Z. Wang. Cardiac ultra rapid delayed rectifiers. A novel potassium current family of functional similarity and molecular diversity. Cell Physiol. Biochem. 9: 217–226, 1999.
 154. Nehring, R. B., E. Wishmeyer, F. Doring, R. W. Yeh, M. Sheng, and A. Karshin. Neuronal inwardly rectifying K+ channels differentially coupled to PDZ proteins of the PSD‐95/SAP90 family. J. Neurosci. 20: 56–62, 2000.
 155. Nerbonne, J. M. Regulation of voltage‐gated K+ channel expression in the developing mammalian myocardium. J. Neurobiol. 37: 37–59, 1998.
 156. Nuss, H. B. and E. Marban. Electrophysiological properties of neonatal mouse cardiac cells in primary culture. J. Physiol. (Lond.) 479: 265–279, 1994.
 157. Nuss, H. B., D. C. Johns, S. Kääb, G. F. Tomaselli, D. Kass, J. H. Lawrence, and E. Marban. Reversal of potassium channel deficiency in cells from failing hearts by adenoviral gene transfer: a prototype for gene therapy for disorders of cardiac excitability and contractility. Gene Therapy 3: 900–912, 1996.
 158. Nuss, H. B., S. Kääb, D. A. Kass, G. F. Tomaselli, and E. Marbán. Cellular basis of ventricular arrhythmias and abnormal automaticity in heart failure. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H80–H91, 1999.
 159. Ohya, S., M. Tanaka, T. Oku, Y. Asai, M. Watanabe, W. R. Giles, and Y. Imaizumi. Molecular cloning and tissue distribution of an A‐type K+ channel α‐subunit, Kv4.3 in the rat. FEBS Lett. 420: 47–53, 1997.
 160. Papazian, D. M., T. L. Schwarz, B. L. Temple, Y. N. Jan, and L. Y. Jan. Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila Science 237: 749–753, 1987.
 161. Parcej, D. N., V. E. Scott, and J. O. Dolly. Oligomeric properties of alpha‐dendrotoxin‐sensitive potassium ion channels purified from bovine brain. Biochemistry 31: 11084–11088, 1992.
 162. Petersen, K. R. and J. M. Nerbonne. Expression environment determines K+ current properties: Kv1 and Kv4 α subunit–induced K+ currents in mammalian cell lines and cardiac myocytes. Pflugers Arch. 437: 381–392, 1999.
 163. Po, S., D. J. Snyders, R. Baker, M. M. Tamkun, and P. B. Bennett. Functional expression of an inactivating potassium channel cloned from human heart. Circ. Res. 71: 732–736, 1992.
 164. Po, S., S. Roberds, D. J. Snyders, M. M. Tamkun, and P. B. Bennett. Heteromultimeric assembly of human potassium channels. Molecular basis of a transient outward current? Circ. Res. 72: 1326–1336, 1993.
 165. Pond, A. L., B. K. Scheve, A. T. Benedict, K. Petrecca, D. R. Van Wagoner, A. Shrier, and J. M. Nerbonne. Expression of distinct ERG proteins in rat, mouse and human heart: relation to functional IKr channels. J. Biol. Chem. 275: 5997–6006, 2000.
 166. Pongs, O. Molecular biology of voltage‐dependent potassium channels. Physiol. Rev. 72: S69–S88, 1992.
 167. Pong, O. Voltage‐gated potassium channels from hyperexcitability to excitement. FEBS Lett. 452: 31–35, 1999.
 168. Pongs, O., N. Kecskemethy, R. Muller, I. Krah‐Jentgens, A. Baumann, H. H. Kiltz, L. Canal, S. Llamazares, and A. Ferrus. Shaker encodes a family of putative potassium channel proteins in the nervous system. EMBO J. 7: 1087–1096, 1988.
 169. Pongs, O., T. Leicher, M. Berger, J. Roeper, R. Bahring, D. Wray, K. P. Giese, A. J. Silva, and J. F. Storm. Functional and molecular aspects of voltage‐gated K+ channel β subunits. Ann. N.Y. Acad. Sci. 868: 344–355, 1999.
 170. Potreau, D., J. P. Gomez, and N. Fares. Depressed transient outward current in single hypertrophied cardiomyocytes isolated from the right ventricle of ferret heart. Cardiovasc. Res. 30: 440–448, 1996.
 171. Ravens, U., E. Wettwer, A. Ohler, G. J. Amos, and T. Mewes. Electrophysiology of ion channels of the heart. Fund. and Clin. Pharmacol. 10: 321–328, 1996.
 172. Rettig, J., S. H. Heinemann, F. Wunder, C. Lorra, D. N. Parcej, J. Q. Dolly, and O. Pongs. Inactivation properties of voltage‐gated K+ channels altered by presence of β‐subunit. Nature 369: 289–294, 1994.
 173. Roberds, S. L. and M. M. Tamkun. Cloning and tissue‐specific expression of five voltage‐gated potassium channel cDNAs expressed in rat heart. Proc. Natl. Acad. Sci. U.S.A. 88: 1798–1802, 1991.
 174. Roberds, S. L. and M. M. Tamkun. Developmental expression of cloned cardiac potassium channels. FEBS Lett. 284: 152–154, 1991.
 175. Roberds, S. L., K. M. Knoth, S. Po, T. A. Blair, P. B. Bennett, R. P. Hartshorne, D. J. Snyders, and M. M. Tamkun. Molecular biology of the voltage‐gated potassium channels of the cardiovascular system. J. Cardiovasc. Electrophysiol. 4: 68–80, 1993.
 176. Salama, G. and B.‐R. Choi. Images of action potential propagation in heart. News Physiol. Sci. 15: 33–41, 2000.
 177. Salata, J. J., N. K. Jurkiewicz, B. Jow, K. Folander, P. J. Guinoso, B. Raynor, R. Swanson, and B. Fermini. IK of rabbit ventricle is composed of two currents: evidence for Iks. Am. J. Physiol. 271 (Heart Circ, Physiol. 40): H2477–H2489, 1996.
 178. Salinas, M., F. Duprat, C. Heurteaux, J. P. Hugnot, and M. Lazdunski. New modulatory alpha subunits for mammalian Shab K+ channels. J. Biol. Chem. 272: 24371–24379, 1997.
 179. Sanguinetti, M. C. Dysfunction of delayed rectifier potassium channels in an inherited cardiac arrhythmia. Ann. N.Y. Acad. Sci. 868: 406–413, 1999.
 180. Sanguinetti, M. C. and N. K. Jurkiewicz. Two components of cardiac delayed rectifier K+ current. J. Gen. Physiol. 96: 195–215, 1990.
 181. Sanguinetti, M. C. and N. K. Jurkiewicz. Delayed rectifier outward K+ current is composed of two currents in guinea pig atrial cells. Am. J. Physiol. 260 (Heart Circ, Physiol. 29): H393–H399, 1991.
 182. Sanguinetti, M. C., C. Jiang, M. E. Curran, and M. T. Keating. A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81: 299–307, 1995.
 183. Sanguinetti, M. C., M. E. Curran, A. Zou, J. Shen, P. S. Spector, D. L. Atkinson, and M. T. Keating. Coassembly of KvLQT1 and minK (IsK) proteins to form cardiac IKs potassium channel. Nature 384: 80–83, 1996.
 184. Sanguinetti, M. C., J. J. Johnson, L. G. Hammerland, P. R. Kelbaugh, R. A. Volkman, N. A. Saccomano, and A. L. Mueller. Heteropodatoxins: peptides isolated from spider venom that block Kv4.2 potassium channels. Mol. Pharmacol. 51: 491–498, 1997.
 185. Schroeder, B. J., C. Kubisch, V. Stein, and T. J. Jentsch. Moderate loss of cyclic‐AMP‐modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396: 687–690, 1998.
 186. Schwarz, T. L., B. L. Temple, D. M. Papazian, Y. N. Jan, and L. Y. Jan. Multiple potassium‐channel components are produced by alternative splicing at the Shaker locus in Drosophila. Nature 331: 137–142, 1988.
 187. Sewing, S., J. Roeper, and O. Pongs. Kvβ1 subunit binding specific for Shaker‐related potassium channel α subunits. Neuron 16: 455–463, 1996.
 188. Shi, G., K. Nakahira, S. Hammond, K. J. Rhodes, L. E. Schechter, and J. S. Trimmer. β subunits promote K+ channel surface expression through effects early in biosynthesis. Neuron 16: 843–852, 1996.
 189. Shi, W., R. S. Wymore, H.‐S. Wang, Z. Pan, I. S. Cohen, D. McKinnon, and J. E. Dixon. Identification of two nervous system–specific members of the erg potassium channel gene family. J. Neurosci. 17: 9423–9432, 1997.
 190. Shibasaki, T. Conductance and kinetics of delayed rectifier potassium channels in nodal cells of the rabbit heart. J. Physiol. (Lond.) 387: 227–250, 1987.
 191. Shibata, E. F., T. Drury, H. Refsum, V. Aldrete, and W. Giles. Contributions of a transient outward current to repolarization in human atrium. Am. J. Physiol. 257 (Heart Circ. Physiol. 26): H1773–H1781, 1989.
 192. Sicouri, S. and C. Antzelevitch. A subpopulation of cells with unique electrophysiological properties in the deep subepicardium of the canine ventricle. The M Cell. Circ. Res. 68: 1729–1741, 1991.
 193. Snyders, D. J. Structure and function of cardiac potassium channels. Cardiovasc. Res. 42: 377–390, 1999.
 194. Tai, K.‐K., and S. A. N. Goldstein. The conduction pore of a cardiac potassium channel. Nature 391: 605–607, 1998.
 195. Takimoto, K., D. Li, K. M. Hershman, P. Li, E. K. Jackson, and E. S. Levitan. Decreased expression of Kv4.2 and novel Kv4.3 K+ channel subunit mRNAs in ventricles of renovascular hypertensive rats. Circ. Res. 81: 533–539, 1996.
 196. Takumi, T., H. Ohkubo, and S. Nakinishi. Cloning of a membrane protein that induces a slow voltage‐gated potassium current. Science 242: 1042–1045, 1988.
 197. Tamkun, M. M., K. M. Knoth, J. A. Walbridge, H. Kroemer, D. M. Roden, and D. M. Glover. Molecular cloning and characterization of two voltage‐gated K+ channel cDNAs from human ventricle. FASEB J. 5: 331–337, 1991.
 198. Ten Eick, R. E., J. R. Houser, and A. L. Bassett. Cardiac hypertrophy and altered cellular activity of the myocardium. In: Physiology and Pathophysiology of the Heart, 2nd. Ed., edited by N. Speralakis. Boston: Martinus Nijhoff, 1989: 573–594.
 199. Ten Eick, R. E., K. Zhang, R. D. Harvey, and A. L. Bassett. Enhanced functional expression of transient outward current in hypertrophied feline myocytes. Cardiovasc. Drugs Ther. 7: 611–619, 1993.
 200. Tiffany, A.M., L. N. Manganas, E. Kim, Y. P. Hseuh, M. Sheng, and J. S. Trimmer. PSD95 and SAP97 exhibit distinct mechanisms for regulating K+ channel surface expression and clustering. J. Cell Biol. 148: 147–158, 2000.
 201. Timpe, L. C., T. L. Schwarz, B. L. Temple, D. M. Papazian, Y. N. Jan, and L. Y. Jan. Expression of functional potassium channels from Shaker cDNA in Xenopus oocytes. Nature 331: 143–145, 1988.
 202. Tomaselli, G. F. and E. Márban. Electrophysiological remodeling in hypertrophy and heart failure. Cardiovasc. Res. 42: 270–283, 1999.
 203. Trimmer, J. S. Immunological identification and characterization of a delayed rectifier K+ channel polypeptide in rat brain. Proc. Natl. Acad. Sci. U.S.A. 88: 10764–10768, 1991.
 204. Trudeau, M. C., J. W. Warmke, B. Ganetsky, and G. A. Robertson. H‐erg, a human inward rectifier with structural and functional homology to voltage‐gated K+ channels. Science 269: 92–95, 1995.
 205. Tseng, G.‐N. and B. F. Hoffman. Two components of transient outward current in canine ventricular myocytes. Circ. Res. 64: 633–647, 1989.
 206. Tseng‐Crank, J. C. L., G.‐N. Tseng, A. Schwartz, and M. A. Tanouye. Molecular cloning and functional expression of a potassium channel cDNA isolated from a rat cardiac library. FEBS Lett. 268: 63–68, 1990.
 207. Undrovinas, A. I. and V. A. Maltsev. Cytochalasin D alters kinetics of Ca2+ transient in rat cardiomyocytes: an effect of altered actincytoskeleton. J. Mol. Cell. Cardiol. 30: 1665–1670, 1998.
 208. Undrovinas, A. I., G. S. Shander, and V. A. Maltsev. Cytoskeleton modulates gating of voltage‐dependent sodium channel in heart. Am. J. Physiol 269 (Heart Circ, Physiol. 38): H203–H214, 1995.
 209. Van Wagoner, D. R., M. Kirian, and M. Lamorgese. Phenylephrine suppresses outward K+ currents in rat atrial myocyets. Am. J. Physiol. 271 (Heart Circ. Physiol. 40): H937–946, 1996.
 210. Van Wagoner, D. R., A. L. Pond, P. M. McCarthy, J. S. Trimmer, and J. M. Nerbonne. Outward K+ current densities and Kv1.5 expression are reduced in chronic human atrial fibrillation. Circ. Res. 80: 772–781, 1997.
 211. Van Wagoner, D. R., A. L. Pond, M. Lamorgese, S. S. Rossie, and J. M. Nerbonne. Atrial L‐type calcium currents and human atrial fibrillation. Circ. Res. 85: 428–436, 1999.
 212. Varro, A., P. P. Nanasi, and D. A. Lathrop. Potassium currents in isolated human atrial and ventricular cardiocytes. Acta Physiol. Scand. 149: 133–142, 1993.
 213. Varro, A., B. Balati, N. Iost, J. Takacs, L. Virag, D. A. Lathrop, L. Csaba, L. Talosi, and J. G. Papp. The role of the delayed rectifier component IKs in dog ventricular muscle and Purkinje fibre repolarization. J. Physiol. (Lond.) 523: 67–81, 2000.
 214. Veldkamp, M. W., A. C. G. Van Ginneken, and L. N. Bouman. Single delayed rectifier channels in the membrane of rabbit ventricular myocytes. Circ. Res. 72: 865–878, 1993.
 215. Verkerk, A. O., M. W. Veldkamp, F. Abbate, G. Antoons, L. N. Bouman, J. H. Ravesloot, and A. C. G. Van Ginneken. Two types of action potential configurations in single cardiac Purkinje Fibers. Am. J. Physiol. 277 (Heart Circ. Physiol. 46): H1299–H1310, 1999.
 216. Volders, P. G. A. K. R., Sipido, E. Carmeliet, R. L., H. M. G. Spatjens, H. J. J. Wellens, and M. A. Vos. Repolarizing K+ currents Ito1 and IKs are larger in right than left canine ventricular midmyocardium. Circulation 99: 206–210, 1999.
 217. Volk, T., T. H. D. Nguyen, J. H. Schultz, and H. Ehmke. Relationship between transient outward K+ current and Ca2+ influx in rat cardiac myocytes of endo‐ and epicardial origin. J. Physiol. (Lond.) 519: 841–850, 1999.
 218. Walsh, K. B., J. P. Arena, W. M. Kwok, and L. Freeman. Delayed‐rectifier potassium channel activity in isolated membrane patches of guinea pig ventricular myocytes. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H1390–H1393, 1991.
 219. Wang, H. S., Z. Pan, W. Shi, B. S. Brown, R. S. Wymore, I. S. Cohen, J. E. Dixon, and D. McKinnon. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M‐channel. Science 282: 1890–1893, 1998.
 220. Wang, K.‐W., K.‐K. Tai, and S. A. N. Goldstein. MinK residues line a potassium channel pore. Neuron 16: 571–577, 1996.
 221. Wang, Q., M. E. Curran, I. Splawski, T. C. Burn, J. M. Millholland, T. J. Vanray, J. Shen, K. W. Timothy, G. M. Vincent, T. Dejager, P. J. Schwartz, J. A. Toubin, A. J. Moss, D. L. Atkinson, G. M. Landes, T. D. Connors, and M. T. Keating. Positional cloning of a novel potassium channel gene: KvLQT1 mutations cause cardiac arrhythmias. Nat. Genet. 12: 17–23, 1996.
 222. Wang, Z., B. Fermini, and S. Nattel. Repolarization differences between guinea pig atrial endocardium and epicardium. Am. J. Physiol. 260 (Heart Circ. Physiol. 29): H1501–H1506, 1991.
 223. Wang, Z., B. Fermini, and S. Nattel. Delayed rectifier outward current and repolarization in human atrial myocytes. Circ. Res. 73: 276–285, 1993.
 224. Wang, Z., B. Fermini, and S. Nattel. Sustained depolarization‐induced outward current in human atrial myocytes. Evidence for a novel delayed rectifier K+ current similar to Kv1.5 cloned channel currents. Circ. Res. 73: 1061–1076, 1993.
 225. Wang, Z., B. Fermini, and S. Nattel. Rapid and slow components of delayed rectifier current in human atrial myocytes. Cardiovasc. Res. 28: 1540–1546, 1994.
 226. Wang, Z., J. Feng, H. Shi, A. L. Pond, J. M. Nerbonne, and S. Nattel. The potential molecular basis of different physiological properties of transient outward K+ current in rabbit and human atrial myocytes. Circ. Res. 84: 551–561, 1999.
 227. Warmke, J. E. and B. Ganetsky. A family of potassium channel genes related to eag in Drosophila and mammals. Proc. Natl. Acad. Sci. U.S.A. 91: 3438–3442, 1994.
 228. Warmke, J. E., R. Drysdale, and B. Ganetsky. A distinct potassium channel polypeptide encoded by the Drosophila eag locus. Science 252: 1560–1564, 1991.
 229. Wei, A., M. Covarrubias, A. Butler, K. Baker, M. Pak, and L. Salkoff. K+ current diversity is produced by an extended gene family conserved in Drosophila and mouse. Science 248: 599–603, 1990.
 230. Wettwer, E., G. Amos, J. Gath, H.‐R. Zerkowski, J.‐C. Reidemeister, and U. Ravens. Transient outward current in human and rat ventricular myocytes. Cardiovasc. Res. 27: 1662–1669, 1993.
 231. Wettwer, E., G. J. Amos, H. Posival, and U. Ravens. Transient outward current in human ventricular myocytes of subepicardial and subendocardial origin. Circ. Res. 75: 473–482, 1994.
 232. Wettwer, E., H. M. Himmel, G. J. Amos, Q. Li, F. Metzger, and U. Ravens. Mechanism of block by tedisamil of transient outward current in human subepicardial myocytes. Br. J. Pharmacol. 125: 659–666, 1998.
 233. Wetzel, G. T. and T. S. Klitzner. Developmental cardiac electrophysiology: recent advances in cellular physiology. Cardiovasc. Res. 31: E52–E60, 1996.
 234. Wible, B. A., Q. Yang, Y. A. Kuryshev, E. A. Accili, and A. M. Brown. Cloning and expression of a novel K+ channel regulatory protein, KchAP. J. Biol. Chem. 273: 11745–11751, 1998.
 235. Wickenden, A. D., T. J. Jegla, R. Kaprielian, and P. H. Backx. Regional contributions of Kv1.4, Kv4.2 and Kv4.3 to transient outward K+ current in rat ventricle. Am. J. Physiol. 276 (Heart Circ. Physiol. 45): H1599–H1607, 1999.
 236. Wickenden, A. D., P. Lee, R. Sah, Q. Huang, G. I. Fishman, and P. H. Backx. Targeted expression of a dominant negative K(v)4.2 K+ channel subunit in the mouse heart. Circ. Res. 85: 1067–1076, 1999.
 237. Wilde, A. A. M. and M. W. Veldkamp. Ion channels, the QT interval and arrhythmias. Pacing Clin. Electrophysiol. 20: 2048–2051, 1997.
 238. Xu, H., J. E. Dixon, D. M. Barry, J. S. Trimmer, J. P. Merlie, D. McKinnon, and J. M. Nerbonne. Developmental analysis reveals mismatches in the expression of K+ channel α subunits and voltage‐gated K+ channel currents in rat ventricular myocytes. J. Gen. Physiol. 108: 405–419, 1996.
 239. Xu, H., W. Guo, and J. M. Nerbonne. Four kinetically distinct depolarization activated K+ channel currents in mouse ventricular myocytes. J. Gen. Physiol. 113: 661–678, 1999.
 240. Xu, H., H. Li, D. M. Barry, and J. M. Nerbonne. Elimination of the transient outward current and action potential prolongation in atrial myocytes expressing a dominant negative Kv α subunits, Kv4.2W362F. J. Physiol. (Lond.) 519: 11–21, 1999.
 241. Xu, H., D. M. Barry, H. Li, S. Brunet, and J. M. Nerbonne. Attenuation of the slow component of delayed rectification, action potential prolongation and triggered activity in mice expressing a dominant negative Kv2 α subunit. Circ. Res. 85: 623–633, 1999.
 242. Yang, T., S. Kuperschmidt, and D. Roden. Anti‐minK antisense decreases the amplitude of the cardiac delayed rectifier K+ current. Circ. Res. 77: 1246–1253, 1995.
 243. Yeola, S. W. and D. J. Snyders. Electrophysiological and pharmacological correspondence between Kv4.2 current and rat cardiac transient outward current. Cardiovasc. Res. 33: 540–547, 1997.
 244. Yokoshiki, H., Y. Katsube, M. Sunugawa, T. Seki, and N. Sperelakis. Disruption of actin cytoskeleton attenuates sulfonylurea inhibition of cardiac ATP‐sensitive K+ channels. Pflugers Arch. 434: 203–205, 1997.
 245. Yue, D. T. and E. Marban. A novel cardiac potassium channel that is active and conductive at depolarized potentials. Pflugers Arch. 413: 127–133, 1988.
 246. Yue, L., J. Feng, G. R. Li, and S. Nattel. Transient outward and delayed rectifier currents in canine atrium: properties and role of isolation methods. Am. J. Physiol. 270 (Heart Circ. Physiol. 39): H2157–H2168, 1996.
 247. Yue, L., J. Feng, G. R. Li, and S. Nattel. Characterization of an ultrarapid delayed rectifier potassium channel involved in canine atrial repolarization. J. Physiol. (Lond.) 496: 647–662, 1996.
 248. Yue, L., J. Feng, R. Gaspo, G. R. Li, Z. Wang, and S. Nattel. Ionic remodelling underlying action potential changes in a canine model of atrial fibrillation. Circ. Res. 81: 512–525, 1997.
 249. Zhou, Z., Q. Gong, B. Ye, Z. Fan, J. Makielski, G. A. Robertson, and C. T. January. Properties of HERG channels stably expressed in HEK 293 cells studied at physiological temperature. Biophys. J. 74: 230–241, 1998.
 250. Zhou, J., A. Jeron, B. London, X. Han, and G. Koren. Characterization of a slowly inactivating outward current in adult mouse ventricular myocytes. Circ. Res. 83: 806–814, 1998.
 251. Zygmunt, A. C. Intracellular calcium activates a chloride current in canine ventricular myocytes. Am. J. Physiol. 267 (Heart Circ. Physiol. 36): H1984–H1995, 1994.
 252. Zygmunt, A. C. and W. R. Gibbons. Calcium‐activated chloride current in rabbit ventricular myocytes. Circ. Res. 68: 424–437, 1991.
 253. Zygmunt, A. C. and W. R. Gibbons. Properties of the calcium‐activated chloride current in heart. J. Gen. Physiol. 99: 391–414, 1992.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Jeanne M. Nerbonne. Molecular Analysis of Voltage‐Gated K+ Channel Diversity and Functioning in the Mammalian Heart. Compr Physiol 2011, Supplement 6: Handbook of Physiology, The Cardiovascular System, The Heart: 568-594. First published in print 2002. doi: 10.1002/cphy.cp020115