Comprehensive Physiology Wiley Online Library

Adrenergic Regulation of Vascular Smooth Muscle

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Morphology of Adrenergic Innervation
2 Adrenergic Transmission: Presynaptic and Synaptic Events
2.1 Transmitter Synthesis, Storage, and Release
2.2 Mode of Transmitter Release
2.3 Feedback Control of Transmitter Release
2.4 Transmitter Distribution and Movement
2.5 Transmitter Concentrations During Neural Activity
2.6 Transmitter Disposition and Termination of Its Effect
3 Adrenergic Transmission: Postsynaptic Events
3.1 Receptor Analysis and Variation
3.2 Bimodal Transmitter Action
3.3 Contractile Properties of Endothelium
4 Functional Consequences of Variation in Vascular Neuroeffector Apparatus
4.1 Synaptic Cleft Width
4.2 Innervation Density
4.3 Innervation Distribution
5 Functional Description of Specific Vessels
6 Adrenergic Neuron in Hypertension
6.1 Changes in Presynaptic Mechanisms
6.2 Neurogenic Transmission and Postsynaptic Function
6.3 Distribution of Adrenergic Transmitter in Hypertensive Arteries
6.4 Plasma Norepinephrine and Dopamine β‐Hydroxylase Levels
6.5 Interpretation of Changes in Adrenergic Mechanisms
7 Development of Adrenergic Control: Trophic Regulation
7.1 Ontogenetic Development of Innervation of Blood Vessels
7.2 Specificity of Adrenergic Innervation of Blood Vessels
7.3 Smooth Muscle Specificity for Nerve
7.4 Interactions of Nerve and Smooth Muscle
7.5 Influence of Adrenergic Nerves on Smooth Muscle
7.6 Influence of Smooth Muscle on Adrenergic Nerves
7.7 Factors Influencing Development and Maturation of Peripheral Sympathetic Nerve Terminals
7.8 Regulation of Sympathetic Function in Adults
7.9 Morphological and Functional Plasticity of Adrenergic Neurons
Figure 1. Figure 1.

Sympathetic innervation patterns in 2 blood vessels of rabbit. Specific catecholamine fluorescence induced by glyoxylic acid method. A: whole mount of distal portion of middle cerebral artery showing network of varicose fibers. B: transverse section of ear artery. Innervation is confined to adventitia. Internal elastic lamina and fine elastic fibers in adventitia are autofluorescent.

Figure 2. Figure 2.

Electron micrograph of human omental vein showing longitudinal section of a sympathetic nerve axon containing neurotubules (n) in parallel with a smooth muscle cell (SMC) with typical pinocytic vesicles (pv). Note presence of a neuronal varicosity containing large (lv) and small (sv) dense‐core vesicles, and mitochondria (m). A possible site of exocytosis is shown by unlabeled arrow. × 45,000.

From A. Thureson‐Klein, unpublished work
Figure 3. Figure 3.

Freeze‐etch study of innervation of mesenteric arteries of rat. A portion of vascular smooth muscle cell (sm) with an axon bundle in the adventitia is shown. Abundant collagen (col) and elastic tissue (el) is present around axon (ao), which is varicose (arrow). × 15,000.

From Devine et al. 434
Figure 4. Figure 4.

Biosynthesis of norepinephrine from tyrosine.

Figure 5. Figure 5.

Metabolism of norepinephrine. MAO, monoamine oxidase; COMT, catechol‐O‐methyltransferase; NE, norepinephrine; NM, normetanephrine; DHPG, 3,4‐dihydroxyphenylglycol; MHPG, 3‐methoxy‐4‐hydroxy‐phenylglycol; DHMA, 3,4‐dihydroxymandelic acid; VMA, 3‐methoxy‐4‐hydroxymandelic acid; Dehydro, dehydrogenase.

From Takimoto 375
Figure 6. Figure 6.

Influence of yohimbine on response of rabbit pulmonary artery to transmural sympathetic nerve stimulation. Strips of the artery were preincubated with [3H]NE and then superfused with medium containing 3 × 10−5 M cocaine, 4 × 10−5 M corticosterone, and 4 × 10−6 M propranolol. Each strip was stimulated four times for 3 min each at either 2 (•——•) or 4 (•——•) Hz. Ratio of tritium overflow evoked before and after exposure to yohimbine is shown. Each point is mean ± SEM of 3–7 experiments. Significant differences from controls (yohimbine concentration = 0); *, P < 0.02; **, P < 0.001.

From Starke et al. 362
Figure 7. Figure 7.

Mean increase in transmitter overflow after treatment with phenoxybenzamine and cocaine in relation to mean width of neuromuscular interval. 1, Guinea pig vas deferens; 2, rabbit atria; 3, portal vein; 4, guinea pig uterine artery; 5, rabbit ear artery; and 6, rabbit pulmonary artery.

1 and 3 from data of Hughes 215; 2 from data of Rand et al. 332; 4 from data of Bell and Vogt 23; 5 from data of Kirpekar and Puig 244; 6 from data of McCulloch, Bevan, and Su 294
Figure 8. Figure 8.

Distribution of 3H in wall of rabbit aorta pretreated with cocaine (10−3 M) for 30 min after exposure of intimal surface of vessel to [3H]norepinephrine (NE) (7.5 × 10−7 M) and cocaine for 20 s, 1 min, and 10 min. After exposure aorta strips were frozen and sections parallel to the intima were cut in a cryostat. Radioactivity in each section was expressed in terms of tissue:medium ratio, i.e., ml bath fluid cleared per gram tissue. Vertical bars represent SEM. Divisions on abscissa are 100 μm.

From Torok and Bevan 391, © 1971 The Williams & Wilkins Co., Baltimore
Figure 9. Figure 9.

Three‐dimensional representation of changes of transmitter concentration in relation to time after release and to distance from site of release of contents of one storage vesicle. Horizontal plane indicated by light dashed line indicates threshold concentration of a‐adrenergic receptor in most blood vessels. Subthreshold concentration curves are shown as heavy dashed line and dotted line where concentration curves cross diagram planes.

Figure 10. Figure 10.

Isometric force recording in grams from a segment of buccal portion of anterior facial vein of rabbit. Responses to norepinephrine (NE) and to transmural nerve stimulation (0.3 ms pulse duration of varying frequency) were obtained before and after addition of propranolol.

From Pegram, Bevan, and Bevan 329, by permission of the American Heart Association, Inc
Figure 11. Figure 11.

Isotonic contraction of isolated segments of saphenous vein of the dog in response to different concentrations of several adrenergic agonists. Solid lines show responses to epinephrine (E), norepinephrine (N), phenylephrine (P), and isoproterenol (I) in the presence of cocaine (1.4 × 10−5 M) to inhibit neuronal uptake, and in presence of U‐0521 (10−4 M) to inhibit catechol‐O‐methyltransferase. Broken lines show responses in presence of cocaine and U‐0521 plus propranolol (5 × 10−7 M) to inhibit β‐adrenergic receptors. Values are mean ± SEM.

Adapted from Guimaraes 191
Figure 12. Figure 12.

Concentration‐response curves showing relaxant effects of several adrenergic agonists in saphenous vein of dog. Tissue had been treated for 30 min with phenoxybenzamine (7.5 × 10−6 M) and was contracted by prostaglandin F (10−4 M). Values are mean ± SEM.

Adapted from Guimaraes 191
Figure 13. Figure 13.

Differences in relative magnitude of the two phases of response of perfused rabbit ear artery to different frequencies of stimulation or to different concentrations of transmitter. A: continuous nerve stimulation for 3 min at different frequencies. B: infusion of norepinephrine (NE) for 3 min at different concentrations. The same ear artery was used for both nerve stimulation and norepinephrine infusion.

From Steinsland et al. 365, by permission of the American Heart Association, Inc
Figure 14. Figure 14.

Diagrammatic representation of l‐norepinephrine doseresponse curve of rabbit pulmonary artery. Experimentally derived transmitter concentrations at 1 and 10 Hz at intra‐ (single line) and perisynaptic (double line) sites are shown in relation to this curve; α indicates α‐adrenergic receptor.

From Bevan 33. Reprinted from Federation Proceedings
Figure 15. Figure 15.

Diagrammatic representation of l‐norepinephrine dose‐response curve of rat portal vein. Experimentally derived transmitter concentrations at 1 and 10 Hz at intra‐ (single line) and perisynaptic (double line) sites are shown in relation to this curve; α indicates α‐adrenergic receptors.

From Bevan 33. Reprinted from Federation Proceedings
Figure 16. Figure 16.

Rate of change of diameter of dog femoral artery (•——•) and resistance vessels (○—○) induced by homolateral sympathetic trunk stimulation using triangular pulses at supramaximal intensity (5 ms duration at 15 Hz, plotted against duration of stimulation).

From Gero and Gerova 176, with permission of S. Karger AG, Basel
Figure 17. Figure 17.

Steady‐state neurogenic response of small saphenous and anterior mesenteric veins of rabbit at different stimulation frequencies, expressed as percentage of maximum norepinephrine response. Values are mean ± SEM.

From Bevan 33. Reprinted from Federation Proceedings
Figure 18. Figure 18.

Relation between steady‐state neurogenic contractile response in grams of cephalic and saphenous vein segments at 10 Hz and carotid arterial pressure of rabbits with partial constriction of abdominal aorta and their sham‐operated controls.

From Bevan, Bevan, et al. 36 with permission of S. Karger AG, Basel
Figure 19. Figure 19.

Relation of mean blood pressure to plasma norepinephrine in 16 quadriplegic humans at rest, and during and after bladder and muscle stimulation.

From Mathias et al. 288, by permission of the American Heart Association, Inc
Figure 20. Figure 20.

Schematic representation of pattern of development of adrenergic neuroeffector mechanisms in carotid artery from fetal sheep. MAO and COMT are total vessel monoamine oxidase and catechol‐O‐methyltransferase, respectively. Curves labeled α‐receptor, NE uptake, and NE release represent relative size of the experimental in vitro response to exogenous norepinephrine, neuronal uptake of norepinephrine, and neurogenic contractile response to field stimulation, respectively.

From Su, Bevan, et al. 372, with permission of S. Karger AG, Basel
Figure 21. Figure 21.

A: changes in maximum force developed to norepinephrine (NE), wall thickness, tissue weight, and NE ED50 by standard segment of ear artery from growing rabbit 2 mo after unilateral superior cervical ganglionectomy (n = 8). Denervation was confirmed in each instance by fluorescence microscopy. P values refer to paired comparisons of data. B: passive stress‐length curves of innervated and contralateral denervated segments of rabbit ear arteries. At longer lengths, tangential elastic modulus is greater for denervated compared with innervated arteries (*P < 0.05; **P < 0.01; n = 20).

From Bevan and Tsuru 58, by permission of the American Heart Association, Inc


Figure 1.

Sympathetic innervation patterns in 2 blood vessels of rabbit. Specific catecholamine fluorescence induced by glyoxylic acid method. A: whole mount of distal portion of middle cerebral artery showing network of varicose fibers. B: transverse section of ear artery. Innervation is confined to adventitia. Internal elastic lamina and fine elastic fibers in adventitia are autofluorescent.



Figure 2.

Electron micrograph of human omental vein showing longitudinal section of a sympathetic nerve axon containing neurotubules (n) in parallel with a smooth muscle cell (SMC) with typical pinocytic vesicles (pv). Note presence of a neuronal varicosity containing large (lv) and small (sv) dense‐core vesicles, and mitochondria (m). A possible site of exocytosis is shown by unlabeled arrow. × 45,000.

From A. Thureson‐Klein, unpublished work


Figure 3.

Freeze‐etch study of innervation of mesenteric arteries of rat. A portion of vascular smooth muscle cell (sm) with an axon bundle in the adventitia is shown. Abundant collagen (col) and elastic tissue (el) is present around axon (ao), which is varicose (arrow). × 15,000.

From Devine et al. 434


Figure 4.

Biosynthesis of norepinephrine from tyrosine.



Figure 5.

Metabolism of norepinephrine. MAO, monoamine oxidase; COMT, catechol‐O‐methyltransferase; NE, norepinephrine; NM, normetanephrine; DHPG, 3,4‐dihydroxyphenylglycol; MHPG, 3‐methoxy‐4‐hydroxy‐phenylglycol; DHMA, 3,4‐dihydroxymandelic acid; VMA, 3‐methoxy‐4‐hydroxymandelic acid; Dehydro, dehydrogenase.

From Takimoto 375


Figure 6.

Influence of yohimbine on response of rabbit pulmonary artery to transmural sympathetic nerve stimulation. Strips of the artery were preincubated with [3H]NE and then superfused with medium containing 3 × 10−5 M cocaine, 4 × 10−5 M corticosterone, and 4 × 10−6 M propranolol. Each strip was stimulated four times for 3 min each at either 2 (•——•) or 4 (•——•) Hz. Ratio of tritium overflow evoked before and after exposure to yohimbine is shown. Each point is mean ± SEM of 3–7 experiments. Significant differences from controls (yohimbine concentration = 0); *, P < 0.02; **, P < 0.001.

From Starke et al. 362


Figure 7.

Mean increase in transmitter overflow after treatment with phenoxybenzamine and cocaine in relation to mean width of neuromuscular interval. 1, Guinea pig vas deferens; 2, rabbit atria; 3, portal vein; 4, guinea pig uterine artery; 5, rabbit ear artery; and 6, rabbit pulmonary artery.

1 and 3 from data of Hughes 215; 2 from data of Rand et al. 332; 4 from data of Bell and Vogt 23; 5 from data of Kirpekar and Puig 244; 6 from data of McCulloch, Bevan, and Su 294


Figure 8.

Distribution of 3H in wall of rabbit aorta pretreated with cocaine (10−3 M) for 30 min after exposure of intimal surface of vessel to [3H]norepinephrine (NE) (7.5 × 10−7 M) and cocaine for 20 s, 1 min, and 10 min. After exposure aorta strips were frozen and sections parallel to the intima were cut in a cryostat. Radioactivity in each section was expressed in terms of tissue:medium ratio, i.e., ml bath fluid cleared per gram tissue. Vertical bars represent SEM. Divisions on abscissa are 100 μm.

From Torok and Bevan 391, © 1971 The Williams & Wilkins Co., Baltimore


Figure 9.

Three‐dimensional representation of changes of transmitter concentration in relation to time after release and to distance from site of release of contents of one storage vesicle. Horizontal plane indicated by light dashed line indicates threshold concentration of a‐adrenergic receptor in most blood vessels. Subthreshold concentration curves are shown as heavy dashed line and dotted line where concentration curves cross diagram planes.



Figure 10.

Isometric force recording in grams from a segment of buccal portion of anterior facial vein of rabbit. Responses to norepinephrine (NE) and to transmural nerve stimulation (0.3 ms pulse duration of varying frequency) were obtained before and after addition of propranolol.

From Pegram, Bevan, and Bevan 329, by permission of the American Heart Association, Inc


Figure 11.

Isotonic contraction of isolated segments of saphenous vein of the dog in response to different concentrations of several adrenergic agonists. Solid lines show responses to epinephrine (E), norepinephrine (N), phenylephrine (P), and isoproterenol (I) in the presence of cocaine (1.4 × 10−5 M) to inhibit neuronal uptake, and in presence of U‐0521 (10−4 M) to inhibit catechol‐O‐methyltransferase. Broken lines show responses in presence of cocaine and U‐0521 plus propranolol (5 × 10−7 M) to inhibit β‐adrenergic receptors. Values are mean ± SEM.

Adapted from Guimaraes 191


Figure 12.

Concentration‐response curves showing relaxant effects of several adrenergic agonists in saphenous vein of dog. Tissue had been treated for 30 min with phenoxybenzamine (7.5 × 10−6 M) and was contracted by prostaglandin F (10−4 M). Values are mean ± SEM.

Adapted from Guimaraes 191


Figure 13.

Differences in relative magnitude of the two phases of response of perfused rabbit ear artery to different frequencies of stimulation or to different concentrations of transmitter. A: continuous nerve stimulation for 3 min at different frequencies. B: infusion of norepinephrine (NE) for 3 min at different concentrations. The same ear artery was used for both nerve stimulation and norepinephrine infusion.

From Steinsland et al. 365, by permission of the American Heart Association, Inc


Figure 14.

Diagrammatic representation of l‐norepinephrine doseresponse curve of rabbit pulmonary artery. Experimentally derived transmitter concentrations at 1 and 10 Hz at intra‐ (single line) and perisynaptic (double line) sites are shown in relation to this curve; α indicates α‐adrenergic receptor.

From Bevan 33. Reprinted from Federation Proceedings


Figure 15.

Diagrammatic representation of l‐norepinephrine dose‐response curve of rat portal vein. Experimentally derived transmitter concentrations at 1 and 10 Hz at intra‐ (single line) and perisynaptic (double line) sites are shown in relation to this curve; α indicates α‐adrenergic receptors.

From Bevan 33. Reprinted from Federation Proceedings


Figure 16.

Rate of change of diameter of dog femoral artery (•——•) and resistance vessels (○—○) induced by homolateral sympathetic trunk stimulation using triangular pulses at supramaximal intensity (5 ms duration at 15 Hz, plotted against duration of stimulation).

From Gero and Gerova 176, with permission of S. Karger AG, Basel


Figure 17.

Steady‐state neurogenic response of small saphenous and anterior mesenteric veins of rabbit at different stimulation frequencies, expressed as percentage of maximum norepinephrine response. Values are mean ± SEM.

From Bevan 33. Reprinted from Federation Proceedings


Figure 18.

Relation between steady‐state neurogenic contractile response in grams of cephalic and saphenous vein segments at 10 Hz and carotid arterial pressure of rabbits with partial constriction of abdominal aorta and their sham‐operated controls.

From Bevan, Bevan, et al. 36 with permission of S. Karger AG, Basel


Figure 19.

Relation of mean blood pressure to plasma norepinephrine in 16 quadriplegic humans at rest, and during and after bladder and muscle stimulation.

From Mathias et al. 288, by permission of the American Heart Association, Inc


Figure 20.

Schematic representation of pattern of development of adrenergic neuroeffector mechanisms in carotid artery from fetal sheep. MAO and COMT are total vessel monoamine oxidase and catechol‐O‐methyltransferase, respectively. Curves labeled α‐receptor, NE uptake, and NE release represent relative size of the experimental in vitro response to exogenous norepinephrine, neuronal uptake of norepinephrine, and neurogenic contractile response to field stimulation, respectively.

From Su, Bevan, et al. 372, with permission of S. Karger AG, Basel


Figure 21.

A: changes in maximum force developed to norepinephrine (NE), wall thickness, tissue weight, and NE ED50 by standard segment of ear artery from growing rabbit 2 mo after unilateral superior cervical ganglionectomy (n = 8). Denervation was confirmed in each instance by fluorescence microscopy. P values refer to paired comparisons of data. B: passive stress‐length curves of innervated and contralateral denervated segments of rabbit ear arteries. At longer lengths, tangential elastic modulus is greater for denervated compared with innervated arteries (*P < 0.05; **P < 0.01; n = 20).

From Bevan and Tsuru 58, by permission of the American Heart Association, Inc
References
 1. Abraham, A. Microscopic Innervation of the Heart and Blood Vessels in Vertebrates Including Man. Oxford: Pergamon, 1969.
 2. Ahlquist, R. P. A study of the adrenotropic receptors. Am. J. Physiol. 153: 586–600, 1948.
 3. Akert, K., K. Pfenninger, S. C. Sandri, and H. Moor. Freeze etching and cytochemistry of vesicles and membrane complexes in synapses of the central nervous system. In: Structure and Function of Synapses, edited by G. D. Pappas and D. P. Purpura. New York: Raven, 1972, p. 67–86.
 4. Albuquerque, E. X., J. E. Warnick, F. M. Sansone, and R. Onur. Trophic functions of the neuron. 3. Mechanisms of neurotrophic interactions. The effects of vinblastine and colchicine on neuronal regulation of muscle. Ann. NY Acad. Sci. 228: 224–243, 1974.
 5. Alexander, N. Effect of constriction of the abdominal aorta on femoral pulse and mean pressure in rabbits. Am. J. Physiol. 174: 179–184, 1953.
 6. Alexander, N., J. McClaskey, and R. F. Maronde. Elevated plasma dopamine beta hydroxylase activity in rats with neurogenic hypertension. Life Sci. 18: 655–662, 1976.
 7. Allen, G. S., M. J. Rand, and D. F. Story. Techniques for studying adrenergic transmitter release in an isolated perfused artery. Cardiovascular Res. 7: 423–428, 1973.
 8. Altura, B. M. Chemical and humoral regulation of blood flow through the precapillary sphincter. Microvascular Res. 3: 361–384, 1971.
 9. Altura, B. M. Pharmacological effects of alpha‐methyldopa, alpha‐methylnorepinephrine, and octopamine on rat arteriolar, arterial and terminal vascular smooth muscle. Circulation Res. 36: (Suppl. 1) 233–240, 1975.
 10. Amer, M. S., N. Doba, and D. J. Reis. Changes in cyclic nucleotide metabolism in aorta and heart of neurogenically hypertensive rats: possible trigger mechanism of hypertension. Proc. Natl. Acad. Sci. US 72: 2135–2139, 1975.
 11. Amer, M. S., A. W. Gomoll, J. L. Perhach, Jr., H. C. Ferguson, and G. R. McKinney. Aberrations of cyclic nucleotide metabolism in the hearts and vessels of hypertensive rats. Proc. Natl. Acad. Sci. US 71: 4930–4934, 1974.
 12. Aprigliano, O., and K. Hermsmeyer. In vitro denervation of the portal vein and caudal artery of the rat. J. Pharmacol. Exptl. Therap. 198: 568–577, 1976.
 13. Aurbach, G. D., S. A. Fedak, C. J. Woodard, J. S. Palmer, D. Hauser, and F. Troxler. Beta‐adrenergic receptor: stereospecific interaction of iodinated beta‐blocking agent with high affinity site. Science 186: 1223–1224, 1974.
 14. Avakian, V., and J. S. Gillespie. Uptake of noradrenaline by adrenergic nerves, smooth muscle and connective tissue in isolated perfused arteries and its correlation with the vasoconstrictor response. Brit. J. Pharmacol. 32: 168–184, 1968.
 15. Axelsson, S. A., A. Bjorklund, B. Falck, O. Lindvall, and L. A. Svensson. Glyoxylic acid condensation: a new fluorescence method for the histochemical demonstration of biogenic monoamines. Acta Physiol. Scand. 87: 57–62, 1973.
 16. Ayitey‐Smith, E., and D. R. Varma. An assessment of the role of the sympathetic nervous system in experimental hypertension using normal and immunosympathectomized rats. Brit. J. Pharmacol. 40: 175–185, 1970.
 17. Baron, G. D., R. N. Speden, and D. F. Bohr. Beta‐adrenergic receptors in coronary and skeletal muscle arteries. Am. J. Physiol. 223: 878–881, 1972.
 18. Baum, T., and A. T. Shropshire. Vasoconstriction induced by sympathetic stimulation during development of hypertension. Am. J. Physiol. 212: 1020–1024, 1967.
 19. Baum, T., and A. T. Shropshire. Sympathetic and humoral vasoconstrictor responses in deoxycorticosterone hypertension. Am. J. Physiol. 213: 499–503, 1967.
 20. Belfrage, E., and S. Rosell. The role of neuronal uptake at α‐ and β‐adrenoceptor sites in subcutaneous adipose tissue. Naunyn‐Schmiedebergs Arch. Pharmacol. 294: 9–15, 1976.
 21. Bell, C. Control of uterine blood flow in pregnancy. Med. Biol. 52: 219–228, 1974.
 22. Bell, C. Release of endogenous noradrenaline from an isolated elastic artery. J. Physiol. London 236: 473–482, 1974.
 23. Bell, C., and M. Vogt. Release of endogenous noradrenaline from an isolated muscular artery. J. Physiol. London 215: 509–520, 1971.
 24. Bennett, M. R. An electrophysiological analysis of the storage and release of noradrenaline at sympathetic nerve terminals. J. Physiol. London 229: 515–531, 1973.
 25. Bennett, M. R., and J. Middleton. An electrophysiological analysis of the effects of amine‐uptake blockers and α‐adrenoceptor blockers on adrenergic neuromuscular transmission. Brit. J. Pharmacol. 55: 87–95, 1975.
 26. Berkowitz, B. A., and S. Spector. Uptake, storage, and synthesis of catecholamines in blood vessels and its significance in vascular function and drug action. In: Vascular Neuroeffector Mechanisms, edited by J. A. Bevan, G. Burnstock, B. Johansson, R. A. Maxwell, and O. A. Nedergaard. Basel: Karger, 1976, p. 102–111. (Proc. Intern. Symp. Vascular Neuroeffector Mechanisms, 2nd, Odense, July–August, 1975.)
 27. Berkowitz, B. A., S. Spector, and J. H. Tarver. Resistance of noradrenaline in blood vessels to depletion by 6‐hydroxydopamine or immunosympathectomy. Brit. J. Pharmacol. 44: 10–16, 1972.
 28. Berkowitz, B. A., J. H. Tarver, and S. Spector. Norepinephrine in blood vessels: concentration, binding, uptake and depletion. J. Pharmacol. Exptl. Therap. 177: 119–126, 1971.
 29. Berkowitz, B. A., J. H. Tarver, and S. Spector. Control of norepinephrine synthesis in blood vessels and the effects of monoamine oxidase inhibition. J. Pharmacol. Exptl. Therap. 190: 21–29, 1974.
 30. Berkowitz, B. A., T. Trajkov, J. H. Tarver, and S. Spector. Hypertension, antihypertensive drugs, and norepinephrine in blood vessels. In: Frontiers in Catecholamine Research, edited by E. Usdin and S. H. Snyder. New York: Pergamon, 1973, p. 867–873.
 31. Besse, J. C. Potentiation by hydrocortisone and U‐0521 and alpha‐receptor interaction of epinephrine and norepinephrine (Abstract). Federation Proc. 34: 796, 1975.
 32. Bevan, J. A. Atypical alpha‐adrenergic receptors in rabbit cerebral arteries (Abstract). Federation Proc. 36: 956, 1977.
 33. Bevan, J. A. Some functional consequences of variation in adrenergic synaptic cleft width and in nerve density and distribution. Federation Proc. 36: 2439–2443, 1977.
 34. Bevan, J. A., and R. D. Bevan. Response of blood vessels to sympathetic nerve stimulation. Blood Vessels 15: 17–25, 1978.
 35. Bevan, J. A., R. D. Bevan, P. C. Chang, B. L. Pegram, R. E. Purdy, and C. Su. Analysis of changes in reactivity of rabbit arteries and veins two weeks after induction of hypertension by coarctation of the abdominal aorta. Circulation Res. 37: 183–190, 1975.
 36. Bevan, J. A., R. D. Bevan, P. C. Chang, B. L. Pegram, R. E. Purdy, and C. Su. Changes in the contractile response of arteries and veins from hypertensive rabbits to sympathetic nerve activity: assessment of some postsynaptic influences. Blood Vessels 13: 167–180, 1976.
 37. Bevan, J. A., R. D. Bevan, J. V. Osher, and C. Su. Distribution of components of 3H‐noradrenaline uptake in the wall of the rabbit aorta. European J. Pharmacol. 19: 239–245, 1972.
 38. Bevan, J. A., R. D. Bevan, and R. Pascual. Morphological and functional differences between inner and outer tunica media of the rabbit thoracic aorta (Abstract). Federation Proc. 37: 821, 1978.
 39. Bevan, J. A., R. D. Bevan, R. E. Purdy, C. P. Robinson, C. Su, and J. G. Waterson. Comparison of adrenergic mechanisms in an elastic and a muscular artery of the rabbit. Circulation Res. 30: 541–548, 1972.
 40. Bevan, J. A., G. B. Chesher, and C. Su. Release of adrenergic transmitter from terminal nerve plexus in artery. Agents Actions 1: 20–26, 1969.
 41. Bevan, J. A., and S. P. Duckles. Brief communication: evidence for alpha‐receptors on intimal endothelium. Blood Vessels 12: 307–310, 1975.
 42. Bevan, J. A., W. Garstka, C. Su, and M. Su. The bimodal basis of the contractile response of the rabbit ear artery to norepinephrine and other agonists. European J. Pharmacol. 22: 47–53, 1973.
 43. Bevan, J. A., D. W. Hosmer, B. Ljung, B. L. Pegram, and C. Su. Innervation pattern and neurogenic response of rabbit veins. Blood Vessels 11: 172–182, 1974.
 44. Bevan, J. A., D. W. Hosmer, B. Ljung, B. L. Pegram, and C. Su. Norepinephrine uptake, smooth muscle sensitivity, and metabolizing enzyme activity in rabbit veins. Circulation Res. 34: 541–548, 1974.
 45. Bevan, J. A., and B. Ljung. Longitudinal propagation of myogenic activity in rabbit arteries and in the rat portal vein. Acta Physiol. Scand. 90: 703–715, 1974.
 46. Bevan, J. A., and O. A. Nedergaard. Abnormal response of the pulmonary artery of the rabbit after high frequency sympathetic nerve stimulation. Circulation Res. 22: 141–147, 1968.
 47. Bevan, J. A., and J. V. Osher. Relative sensitivity of some large blood vessels of the rabbit to sympathomimetic amines. J. Pharmacol. Exptl. Therap. 150: 370–374, 1965.
 48. Bevan, J. A., and R. E. Purdy. Variations in adrenergic innervation and contractile responses of the rabbit saphenous artery. Circulation Res. 32: 746–751, 1973.
 49. Bevan, J. A., and C. Su. Distribution theory of resistance of neurogenic vasoconstriction to alpha‐receptor blockade in the rabbit. Circulation Res. 28: 179–187, 1971.
 50. Bevan, J. A., and C. Su. Variation of intra‐ and perisynaptic adrenergic transmitter concentrations with width of synaptic cleft in vascular tissue. J. Pharmacol. Exptl. Therap. 190: 30–38, 1974.
 51. Bevan, J. A., and J. Torok. Movement of norepinephrine through the media of rabbit aorta. Circulation Res. 27: 325–331, 1970.
 52. Bevan, J. A., and M. A. Verity. Sympathetic nerve‐free vascular muscle. J. Pharmacol. Exptl. Therap. 157: 117–124, 1967.
 53. Bevan, J. A., and J. G. Waterson. Biphasic constrictor response of the rabbit ear artery. Circulation Res. 28: 655–661, 1971.
 54. Bevan, R. D. Effect of sympathetic denervation on smooth muscle cell proliferation in the growing rabbit ear artery. Circulation Res. 37: 14–19, 1975.
 55. Bevan, R. D. An autoradiographic and pathological study of cellular proliferation in rabbit arteries correlated with an increase in arterial pressures. Blood Vessels 13: 100–128, 1976.
 56. Bevan, R. D., P. Eggena, W. R. Hume, E. Van Marthens, and J. A. Bevan. Transient and persistent changes in the wall of rabbit blood vessels associated with maintained elevation in arterial pressure. Hypertension. 2: 63–72, 1980.
 57. Bevan, R. D., R. E. Purdy, C. Su, and J. A. Bevan. Evidence for an increase in adrenergic nerve function in blood vessels from experimental hypertensive rabbits. Circulation Res. 37: 503–508, 1975.
 58. Bevan, R. D., and H. Tsuru. Long‐term denervation of vascular smooth muscle causes not only functional but structural change. Blood Vessels 16: 109–112, 1979.
 59. Bevan, R. D., and H. Tsuru. The trophic effect of the sympathetic neuron on the artery wall in growing rabbits. In: Catecholamines: Basic and Clinical Frontiers, edited by E. Usdin, I. J. Kopin, and J. Barchas. New York: Pergamon, 1979, vol. 1, p. 465–467.
 60. Birmingham, A. T. Sympathetic denervation of the smooth muscle of the vas deferens. J. Physiol. London 206: 645–661, 1970.
 61. Bjerre, B., A. Bjorklund, W. Mobley, and E. Rosengren. Short‐ and long‐term effects of nerve growth factor on the sympathetic nervous system in the adult mouse. Brain Res. 94: 263–277, 1975.
 62. Bjorklund, A., and U. Stenevi. Growth of central catecholamine neurons into smooth muscle grafts in the rat mesencephalon. Brain Res. 31: 1–20, 1971.
 63. Black, I. B., and S. C. Green. Transynaptic regulation of adrenergic neuron development: inhibition by ganglionic blockade. Brain Res. 63: 291–302, 1973.
 64. Black, I. B., I. A. Hendry, and L. L. Iversen. Transynaptic regulation of growth and development of adrenergic neurons in a mouse sympathetic ganglion. Brain Res. 34: 229–240, 1971.
 65. Black, I. B., and G. Mytilineou. Transympathetic regulation of the development of end organ and organ innervation by sympathetic neurons. Brain Res. 101: 503–521, 1976.
 66. Blaschko, H. Catecholamine biosynthesis. Brit. Med. Bull. 29: 105–109, 1973.
 67. Bohr, D. F. Vascular smooth muscle: dual effect of calcium. Science 139: 597, 1963.
 68. Bohr, D. F. Adrenergic receptors in coronary arteries. Ann. NY Acad. Sci. 139: 799–807, 1967.
 69. Bonaccorsi, A., J. Jespersen, and S. Garattini. The influence of desipramine on the sensitivity and accumulation of noradrenaline in the isolated tail artery of the rat. European J. Pharmacol. 9: 124–127, 1970.
 70. Bonisch, H., and W. Uhlig. Uptake and metabolism of isoprenaline in the isolated perfused heart of the rat and guinea pig (Abstract). Naunyn Schmiedebergs Arch. Pharmacol. 277: (Suppl.) R6, 1973.
 71. Booz, K. H. Zur innervation der autonom pulsierendon Vena portae der weissen Ratte. Eine histochemishe und electronen‐mikroskopishe Untersuchung. Z. Zellforsch. Mikroskop. Anat. 117: 394–418, 1971.
 72. Brandao, F., and S. Guimaraes. Inactivation of endogenous noradrenaline released by electrical stimulation in vitro of dog saphenous vein. Blood Vessels 11: 45–54, 1974.
 73. Brimijoin, S. Retrograde axonal transport of dopamine β‐hydroxylase. In: Frontiers in Catecholamine Research, edited by E. Usdin and S. H. Snyder. New York: Pergamon, 1973, p. 201–203. (Proc. Intern. Catecholamine Symp., 3rd, Strasbourg, France, May, 1973.)
 74. Brown, G. L., and J. S. Gillespie. The output of sympathetic transmitter from the spleen of the cat. J. Physiol. London 138: 81–102, 1957.
 75. Browse, N. L., R. R. Lorenz, and J. T. Shepherd. Response of capacity and resistance vessels of dog's limb to sympathetic nerve stimulation. Am. J. Physiol. 210: 95–102, 1966.
 76. Burkel, W. E. The fine structure of the terminal branches of the hepatic arterial system of the rat. Anat. Record 167: 329–350, 1970.
 77. Burnstock, G. Degeneration and oriented growth of autonomic nerves in relation to smooth muscle in joint tissue cultures and anterior eye chamber transplants. In: Dynamics of Degeneration and Growth in Neurons, edited by K. Fuxe, L. Olson, and Y. Zotterman. Oxford: Pergamon, 1974.
 78. Burnstock, G. Innervation of vascular smooth muscle: histochemistry and electron microscopy. Clin. Exptl. Pharmacol. Physiol. Suppl. 2: 7–20, 1975.
 79. Burnstock, G., and M. Costa. Adrenergic Neurons: Their Organization, Function and Development in the Peripheral Nervous System. New York: Wiley, 1975.
 80. Burnstock, G., B. Gannon, and T. Iwayama. Sympathetic innervation of vascular smooth muscle in normal and hypertensive animals. Circulation Res. 26/27: (Suppl. 2) 5–21, 1970.
 81. Burnstock, G., and M. E. Holman. The transmission of excitation from autonomic nerve to smooth muscle. J. Physiol. London 155: 115–133, 1961.
 82. Burnstock, G., M. W. McCulloch, D. F. Story, and M. E. Wright. Factors affecting the extraneuronal inactivation of noradrenaline in cardiac and smooth muscle. Brit. J. Pharmacol. 46: 243–253, 1972.
 83. Burnstock, G., J. R. McLean, and M. Wright. Noradrenaline uptake by non‐innervated smooth muscle. Brit. J. Pharmacol. 43: 180–189, 1971.
 84. Carslaw, H. S., and J. C. Jaeger. Conduction of Heat in Solids (2nd ed.). New York: Oxford Univ. Press, 1959.
 85. Cech, S., and S. Dolezel. Monoaminergic innervation of the pulmonary vessels in various laboratory animals (rat, rabbit, cat). Experientia 23: 114–115, 1967.
 86. Celander, O., and B. Folkow. The correlation between the stimulation frequency and the dilator response evoked by “antidromic” excitation of the thin afferent fibers in the dorsal roots. Acta Physiol. Scand. 29: 371–376, 1953.
 87. Chamley, J. H., and J. J. Dowell. Specificity of nerve fiber ‘attraction’ to autonomic effector organs in tissue culture. Exptl. Cell Res. 90: 1–7, 1975.
 88. Chamley, J. H., I. Goller, and G. Burnstock. Selective growth of sympathetic nerve fibers to explants of normally densely innervated autonomic effector organs in tissue culture. Develop. Biol. 31: 362–379, 1973.
 89. Chin, A. K., and E. Evonuk. Changes in plasma catecholamine and corticosterone levels after muscular exercise. J. Appl. Physiol. 30: 205–207, 1971.
 90. Cliff, W. J. Blood Vessels. New York: Cambridge Univ. Press, 1976.
 91. Cloutier, G., and N. Weiner. Further studies on the increased synthesis of norepinephrine during nerve stimulation of the guinea pig vas deferens preparation: effect of tyrosine and 6,7‐dimethyltetrahydroptevin. J. Pharmacol. Exptl. Therap. 186: 75–85, 1973.
 92. Coimbra, A., A. Ribeiro‐Silva, and W. Osswald. Fine structural and autoradiographic study of the adrenergic innervation of the dog lateral saphenous vein. Blood Vessels 11: 128–144, 1974.
 93. Crain, S. M., and E. R. Peterson. Development of neuronal connections in culture. Ann. NY Acad. Sci. 228: 6–34, 1974.
 94. Crank, J. The Mathematics of Diffusion. Oxford: Oxford Univ. Press, 1957.
 95. Creveling, C. R., N. Dalgard, H. Shimizu, and J. W. Daly. Catechol‐O‐methyltransferase. 3. M‐ and p‐O‐methylation of catecholamines and their metabolites. Mol. Pharmacol. 6: 691–696, 1970.
 96. Cubeddu, L. X., E. M. Barnes, S. Z. Langer, and N. Weiner. Release of norepinephrine and dopamine β‐hydroxylase by nerve stimulation. I. Role of neuronal and extraneuronal uptake and of alpha‐presynaptic receptors. J. Pharmacol. Exptl. Therap. 190: 431–450, 1974.
 97. Cubeddu, L. X., S. Z. Langer, and N. Weiner. The relationship between alpha‐receptor block inhibition of norepinephrine uptake and the release and metabolism of 3H‐norepinephrine. J. Pharmacol. Exptl. Therap. 188: 368–385, 1974.
 98. Cuche, J. L., O. Kuchel, A. Barbeau, Y. Langlois, R. Boucher, and J. Genest. Autonomic nervous system and benign essential hypertension in man. Circulation Res. 35: 290–297, 1974.
 99. Dahlstrom, A. Aminergic transmission. Introduction and short review. Brain Res. 62: 441–460, 1973.
 100. Dahlstrom, A., J. Haggendal, and T. Hokfelt. The noradrenaline content of the varicosities of sympathetic adrenergic nerve terminals in the rat. Acta Physiol. Scand. 67: 289–294, 1966.
 101. Dairman, W., L. Geffen, and M. Marchelle. Axoplasmic transport of aromatic l‐amino acid decarboxylase (EC 4.1.1.26) and dopamine‐β‐hydroxylase (EC 1.14.2.1) in rat sciatic nerve. J. Neurochem. 20: 1617–1623, 1973.
 102. D'Alecy, L. G., and E. O. Feigl. Sympathetic control of cerebral flow in dogs. Circulation Res. 31: 267–283, 1972.
 103. Dawes, G. S., J. J. Handler, and J. C. Mott. Some cardiovascular responses in fetal, newborn and adult rabbits. J. Physiol. London 139: 123–136, 1957.
 104. De Champlain, J. Hypertension and the sympathetic nervous system. In: Perspectives in Neuropharmacology, edited by S. H. Snyder. New York: Oxford Univ. Press, 1972, p. 215–264.
 105. De Champlain, J. Evaluation of the neurogenic component in human hypertension. In: The Nervous System in Arterial Hypertension, edited by S. Julius and M. D. Esler. Springfield, IL: Thomas, 1976.
 106. De Champlain, J., and M. R. Van Amerigen. Regulation of blood pressure by sympathetic nerve fibers and adrenal medulla in normotensive and hypertensive rats. Circulation Res. 31: 617–628, 1972.
 107. De Champlain, J., L. R. Krakoff, and J. Axelrod. Relationship between sodium intake and norepinephrine storage during the development of experimental hypertension. Circulation Res. 23: 479–491, 1968.
 108. De Champlain, J., L. R. Krakoff, and J. Axelrod. Inter‐relationships of sodium uptake, hypertension, and norepinephrine storage in the rat. Circulation Res. 24: (Suppl. 2) 75, 1969.
 109. De Champlain, J., T. Malmfors, L. Olson, and C. Sachs. Ontogenesis of peripheral adrenergic neurons in the rat: pre‐ and postnatal observations. Acta Physiol. Scand. 80: 276–288, 1970.
 110. De Champlain, J., R. A. Mueller, and J. Axelrod. Turnover and synthesis of norepinephrine in experimental hypertension in rats. Circulation Res. 25: 285–291, 1969.
 111. De la Lande, I. S. Adrenergic mechanisms in the rabbit ear artery. Blood Vessels 12: 137–160, 1975.
 112. De la Lande, I. S., J. S. Harvey, and S. Holt. Response of the rabbit coronary arteries to autonomic agents. Blood Vessels 11: 319–337, 1974.
 113. De la Lande, I. S., R. L. Hodge, M. A. Lazner, L. B. Jellett, and J. G. Waterson. Pharmacological implications of the fate of noradrenaline in the artery wall. Circulation Res. 26/27: (Suppl. 2) 41–48, 1970.
 114. De la Lande, I. S., and L. B. Jellett. Relationship between the roles of monoamine oxidase and sympathetic nerves in the vasoconstrictor response of the rabbit ear artery to norepinephrine. J. Pharmacol. Exptl. Therap. 180: 47–55, 1972.
 115. De la Lande, I. S., L. B. Jellett, M. A. Lazner, D. A. S. Parker, and J. G. Waterson. Histochemical analysis of the diffusion of noradrenaline across the artery wall. Australian J. Exptl. Biol. Med. Sci. 52: 193–200, 1974.
 116. De la Lande, I. S., and S. M. Johnson. Action of deoxycorticosterone acetate (DOCA) on the rabbit ear artery. Proc. Australian Physiol. Pharmacol. Soc. 4: 149–150, 1973.
 117. De Potter, W. P., and I. W. Chubb. The turnover rate of noradrenergic vesicles. Biochem. J. 125: 375–376, 1971.
 118. De Potter, W. P., A. D. Smith, and A. F. De Schaepdryver. Subcellular fractionation of splenic nerve: ATP, chromogranin A and dopamine‐β‐hydroxylase in noradrenergic vesicles. Tissue Cell 2: 529–546, 1970.
 119. DeQuattro, V. L., and N. Alexander. Altered norepinephrine synthesis of splanchnic vessels in neurogenic hypertension. European J. Pharmacol. 26: 231–235, 1974.
 120. DeQuattro, V. L., V. Campese, Y. Miura, and D. Meijer. Increased plasma catecholamines in high renin hypertension. Am. J. Cardiol. 38: 801–804, 1976.
 121. DeQuattro, V. L., and S. Chan. Raised plasma catecholamines in some patients with primary hypertension. Lancet 1: 806–809, 1972.
 122. DeQuattro, V. L., and Y. Miura. Neurogenic factors in human hypertension: mechanism or myth? Am. J. Med. 55: 362–378, 1973.
 123. DeQuattro, V. L., Y. Miura, A. Lurvey, M. Cosgrove, and R. Mendez. Increased plasma catecholamine concentrations and vas deferens norepinephrine biosynthesis in men with elevated blood pressure. Circulation Res. 36: 118–126, 1975.
 124. DeQuattro, V. L., T. Nagatsu, R. Maronde, and N. Alexander. Catecholamine synthesis in rabbits with neurogenic hypertension. Circulation Res. 24: 545–555, 1969.
 125. Devine, C. E., and F. O. Simpson. The fine structure of vascular sympathetic neuromuscular contacts in the rat. Am. J. Anat. 121: 153–174, 1967.
 126. Devine, C. E., and F. O. Simpson. Localization of tritiated norepinephrine in vascular sympathetic axons of the rat intestine and mesentery by electron microscope radioautography. J. Cell Biol. 38: 184–192, 1968.
 127. Devine, C. E., F. O. Simpson, and W. S. Bertrand. Freeze‐etch studies on the innervation of mesenteric arteries and vas deferens. J. Cell Sci. 9: 411–425, 1971.
 128. Dolezel, S. Monoaminergic innervation of aorta. Folia Morphol. 20: 14–20, 1972.
 129. Draskoczy, P. R., and U. Trendelenburg. Intraneuronal and extraneuronal accumulation of sympathomimetic amines in the isolated nictitating membrane of the cat. J. Pharmacol. Exptl. Therap. 174: 290–306, 1970.
 130. Duckles, S. P., and J. A. Bevan. In vitro recording of contractile responses of 100 μm cerebral arteries. Federation Proc. 35: 450, 1976.
 131. Duckles, S. P., and J. A. Bevan. Pharmacological characterization of adrenergic receptors of a rabbit cerebral artery in vitro. J. Pharmacol. Exptl. Therap. 197: 371–378, 1976.
 132. Eckert, E., and M. Henseling. The effect of corticosterone on extraneuronal uptake in, and efflux of 3H(±)‐noradrenaline (NA) from rabbit aortic strips (Abstract). Naunyn Schmiedebergs Arch. Pharmacol. 277: (Suppl.) R14, 1973.
 133. Edvinsson, L., and C. Owman. Pharmacological characterization of adrenergic alpha‐ and beta‐receptors mediating the vasomotor responses of cerebral arteries in vitro. Circulation Res. 35: 835–849, 1974.
 134. Edvinsson, L., C. Owman, E. Rosengren, and K. A. West. Concentration of noradrenaline in pial vessels, choroid plexus and iris during two weeks after sympathetic ganglionectomy or decentralization. Acta Physiol. Scand. 85: 201–206, 1972.
 135. Ehinger, B., B. Falck, and B. Sporrong. Adrenergic fibers to the heart and to peripheral vessels. Bibliotheca Anat. 8: 35–45, 1967.
 136. Emmelin, N., and C. Perec. Reinnervation of submaxillary glands after partial ganglionic denervation. Quart. J. Exptl. Physiol. 53: 10–18, 1968.
 137. Enemar, A., B. Falck, and R. Hakanson. Observations on the appearance of norepinephrine in the sympathetic nervous system of the chick embryo. Develop. Biol. 11: 268–283, 1965.
 138. Enero, M. A., and S. Z. Langer. Influence of reserpine‐induced depletion of noradrenaline on the negative feedback mechanism for transmitter release during nerve stimulation. Brit. J. Pharmacol. 49: 214–225, 1973.
 139. Engelman, K., and B. Portnoy. A sensitive double‐isotope derivative assay for norepinephrine and epinephrine. Circulation Res. 26: 53–57, 1970.
 140. Engelman, K., B. Portnoy, and W. Lovenberg. A sensitive and specific double‐isotope derivative method of the determination of catecholamines in biological specimens. Am. J. Med. Sci. 255: 259–268, 1968.
 141. Engelman, K., B. Portnoy, and A. Sjoerdsma. Catecholamines‐cyclic AMP‐angiotensin receptors. Plasma catecholamine concentrations in patients with hypertension. Circulation Res. 27: (Suppl. 1) 141–146, 1970.
 142. Esler, M., S. Julius, A. Zweifler, O. Randall, E. Harburg, H. Gardiner, and V. L. DeQuattro. Mild high‐renin essential hypertension. Neurogenic human hypertension? New Engl. J. Med. 296: 405–411, 1977.
 143. Esterhuizen, A. C., J. D. P. Graham, J. D. Lever, and T. L. B. Spriggs. Catecholamine and acetylcholinesterase distribution in relation to noradrenaline release. An enzyme histochemical and autoradiographic study on the innervation of the cat nictitating muscle. Brit. J. Pharmacol. 32: 46–56, 1968.
 144. Falck, B. Observations on the possibilities of the cellular localization of monoamines by a fluorescence method. Acta Physiol. Scand. 56: (Suppl. 197) 1–25, 1962.
 145. Falck, B., N. A. Hillarp, G. Thieme, and A. Torp. Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histochem. Cytochem. 10: 348–354, 1962.
 146. Farnebo, L. O., and B. Hamberger. Drug‐induced changes in the release of (3H)‐noradrenaline from field stimulated rat iris. Brit. J. Pharmacol. 43: 97–106, 1971.
 147. Fein, J. M., W. J. Flor, S. L. Cohan, and J. Parkhurst. Sequential changes of vascular ultrastructure in experimental cerebral vasospasm. J. Neurosurg. 41: 49–58, 1974.
 148. Fillenz, M. Innervation of blood vessels of lung and spleen. Bibliotheca Anat. 8: 56–59, 1967.
 149. Fillenz, M. Innervation of pulmonary and bronchial blood vessels of the dog. J. Anat. 106: 449–461, 1970.
 150. Fillenz, M., and R. M. Pollard. Quantitative differences between sympathetic nerve terminals. Brain Res. 109: 443–454, 1976.
 151. Fillenz, M., and D. P. West. Fate of noradrenaline storage vesicles after release. Neurosci. Letters 2: 285–287, 1976.
 152. Finch, L. Cardiovascular reactivity in the experimental hypertensive rat. Brit. J. Pharmacol. 42: 56–65, 1971.
 153. Finch, L., G. Haeusler, H. Kuhn, and H. Thoenen. Rapid recovery of vascular nerves in the rat after chemical sympathectomy with 6‐hydroxydopamine. Brit. J. Pharmacol. 48: 59–72, 1973.
 154. Finch, L., G. Haeusler, and H. Thoenen. A comparison of the effects of chemical sympathectomy by 6‐hydroxydopamine in newborn and adult rats. Brit. J. Pharmacol. 47: 249–260, 1973.
 155. Finch, L., and G. D. L. Leach. A comparison of the effects of 6‐hydroxydopamine immunosympathectomy and reserpine on the cardiovascular reactivity in the rat. J. Pharm. Pharmacol. 22: 354–360, 1970.
 156. Fleisch, J. H. Further studies on the effect of aging on β‐ adrenoceptor activity of rat aorta. Brit. J. Pharmacol. 42: 311–313, 1971.
 157. Fleisch, J. H. Pharmacology of the aorta. Blood Vessels 11: 193–211, 1974.
 158. Fleisch, J. H., H. M. Maling, and B. B. Brodie. Beta‐receptor activity in aorta: variation with age and species. Circulation Res. 26: 151–162, 1970.
 159. Fleming, W. W. Variable sensitivity of excitable cells: possible mechanisms and biological significance. In: Reviews of Neuroscience, edited by S. Ehrenpreis and I. J. Kopin. New York: Raven, 1976, vol. 2, p. 43–90.
 160. Folkow, B. Importance of adrenergic neuronal uptake in termination of action: some aspects. Blood Vessels 13: 253–255, 1976.
 161. Folkow, B., J. Haggendal, and B. Lisander. Extent of release and elimination of noradrenaline at peripheral adrenergic nerve terminals. Acta Physiol. Scand. Suppl. 307: 1–38, 1967.
 162. Folkow, B., and H. D. Halicka. A comparison between “red” and “white” muscle with respect to blood supply. Capillary surface area and oxygen uptake during rest and exercise. Microvascular Res. 1: 1–14, 1968.
 163. Folkow, B., M. Hallback, Y. Lundgren, and L. Weiss. Background of increased flow resistance and vascular reactivity in spontaneously hypertensive rats. Acta Physiol. Scand. 80: 93–106, 1970.
 164. Folkow, B., and E. Neil. Circulation. New York: Oxford Univ. Press, 1971.
 165. Folkow, B., and R. Sivertsson. Aspects of the difference in vascular “reactivity” between cutaneous resistance vessels and A‐V anastomoses. Angiologica 1: 338–345, 1964.
 166. Friedman, J. J. The influence of sympathetic adrenergic nerve stimulation on pre‐ and postcapillary resistance. Microvascular Res. 6: 297–304, 1973.
 167. Furchgott, R. F. The pharmacological differentiation of adrenergic receptors. Ann. NY Acad. Sci. 139: 553–570, 1967.
 168. Furchgott, R. F. The classification of adrenoceptors (adrenergic receptors). An evaluation from the standpoint of receptor theory. In: Handbook of Experimental Pharmacology. Catecholamines, edited by H. Blaschko and E. Muscholl. Berlin: Springer‐Verlag, 1972, vol. 33, 283–335.
 169. Furchgott, R. F. Postsynaptic adrenergic receptor mechanisms in vascular smooth muscle. In: Vascular Neuroeffector Mechanisms, edited by J. A. Bevan, G. Burnstock, B. Johansson, R. A. Maxwell, and O. A. Nedergaard. Basel: Karger, 1976, p. 131–142. (Proc. Intern. Symp. Vascular Neuroeffector Mechanisms, 2nd, Odense, July–August, 1975.)
 170. Furchgott, R. F., and P. Sanchez Garcia. Effects of inhibition of monoamine oxidase on the actions and interactions of norepinephrine, tyramine and other drugs on guinea‐pig left atrium. J. Pharmacol. Exptl. Therap. 163: 98–122, 1968.
 171. Furness, J. B., and G. Burnstock. Role of circulating catecholamines in the gastrointestinal tract. In: Handbook of Physiology. Endocrinology, edited by R. O. Greep and E. B. Astwood. Washington, DC: Am. Physiol. Soc., 1975, sect. 7, vol. VI, chapt. 33, p. 513–536.
 172. Furness, J. B., and J. M. Marshall. Correlation of the directly observed responses of mesenteric vessels of the rat to nerve stimulation and noradrenaline with the distribution of adrenergic nerves. J. Physiol. London 239: 75–88, 1974.
 173. Fuxe, K., and G. Sedvall. The distribution of adrenergic nerve fibers to the blood vessels in skeletal muscle. Acta Physiol. Scand. 64: 75–86, 1965.
 174. Gaetani, S., E. Mengheri, M. A. Spadoni, A. Rossi, and G. Toschi. Effects of litter size on protein, choline acetyltransferase (CAT), and dopamine‐β‐hydroxylase (DBH) of a mouse sympathetic ganglion. Brain Res. 86: 75–84, 1975.
 175. Gauthier, P., R. A. Nadeau, and J. de Champlain. The development of sympathetic innervation and the functional state of the cardiovascular system in newborn dogs. Can. J. Physiol. Pharmacol. 53: 763–776, 1975.
 176. Geffen, L. B., and B. G. Livett. Synaptic vesicles in sympathetic neurons. Physiol. Rev. 51: 98–157, 1971.
 177. Geffen, L. B., A. Rush, W. J. Louis, and A. E. Doyle. Plasma dopamine‐beta‐hydroxylase and noradrenaline amounts in essential hypertension. Clin. Sci. 44: 617–620, 1973.
 178. Gero, J., and M. Gerova. In vivo studies of sympathetic control of vessels of different function. In: Physiology and Pharmacology of Vascular Neuroeffector Systems, edited by J. A. Bevan, R. F. Furchgott, R. A. Maxwell, and A. P. Somlyo. Basel: Karger, 1971, p. 86–94. (Proc. Symp. Physiol. Pharmacol. Vascular Neuroeffector Systems, Interlaken, 1969.)
 179. Gerova, M., J. Gero, S. Dolezel, and I. Blazkova‐Huzulakova. Sympathetic control of canine abdominal aorta. Circulation Res. 23: 149–159, 1973.
 180. Gerova, M., J. Gero, S. Dolezel, and M. Konecny. Postnatal development of sympathetic control in canine femoral artery. Physiol. Bohemoslov. 23: 289–295, 1974.
 181. Gillespie, J. S. The role of receptors in adrenergic uptake. In: Adrenergic Neurotransmission, edited by G. E. W. Wolstenholme. and M. O'Connor. London: Churchill, 1968, p. 61–72. (Ciba Found. Study Group, No. 33.)
 182. Gillespie, J. S., D. N. H. Hamilton, and R. J. A. Hosie. The extraneuronal uptake and localization of noradrenaline in the cat spleen and the effect on this of some drugs, of cold and of denervation. J. Physiol. London 206: 563–590, 1970.
 183. Gillespie, J. S., and T. C. Muir. A method of stimulating the complete sympathetic outflow from the spinal cord to blood vessels in the pithed rat. Brit. J. Pharmacol. 30: 78–87, 1967.
 184. Gillespie, J. S., and R. M. Rae. Constrictor and compliance responses of some arteries to nerve or drug stimulation. J. Physiol. London 223: 109–130, 1972.
 185. Gillis, C. N., and R. H. Roth. Catecholamine biosynthesis in vascular tissue. Experientia 26: 960–961, 1970.
 186. Glick, G., S. E. Epstein, A. S. Wechsler, and E. Braunwald. Physiological differences between the effects of neuronally released and bloodborne norepinephrine on beta‐adrenergic receptors in the arterial bed of the dog. Circulation Res. 21: 217–227, 1967.
 187. Goldenberg, M., K. L. Pines, E. De F. Baldwin, D. G. Greene, and C. E. Roh. The hemodynamic response of man to norepinephrine and epinephrine and its relation to the problem of hypertension. Am. J. Med. 5: 792–806, 1948.
 188. Graefe, K. H., F. S. E. Stefano, and S. Z. Langer. Preferential metabolism of (–)–3H‐norepinephrine through the deaminated glycol in the rat vas deferens. Biochem. Pharmacol. 22: 1147–1160, 1973.
 189. Graham, J. D. P., J. D. Lever, and T. L. B. Spriggs. Adrenergic innervation of the small vessels in the pancreas of the rat and changes observed during early renal hypertension. Circulation Res. 27: (Suppl. 2) 25–32, 1970.
 190. Graham, J. M., and W. R. Keatinge. Differences in sensitivity to vasoconstrictor drugs within the wall of the sheep carotid artery. J. Physiol. London 221: 477–492, 1972.
 191. Greenberg, D. A., D. C. U'Prichard, and S. H. Snyder. Alpha‐noradrenergic receptors binding in mammalian brain: differential labeling of agonist and antagonist states. Life Sci. 19: 69–76, 1976.
 192. Grobecker, H., M. F. Roizen, V. Weise, J. M. Saavedra, and I. J. Kopin. Sympathoadrenal medullary activity in young, spontaneously hypertensive rats. Nature 258: 267–268, 1975.
 193. Guimaraes, S. Further study of the adrenoceptors of the saphenous vein of the dog: influence of factors which interfere with the concentrations of agonists at the receptor level. European J. Pharmacol. 34: 9–19, 1975.
 194. Guimaraes, S., and W. Osswald. Adrenergic receptors in the veins of the dog. European J. Pharmacol. 5: 133–140, 1969.
 195. Guimaraes, S., W. Osswald, W. Cardoso, and D. Branco. The effects of cocaine and denervation on the sensitivity to noradrenaline, its uptake and the termination of its action in isolated venous tissue. Naunyn Schmiedebergs Arch. Pharmakol. 271: 262–273, 1971.
 196. Gutmann, E. Neurotrophic relations. In: Annual Review of Physiology, edited by E. Knobil, I. S. Edelman, and R. R. Sonnenschein. Palo Alto, CA: Ann. Rev., 1976, vol. 38, p. 177–216.
 197. Hadjiminas, J., and B. Oberg. Effects of carotid baroreceptor reflexes on venous tone in skeletal muscle and intestine of the cat. Acta Physiol. Scand. 72: 518–532, 1968.
 198. Haeusler, G. Regulation of blood pressure by the central nervous system. In: The Fourth Hahnemann International Symposium on Hypertension, 4th, Philadelphia, 1975, edited by B. Onesti, M. Fernandez, and K. E. Kim. New York: Grune, 1976, p. 53–64.
 199. Häggendal, J., L. H. Hartley, and B. Saltin. Arterial noradrenaline concentration during exercise in relation to the relative work levels. Scand. J. Clin. Lab. Invest. 26: 337–342, 1970.
 200. Häggendal, J., B. Johansson, J. Jonason, and B. Ljung. Correlation between noradrenaline release and effector response to nerve stimulation in rat portal vein in vitro. Acta Physiol. Scand. Suppl. 349: 17–32, 1970.
 201. Hamilton, F. N., and E. O. Feigl. Coronary vascular sympathetic beta‐receptor innervation. Am. J. Physiol. 230: 1569–1576, 1976.
 202. Hartman, B. K. The innervation of cerebral blood vessels by central noradrenergic neurons. In: Frontiers in Catecholamine Research, edited by E. Usdin and S. H. Snyder. New York: Pergamon, 1973, p. 91–96. (Proc. Intern. Catecholamine Symp. 3rd, Strasbourg, France, May, 1973).
 203. Head, R. J., R. H. Stitzel, and I. S. De la Lande. Changes in adenosine triphosphate, monoamine oxidase, and catechol‐O‐methyl transferase accompanying chronic denervation of the rabbit ear artery. Proc. Australian Physiol. Pharmacol. Soc. 5: 80–81, 1974.
 204. Head, R. J., R. E. Stitzel, I. S. De la Lande, and S. M. Johnson. The effect of chronic denervation on the activities of monoamine oxidase and catechol‐O‐methyl transferase and on the contents of noradrenaline and adenosine triphosphate in the rabbit ear artery. Blood Vessels 14: 229–239, 1977.
 205. Hedqvist, P. Modulating effect of prostaglandin E2 on noradrenaline release from the isolated cat spleen. Acta Physiol. Scand. 75: 511–512, 1969.
 206. Hedqvist, P. Studies on the effect of prostaglandins E1 and E2 on the sympathetic neuromuscular transmission in some animal tissues. Acta Physiol. Scand. Suppl. 345: 1–40, 1970.
 207. Hedqvist, P. Further evidence that prostaglandins inhibit the release of noradrenaline from adrenergic nerve terminals by restriction of availability of calcium. Brit. J. Pharmacol. 58: 599–603, 1976.
 208. Hendry, I. A. Developmental changes in tissue and plasma concentrations of the biologically active species of nerve growth factor in the mouse by using a two site radioimmunoassay. Biochem. J. 128: 1265–1272, 1972.
 209. Hendry, I. A. Transynaptic regulation of tyrosine hydroxylase activity in a developing mouse sympathetic ganglion: effects of nerve growth factor (NGF), antiserum and pempidine. Brain Res. 56: 313–320, 1973.
 210. Hendry, I. A. Control in the development of the vertebrate sympathetic nervous system. In: Reviews of Neuroscience, edited by S. Ehrenpreis and I. J. Kopin. New York: Raven, 1976, vol. 2, p. 149–194.
 211. Hermsmeyer, K. Cellular basis for increased sensitivity of vascular smooth muscle in spontaneously hypertensive rats (SHR). Circulation Res. 38: (Suppl. 2) 53–57, 1976.
 212. Hill, C. E., R. D. Purves, H. Watanabe, and G. Burnstock. Specificity of innervation of iris musculature by sympathetic nerve fibers in tissue culture. Pfluegers Arch. European J. Physiol. 361: 127–134, 1976.
 213. Hirst, G. D. S. Neuromuscular transmission in arterioles of the guinea‐pig submucosa. J. Physiol. London 273: 266–275, 1977.
 214. Hofmann, W. W., and S. Theslef. Studies on the trophic influence of nerve on skeletal muscle. European J. Pharmacol. 20: 256–260, 1972.
 215. Hokfelt, T., and G. Jonsson. Studies on reaction and binding of monoamines after fixation and processing for electron microscopy with potassium permanganate. Histochemie 16: 45–67, 1968.
 216. Horwitz, D., W. Alexander, W. Lovenberg, and H. R. Keiser. Human serum dopamine‐beta‐hydroxylase relationship to hypertension and sympathetic activity. Circulation Res. 32: 594–599, 1973.
 217. Hughes, J. Evaluation of mechanisms controlling the release and inactivation of the adrenergic transmitter in the rabbit portal vein and vas deferens. Brit. J. Pharmacol. 44: 472–491, 1972.
 218. Hughes, J., and R. H. Roth. Variation in noradrenaline output with changes in stimulus frequency and train length: role of different noradrenaline pools. Brit. J. Pharmacol. 51: 373–381, 1974.
 219. Hughes, J., and J. R. Vane. Relaxations of the isolated portal vein of the rabbit induced by nicotine and electrical stimulation. Brit. J. Pharmacol. 39: 476–489, 1970.
 220. Hukovic, S., and E. Muscholl. Die Noradrenalin‐Abgabe aus dem isolierten Kaninchenherzen bei sympathischer Nervenreizung und ihre pharmakologische Beeinflussung. Naunyn‐Schmiedebergs Arch. Exptl. Pathol. Pharmakol. 244: 81–96, 1962.
 221. Hume, W. R. Cholinergic Factors in the Maintenance of Vascular Tone (Ph.D. thesis). Adelaide, Australia: Univ. of Adelaide, 1973.
 222. Hutchison, E. A., C. J. Percival, and I. M. Young. Development of cardiovascular response in the kitten. Quart. J. Exptl. Physiol. 47: 201–210, 1962.
 223. Ichijima, K. Morphological studies on the peripheral small arteries of spontaneously hypertensive rats. Japan. Circulation J. 33: 785–813, 1969.
 224. Ikeda, M. Adrenergic innervation of the ductus arteriosus of the fetal lamb. Experientia 26: 525–526, 1970.
 225. Iversen, L. L. The Uptake and Storage of Noradrenaline in Sympathetic Nerves. London: Cambridge University Press, 1967, p. 169–171.
 226. Jarrott, B. Occurrence and properties of catechol‐O‐methyl transferase in adrenergic neurons. J. Neurochem. 18: 17–27, 1971.
 227. Jarrott, B. Occurrence and properties of monoamine oxidase in adrenergic neurons. J. Neurochem. 18: 7–16, 1971.
 228. Jarrott, B., and L. Geffen. Rapid axoplasmic transport of tyrosine hydroxylase in relation to other cytoplasmic constituents. Proc. Natl. Acad. Sci. US 69: 3440–3442, 1972.
 229. Johansson, B., and D. F. Bohr. Rhythmic activity in smooth muscle from small subcutaneous arteries. Am. J. Physiol. 210: 801–806, 1966.
 230. Johansson, B., S. R. Johansson, B. Ljung, and L. Stage. A receptor kinetic model of a vascular neuroeffector. J. Pharmacol. Exptl. Therap. 180: 636–646, 1972.
 231. Johansson, B., and B. Ljung. Sympathetic control of rhythmically active smooth muscle as studied by a nerve‐muscle preparation of portal vein. Acta Physiol. Scand. 70: 299–311, 1967.
 232. Johnson, D. G., S. D. Silberstein, I. Hanbauer, and I. J. Kopin. The role of nerve growth factor in the ramification of sympathetic nerve fibers into the rat iris in organ culture. J. Neurochem. 19: 2025–2029, 1972.
 233. Jonsson, G. Microfluorimetric studies on the formaldehyde‐induced fluorescence of noradrenaline in adrenergic nerves of rat iris. J. Histochem. Cytochem. 17: 714–723, 1969.
 234. Jonsson, G. Quantitation of fluorescence of biogenic amines. Progr. Histochem. Cytochem. 2: 299–334, 1971.
 235. Julius, S. Neurogenic component in borderline hypertension. In: The Nervous System in Arterial Hypertension, edited by S. Julius and M. D. Esler. Springfield, IL: Thomas, 1976, p. 301–330.
 236. Kalsner, S. Differential activation of the inner and outer muscle cell layers of the rabbit ear artery. European J. Pharmacol. 20: 122–124, 1972.
 237. Kalsner, S. The lack of effect on oxytetracycline on responses to sympathetic nerve stimulation and catecholamines in vascular tissue. Brit. J. Pharmacol. 58: 261–266, 1976.
 238. Kalsner, S. Sensitization of effector responses by modification of agonist disposition mechanisms. Can. J. Physiol. Pharmacol. 54: 117–187, 1976.
 239. Kalsner, S., and M. Nickerson. Disposition of norepinephrine and epinephrine in vascular tissue, determined by the technique of oil immersion. J. Pharmacol. Exptl. Therap. 165: 152–165, 1969.
 240. Kalsner, S., and M. Nickerson. Mechanism of cocaine potentiation of responses to amines. Brit. J. Pharmacol. 35: 428–439, 1969.
 241. Kalsner, S., and M. Nickerson. Effects of a haloalkylamine on responses to and disposition of sympathomimetic amines. Brit. J. Pharmacol. 35: 440–455, 1969.
 242. Keatinge, W. R. Electrical and mechanical response of arteries to stimulation of sympathetic nerves. J. Physiol. London 185: 701–715, 1966.
 243. Keatinge, W. R. Electrophysiology of blood vessels. In: Vascular Neuroeffector Mechanisms, edited by J. A. Bevan, G. Burnstock, B. Johansson, R. A. Maxwell, and O. A. Nedergaard. Basel: Karger, 1976, p. 80–85. (Proc. Intern. Symp. Vascular Neuroeffector Mechanisms, 2nd, Odense, July–August, 1975.)
 244. Keatinge, W. R., and C. Torrie. Action of sympathetic nerves on inner and outer muscle of sheep carotid artery, and effect of pressure on nerve distribution. J. Physiol. London 257: 699–712, 1976.
 245. Kirpekar, S. M., and Y. Misu. Release of noradrenaline by splenic nerve stimulation and its dependence on calcium. J. Physiol. London 188: 219–234, 1967.
 246. Kirpekar, S. M., and N. Puig. Effect of flow‐stop on noradrenaline release from normal spleens and spleens treated with cocaine, phentolamine or phenoxybenzamine. Brit. J. Pharmacol. 43: 359–369, 1971.
 247. Kopin, I. J., S. Kaufman, H. Viveras, D. Jacobowitz, C. R. Lake, M. G. Zeigler, W. Lovenberg, and F. K. Goodwin. In: NIH conference. Dopamine‐β‐hydroxylase. Basic and clinical studies. Ann. Intern. Med. 85: 211–223, 1976.
 248. Kopin, I. J., G. R. Breese, K. R. Krainas, and V. K. Weise. Selective release of newly synthesized norepinephrine from the cat spleen during sympathetic nerve stimulation. J. Pharmacol. Exptl. Therap. 161: 271–278, 1968.
 249. Kopin, I. J., and S. D. Silberstein. Axons sympathetic neurons: transport of enzymes in vivo and properties of axonal sprouts in vitro. Pharmacol. Rev. 24: 245–254, 1972.
 250. Krakoff, L. R., J. de Champlain, and J. Axelrod. Abnormal storage of norepinephrine in experimental hypertension in the rat. Circulation Res. 21: 583–591, 1967.
 251. Kuchel, O., J. L. Cuche, P. Hamet, R. Boucher, A. Barbeau, and J. Genest. Relationship between adrenergic nervous system and renin in labile hyperkinetic hypertension. In: Hypertension 1972, edited by J. Genest and E. Koiw. New York: Springer‐Verlag, 1972, p. 118–125. (Proc. Symp. Clin. Res. Inst. Montreal, 1971.)
 252. Kupferman, A., C. N. Gillis, and R. H. Roth. Influence of sympathetic nerve stimulation on conversion of H3‐tyrosine to H3‐catecholamine and on H3‐norepinephrine disposition in rabbit pulmonary artery. J. Pharmacol. Exptl. Therap. 171: 214–222, 1970.
 253. Kuriyama, H. Electrophysiological observations on the motor innervation of the smooth muscle cells in the guinea‐pig vas deferens. J. Physiol. London 169: 213–228, 1963.
 254. Lais, L. T., R. A. Shaffer, and M. J. Brody. Neurogenic and humoral factors controlling vascular resistance in the spontaneously hypertensive rat. Circulation Res. 35: 764–774, 1974.
 255. Lake, C. R., M. G. Ziegler, M. D. Coleman, and I. J. Kopin. Age‐adjusted plasma norepinephrine levels are similar in normotensive and hypertensive subjects. New Engl. J. Med. 296: 208–209, 1977.
 256. Lamprecht, F., R. Andres, and I. J. Kopin. Serum dopamine‐β‐hydroxylase: constancy of levels in normotensive adults and decreases with development of blood pressure elevation. Life Sci. 17: 749–754, 1975.
 257. Lands, A. M., A. Arnold, F. P. McAuliff, F. L. Luduena, and T. G. Brown. Differentiation of receptor systems activated by sympathomimetic amines. Nature 214: 597–598, 1967.
 258. Lane, B. P., and J. A. G. Rhodin. Cellular interrelationships and electrical activity in two types of smooth muscle. J. Ultrastruct. Res. 10: 470–488, 1964.
 259. Langer, S. Z., E. Adler, M. A. Enero, and F. J. E. Stefano. The role of the alpha‐receptor in regulating noradrenaline overflow by nerve stimulation. Proc. Intern. Congr. Physiol. Sci., 25th, Munchen, 1971, p. 335.
 260. Langer, S. Z., and M. Enero. The potentiation of responses to adrenergic nerve stimulation in the presence of cocaine: its relationship to the metabolic fate of released norepinephrine. J. Pharmacol. Exptl. Therap. 191: 431–443, 1974.
 261. Laverty, R. The mechanisms of action of some antihypertensive drugs. Brit. Med. Bull. 29: 152–157, 1973.
 262. Lee, T. J.‐F. Sympathetic innervation of rabbit basilar artery: neuromuscular relationship (Abstract). Federation Proc. 36: 1036, 1977.
 263. Lee, T. J.‐F., C. Su, and J. A. Bevan. Neurogenic sympathetic vasoconstriction of the rabbit basilar artery. Circulation Res. 39: 120–126, 1976.
 264. Lever, J. D., J. D. P. Graham, G. Irvine, and W. J. Chick. The vesiculated axons in relation to arteriolar smooth muscle in the pancreas. A fine structural and quantitative study. J. Anat. 99: 299–313, 1965.
 265. Levi‐Montalcini, R. The morphological effects of immunosympathectomy. In: Immunosympathectomy, edited by G. Steiner and E. Schonbaum. Amsterdam: Elsevier, 1972, p. 55–79.
 266. Levi‐Montalcini, R., and P. U. Angeletti. The nerve growth factor. Physiol. Rev. 48: 534–569, 1968.
 267. Levin, J. A. The uptake and metabolism of 3H‐l‐ and 3H‐dl‐norepinephrine by intact rabbit aorta and by isolated adventitia and media. J. Pharmacol. Exptl. Therap. 190: 210–226, 1974.
 268. Levin, J. A., and R. F. Furchgott. Interactions between potentiating agents of adrenergic amines in rabbit aortic strips. J. Pharmacol. Exptl. Therap. 172: 320–333, 1970.
 269. Levitzki, A., N. Sevilia, D. Atlas, and M. L. Steer. Ligand specificity and characteristics of the beta‐adrenergic receptor in turkey erythrocyte plasma membranes. J. Mol. Biol. 97: 35–46, 1975.
 270. Levy, B. Practolol blockade of cardiac but not vascular or uterine beta‐adrenergic receptors in the anesthetized cat. Arch. Intern. Pharmacodyn. Therap. 204: 143–146, 1973.
 271. Levy, B., and B. E. Wilkenfeld. An analysis of selective beta‐receptor blockade. European J. Pharmacol. 5: 227–234, 1969.
 272. Lindvall, O., and A. Bjorklund. The glyoxylic acid fluorescence histochemical method: a detailed account of the methodology for the visualization of central catecholamine neurons. Histochemistry 39: 97–127, 1974.
 273. Livett, B. G., L. B. Geffen, and L. Austin. Proximo‐distal transport of 14C noradrenaline and protein in sympathetic nerves. J. Neurochem. 15: 931–939, 1968.
 274. Ljung, B. Local transmitter concentration in vascular smooth muscle during vasoconstrictor activity. Acta Physiol. Scand. 77: 212–223, 1969.
 275. Ljung, B. Nervous and myogenic mechanisms in the control of a vascular neuroeffector system. Acta Physiol. Scand. Suppl. 349: 33–68, 1970.
 276. Ljung, B. Physiological patterns of neuroeffector control mechanisms. In: Vascular Neuroeffector Mechanisms, edited by J. A. Bevan, G. Burnstock, B. Johansson, R. A. Maxwell, and O. A. Nedergaard. Basel: Karger, 1976, p. 143–155. (Proc. Intern. Symp. Vascular Neuroeffector Mechanisms, 2nd, Odense, July–August, 1975.)
 277. Ljung, B., J. A. Bevan, B. L. Pegram, R. E. Purdy, and M. Su. Vasomotor nerve control of isolated arteries and veins. Acta Physiol. Scand. 94: 506–516, 1975.
 278. Ljung, B., J. A. Bevan, and C. Su. Evidence for uneven alpha‐receptor distribution in the rat portal vein. Circulation Res. 32: 556–563, 1973.
 279. Ljung, B., D. Stage, and C. Carlsson. Postnatal ontogenetic development of neurogenic and myogenic control in the rat portal vein. Acta Physiol. Scand. 94: 112–127, 1975.
 280. Louis, W. J. Turnover of catecholamines in experimental hypertension. Circulation Res 27: (Suppl. 2) 49–53, 1970.
 281. Louis, W. J., A. E. Doyle, and S. Anavekar. Plasma norepinephrine levels in essential hypertension. New Engl. J. Med. 288: 599–601, 1973.
 282. Louis, W. J., S. Spector, R. Tabei, and A. Sjoerdsma. Synthesis and turnover of norepinephrine in the heart of the spontaneously hypertensive rat. Circulation Res. 24: 85–91, 1969.
 283. Luco, C. F., and J. V. Luco. Sympathetic effects on fibrillary activity of denervated striated muscles. J. Neurophysiol. 34: 1066–1071, 1971.
 284. Majno, G., S. M. Shea, and M. Leventhal. Endothelial contraction induced by histamine‐type mediators. J. Cell Biol. 42: 647–672, 1969.
 285. Malik, K. U., and E. Muscholl. Effect of sympathomimetic amines on the response of the perfused mesenteric artery preparation to adrenergic nerve stimulation. Arzneimittel‐Forsch. 19: 1574–1579, 1969.
 286. Maling, H. M., J. H. Fleisch, and W. F. Saul. Species differences in aortic responses to vasoactive amines: the effects of compound 48/80, cocaine, reserpine, and 6‐hydroxydopamine. J. Pharmacol. Exptl. Therap. 176: 672–683, 1971.
 287. Malmfors, T., J. B. Furness, G. R. Campbell, and G. Burnstock. Reinnervation of smooth muscle of the vas deferens transplanted into the anterior chamber of the eye. J. Neurobiol. 2: 193–207, 1971.
 288. Malmfors, T., and H. Thoenen. Six‐Hydroxydopamine and Catecholamine Neurons. Amsterdam: North Holland, 1971.
 289. Mark, G. E., J. H. Chamley, and G. Burnstock. Interactions between autonomic nerves and smooth and cardiac muscle cells in tissue culture. Develop. Biol. 32: 194–200, 1973.
 290. Mathias, C. J., N. J. Christensen, J. L. Corbett, H. L. Frankel, and J. M. K. Spalding. Plasma catecholamines during paroxysmal neurogenic hypertension in quadriplegic man. Circulation Res. 39: 204–208, 1976.
 291. Maxwell, R. A., and S. B. Eckhardt. The case for a postjunctional action of several inhibitors of norepinephrine uptake. In: Pharmacology and the Future of Man, edited by G. H. Acheson. Basel: Karger, 1973, vol. 4, p. 418–432. (Proc. Intern. Congr. Pharmacol. 5th, San Francisco, 1972.)
 292. Maxwell, R. A., S. B. Eckhardt, and W. B. Wastila. Concerning the distribution of endogenous norepinephrine in the adventitial and media‐intimal layers of the rabbit aorta and the capacity of these layers to bind tritiated norepinephrine. J. Pharmacol. Exptl. Therap. 161: 34–39, 1968.
 293. Maxwell, R. A., R. M. Ferris, and J. E. Burcsu. Structural requirements for inhibition of noradrenaline uptake by phenethylamine derivatives, desipramine, cocaine, and other compounds. In: The Mechanism of Neuronal and Extraneuronal Transport of Catecholamines, edited by D. M. Paton. New York: Raven, 1976, p. 95–153.
 294. Maxwell, R. A., R. M. Ferris, J. Burcsu, E. C. Woodward, D. Tang, and K. Williard. The phenyl rings of tricyclic antidepressants and related compounds as determinants of the potency of inhibition of the amine pumps in adrenergic neurons of the rabbit aorta and in rat cortical synaptosomes. J. Pharmacol. Exptl. Therap. 191: 418–430, 1974.
 295. Mayer, H. E., F. M. Abboud, D. R. Ballard, and J. W. Eckstein. Catecholamines in arteries and veins of the foreleg of the dog. Circulation Res. 23: 653–661, 1968.
 296. McCulloch, M. W., J. A. Bevan, and C. Su. Effects of phenoxybenzamine and norepinephrine on transmitter release in the pulmonary artery of the rabbit. Blood Vessels 12: 122–133, 1975.
 297. McGregor, D. D. The effect of sympathetic nerve stimulation on the vasoconstrictor responses in perfused mesenteric blood vessels of the rat. J. Physiol. London 177: 21–30, 1965.
 298. Mekata, F., and W. R. Keatinge. Electrical behaviour of inner and outer smooth muscle of sheep carotid artery. Nature 258: 534–535, 1975.
 299. Mendez, J., L. C. Arana, and J. V. Luco. Antifibrillary effect of adrenergic fibers on denervated striated muscles. J. Neurophysiol. 33: 882–890, 1970.
 300. Mendlowitz, M., R. L. Wolf, and S. E. Gitlow. Catecholamine metabolism in essential hypertension. Am. Heart J. 79: 401–407, 1970.
 301. Mellander, S. Comparative studies on the adrenergic neurohormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol. Scand. 50: (Suppl. 176) 1–86, 1960.
 302. Mellander, S., and B. Johansson. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol. Rev. 20: 117–196, 1968.
 303. Merrillees, N. C. R. The nervous environment of individual smooth muscle cells of the guinea‐pig vas deferens. J. Cell Biol. 37: 794–817, 1968.
 304. Miledi, R. An influence of nerve not mediated by impulse. In: The Effect of Use and Disuse on Neuromuscular Functions, edited by E. Gutmann and P. Hnik. Amsterdam: Elsevier, 1963, p. 35–40.
 305. Miranda, P. M. S., and B. Gomez. Greater effectiveness of phenoxybenzamine in blocking vasoconstrictor responses to central sympathetic stimulation than to norepinephrine administration in the cat. J. Pharmacol. Exptl. Therap. 175: 600–608, 1970.
 306. Molinoff, P. B., and J. Axelrod. Biochemistry of catecholamines. In: Annual Review of Biochemistry, edited by E. E. Snell, P. D. Boyer, A. Meister, and R. L. Sinsheimer. Palo Alto, CA: Ann. Rev., 1971, vol. 40, p. 465–500.
 307. Moran, N. C. Adrenergic receptors. In: Handbook of Physiology. Endocrinology, edited by R. O. Greep and E. B. Astwood. Washington, DC. Am. Physiol. Soc., 1975, vol. VI, chapt. 29, p. 447–472.
 308. Morhri, K., N. Ohgushi, M. Ikeda, K. Yamamoto, and T. Tsunekawa. Histochemical demonstration of adrenergic fibers in the smooth muscle layer of media of arteries supplying abdominal organs. Arch. Japan. Chir. 38: 236–248, 1969.
 309. Mueller, R. A., P. Willard, and J. Axelrod. Alterations in norepinephrine storage in inbred rats made hypertensive by triiodothyronine and sodium chloride. Pharmacology 5: 153–164, 1971.
 310. Mukherjee, C., M. G. Caron, M. Coverstone, and R. J. Lefkowitz. Identification of adenylate cyclase‐coupled beta‐adrenergic receptors in frog erythrocytes with (–) – [3‐H] alprenolol. J. Biol. Chem. 250: 4869–4876, 1975.
 311. Nagatsu, T., K. Ikuta, Y. Numata (Sudo), T. Kato, and M. Sano. Vascular and brain dopamine beta‐hydroxylase activity in young spontaneously hypertensive rats. Science 191: 290–291, 1976.
 312. Nagatsu, T., T. Kato, Y. Numata, and K. Ikuta. Serum dopamine beta‐hydroxylase activity in developing hypertensive rats. Nature 251: 630–631, 1974.
 313. Nagatsu, T., B. G. Levitt, and S. Undenfriend. Tyrosine hydroxylase: the initial step in norepinephrine biosynthesis. J. Biol. Chem. 238: 2910–2917, 1964.
 314. Nedergaard, O. A., and J. A. Bevan. Neuronal and extraneuronal uptake of adrenergic transmitter in the blood vessel. In: Physiology and Pharmacology of Vascular Neuroeffector Systems, edited by J. A. Bevan, R. F. Furchgott, R. A. Maxwell, and A. P. Somlyo. Basel: Karger, 1971, p. 22–34. (Proc. Symp. Physiol. Pharmacol. Vascular Neuroeffector Systems, Interlaken, 1969.)
 315. Nedergaard, O. A., and J. Schrold. Release of 3H‐noradrenaline from incubated and superfused rabbit pulmonary artery. Acta Physiol. Scand. 89: 296–305, 1973.
 316. Nelson, D. L., and P. B. Molinoff. Distribution and properties of adrenergic storage vesicles in nerve terminals. J. Pharmacol. Exptl. Therap. 196: 346–359, 1976.
 317. Nelson, E., and M. Rennels. Neuromuscular contacts in intracranial arteries of the cat. Science 167: 301–302, 1970.
 318. Nickerson, M. Pharmacology of adrenergic blockade. Pharmacol. Rev. 1: 27–101, 1949.
 319. Nickerson, M. Adrenergic receptors. Circulation Res. 32: (Suppl. 1) 53–60, 1973.
 320. Oberg, B. Effects of cardiovascular reflexes on net capillary fluid transfer. Acta Physiol. Scand. 62: (Suppl. 229) 1–98, 1964.
 321. Olson, L., and T. Malmfors. Growth characteristics of adrenergic nerves in the adult rat. Fluorescence histochemical and 3H‐noradrenaline uptake studies using tissue transplantations to the anterior chamber of the eye. Acta Physiol. Scand. Suppl. 348: 1–112, 1970.
 322. Osswald, W. Transmitter disposition mechanisms. In: Vascular Neuroeffector Mechanisms, edited by J. A. Bevan, G. Burnstock, B. Johansson, R. A. Maxwell, and O. A. Nedergaard. Basel: Karger, 1976, p. 123–130. (Proc. Intern. Symp. Vascular Neuroeffector Mechanisms, 2nd, Odense, July–August, 1975.)
 323. Osswald, W., S. Guimaraes, and A. Coimbra. The termination of action of catecholamines in the isolated venous tissue of the dog. Naunyn Schmiedebergs Arch. Pharmakol. 269: 15–31, 1971.
 324. Otten, U., U. Paravicini, F. Oesch, and H. Thoenen. Time requirement for the single steps of transynaptic induction of tyrosine hydroxylase in the peripheral sympathetic nervous system. Naunyn Schmiedebergs Arch. Pharmacol. 280: 117–127, 1973.
 325. Owman, C. Sympathetic nerves probably storing two types of monoamines in the rat pineal gland. Intern. J. Neuropharmacol. 3: 105–112, 1964.
 326. Owman, C., L. Edvinsson, and K. C. Nielsen. Autonomic neuroreceptor mechanisms in brain vessels. Blood Vessels 11: 2–31, 1974.
 327. Owman, C., N. Sjoberg, and G. Swedin. Histochemical and chemical studies of pre‐ and postnatal development of the different systems of ‘short’ and ‘long’ adrenergic neurons in the peripheral organs of the rat. Z. Zellforsch. Mikroskop. Anat. 116: 319–341, 1971.
 328. Ozaki, M. Metabolism of monoamines in spontaneously hypertensive rat. Japan. J. Pharmacol. 16: 257–263, 1966.
 329. Passon, P. G., and J. D. Peuler. A simplified radiometric assay for plasma norepinephrine and epinephrine. Anal. Biochem. 51: 618–631, 1973.
 330. Paton, D. M. Characteristics of uptake of noradrenaline by adrenergic neurons. In: The Mechanism of Neuronal and Extraneuronal Transport of Catecholamines, edited by D. M. Paton. New York: Raven, 1976, p. 49–66.
 331. Pegram, B. L., R. D. Bevan, and J. A. Bevan. Facial vein of the rabbit: neurogenic vasodilation mediated by β‐adrenergic receptors. Circulation Res. 39: 854–860, 1976.
 332. Pellegrino de Iraldi, A., and A. M. Saburo. Two compartments in the granulated vesicles of the pineal nerves. In: The Pineal Gland, edited by G. E. W. Wolstenholme. and J. Knight. London: Churchill, 1971, p. 177–195. (Ciba Found. Symp.)
 333. Powis, G. Binding of catecholamines to connective tissue and the effect upon the responses of blood vessels to noradrenaline and to nerve stimulation. J. Physiol. London. 234: 145–162, 1973.
 334. Rand, M. J., D. F. Story, G. S. Allen, A. B. Glover, and M. W. McCulloch. Pulse‐to‐pulse modulation of noradrenaline release through a prejunctional α‐receptor autoinhibitory mechanism. In: Frontiers in Catecholamine Research, edited by E. Usdin and S. H. Snyder. New York: Pergamon, 1973, p. 579–581.
 335. Reid, J. L., J. A. Zivin, and I. J. Kopin. Central and peripheral adrenergic mechanisms in the development of deoxycorticosterone‐saline hypertension in rats. Circulation Res. 37: 569–579, 1975.
 336. Rhodin, J. A. G. The ultrastructure of mammalian arterioles and precapillary sphincters. J. Ultrastruct. Res. 18: 181–223, 1967.
 337. Robertson, J. A.Jr., and P. A. Khairallah. Arterial endothelial permeability and vascular disease. Exptl. Mol. Pathol. 18: 241–260, 1973.
 338. Roizen, M. F., V. K. Weise, H. Grobecker, and I. J. Kopin. Plasma catecholamines and dopamine‐β‐hydroxylase activity in spontaneously hypertensive rats. Life Sci. 17: 283–288, 1975.
 339. Rosell, S., and E. Belfrage. Adrenergic receptors in adipose tissue and their relation to adrenergic innervation. Nature 253: 738–739, 1975.
 340. Ross, G. The regional circulation. In: Annual Review of Physiology, edited by V. E. Hall, A. Giese, and R. R. Sonnenschein. Palo Alto, CA: Ann. Rev., 1971, vol. 33, p. 445–478.
 341. Ross, G. Adrenergic responses of the coronary vessels. Circulation Res. 39: 461–465, 1976.
 342. Rubin, R. P. The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol. Rev. 22: 389–428, 1970.
 343. Rutledge, C. O., and N. Weiner. The effect of reserpine upon the synthesis of norepinephrine in the isolated rabbit heart. J. Pharmacol. Exptl. Therap. 157: 290–302, 1967.
 344. Sachs, C., J. de Champlain, T. Malmfors, and L. Olson. The postnatal development of noreadrenaline uptake in the different tissues from the rat. European J. Pharmacol. 9: 67–79, 1970.
 345. Schanberg, S. M., R. A. Stone, N. Kirschner, J. C. Gunnells, and R. R. Robinson. Plasma dopamine‐beta‐hydroxylase: possible aid in the study and evaluation of hypertension. Science 183: 523–525, 1974.
 346. Schiebler, T. M., and R. Heene. Nachweis von Katecholaminen in Rattenherzen wahrend der Entwicklung. Histochemie 14: 328–334, 1968.
 347. Sever, P. S., B. Oskiowska, M. Birch, and R. D. G. Turnbridge. Plasma‐noradrenaline in essential hypertension. Lancet 1: 1078–1081, 1977.
 348. Shepherd, J. T., and P. M. Vanhoutte. Veins and Their Control. London: Saunders, 1975.
 349. Sheys, E. M., and R. D. Green. A quantitative study of alpha‐adrenergic receptors in the spleen and aorta of the rabbit. J. Pharmacol. Exptl. Therap. 180: 317–325, 1972.
 350. Shibata, S., K. Hattori, I. Sakurai, J. Mori, and M. Fujiwara. Adrenergic innervation and cocaine‐induced potentiation of adrenergic responses of aortic strips from young and old rabbits. J. Pharmacol. Exptl. Therap. 177: 621–632, 1971.
 351. Silberstein, S. D., D. G. Johnson, D. M. Jacobowitz, and I. J. Kopin. Sympathetic reinnervation of the rat iris in organ culture. Proc. Natl. Acad. Sci. US 68: 1121–1124, 1971.
 352. Sitrin, M. D., and D. F. Bohr. Ca and Na interaction in vascular smooth muscle contraction. Am. J. Physiol. 220: 1124–1128, 1971.
 353. Sivertsson, R. Hemodynamic importance of structural changes in essential hypertension. Acta Physiol. Scand. Suppl. 343: 1–56, 1970.
 354. Sjostrand, N. O. A note of the dual effect of prostaglandin E1 on the responses of the guinea‐pig vas deferens to nerve stimulation. Experientia 28: 431–432, 1972.
 355. Smith, A. D. Subcellular localization of noradrenaline in sympathetic neurons. Pharmacol. Rev. 24: 435–457, 1972.
 356. Smith, A. D. Mechanisms involved in the release of noradrenaline from sympathetic nerves. Brit. Med. Bull. 29: 123–129, 1973.
 357. Smith, A. D., W. P. De Potter, E. J. Moerman, and A. F. De Schaepdryver. Release of dopamine‐β‐hydroxylase and chromogranin A upon stimulation of the splenic nerve. Tissue Cell 2: 547–568, 1970.
 358. Smith, A. D., and H. Winkler. Fundamental mechanisms in the release of catecholamines. In: Handbook of Experimental Pharmacology. Catecholamines, edited by H. Blaschko and E. Muscholl. Berlin: Springer‐Verlag, 1972, vol. 33, p. 538–617.
 359. Somlyo, A. P., and A. V. Somlyo. Vascular Smooth Muscle. I. Normal structure, pathology, biochemistry, and biophysics. Pharmacol. Rev. 20: 197–272, 1968.
 360. Somlyo, A. P., and A. V. Somlyo. Vascular smooth muscle. II. Pharmacology of normal and hypotensive vessels. Pharmacol. Rev. 22: 249–353, 1970.
 361. Spector, S., J. Tarver, and B. Berkowitz. Effects of drugs and physiological factors in the disposition of catecholamines in blood vessels. Pharmacol. Rev. 24: 191–202, 1972.
 362. Starke, K. Influence of α‐receptor stimulants on noradrenaline release. Naturwissenschaften 58: 420, 1971.
 363. Starke, K. Alpha sympathomimetic inhibition of adrenergic and cholinergic transmission in the rabbit heart. Naunyn Schmiedebergs Arch. Pharmacol. 274: 18–45, 1972.
 364. Starke, K., E. Borowski, and T. Endo. Preferential blockade of presynaptic α‐adrenoceptors by yohimbine. European J. Pharmacol. 34: 385–388, 1975.
 365. Starke, K., and T. Endo. Presynaptic α‐adrenoceptors. Gen. Pharmacol. 7: 307–312, 1976.
 366. Starke, K., T. Endo, and H. D. Taube. Relative pre‐ and postsynaptic potencies of α‐adrenoceptor agonists in the rabbit pulmonary artery. Naunyn Schmiedebergs Arch. Pharmacol. 291: 55–78, 1975.
 367. Starke, K., and H. Montel. Influence of drugs with affinity for α‐adrenoceptors on noradrenaline release by potassium, tyramine and dimethylphenylpiperazinium. European J. Pharmacol. 27: 273–280, 1974.
 368. Steinsland, O. S., R. F. Furchgott, and S. M. Kirpekar. Biphasic vasoconstriction of the rabbit ear artery. Circulation Res. 32: 49–58, 1973.
 369. Stjarne, L. Michaelis‐Menten kinetics of secretion of sympathetic neurotransmitter as a function of external calcium: effect of graded alpha‐adrenoceptor blockade. Naunyn Schmiedebergs Arch. Pharmacol. 278: 323–327, 1973.
 370. Stjarne, L. Basic mechanisms and local feedback control of secretion of adrenergic and cholinergic neurotransmitters. In: Handbook of Psychopharmacology, edited by L. L. Iverson, S. D. Iverson, and S. H. Snyder. New York: Plenum, 1976, vol. 6, p. 179–233.
 371. Stjarne, L., and J. Brundin. Additive stimulating effects of inhibitor of prostaglandin synthesis and of β‐adrenoceptor agonist on sympathetic neuroeffector function in human omental blood vessels. Acta Physiol. Scand. 97: 267–269, 1976.
 372. Strecker, R. B., W. C. Hubbard, and A. M. Michelakis. Dissociation constant of the norepinephrine‐receptor complex in normotensive and hypertensive rats. Circulation Res. 37: 658–663, 1975.
 373. Su, C., and J. A. Bevan. The release of H3‐norepinephrine in arterial strips studied by the technique of superfusion and transmural stimulation. J. Pharmacol. 172: 62–68, 1970.
 374. Su, C., and J. A. Bevan. Adrenergic transmitter release and distribution in blood vessels. In: Physiology and Pharmacology of Vascular Neuroeffector Systems, edited by J. A. Bevan, R. F. Furchgott, R. A. Maxwell, and A. P. Somlyo. Basel: Karger, 1971, p. 13–21. (Proc. Symp. Physiol. Pharmacol. Vascular Neuroeffector Systems, Interlaken, 1969.)
 375. Su, C., J. A. Bevan, N. S. Assali, and C. R. Brinkman III Development of neuroeffector mechanisms in the carotid artery of the fetal lamb. Blood Vessels 14: 12–24, 1977.
 376. Su, C., R. D. Bevan, S. P. Duckles, and J. A. Bevan. Functional studies of the small pulmonary arteries. Microvascular Res. 15: 37–44, 1978.
 377. Su, C., S. P. Duckles, and V. M. Florence. Uptake of 3H‐norepinephrine in rabbit mesenteric blood vessels. Blood Vessels 14: 65–76, 1977.
 378. Takimoto, G. S. Neuronal Processing of Norepinephrine at the Adrenergic Junction and the Effects of Adrenergic Agents (Ph.D. thesis). Los Angeles: Univ. of California, 1977.
 379. Takimoto, G. S., A. K. Cho, and J. A. Bevan. Neuronal accumulation and metabolism of 3H‐l‐norepinephrine in rat portal vein: evidence in relation to possible uneven alpha receptor distribution. Experientia 33: 370–372, 1977.
 380. Takimoto, G. S., A. K. Cho, and J. C. Shaeffer. Inhibition of norepinephrine accumulation by amphetamine derivatives. Studies with rat brain and rabbit aorta. J. Pharmacol. Exptl. Therap. 202: 267–277, 1977.
 381. Tarver, J., B. Berkowitz, and S. Spector. Alterations in tyrosine hydroxylase and monoamine oxidase activity in blood vessels. Nature New Biol. 231: 252–253, 1971.
 382. Thoenen, H. Comparison between the effects of neuronal activity and nerve growth factor on the enzymes involved in the synthesis of norepinephrine. Pharmacol. Rev. 24: 255–267, 1972.
 383. Thoenen, H. In: Handbook of Psychopharmacology, edited by L. L. Iversen, S. D. Iversen, and S. H. Snyder. New York: Plenum, 1975, p. 443–475.
 384. Thoenen, H., I. A. Hendry, K. Stockel, U. Paravicini, and F. Oesch. Regulation of enzyme synthesis by neuronal activity and by nerve growth factor. In: Dynamics of Degeneration and Growth in Neurons, edited by K. Fuxe, L. Olson, and Y. Zotterman. Oxford: Pergamon, 1974, p. 315–328.
 385. Thoenen, H. A., A. Hürlimann, and W. Haefely. Wirkungen von Phenoxybenzamin, Phentolamin und Azapetin auf adrenergische Synapsen der Katzenmilz. Blockierung der alpha‐adrenergischen Rezeptoren und Hemmung der Wiederaufnahme von neural freigesetztem Noradrenalin. Helv. Physiol. Pharmacol. Acta 22: 148–161, 1964.
 386. Thoenen, H., R. A. Mueller, and J. Axelrod. Phase difference in the induction of tyrosine hydroxylase in the cell body and nerve terminals of sympathetic neurons. Proc. Natl. Acad. Sci. US 65: 58–62, 1970.
 387. Thoenen, H., and K. Stöckel. Ortho‐ and retrograde axonal transport: importance for the function of adrenergic neurones. Clin. Exptl. Pharmacol. Physiol. Suppl. 2: 1–5, 1975.
 388. Thoenen, H., and J. P. Tranzer. Chemical sympathectomy by selective destruction of adrenergic nerve endings with 6‐hydroxydopamine. Naunyn‐Schmiedebergs Arch. Pharmakol. Exptl. Pathol. 261: 271–288, 1968.
 389. Thureson‐Klein, A., L. Stjarne, and J. Brundin. Effects of field stimulation on nerve terminals in human blood vessels. In: Ann. Proc. Electron Microscopy Soc. Am., 34th, Miami Beach, Florida, 1976, edited by G. W. Bailey.
 390. Thureson‐Klein, A., L. Stjarne, and J. Brundin. Ultrastructure of the nerves in veins from human omentum. Neuroscience 1: 333–337, 1976.
 391. Tipton, K. F. The purification of pig brain mitochondrial monoamine oxidase. European J. Biochem. 4: 103–107, 1968.
 392. Toda, N. Influence of cocaine and desipramine on the contractile response of isolated rabbit pulmonary arteries and aortae to transmural stimulation. J. Pharmacol. Exptl. Therap. 179: 198–206, 1971.
 393. Toda, N., and Y. Fujita. Responsiveness of isolated cerebral and peripheral arteries to serotonin, norepinephrine and transmural electrical stimulation. Circulation Res. 33: 98–104, 1973.
 394. Torok, J., and J. A. Bevan. Entry of 3H‐norepinephrine into the arterial wall. J. Pharmacol. Exptl. Therap. 177: 613–620, 1971.
 395. Trajkov, T., B. A. Berkowitz, and S. Spector. Catechol‐O‐methyltransferase and dopamine‐β‐hydroxylase activity in the blood vessels of hypertensive rats. Blood Vessels 11: 101–109, 1974.
 396. Tranzer, J. P., and H. Thoenen. Electronmicroscopic localization of 5‐hydroxydopamine (3,4,5‐trihydroxy‐phenylethylamine), a new “false” sympathetic transmitter. Experientia 23: 743–745, 1967.
 397. Traystman, R. J., and C. E. Rapela. Effect of sympathetic nerve stimulation on cerebral and cephalic blood flow in dogs. Circulation Res. 36: 620–630, 1975.
 398. Trendelenburg, U. Supersensitivity of the isolated nictitating membrane of the cat to sympathomimetic amines after impairment of the intraneuronal mechanisms of inactivation. Naunyn Schmiedebergs Arch. Pharmakol. 271: 29–58, 1971.
 399. Trendelenburg, U. Cocaine: pre‐ and postjunctional effects. In: Pharmacology and the Future of Man. Basel: Karger, 1973, vol. 4, p. 410–417. (Proc. Intern. Congr. Pharmacol., 5th, San Francisco, 1972.)
 400. Trendelenburg, U. The relaxation of rabbit aortic strips after a preceding exposure to sympathomimetic amines. Naunyn Schmiedebergs Arch. Pharmacol. 281: 13–46, 1974.
 401. Tsunekawa, K., K. Morhri, M. Ikeda, N. Ohgushi, and M. Fujiwara. Histochemical demonstration of adrenergic fibers in the smooth muscle layer of media of dorsal pedal artery in dog. Experientia 23: 842–843, 1967.
 402. Urquilla, P. R., E. J. Marco, and S. Duck. Pharmacological receptors of the cerebral arteries of the goat. Blood Vessels 12: 53–67, 1975.
 403. Urquilla, P. R., R. E. Stitzel, and W. W. Fleming. The antagonism of phentolamine against exogenously administered and endogenously released norepinephrine in rabbit aortic strips. J. Pharmacol. Exptl. Therap. 172: 310–319, 1970.
 404. Vanhoutte, P. M., R. R. Lorenz, and G. M. Tyce. Inhibition of norepinephrine‐3H release from sympathetic nerve endings in veins by acetylcholine. J. Pharmacol. Exptl. Therap. 185: 386–394, 1973.
 405. Vanhoutte, P. M., and J. T. Shepherd. Effect of temperature on reactivity of isolated cutaneous veins of the dog. Am. J. Physiol. 218: 187–190, 1970.
 406. Van Orden, L. S. III Localization of biogenic amines by fluorescence microscopy. In: Methods in Pharmacology Smooth Muscle, edited by E. E. Daniel and D. M. Paton. New York: Plenum, 1975, vol. 3, p. 81–98.
 407. Van Orden, L. S. III, K. G. Bensch, and N. J. Giarman. Histochemical and functional relationships of catecholamines in adrenergic nerve endings. II. Extravesicular norepinephrine. J. Pharmacol. Exptl. Therap. 155: 428–439, 1967.
 408. Venter, J. C., V. Buonassisi, S. Bevan, S. Heinemann, and J. A. Bevan. Hormone and neurotransmitter receptors on the intimal endothelium (Abstract). Blood Vessels 12: 381–382, 1975.
 409. Verity, M. A. Morphologic studies of the vascular neuroeffector apparatus. In: Physiology and Pharmacology of Vascular Neuroeffector Systems, edited by J. A. Bevan, R. F. Furchgott, R. A. Maxwell, and A. P. Somlyo. Basel: Karger, 1971, p. 2–12. (Proc. Symp. Physiol. Pharmacol. Vascular Neuroeffector Systems, Interlaken, 1969.)
 410. Verity, M. A., and J. A. Bevan. Fine structural study of the terminal effector plexus, neuromuscular and intermuscular relationships in the pulmonary artery. J. Anat. 103: 49–63, 1968.
 411. Verity, M. A., T. Hughes, and J. A. Bevan. Innervation of the pulmonary artery bifurcation of the cat. Am. J. Anat. 116: 75–90, 1965.
 412. Verity, M. A., C. Su, and J. A. Bevan. Transmural and subcellular localization of monoamine oxidase and catechol‐O‐methyl transferase in rabbit aorta. Biochem. Pharmacol. 21: 193–201, 1972.
 413. Viveros, O. H., L. Arqueras, R. J. Connett, and N. Kirschner. Mechanism of secretion from the adrenal medulla. III. Studies of dopamine‐β‐hydroxylase as a marker for catecholamine storage vesicle membranes in rabbit adrenal glands. Mol. Pharmacol. 5: 60–68, 1969.
 414. Vizi, E. S., G. T. Somogyi, P. Hadhazy, and J. Knoll. Effect of duration and frequency of stimulation on the presynaptic inhibition by α‐adrenoceptor stimulation of the adrenergic transmission. Naunyn Schmiedebergs Arch. Pharmacol. 280: 79–91, 1973.
 415. Von Euler, U. S. Synthesis, uptake and storage of catecholamines in adrenergic nerves, the effect of drugs. In: Handbook of Experimental Pharmacology. Catecholamines, edited by H. Blaschko and E. Muscholl. Berlin: Springer‐Verlag, 1972, vol. 33, p. 186–230.
 416. Waterson, J. G., D. B. Frewin, and J. S. Soltys. Age‐related differences in catecholamine fluorescence of human vascular tissue. Blood Vessels 11: 79–85, 1974.
 417. Waud, D. R. On diffusion from a point source. J. Pharmacol. Exptl. Therap. 159: 123–128, 1968.
 418. Weiner, N. Regulation of norepinephrine biosynthesis. In: Annual Review of Pharmacology, edited by H. W. Elliott, R. George, and R. Okun. Palo Alto, CA: Ann. Rev., 1970, vol. 10, p. 273.
 419. Weiner, N., G. Cloutier, R. Bjur, and R. I. Pfeffer. Modification of norepinephrine synthesis in intact tissue by drugs and during short‐term adrenergic nerve stimulation. Pharmacol. Rev. 24: 203–221, 1972.
 420. Weinshilboum, R. M., R. A. Raymond, L. R. Elveback, and W. H. Weidman. Serum dopamine‐beta‐hydroxylase activity: sibling‐sibling correlation. Science 181: 943–945, 1973.
 421. Westfall, D. P., L. L. Millecchia, T. J.‐F. Lee, S. P. Corey, D. J. Smith, and W. W. Fleming. Effects of denervation and reserpine on nexuses in the rat vas deferens. European J. Pharmacol. 41: 239–242, 1977.
 422. Wetterberg, H. A., S. B. Ross, and O. Froden. Plasma dopamine‐beta‐hydroxylase activity in hypertension and various neuropsychiatric disorders. Scand. J. Clin. Lab. Invest. 30: 283–289, 1972.
 423. Williams, L. T., D. Mullikin, and R. J. Lefkowitz. Identification of alpha‐adrenergic receptors in uterine smooth muscle membranes by [3H]dihydroergocryptine binding. J. Biol. Chem. 251: 6915–6923, 1976.
 424. White, F. N., M. Ikeda, and R. W. Elsner. Adrenergic innervation of large arteries in the seal. Comp. Gen. Pharmacol. 4: 271–276, 1973.
 425. Whittaker, V. P. The vesicle hypothesis. In: Excitatory Synaptic Mechanisms, edited by P. Andersen and J. K. S. Jansen. Oslo: Universitetsforlaget, 1970, p. 67–76.
 426. Winquist, R. J., and J. A. Bevan. Development of intrinsic muscle tone in the rabbit facial vein. Proc. Western Pharmacol. Soc. 20: 149–152, 1977.
 427. Wolinsky, H. Effects of hypertension and its reversal on the thoracic aorta of male and female rats: morphological and chemical studies. Circulation Res. 28: 622–637, 1971.
 428. Wolinsky, H. Long‐term effects of hypertension on the rat aortic wall and their relation to concurrent aging changes. Circulation Res. 30: 301–309, 1972.
 429. Wyse, D. G. On the role of neuronal uptake (uptake1) in the inactivation of noradrenaline by aortic strips. Can. J. Physiol. Pharmacol. 52: 1102–1109, 1974.
 430. Wyse, D. G. Inactivation of neural and exogenous norepinephrine in rat tail artery study by the oil immersion technique. J. Pharmacol. Exptl. Therap. 198: 102–111, 1976.
 431. Yamabe, H., W. De Jong, and W. Lovenberg. Further studies on catecholamine synthesis in the spontaneously hypertensive rat: catecholamine synthesis in the central nervous system. European J. Pharmacol. 22: 91–98, 1973.
 432. Yamori, Y., A. Ooshima, and K. Okamoto. Deviation of central norepinephrine metabolism in hypertensive rats. Japan. Circulation J. 37: 1235–1245, 1973.
 433. Zimmerman, B. G., T. F. Rolewicz, E. W. Dunham, and J. L. Gisslen. Transmitter release and vascular responses in skin and muscle of hypertensive dogs. Am. J. Physiol. 217: 798–804, 1969.
 434. Zuberbuhler, R. C., and D. F. Bohr. Response of coronary vascular smooth muscle to catecholamines. Circulation Res. 16: 431–440, 1965.

Related Articles:

Pulmonary Vascular Disease

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

John A. Bevan, Rosemary D. Bevan, Sue P. Duckles. Adrenergic Regulation of Vascular Smooth Muscle. Compr Physiol 2011, Supplement 7: Handbook of Physiology, The Cardiovascular System, Vascular Smooth Muscle: 515-566. First published in print 1980. doi: 10.1002/cphy.cp020218