Comprehensive Physiology Wiley Online Library

Microlymphatic Biology

Full Article on Wiley Online Library


The sections in this article are:

1 Introduction
2 Structural Organization
2.1 Initial Lymphatics
2.2 Collecting Lymphatics
3 Functional Principles
3.1 Lymphatic endothelium
3.2 Lymphatic Muscle
3.3 Lymph Composition and Formation
3.4 Lymph Pressure‐Flow Relationships
4 Microlymphatic Function in Specific Organs
4.1 Nodal Immune Cell Transport
4.2 Role of Lymphatic Vessels in Brain Fluid Exchange
4.3 Intestinal Lacteal Lipid Transport
4.4 Role of Lymphatics in Intestinal Inflammation
5 Summary
Figure 1. Figure 1.

The lumen of rat mesenteric vessel with valve. Series of computer‐processed 3D images (Leica Confocal Software v.2.60) positioned at different angles of view to illustrate the geometry of the lymphatic valve. The 3D projection was generated from a series of images taken, using confocal microscope after loading of live rat mesenteric lymphatic vessel with an intravital fluorescent dye. Transmural pressure is ∼7cm H2O. flow gradient across valve is 0cm H2O and vessel diameter is ∼120 um (unpublished observations).

Figure 1.

The lumen of rat mesenteric vessel with valve. Series of computer‐processed 3D images (Leica Confocal Software v.2.60) positioned at different angles of view to illustrate the geometry of the lymphatic valve. The 3D projection was generated from a series of images taken, using confocal microscope after loading of live rat mesenteric lymphatic vessel with an intravital fluorescent dye. Transmural pressure is ∼7cm H2O. flow gradient across valve is 0cm H2O and vessel diameter is ∼120 um (unpublished observations).

 1. Gnepp DR. Lymphatics. In: Edema, eds Staub NC and Taylor AE. New York: Raven Press, 1984, pp. 263–298.
 2. Barrowman JA. Physiology of the Gastrointestinal Lymphatic System. London: Cambridge University Press. 1978.
 3. Schipp R. Structure and ultrastructure of mesenteric lymphatic vessels. In: New Trends in Basic Lymphology, Experentia Suppl. ed. Collette, J.M., Jantet, G. and Schoffeniels, E. Basel, Birkhauser. 1967. pp. 50–67.
 4. Florey H. Observations on the contractility of lacteals. Part I. J Physiol 62: 267–272, 1927.
 5. Florey H. Observations on the contractility of lacteals. Part II. J Physiol 63: 1–18, 1927.
 6. McHale NG. Innervation of the lymphatic circulation. In: Experimental Biology of the Lymphatic Circulation, ed. Johnston MG. Amsterdam, The Netherlands: Elsevier Science. 1985, pp. 121–140.
 7. van Helden DF, von der Weid P‐Y and Crowe MJ. Electrophysiology of lymphatic smooth muscle. In: Interstitium, Connective Tissue, and Lymphatics, eds Bert J, Laine GA, McHale NG, Reed R and Winlove P. London: Portland Press, 1995, pp. 221–236.
 8. Johnston MG. Involvement of lymphatic collecting ducts in the physiology and pathophysiology of lymph flow. In: Experimental Biology of the Lymphatic Circulation, ed. Johnston MG. New York: Elsevier Science Publishers, 1985, pp. 81–210.
 9. Benoit JN and Zawieja DC. Gastrointestinal lymphatics. In: Physiology of the Gastrointestinal Tract, ed. Johnson L. New York: Raven Press, 1994, pp. 1669–1692.
 10. von der Weid P. Review article: lymphatic vessel pumping and inflammation‐the role of spontaneous constrictions and underlying electrical pacemaker potentials. Aliment Pharmacol Ther 15 (8): 1115–1129, 2001.
 11. Wilting J, Neeff H and Christ B. Embryonic lymphangiogenesis. Cell Tissue Res 297 (1): 1–11, 1999.
 12. Partanen TA and Paavonen K. Lymphatic versus blood vascular endothelial growth factors and receptors in humans. Microsc Res Tech 55 (2): 108–121, 2001.
 13. Bridenbaugh EA, Gashev AA and Zawieja DC. Lymphatic muscle: a review of contractile function. Lymphat Res Biol 1 (2): 147–158, 2003.
 14. Jussila L and Alitalo K. Vascular growth factors and lymphangiogenesis. Physiol Rev 82 (3): 673–700, 2002.
 15. Wilting J, Papoutsi M, Othman‐Hassan K, Rodriguez‐Niedenfuhr M, Prols F, Tomarev SI and Eichmann A. Development of the avian lymphatic system. Microsc Res Tech 55 (2): 81–91, 2001.
 16. Oliver G and Alitalo K. The lymphatic vasculature: recent progress and paradigms. Annu Rev Cell Dev Biol 21: 457–83, 2005.
 17. Oliver G. Lymphatic vasculature development. Nat Rev Immunol 4 (1): 35–45, 2004.
 18. Casley‐Smith J and Florey H. The structure of normal small lymphatics. Q J Exptl Physiol 46: 101–107, 1961.
 19. Leak LV. The structure of lymphatic capillaries in lymph formation. Fed Proc 35 (8): 1863–1871, 1976.
 20. Ushiki T. The three‐dimensional organization and ultrastructure of lymphatics in the rat intestinal mucosa as revealed by scanning electron microscopy after KOH‐collagenase treatment. Arch Histol Cytol 53 (Suppl): 127–136, 1990.
 21. Lee J. Lymph capillary pressure of rat intestinal villi during fluid absorption. Am J Physiol 237 (3): E301–E307, 1979.
 22. Webb R. Behavior of lymphatic vessels in the living bat. Anat Rec 88: 351–367, 1944.
 23. Casley‐Smith JR. How the lymphatic system works. Lymphology 1: 77–80, 1968.
 24. Azzali G and Arcari ML. Ultrastructural and three dimensional aspects of the lymphatic vessels of the absorbing peripheral lymphatic apparatus in Peyer's patches of the rabbit. Anat Rec 258 (1): 71–79, 2000.
 25. Azzali G. The lymphatic vessels and the so‐called “lymphatic stomata” of the diaphragm: a morphologic ultrastructural and three‐dimensional study. Microvasc Res 57 (1): 30–43, 1999.
 26. Castenholz A. Morphological characteristics of initial lymphatics in the tongue as shown by scanning electron microscopy. Scan Electron Microsc(Pt 3): 1343–1352, 1984.
 27. Collan Y and Kalima TV. Topographic relations of lymphatic endothelial cells in the initial lymphatic of the intestinal villus. Lymphology 7 (4): 175–184, 1974.
 28. Ohtani O. Three‐dimensional organization of lymphatics and its relationship to blood vessels in rat small intestine. Cell Tissue Res 248 (2): 365–374, 1987.
 29. Wenzel‐Hora BI, Berens von Rautenfeld D, Majewski A and Lubach D. Scanning electron microscopy of the initial lymphatics of the skin after use of the indirect application technique with glutaraldehyde and mercox as compared to clinical findings. Lymphology 20: 126–133, 1987.
 30. Casley‐Smith JR. The role of the endothelial intercellular junctions in the functioning of the initial lymphatics. Angiologica 9 (2): 106–131, 1972.
 31. Sauter B, Foedinger D, Sterniczky B, Wolff K and Rappersberger K. Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells: differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem 46 (2): 165–176, 1998.
 32. Schmelz M, Moll R, Kuhn C and Franke WW. Complexus adhaerentes, a new group of desmoplakin‐containing junctions in endothelial cells: II. Different types of lymphatic vessels. Differentiation 57 (2): 97–117, 1994.
 33. Gerli R, Solito R, Weber E and Agliano M. Specific adhesion molecules bind anchoring filaments and endothelial cells in human skin initial lymphatics. Lymphology 33 (4): 148–157, 2000.
 34. Trzewik J, Mallipattu SK, Artmann GM, Delano FA and Schmid‐Schonbein GW. Evidence for a second valve system in lymphatics: endothelial microvalves. FASEB J 15 (10): 1711–1717, 2001.
 35. Casley‐Smith JR. Varying total tissue pressures and the concentration of initial lymphatic lymph. Microvasc Res 25 (3): 369–379, 1983.
 36. Gerli R, Ibba L and Fruschelli C. Ultrastuctural cytochemistry of anchoring filaments of human lymphatic capillaries and their relation to elastic fibers. Lymphology 24: 105–112, 1991.
 37. Pullinger B and Florey H. Some observation on the structure and functions of lymphatics: their behavior in local oedema. Br J Exp Pathol 16: 49, 1935.
 38. Casley‐Smith J. Electron microscopical observations on the dilated lymphatics in oedematous regions and their collapse following hyaluronidase administration. Br J Exp Pathol 48: 680–686, 1967.
 39. Taylor AE. The lymphatic edema safety factor: the role of edema dependent lymphatic factors (EDLF). Lymphology 23 (3): 111–123, 1990.
 40. Taylor AE, Gibson WH, Granger HJ and Guyton AC. The interaction between intracapillary and tissue forces in the overall regulation of interstitial fluid volume. Lymphology 6 (4): 192–208, 1973.
 41. Yoffey JM and Courtice FC. Lymphatics, Lymph and the Lymphomyeloid Complex. London. New York: Academic Press, 1970.
 42. Aukland K and Reed RK. Interstitial‐lymphatic mechanisms in the control of extracellular fluid volume. Physiol Rev 73 (1): 1–78, 1993.
 43. Horstmann E. Uber die funktinelle Struktur der mesenterialen Lymphgefasse [German]. Morphologisches Jachrbuch 91: 483–510, 1952.
 44. Ohhashi T, Fukushima S and Azuma T. Vasa vasorum within the media of bovine mesenteric lymphatics. Proc Soc Exp Biol Med 154: 582–586, 1977.
 45. Jeltsch M, Kaipainen A, Joukov V, Meng X, Lakso M, Rauvala H, Swartz M, Fukumura D, Jain RK and Alitalo K. Hyperplasia of lymphatic vessels in VEGF‐C transgenic mice. Science 276 (5317): 1423–1425, 1997.
 46. Oh SJ, Jeltsch MM, Birkenhager R, McCarthy JE, Weich HA, Christ B, Alitalo K and Wilting J. VEGF and VEGF‐C: specific induction of angiogenesis and lymphangiogenesis in the differentiated avian chorioallantoic membrane. Dev Biol 188 (1): 96–109, 1997.
 47. Cao Y, Linden P, Farnebo J, Cao R, Eriksson A, Kumar V, Qi J‐H, Claesson‐Welsh L and Alitalo K. Vascular endothelial growth factor C induces angiogenesis in vivo. Proc Nat Acad Sci USA 95: 14389–14394, 1998.
 48. Lymboussaki A. Olofsson B, Eriksson U and Alitalo K. Vascular endothelial growth factor (VEGF) and VEGF‐C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia. Circ Res 85 (11): 992–999, 1999.
 49. Mandriota SJ and Pepper MS. Lymphangiogenesis and biological activity ov vascular endothelial growth factor‐C. J Soc Biol 193 (2): 159–163, 1999.
 50. Olofsson B, Jeltsch M, Eriksson U and Alitalo K. Current biology of VEGF‐B and VEGF‐C. Curr Opin Biotechnol 10 (6): 528–535, 1999.
 51. Skobe M, Brown LF, Tognazzi K, Ganju RK, Dezube BJ, Alitalo K and Detmar M. Vascular endothelial growth factor‐C (VEGF‐C) and its receptors KDR and flt‐4 are expressed in AIDS‐associated Kaposi's sarcoma. J Invest Dermatol 113 (6): 1047–1053, 1999.
 52. Niki T, Iba S, Tokunou M, Yamada T, Matsuno Y and Hirohashi S. Expression of vascular endothelial growth factors A, B, C, and D and their relationships to lymph node status in lung adenocarcinoma [In Process Citation]. Clin Cancer Res 6 (6): 2431–2439, 2000.
 53. Enholm B, Karpanen T, Jeltsch M, Kubo H, Stenback F, Prevo R, Jackson DG, Yla‐Herttuala S and Alitalo K. Adenoviral expression of vascular endothelial growth factor‐C induces lymphangiogenesis in the skin. Circ Res 88 (6): 623–629, 2001.
 54. Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R, Banerji S, Huarte J, Montesano R, Jackson DG, Orci L, Alitalo K, Christofori G and Pepper MS. Vascular endothelial growth factor‐C‐mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20 (4): 672–682, 2001.
 55. Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K and Detmar M. Induction of tumor lymphangiogenesis by VEGF‐C promotes breast cancer metastasis. Nat Med 7 (2): 192–198, 2001.
 56. Veikkola T, Jussila L, Makinen T, Karpanen T, Jeltsch M, Petrova TV, Kubo H, Thurston G, McDonald DM, Achen MG, Stacker SA and Alitalo K. Signalling via vascular endothelial growth factor receptor‐3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J 20 (6): 1223–1231, 2001.
 57. Kubo H, Cao R, Brakenhielm E, Makinen T, Cao Y and Alitalo K. Blockade of vascular endothelial growth factor receptor‐3 signaling inhibits fibroblast growth factor‐2‐induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci USA 99 (13): 8868–8873, 2002.
 58. Mattila MM, Ruohola JK, Karpanen T, Jackson DG, Alitalo K and Harkonen PL. VEGF‐C induced lymphangiogenesis is associated with lymph node metastasis in orthotopic MCF‐7 tumors. Int J Cancer 98 (6): 946–951, 2002.
 59. Szuba A, Skobe M, Karkkainen MJ, Shin WS, Beynet DP, Rockson NB, Dakhil N, Spilman S, Goris ML, Strauss HW, Quertermous T, Alitalo K and Rockson SG. Therapeutic lymphangiogenesis with human recombinant VEGF‐C. FASEB J 16 (14): 1985–1987, 2002.
 60. Hamrah P, Chen L, Zhang Q and Dana MR. Novel expression of vascular endothelial growth factor receptor (VEGFR)‐3 and VEGF‐C on corneal dendritic cells. Am J Pathol 163 (1): 57–68, 2003.
 61. Krishnan J, Kirkin V, Steffen A, Hegen M, Weih D, Tomarev S, Wilting J and Sleeman JP. Differential in vivo and in vitro expression of vascular endothelial growth factor (VEGF)‐C and VEGF‐D in tumors and its relationship to lymphatic metastasis in immunocompetent rats. Cancer Res 63 (3): 713–722, 2003.
 62. Rubbia‐Brandt L, Terris B, Giostra E, Dousset B, Morel P and Pepper MS. Lymphatic vessel density and vascular endothelial growth factor‐C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res 10 (20): 6919–6928, 2004.
 63. Saaristo A, Tammela T, Timonen J, Yla‐Herttuala S, Tukiainen E, Asko‐Seljavaara S and Alitalo K. Vascular endothelial growth factor‐C gene therapy restores lymphatic flow across incision wounds. FASEB J: 1707‐1709, 2004.
 64. Goldman J, Le TX, Skobe M and Swartz MA. Overexpression of VEGF‐C causes transient lymphatic hyperplasia but not increased lymphangiogenesis in regenerating skin. Circ Res 96 (11): 1193–1199, 2005.
 65. Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, Skobe M, Boardman KC and Swartz MA. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR‐3 neutralizing antibody. J Natl Cancer Inst 97 (1): 14–21, 2005.
 66. Vlahakis NE, Young BA, Atakilit A and Sheppard D. The lymphangiogenic vascular endothelial growth factors VEGF‐C and ‐D are ligands for the integrin alpha9betal. J Biol Chem 280 (6): 4544–4552, 2005.
 67. Yong C, Bridenbaugh EA, Zawieja DC and Swartz MA. Microarray analysis of VEGF‐C responsive genes in human lymphatic endothelial cells. Lymphat Res Biol 3 (4): 183–207, 2005.
 68. Rutkowski JM, Boardman KC and Swartz MA. Characterization of lymphangiogenesis in a model of adult skin regeneration. Am J Physiol Heart Circ Physiol: 00038, 2006.
 69. Whitehurst B, Flister M, Eversgerd C, Bivens CM, Zawieja DC and Ran S. Characterization of proliferative responses of rat lymphatic endothelial cells RMLEC in vitro. AACR Meeting Abstracts 2006 (1): 439a, 2006.
 70. Cao R, Bjorndahl M, Religa P, Clasper S, Garvin S, Galter D, Meister B, Ikomi F, Tritsaris K, Dissing S, Ohhashi T, Jackson D and Cao Y. PDGF‐BB induces intratumoral lymphangiogenesis and promotes lymphatic metastasis. Cancer Cell 6 (4): 333–345, 2004.
 71. Thurston G. Role of Angiopoietins and Tie receptor tyrosine kinases in angiogenesis and lymphangiogenesis. Cell Tissue Res 314 (1): 61–68, 2003.
 72. Cao Y. Direct role of PDGF‐BB in lymphangiogenesis and lymphatic metastasis. Cell Cycle 4 (2): 228–230, 2005.
 73. Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF and Detmar M. VEGF‐A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 201 (7): 1089–1099, 2005.
 74. Chang LK, Garcia‐Cardena G, Farnebo F, Fannon M, Chen EJ, Butterfield C, Moses MA, Mulligan RC, Folkman J and Kaipainen A. Dose‐dependent response of FGF‐2 for lymphangiogenesis. Proc Natl Acad Sci USA 101 (32): 11658–11663, 2004.
 75. Cursiefen C, Chen L, Borges LP, Jackson D, Cao J, Radziejewski C, D'Amore PA, Dana MR. Wiegand SJ and Streilein JW. VEGF‐A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest 113 (7): 1040–1050, 2004.
 76. Hong YK, Lange‐Asschenfeldt B, Velasco P, Hirakawa S, Kunstfeld R, Brown LF, Bohlen P, Senger DR and Detmar M. VEGF‐A promotes tissue repair‐associated lymphatic vessel formation via VEGFR‐2 and the alpha1beta1 and alpha2beta1 integrins. FASEB J 18 (10): 1111–1113, 2004.
 77. Shin JW, Min M, Larrieu‐Lahargue F, Canron X, Kunstfeld R, Nguyen L, Henderson JE, Bikfalvi A, Detmar M and Hong YK. Prox1 promotes lineage‐specific expression of FGF receptor‐3 in lymphatic endothelium: a role for FGF signaling in lymphangiogenesis. Mol Biol Cell 1, 2005.
 78. Swartz MA and Boardman KC. The role of interstitial stress in lymphatic function and lymphangiogenesis. Ann N Y Acad Sci 979: 197–210, 2002, discussion 229‐34.
 79. Witte MH, Bernas MJ, Martin CP and Witte CL. Lymphangiogenesis and lymphangiodysplasia: from molecular to clinical lymphology. Microsc Res Tech 55 (2): 122–145, 2001.
 80. Pepper MS. Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7 (3): 462–468, 2001.
 81. Oliver G and Harvey N. A stepwise model of the development of lymphatic vasculature. Ann N Y Acad Sci 979: 159–165, 2002, discussion 188‐96.
 82. Tille JC, Nisato R and Pepper MS. Lymphangiogenesis and tumour metastasis. Novartis Found Symp 256: 112–131, 2004, discussion 132‐6, 259‐69.
 83. Nisato RE, Tille JC and Pepper MS. Lymphangiogenesis and tumor metastasis. Thromb Haemost 90 (4): 591–597, 2003.
 84. Pepper MS, Tille JC, Nisato R and Skobe M. Lymphangiogenesis and tumor metastasis. Cell Tissue Res 314 (1): 167–177, 2003.
 85. Harvey NL, Srinivasan RS, Dillard ME, Johnson NC, Witte MH, Boyd K, Sleeman MW and Oliver G. Lymphatic vascular defects promoted by Prox1 haploinsufficiency cause adult‐onset obesity. Nat Genet 37 (10): 1072–1081, 2005.
 86. Boardman KC and Swartz MA. Interstitial flow as a guide for lymphangiogenesis. Circ Res 92 (7): 801–808, 2003.
 87. Ng CP, Helm C‐LE and Swartz MA. Interstitial flow differentially stimulates blood and lymphatic endothelial cell morphogenesis in vitro. Microvasc Res 68 (3): 258–264, 2004.
 88. Maruyama K, Ii M, Cursiefen C, Jackson DG, Keino H, Tomita M, Van Rooijen N, Takenaka H, D'Amore PA, Stein‐Streilein J, Losordo DW and Streilein JW. Inflammation‐induced lymphangiogenesis in the cornea arises from CD11b‐positive macrophages. J Clin Invest 115 (9): 2363–2372, 2005.
 89. Chen L, Cursiefen C, Barabino S, Zhang Q and Dana MR. Novel expression and characterization of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE‐1) by conjunctival cells. Invest Ophthalmol Vis Sci 46 (12): 4536–4540, 2005.
 90. Angeli V, Ginhoux F, Llodra J, Quemeneur L, Frenette PS, Skobe M, Jessberger R, Merad M and Randolph GJ. B cell‐driven lymphangiogenesis in inflamed lymph nodes enhances dendritic cell mobilization. Immunity 24 (2): 203–215, 2006.
 91. Sleeman JP, Krishnan J, Kirkin V and Baumann P. Markers for the lymphatic endothelium: in search of the holy grail? Microsc Res Tech 55 (2): 61–69, 2001.
 92. Sawa Y, Shibata K, Braithwaite MW, Suzuki M and Yoshida S. Expression of immunoglobulin superfamily members on the lymphatic endothelium of inflamed human small intestine. Microvasc Res 57 (2): 100–106, 1999.
 93. Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D, Breitman M and Alitalo K. Expression of the fms‐like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92 (8): 3566–3570, 1995.
 94. Banerji S, Ni J, Wang SX, Clasper S, Su J, Tammi R, Jones M and Jackson DG. LYVE‐1, a new homologue of the CD44 glycoprotein, is a lymph‐specific receptor for hyaluronan. J Cell Biol 144 (4): 789–801, 1999.
 95. Breiteneder‐Geleff S, Soleiman A, Horvat R, Amann G, Kowalski H and Kerjaschki D. Podoplanin‐a specific marker for lymphatic endothelium expressed in angiosarcoma. Verh Dtsch Ges Pathol 83: 270–275, 1999.
 96. Gannon BJ and Carati CJ. Endothelial distribution of the membrane water channel molecule aquaporin‐1: implications for tissue and lymph fluid physiology? Lymphat Res Biol 1 (1): 55–66, 2003.
 97. Kato S. Histochemical localisation of 5′‐nucleotidase in the lymphatic endothelium. Acta Histochem Cytochem 23: 613–620, 1990.
 98. Nishida S and Ohkuma M. Enzyme‐histochemical identification of the human lymphatic capillary by adenylate cyclase. Lymphology 25 (4): 184–190, 1992.
 99. Nishida S and Ohkuma M. Enzyme‐histochemical staining of dermal lymphatic capillaries by guanylate cyclase. Lymphology 26 (4): 195–199, 1993.
 100. Marchetti C, Casasco A, Di Nucci A, Reguzzoni M, Rosso S, Piovella F, Calligaro A and Polak JM. Endothelin and nitric oxide synthase in lymphatic endothelial cells: immunolocalization in vivo and in vitro. Anat Rec 248 (4): 490–497, 1997.
 101. Hayes H, Kossmann E, Wilson E, Meininger C and Zawieja D. Development and characterization of endothelial cells from rat microlymphatics. Lymphat Res Biol 1 (2): 101–119, 2003.
 102. Ito Y, Magari S and Sakanaka M. Prostaglandin I2 synthase in the lymphatic endothelium of rat liver as revealed by preembedding immunoelectron microscopy. Lymphology 22 (1): 51–55, 1989.
 103. Ohhashi T and Takahashi N. Acetylcholine‐induced release of endothelium‐derived relaxing factor from lymphatic endothelial cells. Am J Physiol 260 (4 Pt 2): H1172–1178, 1991.
 104. Ferguson MK. Modulation of lymphatic smooth muscle contractile responses by the endothelium. J Surg Res 52 (4): 359–363, 1992.
 105. Mizuno R, Koller A and Kaley G. Regulation of the vasomotor activity of lymph microvessels by nitric oxide and prostaglandins. Am J Physiol 274 (3 Pt 2): R790–R796, 1998.
 106. Reeder L, Yang L and Ferguson M. Modulation of lymphatic spontaneous contractions by EDRF. J Surg Res 56 (6): 620–625, 1994.
 107. von der Weid PY, Crowe MJ and Van Helden DF. Endothelium‐dependent modulation of pacemaking in lymphatic vessels of the guinea‐pig mesentery. J Physiol 493 (Pt 2): 563–575, 1996.
 108. Yokoyama S and Ohhashi T. Effects of acetylcholine on spontaneous contractions in isolated bovine mesenteric lymphatics. Am J Physiol 264 (5 Pt 2): H1460–H1464, 1993.
 109. Gashev AA, Davis MJ and Zawieja DC. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct. J Physiol 540 (Pt 3): 1023–1037, 2002.
 110. Shirasawa Y, Ikomi F and Ohhashi T. Physiological roles of endogenous nitric oxide in lymphatic pump activity of rat mesentery in vivo. Am J Physiol 278 (4): G551–G556, 2000.
 111. Rayner SE and Van Helden DF. Evidence that the substance P‐induced enhancement of pacemaking in lymphatics of the guinea‐pig mesentery occurs through endothelial release of thromboxane A2. Br J Pharmacol 121 (8): 1589–1596, 1997.
 112. Gao J, Zhao J, Rayner SE and van Helden DF. Evidence that the ATP‐induced increase in vasomotion of guinea‐pig mesenteric lymphatics involves an endothelium‐dependent release of thromboxane A2. Br J Pharmacol 127 (7): 1597–1602, 1999.
 113. Chan AK, Vergnolle N, Hollenberg MD and von der Weid PY. Proteinase‐activated receptor 2 activation modulates guinea‐pig mesenteric lymphatic vessel pacemaker potential and contractile activity. J Physiol 560 (2): 563–576, 2004.
 114. Reeder LB and Ferguson MK. Endothelin‐1 synthesis and receptor‐mediated activity in porcine lymph vessels. J Surg Res 63 (1): 215–219, 1996.
 115. Sakai H, Ikomi F and Ohhashi T. Effects of endothelin on spontaneous contractions in lymph vessels. Am J Physiol 277 (2 Pt 2): H459–H466, 1999.
 116. Dobbins DE and Dabney JM. Endothelin‐mediated constriction of prenodal lymphatic vessels in the canine forelimb. Regul Pept 35 (1): 81–91, 1991.
 117. Doboszynska T, Andronowska A and Modzelewska B. Endothelin‐1 and endothelial nitric oxide synthase immunoreactivity in lymphatic vessels of the uterine broad ligament during the estrous cycle in the pig. Cells Tissues Organs 171 (2‐3): 152–161, 2002.
 118. Zhao J and van Helden DF. ET‐1‐associated vasomotion and vasospasm in lymphatic vessels of the guinea‐pig mesentery. Br J Pharmacol 140 (8): 1399–1413, 2003.
 119. Marchetti C, Casasco A, Di Nucci A, Reguzzoni M, Rosso S, Piovella F, Calligaro A and Polak J. Endothelin and nitric oxide synthase in lymphatic endothelial cells: immunolocalization in vivo and in vitro. Anat Rec 248 (4): 490–497, 1997.
 120. Mislin H. Active contractility of the lymphangion and coordination of lymphangion chains. Experientia 32 (7): 820–822, 1976.
 121. Allen JM and McHale NG. Neuromuscular transmission in bovine mesenteric lymphatics. Microvasc Res 31 (1): 77–83, 1986.
 122. Hargens AR and Zweifach BW. Contractile stimuli in collecting lymph vessels. Am J Physiol 233 (1): H57–H65, 1977.
 123. Orlov RS, Borisova RP and Mandryko ES. The contractile and electrical activity of the smooth muscles of the major lymph vessels. Fiziol Zh SSSR Im I M Sechenova 61 (7): 1045–1053, 1975.
 124. Zweifach B and Prather J. Micromanipulation of pressure in terminal lymphatics in the mesentery. Am J Physiol 228 (5): 1326–1335, 1975.
 125. Mislin H. Structural and functional relations of the mesenteric lymph vessels. New Trends in Basic Lymphology; Proceedings of a Symposium held at Charleroi (Belgium), July 11‐13, 1966. Experientia (Suppl. 14): 87–96, 1966.
 126. Allen JM and McHale NG. The effect of known K+‐channel blockers on the electrical activity of bovine lymphatic smooth muscle. Pflugers Arch 411 (2): 167–172, 1988.
 127. Ohhashi T, Azuma T and Sakaguchi M. Active and passive mechanical characteristics of bovine mesenteric lymphatics. Am J Physiol 239 (1): H88–H95, 1980.
 128. Van Helden DF. Pacemaker potentials in lymphatic smooth muscle of the guinea‐pig mesentery. J Physiol 471: 465–479, 1993.
 129. Van Helden DF and Zhao J. Lymphatic vasomotion. Clin Exp Pharmacol Physiol 27 (12): 1014–1018, 2000.
 130. von der Weid PY, Zhao J and Van Helden DF. Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery. Am J Physiol 280 (6): H2707–H2716, 2001.
 131. McCloskey K, Hollywood M, Thornbury K, Ward S and McHale N. Kit‐like immunopositive cells in sheep mesenteric lymphatic vessels. Cell Tissue Res 310 (1): 77–84, 2002.
 132. Zawieja DC, Kossman E and Pullin J. Dynamics of the microlymphatic system. J Prog Appl Microcirc 23: 100–109, 1999.
 133. von der Weid PY and Zawieja DC. Lymphatic smooth muscle: the motor unit of lymph drainage. Int J Biochem Cell Biol 36 (7): 1147–1153, 2004.
 134. Kuo L, Davis MJ and Chilian WM. Endothelium‐dependent, flow‐induced dilation of isolated coronary arterioles. Am J Physiol 259 (4 Pt 2): H1063–H1070, 1990.
 135. Allen JM, McHale NG and Rooney BM. Effect of norepinephrine on contractility of isolated mesenteric lymphatics. Am J Physiol 244 (4): H479–H486, 1983.
 136. Azuma T, Ohnashi T and Sakaguchi M. Electrical activity of lymphatic smooth muscles. Proc Soc Exp Biol Med 155: 270–273, 1977.
 137. Kirkpatrick CT and McHale NG. Electrical and mechanical activity of isolated lymphatic vessels [proceedings]. J Physiol 272 (1): 33P–34P, 1977.
 138. Mislin H. The lymphangion. In: Lymphangiology, eds Foldi M and Casley‐Smith JR, Stuttgart. New York: Schattauer Verlag, 1983, pp. 165–175.
 139. Mislin H. Die motorik Lymphgefässe und der Regulation der Lymphherzen. In: Handbuch der Algemeinen Pathologie, ed. Meessen H. Berlin, Heidelberg, New York: Springer‐Verlag, 1973, pp. 219–238.
 140. Orlov RS, Borigora RP and Mundriko ES. Investigation of contractile and electrical activity of smooth muscle of lymphatic vessels. In: Physiology of Smooth Muscle, ed. Bulbring EaS MF. New York: Ranon, 1976, pp. 147–152.
 141. Ohhashi T and Azuma T. Effect of potassium on membrane potential and tension development in bovine mesenteric lymphatics. Microvasc Res 23 (1): 93–98, 1982.
 142. Ohhashi T, Azuma T and Sakaguchi M. Transmembrane potentials in bovine lymphatic smooth muscle. Proc Soc Exp Biol Med 159 (3): 350–352, 1978.
 143. Ward SM, McHale NG and Sanders KM. A method for recording transmembrane potentials in bovine mesenteric lymphatics [abstract]. Ir J Med Sci 158: 129, 1989.
 144. von der Weid PY and Van Helden DF. Beta‐adrenoceptor‐mediated hyperpolarization in lymphatic smooth muscle of guinea pig mesentery. Am J Physiol 270 (5 Pt 2): H1687–H1695, 1996.
 145. Cotton KD, Hollywood MA, McHale NG and Thornbury KD. Outward currents in smooth muscle cells isolated from sheep mesenteric lymphatics. J Physiol (Lond) 503 (Pt 1): 1–11, 1997.
 146. Toland HM, McCloskey KD, Thornbury KD, McHale NG and Hollywood MA. Ca2+‐activated Cl‐current in sheep lymphatic smooth muscle. Am J Physiol Cell Physiol 279 (5): C1327–C1335, 2000.
 147. von der Weid P. ATP‐sensitive K+ channels in smooth muscle cells of guinea‐pig mesenteric lymphatics: role in nitric oxide and beta‐adrenoceptor agonist‐induced hyperpolarizations. Br J Pharmacol 125 (1): 17–22, 1998.
 148. Atchison DJ and Johnston MG. Role of extra‐ and intracellular Ca2+ in the lymphatic myogenic response. Am J Physiol 272 (1 Pt 2): R326–R333, 1997.
 149. McHale NG, Allen JM and Iggulden HL. Mechanism of alpha‐adrenergic excitation in bovine lymphatic smooth muscle. Am J Physiol 252 (5 Pt 2): H873–H878, 1987.
 150. Hollywood MA, Cotton KD, Thornbury KD and McHale NG. Tetrodotoxin‐sensitive sodium current in sheep lymphatic smooth muscle. J Physiol 503 (Pt 1): 13–20, 1997.
 151. Zawieja DC, Davis KL, Schuster R, Hinds WM and Granger HJ. Distribution, propagation, and coordination of contractile activity in lymphatics. Am J Physiol 264 (4 Pt 2): H1283–H1291, 1993.
 152. Ward SM, Sanders KM, Thornbury KD and McHale NG. Spontaneous electrical activity in isolated bovine lymphatics recorded by intracellular microelectrodes. J Physiol 438: 168, 1991.
 153. McCloskey KD, Toland HM, Hollywood MA, Thornbury KD and McHale NG. Hyperpolarisation‐activated inward current in isolated sheep mesenteric lymphatic smooth muscle. J Physiol 521 (Pt 1): 201–211, 1999.
 154. Fox JLR and von der Weid P‐Y. Effects of histamine on the contractile and electrical activity in isolated lymphatic vessels of the guinea‐pig mesentery. Br J Pharmacol 136 (8): 1210–1218, 2002.
 155. van Helden DF, von der Weid P‐Y and Crowe MJ. Intracellular Ca2+ release: a basis for electrical pacemaking in lymphatic smooth muscle. In: Smooth Muscle Excitation, eds Tomita T and Bolton TB. London: Academic Press, 1996, pp. 355–373.
 156. van Helden DF. An alpha‐adrenoceptor‐mediated chloride conductance in mesenteric veins of the guinea‐pig. J Physiol (Lond) 401 (489): 489–501, 1988.
 157. van Helden DF, Imtiaz MS, Nurgaliyeva K, von der Weid P and Dosen PJ. Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea‐pig gastric pylorus. J Physiol 524 (Pt 1): 245–265, 2000.
 158. Hashitani H, van Helden DF and Suzuki H. Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol 118 (7): 1627–1632, 1996.
 159. Holman ME, Kasby CB, Suthers MB and Wilson JA. Some properties of the smooth muscle of rabbit portal vein. J Physiol (Lond) 196 (1): 111–132, 1968.
 160. Suzuki H. Effects of endogenous and exogenous noradrenaline on the smooth muscle of guinea‐pig mesenteric vein. J Physiol (Lond) 321 (495): 495–512, 1981.
 161. van Helden DF. Spontaneous and noradrenaline‐induced transient depolarizations in the smooth muscle of guinea‐pig mesenteric vein. J Physiol 437 (511): 511–541, 1991.
 162. Wang Q, Hogg RC and Large WA. Properties of spontaneous inward currents recorded in smooth muscle cells isolated from the rabbit portal vein. J Physiol (Lond) 451: 525–537, 1992.
 163. Janssen LJ and Sims SM. Acetylcholine activates non‐selective cation and chloride conductances in canine and guinea‐pig tracheal myocytes. J Physiol (Lond) 453: 197–218, 1992.
 164. Janssen LJ and Sims SM. Spontaneous transient inward currents and rhythmicity in canine and guinea‐pig tracheal smooth muscle cells. Pflugers Arch 427 (5‐6): 473–480, 1994.
 165. Hogg RC, Wang Q, Helliwell RM and Large WA. Properties of spontaneous inward currents in rabbit pulmonary artery smooth muscle cells. Pflugers Arch 425 (3‐4): 233–240, 1993.
 166. Large WA and Wang Q. Characteristics and physiological role of the Ca(2+)‐activated Cl‐conductance in smooth muscle. Am J Physiol Cell Physiol 271 (2): C435–C454, 1996.
 167. Zhuge R, Sims SM, Tuft RA, Fogarty KE and Walsh JV. Ca2+ sparks activate K+ and Cl‐channels, resulting in spontaneous transient currents in guinea‐pig tracheal myocytes. J Physiol (Lond) 513 (3): 711–718, 1998.
 168. Lamb FS and Barna TJ. Chloride ion currents contribute functionally to norepinephrine‐induced vascular contraction. Am J Physiol 275 (1): H151–H160, 1998.
 169. Yuan XJ. Role of calcium‐activated chloride current in regulating pulmonary vasomotor tone. Am J Physiol 272 (5): L959–1L968, 1997.
 170. Atchison DJ, Rodela H and Johnston MG. Intracellular calcium stores modulation in lymph vessels depends on wall stretch. Can J Physiol Pharmacol 76 (4): 367–372, 1998.
 171. Ferrusi I, Zhao J, van Helden D and von der Weid P‐Y. Cyclopiazonic acid decreases spontaneous transient depolarizations in guinea pig mesenteric lymphatic vessels in endothelium‐dependent and ‐independent manners. Am J Physiol Heart Circ Physiol 286 (6): H2287–H2295, 2004.
 172. McHale NG and Allen JM. The effect of external Ca2+ concentration on the contractility of bovine mesenteric lymphatics. Microvasc Res 26 (2): 182–192, 1983.
 173. Shirasawa Y and Benoit JN. Stretch‐induced calcium sensitization of rat lymphatic smooth muscle. Am J Physiol Heart Circ Physiol 285 (6): H2573–H2577, 2003.
 174. Benoit JN, Zawieja DC, Goodman AH and Granger HJ. Characterization of intact mesenteric lymphatic pump and its responsiveness to acute edemagenic stress. Am J Physiol 257 (6 Pt 2): H2059–H2069, 1989.
 175. Zhang R, Gashev AA, Zawieja DC, Lane MM and Davis MJ. Length‐dependence of lymphatic phasic contractile activity under isometric and isobaric conditions. Microcirculation 14 (6): 613–625, 2007.
 176. Zhang RZ, Gashev AA, Zawieja DC and Davis MJ. Length‐tension relationships of small arteries, veins, and lymphatics from the rat mesenteric microcirculation. Am J Physiol Heart Circ Physiol 292 (4): H1943–H1952, 2007.
 177. Babu GJ, Warshaw DM and Periasamy M. Smooth muscle myosin heavy chain isoforms and their role in muscle physiology. Microsc Res Tech 50 (6): 532–540, 2000.
 178. Eddinger TJ. Myosin heavy chain isoforms and dynamic contractile properties: skeletal versus smooth muscle. Comp Biochem Physiol B Biochem Mol Biol 119 (3): 425–434, 1998.
 179. Rubenstein PA. The functional importance of multiple actin isoforms. Bioessays 12 (7): 309–315, 1990.
 180. Herman IM. Actin isoforms. Curr Opin Cell Biol 5 (1): 48–55, 1993.
 181. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 75 (3): 487–517, 1995.
 182. Zawieja DC, Gashev AA and Muthuchamy M. Lymphatic function and contractile proteins. 22nd Meeting of the European Society for Microcirculation. 2002. Exeter, Devon, UK, Monduzzi Editore S.p.A.
 183. Babij P and Periasamy M. Myosin heavy chain isoform diversity in smooth muscle is produced by differential RNA processing. J Mol Biol 210 (3): 673–679, 1989.
 184. Nagai R, Kuro‐o M, Babij P and Periasamy M. Identification of two types of smooth muscle myosin heavy chain isoforms by cDNA cloning and immunoblot analysis. J Biol Chem 264 (17): 9734–9737, 1989.
 185. Rovner AS, Thompson MM and Murphy RA. Two different heavy chains are found in smooth muscle myosin. Am J Physiol 250 (6 Pt 1): C861–C870, 1986.
 186. White S, Martin AF and Periasamy M. Identification of a novel smooth muscle myosin heavy chain cDNA: isoform diversity in the S1 head region. Am J Physiol 264 (5 Pt 1): C1252–C1258, 1993.
 187. Lauzon AM, Tyska MJ, Rovner AS, Freyzon Y, Warshaw DM and Trybus KM. A 7‐amino‐acid insert in the heavy chain nucleotide binding loop alters the kinetics of smooth muscle myosin in the laser trap. J Muscle Res Cell Motil 19 (8): 825–837, 1998.
 188. Khromov AS, Somlyo AV and Somlyo AP. Nucleotide binding by actomyosin as a determinant of relaxation kinetics of rabbit phasic and tonic smooth muscle. J Physiol 492 (Pt 3): 669–673, 1996.
 189. Sweeney HL, Rosenfeld SS, Brown F, Faust L, Smith J, Xing J, Stein LA and Sellers JR. Kinetic tuning of myosin via a flexible loop adjacent to the nucleotide binding pocket. J Biol Chem 273 (11): 6262–6270, 1998.
 190. Hosaka K, Mizuno R and Ohhashi T. Rho‐Rho kinase pathway is involved in the regulation of myogenic tone and pump activity in isolated lymph vessels. Am J Physiol Heart Circ Physiol 284 (6): H2015–H2025, 2003.
 191. von der Weid PY. ATP‐sensitive K+ channels in smooth muscle cells of guinea‐pig mesenteric lymphatics: role in nitric oxide and beta‐adrenoceptor agonist‐induced hyperpolarizations. Br J Pharmacol 125 (1): 17–22, 1998.
 192. Crowe MJ, von der Weid PY, Brock JA and Van Helden DF. Co‐ordination of contractile activity in guinea‐pig mesenteric lymphatics. J Physiol 500 (Pt 1): 235–244, 1997.
 193. Harty HR, Thornbury KD and McHale NG. Neurotransmission in isolated sheep mesenteric lymphatics. Microvasc Res 46 (3): 310–319, 1993.
 194. Kelly J, Brazil D, Clyne C, McHale NG, Gierschik P and Keenan AK. Evidence for the presence of G‐proteins, adenylyl cyclase and phospholipase C activities in lymphatic smooth muscle cell membranes. Cell Signal 8 (6): 425–432, 1996.
 195. Nishida S and Ohkuma M. Enzyme‐histochemical staining of dermal lymphatic capillaries by guanylate cyclase. Lymphology 26 (4): 195–199, 1993.
 196. Serbeniuk Ts V and Lelekova TV. [Participation of cGMP in inhibitory mechanisms of the center of amphibian lymph hearts]. Fiziol Zh SSSR Im I M Sechenova 73 (4): 506–511, 1987.
 197. Serbeniuk Ts V and Lelekova TV. [The effect of cyclic nucleotides on the rhythmogenicity of the lymphatic center in the frog Rana temporaria]. Zh Evol Biokhim Fiziol 26 (5): 680–687, 1990.
 198. Reeder LB, DeFilippi VJ and Ferguson MK. Characterization of the effects of histamine in porcine tracheobronchial lymph vessels. Am J Physiol 271 (6 Pt 2): H2501–H2507, 1996.
 199. Ferguson MK and DeFilippi VJ. Nitric oxide and endothelium‐dependent relaxation in tracheobronchial lymph vessels. Microvasc Res 47 (3): 308–317, 1994.
 200. Nix JT, Mann FC, Bollman JL, Grindlay JH and Flock EV. Alterations of protein constituents of lymph by specific injury to the liver. Am J Physiol 164: 119–122, 1951.
 201. Zawieja DC and Barber BJ. Lymph protein concentration in initial and collecting lymphatics of the rat. Am J Physiol 252 (5 Pt 1): G602–G606, 1987.
 202. Keiding NR. The alkaline phosphatase fractions of human lymph. Clin Sci 26: 291–297, 1964.
 203. Keiding NR. Intestinal alkaline phosphatase in human lymph and serum. Scand J Clin Lab Invest 18 (2): 134–140, 1966.
 204. Tso P and Balint JA. Formation and transport of chylomicrons by enterocytes to the lymphatics. Am J Physiol 250 (6 Pt 1): G715–G726, 1986.
 205. Tso P, Pitts V and Granger DN. Role of lymph flow in intestinal chylomicron transport. Am J Physiol 249 (1 Pt 1): G21–G28, 1985.
 206. Oussoren C and Storm G. Liposomes to target the lymphatics by subcutaneous administration. Adv Drug Deliv Rev 50 (1‐2): 143–156, 2001.
 207. Porter CJ and Charman WN. Intestinal lymphatic drug transport: an update. Adv Drug Deliv Rev 50 (1‐2): 61–80, 2001.
 208. Nordskog BK, Phan CT, Nutting DF and Tso P. An examination of the factors affecting intestinal lymphatic transport of dietary lipids. Adv Drug Deliv Rev 50 (1‐2): 21–44, 2001.
 209. van Greevenbroek MM and de Bruin TW. Chylomicron synthesis by intestinal cells in vitro and in vivo. Atherosclerosis 141 (Suppl 1): S9–S16, 1998.
 210. Casley‐Smith JR. The identification of chylomicra and lipoproteins in tissue sections and their passage into jejunal lacteals. J Cell Biol 15: 259–277, 1962.
 211. Granger DN, Korthuis RJ, Kvietys PR and Tso P. Intestinal microvascular exchange during lipid absorption. Am J Physiol 255 (5 Pt 1): G690–G695, 1988.
 212. Casley‐Smith J. Calculations relating to the passage of fluid and protein out of arterial‐limb fenestrae. through basement membranes and connective tissue channels, and into venous‐limb fenestrae and lymphatics. Microvasc Res 12: 13–34, 1976.
 213. Casley‐Smith JR. A fine structural study of variations in protein concentration in lacteals during compression and relaxation. Lymphology 12 (2): 59–65, 1979.
 214. Casley‐Smith JR and Sims MA. Protein concentration in regions with fenestrated and continuous blood capillaries and in initial and collecting lymphatics. Microvasc Res 12: 245–257, 1976.
 215. Hargens AR and Zweifach BW. Transport between blood and peripheral lymph in intestine. Microvascular Res 11: 89–101, 1976.
 216. Bohlen HG and Unthank JL. Rat intestinal lymph osmolarity during glucose and oleic acid absorption. Am J Physiol 257: G438–G446, 1989.
 217. Grimaldi A, Moriondo A, Sciacca L, Guidali ML, Tettamanti G and Negrini D. Functional arrangement of rat diaphragmatic initial lymphatic network. Am J Physiol Heart Circ Physiol 291 (2): H876–H885, 2006.
 218. Moriondo A, Mukenge S and Negrini D. Transmural pressure in rat initial subpleural lymphatics during spontaneous or mechanical ventilation. Am J Physiol Heart Circ Physiol 289 (1): H263–H269, 2005.
 219. Negrini D, Ballard ST and Benoit JN. Contribution of lymphatic myogenic activity and respiratory movements to pleural lymph flow. J Appl Physiol 76 (6): 2267–2274, 1994.
 220. Negrini D and Fabbro MD. Subatmospheric pressure in the rabbit pleural lymphatic network. J Physiol 520 (Pt 3): 761–769, 1999.
 221. Negrini D, Moriondo A and Mukenge S. Transmural pressure during cardiogenic oscillations in rodent diaphragmatic lymphatic vessels. Lymphat Res Biol 2 (2): 69–81, 2004.
 222. Nicoll PA and Hogan RD. Pressures associated with lymphatic capillary contraction. Microvasc Res 15: 257–258, 1978.
 223. Mendoza E and Schmid‐Schonbein GW. A model for mechanics of primary lymphatic valves. J Biomech Eng 125 (3): 407–414, 2003.
 224. Higuchi M, Fokin A, Masters TN, Robicsek F and Schmid‐Schonbein GW. Transport of colloidal particles in lymphatics and vasculature after subcutaneous injection. J Appl Physiol 86 (4): 1381–1387, 1999.
 225. Ikomi E, Zweifach BW and Schmid‐Schonbein GW. Fluid pressures in the rabbit popliteal afferent lymphatics during passive tissue motion. Lymphology 30 (1): 13–23, 1997.
 226. Schmid‐Schonbein G and Zweifach B. Fluid pump mechanisms in initial lymphatics. News Physiol Sci 9 (2): 67, 1994.
 227. Schmid‐Schonbein GW. Mechanisms causing initial lymphatics to expand and compress to promote lymph flow. Arch Histol Cytol 53 (Suppl): 107–114, 1990.
 228. Mazzoni MC, Skalak TC and Schmid‐Schonbein GW. Structure of lymphatic valves in the spinotrapezius muscle of the rat. Blood Vessels 24 (6): 304–312, 1987.
 229. McHale NG and Roddie IC. The effect of transmural pressure on pumping activity in isolated bovine lymphatic vessels. J Physiol 261 (2): 255–269, 1976.
 230. Armenio S, Cetta F, Tanzini G and Guercia C. Spontaneous contractility in the human lymph vessels. Lymphology 14 (4): 173–178, 1981.
 231. Armenio S, Cetta F, Tanzini G, Guercia C and Burroni F. [Spontaneous contractility of the lymphatic vessels in man] [Spanish]. Angilogia 33 (6): 325–327, 1981.
 232. Gashev AA, Orlov RS, Borisov AV, Kliuchin'ski T, Andreevskaya MV, Bubnova NA, Borisova RP, Andreev YA, Erofeev NP and Priklonskaya EG. The mechanisms of lymphangion interaction in the process of the lymph movement [Russian]. Fiziol Zh SSSR Im I M Sechenova 76 (11): 1489–1508, 1990.
 233. Gashev AA. The mechanism of the formation of a reverse fluid filling in the lymphangions [Russian]. Fiziol Zh SSSR Im I M Sechenova 77 (7): 63–69, 1991.
 234. Gashev AA, Orlov RS and Zawieja DC. Contractions of the lymphangion under low filling conditions and in absence of distension stimuli. A possibility of the suction effect [Russian]. Ross Fiziol Zh SSSR Im I M Sechenova 87 (1): 97–109, 2001.
 235. Gashev AA. Physiologic aspects of lymphatic contractile function: current perspectives. Ann N Y Acad Sci 979: 178–187, 2002, discussion 188‐96.
 236. Olszewski WL and Engeset A. Intrinsic contractility of prenodal lymph vessels and lymph flow in human leg. Am J Physiol Heart Circ Physiol 239 (6): H775–H783, 1980.
 237. Szabo G and Magyar Z. Pressure measurements in various parts of the lymphatic system. Acta Med Acad Sci Hung 23 (3): 237–241, 1967.
 238. Olszewski WL and Engeset A. Lymphatic contractions. N Engl J Med 300 (6): 316, 1979.
 239. Olszewski WL and Engeset A. Intrinsic contractility of leg lymphatics in man. Preliminary communication. Lymphology 12 (2): 81–84, 1979.
 240. Krylov VS, Milanov NO, Abalmasov KG, Sadovnikov VI and Pozharnov AS. [Endolymphatic pressure in the evaluation of the status of peripheral lymph flow in the extremities] [Russian]. Khirurgiia 6: 63–69, 1991.
 241. Zaugg‐Vesti B, Dorffler‐Melly J, Spiegel M, Wen S, Franzeck UK and Bollinger A. Lymphatic capillary pressure in patients with primary lymphedema. Microvasc Res 46 (2): 128–134, 1993.
 242. Franzeck UK, Fischer M, Costanzo U, Herrig I and Bollinger A. Effect of postural changes on human lymphatic capillary pressure of the skin. J Physiol 494 (Pt 2): 595–600, 1996.
 243. Tilney NL and Murray JE. Chronic thoracic duct fistula: operative technic and physiological effects in man. Ann Surg 167 (1): 1–8, 1968.
 244. Kinnaert P. Pressure measurements in the cervical portion of the thoracic duct in man. Br J Surg 60 (7): 558–561, 1973.
 245. Lee JS. Intestinal transudation, secretion, and lymph flow during volume expansion in the rat. Am J Physiol 244: G668–G674, 1983.
 246. Lee JS. Lymph flow during fluid absorption from rat jejunum. Am J Physiol 240: G312–G316, 1981.
 247. Smith R. Lymphatic contractility. A possible intrinsic mechanism of lymphatic vessels for the transport of lymph. J Exp Med 90: 497–509, 1949.
 248. Horstmann E. Beobachtungen zur Motorik der Lymphgefasse [German]. Pflugers Arch 269: 511–519, 1959.
 249. McHale NG and Roddie IC. Pumping activity in isolated segments of bovine mesenteric lymphatics. J Physiol 244 (1): 70P–72P, 1975.
 250. Orlov RS and Lobacheva TA. Intravascular pressure and spontaneous lymph vessels contractions [Russian]. Bull Exp Biol Med 83 (4): 392–394, 1977.
 251. Reddy NP and Staub NC. Intrinsic propulsive activity of thoracic duct perfused in anesthetized dogs. Microvasc Res 21 (2): 183–192, 1981.
 252. Hayashi A, Johnston MG, Nelson W, Hamilton S and McHale NG. Increased intrinsic pumping of intestinal lymphatics following hemorrhage in anesthetized sheep. Circ Res 60 (2): 265–272, 1987.
 253. Gashev AA. The pump function of the lymphangion and the effect on it of different hydrostatic conditions [Russian]. Fiziol Zh SSSR Im I M Sechenova 75 (12): 1737–1743, 1989.
 254. Eisenhoffer J, Lee S and Johnston MG. Pressure‐flow relationships in isolated sheep prenodal lymphatic vessels. Am J Physiol 267 (3 Pt 2): H938–H943, 1994.
 255. Gashev AA, Davis MJ, Delp MD and Zawieja DC. Regional variations of contractile activity in isolated rat lymphatics. Microcirculation 11 (6): 477–492, 2004.
 256. Mawhinney HJ and Roddie IC. Spontaneous activity in isolated bovine mesenteric lymphatics. J Physiol 229 (2): 339–348, 1973.
 257. Mislin H and Rathenow D. Eksperimentelle Untersuchungen uber die bewegungskoordination der Lymphangione [German]. Revue Suisse de Zoologie 69: 334–344, 1962.
 258. McHale NG and Meharg MK. Co‐ordination of pumping in isolated bovine lymphatic vessels. J Physiol 450: 503–512, 1992.
 259. Gashev AA and Zawieja DC. Lymphatic contractions: the role of distension mechanisms. FASEB J 13: A11, 1999.
 260. Dixon JB, Greiner ST, Gashev AA, Cote G, Moore J and Zawieja DC. Lymph flow, shear stress, and lymphocyte velocity in rat mesenteric prenodal lymphatics. Microcirculation 13 (7): 597–610, 2006.
 261. Gashev AA. Pumping function of lymphangion depending on various hydrostatic gradients [Russian]. Doklady Akademii Nauk SSSR 308 (5): 1261–1264, 1989.
 262. Nusbaum M, Baum S, Hedges RC and Blakemore WS. Roentgenographic and direct visualization of thoracic duct. Arch Surg 88 (1): 127–135, 1964.
 263. Campbell T and Heath T. Intrinsic contractility of lymphatics in sheep and in dogs. Q J Exp Physiol 58: 207–217, 1973.
 264. Orlov RS and Borisova RP. Contractions of the lymphatic vessels, their regulation and functional role. Vestnik Akademii Meditsinskikh Nauk SSSR(7): 74–83, 1982.
 265. Browse NL, Doig RL and Sizeland D. The resistance of a lymph node to lymph flow. J Physiol 208 (2): 77P–78P, 1970.
 266. Muthuchamy M, Gashev A, Boswell N, Dawson N and Zawieja D. Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J 17 (8): 920–922, 2003.
 267. Fleming I and Busse R. NO: the primary EDRF. J Mol Cell Cardiol 31 (1): 5–14, 1999.
 268. Vanhoutte PM. Say NO to ET. J Auton Nerv Syst 81 (1‐3): 271–277, 2000.
 269. Andrews KL, Triggle CR and Ellis A. NO and the vasculature: where does it come from and what does it do? Heart Fail Rev 7 (4): 423–445, 2002.
 270. Griffith TM. Endothelial control of vascular tone by nitric oxide and gap junctions: a haemodynamic perspective. Biorheology 39 (3‐4): 307–318, 2002.
 271. Gasheva OY, Zawieja DC and Gashev AA. Contraction‐initiated NO‐dependent lymphatic relaxation: a self‐regulatory mechanism in rat thoracic duct. J Physiol 575 (Pt 3): 821–832, 2006.
 272. Tsunemoto H, Ikomi F and Ohhashi T. Flow‐mediated release of nitric oxide from lymphatic endothelial cells of pressurized canine thoracic duct. Jpn J Physiol 53 (3): 157–163, 2003.
 273. Koller A, Mizuno R and Kaley G. Flow reduces the amplitude and increases the frequency of lymphatic vasomotion: role of endothelial prostanoids. Am J Physiol 277 (6 Pt 2): R1683–R1689, 1999.
 274. Granger DN and Barrowman JA. Gastrointestinal and liver edema. In: Edema, eds Staub NC and Taylor AE. New York: Raven Press, 1984, pp. 615–656.
 275. Gashev AA. and Zawieja DC. Comparison of the active lymph pumps of the rat thoracic duct and mesenteric lymphatics. 7th World Congress for Microcirculation. Sydney, Australia, 2001.
 276. McHale NG and Roddie IC. The effect of intravenous adrenaline and noradrenaline infusion of peripheral lymph flow in the sheep. J Physiol 341: 517–526, 1983.
 277. McHale NG and Roddie IC. The effects of catecholamines on pumping activity in isolated bovine mesenteric lymphatics. J Physiol 338: 527–536, 1983.
 278. Carleton HM and Florey HW. The mammalian lacteal: its histological structure and relation to its physiological properties. Proc Roy Soc Land B 102: 110–118, 1928.
 279. Furness JB. Arrangement of blood vessels and their relation with adrenergic nerves in the rat mesentery. J Anat 115: 347–364, 1973.
 280. Alessandrini C, Gerli R, Sacchi G, Ibba L, Pucci AM and Fruschelli C. Cholinergic and adrenergic innervation of mesenterial lymph vessels in guinea pig. Lymphology 14 (1): 1–6, 1981.
 281. Todd GL and Bernard GR. The sympathetic innervation in the cervical lymphatic duct of the dog. Anat Rec 177: 303–316, 1973.
 282. Ohhashi T, Kobayashi S, Tsukahara S and Azuma T. Innervation of bovine mesenteric lymphatics: from the histochemical point of view. Microvasc Res 24: 377–385, 1982.
 283. Guarna M, Pucci A, Alessandrini C, Volpi N, Fruschelli M, D'Antona D and Fruschelli C. Peptidergic innervation of mesenteric lymphatics in guinea pigs: an immunocytochemical and pharmacological study. Lymphology 24 (4): 161–167, 1991.
 284. Wang X, Wong W and Ling E. Studies of the lymphatic vessel‐associated neurons in the intestine of the guinea pig. J Anat 185 (Pt 1): 65–74, 1994.
 285. Ohhashi T, Olschowka JA and Jacobowitz DM. Vasoactive intestinal peptide inhibitory innervation in bovine mesenteric lymphatics. A histochemical and pharmacological study. Circ Res 53 (4): 535–538, 1983.
 286. Sacchi G, Weber E, Agliano M and Comparini L. Subendothelial nerve fibers in bovine mesenteric lymphatics: an ultrastructural and immunohistochemical study. Lymphology 27 (2): 90–96, 1994.
 287. Ichikawa S, Kasahara D, Iwanaga T, Uchino S and Fujita T. Peptidergic nerve terminals associated with the central lacteal lymphatics in the ileal villi of dogs. Arch Histol Cytol 54 (3): 311–320, 1991.
 288. Ichikawa S, Shiozawa M, Iwanaga T and Uchino S. Immunohistochemical demonstration of peptidergic nerve fibers associated with the central lacteal lymphatics in the duodenal villi of dogs. Arch Histol Cytol 54 (2): 241–248, 1991.
 289. McHale N. and Peripheral lymph flow during intravenous noradrenaline infusion in sheep. J Physiol; edited for The Physiological Society 334: 50, 1983.
 290. Mahe L, Chapelain B, Neliat G and Gargouil Y‐M. The Role of a‐ and b‐Adrenoceptors in the Response to Noradrenaline of Lymphatic Vessels Isolated from the Bovine Mesentery. Eur J Pharmacol 167: 31–39, 1989.
 291. Ohhashi T and Azuma T. Pre‐ and postjunctional alpha‐adrenoceptors at sympathetic neuroeffector junction in bovine mesenteric lymphatics. Microvasc Res 31 (1): 31–40, 1986.
 292. Benoit JN. Effects of alpha‐adrenergic stimuli on mesenteric collecting lymphatics in the rate. Am J Physiol 273 (1 Pt 2): R331–R336, 1997.
 293. Watanabe N, Kawai Y and Ohhashi T. Demonstration of both beta 1‐and beta 2‐adrenoceptors mediating negative chronotropic effects on spontaneous activity in isolated bovine mesenteric lymphatics. Microvasc Res 39 (1): 50–59, 1990.
 294. Allen JM, Iggulden HL and McHale NG. Beta‐adrenergic inhibition of bovine mesenteric lymphatics. J Physiol 374: 401–411, 1986.
 295. von der Weid P‐Y and van Helden DF. β‐Adrenoceptor‐mediated hyperpolarization in lymphatic smooth muscle of guinea pig mesentery. Am J Physiol 270 (5): H1687–H1695, 1996.
 296. Hollywood MA and McHale NG. Mediation of excitatory neurotransmission by the release of ATP and noradrenaline in sheep mesenteric lymphatic vessels. J Physiol 481 (Pt 2): 415–423, 1994.
 297. Zhao J and van Helden DF. ATP‐induced endothelium‐independent enhancement of lymphatic vasomotion in guinea‐pig mesentery involves P2X and P2Y receptors. Br J Pharmacol 137 (4): 477–487, 2002.
 298. Zawieja DC. Lymphatic microcirculation. Microcirculation 3 (2): 241–243, 1996.
 299. Amerini S, Ziche M, Greiner ST and Zawieja DC. Effects of substance P on mesenteric lymphatic contractility in the rat. Lymphat Res Biol 2 (1): 2–10, 2004.
 300. Foy W, Allen J, McKillop J, Goldsmith J, Johnston C and Buchanan K. Substance P and gastrin releasing peptide in bovine mesenteric lymphatic vessels: chemical characterization and action. Peptides 10 (3): 533–537, 1989.
 301. Hosaka K, Rayner SE, on der Weid P‐Y. Zhao J, Imtiaz MS and van Helden DF. Calcitonin gene‐related peptide activates different signaling pathways in mesenteric lymphatics of guinea pigs. Am J Physiol Heart Circ Physiol 290 (2): H813–H822, 2006.
 302. McHale NG, Roddie IC and Thornbury KD. Nervous modulation of spontaneous contractions in bovine mesenteric lymphatics. J Physiol 309: 461–472, 1980.
 303. Allen JM, McCarron JG, McHale NG and Thornbury KD. Release of [3 H]‐noradrenaline from the sympathetic nerves to bovine mesenteric lymphatic vessels and its modification by alpha‐agonists and antagonists. Br J Pharmacol 94 (3): 823–833, 1988.
 304. Marchetti C, Casasco A, Di Nucci A, Cornaglia AI, Reguzzoni M, Rosso S, Piovella F, Calligaro A and Polak JM. Immunolocalization of endothelin and nitric oxide‐synthase in lymphatic vessels and cultured lymphatic endothelial cells. Microvasc Res 53 (3): 282–285, 1997.
 305. Dabney JM, Buehn MJ and Dobbins DE. Perfused prenodal lymphatics are constricted by prostaglandins. Am J Physiol 260 (1 Pt 2): H1–H5, 1991.
 306. Johnston MG and Gordon JL. Regulation of lymphatic contractility by arachidonate metabolites. Nature 293 (5830): 294–297, 1981.
 307. Sjoberg T and Steen S. Contractile properties of lymphatics from the human lower leg. Lymphology 24 (1): 16–21, 1991.
 308. Takahashi N, Kawai Y and Ohhashi T. Effects of vasoconstrictive and vasodilative agents on lymphatic smooth muscles in isolated canine thoracic ducts. J Pharmacol Exp Ther 254 (1): 165–170, 1990.
 309. Bohlen HG. Protein kinase betall in Zucker obese rats compromises oxygen and flow‐mediated regulation of nitric oxide formation. Am J Physiol Heart Circ Physiol 286 (2): H492–H497, 2004.
 310. Fortes Z, Scivoletto R and Garcia‐Leme J. Endothelin‐1 induces potent constriction of lymphatic vessels in situ. Eur J Pharmacol 170 (1‐2): 69–73, 1989.
 311. Zhao J and van Helden DF. ET‐1‐associated vasomotion and vasospasm in lymphatic vessels of the guinea‐pig mesentery. Br J Pharmacol 140 (8): 1399–1413, 2003.
 312. Zawieja DC and Davis KL. Inhibition of the active lymph pump in rat mesenteric lymphatics by hydrogen peroxide. Lymphology 26 (3): 135–142, 1993.
 313. Zawieja DC, Greiner ST, Davis KL, Hinds WM and Granger HJ. Reactive oxygen metabolites inhibit spontaneous lymphatic contractions. Am J Physiol 260 (6 Pt 2): H1935–H1943, 1991.
 314. Ahlqvist J. Endocrine influences on lymphatic organs, immune responses, inflammation and autoimmunity. Acta Endocrinol Suppl (Copenh) 206: 3, 1976.
 315. Lelekova TV and Sanzhieva L. [Role of adrenoreceptors in the effect of thyroliberin on lymphatic vessels]. Ross Fiziol Zh Im I M Sechenova 90 (1): 32–39, 2004.
 316. Sanzhieva L, Lelekova TV and Ashmarin IP. [Direct and prolonged effect of thyroliberin in ultra small doses on contractility of the white rat mesentery lymphatic vessels]. Radiats Biol Radioecol 43 (3): 334–336, 2003.
 317. Shimanko II, Limarev VM, Ashmarin IP, Lelekova TV and Sanzhieva L. The use of thyrotropin‐releasing hormone in clinical practice as a lymphatic stimulator in the treatment of acute pancreatitis. Khirurgiia (Mosk) (1): 64–66, 1992.
 318. Lelekova TV, Sanzhieva L and Ashmarin IP. Thyrotrophin‐releasing hormone‐a powerful stimulator of lymphatic vessel contraction in rat mesentery. Biomed Sci 1 (1): 99, 1990.
 319. Lelekova TV, Romanovskii P, Aleksandrov PN and Ashmarin IP. [Effects of femto‐ and picomolar concentrations of thyroliberin and tuftsin on the contractile activity of lymphatic vessels of the rat mesentery]. Biull Eksp Biol Med 108 (7): 8–10, 1989.
 320. Papp M, Stark E, Foeldes J and Krasznai I. [The importance of the lymphatic circulation for the transport of thyroid gland hormone in experimental conditions]. Z Gesamte Exp Med 136: 169–173, 1962.
 321. Beilhack A and Rockson S. Immune traffic: a functional overview. Lymphat Res Biol 1 (3): 219–234, 2003.
 322. Randolph GJ. Dendritic cell migration to lymph nodes: cytokines, chemokines. and lipid mediators. Semin Immunol 13 (5): 267–274, 2001.
 323. Randolph GJ, Angeli V and Swartz MA. Dendritic‐cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol 5 (8): 617–628, 2005.
 324. Caux C, Ait‐Yahia S, Chemin K, de Bouteiller O, Dieu‐Nosjean M, Homey B, Massacrier C, Vanbervliet B, Zlotnik A and Vicari A. Dendritic cell biology and regulation of dendritic cell trafficking by chemokines. Springer Semin Immunopathol 22 (4): 345–369, 2000.
 325. Cumberbatch M, Dearman R, Griffiths C and Kimber I. Langerhans cell migration. Clin Exp Dermatol 25 (5): 413–418, 2000.
 326. Cyster J. Chemokines, sphingosine‐1‐phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23: 127–159, 2004.
 327. Gunn MD, Kyuwa S, Tam C, Kakiuchi T, Matsuzawa A, Williams LT and Nakano H. Mice lacking expression of secondary lymphoid organ chemokine have defects in lymphocyte homing and dendritic cell localization. J Exp Med 189 (3): 451–460, 1999.
 328. Iwasaki A and Kelsall BL. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)‐3α, MIP‐3β, and secondary lymphoid organ chemokine. J Exp Med 191 (8): 1381–1394, 2000.
 329. Jakob T, Ring J and Udey M. Multistep navigation of Langerhans/dendritic cells in and out of the skin. J Allergy Clin Immunol 108 (5): 688–696, 2001.
 330. Kimber I, Cumberbatch M, Dearman R, Bhushan M and Griffiths C. Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br J Dermatol 142 (3): 401–412, 2000.
 331. Romani N, Ratzinger G, Pfaller K, Salvenmoser W, Stossel H, Koch F and Stoitzner P. Migration of dendritic cells into lymphatics‐the Langerhans cell example: routes, regulation, and relevance. Jnt Rev Cytol 207: 237–270, 2001.
 332. Sozzani S, Allavena P, Vecchi A and Mantovani A. Chemokines and dendritic cell traffic. J Clin Immunol 20 (3): 151–160, 2000.
 333. Kriehuber E, Breiteneder‐Geleff S, Groeger M, Soleiman A, Schoppmann SF, Stingl G, Kerjaschki D and Maurer D. Isolation and characterization of dermal lymphatic and blood endothelial cells reveal stable and functionally specialized cell lineages. J Exp Med 194 (6): 797–808, 2001.
 334. Wigle JT, Harvey N, Detmar M, Lagutina I, Grosveld G, Gunn MD, Jackson DG and Oliver G. An essential role for Prox 1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 21 (7): 1505–1513, 2002.
 335. Gunn MD, Tangemann K, Tam C, Cyster JG, Rosen SD and Williams LT. A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive Tlymphocytes. PNAS 95 (1): 258–263, 1998.
 336. Fagarasan S, Shinkura R, Kamata T, Nogaki F, Ikuta K, Tashiro K and Honjo T. Alymphoplasia (aly)‐type nuclear factor {kappa}B‐inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut‐associated lymphatic tissue system. J Exp Med 191 (9): 1477–1486, 2000.
 337. Mancardi S, Vecile E, Dusetti N, Calvo E, Stanta G, Burrone OR and Dobrina A. Evidence of CXC, CC and C chemokine production by lymphatic endothelial cells. Immunology 108 (4): 523–530, 2003.
 338. Vicari A, Vanbervliet B, Massacrier C, Chiodoni C, Vaure C, Ait‐Yahia S, Dercamp C, Matsos F, Reynard O, Taverne C, Merle P, Colombo M, O'Garra A, Trinchieri G and Caux C. In vivo manipulation of dendritic cell migration and activation to elicit antitumour immunity. Novartis Found Symp 256: 241–254, 2004, discussion 254‐69.
 339. Saeki H, Moore AM, Brown MJ and Hwang ST. Cutting edge: secondary lymphoid‐tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. J Immunol 162 (5): 2472–2475, 1999.
 340. Hay J and Andrade W. Lymphocyte recirculation, exercise, and immune responses. Can J Physiol Pharmacol 76 (5): 490–496, 1998.
 341. McComb JG. Recent research into the nature of cerebrospinal fluid formation and absorption. J Neurosurg 59 (3): 369–383, 1983.
 342. Johnston M and Papaiconomou C. Cerebrospinal fluid transport: a lymphatic perspective. News Physiol Sci 17: 227–230, 2002.
 343. Zakharov A, Papaiconomou C, Koh L, Djenic J, Bozanovic‐Sosic R and Johnston M. Integrating the roles of extracranial lymphatics and intracranial veins in cerebrospinal fluid absorption in sheep. Microvasc Res 67 (1): 96–104, 2004.
 344. Osaka K, Handa H, Matsumoto S and Yasuda M. Development of the cerebrospinal fluid pathway in the normal and abnormal human embryos. Childs Brain 6 (1): 26–38, 1980.
 345. Calvo A, Hernandez P, Spagnuolo E and Johnston E. Surgical treatment of intracranial hypertension in encephalic cryptococcosis. Br J Neurosurg 17 (5): 450–455, 2003.
 346. Johnston M. The importance of lymphatics in cerebrospinal fluid transport. Lymphat Res Biol 1 (1): 41–44, 2003, discussion 45.
 347. Mollanji R, Papaiconomou C, Boulton M, Midha R and Johnston M. Comparison of cerebrospinal fluid transport in fetal and adult sheep. Am J Physiol Regul Integr Comp Physiol 281 (4): R1215–R1223, 2001.
 348. Bradbury MW. The blood‐brain barrier. Transport across the cerebral endothelium. Circ Res 57 (2): 213–222, 1985.
 349. Courtice FC and Simmonds WJ. The removal of protein from the subarachnoid space. Aust J Exp Biol Med Sci 29 (4): 255–263, 1951.
 350. Bradbury MWB and Westrop RJ. Factors influencing exit of substances from cerebrospinal fluid into deep cervical lymph of the rabbit. J Physiol 339: 519–534, 1983.
 351. Kida S, Pantazis A and Weller RO. CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 19 (6): 480–488, 1993.
 352. Boulton M, Young A, Hay J, Armstrong D, Flessner M, Schwartz M and Johnston M. Drainage of CSF through lymphatic pathways and arachnoid villi in sheep: measurement of 125I‐albumin clearance. Neuropathol Appl Neurobiol 22 (4): 325–333, 1996.
 353. Boulton M, Flessner M, Armstrong D, Hay J and Johnston M. Lymphatic drainage of the CNS: effects of lymphatic diversion/ligation on CSF protein transport to plasma. Am J Physiol 272 (5 Pt 2): R1613–R1619, 1997.
 354. Boulton M, Armstrong D, Flessner M, Hay J, Szalai JP and Johnston M. Raised intracranial pressure increases CSF drainage through arachnoid villi and extracranial lymphatics. Am J Physiol 275 (3 Pt 2): R889–R896, 1998.
 355. Mollanji R, Bozanovic‐Sosic R, Silver I, Li B, Kim C, Midha R and Johnston M. Intracranial pressure accommodation is impaired by blocking pathways leading to extracranial lymphatics. Am J Physiol Regul Integr Comp Physiol 280 (5): R1573–R1581, 2001.
 356. Silver I, Kim C, Mollanji R and Johnston M. Cerebrospinal fluid outflow resistance in sheep: impact of blocking cerebrospinal fluid transport through the cribriform plate. Neuropathol Appl Neurobiol 28 (1): 67–74, 2002.
 357. Mollanji R, Bozanovic‐Sosic R, Zakharov A, Makarian L and Johnston MG. Blocking cerebrospinal fluid absorption through the cribriform plate increases resting intracranial pressure. Am J Physiol Regul Integr Comp Physiol 282 (6): R1593–R1599, 2002.
 358. Johnston M, Zakharov A, Papaiconomou C, Salmasi G and Armstrong D. Evidence of connections between cerebrospinal fluid and nasal lymphatic vessels in humans, non‐human primates and other mammalian species. Cerebrospinal Fluid Res 1 (1): 2, 2004.
 359. Papaiconomou C, Zakharov A, Azizi N, Djenic J and Johnston M. Reassessment of the pathways responsible for cerebrospinal fluid absorption in the neonate. Childs Nerv Syst 20 (1): 29–36, 2004.
 360. Zakharov A, Papaiconomou C, Djenic J, Midha R and Johnston M. Lymphatic cerebrospinal fluid absorption pathways in neonatal sheep revealed by subarachnoid injection of Microfil. Neuropathol Appl Neurobiol 29 (6): 563–573, 2003.
 361. Zakharov A, Papaiconomou C and Johnston M. Lymphatic vessels gain access to cerebrospinal fluid through unique association with olfactory nerves. Lymphat Res Biol 2 (3): 139–146, 2004.
 362. Borgstrom B and Laurell CB. Studies of lymph and lymph‐proteins during absorption of fat and saline by rats. Acta Physiol Scand 29 (2‐3): 264–280, 1953.
 363. Simmonds WJ. The effect of fluid, electrolyte and food intake on thoracic duct lymph flow in unanaesthetized rats. Aust J Exp Biol 32: 285–300, 1954.
 364. Miura S, Sekizuka E, Nagata H, Oshio C, Minamitani H, Suematsu M, Suzuki M, Hamada Y, Kobayashi K, Asakura H, et al. Increased lymphocyte transport by lipid absorption in rat mesenteric lymphatics. Am J Physiol 253 (5 Pt 1): G596–G600, 1987.
 365. Rothkotter HJ, Hriesik C and Pabst R. Many newly formed T lymphocytes leave the small intestinal mucosa via lymphatics. Adv Exp Med Biol 355: 261–263, 1994.
 366. Husband AJ and Dunkley ML. Lack of site of origin effects on distribution of IgA antibody‐containing cells. Immunology 54 (2): 215–221, 1985.
 367. Kovi J, Duong HD and Hoang CT. Ultrastructure of intestinal lymphatics in Crohn's disease. Am J Clin Pathol 76 (4): 385–394, 1981.
 368. Robb‐Smith ATH. Symposium on Crohn's Disease. Proc Roy Soc Med 64: 157–167, 1971.
 369. Heatley RV, Bolton PM, Hughes LE and Owen EW. Mesenteric lymphatic obstruction in Crohn's disease. Digestion 20 (5): 307–313, 1980.
 370. Kalima TV, Saloniemi H and Rahko T. Experimental regional enteritis in pigs. Scand J Gastroenterol 11 (4): 353–362, 1976.
 371. Reichert FL and Mathes ME. Experiental lymphedema of the intestinal tract and its relation to regional cicatrizing enteritis. Ann Surg 104: 601–616, 1936.
 372. Mooney EE, Walker J and Hourihane DO. Relation of granulomas to lymphatic vessels in Crohn's disease. J Clin Pathol 48 (4): 335–338, 1995.
 373. Fogt F, Pascha TL, Zhang PJ, Gausas RE, Rahemtulla A and Zimmerman RL. Proliferation of D2‐40‐expressing intestinal lymphatic vessels in the lamina propria in inflammatory bowel disease. Int J Mol Med 13 (2): 211–214, 2004.
 374. Kaiserling E, Krober S and Geleff S. Lymphatic vessels in the colonic mucosa in ulcerative colitis. Lymphology 36 (2): 52–61, 2003.
 375. Geleff S, Schoppmann SF and Oberhuber G. Increase in podoplanin‐expressing intestinal lymphatic vessels in inflammatory bowel disease. Virchows Arch 442 (3): 231–237, 2003.
 376. Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla‐Herttuala S, Jackson DG, Alitalo K and McDonald DM. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115 (2): 247–257, 2005.
 377. Mouta C and Heroult M. Inflammatory triggers of lymphangiogenesis. Lymphat Res Biol 1 (3): 201–218, 2003.
 378. Tonelli P. New developments in Crohn's disease: solution of doctrinal mysteries and reinstatement as a surgically treatable disease. 1. The process is not a form of enteritis but lymphedema contaminated by intestinal contents. Chir Ital 52 (2): 109–121, 2000.
 379. Wu TF, Carati CJ, Macnaughton WK and von der Weid PY. Contractile activity of lymphatic vessels is altered in the TNBS model of guinea pig ileitis. Am J Physiol Gastrointest Liver Physiol 291 (4): G566–G574, 2006.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

David C Zawieja, Pierre‐Yves von der Weid, Anatoliy A Gashev. Microlymphatic Biology. Compr Physiol 2011, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation: 125-158. First published in print 2008. doi: 10.1002/cphy.cp020405