Comprehensive Physiology Wiley Online Library

Receptor‐Mediated Events in the Microcirculation

Full Article on Wiley Online Library



Abstract

The sections in this article are:

1 Adrenergic Receptors
1.1 Physiological Actions in the Microcirculation
1.2 Transduction Mechanisms
1.3 β3‐Adrenoceptor
1.4 Regulation
2 Dopamine Receptors
2.1 Transduction Mechanisms
3 5‐Hydroxytryptamine Receptors
3.1 Physiological Action in the Microcirculation
3.2 Transduction Mechanisms
3.3 Regulation
4 Muscarinic Receptors
4.1 Transduction Mechanisms and Functional Responses
4.2 Muscarinic Receptors in the Microcirculation
4.3 Responses to ACh and Muscarinic Receptor
4.4 Muscarinic Regulation of the In Vivo Microcirculation
5 Ang II Receptors
5.1 The AT1 Receptor
5.2 The AT2 Receptor
5.3 AT4 Receptors and Other Peptide Products of ANG II
5.4 ANG II Receptors in the Microcirculation
5.5 Effects on Vessel Tone
5.6 Microvessel Density (MVD) and Structure
6 Arginine Vasopressin Receptors
6.1 Physiological Actions in the Microcirculation
6.2 Transduction Mechanisms
6.3 Regulation
7 Endothelin Receptors
7.1 Physiological Actions in the Microcirculation
7.2 Transduction Mechanisms
7.3 Regulation
8 Adrenomedullin/CGRP Receptors
8.1 Physiological Actions in the Microcirculation
8.2 Transduction Mechanisms
8.3 Regulation
9 Adenosine Receptors
9.1 Adenosine Receptors in the Microcirculation
9.2 Other Actions of Adenosine in the Microcirculation
10 Purinergic Receptors
10.1 Receptor Expression and Signal Transduction
10.2 Effects of Purines on the Microcirculation
11 Kinin Receptors
11.1 Physiological Actions in the Microcirculation
11.2 Transduction Mechanisms
11.3 Regulation
12 Histamine Receptors
12.1 Physiological Actions in the Microcirculation
12.2 Transduction Mechanisms
12.3 Regulation
13 Eicosanoid Receptors
13.1 Prostanoids
13.2 Transduction Mechanisms
13.3 Other Arachidonic Acid Metabolites
13.4 Physiological Effects of Eicosanoids in the Microcirculation
13.5 Permeability, Leukocyte Adhesion, and Platelet Aggregation
14 Growth Factor Receptors
14.1 Physiological Actions in the Microcirculation
14.2 Transduction Mechanisms
14.3 Regulation
Figure 1. Figure 1.

Epinephrine and norepinephrine synthesis pathway.

Figure 2. Figure 2.

Adrenergic receptor subtypes, actions, and transduction mechanisms.

Figure 3. Figure 3.

Subtypes, actions, and transduction mechanisms of dopamine receptors.

Figure 4. Figure 4.

Serotonin receptor subtypes, actions, and transduction mechanisms.

Figure 5. Figure 5.

Subtypes, actions, and transduction mechanisms for muscarinic receptors.

Figure 6. Figure 6.

Angiotensin II receptor subtypes, transduction mechanisms, and actions.

Figure 7. Figure 7.

Vasopressin receptor subtypes, actions, and transduction mechanisms.

Figure 8. Figure 8.

Subtype, actions, and transduction mechanisms of endothelin receptors.

Figure 9. Figure 9.

Actions, transduction mechanisms, and RAMP partners for CGRP receptors.

Figure 10. Figure 10.

Adenosine receptor subtypes, actions, and transduction mechanisms.

Figure 11. Figure 11.

Purinergic receptor classes, actions, and transduction mechanisms.

Figure 12. Figure 12.

Kinin receptor subtypes, actions, and transduction mechanisms.

Figure 13. Figure 13.

Histamine receptor subtypes, actions, and transduction mechanisms.

Figure 14. Figure 14.

Eicosanoid receptor types, actions, and transduction mechanisms.



Figure 1.

Epinephrine and norepinephrine synthesis pathway.



Figure 2.

Adrenergic receptor subtypes, actions, and transduction mechanisms.



Figure 3.

Subtypes, actions, and transduction mechanisms of dopamine receptors.



Figure 4.

Serotonin receptor subtypes, actions, and transduction mechanisms.



Figure 5.

Subtypes, actions, and transduction mechanisms for muscarinic receptors.



Figure 6.

Angiotensin II receptor subtypes, transduction mechanisms, and actions.



Figure 7.

Vasopressin receptor subtypes, actions, and transduction mechanisms.



Figure 8.

Subtype, actions, and transduction mechanisms of endothelin receptors.



Figure 9.

Actions, transduction mechanisms, and RAMP partners for CGRP receptors.



Figure 10.

Adenosine receptor subtypes, actions, and transduction mechanisms.



Figure 11.

Purinergic receptor classes, actions, and transduction mechanisms.



Figure 12.

Kinin receptor subtypes, actions, and transduction mechanisms.



Figure 13.

Histamine receptor subtypes, actions, and transduction mechanisms.



Figure 14.

Eicosanoid receptor types, actions, and transduction mechanisms.

References
 1. Fleming BP. Innervation of the microcirculation. J Reconstr Microsurg 4: 237–240, 1988.
 2. Luff SE. Ultrastructure of sympathetic axons and their structural relationship with vascular smooth muscle. Anat Embryol (Berl) 193: 515–531, 1996.
 3. Tsuru H, Tanimitsu N and Hirai T. Role of perivascular sympathetic nerves and regional differences in the features of sympathetic innervation of the vascular system. Jpn J Pharmacol 88: 9–13, 2002.
 4. Young MA, Knight DR and Vatner SF. Autonomic control of large coronary arteries and resistance vessels. Prog Cardiovasc Dis 30: 211–234, 1987.
 5. Christ GJ. Modulation of alpha 1‐adrenergic contractility in isolated vascular tissues by heptanol: a functional demonstration of the potential importance of intercellular communication to vascular response generation. Life Sci 56: 709–721, 1995.
 6. Hill CE, Phillips JK and Sandow SL. Heterogeneous control of blood flow amongst different vascular beds. Med Rex Rev 21: 1–60, 2001.
 7. Anderson RL, Gibbins IL and Morris JL. Non‐noradrenergic sympathetic neurons project to extramuscular feed arteries and proximal intramuscular arteries of skeletal muscles in guinea‐pig hindlimbs. J Auton New Syst 61: 51–60, 1996.
 8. Anderson CR and McLachlan EM. The time course of the development of the sympathetic innervation of the vasculature of the rat tail. J Auton Nerv Syst 35: 117–132, 1991.
 9. Briggs L, Garcia JH, Conger KA, Pinto DM, Geer JC and Hollander W. Innervation of brain intraparenchymal vessels in subhuman primates: ultrastructural observations. Stroke 16: 297–301, 1985.
 10. Argyle SA and McGrath JC. An alpha(1A)/alpha(1L)‐adrenoceptor mediates contraction of canine subcutaneous resistance arteries. J Pharmacol Exp Ther 295: 627–633, 2000.
 11. Baines AD. Is there a role for renal alpha2‐adrenoceptors in the pathogenesis of hypertension? Can J Physiol Pharmacol 65: 1638–1643, 1987.
 12. Baraka A, Haroun S, Baroody M, Nawfal M and Sibai A. Action of adrenergic agonists on resistance N capacitance vessels during cardiopulmonary bypass. J Cardiothorac Anesth 3: 193–195, 1989.
 13. Belloli C, Badino P, Arioli F, Odore R and Re G. Adrenergic regulation of vascular smooth muscle tone in calf digital artery. J Vet Pharmacol Ther 27: 247–254, 2004.
 14. Bockman CS, Jeffries WB and Abel PW. Binding and functional characterization of alpha‐2 adrenergic receptor subtypes on pig vascular endothelium. J Pharmacol Exp Ther 267: 1126–1133, 1993.
 15. Chen DC, Duckles SP and Krause DN. Postjunctional alpha2‐adrenoceptors in the rat tail artery: effect of sex and castration. Eur J Pharmacol 372: 247–252, 1999.
 16. Chilian WM. Adrenergic vasomotion in the coronary microcirculation. Basic Res Cardiol 85 (Suppl 1): 111–120, 1990.
 17. Chilian WM. Functional distribution of alpha1‐ and alpha2‐adrenergic receptors in the coronary microcirculation. Circulation 84: 2108–2122, 1991.
 18. Cooke JP, Creager SJ, Scales KM, Ren C, Tsapatsaris NP, Beetham WP, Jr and Creager MA. Role of digital artery adrenoceptors in Raynaud's disease. Vasc Med 2: 1–7, 1997.
 19. De Leeuw PW, van Es PN, de Bos R and Birkenhager WH. Role of alpha 1 ‐ and alpha 2‐adrenergic receptors in the human hypertensive kidney. Hypertension 9: III210–III212, 1987.
 20. Dessy C, Moniotte S, Ghisdal P, Havaux X, Noirhomme P and Balligand JL. Endothelial beta3‐adrenoceptors mediate vasorelaxation of human coronary microarteries through nitric oxide and endothelium‐dependent hyperpolarization. Circulation 110: 948–954, 2004.
 21. Dunn WR, McGrath JC and Wilson VG. Postjunctional alpha‐adrenoceptors in the rabbit isolated distal saphenous artery: indirect sensitivity to prazosin of responses to noradrenaline mediated via postjunctional alpha 2‐adrenoceptors. Br J Pharmacol 103: 1484–1492, 1991.
 22. Feigl EO. Neural control of coronary blood flow. J Vasc Res 35: 85–92, 1998.
 23. Ferrer M and Osol G. Estrogen replacement modulates resistance artery smooth muscle and endothelial alpha2‐adrenoceptor reactivity. Endothelium 6: 133–141, 1998.
 24. Freedman RR, Baer RP and Mayes MD. Blockade of vasospastic attacks by alpha2‐adrenergic but not alpha1‐adrenergic antagonists in idiopathic Raynaud's disease. Circulation 92: 1448–1451, 1995.
 25. Struijker‐Boudier HA, Messing MW and van Essen H. Alpha‐adrenergic reactivity of the microcirculation in conscious spontaneously hypertensive rats. Mol Cell Biochem 157: 239–244, 1996.
 26. Toda N. Responsiveness of isolated monkey coronary arteries contracted with alpha 1‐ and alpha 2‐adrenoceptor agonists to diltiazem. Eur J Pharmacol 147: 291–293, 1988.
 27. Bylund DB, Regan JW, Faber JE, Hieble JP, Triggle CR and Ruffolo RR, Jr. Vascular alpha‐adrenoceptors: from the gene to the human. Can J Physiol Pharmacol 73: 533–543, 1995.
 28. Civantos CB and Aleixandre DA. Alpha‐adrenoceptor subtypes. Pharmacol Res 44: 195–208, 2001.
 29. Guimaraes S and Moura D. Vascular adrenoceptors: an update. Pharmacol Rev 53: 319–356, 2001.
 30. Holtz J. Alpha‐adrenoceptor subtypes in the coronary circulation. Basic Res Cardiol 85 (Suppl 1): 81–95, 1990.
 31. Zacharia J, Hillier C and MacDonald A. Alpha 1‐adrenoceptor subtypes involved in vasoconstrictor responses to exogenous and neurally released noradrenaline in rat femoral resistance arteries. Br J Pharmacol 141: 915–924, 2004.
 32. Haug SJ, Welsh DG and Segal SS. Sympathetic nerves inhibit conducted vasodilatation along feed arteries during passive stretch of hamster skeletal muscle. J Physiol 552: 273–282, 2003.
 33. Fukui D, Yang XP and Chiba S. Neurogenic double‐peaked vasoconstriction of human gastroepiploic artery is mediated by both alpha1‐and alpha2‐adrenoceptors. Br J Pharmacol 144: 737–742, 2005.
 34. Gauthier C, Langin D and Balligand JL. Beta3‐adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21: 426–431, 2000.
 35. Hillman J and Lundvall J. Classification of beta‐adrenoceptors in the microcirculation of skeletal muscle. Acta Physiol Scand 113: 67–71, 1981.
 36. Nakane T, Tsujimoto G, Hashimoto K and Chiba S. Beta adrenoceptors in the canine large coronary arteries: beta‐1 adrenoceptors predominate in vasodilation. J Pharmacol Exp Ther 245: 936–943, 1988.
 37. Steinberg SF, Jaffe EA and Bilezikian JP. Endothelial cells contain beta adrenoceptors. Naunyn Schmiedebergs Arch Pharmacol 325: 310–313, 1984.
 38. Sun D, Huang A, Mital S, Kichuk MR, Marboe CC, Addonizio LJ, Michler RE, Koller A, Hintze TH and Kaley G. Norepinephrine elicits beta2‐receptor‐mediated dilation of isolated human coronary arterioles. Circulation 106: 550–555, 2002.
 39. Hawrylyshyn KA, Michelotti GA, Coge F, Guenin S‐P and Schwinn DA. Update on human a1‐adrenoceptor subtype signaling and genomic organization. Trends Pharmacol Sci 25: 449–455, 2004.
 40. Wier WG and Morgan KG. Alpha 1‐adrenergic signaling mechanisms in contraction of resistance arteries. Rev Physiol Biochem Pharmacol 150: 91–139, 2003.
 41. Blayney LM, Gapper PW and Newby AC. Vasoconstrictor agonists activate G‐protein‐dependent receptor‐operated calcium channels in pig aortic microsomes. Biochem J 282 (Pt 1): 81–84, 1992.
 42. Chiu AT, MCCall DE and Timmermans PB. Pharmacological characteristics of receptor‐operated and potential‐operated Ca2+ channels in rat aorta. Eur J Pharmacol 127: 1–8, 1986.
 43. Lee JY, Warner RB, Brune ME and DeBernardis JF. Calcium‐induced vasocontractions after alpha‐2 adrenergic receptor activation in the dog saphenous vein: comparison to calcium‐induced contractions after potassium‐depolarization. Gen Pharmacol 21: 647–654, 1990.
 44. Pucovsky V, Gordienko DV and Bolton TB. Effect of nitric oxide donors and noradrenaline on Ca2+ release sites and global intracellular Ca2+ in myocytes from guinea‐pig small mesenteric arteries. J Physiol 539: 25–39, 2002.
 45. Erami C, Zhang H, Ho JG, French DM and Faber JE. Alpha(1)‐adrenoceptor stimulation directly induces growth of vascular wall in vivo. Am J Physiol Heart Circ Physiol 283: H1577–H1587, 2002.
 46. Zhang H and Faber JE. Trophic effect of norepinephrine on arterial intima‐media and adventitia is augmented by injury and mediated by different alpha 1‐adrenoceptor subtypes. Circ Res 89: 815–822, 2001.
 47. Salomonsson M, Oker M, Kim S, Zhang H, Faber JE and Arendshorst WJ. Alpha 1‐adrenoceptor subtypes on rat afferent arterioles assessed by radioligand binding and RT‐PCR. Am J Physiol Renal Physiol 281: F172–F178, 2001.
 48. Yang XP and Chiba S. Existence of different alpha(1)‐adrenoceptor subtypes in junctional and extrajunctional neurovascular regions in canine splenic arteries. Br J Pharmacol 132: 1852–1858, 2001.
 49. Piascik MT, Hrometz SL, Edelmann SE, Guarino RD, Hadley RW and Brown RD. Immunocytochemical localization of the alpha‐1B adrenergic receptor and the contribution of this and the other subtypes to vascular smooth muscle contraction: analysis with selective ligands and antisense oligonucleotides. J Pharmacol Exp Ther 283: 854–868, 1997.
 50. Piascik MT, Smith MS, Soltis EE and Perez DM. Identification of the mRNA for the novel alpha 1D‐adrenoceptor and two other alpha 1‐adrenoceptors in vascular smooth muscle. Mol Pharmacol 46: 30–40, 1994.
 51. Chalothorn D, McCune DF, Edelmann SE, Tobita K, Keller BB, Lasley RD, Perez DM, Tanoue A, Tsujimoto G, Post GR and Piascik MT. Differential cardiovascular regulatory activities of the alpha 1B‐ and alpha 1D‐adrenoceptor subtypes. J Pharmacol Exp Ther 305: 1045–1053, 2003.
 52. Rokosh DG and Simpson PC. Knockout of the alpha 1A/C‐adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci USA 99: 9474–9479, 2002.
 53. Tanoue A, Koshimizu TA and Tsujimoto G. Transgenic studies of alpha(1)‐adrenergic receptor subtype function. Life Sci 71: 2207–2215, 2002.
 54. Philipp M, Brede M and Hein L. Physiological significance of alpha(2)‐adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283: R287–R295, 2002.
 55. Carter RW and Kanagy NL. Tyrosine kinases regulate intracellular calcium during alpha(2)‐adrenergic contraction in rat aorta. Am J Physiol Heart Circ Physiol 283: H1673–H1680, 2002.
 56. Lee JY and DeBernardis JF. Alpha 2‐adrenergic receptors and calcium: alpha 2‐receptor blockade in vascular smooth muscle as an approach to the treatment of hypertension. Methods Find Exp Clin Pharmacol 12: 213–225, 1990.
 57. McNeill AM, Leslie FM, Krause DN and Duckles SP. Gender difference in levels of alpha2‐adrenoceptor mRNA in the rat tail artery. Eur J Pharmacol 366: 233–236, 1999.
 58. Phillips JK, Vidovic M and Hill CE. Variation in mRNA expression of alpha‐adrenergic, neurokinin and muscarinic receptors amongst four arteries of the rat. J Auton Nerv Syst 62: 85–93, 1997.
 59. Xu K and Han C. Quantification of mRNAs for three alpha 1‐adrenoceptor subtypes in rat aorta by solution hybridization. Life Sci 59: L343–L347, 1996.
 60. Bockman CS, Gonzalez‐Cabrera I and Abel PW. Alpha‐2 adrenoceptor subtype causing nitric oxide‐mediated vascular relaxation in rats. J Pharmacol Exp Ther 278: 1235–1243, 1996.
 61. Ishibashi Y, Duncker DJ and Bache RJ. Endogenous nitric oxide masks alpha 2‐adrenergic coronary vasoconstriction during exercise in the ischemic heart. Circ Res 80: 196–207, 1997.
 62. Zou AP and Cowley AW, Jr. Alpha(2)‐adrenergic receptor‐mediated increase in NO production buffers renal medullary vasoconstriction. Am J Physiol Regul Integr Comp Physiol 279: R769–R777, 2000.
 63. Jones CJ, DeFily DV, Patterson JL and Chilian WM. Endothelium‐dependent relaxation competes with alpha 1‐ and alpha 2‐adrenergic constriction in the canine epicardial coronary microcirculation. Circulation 87: 1264–1274, 1993.
 64. Vanhoutte PM. Endothelial adrenoceptors. J Cardiovasc Pharmacol 38: 796–808, 2001.
 65. Arner M, Hogestatt ED and Andersson KE. Effects of nimodipine, Bay K 8644 and pinacidil on alpha1‐ and alpha2‐adrenoceptor‐mediated vasoconstriction in human hand veins. Acta Physiol Scand 133: 417–422, 1988.
 66. Lepretre N and Mironneau J. Alpha 2‐adrenoceptors activate dihydropyridine‐sensitive calcium channels via Gi‐proteins and protein kinase C in rat portal vein myocytes. Pflugers Arch 429: 253–261, 1994.
 67. Nielsen H, Mortensen FV and Mulvany MJ. Differential distribution of postjunctional alpha 2 adrenoceptors in human omental small arteries. J Cardiovasc Pharmacol 16: 34–40, 1990.
 68. McGillivray‐Anderson KM and Faber JE. Effect of acidosis on contraction of microvascular smooth muscle by alpha 1‐ and alpha 2‐adrenoceptors. Implications for neural and metabolic regulation. Circ Res 66: 1643–1657, 1990.
 69. Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS and Kobilka BK. Cardiovascular regulation in mice lacking alpha2‐adrenergic receptor subtypes b and c. Science 273: 803–805, 1996.
 70. Duka I, Gavras I, Johns C, Handy DE and Gavras H. Role of the postsynaptic alpha(2)‐adrenergic receptor subtypes in catecholamine‐induced vasoconstriction. Gen Pharmacol 34: 101–106, 2000.
 71. Faber JE, Yang N and Xin X. Expression of alpha‐adrenoceptor subtypes by smooth muscle cells and adventitial fibroblasts in rat aorta and in cell culture. J Pharmacol Exp Ther 298: 441–452, 2001.
 72. Richman JG and Regan JW. Alpha 2‐adrenergic receptors increase cell migration and decrease F‐actin labeling in rat aortic smooth muscle cells. Am J Physiol 274: C654–C662, 1998.
 73. Asano Y, Koehler RC, Kawaguchi T and McPherson RW. Pial arteriolar constriction to alpha 2‐adrenergic agonist dexmedetomidine in the rat. Am J Physiol 272: H2547–H2556, 1997.
 74. Bolli P, Erne P, Kiowski W, Amman FW and Buhler FR. The adrenaline‐alpha 2‐adrenoceptor‐mediated vasoconstrictor axis. Clin Sci (Lond) 68 (Suppl 10): 141s–146s, 1985.
 75. Jarajapu YP, Coats P, McGrath JC, MacDonald A and Hillier C. Increased alpha(1)‐ and alpha(2)‐adrenoceptor‐mediated contractile responses of human skeletal muscle resistance arteries in chronic limb ischemia. Cardiovasc Res 49: 218–225, 2001.
 76. Taddei S, Salvetti A and Pedrinelli R. Further evidence for the existence of alpha 2‐mediated adrenergic vasoconstriction in human vessels. Eur J Clin Pharmacol 34: 407–410, 1988.
 77. Bolli P, Erne P, Ji BH, Block LH, Kiowski W and Buhler FR. Adrenaline induces vasoconstriction through post‐junctional alpha 2 adrenoceptors and this response is enhanced in patients with essential hypertension. J Hypertens Suppl 2: S115–S118, 1984.
 78. Bodmer CW, Schaper NC, Janssen M, De Leeuw PW and Williams G. Selective enhancement of alpha 2‐adrenoceptor‐mediated vasoconstriction in insulin‐dependent diabetic patients with microalbuminuria. Clin Sci (Lond) 88: 421–426, 1995.
 79. Handy DE, Johns C, Bresnahan MR, Tavares A, Bursztyn M and Gavras H. Expression of alpha2‐adrenergic receptors in normal and atherosclerotic rabbit aorta. Hypertension 32: 311–317, 1998.
 80. Snapir A, Mikkelsson J, Perola M, Penttila A, Scheinin M and Karhunen PJ. Variation in the alpha2B‐adrenoceptor gene as a risk factor for prehospital fatal myocardial infarction and sudden cardiac death. J Am Coll Cardiol 41: 190–194, 2003.
 81. Heinonen P, Jartti L, Jarvisalo MJ, Pesonen U, Kaprio JA, Ronnemaa T, Raitakari OT and Scheinin M. Deletion polymorphism in the alpha2B‐adrenergic receptor gene is associated with flow‐mediated dilatation of the brachial artery. Clin Sci (Lond) 103: 517–524, 2002.
 82. Bailey SR, Eid AH, Mitra S, Flavahan S and Flavahan NA. Rho kinase mediates cold‐induced constriction of cutaneous arteries: role of alpha2C‐adrenoceptor translocation. Circ Res 94: 1367–1374, 2004.
 83. Chotani MA, Flavahan S, Mitra S, Daunt D and Flavahan NA. Silent alpha(2C)‐adrenergic receptors enable cold‐induced vasoconstriction in cutaneous arteries. Am J Physiol Heart Circ Physiol 278: H1075–H1083, 2000.
 84. Chotani MA, Mitra S, Su BY, Flavahan S, Eid AH, Clark KR, Montague CR, Paris H, Handy DE and Flavahan NA. Regulation of alpha(2)‐adrenoceptors in human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 286: H59–H67, 2004.
 85. Jeyaraj SC, Chotani MA, Mitra S, Gregg HE, Flavahan NA and Morrison KJ. Cooling evokes redistribution of alpha2C‐adrenoceptors from Golgi to plasma membrane in transfected human embryonic kidney 293 cells. Mol Pharmacol 60: 1195–1200, 2001.
 86. Faber JE. Effect of local tissue cooling on microvascular smooth muscle and postjunctional alpha 2‐adrenoceptors. Am J Physiol 255: H121–H130, 1988.
 87. Lindblad LE and Ekenvall L. Alpha 2‐adrenoceptor inhibition in patients with vibration white fingers. Kurume Med J 37 (Suppl): S95–S99, 1990.
 88. Briones AM, Daly CJ, Jimenez‐Altayo F, Martinez‐Revelles S, Gonzalez JM, McGrath JC and Vila E. Direct demonstration of beta1‐ and evidence against beta2‐ and beta3‐adrenoceptors, in smooth muscle cells of rat small mesenteric arteries. Br J Pharmacol 146: 679–691, 2005.
 89. Chruscinski A, Brede ME, Meinel L, Lohse MJ, Kobilka BK and Hein L. Differential distribution of beta‐adrenergic receptor subtypes in blood vessels of knockout mice lacking beta(1)‐ or beta(2)‐adrenergic receptors. Mol Pharmacol 60: 955–962, 2001.
 90. Wellstein A, Belz GG and Palm D. Beta adrenoceptor subtype binding activity in plasma and beta blockade by propranolol and beta‐1 selective bisoprolol in humans. Evaluation with Schild‐plots. J Pharmacol Exp Ther 246: 328–337, 1988.
 91. Dawes M, Chowienczyk PJ and Ritter JM. Effects of inhibition of the 1‐arginine/nitric oxide pathway on vasodilation caused by beta‐adrenergic agonists in human forearm. Circulation 95: 2293–2297, 1997.
 92. Garovic VD, Joyner MJ, Dietz NM, Boerwinkle E and Turner ST. Beta(2)‐adrenergic receptor polymorphism and nitric oxide‐dependent forearm blood flow responses to isoproterenol in humans. J Physiol 546: 583–589, 2003.
 93. Barbe P, Millet L, Galitzky J, Lafontan M and Berlan M. In situ assessment of the role of the beta 1‐, beta 2‐ and beta 3‐adrenoceptors in the control of lipolysis and nutritive blood flow in human subcutaneous adipose tissue. Br J Pharmacol 117: 907–913, 1996.
 94. Blaak EE, van Baak MA, Kemerink GJ, Pakbiers MT, Heidendal GA and Saris WH. Total forearm blood flow as an indicator of skeletal muscle blood flow: effect of subcutaneous adipose tissue blood flow. Clin So (Lond) 87: 559–566, 1994.
 95. Meredith IT, Currie KE, Anderson TJ, Roddy MA, Ganz P and Creager MA. Postischemic vasodilation in human forearm is dependent on endothelium‐derived nitric oxide. Am J Physiol 270: H1435–H1440, 1996.
 96. Meisheri KD and van Breemen C. Effects of beta‐adrenergic stimulation on calcium movements in rabbit aortic smooth muscle: relationship with cyclic AMP. J Physiol 331: 429–441, 1982.
 97. Scheid CR. Beta‐adrenergic relaxation of smooth muscle: differences between cells and tissues. Am J Physiol 253: C369–C374, 1987.
 98. Scheid CR, Honeyman TW and Fay FS. Mechanism of beta‐adrenergic relaxation of smooth muscle. Nature 277: 32–36, 1979.
 99. Chang HY. The involvement of ATP‐sensitive potassium channels in beta 2‐adrenoceptor agonist‐induced vasodilatation on rat diaphragmatic microcirculation. Br J Pharmacol 121: 1024–1030, 1997.
 100. Marin J and Balfagon G. Effect of clenbuterol on non‐endothelial nitric oxide release in rat mesenteric arteries and the involvement of beta‐adrenoceptors. Br J Pharmacol 124: 473–478, 1998.
 101. Schindler C, Dobrev D, Grossmann M, Francke K, Pittrow D and Kirch W. Mechanisms of beta‐adrenergic receptor‐mediated venodilation in humans. Clin Pharmacol Ther 75: 49–59, 2004.
 102. Nieuw Amerongen GP and van Hinsbergh VW. Targets for pharmacological intervention of endothelial hyperpermeability and barrier function. Vascul Pharmacol 39: 257–272, 2002.
 103. Xu B and Huang Y. Different mechanisms mediate beta adrenoceptor stimulated vasorelaxation of coronary and femoral arteries. Acta Pharmacol Sin 21: 309–312, 2000.
 104. Chang HY. Role of nitric oxide in vasodilator response induced by salbutamol in rat diaphragmatic microcirculation. Am J Physiol 272: H2173–H2179, 1997.
 105. Ferro A, Queen LR, Priest RM, Xu B, Ritter JM, Poston L and Ward JP. Activation of nitric oxide synthase by beta 2‐adrenoceptors in human umbilical vein endothelium in vitro. Br J Pharmacol 126: 1872–1880, 1999.
 106. Hamdad N, Ming Z, Parent R and Lavallee M. Beta 2‐adrenergic dilation of conductance coronary arteries involves flow‐dependent NO formation in conscious dogs. Am J Physiol 271: H1926–H1937, 1996.
 107. Queen LR, Xu B, Horinouchi K, Fisher I and Ferro A. beta(2)‐adrenoceptors activate nitric oxide synthase in human platelets. Circ Res 87: 39–44, 2000.
 108. Whalen EJ, Johnson AK and Lewis SJ. Beta‐adrenoceptor dysfunction after inhibition of NO synthesis. Hypertension 36: 376–382, 2000.
 109. Iaccarino G, Cipolletta E, Fiorillo A, Annecchiarico M, Ciccarelli M, Cimini V, Koch WJ and Trimarco B. Beta(2)‐adrenergic receptor gene delivery to the endothelium corrects impaired adrenergic vasorelaxation in hypertension. Circulation 106: 349–355, 2002.
 110. Okajima M, Takamura M, Vequaud P, Parent R and Lavallee M. Beta‐adrenergic receptor blockade impairs NO‐dependent dilation of large coronary arteries during exercise. Am J Physiol Heart Circ Physiol 284: H501–H510, 2003.
 111. Jayachandran M, Hayashi T, Sumi D, Thakur NK, Kano H, Ignarro LJ and Iguchi A. Up‐regulation of endothelial nitric oxide synthase through beta(2)‐adrenergic receptor ‐ the role of a beta‐blocker with NO‐releasing action. Biochem Biophys Res Commun 280: 589–594, 2001.
 112. Coleman AJ and Somerville AR. The selective action of beta‐adrenoceptor blocking drugs and the nature of beta1 and beta2 adrenoceptors. Br J Pharmacol 59: 83–93, 1977.
 113. Piercy V. The beta‐adrenoreceptors mediating uterine relaxation throughout the oestrous cycle of the rat are predominantly of the beta 2‐subtype. J Auton Pharmacol 8: 11–18, 1988.
 114. Chamberlain PD, Jennings KH, Paul F, Cordell J, Berry A, Holmes SD, Park J, Chambers J, Sennitt MV, Stock MJ, Cawthorne MA, Young PW and Murphy GJ. The tissue distribution of the human beta3‐adrenoceptor studied using a monoclonal antibody: direct evidence of the beta3‐adrenoceptor in human adipose tissue, atrium and skeletal muscle. Int J Obes Relat Metab Disord 23: 1057–1065, 1999.
 115. Rautureau Y, Toumaniantz G, Serpillon S, Jourdon P, Trochu JN and Gauthier C. Beta 3‐adrenoceptor in rat aorta: molecular and biochemical characterization and signalling pathway. Br J Pharmacol 137: 153–161, 2002.
 116. de Groot AA, Mathy MJ, van Zwieten PA and Peters SL. Involvement of the beta3 adrenoceptor in nebivolol‐induced vasorelaxation in the rat aorta. J Cardiovasc Pharmacol 42: 232–236, 2003.
 117. Mallem MY, Gogny M, Gautier F, Bucas V and Desfontis JC. Evaluation of beta3‐adrenoceptor‐mediated relaxation in intact and endotoxin‐treated equine digital veins. Am J Vet Res 64: 708–714, 2003.
 118. Pourageaud F, Leblais V, Bellance N, Marthan R and Muller B. Role of beta2‐adrenoceptors (beta‐AR), but not beta1‐, beta3‐AR and endothelial nitric oxide, in beta‐AR‐mediated relaxation of rat intrapulmonary artery. Naunyn Schmiedebergs Arch Pharmacol 372: 14–23, 2005.
 119. Johnson M. The beta‐adrenoceptor. Am J Respir Crit Care Med 158: S146–S153, 1998.
 120. Lefkowitz RJ, Hausdorff WP and Caron MG. Role of phosphorylation in desensitization of the beta‐adrenoceptor. Trends Pharmacol Sci 11: 190–194, 1990.
 121. Diviani D, Lattion AL, Larbi N, Kunapuli P, Pronin A, Benovic JL and Cotecchia S. Effect of different G protein‐coupled receptor kinases on phosphorylation and desensitization of the alpha1B‐adrenergic receptor. J Biol Chem 271: 5049–5058, 1996.
 122. Dong ED and Han QD. Differences of desensitization and hypersensitization between alpha 1A‐ and alpha 1B‐adrenoceptors in rat isolated blood vessels. Zhongguo Yao Li Xue Bao 16: 481–484, 1995.
 123. Garcia‐Sainz JA, Vazquez‐Prado J and del Carmen ML. Alpha 1‐adrenoceptors: function and phosphorylation. Eur J Pharmacol 389: 1–12, 2000.
 124. Casas‐Gonzalez P and Garcia‐Sainz JA. Role of epidermal growth factor receptor transactivation in alpha1B‐adrenoceptor phosphorylation. Eur J Pharmacol 542: 31–36, 2006.
 125. Vaughan DJ, Millman EE, Godines V, Friedman J, Tran TM, Dai W, Knoll BJ, Clark RB and Moore RH. Role of the G protein‐coupled receptor kinase site serine cluster in beta2‐adrenergic receptor internalization, desensitization, and beta‐arrestin translocation. J Biol Chem 281: 7684–7692, 2006.
 126. Perrino C, Rockman HA and Chiariello M. Targeted inhibition of phosphoinositide 3‐kinase activity as a novel strategy to normalize beta‐adrenergic receptor function in heart failure. Vascul Pharmacol 45: 77–85, 2006.
 127. Alcantara‐Hernandez R and Garcia‐Sainz JA. Okadaic acid increases the phosphorylation state of alpha1A‐adrenoceptors and induces receptor desensitization. Eur J Pharmacol 525: 18–23, 2005.
 128. Gonzalez‐Arenas A, Aguilar‐Maldonado B, Avendano‐Vazquez SE and Garcia‐Sainz JA. Estrogens cross‐talk to alpha1b‐adrenergic receptors. Mol Pharmacol 70: 154–162, 2006.
 129. Carman CV and Benovic JL. G‐protein‐coupled receptors: turn‐ons and turn‐offs. Curr Opin Neurohiol 8: 335–344, 1998.
 130. Garcia‐Sainz JA, Vazquez‐Cuevas FG and Romero‐Avila MT. Phosphorylation and desensitization of alpha1d‐adrenergic receptors. Biochem J 353: 603–610, 2001.
 131. Freedman RR, Girgis R and Mayes MD. Endothelial and adrenergic dysfunction in Raynaud's phenomenon and scleroderma. J Rheumatol 26: 2386–2388, 1999.
 132. Kurose H and Lefkowitz RJ. Differential desensitization and phosphorylation of three cloned and transfected alpha 2‐adrenergic receptor subtypes. J Biol Chem 269: 10093–10099, 1994.
 133. Lalchandani SG, Zhang X, Hong SS, Liggett SB, Li W, Moore BM, Miller DD and Feller DR. Medetomidine analogs as selective agonists for the human alpha2‐adrenoceptors. Biochem Pharmacol 67: 87–96, 2004.
 134. Heck DA and Bylund DB. Mechanism of down‐regulation of alpha‐2 adrenergic receptor subtypes. J Pharmacol Exp Ther 282: 1219–1227, 1997.
 135. Craig CR and Stitzel RE. Modern Pharmacology. Boston: Little. Brown, and Company, 1994.
 136. Kalant H and Roschlau WHE. Principles of Medical Pharmacology. New York: Oxford University Press, 1998.
 137. Wu DM, Kawamura H, Li Q and Puro DG. Dopamine activates ATP‐sensitive K+ currents in rat retinal pericytes. Vis Neurosci 18: 935–940, 2001.
 138. Velasco M, Contreras F, Cabezas GA, Bolivar A, Fouillioux C and Hernandez R. Dopaminergic receptors: a new antihypertensive mechanism. J Hypertens 20 (Suppl 3): S55–S58, 2002.
 139. Pawlik W, Mailman D, Shanbour LL and Jacobson ED. Dopamine effects on the intestinal circulation. Am Heart J 91: 325–331, 1976.
 140. Clark ES and Granger DN. Effects of fenoldopam on feline intestinal microcirculation. J Pharmacol Exp Ther 244: 983–986, 1988.
 141. Germann R, Haisjackl M, Schwarz B, Salak N, Deusch E, Pajk W, Wolf HJ, Riedmann B and Hasibeder W, Dopamine and intestinal mucosal tissue oxygenation in a porcine model of haemorrhage. Br J Anaesth 79: 357–362, 1997.
 142. Pajk W, Schwarz B, Knotzer H, Friesenecker B, Mayr A, Dunser M and Hasibeder W. Jejunal tissue oxygenation and microvascular flow motion during hemorrhage and resuscitation. Am J Physiol Heart Circ Physiol 283: H2511–H2517, 2002.
 143. Schmidt H, Secchi A, Wellmann R, Bohrer H, Bach A and Martin E. Effect of low‐dose dopamine on intestinal villus microcirculation during normotensive endotoxaemia in rats. Br J Anaesth 76: 707–712, 1996.
 144. Head RJ, Hjelle JT, Jarrott B, Berkowitz B, Cardinale G and Spector S. Isolated brain microvessels: preparation, morphology, histamine and catecholamine contents. Blood Vessels 17: 173–186, 1980.
 145. Bacic F, Uematsu S, McCarron RM and Spatz M. Dopaminergic receptors linked to adenylate cyclase in human cerebromicrovascular endothelium. J Neurochem 57: 1774–1780, 1991.
 146. Edvinsson L, McCulloch J and Sharkey J. Vasomotor responses of cerebral arterioles in situ to putative dopamine receptor agonists. Br J Pharmacol 85: 403–410, 1985.
 147. Edvinsson L, Hardcbo JE, McCulloch J and Owman C. Effects of dopaminergic agonists and antagonists on isolated cerebral blood vessels. Acta Physiol Scand 104: 349–359, 1978.
 148. Busija DW and Leffler CW. Effects of dopamine on pial arteriolar diameter and CSF prostanoid levels in piglets. J Cereb Blood Flow Metab 9: 264–267, 1989.
 149. Krimer LS, Muly EC, III, Williams GV and Goldman‐Rakic PS. Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1: 286–289, 1998.
 150. Iadecola C. Neurogenic control of the cerebral microcirculation: Is dopamine minding the store? Nat Neurosci 1: 263–265, 1998.
 151. Seri I. Dopamine and natriuresis. Mechanism of action and developmental aspects. Am J Hypertens 3: 82S–86S, 1990.
 152. Pollock DM and Arendshorst WJ. Tubuloglomerular feedback and blood flow autoregulation during DA1‐induced renal vasodilation. Am J Physiol 258: F627–F635, 1990.
 153. Edwards RM. Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin. Am J Physiol 248: F183–F189, 1985.
 154. Steinhausen M, Weis S, Fleming J, Dussel R and Parekh N. Responses of in vivo renal microvessels to dopamine. Kidney Int 30: 361–370, 1986.
 155. Takenaka T, Forster H and Epstein M. Characterization of the renal microvascular actions of a new dopaminergic (DA1) agonist, YM435. J Pharmacol Exp Ther 264: 1154–1159, 1993.
 156. Tamaki T, Hura CE and Kunau RT, Jr. Dopamine stimulates cAMP production in canine afferent arterioles via DA1 receptors. Am J Physiol 256: H626–H629, 1989.
 157. Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR and Humphrey PP. International union of pharmacology classification of receptors for 5‐hydroxytryptamine (Serotonin). Pharmacol Rev 46: 157–203, 1994.
 158. Yu CY, Boyd NM, Cringle SJ, Su EN, Alder VA and Yu DY. An in vivo and in vitro comparison of the effects of vasoactive mediators on pulpal blood vessels in rat incisors. Arch Oral Biol 47: 723–732, 2002.
 159. Mandala M, Gokina N and Osol G. Contribution of nonendothelial nitric oxide to altered rat uterine resistance artery serotonin reactivity during pregnancy. Am J Obstet Gynecol 187: 463–468, 2002.
 160. Alsip NL, Hornung JW, Saha PR, Hill JB and Asher EF. A new technique for studying the uterine microvasculature in the rat. Am J Obstet Gynecol 175: 388–395, 1996.
 161. Janiak P, Lainee P, Grataloup Y, Luyt CE, Bidouard JP, Michel JB, O'Connor SE and Herbert JM. Serotonin receptor blockade improves distal perfusion after lower limb ischemia in the fatty Zucker rat. Cardiovasc Res 56: 293–302, 2002.
 162. Calama E, Fernandez MM, Moran A, Martin ML and San Roman L. Vasodilator and vasoconstrictor responses induced by 5‐hydroxytryptamine in the in situ blood autoperfused hindquarters of the anaesthetized rat. Naunyn Schmiedebergs Arch Pharmacol 366: 110–116, 2002.
 163. Kurita H, Ernberg M, Tominaga K, Alstergren P and Kopp S. Effect of 5‐hydroxytryptamine‐2 and alpha‐adrenergic receptor antagonists on the 5‐hydroxytryptamine‐induced decrease in rabbit masseter muscle blood flow. Arch Oral Biol 44: 651–656, 1999.
 164. Pacher P, Ungvari Z, Kecskemeti V and Koller A. Serotonin reuptake inhibitor, fluoxetine, dilates isolated skeletal muscle arterioles. Possible role of altered Ca2+ sensitivity. Br J Pharmacol 127: 740–746, 1999.
 165. Alsip NL and Harris PD. Serotonin‐induced dilation of small arterioles is not mediated via endothelium‐derived relaxing factor in skeletal muscle. Eur J Pharmacol 229: 117–124, 1992.
 166. Razzaque Z, Pickard JD, Ma QP, Shaw D, Morrison K, Wang T and Longmore J. 5‐HT1B‐receptors and vascular reactivity in human isolated blood vessels: assessment of the potential craniovascular selectivity of sumatriptan. Br J Clin Pharmacol 53: 266–274, 2002.
 167. Williamson DJ, Shepheard SL, Cook DA, Hargreaves RJ, Hill RG and Cumberbatch MJ. Role of opioid receptors in neurogenic dural vasodilation and sensitization of trigeminal neurones in anaesthetized rats. Br J Pharmacol 133: 807–814, 2001.
 168. Ishine T, Bocheiet I, Hamel E and Lee TJ. Serotonin 5‐HT(7) receptors mediate relaxation of porcine pial veins. Am J Physiol Heart Circ Physiol 278: H907–H912, 2000.
 169. Thorin E, Nguyen TD and Bouthillier A. Control of vascular tone by endogenous endothelin‐1 in human pial arteries. Stroke 29: 175–180, 1998.
 170. Yakubu MA, Shibata M and Leffler CW. Subarachnoid hematoma attenuates vasodilation and potentiates vasoconstriction induced by vasoactive agents in newborn pigs. Pediatr Res 36: 589–594, 1994.
 171. Nakamura N, Hamada N, Murata R, Kobayashi A, Ishizaki N, Taira A and Sakata R. Contribution of serotonin to liver injury following canine small‐intestinal ischemia and reperfusion. J Surg Res 99: 17–24, 2001.
 172. Elhusseiny A and Hamel E. Sumatriptan elicits both constriction and dilation in human and bovine brain intracortical arterioles. Br J Pharmacol 132: 55–62, 2001.
 173. Fernandez MM, Moran A, Martin ML and San Roman L. Mesenteric vasoconstrictor response to 5‐hydroxytryptamine in the in situ blood autoperfused rat mesentery: involvement of 5‐HT(2B) and/or 5‐HT(2C) receptor activation. Eur J Pharmacol 401: 221–227, 2000.
 174. Looft‐Wilson RC and Gisolfi CV. Rat small mesenteric artery function after hindlimb suspension. J Appl Physiol 88: 1199–1206, 2000.
 175. Sato K, Li J, Metais C, Bianchi C and Sellke F. Increased pulmonary vascular contraction to serotonin after cardiopulmonary bypass: role of cyclooxygenase. J Surg Res 90: 138–143, 2000.
 176. Vicaut E, Laemmel E and Stucker O. Impact of serotonin on tumour growth. Ann Med 32: 187–194, 2000.
 177. Laemmel E, Stucker O, Darmon PL and Vicaut E. Characterization of the specific response to serotonin of mouse tumour‐feeding arterioles. Int J Radial Biol 74: 379–386, 1998.
 178. Stucker O, Laemmel E, Teisseire B and Vicaut E. Specific response of mouse tumor‐feeding arterioles to stimulation by 5‐HT1 agonists. Int J Radiat Oncol Biol Phys 37: 1125–1131, 1997.
 179. Keegan A, Morecroft I, Smillie D, Hicks MN and MacLean MR. (Contribution of the 5‐HT(1B) receptor to hypoxia‐induced pulmonary hypertension: converging evidence using 5‐HT(1B)‐receptor knockout mice and the 5‐HT(1B/1D)‐receptor antagonist GR1279 35. Circ Res 89: 1231–1239, 2001.
 180. Watts SW, Baez M and Webb RC. The 5‐hydroxytryptamine2B receptor and 5‐HT receptor signal transduction in mesenteric arteries from deoxycorticosterone acetate‐salt hypertensive rats. J Pharmacol Exp Ther 277: 1103–1113, 1996.
 181. De Vries P, De Visser PA, Heiligers JP, Villalon CM and Saxena PR. Changes in systemic and regional haemodynamics during 5‐HT7 receptor‐mediated depressor responses in rats. Naunyn Schmiedebergs Arch Pharmacol 359: 331–338, 1999.
 182. Hedlund PB and Sutcliffe JG. Functional, molecular and pharmacological advances in 5‐HT7 receptor research. Trends Pharmacol Sci 25: 481–486, 2004.
 183. Martin GR and Humphrey PP. Receptors for 5‐hydroxytryptamine: current perspectives on classification and nomenclature. Neuropharmacology 33: 261–273, 1994.
 184. Lincoln J. Innervation of cerebral arteries by nerves containing 5‐hydroxytryptamine and noradrenaline. Pharmacol Ther 68: 473–501, 1995.
 185. Murphy DL, Lerner A, Rudnick G and Lesch KP. Serotonin transporter: gene, genetic disorders, and pharmacogenetics. Mol Interv 4: 109–123, 2004.
 186. Caulfield MP and Birdsall NJ. International union of pharmacology XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50: 279–290, 1998.
 187. Wickman K and Clapham DE. Ion channel regulation by G proteins. Physiol Rev 75: 865–885, 1995.
 188. Tracey WR and Peach MJ. Differential muscarinic receptor mRNA expression by freshly isolated and cultured bovine aortic endothelial cells. Circ Res 70: 234–240, 1992.
 189. Duckles SP. p‐Fluoro‐hexahydro‐sila‐difenidol: affinity for vascular muscarinic receptors. Eur J Pharmacol 185: 227–230, 1990.
 190. McCormack DG, Mak JC, Minette P and Barnes PJ. Muscarinic receptor subtypes mediating vasodilation in the pulmonary artery. Eur J Pharmacol 158: 293–297, 1988.
 191. O'Rourke ST and Vanhoutte PM. Adrenergic and cholinergic responsiveness of isolated canine bronchial arteries. Am J Physiol 259: H156–H161, 1990.
 192. Felder CC. Muscarinic acetylcholine receptors: signal transduction through multiple effectors. FASEB J 9: 619–625, 1995.
 193. Falcone JC, Kuo L and Meininger GA. Endothelial cell calcium increases during flow‐induced dilation in isolated arterioles. Am J Physiol 264: H653–H659, 1993.
 194. Yip KP and Marsh DJ. [Ca2+]i in rat afferent arteriole during constriction measured with confocal fluorescence microscopy. Am J Physiol 271 : F1004–F1011, 1996.
 195. Robertson BE, Schubert R, Hescheler J and Nelson MT. cGMP‐dependent protein kinase activates Ca‐activated K channels in cerebral artery smooth muscle cells. Am J Physiol 265: C299–C303, 1993.
 196. Elhusseiny A, Cohen Z, Olivier A, Stanimirovic DB and Hamel E. Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization. J Cereb Blood Flow Metab 19: 794–802, 1999.
 197. Moro V, Kacem K, Springhetti V, Seylaz J and Lasbennes F. Microvessels isolated from brain: localization of muscarinic sites by radioligand binding and immunofluorescent techniques. J Cereb Blood Flow Metab 15: 1082–1092, 1995.
 198. Linville DG and Hamel E. Pharmacological characterization of muscarinic acetylcholine binding sites in human and bovine cerebral microvessels. Naunyn Schmiedebergs Arch Pharmacol 352: 179–186, 1995.
 199. Shimizu T, Rosenblum WI and Nelson GH. M3 and M1 receptors in cerebral arterioles in vivo: evidence for downregulated or ineffective M1 when endothelium is intact. Am J Physiol 264: H665–H669, 1993.
 200. Dauphin F and Hamel E. Muscarinic receptor subtype mediating vasodilation feline middle cerebral artery exhibits M3 pharmacology. Eur J Pharmacol 178: 203–213, 1990.
 201. Garcia‐Villalon AL, Krause DN, Ehlert FJ and Duckles SP. Heterogeneity of muscarinic receptor subtypes in cerebral blood vessels. J Pharmacol Exp Ther 258: 304–310, 1991.
 202. Bungardt E, Vockert E, Feifel R, Moser U, Tacke R, Mutschler E, Lambrecht G and Surprenant A. Characterization of muscarinic receptors mediating vasodilation in guinea‐pig ileum submucosal arterioles by the use of computer‐assisted videomicroscopy. Eur J Pharmacol 213: 53–61, 1992.
 203. Eltze M, Ullrich B, Mutschler E, Moser U, Bungardt E, Friebe T, Gubitz C, Tacke R and Lambrecht G. Characterization of muscarinic receptors mediating vasodilation in rat perfused kidney. Eur J Pharmacol 238: 343–355, 1993.
 204. Elhusseiny A and Hamel E. Muscarinic ‐ but not nicotinic ‐acetylcholine receptors mediate a nitric oxide‐dependent dilation in brain cortical arterioles: a possible role for the M5 receptor subtype. J Cereb Blood Flow Metab 20: 298–305, 2000.
 205. Rosenblum WI. Endothelial dependent relaxation demonstrated in vivo in cerebral arterioles. Stroke 17: 494–497, 1986.
 206. Faraci FM. Role of endothelium‐derived relaxing factor in cerebral circulation: large arteries vs. microcirculation. Am J Physiol 261: H1038–H1042, 1991.
 207. Imaeda K, Yamamoto Y, Fukuta H, Koshita M and Suzuki H. Hyperpolarization‐induced dilatation of submucosal arterioles in the guinea‐pig ileum. Br J Pharmacol 131: 1121–1128, 2000.
 208. Hungerford JE, Sessa WC and Segal SS. Vasomotor control in arterioles of the mouse cremaster muscle. FASEB J 14: 197–207, 2000.
 209. Segal SS, Welsh DG and Kurjiaka DT. Spread of vasodilatation and vasoconstriction along feed arteries and arterioles of hamster skeletal muscle. J Physiol 516 (Pt 1): 283–291, 1999.
 210. Welsh DG and Segal SS. Endothelial and smooth muscle cell conduction in arterioles controlling blood flow. Am J Physiol 274: H178–H186, 1998.
 211. Yu CY, Boyd NM, Cringle SJ, Su EN, Alder VA and Yu DY. Acetylcholine‐induced vasodilation of isolated pulpal arterioles. J Dent Res 80: 1995–1999, 2001.
 212. Miller FJ, Jr., Dellsperger KC and Gutterman DD. Pharmacologic activation of the human coronary microcirculation in vitro: endothelium‐dependent dilation and differential responses to acetylcholine. Cardiovasc Res 38: 744–750, 1998.
 213. Wu DM, Kawamura H, Sakagami K, Kobayashi M and Puro DG. Cholinergic regulation of pericyte‐containing retinal microvessels. Am J Physiol Heart Circ Physiol 284: H2083–H2090, 2003.
 214. Crane GJ, Neild TO and Segal SS. Contribution of active membrane processes to conducted hyperpolarization in arterioles of hamster cheek pouch. Microcirculation 11: 425–433, 2004.
 215. Dora KA, Xia J and Duling BR. Endothelial cell signaling during conducted vasomotor responses. Am J Physiol Heart Circ Physiol 285: H119–H126, 2003.
 216. Yamamoto Y, Imaeda K and Suzuki H. Endothelium‐dependent hyperpolarization and intercellular electrical coupling in guinea‐pig mesenteric arterioles. J Physiol 514 (Pt 2): 505–513, 1999.
 217. Hashitani H and Suzuki H. K+ channels which contribute to the acetylcholine‐induced hyperpolarization in smooth muscle of the guinea‐pig submucosal arteriole. J Physiol 501 (Pt 2): 319–329, 1997.
 218. Duling BR and Berne RM. Propagated vasodilation in the microcirculation of the hamster cheek pouch. Circ Res 26: 163–170, 1970.
 219. Hoepfl B, Rodenwaldt B, Pohl U and de Wit C. EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster arterioles. Am J Physiol Heart Circ Physiol 283: H996–H1004, 2002.
 220. Segal SS, Damon DN and Duling BR. Propagation of vasomotor responses coordinates arteriolar resistances. Am J Physiol 256: H832–H837, 1989.
 221. McGahren ED, Beach JM and Duling BR. Capillaries demonstrate changes in membrane potential in response to pharmacological stimuli. Am J Physiol 274: H60–H65, 1998.
 222. Andriantsitohaina R and Surprenant A. Acetylcholine released from guinea‐pig submucosal neurones dilates arterioles by releasing nitric oxide from endothelium. J Physiol 453: 493–502, 1992.
 223. Dornyei G, Kaley G and Koller A. Release of nitric oxide and prostaglandin H2 to acetylcholine in skeletal muscle venules. Am J Physiol 272: H2541–H2546, 1997.
 224. Falcone JC and Meininger GA. Arteriolar dilation produced by venule endothelium‐derived nitric oxide. Microcirculation 4: 303–310, 1997.
 225. de Wit C, von Bismarck P and Pohl U. Mediator role of prostaglandins in acetylcholine‐induced vasodilation and control of resting vascular diameter in the hamster cremaster microcirculation in vivo. J Vasc Res 30: 272–278, 1993.
 226. Kotecha N and Neild TO. Vasodilatation and smooth muscle membrane potential changes in arterioles from the guinea‐pig small intestine. J Physiol 482 (Pt 3): 661–667, 1995.
 227. Shirai M, Ninomiya I and Sada K. Thromboxane A2/endoperoxide receptors mediate cholinergic constriction of rabbit lung microvessels. J Appl Physiol 72: 1179–1185, 1992.
 228. Carvalho MH, Fortes ZB, Nigro D, Oliveira MA and Scivoletto R. The role of thromboxane A2 in the altered microvascular reactivity in two‐kidney, one‐clip hypertension. Endothelium 5: 167–178, 1997.
 229. Mayhan WG. Role of prostaglandin H2‐thromboxane A2 in responses of cerebral arterioles during chronic hypertension. Am J Physiol 262: H539–H543, 1992.
 230. Suzuki H, Ikezaki H, Hong D and Rubinstein I. PGH(2)‐TxA(2)‐receptor blockade restores vasoreactivity in a new rodent model of genetic hypertension. J Appl Physiol 88: 1983–1988, 2000.
 231. Bakker EN and Sipkema P. Components of acetylcholine‐induced dilation in isolated rat arterioles. Am J Physiol 273: H1848–H1853, 1997.
 232. de Wit C, Esser N, Lehr HA, Bolz SS and Pohl U. Pentobarbital‐sensitive EDHF comediates ACh‐induced arteriolar dilation in the hamster microcirculation. Am J Physiol 276: H1527–H1534, 1999.
 233. Huang A, Sun D, Smith CJ, Connetta JA, Shesely EG, Koller A and Kaley G. In eNOS knockout mice skeletal muscle arteriolar dilation to acetylcholine is mediated by EDHF. Am J Physiol Heart Circ Physiol 278: H762–H768, 2000.
 234. Widmann MD, Weintraub NL, Fudge JL, Brooks LA and Dellsperger KC. Cytochrome P‐450 pathway in acetylcholine‐induced canine coronary microvascular vasodilation in vivo. Am J Physiol 274: H283–H289, 1998.
 235. Nishikawa Y, Stepp DW and Chilian WM. In vivo location and mechanism of EDHF‐mediated vasodilation in canine coronary microcirculation. Am J Physiol 277: H1252–H1259, 1999.
 236. Tanaka M, Kanatsuka H, Ong BH, Tanikawa T, Uruno A, Komaru T, Koshida R and Shirato K. Cytochrome P‐450 metabolites but not NO, PGI2, and H202 contribute to ACh‐induced hyperpolarization of pressurized canine coronary microvessels. Am J Physiol Heart Circ Physiol 285: H1939–H1948, 2003.
 237. Wang X and Loutzenhiser R. Determinants of renal microvascular response to ACh: afferent and efferent arteriolar actions of EDHF. Am J Physiol Renal Physiol 282: F124–F132, 2002.
 238. Wang D, Borrego‐Conde LJ, Falck JR, Sharma KK, Wilcox CS and Umans JG. Contributions of nitric oxide, EDHF, and EETs to endothelium‐dependent relaxation in renal afferent arterioles. Kidney Int 63: 2187–2193, 2003.
 239. Vanner S and Surprenant A. Neural reflexes controlling intestinal microcirculation. Am J Physiol 271: G223–G230, 1996.
 240. Pierzga JM and Segal SS. Spatial relationships between neuromuscular junctions and microvessels in hamster cremaster muscle. Microvasc Res 48: 50–67, 1994.
 241. Welsh DG and Segal SS. Coactivation of resistance vessels and muscle f bers with acetylcholine release from motor nerves. Am J Physiol 273: H156–H163, 1997.
 242. Klassen GA, Armour JA and Garner JB. The effects of propranolol, phentolamine, and atropine on canine coronary vascular gradients. Can J Physiol Pharmacol 67: 140–151, 1989.
 243. Coffman JD and Cohen RA. Cholinergic vasodilator mechanism in human fingers. Am J Physiol 252: H594–H597, 1987.
 244. Kemme MJ, Bruning TA, Chang PC and van Zwieten PA. Cholinergic receptor‐mediated responses in the arteriolar and venous vascular beds of the human forearm. Blood Press 4: 293–299, 1995.
 245. Rossi M, Taddei S, Fabbri A, Tintori G, Credidio L, Virdis A, Ghiadoni L, Salvetti A and Giusti C. Cutaneous vasodilation to acetylcholine in patients with essential hypertension. J Cardiovasc Pharmacol 29: 406–411, 1997.
 246. Carey RM, Wang ZQ and Siragy HM. Role of the angiotensin type 2 receptor in the regulation of blood pressure and renal function. Hypertension 35: 155–163, 2000.
 247. Pueyo ME and Michel JB. Angiotensin II receptors in endothelial cells. Gen Pharmacol 29: 691–696, 1997.
 248. Sandberg K, Ji H, Clark AJ, Shapira H and Catt KJ. Cloning and expression of a novel angiotensin II receptor subtype. J Biol Chem 267: 9455–9458, 1992.
 249. Fontes MA, Silva LC, Campagnole‐Santos MJ, Khosla MC, Guertzenstein PG and Santos RA. Evidence that angiotensin‐(1–7) plays a role in the central control of blood pressure at the ventrolateral medulla acting through specific receptors. Brain Res 665: 175–180, 1994.
 250. Chiu AT, Dunscomb J, Kosierowski J, Burton CR, Santomenna LD, Corjay MH and Benfield P. The ligand binding signatures of the rat AT1A, AT1B and the human AT1 receptors are essentially identical. Biochem Biophys Res Commun 197: 440–449, 1993.
 251. Kakar SS, Sellers JC, Devor DC, Musgrove LC and Neill JD. Angiotensin II type‐1 receptor cDNAs: differential tissue expression and hormonal regulation. Biochem Biophys Res Commun 183: 1090–1096, 1992.
 252. de Gasparo M, Catt KJ, Inagami T, Wright JW and Unger T. International union of pharmacology. XXIII. The angiotensin II receptors. Pharmacol Rev 52: 415–472, 2000.
 253. Whitebread S, Mele M, Kamber B and de Gasparo M. Preliminary biochemical characterization of two angiotensin II receptor subtypes. Biochem Biophys Res Commun 163: 284–291, 1989.
 254. Dudley DT, Panek RL, Major TC, Lu GH, Bruns RF, Klinkefus BA, Hodges JC and Weishaar RE. Subclasses of angiotensin II binding sites and their functional significance. Mol Pharmacol 38: 370–377, 1990.
 255. Fernandez LA, Twickler J and Mead A. Neovascularization produced by angiotensin II. J Lab Clin Med 105: 141–145, 1985.
 256. Le Noble FAC, Schreurs NHJS, Van Straaten HWM, Slaaf DW, Smits JFM, Rogg H and Struijker‐Boudier HAJ. Evidence for a novel angiotensin II receptor involved in angiogenesis in chick embryo chorioallantoic membrane. Am J Physiol 264: R460–R465, 1993.
 257. Munzenmaier DH and Greene AS. Opposing actions of angiotensin II on microvascular growth and arterial blood pressure. Hypertension 27 (Pt 2): 760–765, 1996.
 258. Crawford KW, Frey EA and Cote TE. Angiotensin II receptor recognized by DuP753 regulates two distinct guanine nucleotide‐binding protein signaling pathways. Mol Pharmacol 41: 154–162, 1992.
 259. Yan C, Kim D, Aizawa T and Berk BC. Functional interplay between angiotensin II and nitric oxide: cyclic GMP as a key mediator. Arterioscler Thromb Vasc Biol 23: 26–36, 2003.
 260. Saito Y and Berk BC. Transactivation: a novel signaling pathway from angiotensin II to tyrosine kinase receptors. J Mol Cell Cardiol 33: 3–7, 2001.
 261. Chen KD, Li YS, Kim M, Li S, Yuan S, Chien S and Shyy JY. Mechanotransduction in response to shear stress: roles of receptor tyrosine kinases, integrins, and Shc. J Biol Chem 274: 18393–18400, 1999.
 262. Guo DF, Sun YL, Hamet P and Inagami T. The angiotensin II type 1 receptor and receptor‐associated proteins. Cell Res 11: 165–180, 2001.
 263. Grady EF, Sechi LA, Griffin CA, Schambelan M and Kalinyak JE. Expression of AT2 receptors in the developing rat fetus. J Clin Invest 88: 921–933, 1991.
 264. Shanmugam S, Corvol P and Gasc J. Angiotensin II type 2 receptor mRN expression in the developing cariopulmonary system of the rat. Hypertension 28: 91–97, 1996.
 265. Kambayashi Y, Bardhan S, Takahashi K, Tsuzuki S, Inui H, Hamakubo T and Inagami T. Molecular cloning of a novel angiotensin II receptor isoform involved in phosphotyrosine phosphatase inhibition. J Biol Chem 268: 24543–24546, 1993.
 266. Mukoyama M, Nakajima M, Horiuchi M, Sasamura H, Pratt RE and Dzau VJ. Expression cloning of type 2 angiotensin II receptor reveals a unique class of seven‐transmembrane receptors. J Biol Chem 268: 24539–24542, 1993.
 267. Scheuer DA and Perrone MH. Angiotensin type 2 receptors mediate depressor phase of biphasic pressure response to angiotensin. Am J Physiol 264: R917–R923, 1993.
 268. Siragy HM and Carey RM. Protective role of the angiotensin AT2 receptor in a renal wrap hypertension model. Hypertension 33: 1237–1242, 1999.
 269. Kang J, Posner P and Sumners C. Angiotensin II type 2 receptor stimulation of neuronal K+ currents involves an inhibitory GTP binding protein. Am J Physiol 267: C1389–C1397, 1994.
 270. Zhang J and Pratt RE. The AT2 receptor selectively associates with Gialpha2 and Gialpha3 in the rat fetus. J Biol Chem 271: 15026–15033, 1996.
 271. Lokuta AJ, Cooper C, Gaa ST, Wang HE and Rogers TB. Angiotensin II stimulates the release of phospholipid‐derived second messengers through multiple receptor subtypes in heart cells. J Biol Chem 269: 4832–4838, 1994.
 272. Bottari SP, King IN, Reichlin S, Dahlstroem I, Lydon N and de Gasparo M. The angiotensin AT2 receptor stimulates protein tyrosine phosphatase activity and mediates inhibition of particulate guanylate cyclase. Biochem Biophys Res Commun 183: 206–211, 1992.
 273. Huang XC, Richards EM and Sumners C. Angiotensin II type 2 receptor‐mediated stimulation of protein phosphatase 2A in rat hypothalamic/brainstem neuronal cocultures. J Neurochem 65: 2131–2137, 1995.
 274. Nora EH, Munzenmaier DH, Hansen‐Smith FM, Lombard JH and Greene AS. Localization of the ANG II type 2 receptor in the microcirculation of skeletal muscle. Am J Physiol 275: H1395–H1403, 1998.
 275. Viswanathan M, Tsutsumi K, Correa FM and Saavedra JM. Changes in expression of angiotensin receptor subtypes in the rat aorta during development. Biochem Biophys Res Commun 179: 1361–1367, 1991.
 276. Linderman JR and Greene AS. Distribution of angiotensin ii receptor expression in the microcirculation of striated muscle. Microcirculation 8: 275–281, 2001.
 277. Zhang C, Hein TW, Wang W and Kuo L. Divergent roles of angiotensin II AT1 and AT2 receptors in modulating coronary microvascular function. Circ Res 92: 322–329, 2003.
 278. Yamada H, Akishita M, Ito M, Tamura K, Daviet L, Lehtonen JY, Dzau VJ and Horiuchi M. AT2 receptor and vascular smooth muscle cell differentiation in vascular development. Hypertension 33: 1414–1419, 1999.
 279. Levy BI, Benessiano J, Henrion D, Caputo L, Heymes C, Duriez M, Poitevin P and Samuel JL. Chronic blockade of AT2‐subtype receptors prevents the effect of angiotensin II on the rat vascular structure. J Clin Invest 98: 418–425, 1996.
 280. Nio Y, Matsubara H, Murasawa S, Kanasaki M and Inada M. Regulation of gene transcription of angiotensin II receptor subtypes in myocardial infarction. J Clin Invest 95: 46–54, 1995.
 281. Chaki S and Inagami T. Identification and characterization of a new binding site for angiotensin II in mouse neuroblastoma neuro‐2A cells. Biochem Biophys Res Commun 182: 388–394, 1992.
 282. Wright JW, Miller‐Wing AV, Shaffer MJ, Higginson C, Wright DE, Hanesworth JM and Harding JW. Angiotensin II(3–8) (ANG IV) hippocampal binding: potential role in the facilitation of memory. Brain Res Bull 32: 497–502, 1993.
 283. Stroth U and Unger T. The renin‐angiotensin system and its receptors. J Cardiovasc Pharmacol 33 (Suppl 1): S21–S28, 1999.
 284. Pucell AG, Hodges JC, Sen I, Bumpus FM and Husain A. Biochemical properties of the ovarian granulosa cell type 2‐angiotensin II receptor. Endocrinology 128: 1947–1959, 1991.
 285. Fink GD and Bruner CA. Hypertension during chronic peripheral and central infusion of angiotensin III. Am J Physiol 249: E201–E208, 1985.
 286. Tonnaer JA, Wiegant VM, de Jong W and De Wied D. Central effects of angiotensins on drinking and blood pressure: structure‐activity relationships. Brain Res 236: 417–428, 1982.
 287. Wright JW, Morseth SL, Abhold RH and Harding JW. Pressor action and dipsogenicity induced by angiotensin II and III in rats. Am J Physiol 249: R514–R521, 1985.
 288. Zini S, Fournie‐Zaluski MC, Chauvel E, Roques BP, Corvol P and Llorens‐Cortes C. Identification of metabolic pathways of brain angiotensin II and III using specific aminopeptidase inhibitors: predominant role of angiotensin III in the control of vasopressin release. Proc Natl Acad Sci USA 93: 11968–11973, 1996.
 289. Schiavone MT, Santos RA, Brosnihan KB, Khosla MC and Ferrario CM. Release of vasopressin from the rat hypothalamo‐neurohypophysial system by angiotensin‐(1–7) heptapeptide. Proc Natl Acad Sci USA 85: 4095–4098, 1988.
 290. Li P, Chappell MC, Ferrario CM and Brosnihan KB. Angiotensin‐(1–7) augments bradykinin‐induced vasodilation by competing with ACE and releasing nitric oxide. Hypertension 29: 394–400, 1997.
 291. Greene AS. Life and death in the microcirculation: a role for angiotensin II. Microcirculation 5: 101–107, 1998.
 292. Weber DS and Lombard JH, Angiotensin II AT1 receptors preserve vasodilator reactivity in skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 280: H2196–H2202, 2001.
 293. Chatziantoniou C, Dussaule JC, Arendshorst WJ and Ardaillou R. Angiotensin II receptors and renin release in rat glomerular afferent arterioles. Kidney Int 46: 1570–1573, 1994.
 294. Siragy HM, AT(1) and AT(2) receptors in the kidney: role in disease and treatment. Am J Kidney Dis 36: S4–S9, 2000.
 295. Arendshorst WJ, Brannstrom K and Ruan X. Actions of angiotensin II on the renal microvasculature. J Am Soc Nephrol 10 (Suppl 11): S149–S161, 1999.
 296. Fleming JT, Harris PD and Joshua IG. Endogenous prostaglandins selectively mask large arteriole constriction to angiotensin II. Am J Physiol 253: H1573–H1580, 1987.
 297. Fleming JT and Joshua IG. Mechanism of the biphasic arteriolar response to angiotensin II. Am J Physiol 247: H88–H94, 1984.
 298. Vicaut E, Montalescot G, Hou X, Stucker O and Teisseire B. Arteriolar vasoconstriction and tachyphylaxis with intraarterial angiotensin II. Microvasc Res 37: 28–41, 1989.
 299. Gerstberger R, Meyer JU, Rettig R, Printz M and Intaglietta M. Regulatory role of vasoactive peptides in subcutaneous skin microcirculation of the hamster. Int J Microcirc Clin Exp 7: 3–14, 1988.
 300. Ziogas J and Vessey K. Angiotensin‐induced enhancement of excitatory junction potentials evoked by periarteriolar nerve stimulation and vasoconstriction in rat mesenteric arteries are both mediated by the angiotensin AT1 receptor. Pharmacology 63: 103–111, 2001.
 301. Batenburg WW, Garrelds IM, Bernasconi CC, Juillerat‐Jeanneret L, van Kats JP, Saxena PR and Danser AH. Angiotensin II type 2 receptor‐mediated vasodilation in human coronary microarteries. Circulation 109: 2296–2301, 2004.
 302. Didion SP and Faraci FM. Angiotensin II produces superoxidemediated impairment of endothelial function in cerebral arterioles. Stroke 34: 2038–2042, 2003.
 303. Haberl RL, Anneser F, Villringer A and Einhaupl KM. Angiotensin II induces endothelium‐dependent vasodilation of rat cerebral arterioles. Am J Physiol 258: H1840–H1846, 1990.
 304. Haberl RL. Role of angiotensin receptor subtypes in the response of rabbit brain arterioles to angiotensin. Stroke 25: 1476–1479, 1994.
 305. Takao M, Kobari M, Tanahashi N, Tomita M, Yokoyama M, Tomita Y, Otomo M, Inoue K and Fukuuchi Y. Dilatation of cerebral parenchymal vessels mediated by angiotensin type 1 receptor in cats. Neurosci Lett 318: 108–112, 2002.
 306. Joyner WL, Young R, Blank D, Eccleston‐Joyner CA and Gilmore JP. In vivo microscopy of the cerebral microcirculation using neonatal allografts in hamsters. Circ Res 63: 758–766, 1988.
 307. Wei EP, Kontos HA and Patterson JL, Jr. Vasoconstrictor effect of angiotensin on pial arteries. Stroke 9: 487–489, 1978.
 308. Anwar Z, Albert JL, Gubby SE, Boyle JP, Roberts JA, Webb TE and Boarder MR. Regulation of cyclic AMP by extracellular ATP in cultured brain capillary endothelial cells. Br J Pharmacol 128: 465–471, 1999.
 309. Ichihara A, Imig JD, Inscho EW and Navar LG, Interactive nitric oxide‐angiotensin II influences on renal microcirculation in angiotensin II‐induced hypertension. Hypertension 31: 1255–1260, 1998.
 310. Ikenaga H, Fallet RW and Carmines PK. Basal nitric oxide production curtails arteriolar vasoconstrictor responses to ANG II in rat kidney. Am J Physiol 271: F365–F373, 1996.
 311. Imig JD, Cook AK and Inscho EW. Postglomerular vasoconstriction to angiotensin II and norepinephrine depends on intracellular calcium release. Gen Pharmacol 34: 409–415, 2000.
 312. Imig JD and Deichmann PC. Afferent arteriolar responses to ANG II involve activation of PLA2 and modulation by lipoxygenase and P‐450 pathways. Am J Physiol 273: F274–F282, 1997.
 313. Inscho EW, Imig JD and Cook AK. Afferent and efferent arteriolar vasoconstriction to angiotensin II and norepinephrine involves release of Ca2+ from intracellular stores. Hypertension 29: 222–227, 1997.
 314. Loutzenhiser R, Chilton L and Trottier G. Membrane potential measuremenls in renal afferent and efferent arterioles: actions of angiotensin II. Am J Physiol 273: F307–F314, 1997.
 315. Patzak A, Mrowka R, Storch E, Hocher B and Persson PB. Interaction of angiotensin II and nitric oxide in isolated perfused afferent arterioles of mice. J Am Soc Nephrol 12: 1122–1127, 2001.
 316. Kimura K, Inokuchi S, Sugaya T, Suzuki N, Yoneda H, Shirato I, Mise N, Oba S, Miyashita K, Tojo A, Hirata Y, Goto A, Sakai T, Murakami K and Omata M. Location and action of angiotensin II type 1 receptor in the renal microcirculation. Kidney Int Suppl 63: S201–S204, 1997.
 317. Harrison‐Bernard LM, Cook AK, Oliverio MI and Coffman TM. Renal segmental microvascular responses to ANG II in AT1A receptor null mice. Am J Physiol Renal Physiol 284: F538–F545, 2003.
 318. Patzak A, Kleinmann F, Lai EY, Kupsch E, Skelweit A and Mrowka R. Nitric oxide counteracts angiotensin II induced contraction in efferent arterioles in mice. Acta Physiol Scand 181: 439–444, 2004.
 319. Kohagura K, Arima S, Endo Y, Chiba Y, Ito O, Abe M, Omata K and Ito S. Involvement of cytochrome P450 metabolites in the vascular action of angiotensin II on the afferent arterioles. Hypertens Res 24: 551–557, 2001.
 320. Kohagura K, Endo Y, Ito O, Arima S, Omata K and Ito S. Endogenous nitric oxide and epoxyeicosatrienoic acids modulate angiotensin II‐induced constriction in the rabbit afferent arteriole. Acta Physiol Scand 168: 107–112, 2000.
 321. Inscho EW, Mason MJ, Schroeder AC, Deichmann PC, Stiegler KD and Imig JD. Agonist‐induced calcium regulation in freshly isolated renal microvascular smooth muscle cells. J Am Soc Nephrol 8: 569–579, 1997.
 322. Iversen BM and Arendshorst WJ. ANG II and vasopressin stimulate calcium entry in dispersed smooth muscle cells of preglomerular arterioles. Am J Physiol 274: F498–F508, 1998.
 323. Loutzenhiser K and Loutzenhiser R. Angiotensin II‐induced Ca(2+) influx in renal afferent and efferent arterioles: differing roles of voltage‐gated and store‐operated Ca(2+) entry. Circ Res 87: 551–557, 2000.
 324. Wang DH and Prewitt RL. Captopril reduces aortic and microvascular growth in hypertensive and normotensive rats. Hypertension 15: 68–77, 1990.
 325. Wang DH and Prewitt RL. Longitudinal effect of Captopril on aortic and arteriolar development in normotensive rats. Am J Physiol 260: H1959–H1965, 1991.
 326. Wang DH and Prewitt RL. Reduced aortic and arteriolar growth by Captopril in normotensive and renal hypertensive rats. Adv Exp Med Biol 308: 217–221, 1991.
 327. Black MJ, Bertram JF, Campbell JH and Campbell GR. Angiotensin [I induces cardiovascular hypertrophy in perindopril‐treated rats. J Hypertens 13: 683–692, 1995.
 328. Wang DH, Prewitt RL and Beebe SJ. Regulation of PDGF‐A: a possible mechanism for angiotensin II‐induced vascular growth. Am J Physiol 269: H356–H364, 1995.
 329. Griffin SA, Brown WC, MacPherson F, McGrath JC, Wilson VG, Korsgaard N, Mulvany MJ and Lever AF. Angiotensin II causes vascular hypertrophy in part by a non‐pressor mechanism. Hypertension 17: 626–635, 1991.
 330. Simon G, Cserep G and Limas C. Development of structural vascular changes with subpressor angiotensin II administration in rats. Am J Hypertens 8: 67–73, 1995.
 331. le Noble FA, Kessels‐van Wylick LC, Hacking WJ, Slaaf DW, oude Egbrink MG and Struijker‐Boudier HA. The role of angiotensin II and prostaglandins in arcade formation in a developing microvascular network. J Vasc Res 33: 480–488, 1996.
 332. Nadal JA, Scicli GM, Carbini LA and Scicli AG. Angiotensin II stimulates migration of retinal microvascular pericytes: involvement of TGF‐beta and PDGF‐BB. Am J Physiol Heart Circ Physiol 282: H739–H748, 2002.
 333. Amaral SL, Papanek PE and Greene AS. Angiotensin II and VEGF are involved in angiogenesis induced by short‐term exercise training. Am J Physiol Heart Circ Physiol 281: H1163–H1169, 2001.
 334. Amaral SL, Roman RJ and Greene AS. Renin gene transfer restores angiogenesis and vascular endothelial growth factor expression in Dahl S rats. Hypertension 37: 386–390, 2001.
 335. Rieder MJ, Roman RJ and Greene AS. Reversal of microvascular rarefaction and reduced renal mass hypertension. Hypertension 30: 120–127, 1997.
 336. Hernandez I, Cowley AW, Jr., Lombard JH and Greene AS. Salt intake and angiotensin II alter microvessel density in the cremaster muscle of normal rats. Am J Physiol 263: H664–H667, 1992.
 337. McKinley MJ, Mathai ML, McAllen RM, McClear RC, Miselis RR, Pennington GL, Vivas L, Wade JD and Oldfield BJ. Vasopressin secretion: osmotic and hormonal regulation by the lamina terminalis. J Neuroendocrinol 16: 340–347, 2004.
 338. Oliveira GR, Franci CR, Rodovalho GV, Franci JA, Morris M and Rocha MJ. Alterations in the central vasopressin and oxytocin axis after lesion of a brain osmotic sensory region. Brain Res Bull 63: 515–520, 2004.
 339. Zingg HH, Lefebvre D and Almazan G. Regulation of vasopressin gene expression in rat hypothalamic neurons. Response to osmotic stimulation. J Biol Chem 261: 12956–12959, 1986.
 340. Yambe Y, Arima H, Kakiya S, Murase T and Oiso Y. Diurnal changes in arginine vasopressin gene transcription in the rat supra‐chiasmatic nucleus. Brain Res Mol Brain Res 104: 132–136, 2002.
 341. Mechaly I, Macari F, Lautier C, Serrano JJ, Cros G and Grigorescu F. Identification and sequence analysis of arginine vasopressin mRNA in normal and Brattleboro rat aortic tissue. Eur J Endocrinol 139: 123–126, 1998.
 342. Nagano K, Toba K, Akishita M, Kozaki K, Eto M, Hashimoto M, Sudoh N, Yoshizumi M and Ouchi Y. Identification of arginine vasopressin mRNA in rat aortic smooth muscle cells. Biochem Biophys Res Commun 231: 831–834, 1997.
 343. Simon J and Kasson BG. Identification of vasopressin mRNA in rat aorta. Hypertension 25: 1030–1033, 1995.
 344. Ishiguro S, Iwasaki T, Miyamoto A, Mori T and Nishio A. Vasopressin receptor subtypes on mesenteric and cremasteric arterioles in rat. Eur J Pharmacol 400: 121–125, 2000.
 345. Harrison‐Bernard LM and Carmines PK. Juxtamedullary microvascular responses to arginine vasopressin in rat kidney. Am J Physiol 267: F249–F256, 1994.
 346. Spatz M, Stanimirovic D, Bacic F, Uematsu S and McCarron RM. Vasoconstrictive peptides induce endothelin‐1 and prostanoids in human cerebromicrovascular endothelium. Am J Physiol 266: C654–C660, 1994.
 347. Marshall JM, Lloyd J and Mian R. The influence of vasopressin on the arterioles and venules of skeletal muscle of the rat during systemic hypoxia. J Physiol 470: 473–484, 1993.
 348. Segal MB, Chodobski A, Szmydynger‐Chodobska J and Cammish H. Effect of arginine vasopressin on blood vessels of the perfused choroid plexus of the sheep. Prog Brain Res 91: 451–453, 1992.
 349. Weihprecht H, Lorenz JN, Briggs JP and Schnermann J. Vasoconstrictor effect of angiotensin and vasopressin in isolated rabbit afferent arterioles. Am J Physiol 261: F273–F282, 1991.
 350. Fuhr W, Russo K and Weiss HR. Effect of vasopressin on myocardial capillary recruitment and coronary blood flow in the anesthetized rabbit. Can J Physiol Pharmacol 69: 170–175, 1991.
 351. Vanner S, Jiang MM, Brooks VL and Surprenant A. Characterization of vasopressin actions in isolated submucosal arterioles of the intestinal microcirculation. Circ Res 67: 1017–1026, 1990.
 352. Faraci FM. Effects of endothelin and vasopressin on cerebral blood vessels. Am J Physiol 257: H799–H803, 1989.
 353. Faraci FM, Mayhan WG, Schmid PG and Heistad DD. Effects of arginine vasopressin on cerebral microvascular pressure. Am J Physiol 255: H70–H76, 1988.
 354. Armstead WM, Mirro R, Busija DW and Leffler CW. Vascular responses to vasopressin are tone‐dependent in the cerebral circulation of the newborn pig. Circ Res 64: 136–144, 1989.
 355. Rossberg MI and Armstead WM. Role of cyclic nucleotides in vasopressin‐induced piglet pial artery dilation and opioid release. Pediatr Res 41: 498–504, 1997.
 356. Takayasu M, Kajita Y, Suzuki Y, Shibuya M, Sugita K and Hidaka H. A role of nitric oxide in vasomotor control of cerebral parenchymal arterioles in rats. J Auton Nerv Syst 49 (Suppl): S63–S66, 1994.
 357. Eichinger MR and Walker BR. Enhanced pulmonary arterial dilation to arginine vasopressin in chronically hypoxic rats. Am J Physiol 267: H2413–H2419, 1994.
 358. Eichinger MR and Walker BR. Segmental heterogeneity of NO‐mediated pulmonary vasodilation in rats. Am J Physiol 267: H494–H499, 1994.
 359. Medina P, Vila JM, Martinez MC, Aldasoro M, Chuan P and Lluch S. Effects of vasopressin on human renal arteries. Eur J Clin Invest 26: 966–972, 1996.
 360. Tsuji T and Cook DA. Vasoconstrictor mechanism of neuropeptides augmented after endothelial removal in isolated, perfused canine basilar arteries. Neurol Res 17: 193–200, 1995.
 361. Aldasoro M, Medina P, Vila JM, Otero E, Martinez‐Leon JB and Lluch S. Endothelium‐dependent relaxation of human saphenous veins in response to vasopressin and desmopressin. J Vasc Surg 25: 696–703, 1997.
 362. Medina P, Acuna A. Martinez‐Leon JB, Otero E, Vila JM. Aldasoro M and Lluch S. Arginine vasopressin enhances sympathetic constriction through the V1 vasopressin receptor in human saphenous vein. Circulation 97: 865–870, 1998.
 363. Evora PR, Pearson PJ and Schaff HV. Arginine vasopressin induces endothelium‐dependent vasodilatation of the pulmonary artery V1‐receptor‐mediated production of nitric oxide. Chest 103: 1241–1245, 1993.
 364. Holmes CL, Landry DW and Granton JT. Science review: vasopressin and the cardiovascular system part I ‐ receptor physiology. Crit Care 7: 427–434, 2003.
 365. Thibonnier M, Berti‐Mattera LN, Dulin N, Conarty DM and Mattera R. Signal transduction pathways of the human V1‐vascular, V2‐renal, V3‐pituitary vasopressin and oxytocin receptors. Prog Brain Res 119: 147–161, 1998.
 366. Evora PR, Pearson PJ, Rodrigues AJ, Viaro F and Schaff HV. Effect of arginine vasopressin on the canine epicardial coronary artery: experiments on V1‐receptor‐mediated production of nitric oxide. Arq Bras Cardiol 80: 483–494, 2003.
 367. Medina P, Segarra G, Vila JM, Chuan P, Domenech C and Lluch S. V2‐receptor‐mediated relaxation of human renal arteries in response to desmopressin. Am J Hypertens 12: 188–193, 1996.
 368. Resta TC and Walker BR. Enhanced renal vasoconstrictor responsiveness to vasopressin after renal denervation. J Cardiovasc Pharmacol 33: 711–717, 1999.
 369. Tahara A, Tsukada J, Tomura Y, Kusayama T, Wada K, Ishii N, Yatsu T, Uchida W, Taniguchi N and Tanaka A. Effect of YM471, an orally active non‐peptide arginine vasopressin receptor antagonist, on human vascular smooth muscle cells. J Hypertens 20: 1807–1814, 2002.
 370. Tamaki T, Kiyomoto K, He H, Tomohiro A, Nishiyama A, Aki Y, Kimura S and Abe Y. Vasodilation induced by vasopressin V2 receptor stimulation in afferent arterioles. Kidney Int 49: 722–729, 1996.
 371. Cowley AW. Control of the renal medullary circulation by vasopressin V1 and V2 receptors in the rat. Exp Physiol 85S: 223S–231S, 2000.
 372. Cavarape A, Bauer J, Bartoli E, Endlich K and Parekh N. Effects of angiotensin II, arginine vasopressin and tromboxane A2 in renal vascular bed: role of rho‐kinase. Nephrol Dial Transplant 18: 1764–1769, 2003.
 373. Koshimizu TA, Nasa Y, Tanoue A, Oikawa R, Kawahara Y, Kiyono Y, Adachi T, Tanaka T, Kuwaki T, Mori T, Takeo S, Okamura H and Tsujimoto G. Vla vasopressin receptors maintain normal blood pressure by regulating circulating blood volume and baroreflex sensitivity. Proc Natl Acad Sci USA 103: 7807–7812, 2006.
 374. Thibonnier M, Coles P, Thibonnier A and Shoham M. Molecular pharmacology and modeling of vasopressin receptors. Prog Brain Res 139: 179–196, 2002.
 375. Feng JJ and Arendshorst WJ. Calcium signaling mechanisms in renal vascular responses to vasopressin in genetic hypertension. Hypertension 30: 1223–1231, 1997.
 376. Saito T, Ishikawa SE, Sasaki S, Fujita N, Fushimi K, Okada K, Takeuchi K, Sakamoto A, Ookawara S, Kaneko T, Marumo F and Saito T. Alteration in water channel AQP‐2 by removal of AVP stimulation in collecting duct cells of dehydrated rats. Am J Physiol 272: F183–F191, 1997.
 377. Russ RD and Walker BR. Role of nitric oxide in vasopressinergic pulmonary vasodilatation. Am J Physiol 262: H743–H747, 1992.
 378. Park F, Mattson DL, Skelton MM and Cowley AW, Jr. Localization of the vasopressin V1a and V2 receptors within the renal cortical and medullary circulation. Am J Physiol 273: R243–R251, 1997.
 379. Ventura MA, Rene P, de Keyzer Y, Bertagna X and Clauser E. Gene and cDNA cloning and characterization of the mouse V3/V1b pituitary vasopressin receptor. J Mol Endocrinol 22: 251–260, 1999.
 380. Thibonnier M, Preston JA, Dulin N, Wilkins PL, Berti‐Mattera LN and Mattera R. The human V3 pituitary vasopressin receptor: ligand binding profile and density‐dependent signaling pathways. Endocrinology 138: 4109–4122, 1997.
 381. Ludwig M. Dendritic release of vasopressin and oxytocin. J Neuroendocrinol 10: 881–895, 1998.
 382. Murphy D, Waller S, Fairhall K, Carter DA and Robinson CA. Regulation of the synthesis and secretion of vasopressin. Prog Brain Res 119: 137–143, 1998.
 383. Kim JK, Summer SN, Wood WM and Schrier RW. Role of glucocorticoid hormones in arginine vasopressin gene regulation. Biochem Biophys Res Commun 289: 1252–1256, 2001.
 384. Burbach JP. Regulation of gene promoters of hypothalamic peptides. Front Neuroendocrinol 23: 342–369, 2002.
 385. Stocker SD, Schiltz JC and Sved AF. Acute increases in arterial blood pressure do not reduce plasma vasopressin levels stimulated by angiotensin II or hyperosmolality in rats. Am J Physiol Regul Integr Comp Physiol 287: R127–R137, 2004.
 386. King KA, Courneya CA, Tang C, Wilson N and Ledsome JR. Pharmacokinetics of vasopressin and atrial natriuretic peptide in anesthetized rabbits. Endocrinology 124: 77–83, 1989.
 387. Cottet‐Maire F, Avdonin PV, Roulet E, Buetler TM, Mermod N and Ruegg UT. Upregulation of vasopressin V1A receptor mRNA and protein in vascular smooth muscle cells following cyclosporin A treatment. Br J Pharmacol 132: 909–917, 2001.
 388. Wong NL, Sonntag M and Tsui JK. Attenuation of renal vasopressin V2 receptor upregulation by bosentan, an ETA/ETB receptor antagonist. Metabolism 52: 1141–1146, 2003.
 389. Volpi S, Rabadan‐Diehl C and Aguilera G. Regulation of vasopressin V1b receptors and stress adaptation. Ann NY Acad Sci 1018: 293–301, 2004.
 390. D'Orleans‐Juste P, Plante M, Honore JC, Carrier E and Labonte J. Synthesis and degradation of endothelin‐1. Can J Physiol Pharmacol 81: 503–510, 2003.
 391. Masaki T. Historical review: endothelin. Trends Pharmacol Sci 25: 219–224, 2004.
 392. Bakker EN, van der Meulen ET, van den Berg BM, Everts V, Spaan JA and VanBavel E. Inward remodeling follows chronic vasoconstriction in isolated resistance arteries. J Vasc Res 39: 12–20, 2002.
 393. Palmes D, Badny TB, Stratmann U, Herbst H and Spiegel HU. Endothelin‐A receptor antagonist reduces microcirculatory disturbances and transplant dysfunction after partial liver transplantation. Liver Transplant 9: 929–939, 2003.
 394. Tsuchiya Y, Suzuki S, Inaba K, Sakaguchi T, Baba S, Miwa M, Konno H and Nakamura S. Impact of endothelin‐1 on microcirculatory disturbance after partial hepatectomy under ischemia/reperfusion in thioacetamide‐induced cirrhotic rats. J Surg Res 111: 100–108, 2003.
 395. Mizunuma K, Ohdan H, Tashiro H, Fudaba Y, Ito H and Asahara T. Prevention of ischemia‐reperfusion‐induced hepatic microcirculatory disruption by inhibiting stellate cell contraction using rock inhibitor. Transplantation 75: 579–586, 2003.
 396. Zhang XY, Francis RJ, Sun CK and Wheatley AM. Endothelin receptor A blockade ameliorates hypothermic ischemia‐reperfusion‐related microhemodynamic disturbances during liver transplantation in the rat. J Surg Res 102: 63–70, 2002.
 397. Pannen BH, Schroll S, Loop T, Bauer M, Hoetzel A and Geiger KK. Hemorrhagic shock primes the hepatic portal circulation for the vasoconstrictive effects of endothelin‐1. Am J Physiol Heart Circ Physiol 281: H1075–H1084, 2001.
 398. Witzigmann H, Ludwig S, Armann B, Gabel G, Teupser D, Kratzsch J, Pietsch UC, Tannapfel A, Geissler F, Hauss J and Uhlmann D. Endothelin(A) receptor blockade reduces ischemia/reperfusion injury in pig pancreas transplantation. Ann Surg 238: 264–274, 2003.
 399. Plusczyk T, Witzel B, Menger MD and Schilling M. ETA and ETB receptor function in pancreatitis‐associated microcirculatory failure, inflammation, and parenchymal injury. Am J Physiol Gastrointest Liver Physiol 285: G145–G153, 2003.
 400. Inoue K, Hirota M, Kimura Y, Kuwata K, Ohmuraya M and Ogawa M. Further evidence for endothelin as an important mediator of pancreatic and intestinal ischemia in severe acute pancreatitis. Pancreas 26: 218–223, 2003.
 401. Plusczyk T, Bersal B, Menger MD and Feifel G. Differential effects of ET‐1, ET‐2, and ET‐3 on pancreatic microcirculation, tissue integrity, and inflammation. Dig Dis Sci 46: 1343–1351, 2001.
 402. King‐VanVlack CE, Mewburn JD, Chapler CK and MacDonald PH. Hemodynamic and proinflammatory actions of endothelin‐1 in guinea pig small intestine submucosal microcirculation. Am J Physiol Gastrointest Liver Physiol 284: G940–G948, 2003.
 403. de Carvalho MH, Nigro D, Scivoletto R, Barbeiro HV, de Oliveira MA, de Nucci G and Fortes ZB. Comparison of the effect of endothelin on microvessels and macrovessels in Goldblatt II and deoxycorticosterone acetate‐salt hypertensive rats. Hypertension 15: 168–171, 1990.
 404. Victorino GP, Wisner DH and Tucker VL. Basal release of endothelin‐1 and the influence of the ETB receptor on single vessel hydraulic permeability. J Trauma 49: 314–319, 2000.
 405. David FL, Carvalho MH, Cobra AL, Nigro D, Fortes ZB, Reboucas NA and Tostes RC. Ovarian hormones modulate endothelin‐1 vascular reactivity and mRNA expression in DOCA‐salt hypertensive rats. Hypertension 38: 692–696, 2001.
 406. Merkus D, Duncker DJ and Chilian WM. Metabolic regulation of coronary vascular tone: role of endothelin‐1. Am J Physiol Heart Circ Physiol 283: H1915–H1921, 2002.
 407. Oltman CL, Kane NL, Miller FJ, Jr., Spector AA, Weintraub NL and Dellsperger KC. Reactive oxygen species mediate arachidonic acid‐induced dilation in porcine coronary microvessels. Am J Physiol Heart Circ Physiol 285: H2309–H2315, 2003.
 408. Oltman CL, Kane NL, Gutterman DD, Bar RS and Dellsperger KC. Mechanism of coronary vasodilation to insulin and insulin‐like growth factor I is dependent on vessel size. Am J Physiol Endocrinol Metab 279: E176–E181, 2000.
 409. Wang Y, Kanatsuka H, Akai K, Sugimura A, Kumagai T, Komaru T, Sato K and Shirato K. Effects of low doses of endothelin‐1 on basal vascular tone and autoregulatory vasodilation in canine coronary microcirculation in vivo. Jpn Circ J 63: 617–623, 1999.
 410. Homma S, Miyauchi T, Goto K, Sugishita Y, Sato M and Ohshima N. Effects of endothelin‐1 on coronary microcirculation in isolated beating hearts of rats. J Cardiovasc Pharmacol 17 (Suppl 7); S276–S278, 1991.
 411. Boric MP, Donoso V, Fournier A, St Pierre S and Huidobro‐Toro JP. Endothelin reduces microvascular blood flow by acting on arterioles and venules of the hamster cheek pouch. Eur J Pharmacol 190: 123–133, 1990.
 412. Mayhan WG, Irvine SD and Sharpe GM. Constrictor responses of resistance arterioles during diabetes mellitus. Diabetes Res Clin Pract 44: 147–156, 1999.
 413. Leach RM, Twort CH, Cameron IR and Ward JP. The mechanism of action of endothelin‐1 on small pulmonary arterial vessels. Pulm Pharmacol 3: 103–109, 1990.
 414. Zhao H, Joshua IG and Porter JP. Microvascular responses to endothelin in deoxycorticosterone acetate‐salt hypertensive rats. Am J Hypertens 13: 819–826, 2000.
 415. Falcone JC and Meininger GA. Endothelin mediates a component of the enhanced myogenic responsiveness of arterioles from hypertensive rats. Microcirculation 6: 305–313, 1999.
 416. Lougee L, Hinojosa‐Laborde C, Harder DR and Lombard JH. Effect of nifedipine on endothelin induced contractions of skeletal muscle arterioles of spontaneously hypertensive rats. Microcirc Endothelium Lymphatics 6: 355–368, 1990.
 417. Hergenroder S, Munter K and Kirchengast M. Effects of endothelin and endothelin receptor antagonism in arteriolar and venolar microcirculation. Vasa 27: 216–219, 1998.
 418. Didier N, Romero IA, Creminon C, Wijkhuisen A, Grassi J and Mabondzo A. Secretion of interleukin‐1beta by astrocytes mediates endothelin‐1 and tumour necrosis factor‐alpha effects on human brain microvascular endothelial cell permeability. J Neurochem 86: 246–254, 2003.
 419. Douglas SA and Ohlstein EH. Vascular and cardiac effects of endothelin. In: Endothelin and its Inhibitors ed. Warner TD. London, UK: Springer‐Verlag Telos, 2001, pp. 405–451.
 420. Simonson MS. Cell Signaling by endothelin peptides. In: Endothelin and its Inhibitors, ed. Warner TD. London, UK: Springer‐Verlag Telos. 2003, pp. 115–140.
 421. Chang CL, Roh J and Hsu SY. Intermedin, a novel calcitonin family peptide that exists in teleosts as well as in mammals: a comparison with other calcitonin/intermedin family peptides in vertebrates. Peptides 25: 1633–1642, 2004.
 422. Wimalawansa SJ. Amylin, calcitonin gene‐related peptide, calcitonin, and adrenomedullin: a peptide superfamily. Crit Rev Neurobiol 11: 167–239, 1997.
 423. Kuwasako K, Cao YN, Nagoshi Y, Tsuruda T, Kitamura K and Eto T. Characterization of the human calcitonin gene‐related peptide receptor subtypes associated with receptor activity‐modifying proteins. Mol Pharmacol 65: 207–213, 2004.
 424. Eguchi S, Tezuka S, Hobara N, Akiyama S, Kurosaki Y and Kawasaki H. Vanilloid receptors mediate adrenergic nerve‐ and CGRP‐containing nerve‐dependent vasodilation induced by nicotine in rat mesenteric resistance arteries. Br J Pharmacol 142: 1137–1146, 2004.
 425. Hagner S, Haberberger R, Kummer W, Springer J, Fischer A, Bohm S, Goke B and McGregor GP. Immunohistochemical detection of calcitonin gene‐related peptide receptor (CGRPR)‐1 in the endothelium of human coronary artery and bronchial blood vessels. Neuropeptides 35: 58–64, 2001.
 426. Merhi M, Dusting GJ and Khalil Z. CGRP and nitric oxide of neuronal origin and their involvement in neurogenic vasodilatation in rat skin microvasculature. Br J Pharmacol 123: 863–868, 1998.
 427. Shiraki H, Kawasaki H, Tezuka S, Nakatsuma A and Kurosaki Y. Endogenous calcitonin gene‐related peptide (CGRP) mediates adrenergic‐dependent vasodilation induced by nicotine in mesenteric resistance arteries of the rat. Br J Pharmacol 130: 1083–1091, 2000.
 428. Kitamura K, Kangawa K and Eto T. Adrenomedullin and PAMP: discovery, structures, and cardiovascular functions. Microsc Res Tech 57: 3–13, 2002.
 429. Sugo S, Minamino N, Shoji H, Kangawa K and Matsuo H. Effects of vasoactive substances and cAMP related compounds on adrenomedullin production in cultured vascular smooth muscle cells. FEBS Lett 369: 311–314, 1995.
 430. Sikora L, Johansson AC, Rao SP, Hughes GK, Broide DH and Sriramarao P. A murine model to study leukocyte rolling and intravascular trafficking in lung microvessels. Am J Pathol 162: 2019–2028, 2003.
 431. Roberts AM, Slaaf DW and Joshua IG. Potentiation of pulmonary arteriolar vasoconstriction to endothelin‐1 by inhibition of nitric oxide synthesis in the intact lung. Microcirculation 5: 289–298, 1998.
 432. Ozawa Y, Hasegawa T, Tsuchiya K, Yoshizumi M and Tamaki T. Effect of endothelin‐1 (1–31) on the renal resistance vessels. J Med Invest 50: 87–94, 2003.
 433. Hercule HC and Oyekan AO. Cytochrome P450 omega/omega‐1 hydroxylase‐derived eicosanoids contribute to endothelin(A) and endothelin(B) receptor‐mediated vasoconstriction to endothelin‐1 in the rat preglomerular arteriole. J Pharmacol Exp Ther 292: 1153–1160, 2000.
 434. Imig JD, Pham BT, LeBlanc EA, Reddy KM, Falck JR and Inscho EW. Cytochrome P450 and cyclooxygenase metabolites contribute to the endothelin‐1 afferent arteriolar vasoconstrictor and calcium responses. Hypertension 35: 307–312, 2000.
 435. Edwards RM, Trizna W and Ohlstein EH. Renal microvascular effects of endothelin. Am J Physiol 259: F217–F221, 1990.
 436. Cavarape A, Endlich N, Assaloni R, Bartoli E, Steinhausen M, Parekh N and Endlich K. Rho‐kinase inhibition blunts renal vasoconstriction induced by distinct signaling pathways in vivo. J Am Soc Nephrol 14: 37–45, 2003.
 437. Loutzenhiser R, Epstein M, Hayashi K and Horton C. Direct visualization of effects of endothelin on the renal microvasculature. Am J Physiol 258: F61–F68, 1990.
 438. Edwards R and Trizna W. Response of isolated intracerebral arterioles to endothelins. Pharmacology 41: 149–152, 1990.
 439. Guibert C and Beech DJ. Positive and negative coupling of the endothelin ETA receptor to Ca2+‐permeable channels in rabbit cerebral cortex arterioles. J Physiol 514 (Pt 3): 843–856, 1999.
 440. Lehmberg J, Putz C, Furst M, Beck J, Baethmann A and Uhl E. Impact of the endothelin‐A receptor antagonist BQ 610 on microcirculation in global cerebral ischemia and reperfusion. Brain Res 961: 277–286, 2003.
 441. Godfraind T, Morel N and Dessy C. Calcium antagonists and vasoconstrictor effects in intracerebral microarterioles. Stroke 21: IV59–IV63, 1990.
 442. Bhardwaj A, Wu Y, Hum PD, Kirsch JR and Traystman RJ. Administration of selective endothelin receptor type A antagonist Ro 61‐1790 does not improve outcome in focal cerebral ischemia in cat. J Cereb Blood Flow Metab 20: 499–504, 2000.
 443. Willette RN, Sauermelch C, Ezekiel M, Feuerstein G and Ohlstein EH. Effect of endothelin on cortical microvascular perfusion in rats. Stroke 21: 451–458, 1990.
 444. Dawson DA, Sugano H, McCarron RM, Hallenbeck JM and Spatz M. Endothelin receptor antagonist preserves microvascular perfusion and reduces ischemic brain damage following permanent focal ischemia. Neurochem Res 24: 1499–1505, 1999.
 445. Wolfard A, Csaszar J, Gera L, Petri A, Simonka JA, Balogh A and Boros M. Endothelin‐a receptor antagonist treatment improves the periosteal microcirculation after hindlimb ischemia and reperfusion in the rat. Microcirculation 9: 471–476, 2002.
 446. Joshua IG. Endothelin‐induced vasoconstriction of small resistance vessels in the microcirculation of the rat cremaster muscle. Microvasc Res, 40: 191–198, 1990.
 447. Eto T, Kato J and Kitamura K. Regulation of production and secretion of adrenomedullin in the cardiovascular system. Regul Pept 112: 61–69, 2003.
 448. Minamino N, Kikumoto K and Isumi Y. Regulation of adrenomedullin expression and release. Microsc Res Tech 57: 28–39, 2002.
 449. Taylor MM and Samson WK. Adrenomedullin and the integrative physiology of fluid and electrolyte balance. Microsc Res Tech 57: 105–109, 2002.
 450. Roh J, Chang CL, Bhalla A, Klein C and Hsu SY. Intermedin is a calcitonin/calcitonin gene‐related peptide family peptide acting through the calcitonin receptor‐like receptor/receptor activity‐modifying protein receptor complexes. J Biol Chem 279: 7264–7274, 2004.
 451. Tam C and Brain SD. The assessment of vasoactive properties of CGRP and adrenomedullin in the microvasculature: a study using in vivo and in vitro assays in the mouse. J Mol Neurosci 22: 117–124, 2004.
 452. Jansen‐Olesen I, Jorgensen L, Engel U and Edvinsson L. In‐depth characterization of CGRP receptors in human intracranial arteries. Eur J Pharmacol 481: 207–216, 2003.
 453. Loaiza LA, Yamaguchi S, Ito M and Ohshima N. Vasodilatation of muscle microvessels induced by somatic afferent stimulation is mediated by calcitonin gene‐related peptide release in the rat. Neurosci Lett 333: 136–140, 2002.
 454. Moreno MJ, Terron JA, Stanimirovic DB, Doods H and Hamel E. Characterization of calcitonin gene‐related peptide (CGRP) receptors and their receptor‐activity‐modifying proteins (RAMPs) in human brain microvascular and astroglial cells in culture. Neuropharmacology 42: 270–280, 2002.
 455. Phillips JK, Hickey H and Hill CE. Heterogeneity in mechanisms underlying vasodilatory responses in small arteries of the rat hepatic mesentery. Auton Neurosci 83: 159–170, 2000.
 456. Matsumoto Y, Kanamoto K, Kawakubo K, Aomi H, Matsumoto T, Ibayashi S and Fujishima M. Gastroprotective and vasodilatory effects of epidermal growth factor: the role of sensory afferent neurons. Am J Physiol Gastrointest Liver Physiol 280: G897–G903, 2001.
 457. Terata K, Miura H, Liu Y, Loberiza F and Gutterman DD. Human coronary arteriolar dilation to adrenomedullin: role of nitric oxide and K(+) channels. Am J Physiol Heart Circ Physiol 279: H2620–H2626, 2000.
 458. Kobayashi H, Minami S, Yamamoto R, Masumoto K, Yanagita T, Uezono Y, Tsuchiya K, Mohri M, Kitamura K, Eto T and Wada A. Adrenomedullin receptors in rat cerebral microvessels. Brain Res Mol Brain Res 81: 1–6, 2000.
 459. Moreno MJ, Cohen Z, Stanimirovic DB and Hamel E. Functional calcitonin gene‐related peptide type 1 and adrenomedullin receptors in human trigeminal ganglia, brain vessels, and cerebro‐microvascular or astroglial cells in culture. J Cereb Blood Flow Metab 19: 1270–1278, 1999.
 460. Berggreen E and Heyeraas KJ. The role of sensory neuropeptides and nitric oxide on pulpal blood flow and tissue pressure in the ferret. J Dent Res 78: 1535–1543, 1999.
 461. Takao M, Tomita M, Tanahashi N, Kobari M and Fukuuchi Y. Transient vasodilatory effects of adrenomedullin on cerebral parenchymal microvessels in cats. Neurosci Lett 268: 147–150, 1999.
 462. Hall JM and Brain SD. Interaction of amylin with calcitonin gene‐related peptide receptors in the microvasculature of the hamster cheek pouch in vivo. Br J Pharmacol 126: 280–284, 1999.
 463. Hall JM, Siney L, Lippton H, Hyman A, Kang‐Chang J and Brain SD. Interaction of human adrenomedullin 13‐52 with calcitonin gene‐related peptide receptors in the microvasculature of the rat and hamster. Br J Pharmacol 114: 592–597, 1995.
 464. Reslerova M and Loutzenhiser R. Renal microvascular actions of calcitonin gene‐related peptide. Am J Physiol 274: F1078–F1085, 1998.
 465. Hill CE and Gould DJ. Modulation of sympathetic vasoconstriction by sensory nerves and nitric oxide in rat irideal arterioles. J Pharmacol Exp Ther 273: 918–926, 1995.
 466. Ferrell WR, McDougall JJ and Bray RC. Spatial heterogeneity of the effects of calcitonin gene‐related peptide (CGRP) on the microvasculature of ligaments in the rabbit knee joint. Br J Pharmacol 121: 1397–1405, 1997.
 467. Lang MG, Paterno R, Faraci FM and Heistad DD. Mechanisms of adrenomedullin‐induced dilatation of cerebral arterioles. Stroke 28: 181–185, 1997.
 468. Hong KW, Kim CD, Rhim BY and Lee WS. Effect of omega‐conotoxin GVIA and omega‐agatoxin IVA on the capsaicin‐sensitive calcitonin gene‐related peptide release and autoregulatory vasodilation in rat pial arteries. J Cereb Blood Flow Metab 19: 53–60, 1999.
 469. Hong KW, Yoo SE, Yu SS, Lee JY and Rhim BY. Pharmacological coupling and functional role for CGRP receptors in the vasodilation of rat pial arterioles. Am J Physiol 270: H317–H323, 1996.
 470. Lin HY, Harris TL, Flannery MS, Aruffo A, Kaji EH, Gorn A, Kolakowski LF, Jr., Lodish HF and Goldring SR. Expression cloning of an adenylate cyclase‐coupled calcitonin receptor. Science 254: 1022–1024, 1991.
 471. Smith DM, Coppock HA, Withers DJ, Owji AA, Hay DL, Choksi TP, Chakravarty P, Legon S and Poyner DR. Adrenomedullin: receptor and signal transduction. Biochem Soc Trans 30: 432–437, 2002.
 472. Schini‐Kerth VB, Fisslthaler B and Busse R. CGRP enhances induction of NO synthase in vascular smooth muscle cells via a cAMP‐dependent mechanism. Am J Physiol 267: H2483–H2490, 1994.
 473. Beltowski J and Jamroz A. Adrenomedullin ‐ What do we know 10 years since its discovery? Pol J Pharmacol 56: 5–27, 2004.
 474. Cheung BM, Li CY and Wong LY. Adrenomedullin: its role in the cardiovascular system. Semin Vasc Med 4: 129–134, 2004.
 475. Fernandez‐Sauze S, Delfino C, Mabrouk K, Dussert C, Chinot O, Martin PM, Grisoli F, Ouafik L and Boudouresque F. Effects of adrenomedullin on endothelial cells in the multistep process of angiogenesis: involvement of CRLR/RAMP2 and CRLR/RAMP3 receptors. Int J Cancer 108: 797–804, 2004.
 476. Shichiri M, Fukai N, Ozawa N, Iwasaki H and Hirata Y. Adrenomedullin is an autocrine/paracrine growth factor for rat vascular smooth muscle cells. Regul Pept 112: 167–173, 2003.
 477. Kurtz A, Muff R and Fischer JA. Calcitonin gene products and the kidney. Klin Wochenschr 67: 870–875, 1989.
 478. Hay DL, Conner AC, Howitt SG, Smith DM and Poyner DR. The pharmacology of adrenomedullin receptors and their relationship to CGRP receptors. J Mol Neurosci 22: 105–113, 2004.
 479. Hay DL, Conner AC, Howitt SG, Takhshid MA, Simms J, Mahmoud K and Poyner DR. The pharmacology of CGRP‐responsive receptors in cultured and transfected cells. Peptides 25: 2019–2026, 2004.
 480. Mallee JJ, Salvatore CA, LeBourdelles B, Oliver KR, Longmore J, Koblan KS and Kane SA. Receptor activity‐modifying [email protected]@@@@ 140 determines the species selectivity of non‐peptide CGRP receptor antagonists. J Biol Chem 277: 14294–14298, 2002.
 481. Brain SD and Grant AD. Vascular actions of calcitonin gene‐related peptide and adrenomedullin. Physiol Rev 84: 903–934, 2004.
 482. Abdelrahman AM and Pang CC. Effect of intermedin/adrenomedullin‐2 on venous tone in conscious rats. Naunyn Sehmiedebergs Arch Pharmacol 373: 376–380, 2006.
 483. Miyashita K, Itoh H, Sawada N, Fukunaga Y, Sone M, Yamahara K, Yurugi T and Nakao K. Adrenomedullin promotes proliferation and migration of cultured endothelial cells. Hypertens Res 26 (Suppl): S93–S98, 2003.
 484. Schwarz N, Renshaw D, Kapas S and Hinson JP. Adrenomedullin increases the expression of calcitonin‐like receptor and receptor activity modifying protein 2 mRNA in human microvascular endothelial cells. J Endocrinol 190: 505–514, 2006.
 485. Sata M, Kakoki M, Nagata D, Nishimatsu H, Suzuki E, Aoyagi T, Sugiura S, Kojima H, Nagano T, Kangawa K, Matsuo H, Omata M, Nagai R and Hirata Y. Adrenomedullin and nitric oxide inhibit human endothelial cell apoptosis via a cyclic GMP‐independent mechanism. Hypertension 36: 83–88, 2000.
 486. Shichiri M and Hirata Y. Regulation of cell growth and apoptosis by adrenomedullin. Hypertens Res 26 (Suppl): S9–S14, 2003.
 487. Born W, Muff R and Fischer JA. Functional interaction of G protein‐coupled receptors of the adrenomedullin peptide family with accessory receptor‐activity‐modifying proteins (RAMP). Microsc Res Tech 57: 14–22, 2002.
 488. Hay DL and Smith DM. Adrenomedullin receptors: molecular identity and function. Peptides 22: 1753–1763, 2001.
 489. Aldecoa A, Gujer R, Fischer JA and Born W. Mammalian calcitonin receptor‐like receptor/receptor activity modifying protein complexes define calcitonin gene‐related peptide and adrenomedullin receptors in Drosophila Schneider 2 cells. FEBS Lett 471: 156–160, 2000.
 490. Born W, Fischer JA and Muff R. Receptors for calcitonin gene‐related peptide, adrenomedullin, and amylin: the contributions of novel receptor‐activity‐modifying proteins. Recept Channels 8: 201–209, 2002.
 491. Muff R, Born W and Fischer JA. Adrenomedullin selectivity of calcitonin‐like receptor/receptor activity modifying proteins. Hypertens Res 26 (Suppl): S3–S8, 2003.
 492. Shimekake Y, Nagata K, Ohta S, Kambayashi Y, Teraoka H, Kitamura K, Eto T, Kangawa K and Matsuo H. Adrenomedullin stimulates two signal transduction pathways. cAMP accumulation and Ca2+ mobilization, in bovine aortic endothelial cells. J Biol Chem 270: 4412–4417, 1995.
 493. Herzog M, Scherer EQ, Albrecht B, Rorabaugh B, Scofield MA and Wangemann P. CGRP receptors in the gerbil spiral modiolar artery mediate a sustained vasodilation via a transient cAMPmediated Ca2 +‐decrease. J Membr Biol 189: 225–236, 2002.
 494. Szokodi I, Kinnunen P, Tavi P, Weckstrom M, Toth M and Ruskoaho H. Evidence for cAMP‐independent mechanisms mediating the effects of adrenomedullin, a new inotropic peptide. Circulation 97: 1062–1070, 1998.
 495. Champion HC, Pierce RL, Bivalacqua TJ, Murphy WA, Coy DH and Kadowitz PJ. Analysis of responses to hAmylin, hCGRP, and hADM in isolated resistance arteries from the mesenteric vascular bed of the rat. Peptides 22: 1427–1434, 2001.
 496. Haug T and Storm JF. Protein kinase A mediates the modulation of the slow Ca(2+)‐dependent K(+) current. I(sAHP). by the neuropeptides CRF, VIP, and CGRP in hippocampal pyramidal neurons. J Neurophysiol 83: 2071–2079, 2000.
 497. Dettmann ES, Vysniauskiene I, Wu R, Flammer J and Haefliger IO. Adrenomedullin‐induced endothelium‐dependent relaxation in porcine ciliary arteries. Invest Ophthalmol Vis Sci 44: 3961–3966, 2003.
 498. Wangensteen R, Quesada A, Sainz J, Duarte J, Vargas F and Osuna A. Role of endothelium‐derived relaxing factors in adrenomedullin‐induced vasodilation in the rat kidney. Eur J Pharmacol 444: 97–102, 2002.
 499. Boussery K, Delaey C and Van de Voorde J. Influence of adrenomedullin on tone of isolated bovine retinal arteries. Invest Ophthalmol Vis Sci 45: 552–559, 2004.
 500. Nikitenko LL. Blucher N, Fox SB, Bicknell R, Smith DM and Rees MC. Adrenomedullin and CGRP interact with endogenous calcitonin‐receptor‐like receptor in endothelial cells and induce its desensitiation by different mechanisms. J Cell Sci 119: 910–922, 2006.
 501. Chu DQ, Smith DM and Brain SD. Studies of the microvascular effects of adrenomedullin and related peptides. Peptides 22: 1881–1886, 2001.
 502. Katayama M, Nadel JA, Bunnett NW, Di Maria GU, Haxhiu M and Borson DB. Catabolism of calcitonin gene‐related peptide and substance P by neutral endopeptidase. Peptides 12: 563–567, 1991.
 503. Wilkinson IB, McEniery CM, Bongaerts KH, MacCallum H, Webb DJ and Cockcroft JR. Adrenomedullin (ADM) in the human forearm vascular bed: effect of neutral endopeptidase inhibition and comparison with proadrenomedullin NH2‐terminal 20 peptide (PAMP). Br J Clin Pharmacol 52: 159–164, 2001.
 504. Ozawa N, Shichiri M, Fukai N, Yoshimoto T and Hirata Y. Regulation of adrenomedullin gene transcription and degradation by the c‐myc gene. Endocrinology 145: 4244–4250, 2004.
 505. Cormier‐Regard S, Nguyen SV and Claycomb WC. Adrenomedullin gene expression is developmentally regulated and induced by hypoxia in rat ventricular cardiac myocytes. J Biol Chem 273: 17787–17792, 1998.
 506. Garayoa M, Martinez A, Lee S, Pio R, An WG, Neckers L, Trepel J, Montuenga LM, Ryan H, Johnson R, Gassmann M and Cuttitta F. Hypoxia‐inducible factor‐1 (HIF‐1) up‐regulates adrenomedullin expression in human tumor cell lines during oxygen deprivation: a possible promotion mechanism of carcinogenesis. Mol Endocrinol 14: 848–862, 2000.
 507. Piehl F, Ji RR, Cullheim S, Hokfelt T, Lindholm D and Hughes RA. Fibroblast growth factors regulate calcitonin gene‐related peptide mRNA expression in rat motoneurons after lesion and in culture. Eur J Neurosci 7: 1739–1750, 1995.
 508. Jenkins DW, Langmead CJ, Parsons AA and Strijbos PJ. Regulation of calcitonin gene‐related peptide release from rat trigeminal nucleus caudalis slices in vitro. Neurosci Lett 366: 241–244, 2004.
 509. Kitamuro T, Takahashi K, Totsune K, Nakayama M, Murakami O, Hida W, Shirato K and Shibahara S. Differential expression of adrenomedullin and its receptor component, receptor activity modifying protein (RAMP) 2 during hypoxia in cultured human neuroblastoma cells. Peptides 22: 1795–1801, 2001.
 510. Ramkumar V, Hallam DM and Nie Z. Adenosine, oxidative stress and cytoprotection. Jpn J Pharmacol 86: 265–274, 2001.
 511. Tabrizchi R and Bedi S. Pharmacology of adenosine receptors in the vasculature. Pharmacol Ther 91: 133–147, 2001.
 512. Auchampach JA and Bolli R. Adenosine receptor subtypes in the heart: therapeutic opportunities and challenges. Am J Physiol 276: H1113–H1116, 1999.
 513. Li B, Yang C, Rosenbaum DM and Roth S. Signal transduction mechanisms involved in ischemic preconditioning in the rat retina in vivo. Exp Eye Res 70: 755–765, 2000.
 514. Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN and Linden J. International union of pharmacology XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53: 527–552, 2001.
 515. Kalaria RN and Harik SI. Adenosine receptors and the nucleoside transporter in human brain vasculature. J Cereb Blood Flow Metab 8: 32–39, 1938.
 516. Shryock JC and Belardinelli L. Adenosine and adenosine receptors in the cardicvascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79: 2–10, 1997.
 517. Fredholm BB, Abbracchio MP, Burnstock G, Dubyak GR, Harden TK, Jacobson KA, Schwabe U and Williams M. Towards a revised nomenclature for P1 and P2 receptors. Trends Pharmacol Sci 18: 79–82, 1997.
 518. Hardman JG, Limbird LF and Gilman AG. Goodman and Gilman's The Pharmacological Basis of Therapeutics. New York: McGraw‐Hill, 2005.
 519. de Jong JW, de Jonge R, Keijzer E and Bradamante S. The role of adenosine in preconditioning. Pharmacol Ther 87: 141–149, 2000.
 520. Kroll K and Schrader J. Myocardial adenosine stimulates release of cyclic adenosine monophosphate from capillary endothelial cells in guinea pig heart. Pflugers Arch 423: 330–337, 1993.
 521. Li YO and Fredholm BB. Adenosine analogues stimulate cyclic AMP formation in rabbit cerebral microvessels via adenosine A2‐receptors Acta Physiol Scand 124: 253–259, 1985.
 522. Bryan PT and Marshall JM. Adenosine receptor subtypes and vasodilatation in rat skeletal muscle during systemic hypoxia: a role for A1 receptors. J Physiol 514 (Pt 1): 151–162, 1999.
 523. Danialou G, Vicaut E, Sambe A, Aubier M and Boczkowski J. Predominant role of A1 adenosine receptors in mediating adenosine induced vasodilatation of rat diaphragmatic arterioles: involvement of nitric oxide and the ATP‐dependent K+ channels. Br J Pharmacol 121: 1355–1363, 1997.
 524. Kuo L and Chancellor JD. Adenosine potentiates flow‐induced dilation of coronary arterioles by activating KATP channels in endothelium. Am J Physiol 269: H541–H549, 1995.
 525. Li Q and Puro DG. Adenosine activates ATP‐sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res 907: 93–99, 2001.
 526. Baraldi PG, Cacciari B, Romagnoli R, Merighi S, Varani K, Borea PA and Spalluto G. A(3) adenosine receptor ligands: history and perspectives. Med Res Rev 20: 103–128, 2000.
 527. Palmer TM and Stiles GL. Structure‐function analysis of inhibitory adenosine receptor regulation. Neuropharmacology 36: 1141–1147, 1997.
 528. Poulsen SA and Quinn RJ. Adenosine receptors: new opportunities for future drugs. Bioorg Med Chem 6: 619–641, 1998.
 529. Klinger M, Freissmuth M and Nanoff C. Adenosine receptors: G protein‐mediated signalling and the role of accessory proteins. Cell Signal 14: 99–108, 2002.
 530. Linden J. Molecular approach to adenosine receptors: receptor‐mediated mechanisms of tissue protection. Annu Rev Pharmacol Toxicol 41: 775–787, 2001.
 531. Marala RB and Mustafa SJ. Modulation of protein kinase C by adenosine: involvement of adenosine A1 receptor‐pertussis toxin sensitive nucleotide binding protein system. Mol Cell Biochem 149‐150: 51–58, 1995.
 532. Bryan PT and Marshall JM. Cellular mechanisms by which adenosine induces vasodilatation in rat skeletal muscle: significance for systemic hypoxia. J Physiol 514 (Pt 1): 163–175, 1999.
 533. Jackson WF. Arteriolar tone is determined by activity of ATP‐sensitive potassium channels. Am J Physiol 265: H1797–H1803, 1993.
 534. Dubey RK, Gillespie DG, Shue H and Jackson EK. A(2B) receptors mediate antimitogenesis in vascular smooth muscle cells. Hypertension 35: 267–272, 2000.
 535. Dubey RK, Gillespie DG, Zacharia LC, Mi Z and Jackson EK. A(2b) receptors mediate the antimitogenic effects of adenosine in cardiac fibroblasts. Hypertension 37: 716–721, 2001.
 536. Stojanov I and Proctor KG. Pharmacological evidence for A1 and A2 adenosine receptors in the skin microcirculation. Circ Res 65: 176–184, 1989.
 537. Nicholls J, Hourani SM and Hall JM. Characterization of adenosine receptors mediating the vasodilator effects of adenosine receptor agonists in the microvasculature of the hamster cheek pouch in vivo. Auton Autacoid Pharmacol 22: 209–214, 2002.
 538. Proctor KG. Reduction of contraction‐induced arteriolar vasodilation by adenosine deaminase or theophylline. Am J Physiol 247: H195–H205, 1984.
 539. Proctor KG and Duling BR. Adenosine and free‐flow functional hyperemia in striated muscle. Am J Physiol 242: H688–H697, 1982.
 540. Radegran G and Hellsten Y. Adenosine and nitric oxide in exercise‐induced human skeletal muscle vasodilatation. Acta Physiol Scand 168: 575–591, 2000.
 541. Nishigaki K, Faber JE and Ohyanagi M. Interactions between alpha‐adrenoceptors and adenosine receptors on microvascular smooth muscle. Am J Physiol 260: H1655–H1666, 1991.
 542. Persson MG, Ohlen A, Lindbom L, Hedqvist P and Gustafsson LE. Role of adenosine in functional hyperemia in skeletal muscle as indicated by pharmacological tools. Naunyn Schmiedebergs Arch Pharmacol 343: 52–57, 1991.
 543. Cohen KD and Sarelius IH. Muscle contraction under capillaries in hamster muscle induces arteriolar dilatation via K(ATP) channels and nitric oxide. J Physiol 539: 547–555, 2002.
 544. Berne RM, Winn HR and Rubio R. The local regulation of cerebral blood flow. Prog Cardiovasc Dis 24: 243–259, 1981.
 545. Winn HR, Rubio R and Berne RM. Brain adenosine production in the rat during 60 seconds of ischemia. Circ Res 45: 486–492, 1979.
 546. Beck DW, Vinters HV, Moore SA, Hart MN, Henn FA and Cancilla PA. Demonstration of adenosine receptors on mouse cerebral smooth muscle membranes. Stroke 15: 725–727, 1984.
 547. Kalaria RN and Harik SI. Adenosine receptors of cerebral microvessels and choroid plexus. J Cereb Blood Flow Metab 6: 463–470, 1986.
 548. Phillis JW. Adenosine in the control of the cerebral circulation. Cerebrovasc Brain Metab Rev 1: 26–54, 1989.
 549. Ngai AC and Winn HR. Effects of adenosine and its analogues on isolated intracerebral arterioles. Extraluminal and intraluminal application. Circ Res 73: 448–457, 1993.
 550. Bari F, Louis TM and Busija DW. Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets. Stroke 29: 222–227, 1998.
 551. Ilift JJ, D'Ambrosio R, Ngai AC and Winn HR. Adenosine receptors mediate glutamate‐evoked arteriolar dilation in the rat cerebral cortex. Am J Physiol Heart Circ Physiol 284: H1631–H1637, 2003.
 552. Berne RM. Autoregulation of coronary blood flow; possible role of adenosine. In: Problems in Laboratory Evaluation of Antianginal Agents, ed. Winbury MW. Amsterdam: North‐Holland Publishing Company, 1967, pp. 8–16.
 553. Berne RM and Rubio R. Challenges to the adenosine hypothesis for the regulation of coronary blood flow. In: Current Topics in Coronary Research, eds Bloor CM and Olsson RA. New York: Plenum Publishing, 1991, pp. 3–10.
 554. Rubio R and Berne RM. Release of adenosine by the normal myocardium in dogs and its relationship to the regulation of coronary resistance. Circ Res 25: 407–415, 1969.
 555. Rubio R, Berne RM and Katori M. Release of adenosine in reactive hyperemia of the dog heart. Am J Physiol 216: 56–62, 1969.
 556. Rubio R, Wiedmeier VT and Berne RM, Relationship between coronary flow and adenosine production and release. J Mol Cell Cardiol 6: 561–566, 1974.
 557. Kroll K and Schrader J. Myocardial adenosine stimulates release of cyclic adenosine monophosphate from capillary endothelial cells in guinea pig heart. Pflugers Arch 423: 330–337, 1993.
 558. DeFily DV, Patterson JL and Chilian WM. Endogenous adenosine modulates alpha 2‐ but not alpha 1‐adrenergic constriction of coronary arterioles. Am J Physiol 268: H2487–H2494, 1995.
 559. Ishibashi Y, Duncker DJ, Zhang J and Bache RJ. ATP‐sensitive K+ channels, adenosine, and nitric oxide‐mediated mechanisms account for coronary vasodilation during exercise. Circ Res 82: 346–359, 1998.
 560. Jackson EK and Dubey RK. Role of the extracellular cAMP‐adenosine pathway in renal physiology. Am J Physiol Renal Physiol 281: F597–F612, 2001.
 561. Modiinger PS and Welch WJ. Adenosine A1 receptor antagonists and the kidney. Curr Opin Nephrol Hypertens 12: 497–502, 2003.
 562. Jackson EK, Zhu C and Tofovic SP. Expression of adenosine receptors in the preglomerular microcirculation. Am J Physiol Renal Physiol 283: F41–F51, 2002.
 563. Inscho EW, Carmines PK and Navar LG. Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation. Hypertension 17: 1033–1037, 1991.
 564. Sun D, Samuelson LC, Yang T, Huang Y, Paliege A, Saunders T, Briggs J and Schnermann J. Mediation of tubuloglomerular feedback by adenosine: evidence from mice lacking adenosine 1 receptors. Proc Natl Acad Sci USA 98: 9983–9988, 2001.
 565. Hansen PB, Hashimoto S, Briggs J and Schnermann J. Attenuated renovascular constrictor responses to angiotensin II in adenosine 1 receptor knockout mice. Am J Physiol Regul Integr Comp Physiol 285: R44–R49, 2003.
 566. Hansen PB, Castrop H, Briggs J and Schnermann J. Adenosine induces vasoconstriction through Gi‐dependent activation of phospholipase C in isolated perfused afferent arterioles of mice. J Am Soc Nephrol 14: 2457–2465, 2003.
 567. Asako H, Wolf RE and Granger DN. Leukocyte adherence in rat mesenteric venules: effects of adenosine and methotrexate. Gastroenterology 104: 31–37, 1993.
 568. Cronstein BN. Adenosine, an endogenous anti‐inflammatory agent. J Appl Physiol 76: 5–13, 1994.
 569. Rosengren S, Arfors KE and Proctor KG. Potentiation of leukotriene B4‐mediated inflammatory response by the adenosine antagonist, 8‐phenyl theophylline. Int J Microcirc Clin Exp 10: 345–357, 1991.
 570. Nguyen DK, Montesinos MC, Williams AJ, Kelly M and Cronstein BN. Th1 cytokines regulate adenosine receptors and their downstream signaling elements in human microvascular endothelial cells. J Immunol 171: 3991–3998, 2003.
 571. Jin IX, Shepherd RK, Duling BR and Linden J. Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. J Clin Invest 100: 2849–2857, 1997.
 572. Shepherd RK, Linden J and Duling BR. Adenosine‐induced vasoconstriction in vivo. Role of the mast cell and A3 adenosine receptor. Circ Res 78: 627–634, 1996.
 573. Dusseau JW and Hutchins PM. Hypoxia‐induced angiogenesis in chick chorioallantoic membranes: a role for adenosine. Respir Physiol 71: 33–44, 1988.
 574. Gu JW, Ito BR, Sartin A, Frascogna N, Moore M and Adair TH. Inhibition of adenosine kinase induces expression of VEGF mRNA and protein in myocardial myoblasts. Am J Physiol Heart Circ Physiol 279: H2116–H2123, 2000.
 575. Marshall JM. Roles of adenosine and nitric oxide in skeletal muscle in acute and chronic hypoxia. Adv Exp Med Biol 502: 349–363, 2001.
 576. Montesinos MC, Desai A, Chen JF, Yee H, Schwarzschild MA, Fink JS and Cronstein BN. Adenosine promotes wound healing and mediates angiogenesis in response to tissue injury via occupancy of A(2A) receptors. Am J Pathol 160: 2009–2018, 2002.
 577. Feoktistov I, Ryzhov S, Goldstein AE and Biaggioni I. Mast cell‐mediated stimulation of angiogenesis: cooperative interaction between A2B and A3 adenosine receptors. Circ Res 92: 485–492, 2003.
 578. Feoktistov I, Ryzhov S. Zhong H, Goldstein AE, Matafonov A, Zeng D and Biaggioni I. Hypoxia modulates adenosine receptors in human endothelial and smooth muscle cells toward an A2B angiogenic phenotype. Hypertension 44: 649–654, 2004.
 579. Feoktistov I, Goldstein AE, Ryzhov S, Zeng D, Belardinelli L, Voyno‐Yasenetskaya T and Biaggioni I. Differential expression of adenosine receptors in human endothelial cells: role of A2B receptors in angiogenic factor regulation. Circ Res 90: 531–538, 2002.
 580. Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, Voigt M and Humphrey PP. International union of pharmacology XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53: 107–118, 2001.
 581. Revest PA, Abbott NJ and Gillespie JI. Receptor‐mediated changes in intracellular [Ca2+] in cultured rat brain capillary endothelial cells. Brain Res 549: 159–161, 1991.
 582. Ehring GR, Szabo IL, Jones MK, Sarfeh IJ and Tarnawski AS. ATP‐induced CA2+‐signaling enhances rat gastric microvascular endothelial cell migration. J Physiol Pharmacol 51: 799–811, 2000.
 583. Robertson PL, Ar D and Goldstein GW. Phosphoinositide metabolism and prostacyclin formation in retinal microvascular endothelium: stimulation by adenine nucleotides. Exp Eye Res 50: 37–44, 1990.
 584. Evans RJ and Surprenant A. Vasoconstriction of guinea‐pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Br J Pharmacol 106: 242–249, 1992.
 585. Galligan JJ, Herring A and Harpstead T. Pharmacological characterization of purinoceptor‐mediated constriction of submucosal arterioles in guinea pig ileum. J Pharmacol Exp Ther 274: 1425–1430, 1995.
 586. Saino T, Matsuura M and Satoh YI. Comparison of the effect of ATP on intracellular calcium ion dynamics between rat testicular and cerebral arteriole smooth muscle cells. Cell Calcium 32: 153–163, 2002.
 587. Inscho EW, Mitchell KD and Navar LG. Extracellular ATP in the regulation of renal microvascular function. FASEB J 8: 319–328, 1994.
 588. Inscho EW. Renal microvascular effects of P2 receptor stimulation. Clin Exp Pharmacol Physiol 28: 332–339, 2001.
 589. Inscho EW, Cook AK, Mui V and Miller J. Direct assessment of renal microvascular responses to P2‐purinoceptor agonists. Am J Physiol 274: F718–F727, 1998.
 590. Inscho EW. Purinoceptor‐mediated regulation of the renal microvasculature. J Auton Pharmacol 16: 385–388, 1996.
 591. Campbell DJ. The renin‐angiotensin and the kallikrein‐kinin systems. Int J Biochem Cell Biol 35: 784–791, 2003.
 592. Campbell DJ. Towards understanding the kallikrein‐kinin system: insights from measurement of kinin peptides. Braz J Med Biol Res 33: 665–677, 2000.
 593. Sharma JN and Sharma J. Cardiovascular properties of the kallikrein‐kinin system. Curr Med Res Opin 18: 10–17, 2002.
 594. Shariat‐Madar Z, Mahdi F, Warnock M, Homeister JW, Srikanth S, Krijanovski Y, Murphey LJ, Jaffa AA and Schmaier AH. Bradykinin B2 receptor knockout mice are protected from thrombosis by increased nitric oxide and prostacyclin. Blood 108: 192–199, 2006.
 595. Cervenka L, Vaneckova I, Maly J, Horacek V and El Dahr SS. Genetic inactivation of the B2 receptor in mice worsens two‐kidney, one‐clip hypertension: role of NO and the AT2 receptor. J Hypertens 21: 1531–1538, 2003.
 596. Chao J, Bledsoe G, Yin H and Chao L. The tissue kallikrein‐kinin system protects against cardiovascular and renal diseases and ischemic stroke independently of blood pressure reduction. Biol Chem 387: 665–675, 2006.
 597. Araujo RC, Mori MA, Merino VF, Bascands JL, Schanstra JP, Zollner RL, Villela CA, Nakaie CR, Paiva AC, Pesquero JL, Bader M and Pesquero JB. Role of the kinin Bl receptor in insulin homeostasis and pancreatic islet function. Biol Chem 387: 431–436, 2006.
 598. Cayla C, Todiras M, Iliescu R, Saul W, Gross V, Pilz B, Chai G, Merino VF, Pesquero JB, Baltatu OC and Bader M. Mice deficient for both kinin receptors are normotensive and protected from endotoxin‐ induced hypotension. FASEB J, 2007.
 599. He GW, Ge ZD, Yim AP, Yang Q and Zhang RZ. Electrophysiologic and mechanical evidence of superiority of hyperpolarizing versus depolarizing cardioplegia in protection of endothelium‐derived hyperpolarizing factor‐mediated endothelial function: a study in coronary resistance arteries. J Thorac Cardiovasc Surg 127: 1773–1780, 2004.
 600. De Moraes R, Gioseffi G, Nobrega AC and Tibirica E. Effects of exercise training on the vascular reactivity of the whole kidney circulation in rabbits. J Appl Physiol 97: 683–688, 2004.
 601. Batenburg WW, Popp R, Fleming I, de Vries R, Garrelds IM, Saxena PR and Danser AH. Bradykinin‐induced relaxation of coronary micioarteries: S‐nitrosothiols as EDHF? Br J Pharmacol 142: 125–135, 2004.
 602. Batenburg WW, Garrelds IM, van Kats JP, Saxena PR and Danser AH. Mediators of bradykinin‐induced vasorelaxation in human coronary microarteries. Hypertension 43: 488–492, 2004.
 603. Plante GE, Perreault M, Lanthier A, Marette A and Maheux P. Reduction of endothelial NOS and bradykinin‐induced extravasation of macromolecules in skeletal muscle of the fructose‐fed rat model. Cardiovasc Res 59: 963–970, 2003.
 604. Abdouh M, Khanjari A, Abdelazziz N, Ongali B, Couture R and Hassessian HM. Early upregulation of kinin B1 receptors in retinal microvessels of the streptozotocin‐diabetic rat. Br J Pharmacol 140: 33–40, 2003.
 605. Lehmberg J, Beck J, Baethmann A and Uhl E. Influence of the bradykinin B1/B2‐receptor‐antagonist B 9430 on the cerebral microcirculation and outcome of gerbils from global cerebral ischemia. Acta Neurochir Suppl 76: 39–41, 2000.
 606. Lehmberg J, Beck J, Baethmann A and Uhl E. Bradykinin antagonists reduce leukocyte‐endothelium interactions after global cerebral ischemia. J Cereb Blood Flow Metab 23: 441–448, 2003.
 607. Ren Y, Garvin JL, Falck JR, Renduchintala KV and Carretero OA. Glomerular autacoids stimulated by bradykinin regulate efferent arteriole tone. Kidney Int 63: 987–993, 2003.
 608. Shigematsu S, Ishida S, Gute DC and Korthuis RJ. Concentration‐dependent effects of bradykinin on leukocyte recruitment and venular hemodynamics in rat mesentery. Am J Physiol 277: H152–H160, 1999.
 609. Shigematsu S, Ishida S, Gute DC and Korthuis RJ. Bradykinin‐induced proinflammatory signaling mechanisms. Am J Physiol Heart Circ Physiol 283: H2676–H2686, 2002.
 610. Sato A, Miura H, Liu Y, Somberg LB, Otterson MF, Demeure MJ, Schulte WJ, Eberhardt LM, Loberiza FR, Sakuma I and Gutterman DD. Effect of gender on endothelium‐dependent dilation to bradykinin in human adipose microvessels. Am J Physiol Heart Circ Physiol 283: H845–H852, 2002.
 611. Cao T, Brain SD, Khodr B and Khalil Z. B1 and B2 antagonists and bradykinin‐induced blood flow in rat skin inflammation. Inflamm Res 51: 295–299, 2002.
 612. Jeppesen P, Aalkjaer C and Bek T. Bradykinin relaxation in small porcine retinal arterioles. Invest Ophthalmol Vis Sci 43: 1891–1896, 2002.
 613. Thuringer D, Maulon L and Freiin C. Rapid transactivation of the vascular endothelial growth factor receptor KDR/Flk‐1 by the bradykinin B2 receptor contributes to endothelial nitric‐oxide synthase activation in cardiac capillary endothelial cells. J Biol Chem 277: 2028–2032, 2002.
 614. Silvestre JS, Bergaya S, Tamarat R, Duriez M, Boulanger CM and Levy BI. Proangiogenic effect of angiotensin‐converting enzyme inhibition is mediated by the bradykinin B(2) receptor pathway. Circ Res 89: 678–683, 2001.
 615. Mashito Y, Ichinose M and Shirato K. Bradykinin B2 antagonist HOE 140 inhibits late allergic microvascular leakage in guinea pig airways. Immunopharmacology 43: 249–253, 1999.
 616. Tsuchida S, Miyazaki Y, Matsusaka T, Hunley TE, Inagami T, Fogo A and Ichikawa I. Potent antihypertrophic effect of the bradykinin B2 receptor system on the renal vasculature. Kidney Int 56: 509–516, 1999.
 617. Shigematsu S, Ishida S, Gute DC and Korthuis RJ. Bradykinin prevents postischemic leukocyte adhesion and emigration and attenuates microvascular barrier disruption. Am J Physiol 277: H161–H171, 1999.
 618. Yu H, Carretero OA, Juncos LA and Garvin JL. Biphasic effect of bradykinin on rabbit afferent arterioles. Hypertension 32: 287–292, 1998.
 619. Kon V, Fogo A and Ichikawa I. Bradykinin causes selective efferent arteriolar dilation during angiotensin I converting enzyme inhibition. Kidney Int 44: 545–550, 1993.
 620. Kontos HA, Wei EP, Kukreja RC, Ellis EF and Hess ML. Differences in endothelium‐dependent cerebral dilation by bradykinin and acetylcholine. Am J Physiol 258: H1261–H1266, 1990.
 621. Edwards RM. Response of isolated renal arterioles to acetylcholine, dopamine, and bradykinin. Am J Physiol 248: F183–F189, 1985.
 622. Resende AC, Ballejo G and Salgado MC. Role of non‐nitric oxide non‐prostaglandin endothelium‐derived relaxing factor(s) in bradykinin vasodilation. Braz J Med Biol Res 31: 1229–1235, 1998.
 623. Tsukada M and Chiba S. Bradykinin‐induced vascular responses in dog isolated lingual artery. Clin Exp Pharmacol Physiol 26: 456–460, 1999.
 624. Zhang X, Scicli GA, Xu X, Nasjletti A and Hintze TH. Role of endothelial kinins in control of coronary nitric oxide production. Hypertension 30: 1105–1111, 1997.
 625. Kichuk MR, Seyedi N, Zhang X, Marboe CC, Michler RE, Addonizio LJ, Kaley G, Nasjletti A and Hintze TH. Regulation of nitric oxide production in human coronary microvessels and the contribution of local kinin formation. Circulation 94: 44–51, 1996.
 626. Miyamoto A, Ishiguro S and Nishio A. Stimulation of bradykinin B2‐receptors on endothelial cells induces relaxation and contraction in porcine basilar artery in vitro. Br J Pharmacol 128: 241–247, 1999.
 627. Hargreaves KM, Troullos ES, Dionne RA, Schmidt EA, Schafer SC and Joris JL. Bradykinin is increased during acute and chronic inflammation: therapeutic implications. Clin Pharmacol Ther 44: 613–621, 1988.
 628. Pizurki L, Zhou Z, Glynos K, Roussos C and Papapetropoulos A. Angiopoietin‐1 inhibits endothelial permeability, neutrophil adherence and IL‐8 production. Br J Pharmacol 139: 329–336, 2003.
 629. Emanuelia C and Madeddu P. Human tissue kallikrein: a new bullet for the treatment of ischemia. Curr Pharm Des 9: 589–597, 2003.
 630. Plendl J, Snyman C, Naidoo S, Sawant S, Mahabeer R and Bhoola KD. Expression of tissue kallikrein and kinin receptors in angiogenic microvascular endothelial cells. Biol Chem 381: 1103–1115, 2000.
 631. Pesquero JB and Bader M. Molecular biology of the kallikrein—kinin system: from structure to function. Braz J Med Biol Res 31: 1197–1203, 1998.
 632. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, Brandes RP and Busse R. Endothelium‐derived hyperpolarizing factor synthase {Cytochrome P450 2C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res 88: 44–51, 2001.
 633. Mombouli JV and Vanhoutte PM. Kinins and endothelial control of vascular smooth muscle. Annu Rev Pharmacol Toxicol 35: 679–705, 1995.
 634. Wahl M, Gorlach C, Hortobagyi T and Benyo Z. Effects of bradykinin in the cerebral circulation. Acta Physiol Hung 86: 155–160, 1999.
 635. Greene EL, Velarde V and Jaffa AA. Role of reactive oxygen species in bradykinin‐induced mitogen‐activated protein kinase and c‐fos induction in vascular cells. Hypertension 35: 942–947, 2000.
 636. Shimizu S, Ishii M, Yamamoto T, Kawanishi T, Momose K and Kuroiwa Y. Bradykinin induces generation of reactive oxygen species in bovine aortic endothelial cells. Res Commun Chem Pathol Pharmacol 84: 301–314, 1994.
 637. Velarde V, de la Cerda PM, Duarte C, Arancibia F, Abbott E, Gonzalez A, Moreno F and Jaffa AA. Role of reactive oxygen species in bradykinin‐induced proliferation of vascular smooth muscle cells. Biol Res 37: 419–430, 2004.
 638. Drummond GR and Cocks TM. Endothelium‐dependent relaxation to the B1 kinin receptor agonist des‐Arg9‐bradykinin in human coronary arteries. Br J Pharmacol 116: 3083–3085, 1995.
 639. Kamitani T, Little MH and Ellis EF. Evidence for a possible role of the brain kallikrein‐kinin system in the modulation of the cerebral circulation. Circ Res 57: 545–552, 1985.
 640. Lapointe N and Rouleau JL. Cardioprotective effects of vaso‐peptidase inhibitors. Can J Cardiol 18: 415–420, 2002.
 641. Prado GN, Mierke DF, LeBlanc T, Manseau M, Taylor L, Yu J, Zhang R, Pal‐Ghosh R and Polgar P. Role of hydroxyl containing residues in the intracellular region of rat bradykinin B(2) receptor in signal transduction, receptor internalization, and resensitization. J Cell Biochem 83: 435–447, 2001.
 642. Bachvarov DR, Houle S, Bachvarova M, Bouthillier J, Adam A and Marceau F. Bradykinin B(2) receptor endocytosis, recycling, and down‐regulation assessed using green fluorescent protein conjugates. J Pharmacol Exp Ther 297: 19–26, 2001.
 643. Sabourin T, Bastien L, Bachvarov DR and Marceau F. Agonist‐induced translocation of the kinin B(1) receptor to caveolae‐related rafts. Mol Pharmacol 61: 546–553, 2002.
 644. Cabrini DA, Campos MM, Tratsk KS, Merino VF, Silva JA, Jr., Souza GE, Avellar MC, Pesquero JB and Calixto JB. Molecular and pharmacological evidence for modulation of kinin B(1) receptor expression by endogenous glucocorticoids hormones in rats. Br J Pharmacol 132: 567–577, 2001.
 645. Medeiros R, Cabrini DA, Ferreira J, Fernandes ES, Mori MA, Pesquero JB, Bader M, Avellar MC, Campos MM and Calixto JB. Bradykinin B1 receptor expression induced by tissue damage in the rat portal vein: a critical role for mitogen‐activated protein kinase and nuclear factor‐kappaB signaling pathways. Circ Res 94: 1375–1382, 2004.
 646. MacGlashan D, Jr. Histamine: a mediator of inflammation. J Allergy Clin Immunol 112: S53–S59, 2003.
 647. Hill SJ, Ganellin CR, Timmerman H, Schwartz JC, Shankley NP, Young JM, Schunack W, Levi R and Haas HL. International union of pharmacology. XIII. Classification of histamine receptors. Pharmacol Rev 49: 253–278, 1997.
 648. Chester AH, Borland JA, Morrison KJ, Amrani M, Thom SM and Yacoub MH. Reactivity of small intramyocardial arteries from atherosclerotic and non‐atherosclerotic human hearts. J Vasc Res 35: 170–178, 1998.
 649. Yuan Y, Granger HJ, Zawieja DC, DeFily DV and Chilian WM. Histamine increases venular permeability via a phospholipase C‐NO synthase‐guanylate cyclase cascade. Am J Physiol 264: H1734–H1739, 1993.
 650. Rosenblum WI and Nelson GH. Tone regulates opposing endothelium‐dependent and ‐independent forces: resistance brain vessels in vivo. Am J Physiol 259: H243–H247, 1990.
 651. Rosenblum WI, Nelson GH and Weinbrecht P. Histamine elicits competing endothelium‐dependent constriction and endofhelium‐independent dilation in vivo in mouse cerebral arterioles. Stroke 21: 305–309, 1990.
 652. Mayhan WG. Role of nitric oxide in histamine‐induced increases in permeability of the blood‐brain barrier. Brain Res 743: 70–76, 1996.
 653. Mirra R, Busija DW, Armstead WM and Leffler CW. Histamine dilates pial arterioles of newborn pigs through prostanoid production. Am J Physiol 254: H1023–H1026, 1988.
 654. Yong T, Bebo BF, Jr., Sapatino BV, Welsh CJ, Orr EL and Linthicum DS. Histamine‐induced microvascular leakage in pial venules: differences between the SJL/J and BALB/c inbred strains of mice. J Neurotrauma 11: 161–171, 1994.
 655. Schilling L and Wahl M. Opening of the blood‐brain barrier during cortical superfusion with histamine. Brain Res 653: 289–296, 1994.
 656. Kaley G, Rotlenburg JM, Messina EJ and Wolin MS. Endothelium‐associated vasodilators in rat skeletal muscle microcirculation. Am J Physiol 256: H720–H725, 1989.
 657. Payne GW, Madri JA, Sessa WC and Segal SS. Abolition of arteriolar dilation but not constriction to histamine in cremaster muscle of eNOS−/− mice. Am J Physiol Heart Circ Physiol 285: H493–H498, 2003.
 658. Karnes JL, Mendel FC, Fish DR and Burton HW. High‐voltage pulsed current: its influence on diameters of histamine‐dilated arterioles in hamster cheek pouches. Arch Phys Med Rehabil 76: 381–386, 1995.
 659. Mayhan WG and Sharpe GM. Generation of superoxide anion impairs histamine‐induced increases in macromolecular efflux. Microvasc Res 61: 275–281, 2001.
 660. Thorlacius H, Raud J, Xie X, Hedqvist P and Lindbom L. Microvascular mechanisms of histamine‐induced potentiation of leukocyte adhesion evoked by chemoattractants. Br J Pharmacol 116: 3175–3180, 1995.
 661. Friedman M, Johnson RG, Wang SY, Dai HB, Thurer RL, Weintraub RM and Sellke FW. Pulmonary microvascular responses to protamine and histamine. Effects of cardiopulmonary bypass. J Thorac Cardiovasc Surg 108: 1092–1099, 1994.
 662. Breil I, Koch T, Belz M, Van Ackern K and Neuhof H. Effects of bradykinin, histamine and serotonin on pulmonary vascular resistance and permeability. Acta Physiol Scand 159: 189–198, 1997.
 663. Jancso G, Santha P, Horvath V and Pierau F. Inhibitory neurogenic modulation of histamine‐induced cutaneous plasma extravasation in the pigeon. Regul Pept 95: 75–80, 2000.
 664. Van d V, Delaey C, Depypere H and Vanheel B. Mechanisms involved in the vasorelaxing influence of histamine on isolated human subcutaneous resistance arteries. Eur J Pharmacol 349: 61–66, 1998.
 665. Harper EI, Beck JS, Spence VA and Brown RA. Effect of histamine and prostaglandin E2 on the microcirculation in the skin. Agents Actions 24: 102–108, 1988.
 666. Colditz IG. The induction of plasma leakage in skin by histamine, bradykinin. activated complement, platelet‐activating factor and serotonin. Immunol Cell Biol 69 (Pt 3): 215–219, 1991.
 667. Suzuki H, Zweifach BW and Schmid‐Schonbein GW. Glucocorticoid moculates vasodilator response of mesenteric arterioles in spontaneously hypertensive rats. Hypertension 27: 114–118, 1996.
 668. Bungardt E, Buschauer A, Moser U, Schunack W, Lambrecht G and Mutschler E. Histamine H1 receptors mediate vasodilation in guinea‐pig ileum resistance vessels: characterization with computer‐assisted videomicroscopy and new selective agonists. Eur J Pharmacol 221: 91–98, 1992.
 669. Thorlacius H, Lindbom L, Hedqvist P and Raud J. Microvascular actions of histamine: synergism with leukotriene B4 and role in allergic leucocyte recruitment. Clin Exp Allergy 27: 445–451, 1997.
 670. Kraneveld AD, Koster AS and Nijkamp FP. Microvascular permeability in isolated vascularly perfused small intestine of rats. Am J Physiol 266: G1170–G1178, 1994.
 671. Asako H, Kurose I, Wolf R, DeFrees S, Zheng ZL, Phillips ML, Paulson JC and Granger DN. Role of H1 receptors and P‐selectin in histamine‐induced leukocyte rolling and adhesion in postcapillary venules. J Clin Invest 93: 1508–1515, 1994.
 672. Al Naemi H and Baldwin AL. Nitric oxide protects venules against histamine‐induced leaks. Microcirculation 7: 215–223, 2003.
 673. Michel CC and Kendall S. Differing effects of histamine and serotonin on microvascular permeability in anaesthetized rats. J Physiol 501 (Pt 3): 657–662, 1997.
 674. Rothe CF and Maass‐Moreno R. Hepatic venular resistance responses to norepinephrine, isoproterenol, adenosine, histamine, and ACh in rabbits. Am J Physiol 274: H777–H785, 1998.
 675. Wolf MB, Scott DR and Watson PD. Microvascular permeability transients due to histamine in cat limb. Am J Physiol 261: H220–H228, 1991.
 676. Davidge ST. Prostaglandin H synthase and vascular function. Circ Res 89: 650–660, 2001.
 677. Schror K. The effect of prostaglandins and thromboxane A2 on coronary vessel tone ‐ mechanisms of action and therapeutic implications. Eur Heart J 14 (Suppl I): 34–41, 1993.
 678. Tsuboi K, Sugimoto Y and Ichikawa A. Prostanoid receptor subtypes. Prostaglandins Other Lipid Mediat 68‐69: 535–556, 2002.
 679. Breyer RM, Kennedy CR, Zhang Y and Breyer MD. Structure‐function analyses of eicosanoid receptors: physiologic and therapeutic implications. Ann NY Acad Sci 905: 221–231, 2000.
 680. Wright DH, Abran D, Bhattacharya M, Hou X, Bernier SG, Bouayad A, Fouron JC, Vazquez‐Tello A, Beauchamp MH, Clyman RI, Peri K, Varma DR and Chemtob S. Prostanoid receptors: ontogeny and implications in vascular physiology. Am J Physiol Regul Integr Comp Physiol 281: R1343–R1360, 2001.
 681. Breyer RM, Bagdassarian CK, Myers SA and Breyer MD. Prostanoid receptors: subtypes and signaling. Annu Rev Pharmacol Toxicol 41: 661–690, 2001.
 682. Breyer MD. Prostaglandin receptors in the kidney: a new route for intervention? Exp Nephrol 6: 180–188, 1998.
 683. Coleman RA, Smith WL and Narumiya S. International union of pharmacology classification of prostanoid receptors: properties, distribution, and structure of the receptors and their subtypes. Pharmacol Rev 46: 205–229, 1994.
 684. Negishi M, Sugimoto Y and Ichikawa A. Molecular mechanisms of diverse actions of prostanoid receptors. Biochim Biophys Acta 1259: 109–119, 1995.
 685. Pierce KL and Regan JW. Prostanoid receptor heterogeneity through alternative mRNA splicing. Life Sci 62: 1479–1483, 1998.
 686. Kobayashi T and Narumiya S. Function of prostanoid receptors: studies on knockout mice. Prostaglandins Other Lipid Mediat 68‐69: 557–573, 2002.
 687. Fredricks KT, Liu Y and Lombard JH. Response of extraparenchymal resistance arteries of rat skeletal muscle to reduced PO2. Am J Physiol 267: H706–H715, 1994.
 688. Lombard JH, Liu Y, Fredricks KT, Bizub DM, Roman RJ and Rusch NJ. Electrical and mechanical responses of rat middle cerebral arteries to reduced PO2 and prostacyclin. Am J Physiol 276: H509–H516, 1999.
 689. Messina EJ, Sun D, Koller A, Wolin MS and Kaley G. Role of endothelium‐derived prostaglandins in hypoxia‐elicited arteriolar dilation in rat skeletal muscle. Circ Res 71: 790–796, 1992.
 690. Ward ME. Dilation of rat diaphragmatic arterioles by flow and hypoxia: roles of nitric oxide and prostaglandins. J Appl Physiol 86: 1644–1650, 1999.
 691. Versteeg HH, van Bergen en Henegouwen PM, van Deventer SJ and Peppelenbosch MP. Cyclooxygenase‐dependent signalling: molecular events and consequences. FEBS Lett 445 (1‐5), 1999.
 692. Gobeil F, Vazquez‐Tello A, Marrache AM, Bhattacharya M, Checchin D, Bkaily G, Lachapelle P. Ribeiro‐da‐Silva A and Chemtob S. Nuclear prostaglandin signaling system: biogenesis and actions via heptahelical receptors. Can J Physiol Pharmacol 81: 196–204, 2003.
 693. Lim H and Dey SK. A novel pathway of prostacyclin signaling‐hanging out with nuclear receptors. Endocrinology 143: 3207–3210, 2002.
 694. Messina EJ, Rodenburg J and Kaley G. Microcirculatory effects of leukotrienes, LTC4 and LTD4, in rat cremaster muscle. Microcirc Endothelium Lymphatics 4: 355–376, 1988.
 695. Rosenblum WI. Constricting effect of leukotrienes on cerebral arterioles of mice. Stroke 16: 262–263, 1985.
 696. Rosenblum WI, Nelson GH and Nishimura H. Leukotriene constriction of mouse pial arterioles in vivo is endothelium‐dependent and receptor‐mediated. Stroke 21: 1618–1620, 1990.
 697. Hedqvist P, Gautam N and Lindbom L. Interactions between leukotrienes and other inflammatory mediators/modulators in the microvasculature. Am J Respir Crit Care Med 161: S117–S119, 2000.
 698. Brink C, Dahlen SE, Drazen J, Evans JF, Hay DW, Nicosia S, Serhan CN, Shimizu T and Yokomizo T, International union of pharmacology XXXVII. Nomenclature for leukotriene and lipoxin receptors. Pharmacol Rev 55: 195–227, 2003.
 699. Raud J, Palmertz U, Dahlen SE and Hedqvist P. Lipoxins inhibit microvascular inflammatory actions of leukotriene B4. Adv Exp Med Biol 314: 185–192, 1991.
 700. Tager AM, Dufour JH, Goodarzi K, Bercury SD, von Andrian UH and Luster AD. BLTR mediates leukotriene B(4)‐induced Chemotaxis and adhesion and plays a dominant role in eosinophil accumulation in a murine model of peritonitis. J Exp Med 192: 439–446, 2000.
 701. Yonei Y and Guth PH. Effect of a leukotriene receptor antagonist on LTC4 vasoconstriction in rat stomach. Am J Physiol 259: G147–G154, 1990.
 702. Frisbee JC, Maier KG, Falck JR, Roman RJ and Lombard JH. Integration of hypoxic dilation signaling pathways for skeletal muscle resistance arteries. Am J Physiol Regul Integr Comp Physiol 283: R309–R319, 2002.
 703. Harder DR, Gebremedhin D, Narayanan J, Jefcoat C, Falck JR, Campbell WB and Roman R. Formation and action of a P‐450 4A metabolite of arachidonic acid in cat cerebral microvessels. Am J Physiol 266: H2098–H2107, 1994.
 704. Harder DR, Narayanan J, Birks EK, Liard JF, Imig JD, Lombard JH, Lange AR and Roman RJ. Identification of a putative microvascular oxygen sensor. Circ Res 79: 54–61, 1996.
 705. Kunert MP, Roman RJ, Alonso‐Galicia M, Falck JR and Lombard JH. Cytochrome P‐450 omega‐hydroxylase: a potential O(2) sensor in rat arterioles and skeletal muscle cells. Am J Physiol Heart Circ Physiol 280: H1840–H1845, 2001.
 706. Roman RJ. P‐450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82: 131–185, 2002.
 707. Jiang M, Mezentsev A, Kemp R, Byun K, Falck JR, Miano JM, Nasjletti A, Abraham NG and Laniado‐Schwartzman M. Smooth muscle ‐ specific expression of CYP4A1 induces endothelial sprouting in renal arterial microvessels. Circ Res 94: 167–174, 2004.
 708. Amaral SL, Maier KG, Schippers DN, Roman RJ and Greene AS. CYP4A metabolites of arachidonic acid and VEGF are mediators of skeletal muscle angiogenesis. Am J Physiol Heart Circ Physiol 284: H1528–H1535, 2003.
 709. Medhora M, Narayanan J and Harder D. Dual regulation of the cerebral microvasculature by epoxyeicosatrienoic acids. Trends Cardiovasc Med 11: 38–42, 2001.
 710. Harder DR, Alkayed NJ, Lange AR, Gebremedhin D and Roman RJ. Functional hyperemia in the brain: hypothesis for astrocyte‐derived vasodilator metabolites. Stroke 29: 229–234, 1998.
 711. Oltman CL, Weintraub NL, VanRollins M and Dellsperger KC. Epoxyeicosatrienoic acids and dihydroxyeicosatrienoic acids are potent vasodilators in the canine coronary microcirculation. Circ Res 83: 932–939, 1998.
 712. Miura H, Wachtel RE, Liu Y, Loberiza FR, Jr., Saito T, Miura M and Gutterman DD. Flow‐induced dilation of human coronary arterioles: important role of Ca(2+)‐activated K(+) channels. Circulation 103: 1992–1998, 2001.
 713. Zhang C and Harder DR. Cerebral capillary endothelial cell mitogenesis and morphogenesis induced by astrocytic epoxyeicosatrienoic Acid. Stroke 33: 2957–2964, 2002.
 714. Gerritsen ME. Physiological and pathophysiological roles of eicosanoids in the microcirculation. Cardiovasc Res 32: 720–732, 1996.
 715. Armstead WM. Relationship between opioids and prostaglandins in hypoxia‐induced vasodilation of pial arteries in the newborn pig. Proc Soc Exp Biol Med 212: 135–141, 1996.
 716. Koller A, Sun D, Huang A and Kaley G. Corelease of nitric oxide and prostaglandins mediates flow‐dependent dilation of rat gracilis muscle arterioles. Am J Physiol 267: H326–H332, 1994.
 717. Moller AD and Grande PO. Role of prostacyclin and nitric oxide in regulation of basal microvascular hydraulic permeability in cat skeletal muscle. J Vasc Res 36: 245–252, 1999.
 718. Muller B and Schmidtke M. Microvascular effects of iloprost in the hamster cheek pouch. Adv Prostag Thromb Leukot Res 17A: 455–458, 1987.
 719. Wu NZ and Baldwin AL. Possible mechanism(s) for permeability recovery of venules during histamine application. Microvasc Res 44: 334–352, 1992.
 720. Mayhan WG, Simmons LK and Sharpe GM. Mechanism of impaired responses of cerebral arterioles during diabetes mellitus. Am J Physiol 260: H319–H326, 1991.
 721. Boczkowski J, Vicaut E, Danialou G and Aubier M. Role of nitric oxide and prostaglandins in the regulation of diaphragmatic arteriolar tone in the rat. J Appl Physiol 77: 590–596, 1994.
 722. Faber JE, Harris PD and Joshua IG. Microvascular response to blockade of prostaglandin synthesis in rat skeletal muscle. Am J Physiol 243: H51–H60, 1982.
 723. Faber JE, Harris PD and Miller FN. Microvascular sensitivity to PGE2 and PGI2 in skeletal muscle of decerebrate rat. Am J Physiol 243: H844–H851, 1982.
 724. Merkus D, Houweling B, Zarbanoui A and Duncker DJ. Interaction between prostanoids and nitric oxide in regulation of systemic, pulmonary, and coronary vascular tone in exercising swine. Am J Physiol Heart Circ Physiol 286: H1114–H1123, 2004.
 725. Higgs GA, Moncada S and Vane JR. Prostacyclin as a potent dilator of arterioles in the hamster cheek pouch [proceedings], J Physiol 275: 30P–31P, 1978.
 726. Leffler CW and Busija DW. Prostanoids and pial arteriolar diameter in hypotensive newborn pigs. Am J Physiol 252: H687–H691, 1987.
 727. Parfenova H and Leffler CW. Functional study on vasodilator effects of prostaglandin E2 in the newborn pig cerebral circulation. Eur J Pharmacol 278: 133–142, 1995.
 728. Liu Y, Rusch NJ and Lombard JH. Loss of endothelium and receptor‐mediated dilation in pial arterioles of rats fed a short‐term high salt diet. Hypertension 33: 686–688, 1999.
 729. Frisbee JC, Sylvester FA and Lombard JH. High‐salt diet impairs hypoxia‐induced cAMP production and hyperpolarization in rat skeletal muscle arteries. Am J Physiol Heart Circ Physiol 281: H1808–H1815, 2001.
 730. Lombard JH, Sylvester FA, Phillips SA and Frisbee JC. High salt diet impairs vascular relaxation mechanisms in rat middle cerebral arteries. Am J Physiol Heart Circ Physiol 284: H1124–H1133, 2002.
 731. Ellis EF, Wei EP and Kontos HA. Vasodilation of cat cerebral arterioles by prostaglandins D2, E2, G2, and 12. Am J Physiol 237: H381–H385, 1979.
 732. Ohno T, Katori M, Majima M, Saeki T, Boku K, Nishiyama K, Hayashi H and Saigenji K. Dilatation and constriction of rat gastric mucosal microvessels through prostaglandin EP2 and EP3 receptors. Aliment Pharmacol Ther 13: 1243–1250, 1999.
 733. Whittle BJ, Oren‐Wolman N and Guth PH. Gastric vasoconstrictor actions of leukotriene C4, PGF2 alpha, and thromboxane mimetic U‐46619 on rat submucosal microcirculation in vivo. Am J Physiol 248: G580–G586, 1985.
 734. Edwards RM. Effects of prostaglandins on vasoconstrictor action in isolated renal arterioles. Am J Physiol 248: F779–F784, 1985.
 735. Chaudhari A, Gupta S and Kirschenbaum MA. Biochemical evidence for PG12 and PGE2 receptors in the rabbit renal preglomerular microvasculature. Biochim Biophys Acta 1053: 156–161, 1990.
 736. Imig JD, Breyer MD and Breyer RM. Contribution of prostaglandin EP(2) receptors to renal microvascular reactivity in mice. Am J Physiol Renal Physiol 283: F415–F422, 2002.
 737. Leffler CW and Parfenova H. Cerebral arteriolar dilation to hypoxia: role of prostanoids. Am J Physiol 272: H418–H424, 1997.
 738. Koller A, Dornyei G and Kaley G. Flow‐induced responses in skeletal muscle venules: modulation by nitric oxide and prostaglandins. Am J Physiol 275: H831–H836, 1998.
 739. Sun D, Huang A, Smith CJ, Stackpole CJ, Connetta JA, Shesely EG, Koller A and Kaley G. Enhanced release of prostaglandins contributes to flow‐induced arteriolar dilation in eNOS knockout mice. Circ Res 85: 288–293, 1999.
 740. Parfenova H, Shibata M, Zuckerman S and Leffler CW. CO2 and cerebral circulation in newborn pigs: cyclic nucleotides and prostanoids in vascular regulation. Am J Physiol 266: H1494–H1501, 1994.
 741. Herrmann KS. Vasoconstrictor response of arterioles of the hamster cheek pouch to norepinephrine, prostaglandin H2, F2 alpha and carbocyclic thromboxane A2, a possible thromboxane A2 analogue. Arch Int Pharmacodyn Ther 259: 180–185, 1982.
 742. Verbeuren TJ, Valiez MO, Lavielle G and Bouskela E. Activation of thromboxane receptors and the induction of vasomotion in the hamster cheek pouch microcirculation. Br J Pharmacol 122: 859–866, 1997.
 743. Haberl RL, Heizer ML and Ellis EF. Effect of the thromboxane A2 mimetic U 46619 on pial arterioles of rabbits and rats. Stroke 18: 796–800, 1987.
 744. Wagerle LC and Busija DW. Effect of thromboxane A2/endoperoxide antagonist SQ29548 on the contractile response to acetylcholine in newborn piglet cerebral arteries. Circ Res 66: 824–831, 1990.
 745. Huang A and Koller A. Endothelin and prostaglandin H2 enhance arteriolar myogenic tone in hypertension. Hypertension 30: 1210–1215, 1997.
 746. Huang A, Sun D and Koller A. Shear stress‐induced release of prostaglandin H(2) in arterioles of hypertensive rats. Hypertension 35: 925–930, 2000.
 747. Bagi Z, Ungvari Z, Szollar L and Koller A. Flow‐induced constriction in arterioles of hyperhomocysteinemic rats is due to impaired nitric oxide and enhanced thromboxane A(2) mediation. Arterioscler Thromb Vasc Biol 21: 233–237, 2001.
 748. Ungvari Z, Sarkadi‐Nagy E, Bagi Z, Szollar L and Koller A. Simultaneously increased TxA(2) activity in isolated arterioles and platelets of rats with hyperhomocysteinemia. Arterioscler Thromb Vasc Biol 20: 1203–1208, 2000.
 749. Ungvari Z and Koller A. Endothelin and prostaglandin H(2)/thromboxane A(2) enhance myogenic constriction in hypertension by increasing Ca(2+) sensitivity of arteriolar smooth muscle. Hypertension 36: 856–861, 2000.
 750. Kamitani T, Little MH and Ellis EF. Effect of leukotrienes, 12‐HETE, histamine, bradykinin, and 5‐hydroxytryptamine on in vivo rabbit cerebral arteriolar diameter. J Cereb Blood Flow Metab 5: 554–559, 1985.
 751. Gulati N, Philpot ME, Gulati OP, Malmsten C and Huggel H. Effects of leukotriene C4 and prostaglandin E2 on the rat mesentery in vitro and in vivo. Prostaglandins Leukot Med 10: 257–268, 1983.
 752. Michelassi F, Shahinian HK and Ferguson MK. Effects of leukotrienes B4, C4, and D4 on rat mesenteric microcirculation. J Surg Res 42: 475–482, 1987.
 753. Larkin SW, Fraser L, Showell HJ, Williams TJ and Warren JB. Prolonged microvascular vasodilation induced by leukotriene B4 in human skin is cyclooxygenase independent. J Pharmacol Exp Ther 272: 392–398, 1995.
 754. Jackson WF. Arteriolar oxygen reactivity is inhibited by leukotriene antagonists. Am J Physiol 257: H1565–H1572, 1989.
 755. Jackson WF. Regional differences in mechanism of action of oxygen on hamster arterioles. Am J Physiol 265: H599–H603, 1993.
 756. Bertolino F, Valentin JP, Maffre M, Bessac AM and John GW. TxA2 receptor activation elicits organ‐specific increases in microvascular permeability in the rat. Am J Physiol 268: R366–R374, 1995.
 757. Valentin JP, Jover B, Maffre M, Bertolino F, Bessac AM and John GW. Losartan prevents thromboxane A2/prostanoid (TP) receptor mediated increase in microvascular permeability in the rat. Am J Hypertens 10: 1058–1063, 1997.
 758. Bjork J, Dahlen SE, Hedqvist P and Arfors KE. Leukotrienes B4 and C4 have distinct microcirculatory actions in vivo. Adv Prostag Thromb Leukot Res 12: 1–6, 1983.
 759. Yong T and Mayhan WG. Effect of prostaglandin E1 on leukotriene C4‐induced increases in vascular permeability of hamster cheek pouch. Inflammation 16: 159–167, 1992.
 760. Kubes P, Grisham MB, Barrowman JA, Gaginella T and Granger DN. Leukocyte‐induced vascular protein leakage in cat mesentery. Am J Physiol 261: H1872–H1879, 1991.
 761. Laux V and Seiffge D. Mediator‐induced changes in macromolecular permeability in the rat mesenteric microcirculation. Microvasc Res 49: 117–133, 1995.
 762. Erlansson M, Svensjo E and Bergqvist D. Leukotriene B4‐induced permeability increase in postcapillary venules and its inhibition by three different antiinflammatory drugs. Inflammation 13: 693–705, 1989.
 763. Bentzer P, Holbeck S and Grande PO. Endothelin‐1 reduces microvascular fluid permeability through secondary release of prostacyclin in cat skeletal muscle. Microvasc Res 63: 50–60, 2002.
 764. Asako H, Kubes P, Wallace J, Gaginella T, Wolf RE and Granger DN. Indomethacin‐induced leukocyte adhesion in mesenteric venules: role of lipoxygenase products. Am J Physiol 262: G903–G908, 1992.
 765. Gawlowski DM, Benoit JN and Granger HJ. Microvascular pressure and albumin extravasation after leukocyte activation in hamster cheek pouch. Am J Physiol 264: H541–H546, 1993.
 766. Goldman G, Welbourn R, Valeri CR, Shepro D and Hechtman HB. Thromboxane A2 induces leukotriene B4 synthesis that in turn mediates neutrophil diapedesis via CD 18 activation. Microvasc Res 41: 367–375, 1991.
 767. Arndt H, Russell JB, Kurose I, Kubes P and Granger DN. Mediators of leukocyte adhesion in rat mesenteric venules elicited by inhibition of nitric oxide synthesis. Gastroenterology 105: 675–680, 1993.
 768. Casillan AJ, Gonzalez NC, Johnson JS, Steiner DR and Wood JG. Mesenteric microvascular inflammatory responses to systemic hypoxia are mediated by RAF and LTB4. J Appl Physiol 94: 2313–2322, 2003.
 769. Steiner DR, Gonzalez NC and Wood JG. Leukotriene B(4) promotes reactive oxidant generation and leukocyte adherence during acute hypoxia. J Appl Physiol 91: 1160–1167, 2001.
 770. Jones G and Hurley JV. The effect of prostacyclin on the adhesion of leucocytes to injured vascular endothelium. J Pathol 142: 51–59, 1984.
 771. Higgs EA, Higgs GA, Moncada S and Vane JR. Prostacyclin (PGI2) inhibits the formation of platelet thrombi in arterioles and venules of the hamster cheek pouch. Br J Pharmacol 63: 535–539, 1978.
 772. Lehmann C, Konig JP, Dettmann J, Birnbaum J and Kox WJ. Effects of iloprost, a stable prostacyclin analog, on intestinal leukocyte adherence and microvascular blood flow in rat experimental endotoxemia. Crit Care Med 29: 1412–1416, 2001.
 773. Franzeck UK, Dorffler‐Melly J, Hussain MA, Wen S, Froesch ER and Bollinger A. Effects of subcutaneous insulin‐like growth factor‐I infusion on skin microcirculation. Int J Microcirc Clin Exp 15: 10–13, 1995.
 774. Laham RJ, Li J, Tofukuji M, Post M, Simons M and Sellke FW. Spatial heterogeneity in VEGF‐induced vasodilation: VEGF dilates microvessels but not epicardial and systemic arteries and veins. Ann Vasc Surg 17: 245–252, 2003.
 775. Sellke FW, Wang SY, Stamler A, Lopez JJ, Li J, Li J and Simons M. Enhanced microvascular relaxations to VEGF and bFGF in chronically ischemic porcine myocardium. Am J Physiol 271: H713–H720, 1996.
 776. Walter DH, Hink U, Asahara T, Van Belle E, Horowitz J, Tsurumi Y, Vandlen R, Heinsohn H, Keyt B, Ferrara N, Symes JF and Isner JM. The in vivo bioactivity of vascular endothelial growth factor/vascular permeability factor is independent of N‐linked glycosylation. Lab Invest 74: 546–556, 1996.
 777. Rissanen TT, Markkanen JE, Arve K, Rutanen J, Kettunen MI, Vajanto I, Jauhiainen S, Cashion L, Gruchala M, Narvanen O, Taipale P, Kauppinen RA, Rubanyi GM and Yla‐Herttuala S. Fibroblast growth factor 4 induces vascular permeability, angiogenesis and arteriogenesis in a rabbit hindlimb ischemia model. FASEB J 17: 100–102, 2003.
 778. Khan AS, Lynch CD, Sane DC, Willingham MC and Sonntag WE. Growth hormone increases regional coronary blood flow and capillary density in aged rats. J Gerontol A Biol Sci Med Sci 56: B364–B371, 2001.
 779. Sato K, Wu T, Laham RJ, Johnson RB, Douglas P, Li J, Sellke FW, Bunting S, Simons M and Post MJ. Efficacy of intra‐coronary or intravenous VEGF165 in a pig model of chronic myocardial ischemia. J Am Coll Cardiol 37: 616–623, 2001.
 780. Rosenblatt S, Irikura K, Caday CG, Finklestein SP and Moskowitz MA. Basic fibroblast growth factor dilates rat pial arterioles. J Cereb Blood Flow Metab 14: 70–74, 1994.
 781. Edwards MJ, Schuschke DA, Abney DL and Miller FN. Interleukin‐2 acutely induces protein leakage from the microcirculation. J Surg Res 50: 609–615, 1991.
 782. Minghini A, Britt LD and Hill MA. Interleukin‐1 and interleukin‐6 mediated skeletal muscle arteriolar vasodilation: in vitro versus in vivo studies. Shock 9: 210–215, 1998.
 783. Tepperman BL and Soper BD. Effect of epidermal growth factor, transforming growth factor alpha and nerve growth factor on gastric mucosal integrity and microcirculation in the rat. Regul Pept 50: 13–21, 1994.
 784. Roberts WG and Palade GE. Increased microvascular permeability and endothelial fenestration induced by vascular endothelial growth factor. J Cell Sci 108 (Pt 6): 2369–2379, 1995.
 785. Nyborg NC and Nielsen PJ. Thrombin contracts isolated bovine retinal small arteries in vitro. Invest Ophthalmol Vis Sci 31: 2307–2313, 1990.

Contact Editor

Submit a note to the editor about this article by filling in the form below.

* Required Field

How to Cite

Stephanie W Watts, Nancy L Kanagy, Julian H Lombard. Receptor‐Mediated Events in the Microcirculation. Compr Physiol 2011, Supplement 9: Handbook of Physiology, The Cardiovascular System, Microcirculation: 285-348. First published in print 2008. doi: 10.1002/cphy.cp020407